
APPLIED RANDOMIZED ALGORITHMS
FOR EFFICIENT GENOMIC ANALYSIS

by

Daniel N. Baker

A dissertation submitted to Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

January, 2022

© 2022 Daniel Baker

All rights reserved

Abstract

The scope and scale of biological data continues to grow at an exponential clip,

driven by advances in genetic sequencing, annotation and widespread adop-

tion of surveillance efforts. For instance, the Sequence Read Archive (SRA)

now contains more than 25 petabases of public data, while RefSeq, a collection

of reference genomes, recently surpassed 100,000 complete genomes. In the

process, it has outgrown the practical reach of many traditional algorithmic

approaches in both time and space.

Motivated by this extreme scale, this thesis details efficient methods for

clustering and summarizing large collections of sequence data. While our

primary area of interest is biological sequences, these approaches largely apply

to sequence collections of any type, including natural language, software

source code, and graph structured data.

We applied recent advances in randomized algorithms to practical prob-

lems. We used MinHash and HyperLogLog, both examples of Locality-

Sensitive Hashing, as well as coresets, which are approximate representations

for finite sum problems, to build methods capable of scaling to billions of

items. Ultimately, these are all derived from variations on sampling.

We combined these advances with hardware-based optimizations and

ii

incorporated into free and open-source software libraries (sketch, frp, lib-

simdsampling) and practical software tools built on these libraries (Dashing,

Minicore, Dashing 2), empowering users to interact practically with colossal

datasets on commodity hardware.

iii

Thesis Committee

Primary Readers

Ben Langmead (Primary Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins Whiting School of Engineering

Vladimir Braverman
Associate Professor
Department of Computer Science
Johns Hopkins Whiting School of Engineering

Michael Schatz
Bloomberg Distinguished Professor
Department of Biology
Johns Hopkins Krieger School of Arts and Sciences
Department of Computer Science
Johns Hopkins Whiting School of Engineering

Alex Szalay
Bloomberg Distinguished Professor
Department of Physics and Astronomy
Johns Hopkins Krieger School of Arts and Sciences
Department of Computer Science
Johns Hopkins Whiting School of Engineering
Director, Institute for Data-Intensive Engineering and Sciences

iv

Alternate Readers

Stephanie Hicks
Assistant Professor
Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health

v

Acknowledgments

Otmar Ertl, whose theoretical contributions form a foundation for much of this

work, including personal communications. Nikita Ivkin, Anton Belyy, and

Vladimir Braverman, for theoretical discussions and practical insights. Florian

Breitwieser, for his work with HyperLogLog and sketching applications.

My advisor, Ben Langmead, for both guiding and supporting, while still

giving me the freedom to explore a range of methods and applications.

vi

Table of Contents

Abstract ii

Thesis Committee iv

Acknowledgements vi

Table of Contents vii

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Sketching . 2

1.1.1 Linear Sketching . 3

1.1.1.1 Count-Min . 3

1.1.1.2 Count Sketch 4

1.1.1.3 p-stable sketching & JL Transform 5

1.2 MinHash & HyperLogLog . 6

vii

1.2.1 MinHash Applications 7

1.3 Coresets . 8

1.3.1 Coresets for Single-cell Applications 9

2 Dashing: Fast and Accurate Genomic Distances using HyperLogLog 15

2.1 Context . 15

2.2 Background . 15

2.3 Results . 18

2.3.1 Design . 18

2.3.2 Accuracy for complete genomes 19

2.3.3 Computational efficiency 21

2.3.4 Thread scaling . 24

2.4 Discussion . 25

2.5 Methods . 29

2.5.1 HyperLogLog . 29

2.5.2 Estimation methods . 31

2.5.3 Optimizing speed . 33

2.5.4 Sketching sequencing data 35

2.5.5 Hash function . 35

2.6 Availability of Data and Materials 36

3 Dashing 2: fast and flexible sketching with multiplicities and Locality-

Sensitive Hashing filtering 44

viii

3.1 Context . 44

3.2 Abstract . 45

3.3 Background . 46

3.4 Results . 48

3.4.1 Sketching Improvements 48

3.4.1.1 Use of SetSketch 48

3.4.1.2 Use of locality-sensitive hashing 50

3.4.1.3 Practical implementation 50

3.4.1.4 Rare Event Filtering 52

3.4.2 Scaling to millions: Sparse Similarity and Applications 53

3.4.3 Other Improvements: Exact mode, minimizers, & Al-

phabets . 55

3.4.3.1 Iteration Order 56

3.4.3.2 Memory Management 56

3.4.3.3 Input Data Types 57

3.4.4 Sketch accuracy . 57

3.4.5 Performance: All-Pairs 59

3.4.6 All-pairs comparisons using LSH 61

3.5 Methods . 62

3.5.1 Sketching sequencing data 63

3.6 Discussion . 64

3.6.1 Future Improvements 64

ix

4 Coresets for Clustering in Graphs of Bounded Treewidth 71

4.1 Context . 71

4.2 Abstract . 73

4.3 Introduction . 74

4.3.1 Coresets for k-Clustering 74

4.3.2 Clustering in Graph Metrics 76

4.4 Results . 77

4.4.1 Experiments . 78

4.4.2 Related Work . 79

4.5 Coresets for k-MEDIAN in Graph Metrics 80

4.5.1 Referral . 80

4.6 Experiments . 81

4.6.1 Optimized Implementation 81

4.6.2 Experimental Setup . 83

4.6.3 Performance of Coresets 84

4.6.3.1 Results . 85

4.6.4 Speedup of Local Search 86

5 Fast and memory-efficient scRNA-seq k-means clustering with vari-

ous distances 93

5.1 Context . 93

5.2 Introduction . 94

5.3 Related work . 96

x

5.4 Results . 97

5.4.1 Fast and accurate center finding 98

5.4.2 Support for both count data and continuous data . . . 100

5.4.3 k-means and mini-batch k-means clustering algorithms 104

5.5 Discussion . 106

5.5.1 Applications . 106

5.6 Methods . 108

5.6.1 k-means++ algorithms 108

5.6.1.1 Sampling kernel 108

5.6.1.2 localsearch++. 110

5.6.2 Distances, and sparsity in minicore 111

5.6.3 Other optimizations . 113

5.7 Acknowledgments . 113

6 Discussion and Conclusion 120

6.1 Applications . 120

6.1.1 Farther downstream . 120

6.1.2 Sequence MinHash Applications 121

6.2 Method Improvements . 122

6.2.1 MinHash Improvements 122

6.2.2 LSH Table Improvements 122

6.2.3 Count Vector Sketching 123

xi

6.2.4 Bitwise Interleaving . 124

xii

List of Tables

2.1 Dashing 1 Computational Efficiency Comparison 23

3.1 Dashing 2 JI SSE Results . 58

3.2 Dashing 2 ANI SSE Results . 60

4.1 Coreset Error Comparison . 85

5.2 Distance Calculation Formulas 111

xiii

List of Figures

1.1 Count-Min Sketch Visualization by Cormode and Muthukrishnan 4

2.1 Dashing 1 Jaccard coefficient Accuracy Results 37

2.2 Dashing 1 Computational Efficiency Results 38

2.3 Leading-Zero Count/Cardinality Relation 39

3.1 Dashing 2 Serial Benchmark, sketch size = 8192 60

3.2 Dashing 2 Serial Benchmark, sketch size = 16384 60

3.3 Dashing 2 Serial Benchmark, sketch size = 32768 60

3.4 Dashing 2 Parallel Sketching Benchmark 61

3.5 Dashing 2 Parallel Comparison Benchmark 61

3.6 Dashing 2 K-Nearest Neighbor Benchmark 62

3.7 Fast approximate log2 code . 66

3.8 Fast approximate loge code . 67

4.1 OpenStreetMap Graph Illustration 83

4.2 Sampled OpenStreetMap Dataset Illustration 84

4.3 Coreset Accuracy Comparison 86

xiv

4.4 Local Search Accuracy . 87

5.1 k-means++/D2-Sampling Benchmark 99

5.2 Minicore Distance Runtime Experiment 101

5.3 Minicore Clustering Accuracy Result 105

xv

Chapter 1

Introduction

Biological data is big data. As raw sequencing data continues to accelerate,

and the set of reference sequences continues to grow, developing methods that

can scale to match it becomes both more rewarding and more challenging.

Sequence similarity search is a core utility in analyzing biological data.

You might use similarity search to classify new assemblies, high-throughput

sequencing reads, de-duplicate a collection of genomes or sequences, or to

identify homologous regions in large collections. Methods that can efficiently

summarize and index large sets of this high-dimensional data are widely

applicable.

In this thesis, I will explore randomized algorithms for similarity search

and data summarization, apply them to large problems in computational

biology and structured data, tailor solutions to commodity hardware, and

discuss future applications and open problems.

1

1.1 Sketching

Sketching algorithms allow analysis of unbounded stream size in near-linear

time with approximation guarantees. Designed for massive streams for from

telecommunications and other big data sources, they provide a set of methods

for accelerating downstream analysis. Specifically, a streaming algorithm

is an algorithm which requires only one pass through the data and uses at

most polylog space. Both the space constraint - sublinear memory - and the

single-pass constraint provide speed and flexibility advantages.

Motivated by both rapidly accelerating data accumulation and the in-

creased capabilities afforded by this information, many analytical methods

supporting almost-linear time and sublinear space have become key methods

for big data analysis. Approximate Counting [1] [2] serves as a precursor to

modern streaming algorithms.

High-dimensional data can be summarized with sampling techniques as

well as general dimension reduction techniques. sketching, which reduces

dimensionality while providing some guarantees with regard to approxima-

tion, uses a form of sampling and preserves some desired quantity with high

probability. For instance, the Johnson-Lindenstrauss (JL) transform approx-

imately preserves ℓ2 distances between pairs of points by pseudorandom

matrix multiplication, and MinHash sampling approximately preserves set

similarity between pairs of sets by sampling. A substantial number of these

techniques are Linear Sketches.

2

1.1.1 Linear Sketching

There are many useful "linear sketches" - sketches which can be described

by a matrix multiplication. These include some of the most useful sketching

algorithms - The Count-Min Sketch ([3]), which provides approximate counts

which only over-estimates, the Count Sketch [4], which is unbiased but tends

to preserve the values for high-count items, and the many variations of the

Johnson-Lindenstrauss (JL) transform [5], which approximately preserve ℓ2

distances.

The matrix formalism also comes with several useful properties for dis-

tributed computation.

First, they are composable - the union of two sketches is the sketch of

their unions. For instance, if the data is distributed across machines, it can be

summarized and reduced using a merge tree of logn iterations. This will also

be true for other kinds of sketches.

Second, this means that they support deletions, at least in this form. This

can then be used to perform turnstile updates to generate sketches for sliding

windows, or they can be dynamic structures.

And lastly, they can be used for approximate linear algebra problems, such

as compressed sensing and linear programming [6, 7].

1.1.1.1 Count-Min

Count-Min sketch [3] is a linear sketch in which each input feature is hashed

to a pseudorandom register for each subtable. This can be described by a

large matrix with one ‘1‘ for each range of columns corresponding to each

3

Figure 1.1: Count-Min Sketch Visualization by Cormode and Muthukrishnan

subtable. See figure 1.1, which has been taken from the original Cormode and

Muthukrishnan paper.

At query time, the minimum value across all subtables yields an estimate

which never under-estimates.

There are small improvements (conservative-update, in particular, im-

proves accuracy), but they often come at the expense of reversibility or com-

posability.

The popular “feature hashing” technique is a special case of the Count-Min

sketch of a single row. It can be used to cap the space requirement of counting

algorithms, and is particularly common in NLP applications.

1.1.1.2 Count Sketch

The Count sketch ([4]) is a linear sketch in which each input feature is hashed

to a pseudorandom register for each subtable. This can be described by a large

matrix with one Rademacher random variable (±1, each 50%-50% probability)

for each range of columns corresponding to each subtable. (This has been

4

generalized to higher-order tensors in works such as the higher-order Count

Sketch and the Tensor Sketch [hocs, ahle-tensor-sketch].)

Instead of returning the minimum estimate like the Count-Min sketch

(which only over-estimates), the Count-Sketch estimate is the median of sub-

table values; this pools information across the subtables in a way that supports

two-sided errors.

The Count-Min sketch satisfies the JL property because its matrix is sub-

gaussian, and while its error tends to be higher than random Gaussian ma-

trices, it still provides the same asymptotic guarantees. The fact that its

generation is only O(nnz) makes it particularly attractive, as full random

matrix-vector multiplication is O(nnz× sketchdim). For more details, see the

excellent book by David Woodruff, Sketching as a Tool for Numerical Linear

Algebra [8].

1.1.1.3 p-stable sketching & JL Transform

Another example of linear sketches are the [9] families of locality-sensitive

hashing (LSH) functions. Given p > 1, ℓp distances can be preserved with

some expectation using random matrices whose values are sampled from spe-

cific probability distributions. If p = 2, this simplifies to Gaussian-distributed

data with mean 0 and unit variance. For p = 1, this is the Cauchy distribution,

although truncating extreme values from this sampling may be necessary for

good behavior due to its extreme variance.

Further, since these are linear sketches, they can be used to estimate ℓp dis-

tances between points in ambient space from sketches by taking the distance

5

between two points and estimating its ℓp norm.

Hyperplane LSH and cross-polytope LSH use similar techniques to build

sketches for cosine distance and inner product search. Efficient implementa-

tions of these methods often use structured and/or sparse matrices, as they

can be evaluated quickly. Our software library [10] implements a several of

these using structured matrices.

1.2 MinHash & HyperLogLog

The family of sketching methods at the center of this thesis are MinHash

derivatives. Developed for the AltaVista search engine by Broder [11] for

indexing text, MinHash is the foundation of locality-sensitive hashing. Most

if not all LSH families derive from a reduction to set MinHash. At its core,

MinHash is consistent sampling. By applying the same sampling method to

all inputs, similar inputs yield similar samples.

Specifically, given a pseudorandom ranking function H applied to all

items from two sets of items S1 and S2, let MH(S) = minx∈S H(x). (Note: the

argmin is equivalent.) The probability that MH(S1) = MH(S2) = |S1
⋂︁

S2|
|S1

⋃︁
S2|

,

the Jaccard coefficient, or similarity of the sets. This simple concept extends

to faster methods of sketch generation [12, 13] yielding equivalent statistical

properties.

One particular variant, the HyperLogLog is an example of the one-permutation

[13] MinHash sketch with log2-truncated signatures. This is very space-

efficient while still yielding high-accuracy set comparisons, and has appli-

cations in privacy as well. I applied used this data structure in the Dashing

6

software tool and accompanying paper.

Extended variants can account for counts of items [14, 15], or be more

specific for edit distance [16] or probability distributions [17]. I implemented

these, along with the generalized logarithmic truncation, in the Dashing2

software tool with its forthcoming accompanying paper.

I build LSH indexes over input collections, allowing us to search and

index enormous genomic collections in practical time. This core utility facili-

tates wide ranges of biological inquiry, and I demonstrate its usefulness and

accuracy.

1.2.1 MinHash Applications

MinHash and minimizers (original k-mers corresponding to the MinHash

register for a window) typically serve a core initial step in recent efficient

sequence aligners. While hash indexes have been common components of

mapping software for over a decade, minimizer indexes were brought into

mainstream aligners by Jain et al. in MashMap [18] and improved upon by

both Li and and Jain, et al. [19, 20].

They also play a key role in performance for k-mer classification software

- notably in Kraken, KrakenUniq and Kraken2 [21, 22, 23]. For Kraken and

KrakenUniq, they simply affect locality when accessing a hash table, but for

Kraken2 (and our work, bonsai [24]) on the minimizers are indexed. In essence,

by indexing only minimizers, the database can be shrunk while maintaining

high accuracy.

Minimizer sequence transduction also plays an important role in recent

7

assembly software. Introduced by ntJoin [25] and improved with MBG [26]. By

replacing a sequence of characters with a sequence of minimizers, individual

characters become more specific and less numerous. This comes at the expense

of some accuracy but with extreme performance gains.

Lastly, the use of minimizers for pre-filtering plays a key role in linear-time

clustering of large databases. Similar approaches have been part of the CD-

HIT (Cluster Database with High-Identity with Tolerance) [27] method for a

long time, and it plays an important step in the linear-time protein clustering

algorithm Linclust by Steinegger, et al. [28]. In this thesis, I primarily focus on

improvements to sketching, comparing, and neighbor queries.

1.3 Coresets

While sketching as above reduces the dimensionality of data, one might

instead want to reduce the number of items under consideration. Coresets [29],

developed by computational geometry, provide a framework for generating

approximate representations for datasets which preserve the overall shape of

it.

