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Abstract Signal and image processing have seen an explo-
sion of interest in the last few years in a new form of sig-
nal/image characterization via the concept of sparsity with
respect to a dictionary. An active field of research is dic-
tionary learning: the representation of a given large set of
vectors (e.g. signals or images) as linear combinations of
only few vectors (patterns). To further reduce the size of
the representation, the combinations are usually required to
be sparse, i.e., each signal is a linear combination of only a
small number of patterns.

This paper suggests a new computational approach to the
problem of dictionary learning, known in computational ge-
ometry as coresets. A coreset for dictionary learning is a
small smart non-uniform sample from the input signals such
that the quality of any given dictionary with respect to the
input can be approximated via the coreset. In particular, the
optimal dictionary for the input can be approximated by
learning the coreset. Since the coreset is small, the learn-
ing is faster. Moreover, using merge-and-reduce, the coreset
can be constructed for streaming signals that do not fit in
memory and can also be computed in parallel.

We apply our coresets for dictionary learning of im-
ages using the K-SVD algorithm and bound their size and
approximation error analytically. Our simulations demon-
strate gain factors of up to 60 in computational time with
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the same, and even better, performance. We also demon-
strate our ability to perform computations on larger patches
and high-definition images, where the traditional approach
breaks down.

Keywords Sparsity · Dictionary learning · K-SVD ·
Coresets

1 Introduction

One of the major problems in image processing is image
characterization. By image characterization we mean a sys-
tem that gets a two-dimensional function or, in the discrete
case, a matrix, and provides a probability measure as to
whether or not this function/matrix is an image. We are
still far from achieving this ultimate goal, yet a few break-
throughs where recorded since the inception of image pro-
cessing as a branch of scientific research. In the past, many
characterizations used the decay rate of the coefficients of
certain transformations. That led to a characterization in a
linear space of functions. In the last decade, a new approach
that involves redundant representations and sparsity seems
promising. In this framework, a signal is represented again
as a superposition of signals. But unlike the representation
with a basis of a linear space, the number of basic signals
(a.k.a. atoms) in this new approach exceeds the dimension
of the signal such that a given signal may have many differ-
ent representations. Uniqueness is achieved only for a subset
of signals which can be represented with a limited number
of atoms, called sparse signals. For this class of signals the
sparsest representation is unique. This approach shifts the
focus of attention from the general law of decay of coeffi-
cients to the outliers of such behavior, namely the large co-
efficients of such an expansion. The class of sparse signals
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does not form a linear space which reflects the non-linearity
of the set of images. At the same time, we still use linear
techniques which helps a lot in practice.

Similar sparsity approaches have been used as well for
problems such as image and texture classification, image
compression and image denoising.

The sparsity approach has appealing features for image
processing, but it suffers from a few problems. First, it is
clear that sparsity is a notion which is attached to a given
dictionary. Clearly, there is no one universal dictionary that
can represent any image in a sparse way. This calls upon the
need to construct dictionaries for each class of images or for
each application. Constructing a dictionary for a large num-
ber of images from the same class/application goes under the
name dictionary learning and is an active field of research.

Because of the prohibitive computational time and space
complexity, as well as numerical instabilities in computing
with a large number of large sized vectors, dictionary tech-
niques are applied to small images only. In fact, 8 × 8 to
16 × 16 is the most common sizes in image processing. It
means that these are patches of images rather than images
themselves. Larger patches would also reduce their number
for the training process while the structure of small image
patches may be simpler and easier to learn. In classic cases,
this works well, as it also preserves the self similarity prop-
erty of the patches, but it does limit novel applications for
dictionary techniques.

Moreover, one may wish to construct dictionaries for the
same class of images. Implicitly using the approximate self-
similarity nature of images it is customary to use the patches
of an image as a class of similar patches and to construct
a dictionary per image. Here, again, the curse of limited
space and time interfere and high definition images (multi
megapixel resolution common in modern cameras) have a
huge number of patches of such a small size which makes
the dictionary learning task computationally prohibitive.

This paper brings the spell of coresets to cure the curse of
space and time limitations. Informally, a coreset C for a set
of elements Y is a compressed representation of Y that well
approximates the original data in some problem-dependent
sense. The given problem is then solved on the much smaller
coreset C and the resulting solution is applicable to the orig-
inal set Y . This is done by using C to give approximate an-
swers for queries about Y .

Corset techniques were first introduced in the computa-
tional geometry field, and in recent years have been used to
solve some well known open problems in computer science
and machine learning. The subject matured theoretically in
the last few years. Corsets present a new approach to op-
timization in general and have huge success especially in
tasks which use prohibitively large computation time and/or
memory space. In particular, coresets suggest ways to use
existing serial algorithms for distributed (parallel) comput-
ing, and provide solutions under the streaming model, where

the space (memory) for solving the problem at hand is sig-
nificantly smaller than its input size (and suffices for storing
the coreset, but not the complete input).

Coresets for learning dictionaries are the main topic of
this paper, and we demonstrate our ideas on the K-SVD
method introduce by Aharon et al [4]. The K-SVD is a
greedy algorithm designed to solve the following optimiza-
tion problem. Given positive values T0,K and a matrix
Y ∈ R

d×n, we want to find a dictionary D ∈ R
d×K and a

sparse coefficient matrix X ∈ R
d×k that minimize

arg min
D,X

‖Y − DX‖F s.t. ∀i, ‖xi‖0 ≤ T0. (1)

where the vector xi is the ith column of X, ‖ · ‖F is the
Frobenius norm (the square root of the sum of squared en-
tries in the matrix) and ‖xi‖0 ≤ T0 is the sparsity of xi , i.e.,
xi contains at most T0 non-zeros.

The algorithm solves alternate optimization problems, al-
ternating between finding a better D (using the SVD al-
gorithm) while preserving the required sparsity of X and
finding the best sparse X given a dictionary D (orthogonal
matching pursuit is used to compute X, although alternative
methods are suggested as well).

To the end of developing a coreset for the purpose of dic-
tionary learning, we need to adapt the problem notation. For
every column y in Y and a candidate dictionary D ∈ R

d×k

we define

err(y,D) = min
x∈Rk,‖x‖0≤T0

‖Dx − y‖2
2

The sum of squared distances over the columns of Y is the
cost of D:

cost(Y,D) =
∑

y∈Y

err(y,D) = min
X

‖Y − DX‖2,

where the minimum is over every matrix X whose columns
are T0-sparse. More generally, if every column of y has a
weight w(y) ∈ R, we define

cost(Y,D) =
∑

y∈Y

w(y)err(y,D).

