34 research outputs found

    Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms

    Get PDF
    We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their importance for the design of streaming algorithms and give a brief overview on lower bounding techniques

    Learning Big (Image) Data via Coresets for Dictionaries

    Get PDF
    Signal and image processing have seen an explosion of interest in the last few years in a new form of signal/image characterization via the concept of sparsity with respect to a dictionary. An active field of research is dictionary learning: the representation of a given large set of vectors (e.g. signals or images) as linear combinations of only few vectors (patterns). To further reduce the size of the representation, the combinations are usually required to be sparse, i.e., each signal is a linear combination of only a small number of patterns. This paper suggests a new computational approach to the problem of dictionary learning, known in computational geometry as coresets. A coreset for dictionary learning is a small smart non-uniform sample from the input signals such that the quality of any given dictionary with respect to the input can be approximated via the coreset. In particular, the optimal dictionary for the input can be approximated by learning the coreset. Since the coreset is small, the learning is faster. Moreover, using merge-and-reduce, the coreset can be constructed for streaming signals that do not fit in memory and can also be computed in parallel. We apply our coresets for dictionary learning of images using the K-SVD algorithm and bound their size and approximation error analytically. Our simulations demonstrate gain factors of up to 60 in computational time with the same, and even better, performance. We also demonstrate our ability to perform computations on larger patches and high-definition images, where the traditional approach breaks down

    Training Gaussian Mixture Models at Scale via Coresets

    Get PDF
    How can we train a statistical mixture model on a massive data set? In this work we show how to construct coresets for mixtures of Gaussians. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size polynomial in dimension and the number of mixture components, while being independent of the data set size. Hence, one can harness computationally intensive algorithms to compute a good approximation on a significantly smaller data set. More importantly, such coresets can be efficiently constructed both in distributed and streaming settings and do not impose restrictions on the data generating process. Our results rely on a novel reduction of statistical estimation to problems in computational geometry and new combinatorial complexity results for mixtures of Gaussians. Empirical evaluation on several real-world datasets suggests that our coreset-based approach enables significant reduction in training-time with negligible approximation error

    Applied Randomized Algorithms for Efficient Genomic Analysis

    Get PDF
    The scope and scale of biological data continues to grow at an exponential clip, driven by advances in genetic sequencing, annotation and widespread adoption of surveillance efforts. For instance, the Sequence Read Archive (SRA) now contains more than 25 petabases of public data, while RefSeq, a collection of reference genomes, recently surpassed 100,000 complete genomes. In the process, it has outgrown the practical reach of many traditional algorithmic approaches in both time and space. Motivated by this extreme scale, this thesis details efficient methods for clustering and summarizing large collections of sequence data. While our primary area of interest is biological sequences, these approaches largely apply to sequence collections of any type, including natural language, software source code, and graph structured data. We applied recent advances in randomized algorithms to practical problems. We used MinHash and HyperLogLog, both examples of Locality- Sensitive Hashing, as well as coresets, which are approximate representations for finite sum problems, to build methods capable of scaling to billions of items. Ultimately, these are all derived from variations on sampling. We combined these advances with hardware-based optimizations and incorporated into free and open-source software libraries (sketch, frp, lib- simdsampling) and practical software tools built on these libraries (Dashing, Minicore, Dashing 2), empowering users to interact practically with colossal datasets on commodity hardware

    Preconditioned Data Sparsification for Big Data with Applications to PCA and K-means

    Get PDF
    We analyze a compression scheme for large data sets that randomly keeps a small percentage of the components of each data sample. The benefit is that the output is a sparse matrix and therefore subsequent processing, such as PCA or K-means, is significantly faster, especially in a distributed-data setting. Furthermore, the sampling is single-pass and applicable to streaming data. The sampling mechanism is a variant of previous methods proposed in the literature combined with a randomized preconditioning to smooth the data. We provide guarantees for PCA in terms of the covariance matrix, and guarantees for K-means in terms of the error in the center estimators at a given step. We present numerical evidence to show both that our bounds are nearly tight and that our algorithms provide a real benefit when applied to standard test data sets, as well as providing certain benefits over related sampling approaches.Comment: 28 pages, 10 figure
    corecore