This provides an orthogonal tool for compressing data; indeed, it can be

performed jointly [30] with dimensionality reduction. And it is especially

important for cases where the dimensionality of the data can not be reduced.

Most practical coreset methods are derived from importance sampling.

They can be used to accelerate gradient descent [31], summarize road networks

or point clouds [32, 33].

For this thesis, I implemented efficient methods for coreset generation

8

in the Minicore [34] software library, and expose them with both C++ and

Python front-ends. These include discrete optimization algorithms, methods

for graph-structured data, numerical linear algebra techniques, fast sampling

software, and hardware-tailored optimizations for these problems.

1.3.1 Coresets for Single-cell Applications

Droplet Single-cell RNA-Seq datasets are often considered to be derived from

a multinomial [35] distribution. This allows us to imbue algorithms with

a richer notion of distance than the typical Euclidean or squared Euclidean

distance, the latter of which corresponds to a log-likelihood ratio test using a

Gaussian model with uniform variance. However, this was both slower than

Euclidean distances and more complex, as typical distance calculations may

be undefined or infinite when working with sparse data.

Typical acceleration methods for Euclidean-space data did not apply; I

could not use p-stable locality-sensitive hashing methods to avoid exhaustive

all-points to all-centers distance calculation. And dimensionality reduction

techniques designed for ℓp spaces, such as the JL transform [5] or Count

Sketch [4], would both violate nonnegativity constraints, and provide no ap-

proximation guarantees for Bregman divergences besides squared Euclidean

distances.

The 2015 paper by Lucic, Bachem and Krause [36] provided an algorithm

for generating coresets for clustering with Bregman divergences by first build-

ing an approximate solution to k-means clustering with µ-similar Bregman

divergences. It reduces to the kmeans++ [37] algorithm, using the relevant

9

distance. Lucic, et al., [36] refers to it as D2 sampling. This means that an initial

approximate solution can be generated in O(ndk) time - k for the number of

iterations, d for the dimension, a limit on the time distances can require, and n

for the total number of items in the dataset.

There are methods for dimensionality reduction which can satisfy distribu-

tional assumptions, specifically generalized PCA. The 2001 Collins method

[38] provides a framework and algorithm for performing principle component

analysis using Bregman divergences of choice. However, this method is so

slow as to be impractical on large datasets. Related, variational autoencoders,

which are themselves neural network analogs of PCA, can be parameterized

using relevant distributions, but are typically impractical without specialized

co-processor acceleration, such as GPUs and TPUs.

Importantly, our method’s speed improvements are most dramatic for

the case of dense data, yielding improvements of over 700x single-threaded,

allowing us to accelerate methods by factors of many thousands with multi-

threaded processing. Our software would be well-applied for processing and

summarizing previously dimension-reduced data.

10

References

[1] Robert Morris. “Counting Large Numbers of Events in Small Registers”.
In: Commun. ACM 21.10 (1978), 840–842. ISSN: 0001-0782. DOI: 10.1145/
359619.359627. URL: https://doi.org/10.1145/359619.359627.

[2] Philippe Flajolet. “Approximate Counting: A Detailed Analysis”. In: BIT
25.1 (1985), 113–134. ISSN: 0006-3835. DOI: 10.1007/BF01934993. URL:
https://doi.org/10.1007/BF01934993.

[3] Graham Cormode and S. Muthukrishnan. “An improved data stream
summary: the count-min sketch and its applications”. In: Journal of Algo-
rithms 55.1 (2005), pp. 58 –75. ISSN: 0196-6774. DOI: https://doi.org/
10.1016/j.jalgor.2003.12.001. URL: http://www.sciencedirect.
com/science/article/pii/S0196677403001913.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding Fre-
quent Items in Data Streams”. In: Proceedings of the 29th International
Colloquium on Automata, Languages and Programming. ICALP ’02. 2002,
693–703. ISBN: 3540438645.

[5] William B. Johnson. “Extensions of Lipschitz mappings into Hilbert
space”. In: Contemporary mathematics 26 (1984), pp. 189–206.

[6] Graham Cormode and S. Muthukrishnan. “Combinatorial Algorithms
for Compressed Sensing”. In: Structural Information and Communica-
tion Complexity. Ed. by Paola Flocchini and Leszek Gąsieniec. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 280–294. ISBN: 978-3-
540-35475-8.

[7] Ping Li, Cun-Hui Zhang, and Tong Zhang. Compressed Counting Meets
Compressed Sensing. 2013. arXiv: 1310.1076 [stat.ME].

[8] David P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”.
In: CoRR abs/1411.4357 (2014). arXiv: 1411.4357. URL: http://arxiv.
org/abs/1411.4357.

11

https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/359619.359627
https://doi.org/10.1007/BF01934993
https://doi.org/10.1007/BF01934993
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
http://www.sciencedirect.com/science/article/pii/S0196677403001913
http://www.sciencedirect.com/science/article/pii/S0196677403001913
https://arxiv.org/abs/1310.1076
https://arxiv.org/abs/1411.4357
http://arxiv.org/abs/1411.4357
http://arxiv.org/abs/1411.4357

[9] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.
“Locality-Sensitive Hashing Scheme Based on p-Stable Distributions”. In:
Proceedings of the Twentieth Annual Symposium on Computational Geometry.
SCG ’04. Brooklyn, New York, USA: Association for Computing Ma-
chinery, 2004, 253–262. ISBN: 1581138857. DOI: 10.1145/997817.997857.
URL: https://doi.org/10.1145/997817.997857.

[10] Daniel Baker. Fast Random Projections. https://github.com/dnbaker/
frp. 2017.

[11] Andrei Z Broder. “On the resemblance and containment of documents”.
In: Compression and complexity of sequences 1997. proceedings. IEEE. 1997,
pp. 21–29.

[12] Otmar Ertl. “SetSketch: Filling the Gap between MinHash and Hy-
perLogLog”. In: CoRR abs/2101.00314 (2021). arXiv: 2101.00314. URL:
https://arxiv.org/abs/2101.00314.

[13] Ping Li, Art Owen, and Cun-hui Zhang. “One Permutation Hashing”.
In: Advances in Neural Information Processing Systems. Ed. by F. Pereira, C.
J. C. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates,
Inc., 2012. URL: https://proceedings.neurips.cc/paper/2012/file/
eaa32c96f620053cf442ad32258076b9-Paper.pdf.

[14] Otmar Ertl. “BagMinHash - Minwise Hashing Algorithm for Weighted
Sets”. In: CoRR abs/1802.03914 (2018). arXiv: 1802.03914. URL: http:
//arxiv.org/abs/1802.03914.

[15] Otmar Ertl. “ProbMinHash - A Class of Locality-Sensitive Hash Algo-
rithms for the (Probability) Jaccard Similarity”. In: CoRR abs/1911.00675
(2019). arXiv: 1911.00675. URL: http://arxiv.org/abs/1911.00675.

[16] G. Marçais, D. DeBlasio, P. Pandey, and C. Kingsford. “Locality-sensitive
hashing for the edit distance”. In: Bioinformatics 35.14 (2019), pp. i127–
i135.

[17] Lin Chen, Hossein Esfandiari, Thomas Fu, and Vahab S. Mirrokni.
Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and
Beyond. 2019. arXiv: 1910.12414 [cs.LG].

[18] C. Jain, S. Koren, A. Dilthey, A. M. Phillippy, and S. Aluru. “A fast
adaptive algorithm for computing whole-genome homology maps”. In:
Bioinformatics 34.17 (2018), pp. i748–i756.

[19] H. Li. “Minimap2: pairwise alignment for nucleotide sequences”. In:
Bioinformatics 34.18 (2018), pp. 3094–3100.

12

https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857
https://github.com/dnbaker/frp
https://github.com/dnbaker/frp
https://arxiv.org/abs/2101.00314
https://arxiv.org/abs/2101.00314
https://proceedings.neurips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/eaa32c96f620053cf442ad32258076b9-Paper.pdf
https://arxiv.org/abs/1802.03914
http://arxiv.org/abs/1802.03914
http://arxiv.org/abs/1802.03914
https://arxiv.org/abs/1911.00675
http://arxiv.org/abs/1911.00675
https://arxiv.org/abs/1910.12414

[20] C. Jain, A. Rhie, H. Zhang, C. Chu, B. P. Walenz, S. Koren, and A. M.
Phillippy. “Weighted minimizer sampling improves long read map-
ping”. In: Bioinformatics 36.Suppl_1 (2020), pp. i111–i118.

[21] D. E. Wood and S. L. Salzberg. “Kraken: ultrafast metagenomic sequence
classification using exact alignments”. In: Genome Biol. 15.3 (2014), R46.

[22] F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. “KrakenUniq: confident
and fast metagenomics classification using unique k-mer counts”. In:
Genome Biol. 19.1 (2018), p. 198.

[23] D. E. Wood, J. Lu, and B. Langmead. “Improved metagenomic analysis
with Kraken 2”. In: Genome Biol 20.1 (2019), p. 257.

[24] Daniel Baker. Bonsai - Fast, flexible taxonomic analysis and classification.
https://github.com/dnbaker/bonsai. 2016-2021.

[25] L. Coombe, V. Nikolić, J. Chu, I. Birol, and R. L. Warren. “ntJoin: Fast
and lightweight assembly-guided scaffolding using minimizer graphs”.
In: Bioinformatics 36.12 (2020), pp. 3885–3887.

[26] M. Rautiainen and T. Marschall. “MBG: Minimizer-based Sparse de
Bruijn Graph Construction”. In: Bioinformatics (2021).

[27] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li. “CD-HIT: accelerated for cluster-
ing the next-generation sequencing data”. In: Bioinformatics 28.23 (2012),
pp. 3150–3152.

[28] M. Steinegger and J. Söding. “Clustering huge protein sequence sets in
linear time”. In: Nat Commun 9.1 (2018), p. 2542.

[29] Sariel Har-Peled. “Clustering Motion”. In: Discrete & Computational
Geometry 31.4 (2004), pp. 545–565.

[30] Dan Feldman and Michael Langberg. “A unified framework for approx-
imating and clustering data”. In: 43rd Annual ACM Symposium on Theory
of computing. ACM. 2011, pp. 569–578.

[31] Baharan Mirzasoleiman, Jeff A. Bilmes, and Jure Leskovec. “Data Sketch-
ing for Faster Training of Machine Learning Models”. In: CoRR abs/1906.01827
(2019). arXiv: 1906.01827. URL: http://arxiv.org/abs/1906.01827.

13

https://github.com/dnbaker/bonsai
https://arxiv.org/abs/1906.01827
http://arxiv.org/abs/1906.01827

[32] Daniel N. Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C.
Jiang, Robert Krauthgamer, and Xuan Wu. “Coresets for Clustering
in Graphs of Bounded Treewidth”. In: Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020,
pp. 569–579. URL: http://proceedings.mlr.press/v119/baker20a.
html.

[33] Lingxiao Huang and Nisheeth K. Vishnoi. “Coresets for clustering in
Euclidean spaces: importance sampling is nearly optimal”. In: Procced-
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. Ed. by Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy. ACM, 2020, pp. 1416–1429. DOI: 10.1145/3357713.
3384296. URL: https://doi.org/10.1145/3357713.3384296.

[34] D. N. Baker, N. Dyjack, V. Braverman, S. C. Hicks, and B. Langmead.
“k-means clustering with various distances”. In: ACM BCB 2021 (2021).

[35] F. W. Townes, S. C. Hicks, M. J. Aryee, and R. A. Irizarry. “Feature
selection and dimension reduction for single-cell RNA-Seq based on a
multinomial model”. In: Genome Biol 20.1 (2019), p. 295.

[36] Mario Lucic, Olivier Bachem, and Andreas Krause. “Strong Coresets for
Hard and Soft Bregman Clustering with Applications to Exponential
Family Mixtures”. In: CoRR (2016). arXiv: 1508.05243 [stat.ML].

[37] David Arthur and Sergei Vassilvitskii. “K-Means++: The Advantages of
Careful Seeding”. In: SODA. SODA ’07 (2007), 1027–1035.

[38] Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. “A Gener-
alization of Principal Component Analysis to the Exponential Family”.
In: Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic. NIPS’01. Vancouver, British
Columbia, Canada: MIT Press, 2001, 617–624.

14

http://proceedings.mlr.press/v119/baker20a.html
http://proceedings.mlr.press/v119/baker20a.html
https://doi.org/10.1145/3357713.3384296
https://doi.org/10.1145/3357713.3384296
https://doi.org/10.1145/3357713.3384296
https://arxiv.org/abs/1508.05243

Chapter 2

Dashing: Fast and Accurate
Genomic Distances using
HyperLogLog

2.1 Context

This thesis chapter is comprised of the Dashing paper, published in Genome

Biology in 2019 [1]. Its core contribution consists of using the HyperLogLog as

an compact, approximate representation of k-mer sets allowing rapid summa-

rization and comparison of sequencing datasets. We also leverage hardware

intrinsics to accelerate this process, and provide a considerable runtime im-

provement to genomic analyses while also improving their accuracy.

2.2 Background

Since the release of the seminal Mash tool [2], data sketches such as MinHash

have become instrumental in comparative genomics. They are used to cluster

genomes from large databases [2], search for datasets with certain sequence

15

content [3], accelerate the overlapping step in genome assemblers [4, 5], map

sequencing reads [6], and find similarity thresholds characterizing species-

level distinctions [7]. Whereas MinHash was originally developed to find

similar web pages [8], here it is being used to summarize large genomic

sequence collections such as reference genomes or sequencing datasets. A

collection is reduced to a set of representative k-mers and ultimately stored

as a list of integers. The summary is much smaller than the original data

but can be used to estimate relevant set cardinalities such as the size of the

union or the intersection between the k-mer contents of two genomes. From

these cardinalities one can obtain a Jaccard coefficient (J) or a “Mash distance,”

which is a proxy for Average Nucleotide Identity (ANI) [2]. These make it

possible to cluster sequences and otherwise solve massive genomic nearest-

neighbor problems.

MinHash is related to other core methods in bioinformatics. Minimizers,

which can be thought of as a special case of MinHash, are widely used in

metagenomics classification [9] and alignment and assembly [10]. More gen-

erally, MinHash can be seen as a kind of Locality-Sensitive Hashing (LSH),

which involves hash functions designed to map similar inputs the same value.

LSH has also been used in bioinformatics, including in homology search [11]

and metagenomics classification [12].

Spurred by MinHash’s utility, other groups have proposed alternatives

using new ideas from search and data mining. BinDash [13] uses a b-bit one-

permutation rolling MinHash to achieve greater accuracy and speed compared

to Mash at a smaller memory footprint. Other theoretical improvements are

16

proposed in the HyperMinHash [14] and SuperMinHash [15] studies.

Some studies have pointed out shortcomings of MinHash. Koslicki and

Zabeti argue that MinHash cardinality estimates suffer when the sets are very

different sizes [16]. This is not an uncommon scenario, e.g. when finding

the distance between two genomes of very different lengths or when finding

the similarity between a short sequence (say, a bacterial genome) and a large

collection (say, deep-coverage metagenomics datasets).

Here we use the HyperLogLog (HLL) sketch [17] as an alternative to Min-

Hash that exhibits excellent accuracy and speed across a range of scenarios,

including when the input sets are very different sizes and when the sketch

data structures are quite small. HLL has been applied in other areas of bioin-

formatics, e.g. to count the number of distinct k-mers in a genome or data

collection [18, 19, 20]. We additionally use recent theoretical improvements in

cardinality estimation for set unions and intersections [21], the components

needed to estimate J and other similarity measures.

We implemented the HLL in the Dashing software tool [22] (https://

github.com/dnbaker/dashing), which is free and open source under the GPLv3

license. Dashing supports the functions available in similar tools like Mash [2],

BinDash [13] and Sourmash [23]. Dashing can build a sketch of an input se-

quence set (dashing sketch), including FASTA files (for assembled genomes)

or FASTQ files (for sequencing datasets). Dashing has a sketch-based facility

for removing k-mers that likely contain sequencing errors prior to sketching.

The dashing dist function performs all-pairwise distance comparisons be-

tween pairs of datasets in a large collection, e.g. all the complete genomes

17

https://github.com/dnbaker/dashing
https://github.com/dnbaker/dashing

from the RefSeq database. Since Dashing’s sketch function is extremely fast,

Dashing can perform both sketching and all-pairs distance calculations in the

same command, obviating the need to store sketches on disk between steps.

Dashing is parallelized and we show that it scales efficiently to 100 threads.

Dashing also uses Single Instruction Multiple Data (SIMD) instructions on

modern general-purpose computer processors to exploit the finer-grained

parallelism inherent in HLL computations.

2.3 Results

Here we discuss Dashing’s design, then present simulation results demon-

strating HLL’s accuracy relative to other data structures. We then describe

experiments demonstrating Dashing’s accuracy and computational efficiency

relative to Mash and BinDash in a range of scenarios.