A coreset for dictionary learning is a matrix C such that
for every D ∈ R

d×k :

(1 − ε) · cost(Y,D) ≤ cost(C,D) ≤ (1 + ε) · cost(Y,D).

Typically, one expects the number of columns c in C to
be much smaller than the number of columns n in Y . By
the definition of coreset, the dictionary D∗ that minimizes
cost(Y,D) over the collection of all possible dictionaries,
with any additional set of constraints, can be approximated
by the coreset C.
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For example, it is easy to verify that Y is an ε-coreset
of itself. However, an ε-coreset C is efficient if its number
of columns is c � n and the optimization problem can be
solved more efficiently on the coreset, that is much smaller,
without sacrificing too much accuracy.

Our coreset size depends solely on the required accu-
racy and problem parameters and not on the size of the in-
put data Y . In fact, due to stability issues and sensitivity to
initial conditions with greedy algorithms, our method pro-
vides a better solution at a lower running time. This is due
to the coreset performing a convexification of the problem.
We replace most of the inliers with a small number of ap-
propriately weighted representatives. This allows for more
diversity in the initially randomly selected dictionary as well
more opportunity for the outliers to be accounted for in the
learning process.

Results can be improved even further as due to the
smaller learning set and thus lower running times, we have
an ability to run the algorithm with multiple initial condi-
tions and for more iterations. Note though that we only pro-
vide a method for finding the optimal D. We later compute
X normally in one iteration of the original algorithm.

The rest of the paper is structured as follows. Section 2
presents our contributions. In Sect. 3 we relate dictionar-
ies to projective clustering. Section 4 defines what coresets
for dictionaries are. Section 5 gives the motivation for us-
ing coresets for computing dictionaries. Next, Sects. 6 and
7 define coresets for a single k-dictionary query and for all
k-dictionary queries. Section 8 describe the difference be-
tween coresets and uniform sampling. Finally, we present
experimental results in Sect. 9 and a conclusion in Sect. 10.

2 Our Contribution

We first prove that for every input matrix Y of n columns
there is a small coresets for learning dictionaries. The con-
struction is based on non-uniform random sampling of the
n columns, based on an approximate optimal solution D0.
The size of the coreset is independent of n, and relies only
on the desired approximation error ε of the coreset, the size
dk of the desired dictionary, and the probability δ that the
construction will fail; see Theorem 1 for details.

Since it is not clear how to compute such an approxima-
tion D0, in practice we compute a different initial dictionary
D0 and prove that the coreset admits an additive error of ε

multiplied by the cost of D0; see Corollary 2.
Since the approximation error depends on the quality of

D0, we suggest two options to compute D0: (1) Use a single
iteration of the K-SVD algorithm as an initial guess for a
dictionary, and (2) Compute an approximation to a related
problem called projective clustering.

In fact, in our experiments we use the most simple ver-
sion of projective clustering where we set D0 to be the mean

of the n columns, and still get significantly improved results;
see Sect. 5. In these experiments, we measure the quality,
size and running time of our coresets, compared to both uni-
form random sampling and the full input data.

Our results also implies streaming and parallel versions
of K-SVD by computing the coreset in a well-known merge-
and-reduce technique and then running the existing (off-
line) K-SVD algorithm on the resulting coreset; see Sect. 5
for more details and applications.

3 Dictionaries and Projective Clustering

The main coreset techniques that we use in this paper
are usually applied in the context of projective clustering
from computational geometry. Projective clustering is a con-
strained version of the problem that K-SVD is designed
to solve, but has several approximation algorithms with
bounded error and running times, see [18, 40] and refer-
ences therein. In this section we compare the problem of
dictionary learning to projective clustering for this reason,
and also because our algorithm and approximation error is
based on an approximation to the projective clustering prob-
lem.

(α,β)-Approximations As explained in the previous sec-
tion, the K-SVD algorithm is designed to solve the optimiza-
tion problem in (1): given Y and T0, compute

arg min
D,X

‖Y − DX‖F s.t ∀i, ‖xi‖0 ≤ T0.

The aim of the coreset construction is to select the columns
in Y with the highest importance, in a sense that will be
defined formally in the proof of Theorem 1. However, it
depends on the optimal solution of (1) whose computation
is the main reason that we construct the coreset in the first
place. To find a leeway from this chicken-and-egg situation,
a rough approximation D0 for the optimal solution is com-
puted. In computer science, such approximation is called α-
approximation, or more generally (α,β)-approximation. In
the context of our problem, α-approximation is a dictionary
D0 that minimizes (1) up to a multiplicative factor of α > 0.
For (α,β)-approximations, we also allow the dictionary to
have βk columns for some β > 1, rather than k, and the cost
is again larger by a factor of α compared to the optimal dic-
tionary with exactly k columns. The size and quality of the
coreset depends on the values of α and β . Roughly speaking,
if we use α-approximation D0 for constructing the coreset,
its additive error will be a factor of only εα due to a sample
of size quadratic in 1/ε whose distribution is defined by D0.

Unfortunately, we couldn’t find in the literature any prov-
able (α,β)-approxi-mations for the problem in (1). On the
positive side, in the recent years several fast approximations
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were suggested for the projective clustering problem, which
is a constrained version of the problem in (1), as we explain
below. Using an approximation for projective clustering al-
lows us to have bound on the additive error that is introduced
by our coreset; see Corollary 2. In fact, for simplicity, in all
our experiments we use the simplest version of projective
clustering, which is the mean D0 of the columns of Y . Still,
due to the sampling process and the intuition that natural
images tend to contain patches with small variances rather
than random noise (a fact that we observed in all our exper-
iments), the approximation error of the corresponding small
sample was small. See Sect. 8 for discussion.

Projective Clustering as a Special Case of Dictionary
Learning As noted in [6], for the case T0 = 1 and the ad-
ditional constraint that X is a binary matrix, the problem
reduces to the K-means problem: compute a set D of K

points that minimizes the sum of squared distances from
each point (column) in Y to its nearest point in D.

For the case T0 = d , the problem reduces to the low-
rank approximation problem (also known as PCA) where we
wish to approximate Y by a K-dimensional subspace which
is spanned by the K columns of D.

For the case T0 = 1 without the binary constraint on X,
the problem is to compute a set of K lines, each passes
through the origin, such that the sum of squared distances
from each point in Y to its nearest line is minimizes. In this
case the ith column of the matrix D corresponds to an arbi-
trary point on the ith line, for i = 1, . . . ,K . This is a vari-
ant of the problem known as K-line mean that is defined
similarly, but without the constraint that each line must pass
through the origin; see [17].