Unless otherwise noted, experiments were performed on a Lenovo x3650

M5 system with 4 2.2Ghz Intel E5-2650 CPUs with 12 cores each and 512 GB

of DDR4 RAM. Input genomes and sketches were stored on a SAS-attached

Lenovo Storage E1000 disk array with 12 8TB 7,200-RPM disks combined

using RAID5. All experiments were conducted using scripts available in

the dashing-experiments repository at https://github.com/langmead-lab/

dashing-experiments.

2.3.1 Design

Dashing uses the HyperLogLog (HLL) sketch to solve genomic distance prob-

lems. Dashing takes one or more sequence collections as input. These could

18

https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments

be assembled genomes in FASTA format or sequencing datasets in FASTQ

format. It then builds an HLL sketch for each input collection based on its

k-mer content. The sketch can be written to disk or simply forwarded to the

next phase, which performs a distance comparison between one or more pairs

of sketches. Dashing prints a set of similarity estimates, including estimates

for Jaccard coefficient and ANI. It can operate on a given pair of datasets, or

can perform all-pairs comparisons across many datasets in a single invocation

of the tool.

Dashing is written in C++14. It uses OpenMP for multithreading, with both

the sketching and distance phases readily scaling to 100 simultaneous threads.

It also uses data-parallel SIMD instructions, including the recent AVX512-

BW extensions that have been effective at accelerating other bioinformatics

software [24]. Dashing has Python bindings that enable other developers to

use the HLL implementation.

2.3.2 Accuracy for complete genomes

Encouraged by HLL’s accuracy, we measured the accuracy of Dashing v0.1.2’s

HLL-based Jaccard Coefficientestimates versus those of Mash v2.1 [2] and

BinDash v0.2.1 [13]. We repeated the HLL experiments for three HLL cardinal-

ity estimation methods: Flajolet’s canonical method using harmonic mean [17],

and two maximum-likelihood-based methods (MLE and JMLE) proposed by

Ertl [21]. We selected 400 pairs of bacterial genomes from RefSeq [25] covering

a range of Jaccard Coefficientvalues. To select the pairs, we first used dashing

dist with s = 16, k = 31 and the MLE estimation method on the full set of

19

complete bacterial RefSeq assemblies (latest versions). We then selected a sub-

set such that we kept 4 distinct genome pairs per Jaccard Coefficientpercentile.

Our goal was to test an even spread of Jaccard Coefficientvalues, though

some unevenness emerged later due to differences between data structures

and different selections of k. Of the genomes included in these pairs, the

maximum, minimum and mean lengths were 11.7 Mbp, 308 Kbp, and 4.00

Mbp respectively.

We ran the three tools to obtain Jaccard Coefficientestimates for the 400

pairs and plotted the results versus true J, as determined using a full hash-

table-based k-mer counter. Results for k = 16 and k = 21 and for sketches of

size 210 and 214 bytes are shown in Figure 2.1. The horizontal axis is divided

into 10 J partitions, each containing about 40 pairs. The vertical axis shows the

difference between tool-estimated and true Jaccard coefficient. For Dashing

we used the MLE estimation method. We made a minor change to the Mash

software to allow it to output estimated Jaccard coefficient, as it typically emits

only Mash distance.

Dashing’s estimates were consistently near the true J. Mash shows a

pattern of bias whereby its estimates are somewhat too low at low Jaccard-

coefficients then too high at higher coefficients. This is sometimes combined

with an overall bias shifting estimates too high (in the case of k = 16, sketch

size = 214) or low (in the case of k = 21, sketch size = 214). BinDash and

Dashing exhibit less J-specific bias.

shows mean squared Jaccard Coefficientestimation error (meanSE) for a

range of sketch sizes and for k ∈ {16, 21, 31}, also including the two alternate

20

cardinality estimation methods for Dashing (Original and JMLE). In short,

BinDash and Dashing consistently achieve lower meanSE than Mash, with

BinDash achieving the lowest meanSE at smaller J’s and both BinDash and

Dashing achieving similar meanSE at intermediate and larger J’s. Among the

Dashing estimation methods, JMLE consistently achieves the lowest meanSE.

For computational efficiency reasons (discussed later), Dashing’s default esti-

mation method is the MLE, which had only slightly higher error than JMLE.

2.3.3 Computational efficiency

To assess computational efficiency and scalability in a realistic context, we used

Dashing v0.1.2, Mash v2.1 and BinDash v0.2.1 to sketch and perform all-pairs

distance calculations for 87,113 complete genome assemblies. We obtained the

assemblies from Refseq, filtering to include only assemblies marked “latest”

and “Complete genome” and without “contig” in the name. The set included

genomes from various taxa, spanning viral, archaeal, bacterial and eukaryotic.

Genome lengths varied from 288 bases to 4,502,951,408 bases with mean and

median lengths of 9.8Mb and 3.8Mb, respectively. The total number of genome-

pair distance calculations required for 87,113 assemblies was over 3.79 billion.

We repeated the experiment for a range of sketch sizes and k-mer lengths. All

experiments were performed on a Lenovo x3850 X6 system with 4 2.0Ghz

Intel E7-4830 CPUs, each with 14 processor cores. After hyperthreading, the

system supports up to 112 simultaneous hardware threads. The system had 1

TB of DDR4 RAM, and ran CentOS 7.5 Linux, kernel v3.10.0. The system was

located at and maintained by the Maryland Advanced Research Computing

21

Center (MARCC).

For Dashing, we used dashing sketch for sketching and dashing dist

for pairwise distance calculations. For Mash, we used mash sketch and

mash triangle for the two stages respectively. For BinDash we used bindash

sketch and bindash dist. We also ran each tool in a way that performed

sketching immediately followed by all-pairs distance calculations. For Mash,

this involves running its dist and triangle commands but specifying the

sequence files (rather than their sketches) as input. In the case of dashing

dist, this combined invocation avoids writing any sketches to disk. Mash

provides support for this functionality as well, but we were unable to run it

successfully for our large experiment.

All tools were configured to use up to 100 simultaneous threads of exe-

cution (Dashing: -p 100, Mash: -p 100, BinDash: –nthreads=100). Since the

system supports a maximum of 112 simultaneous threads, 100 was chosen

to achieve high utilization while avoiding excessive contention. We used the

GNU time utility to measure the average number of CPUs utilized, wall time

and peak memory footprint for each tool invocation.

For Dashing, we repeated the experiment for each of its three cardinality

estimation methods: Flajolet’s canonical method (“Original”), Ertl’s Maximum

Likelihood Estimator (“Ertl-MLE”) and Ertl’s joint MLE (“Ertl-JMLE”).

Results for k = 21 and k = 31 are summarized in Figure 2.2 and a tabular

version of the results for k = 31 is shown in Table 2.1.

We observed that Dashing is the fastest tool in the Sketch phase, running

3.3–4.3 times faster than BinDash and 3.8–5.0 times faster than Mash.

22

Table 2.1: Comparison of computational efficiency of Mash, BinDash and Dashing at
k = 31 and various sketch sizes. The log 2(size) column reports the log2 of the sketch
size in bytes. “Both” results obtained either by using a combined Sketch+Distance
mode (for Dashing) or by combining results from separate sketching and distance-
calculation invocations (for Mash and BinDash). Dashing was assessed using three
estimation methods: Flajolet’s method using the harmonic mean (“Original”) and
Ertl’s MLE and JMLE methods.

Dashing Dashing Dashing
Phase Measure k log 2(size) Mash BinDash Original Ertl-MLE Ertl-JMLE
Sketch Wall clock (s) 31 10 1,345 1,157 273 271 277

12 1,349 1,157 273 274 270
14 1,356 1,159 286 289 278
16 1,400 1,226 359 367 299

Peak mem (MB) 31 10 17,720 141 12,683 12,721 12,644
12 18,296 399 12,723 12,430 12,726
14 19,706 1,426 12,630 12,877 12,853
16 25,127 5,542 12,888 12,412 12,933

Distance Wall clock (s) 31 10 1,901 74 80 100 601
12 2,368 188 286 308 2,139
14 3,446 672 1,113 1,137 8,308
16 8,777 3,603 6,172 4,251 30,506

Peak mem (MB) 31 10 1,120 409 116 116 116
12 1,380 673 371 371 372
14 2,785 1,709 1,392 1,392 1,392
16 10,776 5,816 5,476 5,476 5,476

Both Wall clock (s) 31 10 3,246 1,231 345 365 870
12 3,717 1,345 557 579 2,407
14 4,801 1,831 1,390 1,408 8,574
16 10,177 4,829 4,394 4,453 30,433

Peak mem (MB) 31 10 17,720 409 12,468 12,950 12,988
12 18,296 673 12,958 13,042 13,020
14 19,706 1,709 13,951 13,782 14,205
16 25,127 5,816 18,320 18,081 18,011

BinDash achieves the lowest memory footprint among the tools in the

Sketch phase, requiring 140 MB for the 1-KB sketch and 5.5 GB for the 64-KB

sketch. By contrast, Dashing required about 12 GB across all sketch sizes. This

is largely because of how Dashing is parallelized; Dashing threads simulta-

neously work on separate sequence collections, each filling a buffer of size

sufficient to hold the largest sequence yet parsed by that thread. Mash had

the highest memory footprint, ranging from 17–25 GB.

23

In the Distance phase, we noted that the estimation method had a major

effect on Dashing’s speed, with JMLE performing 5.9–7.4 times slower than

MLE. This is because the JMLE performs significantly more calculations, as

described in Methods. This result, together with the relatively small accuracy

difference noted earlier, led us to chose the Ertl-MLE method as Dashing’s

default. (In a separate experiment, we found that the JMLE inner loop could

be made about 20% faster using AVX512BW instructions.)

BinDash was the fastest tool in the Distance phase, running 25–70% faster

than Dashing’s MLE mode. But Dashing is 2–19 times faster than Mash, with

the largest speed gap observed at the smallest (1KB) sketch size.

When we compared tools based on combined performance in both the

Sketch and Distance phases, BinDash again had the lowest memory footprint

(always below 6GB), with Dashing’s footprint at 12–18 GB and Mash’s at

17–25GB. Dashing was the fastest among the three tools at all sketch sizes,

though BinDash achieves similar speed at the largest (64KB) sketch size. Mash

was the slowest of the tools in all cases. Since small sketch sizes tend to be

used in practice (Mash’s default is 4KB or 212 bytes), we expect Dashing to be

the fastest overall tool — certainly for sketching, but also combined sketching

and distance calculations — in typical situations.

2.3.4 Thread scaling

We also compared the tools’ speed and memory footprint when run with 4, 8

and 16 threads. We found that all three tools achieved excellent thread scaling

in the sketching phase, where Dashing achieves the highest throughput. We

24

also found that, for the distance estimation phase, Dashing exhibited better

thread scaling compared to Mash and BinDash.

2.4 Discussion

Genomics methods increasingly use MinHash and other locality-sensitive

hashing approaches as their computational engines. We showed that the Hy-

perLogLog sketch, combined with recent advances in cardinality estimation,

offers a superior combination of efficiency and accuracy compared to Min-

Hash. This is true even for small sketches and for the challenging case where

the input sets have very different sizes. While HLL has been used in bioinfor-

matics tools before [18, 19, 20], this is the first application to the problem of

estimating genomic distances, the first implementation of the highly accurate

MLE and Joint-MLE estimators [21], and the first comprehensive comparison

to MinHash and similar methods. The combination of HLL and JMLE is

also notable since it directly estimates the cardinality of an intersection, a

meaningful quantity independent of its use in the Jaccard coefficient.

We implemented HLL-based sketching and distance calculations in the

Dashing software tool. Dashing can sketch and calculate pairwise distances for

over 87K Refseq [25] genomes in around 6 minutes using its MLE estimation

method, 1KB sketch size, and 100 simultaneous threads of execution (Table

2.1).

Dashing’s speed advantage is clearest in the sketching step. Notably, re-

sketching from scratch is not much slower than loading pre-made sketches

from disk. Thus, Dashing users can forgo the typical practice of saving

25

sketches to disk between steps. Dashing’s accuracy with smaller sketches

justifies a lower default sketch size (1KB) compared to Mash’s default of 4KB

(or 8KB for long k-mers).

It is interesting to observe that Dashing’s accuracy is comparable to that of

BinDash across the Jaccard-index deciles in Table 2.1. Though Dashing is faster

— both at sketching and at combined sketching-and-distance — BinDash’s

speed approaches that of Dashing at the highest sketch size tested. As we

continue to investigate the HyperLogLog sketch, the b-Bit Minwise Hashing

technique underlying BinDash is clearly a close competitor, and it will be

important to continue to study it as well. In particular, b-Bit Minwise Hashing

is also more amenable to SIMD acceleration, providing a trade-off between

resolution as runtime as vector size grows.

Because the HLL can be used to estimate intersections and unions directly,

it can be applied to readily estimate not just Jaccard coefficient but containment

(|A ∩ B|/|A|) or overlap (|A ∩ B|/ min(|A|, |B|)) coefficients.

The Dashing software also supports several features not supported by

Mash or BinDash, including spaced seeds, PHYLIP-based output format, TSV,

binary output, asymmetric distances, and a hash-set-based mode that can

calculate exact Jaccard coefficients (as we did in one of our experiments) at the

cost of memory footprint. Further, Dashing contains its own implementation

of MinHash and b-Bit, and so is a flexible tool for future situations where a

combination of approaches is warranted.

HLL also comes with drawbacks. As shown in Figure 2.2 and Table 2.1,

Dashing is slower than BinDash at distance calculations. This is expected;

26

the b-bit Minwise Hashing approach consists primarily of comparisons of

bit-packed suffixes of minimizers, which can be effectively vectorized. By

contrast, the distance calculation between two HLL sketches is relatively

expensive, requiring exponentiations, divisions, harmonic means, and — for

the MLE-based methods — iterative procedures for finding roots of functions.

The trade-off between accuracy and computational cost is underlined by Ertl’s

Joint MLE [21] method, which is both the slowest (even compared to MinHash)

but the most accurate of the HLL-based methods. It will be important to

continue to refine and accelerate the cardinality-estimation algorithms at the

core of dashing dist.

HLL lacks another advantage of MinHash; when MinHash is used in

conjunction with a reversible hash function, it can be used not only to calculate

the relevant set cardinalities but also to report the k-mers common between

the sets. This can provide crucial hints when the eventual goal is to map a

read to (or near) its point of origin with respect to the reference, as is the goal

for tools like MashMap [6].

Past efforts have considered how to extend MinHash to include informa-

tion about multiplicities, essentially allowing it to sketch a multiset rather

than a set. This can improve accuracy of genomic distance measurements,

especially in the presence of repetitive DNA. Finch [26] works by capturing

more sketch items than strictly needed for the k-bottom sketch, then tallying

them into a multiset. More theoretical studies have proposed ways to store

multiplicities, including BagMinHash [27], and SuperMinHash [15]. In the

future it will be important to seek similar multiplicity-preserving extensions —

27

and related extensions like tf-idf weighting [4, 28] — for HLL as well.

As we consider how HLL can be extended to improve accuracy and handle

multiplicities, an asset is that our current design uses only 6 out of the 8

bits that make up each HLL register. (The LZC of our hash cannot exceed

63 and therefore fits in 6 bits.) Thus, 25% of the structure is waiting for an

appropriate use. One idea would be to use the bits to store a kind of striped,

auxiliary Bloom filter. This would add an alternate sketch whose strength

lies in estimating low-cardinality sets. Since we observed that Bloom filters

have superior accuracy when the bitvector is large enough to simulate linear

counting, we could potentially populate the auxiliary filter with the input

items (or a sample thereof) and recover some of the accuracy advantage

enjoyed by Bloom filters.

While HLL was used by the KrakenUniq [18] tool for metagenomics read

classification, KrakenUniq’s implementation allows for a sparse representation

of the registers, with 0-count registers omitted and non-0-count registers stored

in a sparse array. Sparsity is a reasonable assumption in KrakenUniq, since

some taxa have few associated k-mers due to relatedness of the genomes at

the leaves. The sparsity assumption is less valid in Dashing’s typical usage

scenarios, though it can be valid if one input set has few elements compared to

the number of HLL registers. In the future it will be important to investigate

whether Dashing can be extended to exploit sparsity where it exists.

Though we compared to Mash and BinDash here, an alternative approach

is used by the Kmer-db software [29]. Kmer-db’s data structure captures the

k-mer content of many input datasets at once. The underlying data structure

28

is a compressed bit matrix with bits indicating membership relationships

between k-mers (rows) and input datasets (columns). Once a matrix is built,

a second phase can perform individual or all-pairwise distance calculations

over the samples. Since distinct k-mers are represented explicitly — which

can take considerable space — the tool gives the option of subsampling the

input k-mers using a MinHash-based method.

HLL’s accuracy even when using a small sketch makes it appropriate for

search and indexing. It can be seen as performing a similar function as the

Sequence Bloom Tree [30]. Additionally, because any items which can be

hashed can be inserted in a HyperLogLog, dashing could be generalized or

extended to other applications, such as comparing text documents by their

n-grams or images by extracted features.

2.5 Methods

2.5.1 HyperLogLog

The HyperLogLog sketch builds on prior work on approximate counting in

O(log2 log2(n)) space. Originally proposed by Morris [31] and analyzed by

Flajolet [32], this method estimates a count by possibly incrementing a counter

with exponentially decaying probability. The probability is typically halved

after each increment, so the counter approximates the log2 of the true count.

While the estimator is unbiased, it has high variance. The hope is that needing

only log2 log2(n) bits to store a summary — compared to the log2(n) needed

for a MinHash — allows us to store more summaries total and, after averaging,

achieve a better estimate.

29

The HLL combines many such counters into one sketch using stochastic

averaging [33]. Given a stream of data items, we partition them according

to the most significant bits (“prefix”) of their hash values. That is, if o is an

input item and h is the hash function, the value h(o) is partitioned so that

h(o) = p⊕ q for bit-string prefix p and suffix q. To insert the item, we use p

as an offset into an array of 8-bit “registers.” We update the register to equal

either its current value or the leading zero count (LZC) of suffix q, whichever

is greater (Figure 2.3a). Note that the LZC of a bit string x of length q is related

to log2(x):

LZC(x) =

{︄
q, x = 0
q− 1− ⌊log2(x)⌋ x > 0

Each register ultimately stores a value related to minq∈Q log2(q) where Q

is the set of suffixes mapping to the register (Figure 2.3b). We can combine

estimates across registers by taking their harmonic mean and applying a

correction factor, as detailed below. The estimator has a standard error of

1.03896√
m [17].

While the HLL is conceptually distinct from MinHash sketches and Bloom

filters, it is related to both. Informally, an HLL modified so that the summary

stored in each register is a simple minimum (without the log2) is similar to

a MinHash sketch. Similarly, a Bloom filter with a single hash function and

2x bits is essentially an HLL with an x-bit hash prefix and with registers

consisting of a single bit each.

30

2.5.2 Estimation methods

The original HLL cardinality estimation method [17] combines the register-

level estimates by taking a corrected harmonic mean:

E =
αmm2

m
∑

j=1
2−Mj

Where αm is a correction factor equal to 1
2 ln 2 and Mj is 1 + the maximum

LZC stored in register j. But the estimator’s accuracy suffers at low and high

extremes of cardinality. This has spurred various refinements starting with

the original HLL publication [17], where linear counting is used to improve

estimates for low cardinalities and careful treatment of saturated counters

improves high-cardinality estimates.

Ertl proposed further refinements [21]. The “improved estimator” uses

the assumptions that (a) the hash function produces uniformly distributed

outputs, and (b) register values are independent. It then models register count

as a Poisson random variable. Estimating the Poisson parameter yields an

estimate for the cardinality.

Ertl’s MLE method again uses the uniformity and Poisson assumptions

of the Improved method, but the MLE method proceeds by finding the roots

— e.g. using Newton’s method or the secant method — of the derivative of

the log-likelihood of the Poisson parameter given the register values. Ertl

shows that the estimate is lower- and upper-bounded by harmonic means of

the per-register estimates. Ertl suggests using the secant method, which uses

inexpensive instructions and avoids derivative calculations. We follow this

31

suggestion in Dashing. Ertl also argues that the MLE generally converges in a

small number of steps; we confirm that our implementation converges in at

most 3 steps in every case we have tested.

Ertl’s Joint MLE method, unlike those described so far, can directly estimate

the cardinality of set intersections. We say “directly” to contrast it with

methods that use the inclusion-exclusion principle to estimate intersection

cardinality indirectly via cardinalities of sets (Figure 2.3c) and their unions

(Figure 2.3d). The JMLE method again adopts the Poisson model but two

sketches, A and B, are modeled as a mixture of three components, one with

elements unique to A, another with elements unique to B and a third with

elements in their intersection A ∩ B. The method then jointly estimates the

Poisson parameters for the three components. The procedure operates on a

set of tallies of how often registers having a certain value in A are less than,

equal to, or greater than their counterparts in B (and vice versa) (Figure 2.3e).

As discussed in Results, the JMLE as implemented in Dashing is substan-

tially slower than MLE. This is partly because of the increased complexity

of the numerical optimization, as there are more optimization problems and

each requires roughly twice as many iterations as for MLE. However, our

profiling indicates the added time is chiefly spent on tallying the <, =, >

relationships between the sketch registers. This tallying work grows linearly

with the sketch size. This highlights the importance of efficient, SIMD-ized

inner loops for comparing HLLs.

We considered but did not include Ertl’s Improved Estimator or the Hy-

perLogLog++ estimator [34] in this study as they performed worse than Ertl’s

32

MLE in preliminary comparisons.

2.5.3 Optimizing speed

Dashing takes advantage of the fine-grained parallelism inherent in HLLs.

Union and intersection cardinalities are the key components of similarity

measures like the Jaccard coefficient. For two HLLs having the same number

of registers and the same hash function, a sketch of their union is simply the

element-wise maximum of their registers. Thus, one fundamental need is to

perform element-wise maximum over long vectors of 8-bit registers. Finding

the cardinatlity of an individual set — or of the intersection of two sets using

the JMLE — requires tallying statistics over the register array. Thus, another

need is to perform tallies (e.g. counting the registers having a particular value)

over long vectors of 8-bit registers.

For set unions, Dashing’s inner loops use Single-Instruction Multiple Data

(SIMD) instructions, which are capable of performing fast arithmetic and

bitwise operations on vectors of many adjacent operands. These vectors are

substantially wider (up to 512 bits) than the typical 32-bit or 64-bit machine

words used to store scalar operands. Speedups can be attained by converting

important loops to use only or mostly SIMD instructions and to avoid loops

with scalar instructions. The more operands per SIMD vector, the greater the

potential benefit [24]. The ideal would be to use vectors consisting of 8-bit

operands, since this matches the HLL register width. While past iterations

of the SIMD instruction set operated on 128- and 256-bit vectors of 8-bit

operands, only with the recent introduction of Intel’s AVX-512BW instruction

33

set did it become possible to operate on 512-bit vectors of 8-bit operands.

We created AVX-512BW versions of inner set-union loops and confirmed

that these deliver the greatest distance-estimation throughput, providing 20%

speed boost compared to loops based on the older SSE2 SIMD instruction

set. For compatibility with older systems, Dashing supports older SIMD

instruction sets back to SSE2.

The process of tallying statistics for set cardinalities and set intersection

cardinalities is harder to SIMD-ize in this way. Dashing uses manual loop

unrolling to speed up these inner loops, but no SIMD instructions. A question

for future work is whether these loops can be rewritten using, for example, a

combination of SIMD gather, increment and scatter operations.

Dashing also supports use of many simultaneous threads of execution

using the OpenMP v4.5 library. The dashing sketch function is parallelized

across input files, with distinct threads reading, sketching, and writing sketches

for distinct inputs. In dashing dist, threads work in parallel on elements in

a row of the upper-triangular matrix while a distinct thread writes out the

results. To minimize the overhead associated with global memory-allocation

locks, each thread allocates from a private memory buffer. The all-pairs dis-

tance calculation uses multiple output buffers and asynchronous I/O to avoid

blocking and output-lock contention.

Another concern is load balance; having many simultaneous threads is

beneficial only if we can avoid “straggler” threads that run long after the

others have finished. We eliminated an important source of stragglers by

performing an up-front large-to-small ordering of the inputs to be sketched.

34

This minimizes the chance that the thread with the largest genome will still be

working when others are finishing.

2.5.4 Sketching sequencing data

While Dashing supports both FASTA and FASTQ inputs, input data from

sequencing experiments require special consideration due to the presence

of sequencing errors. Following the strategy of Mash [2], Dashing uses an

auxiliary data structure at sketching time to remove infrequent k-mers that

are likely to contain errors. Dashing does this in a single pass. Each k-mer in a

sequencing experiment is added to a Count-min Sketch (CMS) [35], and only

if the estimated count for the k-mer is sufficiently high is it added to the HLL.

The CMS can provide count estimates using an amount of space that grows

sublinearly with the number of items.

2.5.5 Hash function

We compared clhash [36], Murmur3’s finalizer [37], and the Wang hash [38]

across a set of synthetic Jaccard index estimates, and found that Wang’s had

the lowest error (8.20× 10−3) and bias (−2.14× 10−4), compared to 8.27× 10−3

and 2.30× 10−4 for Murmur3 and 8.21× 10−3 and −2.66e× 10−4 for clhash.

In addition to providing the best results, the Wang hash was also much faster

than clhash, which is meant for string inputs rather than specialized for 64-bit

integers.

35

2.6 Availability of Data and Materials

• Dashing source code is available under the open source GPLv3 license

[22]

• The particular version of Dashing evaluated here is included in this

permanent archive: [39]

• Scripts and code used to perform the experiments described in this study

are available under the open source GPLv3 license [40].

• The particular version of the scripts and code used to perform the ex-

periments described in this study is included in this permanent archive

[39].

• Accessions of genomes compared in the “Accuracy for complete genomes”

subsection of the “Results” section are listed at: https://github.com/

langmead-lab/dashing-experiments/blob/master/accuracy/genomes_

for_exp.txt.

• Accessions of genomes compared in the “Computational efficiency”

subsection of the “Results” section are listed at: https://github.com/

langmead-lab/dashing-experiments/blob/master/timing/filenames.

txt.

Figures

36

https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt

●
●

●

●
●

●

●

●

●

● ●

●●
●

●●

−0.2

−0.1

0.0

0.1

[0
, 0

.1
)

[0
.1

, 0
.2

)

[0
.2

, 0
.3

)

[0
.3

, 0
.4

)

[0
.4

, 0
.5

)

[0
.5

, 0
.6

)

[0
.6

, 0
.7

)

[0
.7

, 0
.8

)

[0
.8

, 0
.9

)

[0
.9

, 1
)

True J

E
st

 J
 −

 T
ru

e
J

k = 16, log2(sketch bytes) = 10

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●●
●

●

●

−0.025

0.000

0.025

0.050

[0
, 0

.1
)

[0
.1

, 0
.2

)

[0
.2

, 0
.3

)

[0
.3

, 0
.4

)

[0
.4

, 0
.5

)

[0
.5

, 0
.6

)

[0
.6

, 0
.7

)

[0
.7

, 0
.8

)

[0
.8

, 0
.9

)

[0
.9

, 1
)

True J

E
st

 J
 −

 T
ru

e
J

k = 16, log2(sketch bytes) = 14

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

−0.2

−0.1

0.0

0.1

0.2

0.3

[0
, 0

.1
)

[0
.1

, 0
.2

)

[0
.2

, 0
.3

)

[0
.3

, 0
.4

)

[0
.4

, 0
.5

)

[0
.5

, 0
.6

)

[0
.6

, 0
.7

)

[0
.7

, 0
.8

)

[0
.8

, 0
.9

)

[0
.9

, 1
)

True J

E
st

 J
 −

 T
ru

e
J

k = 21, log2(sketch bytes) = 10

●

●●

●
●

●

●

●

●

●

●

●● ●●

−0.06

−0.03

0.00

0.03

0.06

[0
, 0

.1
)

[0
.1

, 0
.2

)

[0
.2

, 0
.3

)

[0
.3

, 0
.4

)

[0
.4

, 0
.5

)

[0
.5

, 0
.6

)

[0
.6

, 0
.7

)

[0
.7

, 0
.8

)

[0
.8

, 0
.9

)

[0
.9

, 1
)

True J

E
st

 J
 −

 T
ru

e
J

k = 21, log2(sketch bytes) = 14

Mash BinDash Dashing (MLE)

Figure 2.1: Estimated versus true Jaccard coefficients (Js) for various methods across
a range of true J. Each point is one pair from an overall set of 400 pairs of genomes,
selected to evenly cover the range of true Js.

37

Distance Sketch Both

21
,1

0
21

,1
4

21
,1

6
31

,1
0

31
,1

4
31

,1
6

21
,1

0
21

,1
4

21
,1

6
31

,1
0

31
,1

4
31

,1
6

21
,1

0
21

,1
4

21
,1

6
31

,1
0

31
,1

4
31

,1
6

1

10

100

1000

10000

k, log2 (sketch size)

T
im

e
(s

ec
on

ds
)

Distance Sketch Both

21
,1

0
21

,1
4

21
,1

6
31

,1
0

31
,1

4
31

,1
6

21
,1

0
21

,1
4

21
,1

6
31

,1
0

31
,1

4
31

,1
6

21
,1

0
21

,1
4

21
,1

6
31

,1
0

31
,1

4
31

,1
6

1

10

100

1000

10000

k, log2 (sketch size)

M
em

or
y

fo
ot

pr
in

t (
M

B
)

 Mash BinDash HLL (Orig) HLL (Ertl−MLE) HLL (Ertl−JMLE)

Figure 2.2: Computational efficiency of Mash, BinDash and Dashing. Results for k =
21, k = 31 and sketches of size 210 (1KB), 212 (4KB), 214 (16KB) and 216 (64KB). “Both”
results obtained either by using a combined Sketch+Distance mode (for Dashing) or by
combining results from separate sketching and distance-calculation invocations (for
Mash and BinDash). Dashing was assessed using three estimation methods: Flajolet’s
method using the harmonic mean (“Orig”) and Ertl’s MLE and JMLE methods.

38

HLLInput items

11110011111100111111001111110011001 01001

110 00001...

...

Hash values

🎈🎾⛺🎾💾
🍷🍷🍷🍗💾

...

...
🍗🍎💾🍗💾

Register 000

01001 10001
10101 10110

00100

Register 001

00100 10110
01011 10101
00010 01011
11111 11110

Register 010

Register 011

Register 111

...

Hash
Take
prefix

Cardinality
Estimate

3

2 ~ 22

~ 23

...

...
......

p q

... ...

... ...

Overall
Estimate

HLL

≈ |A|

HLL HLL HLL

max(,) =

HLL

≈ |B| ≈ |A ∪ B|

HLL HLL

compare(,) = ≈ |A ∩ B|

Comparison
tallies

(c) (e)(d)

00101110
10101111
00011011
00010001

10010010
00110111
01000111
10001110
00100100
00111111
11111101
00101010
00111001
10011101
10111010
10000110
00000111
10000001
00100110
10000001

10001101 00010000 11100110 11111000
10101010 00010010 00010000 10111100
10101000 10100010 00000011 10100111
11101001 00101001 00110001 11010101
10100000 01110100 10010011 00111110
11100001 10100001 01000110 10111111
00100010 00010111 11110011 01001000
01111000 01011101 10001001 10110000
00011000 10001001 11110101 11000001
01101100 10101101 00111100 01001001
10000110 10010111 11011101 00101010
10101101 10011010 00011011 01011101
10110011 01000011 11111111 01001101
10010111 11011010 00110110 01110001
01001100 10111101 11100111 00001101
00110001 00011101 00001101 11111110

Size = 4 = 22

Max LZC = 3

Size = 16 = 24

Max LZC = 5
Size = 64 = 26

Max LZC = 6

(a) (b)

< = >A

LZC

< = >B

LZC

Figure 2.3: (a) Relationship between maximum leading zero count (Max LZC) and
set size for three randomly-generated sets of 8-bit numbers. The Max LZC roughly
estimates the log2 of the set size, though with high variance; here, two of three
estimates are off by 2-fold. (b) Schematic of HyperLogLog sketch. Input items are
hashed and hash value is partitioned into prefix p and suffix q. p indexes into the
array of HLL registers. A register contains the maximum leading zero count among
all suffixes q that mapped there. Register-level estimates are then combined to obtain
an overall cardinality estimate. (c) Estimating cardinalities of sets A and B, and (d)
estimating the cardinality of their union. For intersection cardinalities using inclusion-
exclusion principle, estimated set and union cardinalities are combined. (e) Direct
estimation of intersection cardinality with Ertl’s JMLE.

39

References

[1] D. N. Baker and B. Langmead. “Dashing: fast and accurate genomic
distances with HyperLogLog”. In: Genome Biol 20.1 (2019), p. 265.

[2] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,
S. Koren, and A. M. Phillippy. “Mash: fast genome and metagenome
distance estimation using MinHash”. In: Genome Biol. 17.1 (2016), p. 132.

[3] L. Schaeffer, H. Pimentel, N. Bray, P. Melsted, and L. Pachter. “Pseu-
doalignment for metagenomic read assignment”. In: Bioinformatics 33.14
(2017), pp. 2082–2088.