In a similar way, for the case T0 = 2 the problem reduces
to compute a set of k = (

K
2

)
two dimensional subspaces (i.e.,

planes that intersect the origin) which minimizes the sum of
squared distances to the points of Y , with the constraint that
each subspace is spanned by two vectors from a set D of K

vector. That is, the set of k = (
K
2

)
subspaces is defined by

the matrix D ∈ R
d×k .

In general, for T0,K ≥ 1, the problem in (1) is to com-
pute a set of k = (

K
T0

)
subspaces, each of dimension T0,

which minimizes the sum of squared distances to the points
of Y , with the constraint that each subspace is spanned by
T0 vectors from a set D of K vectors.

While we couldn’t find the dictionary problem in the
literature of computational geometry, the related projective
clustering problem has a long line of research, including sev-
eral breakthroughs in recent years in the context of coresets;
see [40] and [18] for a survey. In this problem, we are given a
set Y of n points and two integers j, k ≥ 1, and wish to com-
pute a set of k subspaces of R

d , each of dimension j , such
that the sum of squared distances from each point in Y to its
nearest subspace is minimized. In some papers, instead of

subspaces, we wish to compute affine subspaces (i.e., trans-
lated subspaces that do not necessarily intersect the origin).
Other distance functions and cost functions (such as sum of
non-squared or maximum distances) were also considered
during recent years; see [18] for a survey.

Recently a (1 + ε) approximation for projective clus-
tering that can be computed in O(n) time were suggested
in [40] for every constant j, k and ε, using the framework
of [18]. For the case k = 1, the projective clustering problem
reduces to the low rank approximation problem, for j = 1 it
reduces to the k-line mean problem, and for the case j = 0
we obtain the k-mean problem. These three cases of projec-
tive clustering, yields the problem in (1) for T0 = d , T0 = 1
and T0 = 0 respectively, as explained in the beginning of
this section. In the general case, the problem in (1) is a
constrained version of projective clustering of n points by
k = (

K
T0

)
subspaces each of dimension j = s. The constraint

is that the subspaces will be spanned by a small set D of k

vectors.
For projective clustering, computing the projection of

each input point on its nearest subspace is trivial in O(djk)

time, by iterating through each of the k subspaces. On the
general dictionary learning problem, however, there are

(
K
T0

)

candidates, and it is not clear how to compute the closest dis-
tance to such a set of subspaces efficiently. That is, even for a
given dictionary D and a point y ∈ Y there are no algorithms
for computing the closest subspace in polynomial time. Nev-
ertheless, a lot of heuristics have been suggested over the
years for approximating distance to subspaces (called pur-
suit algorithms, see a detailed description of these methods
in [4]), for approximating points by subspaces in general
(see [16] and references therein), and for the k-dictionary
problem in particular (see references in [4]).

4 Coresets for Dictionaries

Approximation algorithms in computational geometry and
machine learning often make use of random sampling
[9, 33], feature extraction [8, 13] and ε-samples [27]. Core-
sets can be viewed as a general concept that includes all of
the above and more. The idea behind coresets is to replace
the set of original elements over which we want to solve a
given problem with a new and much smaller (weighted) set
that possesses the same solution to the problem at hand.
This, theoretically, requires knowing the solution to the
given problem so that we can construct a set with the same
solution. It is generally possible though to replace the orig-
inal problem with a much simpler one that gives enough
information to construct the coreset without actually solv-
ing the original problem. The solution algorithm can then be
applied to this new set. The size of the coreset depends only
on the problem parameters and required approximation error
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and not on the input size. This allows to drastically reduce
computational time and space complexity without chang-
ing the actual algorithm. See a comprehensive (but not so
updated) survey on this topic by Agarwal, Har-Peled and
Varadarajan [2]. Note though that it is not clear that there is
any commonly agreed-upon definition of a coreset, despite
several inconsistent attempts to do so [3, 10, 12, 19, 24, 25].

In our context, i.e. the K-SVD algorithm for a sparse dic-
tionary construction, the input is a d × n matrix Y who’s
columns represent n points in R

d and integers k,T0 ≥ 1. We
want to construct a d × k matrix D who’s columns represent
k points in R

d . The matrix D is called a dictionary and we
want to be able to represent each point in Y as a sparse sum
of points in D. Typically k is much larger than d and n is
much larger than k.

To this end, for every column y in Y and a candidate
dictionary D ∈ R

d×k we define

err(y,D) = min
x∈Rk,‖x‖0≤T0

‖Dx − y‖2
2

as the distance between y and its closest subspace over the
set of

(
k
T0

)
subspaces that are spanned by at most T0 columns

of D. The sum of squared distances over the columns of Y

is the cost of D:

cost(Y,D) =
∑

y∈Y

err(y,D) = min
X

‖Y − DX‖2,

where the minimum is over every matrix X whose columns
are T0-sparse.

Let D be a set of d × k matrices that represents the set of
all possible dictionaries. A coreset scheme Coreset for a
class of queries D is an algorithm that takes as input a d ×n

matrix Y , and a parameter ε > 0, and outputs a d × c matrix
C = Coreset(Y, ε) such that for every D ∈ D:

(1 − ε) · cost(Y,D) ≤ cost(C,D) ≤ (1 + ε) · cost(Y,D).

The matrix C is called a coreset. Typically, one expects c to
be much smaller than n.

By the definition of coreset, the dictionary D∗ that min-
imizes the cost cost(Y,D) over the collection D of dictio-
naries, with any additional set of constraints, can be approx-
imated by the coreset C.

5 Why Coresets?

Dealing with NP-hard Problems For a lot of “hard” (for
example, NP-hard) problems which have no efficient solu-
tions, there exist corresponding small coresets that can be
computed very efficiently. The projective clustering problem
is NP-hard even for the case j = 0 (k-means) where k is part
of the input (not a constant). Still, small coresets for k-means

(of size independent of both n and d) can be constructed
in linear time in all the parameters [18]. Practical heuristics
are then applied on the coreset instead of the original set
of points in order to get smaller running time [1, 23]. More
generally, variants of the projective clustering problems that
are NP-hard still have coresets that can be constructed in
polynomial time.

Running heuristics on the coresets instead of the original
input allows us to obtain faster running times and deal with
larger dataset. The connections in Sect. 3 between projec-
tive clustering and dictionaries yield the natural question of
whether we can also use coresets for learning dictionaries.