[4] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M.
Phillippy. “Canu: scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation”. In: Genome Res. 27.5 (2017),
pp. 722–736.

[5] K. Berlin, S. Koren, C. S. Chin, J. P. Drake, J. M. Landolin, and A. M.
Phillippy. “Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing”. In: Nat. Biotechnol. 33.6 (2015), pp. 623–
630.

[6] C. Jain, S. Koren, A. Dilthey, A. M. Phillippy, and S. Aluru. “A fast
adaptive algorithm for computing whole-genome homology maps”. In:
Bioinformatics 34.17 (2018), pp. i748–i756.

[7] C. Jain, L. M. Rodriguez-R, A. M. Phillippy, K. T. Konstantinidis, and
S. Aluru. “High throughput ANI analysis of 90K prokaryotic genomes
reveals clear species boundaries”. In: Nat Commun 9.1 (2018), p. 5114.

[8] Andrei Z Broder. “On the resemblance and containment of documents”.
In: Compression and complexity of sequences 1997. proceedings. IEEE. 1997,
pp. 21–29.

[9] D. E. Wood and S. L. Salzberg. “Kraken: ultrafast metagenomic sequence
classification using exact alignments”. In: Genome Biol. 15.3 (2014), R46.

40

[10] H. Li. “Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences”. In: Bioinformatics 32.14 (2016), pp. 2103–2110.

[11] J. Buhler. “Efficient large-scale sequence comparison by locality-sensitive
hashing”. In: Bioinformatics 17.5 (2001), pp. 419–428.

[12] Y. Luo, Y. W. Yu, J. Zeng, B. Berger, and J. Peng. “Metagenomic binning
through low-density hashing”. In: Bioinformatics (2018).

[13] XiaoFei Zhao. “BinDash, software for fast genome distance estimation
on a typical personal laptop”. In: Bioinformatics (2018), bty651.

[14] Y. William Yu and Griffin Weber. “HyperMinHash: Jaccard index sketch-
ing in LogLog space”. In: CoRR abs/1710.08436 (2017). arXiv: 1710.
08436. URL: http://arxiv.org/abs/1710.08436.

[15] Otmar Ertl. “SuperMinHash - A New Minwise Hashing Algorithm for
Jaccard Similarity Estimation”. In: CoRR abs/1706.05698 (2017). arXiv:
1706.05698. URL: http://arxiv.org/abs/1706.05698.

[16] D. Koslicki and H. Zabeti. “Improving Min Hash via the Containment
Index with applications to Metagenomic Analysis”. In: bioRxiv (2017).
DOI: 10.1101/184150.

[17] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. “HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm”. In: AofA:
Analysis of Algorithms. Ed. by Philippe Jacquet. Vol. DMTCS Proceedings
vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07). DMTCS
Proceedings. Juan les Pins, France: Discrete Mathematics and Theoretical
Computer Science, 2007, pp. 137–156. URL: https://hal.inria.fr/hal-
00406166.

[18] F. P. Breitwieser, D. N. Baker, and S. L. Salzberg. “KrakenUniq: confident
and fast metagenomics classification using unique k-mer counts”. In:
Genome Biol. 19.1 (2018), p. 198.

[19] M. R. Crusoe, H. F. Alameldin, S. Awad, E. Boucher, A. Caldwell, R.
Cartwright, A. Charbonneau, B. Constantinides, G. Edvenson, and S.
et al Fay. “The khmer software package: enabling efficient nucleotide
sequence analysis”. In: F1000Res 4 (2015), p. 900.

41

https://arxiv.org/abs/1710.08436
https://arxiv.org/abs/1710.08436
http://arxiv.org/abs/1710.08436
https://arxiv.org/abs/1706.05698
http://arxiv.org/abs/1706.05698
https://doi.org/10.1101/184150
https://hal.inria.fr/hal-00406166
https://hal.inria.fr/hal-00406166

[20] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and K.
Yelick. “Parallel De Bruijn Graph Construction and Traversal for De
Novo Genome Assembly”. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’14.
New Orleans, Louisana: IEEE Press, 2014, pp. 437–448. ISBN: 978-1-4799-
5500-8.

[21] Otmar Ertl. “New cardinality estimation algorithms for HyperLogLog
sketches”. In: CoRR abs/1702.01284 (2017). arXiv: 1702.01284. URL:
http://arxiv.org/abs/1702.01284.

[22] Daniel N Baker. Dashing: Fast and accurate genomic distances using Hyper-
LogLog. 2019. URL: https://github.com/dnbaker/dashing.

[23] C Titus Brown and Luiz Irber. “sourmash: a library for MinHash sketch-
ing of DNA”. In: The Journal of Open Source Software 1.5 (2016).

[24] R. Rahn, S. Budach, P. Costanza, M. Ehrhardt, J. Hancox, and K. Reinert.
“Generic accelerated sequence alignment in SeqAn using vectorization
and multi-threading”. In: Bioinformatics 34.20 (2018), pp. 3437–3445.

[25] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R.
McVeigh, B. Rajput, B. Robbertse, B. Smith-White, and D. et al Ako-
Adjei. “Reference sequence (RefSeq) database at NCBI: current status,
taxonomic expansion, and functional annotation”. In: Nucleic Acids Res.
44.D1 (2016), pp. D733–745.

[26] Roderick Bovee and Nick Greenfield. “Finch: a tool adding dynamic
abundance filtering to genomic MinHashing”. In: Journal of Open Source
Software 3(22) (2018).

[27] Otmar Ertl. “BagMinHash - Minwise Hashing Algorithm for Weighted
Sets”. In: CoRR abs/1802.03914 (2018). arXiv: 1802.03914. URL: http:
//arxiv.org/abs/1802.03914.

[28] Ondrej Chum, James Philbin, Andrew Zisserman, et al. “Near Duplicate
Image Detection: min-Hash and tf-idf Weighting.” In: BMVC. Vol. 810.
2008, pp. 812–815.

[29] S. Deorowicz, A. Gudys, M. Dlugosz, M. Kokot, and A. Danek. “Kmer-
db: instant evolutionary distance estimation”. In: Bioinformatics 35.1
(2019), pp. 133–136.

[30] B. Solomon and C. Kingsford. “Fast search of thousands of short-read
sequencing experiments”. In: Nat. Biotechnol. 34.3 (2016), pp. 300–302.

42

https://arxiv.org/abs/1702.01284
http://arxiv.org/abs/1702.01284
https://github.com/dnbaker/dashing
https://arxiv.org/abs/1802.03914
http://arxiv.org/abs/1802.03914
http://arxiv.org/abs/1802.03914

[31] Robert Morris. “Counting Large Numbers of Events in Small Registers”.
In: Commun. ACM 21.10 (1978), 840–842. ISSN: 0001-0782. DOI: 10.1145/
359619.359627. URL: https://doi.org/10.1145/359619.359627.

[32] Philippe Flajolet. “Approximate counting: A detailed analysis”. In: BIT
Numerical Mathematics 25.1 (1985), pp. 113–134. ISSN: 1572-9125.

[33] Philippe Flajolet and G Nigel Martin. “Probabilistic counting algorithms
for data base applications”. In: Journal of computer and system sciences
31.2 (1985), pp. 182–209.

[34] Stefan Heule, Marc Nunkesser, and Alexander Hall. “HyperLogLog
in Practice: Algorithmic Engineering of a State of the Art Cardinality
Estimation Algorithm”. In: Proceedings of the 16th International Conference
on Extending Database Technology. EDBT ’13. Genoa, Italy: ACM, 2013,
pp. 683–692. ISBN: 978-1-4503-1597-5.

[35] Graham Cormode and S. Muthukrishnan. “An improved data stream
summary: the count-min sketch and its applications”. In: Journal of Algo-
rithms 55.1 (2005), pp. 58 –75. ISSN: 0196-6774. DOI: https://doi.org/
10.1016/j.jalgor.2003.12.001. URL: http://www.sciencedirect.
com/science/article/pii/S0196677403001913.

[36] Daniel Lemire and Owen Kaser. “Faster 64-bit universal hashing using
carry-less multiplications”. In: CoRR abs/1503.03465 (2015). arXiv: 1503.
03465. URL: http://arxiv.org/abs/1503.03465.

[37] A Appleby. MurmurHash3. 2011. URL: https://github.com/aappleby/
smhasher.

[38] Thomas Wang. Integer Hash Function. http : / / web . archive . org /
web/20071223173210/http://www.concentric.net/~Ttwang/tech/
inthash.htm. 1997.

[39] Daniel N Baker and Ben Langmead. Dashing software used in manuscript
experiments. 2019. DOI: 10.5281/zenodo.3402234. URL: https://zenodo.
org/record/3402234.

[40] Daniel N Baker and Ben Langmead. Dashing software used in manuscript
experiments. 2019. URL: https://github.com/langmead-lab/dashing-
experiments.

43

https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/359619.359627
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
http://www.sciencedirect.com/science/article/pii/S0196677403001913
http://www.sciencedirect.com/science/article/pii/S0196677403001913
https://arxiv.org/abs/1503.03465
https://arxiv.org/abs/1503.03465
http://arxiv.org/abs/1503.03465
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
https://doi.org/10.5281/zenodo.3402234
https://zenodo.org/record/3402234
https://zenodo.org/record/3402234
https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments

Chapter 3

Dashing 2: fast and flexible
sketching with multiplicities and
Locality-Sensitive Hashing filtering

3.1 Context

This thesis chapter is comprised of the Dashing 2 paper, which is in preparation

and will be submitted for publication in the near future. In it, we correct for

varying weaknesses of the original Dashing method by bringing in recent

theory [1, 2, 3], accounting for k-mer multiplicities, and eliminated wasted

space. We show that the logarithmic truncation and fast similarity estimators

used in the SetSketch paper also apply to weighted MinHash variations,

yielding fast and accurate sketch comparisons.

Finally, to broaden its applicability, we leverage the locality-sensitive hash-

ing (LSH) property of the MinHash registers to build an index facilitating

near-linear time analysis. Using this index, we can very rapidly de-duplicate,

and generate K-Nearest Neighbor- and Similarity Thresholded Neighbor-

graphs for various genomic collections.

44

3.2 Abstract

Sketching algorithms, including MinHash and HyperLogLog have become

crucial building blocks for scalable computational biology solutions, from de-

duplication, clustering, indexing and summarization of genomic collections.

While prior tools, incl. Mash [4] and Dashing [5], could efficiently scale to

hundreds of thousands of entities, many important biological datasets number

in the millions (UniProt) or billions (BFD), at which point quadratic all-pairs

comparisons become infeasible in both space and time.

Addressing this, we use the Locality-Sensitive Hashing (LSH) properties of

MinHash to build LSH tables supporting nearest-neighbor queries. Using this

table, we can accurately generate “top-k” nearest neighbor tables, perform

clustering in linear time, and accelerate sparse Jaccard-thresholded results,

making it feasible to scale into the millions and beyond.

We have also improved the accuracy and comparison speed of our sketches.

When using the HyperLogLog as the core structure for Dashing 1, there was

the matter of wasted space, wherein only 6 bits out of an 8-bit register were

used in order to maintain parallelized comparisons. Further, with such small

registers, the HyperLogLog could yield small false positive estimates due to

register collisions.

With the theoretical developments with the SetSketch, varying the base of

the sketch became formalized, allowing us to tailor the log-base for higher-

accuracy with faster sketch comparisons, use registers as small as 4 bits or as

large as 64-bits. Further, we explore the tradeoff between space and accuracy

45

and demonstrate that for many cases, even 4-bit registers are sufficient.

Dashing 2 [dashing2-src] also supports multiplicity-aware sketching and

comparisons, using BagMinHash to compute multiset Jaccard sketches and

ProbMinHash to compute sketches over discrete probability distributions.

These additional modes extends Dashing 2’s relevance to datasets sensitive to

multiplicities such as RNA-sequencing, splicing data, and coverage vectors.

Dashing 2 also adds support for sketching additional file types, including

the BED interval format, the BigWig coverage vector format, and a more

general compressed sparse row (CSR)-format weighted set representation.

Dashing 2 is open-source and freely available at https://github.com/

dnbaker/dashing2.

3.3 Background

MinHash [6, 4] and the HyperLogLog [5, 7] are core utilities for efficiently

supporting similarity search and nearest-neighbor functionality from huge

sequencing databases. They have applications in phylogeny reconstruction

[4, 8], deduplication [7], and clustering [9]. While existing tools, such as

Mash, Dashing, and Bindash [10] can quickly cluster 10s of thousands of

genomes, many relevant biological datasets are much larger, reaching millions

or billions of sequences. Dashing can be a suitable substitute for Average

Nucleotide Identity (ANI) [11]. Typical pairwise comparison methods, with

their quadratic complexity, cannot scale to these problems. We apply the

Locality-Sensitive Hashing property of MinHash sketches to build indexes

supporting efficient generation of nearest-neighbor lists in near-linear time.

46

https://github.com/dnbaker/dashing2
https://github.com/dnbaker/dashing2

Further, these approaches typically fail to adapt to the weighted Jaccard

case, where k-mers are treated as multisets instead of sets, making them

less useful in situations where weights factor into similarity, such as RNA-

sequencing or epigenetic modifications.

In this work, we move beyond the HLL-based method in Dashing, and

adopt both a new sketching approach and data structure – the SetSketch –as

well as a locality-sensitive hashing scheme that can drastically reduce the

number of dataset pairs we compare. The SetSketch solidifies the theory

around choosing a flexible log base (and offset), which in turn fixes a major

issue in Dashing 1, which was its unused space per register. It also brings

with it a simple, accurate similarity estimation method which allows us to

substantially improve comparison speed. Further, its similarity to weight-

aware sketching methods, such as ProbMinHash and BagMinHash [2, 3], this

allows us support weights and adapt the fast comparison algorithm to the

weighted case.

We find that the SetSketch is the most accurate for calculating the stan-

dard (unweighted) Jaccard coefficient in a variety of scenarios, outperforming

standard MinHash, HLL, and b-bit Minhash. Further, we demonstrate that

sketching methods accounting for similarity provide superior average nu-

cleotide identity (ANI) estimates over weighted k-mer methods.

Finally, we use a locality-sensitive hashing approach to greatly narrow

the space of all-pairs comparisons we need to do when providing sparsified

analysis. This builds on the statistical independence of registers in the SetS-

ketch and its weighted relatives, and allows us to very rapidly group items at

47

different levels of similarity. We evaluate its accuracy, in relation to exhaustive

all-pairs comparisons, and demonstrate immense runtime improvements with

unchanged results. And we further demonstrate our method’s ability to scale

to millions of items, which would be out of the reach of competing methods

without an LSH index.

3.4 Results

We did three kinds of experiments. (a) Experiments using a pre-collected a

set of genome pairs, selected to cover a range of true Jaccard similarities, and

mainly for comparison the accuracy of different methods, (b) Experiments

using a large number of assembled genomes, mainly for comparison the

computational performance and scalability of different methods, and (c) Ex-

periments using an LSH index to generate approximate K-Nearest Neighbor

graphs and measure their accuracy.

Software for reproducing these results can be found at Dashing2-Experiments.

3.4.1 Sketching Improvements

3.4.1.1 Use of SetSketch

We previously implemented the HyperLogLog sketch in the Dashing 1 tool,

which was extremely efficient at sketching and more accurate in estimates

than Mash sketches of the same sizes. However, there were some weaknesses.

First, because the expected variance of the estimator was fixed with respect

to the cardinality of the data (O(1√
#Registers

)), this led to a tendency to return

unreliable estimates of low similarity. This corresponded to Bindash’s slightly

48

https://github.com/dnbaker/dashing2-experiments

higher accuracy at low similarities, while Dashing 1’s method was more

accurate at higher similarities.

Second, because the log base used in the HyperLogLog is fixed at 2, our

previous approach was wasting the upper 2-3 bits of each one-byte register.

Using a log base of 2 and a 64-bit hash, the maximum leading zero count

of a table with p signature bits and table size 2p is ‘64 - p‘ with a maximum

number of bits ⌈log2 64− p⌉. For typical parameterizations with fewer than

232 registers, this requires 6 bits per signature. All register space greater

than 64− p was unused, as packing into bytes allowed us to exploit SIMD

computation. Relatedly, we also could not modify the log-base to fit a specific

number of bits. Wanting to use all available space, we expected we could

achieve higher accuracy with fixed-size registers, and that there would be a

trade-off between more registers and more precise registers.

And finally, because both the original HyperLogLog estimation algorithm

[12] and the Ertl enhanced algorithms [13] required a sum of register counts,

while vectorized computation provided an importance performance improve-

ment, there was a serial final summation loop in that algorithm, limiting how

much it could be vectorized. Additionally, several HyperLogLog algorithms

retained some special handling for extreme cases.

The recent SetSketch [1] method provided us the mathematical framework

to address these concerns and expand our applicability. With the SetSketch,

this allowed us to change the log-base arbitrarily, which we then mapped

to registers of 4, 8, 16, 32, and 64 bits. We also by default lazily truncate the

signatures, which allows us to minimize the number of logarithms calculated

49

and match the parameters to the data to maximally exploit register value

space. The SetSketch also permits a fast, simple estimator which requires on

the counts of > and < between registers, for which we developed fast SIMD

implementations for this estimator which are substantially faster than the

HyperLogLog algorithms. In addition to its performance advantages, it is also

consistently more accurate.

3.4.1.2 Use of locality-sensitive hashing

Lastly, previous methods using sketches of k-mer sets primarily suffered from

a quadratic barrier - exhaustive pairwise comparisons were O(n2). To allow

our methods to scale, we use an inverted index, where combinations of input

MinHash registers are used as keys mapping to entities containing those

values.

Because the SetSketch registers are independent, we can sample from them

with replacement to generate stronger MinHash keys with collision probability

Jp, where p is the number of MinHash registers per combined hash register.

We build multiple tables and query from most specific to most sensitive.

3.4.1.3 Practical implementation

We introduced some implementation details which improved the algorithm

and expanded its usefulness. First, we delay the logarithm by dfault, maintain-

ing the full floating-point random variates during sketching. Once complete,

we can then tune the log-base to the maximum that will yield all-valid register

values, allowing use to maintain as much precision as possible in a fixed

50

number of bits. We call this the Continuous SetSketch. (If expected cardinali-

ties are known in advance, one can specify the parameters a and b from the

SetSketch to reduce peak memory requirements, at the expense of slightly

reduced precision.)

Second, we introduce a stochastically-averaged SetSketch we call the One-

Permutation SetSketch. The HyperLogLog sketching update loop is very fast,

as it requires only one register update. While the SetSketch adds each item

to all buckets with an increasing exponential draw that can stop early, the

HyperLogLog uses stochastic averaging for constant-time updates, which

can be substantially faster for larger sketches. We use this technique in the

Continuous SetSketch. To maintain accuracy for sketches with empty registers,

we use densification [14] of the One-Permutation Continuous SetSketch 1. In

our experiments, we demonstrate that the one-permutation setsketch has

effectively identical accuracy as the full setsketch, while being significantly

more efficient to produce.

Third, when building the Continuous SetSketch without stochastic averag-

ing, the log calculation is a significant contributor to the runtime. We found

that many of these exponential random draws are above the current sketch

maximum. This led us to realize that we could only perform log if an item was

likely to be inserted into the sketch, we could significantly speed up sketching.

We use the fast approximate-log trick, which relies on the floating-point num-

ber’s integral representation’s similarity to its log2. C/C++ code is provided

in figures fig. 3.7 and ??. It may overestimate, but never by more than a factor

of 1.42. By dividing the estimate by this number, we can reject most candidates

51

without the log function call, which significantly accelerated sketching.

We also wanted to be able to perform multiplicity-aware sketching, to

improve our applicability to applications sensitive to counts, such as coverage

vectors, expression counts, and weighted interval sets. We applied Ertl’s

recent work with ProbMinHash and BagMinHash [2, 3] to generated weighted

sketches. These sketching algorithms require a mapping from items to counts

to generate iterates. For large k-mer sets, the size of the structure this data

requires can be extremely large. We found that using feature hashing [15],

equivalent to a single-row Count-Min Sketch [16], gave us a way to quickly

estimate count vectors without risking out-of-memory errors. This approach

only can only increase similarity estimates, which leads to small but consistent

over-estimation.

We also applied the logarithmic-truncation technique from the SetSketch

to the weighted cases. Since both of the weighted sketching approaches are

derived from exponential draws, we can apply the same tailored logarith-

mic truncation and fast SIMD >/<-count based comparison for accelerated

similarity estimates.

3.4.1.4 Rare Event Filtering

To support filtering of rare elements when sketching read sets, we provide two

mechanisms. First, Dashing 2 can receive a parameter “–count-threshold <int>”

which causes it to only sketch items above a minimum observed frequency.

For this approach, k-mers whose abundance is below this threshold but whose

hashes could update the sketch are maintained in a temporary count structure.

52

This method is inspired by that used in the Mash method/paper [4]. Once the

item’s frequency passes this threshold, it is inserted into the sketch, and this

count structure is pruned periodically to account for updates to the sketch’s

inclusion threshold.

Second, we also provide a “–downsample-frac <float> ” argument, which

randomly discards k-mers with probability 1− <float>. If typical depth of

coverage is > 10, then selecting a value such as 1
10 would discard the majority

of k-mers occurring once, while tending to preserve most higher-frequency

items. This fails with some probability, but it comes at no space and effectively

no runtime cost.

3.4.2 Scaling to millions: Sparse Similarity and Applications

In addition to improving the speed and accuracy of our comparisons, the

exhaustive comparison approach taken by Dashing, Mash, and BinDash came

with downsides. While Mash and BinDash have methods filtering by similar-

ity thresholds, they still suffer superlinear runtime with respect to the number

of sequences by performing exhaustive comparisons.

Considering that MinHash is a locality-sensitive hash (LSH) hash function,

we decided to build LSH indexes built over the sketches to faciliate several

downstream applications in near-linear time.

This index generates near-neighbor candidates in order of decreasing

similarity in linear time.

This technique combines multiple registers into fewer but stronger hash

registers with greater discriminatory power. While a MinHash register is

53

identical between two sets with probability J = Intersection
Union , by performing this

grouping approach, the probability of P independent registers matching is

JP. This allows us to "spread out" candidates with the exponent of Jaccard

similarity.

We build a set of N LSH tables, each of which groups registers of size

min 2i, 2i into composite hashes. After building the tables, we begin querying

from the most specific table (comprised of hashes from the largest groups of

registers), to the least specific table (comprised of single MinHash registers)

until we have reached the nuber of desired candidates or until we have

queried all tables. This allows us to limit the number of queries required while

both preferentially selecting nearer neighbors and while returning all entities

matching even a single register if there are few enough near neighbors. Using

this index to eliminate quadratic comparisons allows us to scale analysis to

hundreds of thousands or millions of entities while maintaining accuracy.

First, we use this to generate fast K-Nearest Neighbor (“KNN”) graphs.

After building the LSH index, we can query it for all items to generate candi-

dates, followed by using sketches among those candidates to select a final set

of K-Nearest Neighbors. This is evaluated in 3.6.

We also provide thresholded result, which is similar in design. While

querying the index, we maintain a heap of all neighbors with similarity

above/distance below a given threshold.

And finally, we apply the CD-HIT [17] algorithm, similar to Linclust [9],

building an LSH index over representative entities. We sort inputs by decreas-

ing size, similar these other tools’ sorting of proteins by decreasing length.

54

This allows us to quickly de-duplicate a collection of sequences by grouping

sets separated by a similarity threshold.

3.4.3 Other Improvements: Exact mode, minimizers, & Alpha-
bets

We also provide exact modes - both using sorted k-mer hash sets and k-

mer count dictionaries. While these are substantially slower, they can be

practically evaluated on selected subsets selected from nearest-neighbor lists.

Our k-mer encoding also supports minimizers, which transduces the k-mer

sets/dictionaries into minimizer sets, which can accelerate processing.

To reduce the likelihood of selecting low-complexity k-mers, we also pro-

vide minimizer weighting by Shannon entropy H = −∑c∈A fc log fc, where

fc is the frequency of the character c. Instead of assigning Wk-mer = Hashk-mer,

as in standard minimizer selection, we assign ranks by Wentropy
k-mer = Hashk-mer

H+ϵ ,

using ϵ = 1e− 4 to avoid infinite values if H is 0. This decreases the likelihood

that a low-complexity k-mer will be selected as a minimizer.

We use a sliding window technique to maintain the entropy sums with

constant-time updates, irrespective of k-mer length. We accomplish this by

decrementing the count for the character leaving the window and increment-

ing the count for the character entering the k-mer.

We use a technique known as Compensated Addition or Kahan Summa-

tion, developmented independently by Kahan [18] and Babuska [19], in the

SetSketch algorithm to reduce errors in summation due to the floating-point

55

approximation. This comes at a the cost of some additional arithmetic oper-

ations, but better preserves the precision of the exponential draws. Notably,

however, we only have to perform compensated addition for increments

which pass our fastlog-prefilter.

3.4.3.1 Iteration Order

We also find that iteration order plays a substantial role in efficient calculation.

In Dashing 2, we store all sketches in a matrix for locality, and we group

computations during multithreading so that these methods tend to work with

the same comparison data. This provides speed improvements of 50-250%.

This also naturally comes with synchronization, as threads that get out of sync

in advance of the other threads are held up by memory latency, and threads

that are behind benefit from the pre-fetching performed by the threads which

were ahead.

3.4.3.2 Memory Management

For exceptionally large data, we exploit file memory-mapping to lazily deposit

sketches to disk. Since most of our access patters are sequential, this allows

us to exceed random access memory (RAM) thresholds without significant

performance penalties. Since these are represented as one large matrix, many

memory accesses are shared across sketches.

If memory-mapping is insufficient, we can further extend the applicable

scale by generated already-truncated signatures with user-set a, b parameter-

izations instead of tuning them to the data. This can increase computation

costs slighty, but it reduces the signature matrix in proportion to the reduction

56

in register size. For instance, a byte-sized register yields a memory reduction

factor of 8, and a nibble-sized register by 16. The nearest neighbor index

is built on the reduced registers. Fortunately, the SetSketch paper provides

guarantees on locale-sensitivity for these reduced representations.

3.4.3.3 Input Data Types

We support FASTA and FASTQ data formats, for the typical expected use cases.

We also support interval sets and coverage vectors - specifically, BED files, and

BigWigs. To expand the generality of our method, we also provide sketching

methods working directly from compressed-sparse row (CSR) format sparse

matrices.

3.4.4 Sketch accuracy

We wanted to investigate the accuracy of these sketches, both at estimating

k-mer similarity and inferring average nucleotide identity. For this experiment,

we selected a set of 51,200 pairs of genomes spanning the range of similarity

from 0 to 1. We first computed all-pairs similarities using Dashing 2 with

a sketch size of 65536 = 216 registers with k = 31. Using this full distance

matrix, we evenly partitioned the input similarity space into 2048 buckets and

selected the first 25 pairs of genomes in each bucket.

After selecting these pairs, we computed the exact weighted and un-

weighted Jaccard similarities between all these pairs of genomes with Dashing

2, estimated the ANI between the genomes with fastANI [20], and compared

the using various parameterizations of Dashing, Mash, BinDash, and Dashing

57

k kbits Mash SS8 Dash1 SS1
21 32 1.36 1.33 1.31 0.922

64 1.32 1.18 1.13 1.01
128 1.94 0.991 1.00 1.00
256 1.53 0.933 1.08 0.960
512 1.24 1.02 1.05 0.959

31 32 1.25 1.37 0.874 0.689
64 1.00 0.930 0.820 0.727

128 0.663 0.752 0.689 0.697
256 0.581 0.703 0.681 0.656
512 0.556 0.719 0.656 0.645

Table 3.1: Sum of squared error between estimated and true Jaccard coefficients for
several methods. Bright red indicates the lowest error in each row. Dark red indicates
second-lowest error.

2. This allowed us to compare both direct similarity estimation and to evaluate

whether accounting for k-mer multiplicities can improve ANI estimation.

The code for generating these results can be found in the Dashing2 exper-

iments repository [21] in the jirange directory, and the final data is in the

jirange/jirsplit/ directory, split due to GitHub file-size limits.

First, we wanted to see if the SetSketch could be more accurate than the Hy-

perLogLog. We can see in Table 3.1 for the JI Range Experiment that SetSketch

with byte-sized registers (SS1) improves on the accuracy of Dashing, which

itself is consistently more accurate than Mash. The 8-byte register SetSketch

method (SS8) is also comparable to Mash, which uses 8-byte registers. For

very large sketches (> 256 Kb/sketch), Mash seems to improve relative to SS8,

but only marginally.

We also wanted to see how well these methods matched ANI estimation.

Using the fastANI method as an efficient ANI estimator, we compared Mash,

Dashing 1, Dashing 2, and a weighted version based on ProbMinHash [2]

58

which we call D2W in terms of accuracy in estimating ANI. The results in

the Table 3.2 of sum of squared error of ANI estimation show that while both

Dashing and Dashing 2 improve on Mash in ANi estimation, incorporating

weights via ProbMinHash yields some substantial improvements over its

unweighted equivalents. This higher accuracy, in conjunction with efficient

construction, ability to scale to many genomes, and the large runtime im-

provements in comparisons afforded by our methods, makes Dashing 2 a very

efficient and scalable method for similarity search across sequence collections.

For shorter k-mers (21 and 31), exact multiset Jaccard calculations are

the most accurate for ANI estimation. With long k-mers (71), we find that

weighted sketching is even more accurate than exact multiset Jaccard. This

may be because 71 is too specific and the bias introduced by feature hashing

corrects for this over-precision. Complete results, including results for k = 71,

stochastically-averaged and standard setsketch, BagMinHash, ProbMinHash,

and varied feature hashing parameterizations are available in the Dashing 2

experiment repository [21].

3.4.5 Performance: All-Pairs

We performed exhaustive pairwise comparisons across 118,467 genomes for

a range of tools, using 96 threads in Figure ??. Separately, we performed the

same experiment with a single-thread on all available fungal and archaeal

genomes (307 and 665, respectively) for a total of 974, with results in Figure

??. For our invocation of Dashing 2 in this experiment, we used the similarity

59

k kbits Mash Dashing1 D2 D2W
21 32 90.4 51.9 27.3 14.4

64 46.9 17.8 19.2 14.4
128 31.6 9.04 24.7 14.5
256 25.9 7.11 23.5 14.6
512 18.5 9.23 15.6 14.6

31 32 129. 102. 37.9 28.6
64 55.5 115. 32.0 28.5

128 44.0 59.7 28.5 28.4
256 37.5 43.1 24.8 28.5
512 33.4 29.7 26.0 28.5

Table 3.2: Sum of squared error between estimated and true ANI for several methods.
Bright red indicates the lowest error in each row. Dark red indicates second-lowest
error.

0

2

4

6

0 250 500 750
Sketch time (seconds)

D
is

ta
nc

e
tim

e
(s

ec
on

ds
)

method

Mash

D2

D2W−500k

D2W−2.5M

Bindash

D2−full

factor(regsize)

2

4

8

Sketch size = 8192 bits

Figure 3.1: All-pairs comparisons
across 974 fungal and archaeal
genomes in RefSeq, with sketch
size = 8192 bytes

0

5

10

15

0 250 500 750
Sketch time (seconds)

D
is

ta
nc

e
tim

e
(s

ec
on

ds
)

method

Mash

D2

D2W−500k

D2W−2.5M

Bindash

D2−full

factor(regsize)

4

8

Sketch size = 16384 bits

Figure 3.2: All-pairs comparisons
across 974 fungal and archaeal
genomes in RefSeq, with sketch
size = 16384 bytes

0

10

20

30

0 250 500 750
Sketch time (seconds)

D
is

ta
nc

e
tim

e
(s

ec
on

ds
)

method

Mash

D2

D2W−500k

D2W−2.5M

Bindash

D2−full

factor(regsize)

8

Sketch size = 32768 bits

Figure 3.3: All-pairs comparisons
across 974 fungal and archaeal
genomes in RefSeq, with sketch
size = 32768 bytes

60

t

Figure 3.4: Sketch time for 118,467
reference genomes from RefSeq, S
= 2048 with 96 threads

Figure 3.5: Comparison time
for all-pairs comparisons across
118,467 reference genomes from
RefSeq, S = 2048 with 96 threads

estimation algorithm from the SetSketch paper.2

Consistently over these results, we see that Dashing 2’s sketching time is

faster than Mash’s while being slightly slower than Dashing 1.

However, the biggest advantage is that the comparison speed is 2-70x

that of Mash and Dashing 1. This comes from the simplicity of the SetSketch

comparison method and our fast handwritten SIMD distance code. This gives

us massive speed improvements over prior methods, whether using a single

thread of execution or many.

3.4.6 All-pairs comparisons using LSH

We evaluated our method over the the UniProt-SwissProt collection of 565,254

proteins reduced to 12−mer sketches of size 256 using a 6-letter reduced amino

acid alphabet for long-range homology [22]. We then compared exhaustive

top-256, all-pairs sketch-based calculations against those generated by our

2In our experiments, the runtime performance of this SetSketch comparison algorithm was
equivalent to that of b-bit MinHash signatures, and we therefore omit those results.