Similarly, the optimization problem (1) that K-SVD is
designed to solve is NP-hard for most values of T0 and K .
No tractable algorithm is known that provably fits a good
dictionary, even under idealized conditions similar to those
in compressed sensing. Still, as in the related projective clus-
tering problem, we may be able to compute coresets and
provide bounds on their approximation error, as presented
in this paper. The main reason is that, as in projective clus-
tering, getting rough approximation for the optimal solution
is much easier than actually solving the problem. However,
for reducing the size of the data, rather than solving the op-
timization problem, such a rough approximation might suf-
fice.

In fact, our experimental results show that quite often we
actually get improved approximation quality while running
on the coreset compared to the original input. This is pos-
sible since K-SVD is a heuristic (not an optimal solution)
that might get trapped in “bad” local minima. In the com-
pression process we reduce the size of large homogeneous
groups, both allowing for more diversity in the initially ran-
domly selected dictionary as well as allowing vectors with
more information to have better effect on the final outcome.

Constrained Optimization A coreset for a set D of dictio-
naries is, by definition, a coreset for a subset of D. There-
fore, a coreset for a problem can be used for solving the
problems under non-trivial or field-specific constrained so-
lutions by applying (not necessarily efficient) algorithms
that deal with these constraints on the coreset.

For example, a constrained non-negative variant version
of the K-SVD was suggested by Aharon, Elad and Bruck-
stein [6], where the atoms must be positive. Other versions
of K-SVD have additional constraint on the L1 norm of
X (that can be handled via LASSO [38]). Our coreset is
K-SVD is suitable for these versions as well.

Streaming There is a general reduction called “merge-and-
reduce, that shows that a small coreset scheme to a given
problem suffices to solve the corresponding problem on a
streaming input [7, 26]. In the streaming model the n in-
put bits of data arrived one by one, and we are allowed
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Fig. 1 Tree construction for generating coresets in parallel or from
data streams. Black arrows indicate “merge-and-compress” operations.
The (intermediate) coresets C1, . . . ,C7 are enumerated in the order in
which they would be generated in the streaming case. In the parallel

case, C1,C2,C4 and C5 would be constructed in parallel, followed
by parallel construction of C3 and C6, finally resulting in C7. Figure
from [22]

to use memory (space) that is only sub-linear in n, usually
O(logn) bits. For example, a movie that consists of Giga-
bytes of data that is broadcast via the Internet into a mobile
phone that can store only few mega bytes.

The key idea is to construct and save in memory a coreset
for every block of streaming bits. When we have two core-
sets in memory—we construct a single coreset for the pair
of coresets. This recursive process yields a binary tree of
height O(logn), where we need to store in memory a single
coreset for each level on the tree. See Fig. 1.

Parallel/Distributed Computations Using the same ideas
from the streaming model, a (non-parallel) coreset construc-
tion can be transformed into a parallel one; See Fig. 1. We
partition the data into sets, and compute a coreset for each
set, independently, on different computers. We then compute
(in parallel) a coreset for every pair of such coresets. Con-
tinuing in this manner, yields a process that takes O(logn)

iteration of parallel computation.

Graphical Processing Units (GPUs) More than 90 %
of new desktop and notebook computers have integrated
GPUs, which is a specialized microprocessor that accel-
erates graphics rendering from the CPU. Because most of
these computations involve matrix and vector operations,
engineers and scientists have increasingly studied the use of
GPUs for non-graphical calculations. However, in order to
be efficient, algorithm that uses GPU must use mainly inde-
pendent and very simple computations that can be done in
parallel.

The above connection between coresets and parallel com-
putations make them a natural tool for GPU computing.
Since algorithms for computing coresets for a problem are
usually much simpler than algorithms for solving the cor-
responding problem (as is the case of this paper), it may
be useful to compute coresets via GPUs and then solve the
problem on the small coreset using the CPU. For example,
the recent version of Matlab (2010b) does not support SVD

computation using the GPU but do support GPU functions
that suffice for computing coresets for the SVD problem
(say, using the algorithms in [11, 18]).

Privacy Intuitively, coreset implies that a small dataset
can be exposed instead of the larger original dataset, while
preserving its information with respect to some family of
queries. Coresets with formal proofs that guarantee that no
information is leaking from them about individuals were in-
troduced in [15].

6 Coreset for a Single k-Dictionary Query

The following lemma can be easily proved using Chernoff-
Hoeffding’s inequality.

Lemma 1 Let Y be a d × n matrix, and δ, ε > 0. Let C be
the output of Algorithm 1 (Coreset) with input parameters
Y , D0 and

c ≥ 10 ln(1/δ)

ε2
.

Let D be a fixed d × k dictionary. Then, with probability at
least 1 − δ,

∣∣cost(Y,D)− cost(C,D)
∣∣ ≤ ε cost(Y,D0) · max

y∈Y

err(y,D)

err(y,D0)
.

Proof We first prove that E[cost(C,D)] = cost(Y,D).
Let si be the ith vector of S, as defined in Algorithm 1
(Coreset), for 1 ≤ i ≤ c, and put y ∈ C. Since the c vec-
tors of S are sampled independently, we have

E
[
cost(C,D)

] = E

[∑

y′∈C

w
(
y′)err

(
y′,D

)]

= c · E[
w(y)err(y,D)

]
.
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By (4), we have

E
[
w(y)err(y,D)

] =
∑

y∈Y

pr(y) · w(y)err(y,D)

=
∑

y∈Y

pr(y) · 1

c · pr(y)
· err(y,D)

=
∑

y∈Y

err(y,D)

c
= cost(Y,D)

c
.

Combining the last two equations yields

E
[
cost(C,D)

] = cost(Y,D). (2)

By the Chernoff-Hoeffding’s inequality, for independent
random variables x1, . . . , xc we have, with probability at
least 1 − δ,
∣∣∣∣∣E

[
c∑

i=1

xi

]
−

c∑

i=1

xi

∣∣∣∣∣ ≤ cε max
1≤i≤c

xi .

By substituting xi = w(yi)err(yi,D) where yi is the ith col-
umn of C, we get that, with probability at least 1 − δ,
∣∣E

[
cost(C,D)

] − cost(C,D)
∣∣

=
∣∣∣∣E

[∑

y∈C

w(y)err(y,D)

]
−

∑

y∈C

w(y)err(y,D)

∣∣∣∣

≤ cε max
y∈Y

w(y)err(y,D)

= ε cost(Y,D0)max
y∈Y

err(y,D)

err(y,D0)
.

Assume that the last inequality indeed holds (which hap-
pens with probability at least 1 − δ). Together with (2), we
get

| cost(Y,D) − cost(C,D)| ≤ ε cost(Y,D0)max
y∈Y

err(y,D)

err(y,D0)
.

�

Corollary 1 Let α ≥ 1 be an integer and D0 be a dictio-
nary, such that for every D ∈ D:

(i) cost(Y,D0) ≤ α · cost(Y,D).
(ii) err(y,D) ≤ err(y,D0) for every y ∈ Y .

Put ε, δ > 0. Let C be the weighted matrix that is re-
turned by Algorithm 1 (Coreset) with input parameters
c ≥ 10α2 ln(1/δ)/ε2 and D0. Then, for a fixed dictionary
D ∈ D (which is independent of C), we have

(1 − ε) cost(Y,D) ≤ cost(C,D) ≤ (1 + ε) cost(Y,D),

with probability at least 1 − δ.

Proof We have cost(Y,D0) ≤ α · cost(Y,D) by property (i).
Replacing ε with ε/α in Lemma 1 yields
∣∣cost(Y,D) − cost(C,D)

∣∣

≤ (ε/α) cost(Y,D0)max
y∈Y

err(y,D)

err(y,D0)

≤ ε cost(Y,D)max
y∈Y

err(y,D)

err(y,D0)
≤ ε cost(Y,D),

where the last inequality follows from property (ii). �

7 Coreset for all k-Dictionary Queries

In order to have an ε-coreset for a set D of more than one
dictionary, there are still two problems that remain to be
solved. Firstly, we need to compute D0 that satisfies Prop-
erties (i) and (ii) of Corollary 1 with sufficiently small b.
This will be handle in the next section for our specific ap-
plications. Secondly, the definition of ε-coreset demands
that C will approximate cost(C,D) simultaneously for ev-
ery D ∈ D. However, Corollary 1 holds, with probability at
least 1 − δ, only for a fixed dictionary D ∈ D, i.e., a sin-
gle query. If the size of D is finite, we can replace δ with
δ/|D| in Corollary 1 and use the union bound to obtain an
ε-coreset for Y of size

c = O

(
ln(|D|)α2 ln(1/δ)

ε2

)
. (3)

However, in the applications of this paper the size of D
is infinite. In this case, we use the result of [31] that is based
on PAC-learning theory. Roughly speaking, the result states
that to obtain an ε-coreset, it suffices to replace the term

Algorithm 1 Coreset(Y,D0, c)

Input: a d × n matrix Y , an integer c ≥ 1, and a matrix D0

(of arbitrary size).
Output: a weighted c×d matrix C that satisfies Theorem 1.

Pick a non-uniform random sample S = {s1, s2, . . . , sc} of c

i.i.d. columns from Y , where y ∈ Y is chosen with probabil-
ity proportional to err(y,D0). That is, for every s ∈ S and
y ∈ Y , the probability that s = y is

pr(y) = err(y,D0)∑
y∈Y err(y,D0)

= err(y,D0)

cost(Y,D0)
.

Return the weighted matrix C whose columns are the vec-
tors of S (in some arbitrary order), where each y ∈ C is
weighted (multiplied) by

w(y) = 1

c · pr(y)
. (4)
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ln(|D|) in (3) by some dimension v that represents the com-
plexity of the set D, in a VC-dimension type notion. Usu-
ally v is proportional to the number of parameters that are
needed to represent a dictionary D of D, which is, in the
general case, the number dk of entries in the matrix D. We
give the formal definition in the proof of the following main
theorem.

Theorem 1 Let Y be a d × n matrix, ε, δ > 0. Let D0 be a
matrix as defined in Corollary 1 for some value of b > 0. Let
C be the weighted matrix that is returned by Algorithm 1
(Coreset) with input parameters c ≥ 10dkα2 ln(1/δ)/ε2

and D0. Then, with probability at least 1 − δ, C is an
ε-coreset of Y .

Proof We denote the ith column of Y by yi . Let F =
{err(yi, ·) | 1 ≤ i ≤ n} be the set of functions for the atoms
to a given dictionary. That is, a function fi : R

d×k → [0,∞)

in F maps every d × k matrix D ∈ D to err(yi,D). The sen-
sitivity (or importance) of a function f in a set F is defined
in [18] as

s(f ) := max
D∈D

f (D)∑
f ∈F f (D)

For our definition of F , we thus obtain for every i =
1, . . . , n,

s(fi) = max
D∈Rd×k

err(yi,D)

cost(Y,D)
. (5)

Intuitively, if there is a dictionary D such that cost(Y,D)

is dominated by yi then s(fi) is close to 1 and we should
choose yi to the coreset. Otherwise, if the contribution of
yi is neglected for every possible query dictionary D, then
s(fi) is close to zero and we can ignore yi . Our hope is that
not all the points are very important, otherwise the coreset
will have to be large. To this end, we need to prove that the
total sensitivity, which is defined as

T :=
n∑

i=1

s(i)

is small.
Indeed, using the definition of D0 in Corollary 1, we have

cost(Y,D) ≥ cost(Y,D0)/α and err(yi,D) ≤ err(yi,D0).
Plugging this in (5) yields

s(fi) ≤ αerr(yi,D0)

cost(Y,D0)
.

Hence,

T ≤
n∑

i=1

αerr(yi,D0)

cost(Y,D0)
= α.

The size of a coreset depends on the total sensitivity T ,
and the pseudo dimension dim(F ) of F , which represents its
complexity. We first define the dimension of a set of subsets,
and then of a set of functions.

Definition 1 (Range space [18, 31]) A range space is a pair
(F, ranges) where F is a set, and ranges is a set of subsets
of F . The dimension of the range space (F, ranges) is the
smallest integer d , such that for every G ⊆ F we have

| {G ∩ range | range ∈ ranges} | ≤ |G|d .

The dimension of a range space relates (but is not equiva-
lent) to a term known as the VC-dimension of a range space.
Since in our case F represents k subspaces in R

d we have
that dim(F ) ≤ dk; see e.g. [36].

Definition 2 (Pseudo dimension [32]) Let F be a finite
set of functions from a set D to [0,∞). The pseudo
dimension dim(F ) of F is the dimension of the range
space (F, ranges(F )), where ranges(F ) is defined as fol-
lows. For every D ∈ D and r ≥ 0, let range(F,D, r) =
{f ∈ F | f (D) ≤ r}. Let ranges(F ) = {range(F,D, r) |
D ∈ D, r ≥ 0}.

One of the main result of [18] is that a non-uniform ran-
dom sample of 10 dim(F ) · T 2 log(1/δ)/ε2 from F accord-
ing to the sensitivity of the functions in F yields an ε-coreset
for F .