61

Figure 3.6: Benchmark, comparing LSH-assisted KNN graph generation time against
exhaustive all-pairs comparisons with a heap.

LSH-assisted approach. Using this, we achieved 100% recall, precision and F1.

Generating this list took less than a minute, compared to an hour for exhaus-

tive calculations. This is 159,755,759,631 pairwise comparisons - 42 times as

many as in the exhaustive all-pairs comparisons in Dashing, and 23 times the

number of comparisons as the larger experiment in the previous section 3.4.5.

This runtime result is reported in the KNN figure 3.6. We also applied this

approach to the much larger UniRef50 dataset, delineated by protein similarity

thresholds of 50%. After sketching, the KNN graph was generated in less than

10 minutes. By contrast, the exhaustive all-pairs comparisons approach timed

out after 2 days; this was expected; this calculation would have taken over a

year to complete.

3.5 Methods

62

3.5.1 Sketching sequencing data

We’ve introduced several significant changes relevant to sketching read sets,

as opposed to assembled genomes or sequence collections.

First, we’ve adapted a technique from the Mash paper [4] for eliminating

k-mers below a specific threshold for the set-based sketching methods. If the

inclusion threshold is > 1, both SetSketch implementations (One-Permutation

and Full) maintain a dictionary of potentially-relevant items whose counts

are below the thresholds, and these items are added to the final sketches once

they pass the count threshold.

This eliminates rare k-mers from read sets without requiring excessive

storage. Dashing 1’s approach was to use a count-min sketch, but this was

substantially slower than this alternative method. On the other hand, the

memory requirement for the count-min sketch approach is fixed.

Second, we’ve added a downsampling approach (”–downsample <float>“),

which causes Dashing 2 to randomly ignore a specified fraction of k-mers F.

Frequent k-mers, occurring substantially more commonly than the 1
F will be

expected to be included, but rarer k-mers will tend to be eliminated without

any storage costs.

Most importantly, we’ve introduced feature hashing [15], equivalent to a

one-row count-min sketch [23], for use in conjunction with weighted variations

of the SetSketch (ProbMinhash and BagMinHash).

This allows us to bound our memory usage when generating weighted

sketches at the expense of some approximation.

63

Dashing 2’s default counting method is exact before generating these

weighted sketches, but when feature hashing is enabled, the input k-mers are

hashed to a pseudorandom feature index before incrementing. This introduces

a systematic bias toward over-estimating similarity, as feature hashing can only

increase estimated similarity between two weighted sets, but the magnitude

of this bias is relatively small, as demonstrated by our experiments.

3.6 Discussion

Dashing 2 addresses all of the motivating needs: (a) ability to handle much

more than 10,000s of pairs, (b) able to handle multiplicities, and (c) better

accuracy than before, partly through efficient use of the “wasted” bits in the

original.

The future will have even more assembled genomes, especially as it be-

comes easier to assemble genomes directly from metagenomes. E.g., practical

improvements from Martin Steinegger’s work and improvements in high-

accuracy long-read sequencing technology.

We may try to compete with Linclust, CD-HIT, and similar tools more

specifically designed for protein sequence clustering. This would be a big,

separate effort, and beyond the scope of this paper.

3.6.1 Future Improvements

While our LSH index is efficient and accurate, it may be possible to reduce its

space requirements or improve runtime. The PUFFINN [24] storage method,

which uses both tensoring (re-using LSH registers) and sorted substring tables

64

for flexible matching. This allows for trie matching of LSH strings without

the memory alocality that a pointer-based trie implementation would cause.

This solves the a-priori selection of subtable key length selection. This also

improves the efficiency for batched queries, which can share memory latency

costs across queries. We may adapt this approach for our use cases, along

with different heuristics designed for our particular use-case. We suspect

that for these dense trie indexes, 4-8 are likely sufficient for typical genomic

applications.

We may also replace the feature-hashing approach for weighted sketching

with a Counting Quotient Filter [25] or a variant thereof. If it can reduce

collisions in comparable space, perhaps it can improve downstream weighted

k-mer set comparisons.

Clustering results

Since exhaustive pairwise distance matrices become impractical with millions

of items, we suggest graph-based approaches such as Leiden [26]. Other

options would include HDBSCAN [27] or UMAP-based methods [28], both of

which can work efficiently with sparse nearest-neighbor graphs.

These methods can deal with global structure efficiently by leveraging the

sparsity that comes from K-nearest neighbor- or similarity thresholded- graphs.

UMAP, in particular, also provides continuous embeddings and a visualization

method for genome similarity, which can be useful for visualizing the structure

of collections.

65

Figure 3.7: C/C++ code for fast approximate log2

Using the representation of floating-point numbers of significand length LS as an
approximate log2 after, then (1) dividing by the 2Ls and (2) subtracting the bias. Note
that this description may violate strict aliasing; using memcpy avoids this.
We provide code for both versions below, separated by a NO_STRICT_ALIASING macro.

s t a t i c i n l i n e f l o a t f l o g 2 _ f l o a t (f l o a t x) {
i f n d e f NO_STRICT_ALIASING

x = (f l o a t) * (u i n t 3 2 _ t *)&x * 0x1p−23 f − 1 2 7 . f ;
e l s e

u i n t 3 2 _ t y ;
memcpy(&y , &x , s i z e o f (y)) ;
x = 0x1p−23 f * y − 1 2 7 . f ;

endi f
re turn x ;

}
s t a t i c i n l i n e double fas t log2_double (double x) {

re turn (double) * (u i n t 6 4 _ t *)&x * 0x1p−52 − 1 0 2 3 . ;
i f n d e f NO_STRICT_ALIASING

x = (double) * (u i n t 6 4 _ t *)&x * 0x1p−52 − 1 0 2 3 . ;
e l s e

u i n t 6 4 _ t y ;
memcpy(&y , &x , s i z e o f (y)) ;
x = 0x1p−23 f * y − 1 2 7 . f ;

endi f
re turn x ;

}

66

Figure 3.8: C/C++ code for fast approximate loge

Using the representation of floating-point numbers of significand length LS as an
approximate log2 after, then (1) dividing by the 2Ls and (2) subtracting the bias. It
over-estimates, but by a factor ≤ 1.42, allowing its use for filtering. These methods
are equivalent to the flog2 methods, but scaled by loge 2.

s t a t i c i n l i n e double f log_double (double x) {
re turn (double) * (u i n t 6 4 _ t *)&x * 1.539095918623324 e −16

− 709 .0895657128241 ;
}

s t a t i c i n l i n e f l o a t f l o g _ f l o a t (f l o a t x) {
re turn (f l o a t) * (u i n t 3 2 _ t *)&x * 8 .262958 e−8 f − 88 .02969 f ;

}

67

References

[1] Otmar Ertl. “SetSketch: Filling the Gap between MinHash and Hy-
perLogLog”. In: CoRR abs/2101.00314 (2021). arXiv: 2101.00314. URL:
https://arxiv.org/abs/2101.00314.

[2] Otmar Ertl. “ProbMinHash - A Class of Locality-Sensitive Hash Algo-
rithms for the (Probability) Jaccard Similarity”. In: CoRR abs/1911.00675
(2019). arXiv: 1911.00675. URL: http://arxiv.org/abs/1911.00675.

[3] Otmar Ertl. “BagMinHash - Minwise Hashing Algorithm for Weighted
Sets”. In: CoRR abs/1802.03914 (2018). arXiv: 1802.03914. URL: http:
//arxiv.org/abs/1802.03914.

[4] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,
S. Koren, and A. M. Phillippy. “Mash: fast genome and metagenome
distance estimation using MinHash”. In: Genome Biol. 17.1 (2016), p. 132.

[5] D. N. Baker and B. Langmead. “Dashing: fast and accurate genomic
distances with HyperLogLog”. In: Genome Biol 20.1 (2019), p. 265.

[6] Andrei Z Broder. “On the resemblance and containment of documents”.
In: Compression and complexity of sequences 1997. proceedings. IEEE. 1997,
pp. 21–29.

[7] Ben Woodcroft. CoverM. 2018. URL: https : / / github . com / wwood /
CoverM.

[8] A. Criscuolo. “On the transformation of MinHash-based uncorrected
distances into proper evolutionary distances for phylogenetic inference”.
In: F1000Res 9 (2020), p. 1309.

[9] M. Steinegger and J. Söding. “Clustering huge protein sequence sets in
linear time”. In: Nat Commun 9.1 (2018), p. 2542.

[10] XiaoFei Zhao. “BinDash, software for fast genome distance estimation
on a typical personal laptop”. In: Bioinformatics (2018), bty651.

68

https://arxiv.org/abs/2101.00314
https://arxiv.org/abs/2101.00314
https://arxiv.org/abs/1911.00675
http://arxiv.org/abs/1911.00675
https://arxiv.org/abs/1802.03914
http://arxiv.org/abs/1802.03914
http://arxiv.org/abs/1802.03914
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM

[11] Julie E. Hernández-Salmerón and Gabriel Moreno-Hagelsieb. “ANI,
Mash and Dashing equally differentiate between Klebsiella species”.
In: bioRxiv (2021). DOI: 10.1101/2021.11.05.467470. eprint: https:
//www.biorxiv.org/content/early/2021/11/05/2021.11.05.467470.
full.pdf. URL: https://www.biorxiv.org/content/early/2021/11/
05/2021.11.05.467470.

[12] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. “HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm”. In: AofA:
Analysis of Algorithms. Ed. by Philippe Jacquet. Vol. DMTCS Proceedings
vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07). DMTCS
Proceedings. Juan les Pins, France: Discrete Mathematics and Theoretical
Computer Science, 2007, pp. 137–156. URL: https://hal.inria.fr/hal-
00406166.

[13] Otmar Ertl. “New cardinality estimation algorithms for HyperLogLog
sketches”. In: CoRR abs/1702.01284 (2017). arXiv: 1702.01284. URL:
http://arxiv.org/abs/1702.01284.

[14] Anshumali Shrivastava. “Optimal Densification for Fast and Accurate
Minwise Hashing”. In: CoRR abs/1703.04664 (2017). arXiv: 1703.04664.
URL: http://arxiv.org/abs/1703.04664.

[15] John Moody. “"Fast Learning in Multi-Resolution Hierarchies"”. In: Pro-
ceedings of the 1st International Conference on Neural Information Processing
Systems. NIPS’88. Cambridge, MA, USA: MIT Press, 1988, 29–39.

[16] Graham Cormode and S. Muthukrishnan. “An improved data stream
summary: the count-min sketch and its applications”. In: Journal of Algo-
rithms 55.1 (2005), pp. 58 –75. ISSN: 0196-6774. DOI: https://doi.org/
10.1016/j.jalgor.2003.12.001. URL: http://www.sciencedirect.
com/science/article/pii/S0196677403001913.

[17] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li. “CD-HIT: accelerated for cluster-
ing the next-generation sequencing data”. In: Bioinformatics 28.23 (2012),
pp. 3150–3152.

[18] W. Kahan. “Pracniques: Further Remarks on Reducing Truncation Er-
rors”. In: Commun. ACM 8.1 (1965), p. 40. ISSN: 0001-0782. DOI: 10.1145/
363707.363723. URL: https://doi.org/10.1145/363707.363723.

[19] I. Babuska. “Numerical stability in mathematical analysis”. In: IFIP 1968.
North-Holland, Amsterdan: IFIP Congress, 1969, pp. 11–23.

69

https://doi.org/10.1101/2021.11.05.467470
https://www.biorxiv.org/content/early/2021/11/05/2021.11.05.467470.full.pdf
https://www.biorxiv.org/content/early/2021/11/05/2021.11.05.467470.full.pdf
https://www.biorxiv.org/content/early/2021/11/05/2021.11.05.467470.full.pdf
https://www.biorxiv.org/content/early/2021/11/05/2021.11.05.467470
https://www.biorxiv.org/content/early/2021/11/05/2021.11.05.467470
https://hal.inria.fr/hal-00406166
https://hal.inria.fr/hal-00406166
https://arxiv.org/abs/1702.01284
http://arxiv.org/abs/1702.01284
https://arxiv.org/abs/1703.04664
http://arxiv.org/abs/1703.04664
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
http://www.sciencedirect.com/science/article/pii/S0196677403001913
http://www.sciencedirect.com/science/article/pii/S0196677403001913
https://doi.org/10.1145/363707.363723
https://doi.org/10.1145/363707.363723
https://doi.org/10.1145/363707.363723

[20] C. Jain, L. M. Rodriguez-R, A. M. Phillippy, K. T. Konstantinidis, and
S. Aluru. “High throughput ANI analysis of 90K prokaryotic genomes
reveals clear species boundaries”. In: Nat Commun 9.1 (2018), p. 5114.

[21] Daniel N Baker and Ben Langmead. Dashing software used in manuscript
experiments. 2021. URL: https : / / github . com / dnbaker / dashing2 -
experiments.

[22] Robert C. Edgar. “Local homology recognition and distance measures
in linear time using compressed amino acid alphabets”. In: Nucleic Acids
Research 32.1 (2004), pp. 380–385. ISSN: 0305-1048. DOI: 10.1093/nar/
gkh180. eprint: https://academic.oup.com/nar/article-pdf/32/
1/380/4027416/gkh180.pdf. URL: https://doi.org/10.1093/nar/
gkh180.

[23] Graham Cormode and Shan Muthukrishnan. “An improved data stream
summary: the count-min sketch and its applications”. In: Journal of
Algorithms 55.1 (2005), pp. 58–75.

[24] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli.
“PUFFINN: Parameterless and Universally Fast FInding of Nearest
Neighbors”. In: CoRR abs/1906.12211 (2019). arXiv: 1906.12211. URL:
http://arxiv.org/abs/1906.12211.

[25] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. “A
General-Purpose Counting Filter: Making Every Bit Count”. In: Proceed-
ings of the 2017 ACM International Conference on Management of Data. SIG-
MOD ’17. Chicago, Illinois, USA: Association for Computing Machinery,
2017, 775–787. ISBN: 9781450341974. DOI: 10.1145/3035918.3035963.
URL: https://doi.org/10.1145/3035918.3035963.

[26] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain to Lei-
den: guaranteeing well-connected communities”. In: Sci Rep 9.1 (2019),
p. 5233.

[27] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli.
“PUFFINN: Parameterless and Universally Fast FInding of Nearest
Neighbors”. In: CoRR abs/1906.12211 (2019). arXiv: 1906.12211. URL:
http://arxiv.org/abs/1906.12211.

[28] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Man-
ifold Approximation and Projection for Dimension Reduction. 2020. arXiv:
1802.03426 [stat.ML].

70

https://github.com/dnbaker/dashing2-experiments
https://github.com/dnbaker/dashing2-experiments
https://doi.org/10.1093/nar/gkh180
https://doi.org/10.1093/nar/gkh180
https://academic.oup.com/nar/article-pdf/32/1/380/4027416/gkh180.pdf
https://academic.oup.com/nar/article-pdf/32/1/380/4027416/gkh180.pdf
https://doi.org/10.1093/nar/gkh180
https://doi.org/10.1093/nar/gkh180
https://arxiv.org/abs/1906.12211
http://arxiv.org/abs/1906.12211
https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1145/3035918.3035963
https://arxiv.org/abs/1906.12211
http://arxiv.org/abs/1906.12211
https://arxiv.org/abs/1802.03426

Chapter 4

Coresets for Clustering in Graphs of
Bounded Treewidth

4.1 Context

This thesis chapter is comprised of the 2020 ICML paper, Coresets for Clus-

tering in Graphs of Bounded Treewidth [1], which was a joint effort with Xuan

Wu, Shaofeng Jiang, Robert Krauthgamer, Lingxiao Huang, and Vladimir

Braverman.

Theoretical insights were provided by Xuan Wu, Lingxiao Huang, Vladimir

Braverman, and Shaofeng Jiang, and Robert Krauthgamer, of which proof

derivations are primarily the work of Xuan Wu.

Experimental design, algorithm selection and design were the work of

Xuan Wu, Vladimir Braverman, Shaofeng Jiang, Robert Krauthgamer, and

Daniel Baker.

Practical implementation was prepared by Daniel Baker and experiments

were performed by Daniel Baker.

For this work, my contributions were in providing the experimental section

71

of the paper. With guidance and assistance primarily from Shaofeng Jiang

and Xuan Wu, I implemented efficient methods as necessary to support the

theoretical findings of the group.

The theoretical contributions of this work, developed by the author co-

authors, were to use the treewidth of graphs to derive bounds for accuracy for

coreset generation for the graph shortest-paths distance metric and their zth

powers, where z ≥ 1. Since many important graphs, including road networks,

biological systems, and telecommunications networks, satisfy this property,

these findings apply to many practical problems [2].