Theorem 2 [18] Let F be a set of non-negative real func-
tions from D, with total sensitivity T . Let S be a random
sample of |S| = 10T 2 dim(F ) ln(1/δ)/ε2 function from F

where q = f with probability proportional to its sensitivity
s(f ) for every f ∈ F and q ∈ S. Then, with probability at
least 1 − δ, for every D ∈ D we have that
∣∣∣∣
∑

f ∈F

f (D) −
∑

f ∈S

1

s(f )|S| · f (D)

∣∣∣∣ ≤ ε
∑

f ∈F

f (D).

Using the above bound on T we obtain that the size of the
sample is

10 dim(F ) · T 2 log(1/δ)

ε2
= 10dkα2 log(1/δ)

ε2
.

By the construction of C in Algorithm Coreset, this
proves Theorem 1. �

For constructing D0 such that Corollary 1 would hold, we
add the assumption that every dictionary D has D0 as a sub-
set of its columns. Hence, err(Y,D) ≤ err(Y,D0) for every
y ∈ Y . To bound α we need to approximate min cost(Y,D)

which is hard. Instead, we suggest two leeways: the first is
to replace ε with ε2α in the previous theorem and define the
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error with respect to the ratio max cost(Y,D0)/ cost(y,D).
Alternatively, we can simply restrict ourselves to dictionar-
ies with large enough cost. We summarize this in the next
corollary.

Corollary 2 Let Y be a d ×n matrix, ε, δ > 0. Let D0 ∈ R
d

denote the mean of the columns of Y . Let C be the weighted
matrix that is returned by Algorithm 1 (Coreset) with
input parameters c ≥ 10dk ln(1/δ)/ε2 and D0. Then, with
probability at least 1 − δ, for every D ∈ R

d×k that contains
the column D0 we have

| cost(Y,D) − cost(C,D)| ≤ ε cost(Y,D0).

In particular, C is an ε-coreset for the set of all such dictio-
naries D whose cost is cost(Y,D) ≥ ε cost(Y,D0).

Another practical choice of D0 in the last corollary is run
the K-SVD heuristic on the original input data Y only for a
single iteration, and choose D0 to be the returned dictionary.
The quality of this choice is determined by the optimality
of D0, i.e., the value of α from Property (i) of Corollary 1.
Property (ii) of Corollary 1 holds by the restriction that every
dictionary D will also contain the columns ofD0.

8 Coresets vs. Uniform Random Sample

A natural and popular approach to reduce the input matrix
Y is simply to pick a small uniform random sample of its n

columns. Such a sample can be computed in sub-linear time
in n, assuming random access to the input, which is the case
when the data is a table in the RAM or hard-drive. On the
contrary, our coreset is based on non-uniform random sam-
pling and it takes at least one pass over the data to compute
the desired distribution. In fact, the Matlab implementation
of K-SVD that we use applies such initial random sample
for handling large images.

Consider a matrix Y that represents an image of white
noise. More precisely, the columns of Y are i.i.d. standard
random Gaussian vectors. In this case, the sampling distri-
bution of our coreset will be very similar to uniform distri-
bution. Hence, uniform random sample yields compression
of the data with similar quality but much faster than coreset.

On the other extreme side, consider a cartoon image or
a drawing, where most of the pixels have the same color.
In this case, the uniform random sample will probably con-
tain samples only from the background and therefore will
be useless. On the other side, our coreset will never sam-
ple a solid patch (with zero variance for the pixel values)
and only take representative points from the actual drawing.
Similarly, on a natural image that contains clusters of in-
teresting areas, say, an image of a small window in a dark
room, the uniform random sample is likely to miss small

clusters (the window), while the coreset is biased to sample
such small regions of interest. We show this phenomena in
our experiments in Sect. 9.

The above intuitive discussion has a simple formal expla-
nation. Chernoff bounds implies that the sum of a “small”
random sample (of size quadratic in 1/ε) from a set of n

numbers between 0 to 1 would yield an approximation to
the sum of the n numbers up to additive error of εn, with
high probability. Each one of the n numbers corresponds to
the error ‖y − Dx‖2 from a specific vector y to its approx-
imation by a query dictionary D. By scaling the input, our
coreset reduces the error to εM where M is the variance of
the n numbers. Therefore, if all the dictionaries admit bad
approximations, such as the case for the above noisy image
Y , then n and the variance M are similar. For more natural
images or when the input is sparse, the variance is close to
zero, M is independent of n, and the approximation error of
the coreset is much smaller, as proved in Theorem 1.

Our experimental results shows that, as implied by the
above discussion, coresets perform better compared to ran-
dom sampling on natural images. This holds even for our
naive choice of the 1-mean as the initial rough approxima-
tion for the optimal dictionary. We expect that more involved
initial dictionaries such as K-means or other projective clus-
tering of the columns of Y , would yield even better error
bounds.

Size of Sample Recently, Vainsencher, Mannor and Bruck-
stein [39] developed generalization bounds on the quality
and required uniform random sample size for learning dic-
tionaries under several types of constraints. The notation and
lines of research that are used in [39] seem to be different
from our analysis that is based on a general framework for
bounding coresets size [18, 29]. However, it seems that there
is a strong connection between the underlying math.

In particular, our coreset size depends on total sensitiv-
ity and VC-dimension that are combined with Hoeffding in-
equality [18, 29], which have a strong connection to Lip-
schitz mapping (see [21, Sect. 2.1]), covering number (as
shown in [37]), and Bernstein Inequality (which is a gener-
alization of Hoeffding inequality), respectively, that are used
in [39]. Since the analysis of coresets size is mainly based
on a long line of research of PAC-learning regarding the re-
quired size of uniform random sample [31], we believe that
the results of Vainsencher, Mannor and Bruckstein [39] may
be used to improve or generalize the bound of the coresets
in this paper or vice versa. The main observation for find-
ing such connections is that non-uniform random sampling
from a set can be described as a uniform random sampling
for a set that contains multiple copies of each item.

The theoretical bounds on our coreset size and error are
given in Theorem 1. The size of the coreset depends on the
desired bounds on the probability of failure δ, the approx-
imation error ε, and the size of the desired dictionary. The
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overall error depends on ε and the quality of the initial dic-
tionary D0, which can be approximated in O(nd) time for
the case of 1-mean.

Of course, the same output coreset corresponds to un-
bounded number of combination of ε, and δ. The worst case
theoretical and general analysis also ignores nice structures
that usually appear in practical inputs, and thus often are too
pessimistic. Fortunately, in practice, we simply choose the
size of the coreset based on our memory or time constrained.
The theory provides us the way (distribution) to sample the
points, and the guarantee that the coreset size, in general,
must be small and independent of the input matrix Y or its
size.

9 Experimental Results

9.1 Hardware

We run the experiments on a standard personal modern Lap-
top, namely, IBM Lenovo W500 as provided by the man-
ufacturer, without additional hardware. In particular, we
use the CPU “Intel Core 2 Duo processor T9600 (2.80
GHz)” with 2 GB memory. See manufacturer’s website
(see http://www-307.ibm.com/pc/support/site.wss/document.
do?lndocid=MIGR-71785) for exact hardware details.

Software The operation system that we used is “Windows
Vista Business” and the Matlab version is 2010b. For the
K-SVD and OMP algorithms, we use the implementation
of Rubinstein that was generously uploaded on the Inter-
net [35]. This implementation was used as a “black box”
without changing a line of code. The time and space im-
provements are therefore only due to the replacing of the
original input matrix Y with its coreset.

9.2 Synthetic Data

As in previously reported works [5, 28, 30], we first try to
construct coresets of synthetic data. In [5] it was shown how
the K-SVD algorithm approximated the original dictionary
D∗ that generated a synthetic data matrix Y . In the follow-
ing experiments we replace Y by its (usually much smaller)
coreset C, and compare the results of applying K-SVD on
C instead of Y . The construction of C is done using Algo-
rithm 1 (Coreset) with D0 and different values of c, as
defined in the coreset construction. The construction of the
generative dictionary D∗ and the input matrix Y was based
on the suggested experiments in [5]. As was suggested in [5]
and implemented in the code for the K-SVD iterations, in-
stead of taking the actual columns from Y into the coreset,
we subtracted the mean of Y from every chosen column, and
also added the mean column to our initial dictionary. This is
especially important with images with large homogeneous
regions, such as cartoons, to avoid block effects.

Generating the Dictionary D∗ and the Matrix Y A random
(dictionary) matrix D∗ of size d × k = 20 × 50 was gener-
ated with i.i.d. uniformly distributed entries. Each column
was normalized to a unit norm. Then, a 20×n matrix Y was
produced for different values of n. Each column y of Y was
created using a linear combination D∗x of ‖x‖0 = j = 3
random and independent different columns of D∗, with uni-
formly distributed i.i.d. coefficients. White Gaussian noise
with varying signal-to-noise ratio (SNR) σ = 20 was added
to the resulting vector D∗x. That is, Y = D∗X+N where N

is a matrix that represents the Gaussian noise in each entry,
and every column x of X corresponds to a column vector y

in Y as defined above.
We run the experiment with 11 different assignments for

n, that were approximately doubled in every experiment:
from n = 585 to n = 500,000. For every such value of n,
50 trials were conducted, when in every trial new dictionary
D∗ and matrices Y and X were constructed.

Applying K-SVD on Y We run the K-SVD implementation
of [35], where the maximum number of iterations was set to
40. The rest of parameters were the defaults of the imple-
mentation in [35]. We denote the output dictionary by DY .

Generating the Coreset C We implemented and ran Algo-
rithm 1 Coreset(c,D0) on the input matrix Y where the
size of the coreset was set to c = 5000. The parameter D0

was always set to be the column vector of d ones. This vector
yields nearly the same results as taking the mean but could
be computed without passing over the input matrix Y .

Applying K-SVD on C We called to the K-SVD algorithm
using the same parameters as the above call for Y , except for
the maximum number of iterations. After setting the number
of iterations to 40 for the input C (as in the runs on Y ),
we got results that are only slightly worse than on Y , but
significantly faster (up to 100 times). We therefore decided
to sacrifice time in order to get better results, and used 120
iterations on the K-SVD with the input C. We denote the
output dictionary by DC .

Approximating the Sparse Coefficients Matrix In order to
approximate the entries of the matrix X, we used the OMP
heuristic as defined in [34] and implemented in [35]. The ob-
jective of OMP is to minimize ‖Y − DY XY ‖F for the given
dictionary DY and the input matrix Y , over every matrix XY

whose columns are sparse (‖x‖0 = j = 3 for every column
x ∈ XY ). This is done by minimizing ‖y − DY x‖F for ev-
ery column y ∈ Y (one by one) over the set of j-sparse vec-
tors x. Similarly, we computed XC that suppose to minimize
‖Y − DCXC‖ using the OMP heuristic, as done for Y and
DY .

http://www-307.ibm.com/pc/support/site.wss/document.do?lndocid=MIGR-71785
http://www-307.ibm.com/pc/support/site.wss/document.do?lndocid=MIGR-71785
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Fig. 2 Comparison of the differences between the dictionar-
ies DY DC and D∗ over the number n of rows in the ma-
trix Y . The dictionaries DY , DC are respectively the dictionaries

that were constructed using the original matrix Y , and its core-
set C. The original generator dictionary of Y is denoted by D∗

Fig. 3 (a) The ratio between the running time of the K-SVD algorithm on the input matrix Y and its corresponding coreset C. (b) The error
between the dictionary DC for coresets C of different sizes

Measurement To measure how close DY is to D∗, com-
pared to the difference between DC and D∗, we used the
same error measurement Distance(D,D∗) that was used in
the original K-SVD paper [5], and implemented in [35].

The computation of Distance(D,D∗) for two dictionar-
ies D and D∗ is done by sweeping through the columns of
D∗ and finding the closest column (in distance) in the com-
puted dictionary D, measuring the distance via 1 − |dT

i d̃i |,
where di is a column in D∗ and d̃i is its corresponding el-
ement in the recovered dictionary D. The average distance
is denoted by Distance(D,D∗). That is, Distance(D,D∗) is
the sum of distances over every i, 1 ≤ i ≤ k, divided by k.

The Results In Fig. 2(a) we compare the difference (the
y-axis) between the dictionaries (the two lines) for dif-
ferent values of n (the x-axis). For example, the dotted
line show the average value, for every assignment of n, of
Distance(DC,D∗) over the 50 trials, between the generation
dictionary D∗ and the dictionary that returned when running

K-SVD with the input matrix Y . The variance over the sets
of 50 experiments that corresponds to the average in Fig 2(a)
is shown in Fig. 2(b).

The comparison between the running times appears in
Fig 3. The x-axis shows the values of n as in Fig. 2, while the
y-axis is the ratio between the running time of constructing
DY , the dictionary of Y , and the running time of construct-
ing DC , the dictionary of C. The construction time for DC

is the sum of the time it took to construct the coreset C from
Y , and the time for constructing DC from C.

Discussion In Fig. 2(a) we see that the coreset is usually
good at least as the original set for reconstructing the gener-
ating dictionary D∗. By Theorem 1, the quality of the core-
set C depends on its size c, but not of n. Indeed, the error in
Fig. 2 seems to be independent of the value of n. In Fig. 2(b)
we see that the results are also more stable on the coreset
runs.
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Fig. 4 (a) Noisy Image with SNR = 50. The resulting PSNR is 14.15 dB. (b) Denoised image using [14] on the small coreset. The resulting
PSNR is ∼30.9

Since the size of the coreset is the same (c = 5000), the
value of n is getting larger, and the running time of the
K-SVD algorithm is linear in the rows of the input ma-
trix (c or n), it is not surprising that the ratio between run-
ning times grows linearly with the value of n; see Fig. 3(a).
For n = 500 K in Fig 3(a), the ratio between the running
time is approximately 1:30 (0.032). For n = 1M this ratio
is approximately 1:60. However due to time and memory
constraints we didn’t repeat the experiment for n = 1M 50
times.

The Role of the Sample Size c By Theorem 1, the size c of
the coreset C is polynomial in 1/ε, where ε represents the
desired quality of the coreset. In Fig. 3(b) we show results
for additional set of experiments for a constant n = 500 K
and different values of the coreset size c. The number of
iterations is still 120, and the rest of the parameters remain
the same as in the previous experiments. The y-axis is the
log of the distance between the dictionaries (base 10) over
50 trials. Indeed, it seems that the error is reduced roughly
linearly with the size of c.

9.3 Coresets for High-Definition Images

In [14] it is explained how to apply image denoising us-
ing the algorithm K-SVD. Fortunately, source code was
also provided by Rubinstein [35]. We downloaded high-
definition images from the movie “Inception” that was re-
cently released by Warner Bros; see http://collider.com/new-
inception-images-posters-christopher-nolan/34058/. We used
only one of the images, whose size is 4752 × 3168 =
15,054,336 pixels; see Fig. 4. We added a Gaussian noise
of SNR = 50 which yields a noisy image of PSNR = 14.15.
Then, we partition the noisy image into 8 × 8 blocks as ex-
plained in [14], and convert the blocks into a matrix Y of ap-
proximately n = 12M vectors of dimension d = 8 × 8 = 64.

We then hoped to apply the K-SVDas explained in [14] us-
ing the default parameters in [35]. However, we got “out
of memory” error from Matlab already in the construction
of Y . So, instead, we constructed a coreset C of Y in the
streaming model using one pass over Y . In this model, core-
sets are constructed (using our Algorithm 1 (Coreset))
from subsets of columns of Y that are loaded one by one and
deleted from memory. When there are too many coresets in
memory, a coreset for the union of coresets is constructed
and the original coresets are deleted. See details in [20]. Af-
ter constructing such a coreset C of size c = 10000 for all
the columns of Y , we apply the K-SVDon the coreset using
sparsity j = 10, and k = 256 atoms, and 40 iterations. The
PSNR was increased, on average of 10 experiments, from
14.15 to 30.9, with variance of ∼0.002, while the average
time for constructing the dictionary was 69 seconds with
variance of ∼7.2

9.4 Comparison of Initial Dictionaries D0

We ran the following test on 5 different input images, rang-
ing in size from 8 MP to 60 MP, both color and gray scale.
The images were broken down into patches of size 16 × 16,
which gave a vector dimension of 256 for gray scale images
and 756 for color images. The dictionary size was set to 100
vectors, and the sparsity was set to 5.

We start by looking at the effect of sampling the coreset
based on the constant vector, the most significant singular
vector, or several of the most significant singular vectors. As
can be seen in Fig. 5, using the constant vector or the most
significant singular vector gives nearly the same results. In
fact, these two vectors look nearly the same, where the devi-
ation from constant for the most significant singular vector
was on a scale of three orders of magnitude smaller than the
average (DC).

http://collider.com/new-inception-images-posters-christopher-nolan/34058/
http://collider.com/new-inception-images-posters-christopher-nolan/34058/
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Fig. 5 Dictionary quality as a function of the number of vectors used
to sample the coreset. The series labeled “0” is the constant vector. The
other labels represent the number of significant singular vectors that
were added to the dictionary. The black line is the reference quality for

running on the entire set. Figure (a) shows the results for the image ap-
pearing in Fig. 6(a), Fig. (b) shows the results for the image appearing
in Fig. 6(m). Figures (c) and (d) show a comparison to results when
not inserting D0 into the final dictionary

As mentioned earlier, we can see here, as well as in the
next results (Fig. 6), that learning the dictionary on the core-
set, also consistently gives better results that learning it on
the full set. Theoretically this is not suppose to happen for an
ideal algorithm, but as the KSVD algorithm is a greedy al-
gorithm, the assumption is that the coreset smooths the data,
reducing sensitivity to local minima.

9.5 Comparison to Uniform Random Sample

Figure 6 shows a comparison of learning the dictionary on
the coreset vs. learning the dictionary on a uniformly sam-
pled random subset of the same size. These test clearly
show that coresets are superior to random sampling, both
in total run-time vs dictionary quality (coreset construction
time + KSVD time) and sample size vs dictionary quality.
More interestingly, we see that as expected, random sam-

pling gives a dictionary that is worse than the dictionary
learned on the whole dataset, while unexpectedly, coresets
consistently give a dictionary that is better than the dictio-
nary learned on the whole dataset. The fact that coresets
are better than random sampling is easy to realize for car-
toon images as in Fig. 6(j), as random sampling is going to
mostly select constant vectors, while coresets will only se-
lect detail patches, but is also clearly seen for other types of
images.

Another result that is less expected is that learning the
dictionary on the coreset was more stable and faster than
learning the dictionary on the random sample of the same
size, offsetting for the longer time taken to construct the
coreset.

Overall, we see accelerations ranging from ×15 to over
×25, and an improvement in dictionary quality (reconstruc-
tion error) that in most cases ranges from 10 % to 40 %.
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Fig. 6 Comparison of reconstruction error vs total run-time (second
column) and sample size (third column) for learning a dictionary us-
ing a coreset vs. learning the dictionary using a random sample. The

coreset was learned using the constant vector. All graphs also show
the results for learning the dictionary on the full set (reference). First
column is the image used for that test
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10 Conclusions

The use of coresets opens up new possibilities for dictionary
methods. Coreset use allows implementing dictionary meth-
ods on anything from HD images up to full length movies. In
fact, we’ve been able to process and entire film using entire
frames as feature vectors.

All this opens up the research to perform things such as
scene analysis and optimal I-Frame selection or even replac-
ing the entire I-Frame approach with dictionary based refer-
ence frames.
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