However, the coreset construction algorithm requires an approximate

solution to the k, z-clustering problem, where k is the number of center nodes,

and z is the power of the shortest-paths distance metric where z ≥ 1. I

developed software for extracting paths from OpenStreetMap databases [3],

clips it to bounding boxes, selects the largest connected component, converts

the OSM database connections to actual distances using the Haversine formula,

and then performed our graph experiments on this real data.

To perform these experiments, I implemented the Gonzalez, k-center al-

gorithm, which provides an ∈\− approximate solution to the k-clustering

problem. Then, I developed a SIMD-acclerated and massively parallelized im-

plementation of the local-search algorithm [4], which yields a 5-approximate

solution to the k-clustering problem using swaps of size 1. (This may be

improved by exploring multi-swaps at polynomial increases in runtime.)

In addition, in order to make this search problem practical on millions

of nodes, we applied the iterated graph-sampling approach from [5]. This

72

algorithms as described in the paper yielded impractically large subsets still.

Shaofeng introduced an repeated, iterated sampling approach which pre-

served approximation accuracy while also allowing us to reduce the graph

search space to the point that this problem became practical, 1 2.

Placing all of this together, we demonstrated the practical usefulness of

these developments, yielding runtime improvements in the millions while

nearly preserving the fidelity of our approximation.

4.2 Abstract

We initiate the study of coresets for clustering in graph metrics, i.e., the

shortest-path metric of edge-weighted graphs. Such clustering problems

are essential to data analysis and used for example in road networks and data

visualization. A coreset is a compact summary of the data that approximately

preserves the clustering objective for every possible center set, and it offers

significant efficiency improvements in terms of running time, storage, and

communication, including in streaming and distributed settings. Our main

result is a near-linear time construction of a coreset for k-MEDIAN in a general

graph G, with size Oϵ,k(tw(G)) where tw(G) is the treewidth of G, and we

complement the construction with a nearly-tight size lower bound. The

construction is based on the framework of Feldman and Langberg [STOC

2011], and our main technical contribution, as required by this framework,

is a uniform bound of O(tw(G)) on the shattering dimension under any

point weights. We validate our coreset on real-world road networks, and

our scalable algorithm constructs tiny coresets with high accuracy, which

73

translates to a massive speedup of existing approximation algorithms such as

local search for graph k-MEDIAN.

4.3 Introduction

We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-

path metrics of graphs. As usual in these contexts, the focus is on edge-

weighted graphs G = (V, E) with a restricted topology, and in our case

bounded treewidth. Previously, coresets were studied extensively but mostly

under geometric restrictions, e.g., for Euclidean metrics.

4.3.1 Coresets for k-Clustering

We consider the metric k-MEDIAN problem, whose input is a metric space

M = (V, d) and an n-point data set X ⊆ V, and the goal is to find a set C ⊆ V

of k points, called center set, that minimizes the objective function

cost(X, C) := ∑
x∈X

d(x, C),

where d(x, C) := min{d(x, c) : c ∈ C}. The metric k-MEDIAN generalizes the

well-known Euclidean case, in which V = Rd and d(x, y) = ∥x − y∥2. k-

MEDIAN problem and related k-clustering problems (like k-MEANS, whose

objective is ∑x∈X (d(x, C))2), are essential tools in data analysis and are used

in many application domains, such as genetics, information retrieval, and

pattern recognition. However, finding an optimal clustering is a nontrivial

task, and even in settings where polynomial-time algorithms are known, it

is often challenging in practice because data sets are huge, and potentially

74

distributed or arriving over time. To this end, a powerful data-reduction

technique, called coresets, is of key importance.

Roughly speaking, a coreset is a compact summary of the data points by

weighted points, that approximates the clustering objective for every possible

choice of the center set. Formally, an ϵ-coreset for k-MEDIAN is a subset D ⊆ V

with weight w : D → R+, such that for every k-subset C ⊆ V,

∑
x∈D

w(x) · d(x, C) ∈ (1± ϵ) · cost(X, C).

This notion, sometimes called a strong coreset, was proposed in [6], following

a weaker notion of [7]. Small-size coresets (where size is defined as |D|) often

translate to faster algorithms, more efficient storage/communication of data,

and streaming/distributed algorithms via the merge-and-reduce framework,

see e.g. [6, 8, 9, 10, 11] and recent surveys [12, 13, 14].

Coresets for k-MEDIAN were studied extensively in Euclidean spaces, i.e.,

when V = Rd and d(x, y) = ∥x − y∥2. The size of the first ϵ-coreset for

k-MEDIAN, when they were first proposed [6], was O(k(1
ϵ)

d · log n), and it

was improved to O(k(1
ϵ)

d), which is independent of n, in [15]. Feldman and

Langberg [16] drastically improved the dependence on the dimension d, from

exponential to linear, achieving an ϵ-coreset of size O(k
ϵ2 · d), and this bound

was recently generalized to doubling metrics [10]. Recently, coresets of size

independent of d and polynomial in k
ϵ were devised by [17].

75

4.3.2 Clustering in Graph Metrics

While clustering in Euclidean spaces is very common and well studied, clus-

tering in graph metrics is also of great importance and has many applications.

For instance, clustering is widely used for community detection in social

networks [18], and is an important technique for the visualization of graph

data [19]. Moreover, k-clustering on graph metrics is one of the central tasks

in data mining of spatial (e.g., road) networks [20, 21], and it has been applied

in various data analysis methods [22, 23], and many other applications can be

found in a survey [24].

Despite the importance of graph k-MEDIAN, coresets for this problem were

not studied before, and to the best of our knowledge, the only known con-

structions applicable to graph metrics are coresets for general n-point metrics

M = (V, d) with X = V [25, 16], that have size poly log n. In contrast, as men-

tioned above, coresets for Euclidean spaces usually have size independent of

n = |V| and sometimes even independent of the dimension d. Moreover, this

generic construction assumes efficient access to the distance function, which

is expensive in graphs and requires to compute all-pairs shortest paths.

To fill this gap, we study coresets for k-MEDIAN on the shortest-path metric

of an edge-weighted graph G. As a baseline, we confirm that the O(log n)

factor in coreset size is really necessary for general graphs, which motivates us

to explore whether structured graphs admit smaller coresets. We achieve this

by designing coresets whose size are independent of n when G has a bounded

treewidth (see Definition ??), which is a special yet common graph family.

Moreover, our algorithm for constructing the coresets runs in near-linear time

76

(for every graph regardless of treewidth).

Indeed, treewidth is a well-studied parameter that measures how close

a graph is to a tree [26, 27], and intuitively it guarantees a (small) ver-

tex separator in every subgraph. Several important graph families have

bounded treewidth: trees have treewidth at most 1, series-parallel graphs

have treewidth at most 2, and k-outerplanar graphs, which are an important

special case of planar graphs, have treewidth O(k). In practice, treewidth

is a good complexity measure for many types of graph data. A recent ex-

perimental study showed that real data sets in various domains including

road networks of the US power grid networks and social networks such as an

ego-network of Facebook, have small to moderate treewidth [28].

4.4 Results

Our main result is a near-linear time construction of a coreset for k-MEDIAN

whose size depends linearly on the treewidth of G and is completely indepen-

dent of |X| (the size of the data set). This significantly improves the generic

O(k
ϵ2 · log n) size bound from [16] whenever the graph has small treewidth.

Theorem 4.4.1 (Fast Coresets for Graph k-MEDIAN; see Theorem ??). For every

edge-weighted graph G = (V, E), 0 < ϵ < 1, and integer k ≥ 1, k-MEDIAN

of every data set X ⊆ V (with respect to the shortest-path metric of G) admits an

ϵ-coreset of size Õ(k3

ϵ2) · tw(G).1 Furthermore, the coreset can be computed in time

Õ(|E|) with high probability.2

1Throughout, we use Õ(f) to denote O(f · polylog(f)).
2We note that our size bound can be improved to Õ(k2

ϵ2) · tw(G), by replacing Lemma ??
with Theorem 31 of a recent work [29].

77

We complement our coreset construction with a size lower bound, which

is information-theoretic, i.e., regardless of computational power.

Theorem 4.4.2 (Coreset Size Lower Bound; proved in full version). For every

0 < ϵ < 1 and integers k, t ≥ 1, there exists a graph G = (V, E) with tw(G) ≤ t,

such that every ϵ-coreset for k-MEDIAN on X = V in G has size Ω(k
ϵ · t).

This matches the linear dependence on tw(G) in our coreset construction,

and we show in a corollary (in full version) that the same hard instance

actually implies for the first time that the O(log n) factor is optimal for general

metrics, which justifies considering restricted graph families.

4.4.1 Experiments

We evaluate our coreset on real-world road networks. Thanks to our new near-

linear time algorithm, the coreset construction scales well even on data sets

with millions of points. Our coreset consistently achieves < 5% error using

only 1000 points on various distributions of data points X, and the small size

of the coreset results in a 100x-1000x speedup of local search approximation

algorithm for graph k-MEDIAN. When experimenting with our coreset on

different data sets X, we observe that coresets of similar size yield similar

error, which confirms our theoretical bounds (for structured graphs) where

the coreset size is independent of the data set.

In fact, our experiments demonstrate that the algorithm performs well

even without knowing the treewidth of the graph G. More precisely, the

algorithm can be executed on an arbitrary graph G, and the treewidth param-

eter is needed only to tune the coreset size. We do not know the treewidth

78

of the graphs used in the experiments (we made no attempt to compute it,

even approximately). Our experiments validate the algorithm’s effectiveness

in practice, with coreset size much smaller than our worst-case theoretical

guarantees. In fact, it is also plausible that while the graphs have moder-

ate treewidth, they are actually “close” to having an even smaller treewidth.

Another possible explanation is that the algorithm actually works well on a

wider family of graphs than bounded treewidth, hence it is an interesting open

question to analyze our construction for graphs that are planar or excluding a

fixed minor.

4.4.2 Related Work

Approximation algorithms have been extensively studied for k-MEDIAN in

graph metrics, and here we only mention a small selection of results. In

general graphs (which is equivalent to general metrics), it is NP-hard to

approximate k-MEDIAN within 1 + 2
e factor [30], and the state-of-art is a

2.675-approximation [31]. For planar graphs and more generally graphs

excluding a fixed minor, a PTAS for k-MEDIAN was obtained in [4] based

on local search, and it has been improved to be FPT (i.e. the running time is

of the form f (k, ϵ) · nO(1)) recently [32]. For general graphs, [5] proposed an

O(1)-approximation that runs in near-linear time.

Coresets have been studied for many problems in addition to k-MEDIAN,

such as PCA [29] and regression [33], but in our context we focus on discussing

results for other clustering problems only. For k-CENTER clustering in Eu-

clidean space Rd, an ϵ-coreset of size O(k
ϵd) can be constructed in near-linear

79

time [34, 35]. Recently, coreset for generalized clustering objective receives

attention from the research community, for example, [36] obtained simultane-

ous coreset for ORDERED k-MEDIAN, [37, 38] gave a coresets for k-clustering

with fairness constraints, and [39] presented a coreset for k-MEANS clustering

on lines in Euclidean spaces where inputs are lines in Rd while the centers are

points.

4.5 Coresets for k-MEDIAN in Graph Metrics

4.5.1 Referral

We would now be in position to conclude our main result. However, the

details of this are the contributions and expertise of the other authors. I will

instead provided a summary of these details but refer interested parties to the

ICML paper itself [40]. We use sampling algorithms and discrete optimization

techniques to generate constant-factor approximate solution to the k-clustering

problem. Treewidth is a property of graphs which formalizes a notion of

complexity with regard to its structure. If this is taken to be bounded, the other

authors prove that one can bound the shattering dimension of the metric space

corresponding to the graph shortest-paths distance metric. This, in turn, yields

a bound on the accuracy of coresets generated using the Feldman-Langberg

framework, explaining why the techniques we applied in the experiment

efficiently yielded high-accuracy approximations.

80

Algorithm 1: ITERATEDTHORUPSAMPLING

0: Input edge-weighted graph G = (V, E), data set X ⊆ V, number of
centers k, parameters n and m that control the number of iterations

0: Output bicriteria solution F ⊆ X
0: let X0 ← X, and ∀u ∈ X0 let wX0(u)← 1
1: for i = 1 to n do
2: expand Xi−1 into a multi-set X′, such that each u ∈ X′ has multiplicity

wXi−1(u)
3: let Fi ← THOSAMPLEBEST(G, X′, k, m)
4: let Xi ← Fi and ∀u ∈ Xi, let

wXi(u)← |{v ∈ X : NNFi(v) = u}|

// NNFi(v) is the nearest point in Fi from v; this step implements the
projection of X to Fi

5: end forreturn Fn

4.6 Experiments

We implement our algorithm and evaluate its performance on real-world road

networks. Our implementation generally follows the importance sampling

algorithm as in the Upper-Bound section of the paper. We observe that the run-

ning time is dominated by computing an O(1)-approximation for k-MEDIAN

(used to assign importance σx), for which we use Thorup’s Õ(|E|)-time algo-

rithm. However, the straightforward implementation of Thorup’s algorithm

is very complicated and scales with k log3 n which is already near the size of

our data set, and thus we employ an optimized implementation based on it.

4.6.1 Optimized Implementation

Thorup’s algorithm starts with an O(|E| log |E|)-time procedure to find a

bicriteria solution F (Algorithm D in [5]), namely, |F| = O(k log2 n) such that

81

Algorithm 2: THOSAMPLEBEST

0: Input edge-weighted graph G = (V, E), data set X ⊆ V, number of
centers k, number of iterations m

0: Output bicriteria solution F ⊆ X
1: for i = 1 to m do
2: let Fi ← THOSAMPLE(G, X, k)

// THOSAMPLE is Algorithm D of [5]
3: end for
4: return Fi such that i = arg min1≤j≤m cost(Fi, X)

cost(F, X) = O(1) ·OPT. Then a modified Jain-Vazirani algorithm [41] is ap-

plied on F to produce the final O(1)-approximation in Õ(|E|) time. However,

the modified Jain-Vazirani algorithm is complicated to implement, and the

hidden polylogarithmic factor in its running time is quite large. Thus, we

replace the Jain-Vazirani algorithm with a simple local search algorithm [42]

to find an O(1)-approximation on F. The performance of the local search relies

heavily on |F|, but |F| = O(k log2 n) is not much smaller than n for our data

set. Therefore, we run the bicriteria approximation iteratively to further reduce

|F|. Specifically, after we obtain Fi, we project X to Fi (i.e., map each x ∈ X to

its nearest point in Fi) to form Xi, and run the bicriteria algorithm again on Xi

to form Fi+1. We use a parameter to control the number of iterations, and we

observe that F reduces significantly in our data set with only a few iterations.

The procedure for finding F iteratively is described in Algorithm 1, which

uses Algorithm 2 as a subroutine. Algorithm 2 essentially corresponds to the

above-mentioned Thorup’s bicriteria approximation algorithm THOSAMPLE

(Algorithm D in [5]), except that we execute it multiple times (m times in Al-

gorithm 1) to boost the success probability. As can be seen in our experiments,

82

Figure 4.1: Illustration of our graph G, plotting (on left) the vertices according to their
geographic coordinates, and showing (on right) a map, taken from OpenStreetMap,
of the bounding box used to form G.

the improved implementation scales very well on road networks and achieves

high accuracy.

4.6.2 Experimental Setup

Throughout the experiments the graph G is a road network of New York

STATE extracted from OpenStreetMap [43] and clipped by bounding box to

enclose New York City (NYC). This graph consists of 1 million vertices and 1.2

million edges whose weight are the distances calculated using the Haversine

formula between the endpoints. It is illustrated in Figure 4.1. Our software is

open source and freely available, and implemented in C++17. All experiments

were performed on a Lenovo x3850 X6 system with 4 2.0 GHz Intel E7-4830

CPUs, each with 14 processor cores with hyperthreading enabled. The system

had 1 TB of RAM.

83

Figure 4.2: Illustration of data set X used in the accuracy-vs-size experiment. The
left plot is a uniform data Xuni, the middle is Xman that is highly concentrated in
Manhattan, where in both cases |X| ≈ 14000, and the right plot is all of V which is
the full NYC.

4.6.3 Performance of Coresets

Our first experiments evaluate how the accuracy of our coresets depends on

their size. Here, the data X may be interpreted as a set of customers to be

clustered, and their distribution could have interesting geographical patterns.

We experiment with X chosen uniformly at random from V (all of NYC),

mostly for completeness as it is less likely in practice, and denote this scenario

as Xuni. We also experiment with a “concentrated” scenario where X is highly

concentrated in Manhattan but also has much fewer points picked uniformly

from other parts of NYC, denoted as Xman. We demonstrate the two types of

data sets X in Figure 4.2.

We define the empirical error of a coreset D and a center set C ⊆ V as

err(D, C) :=
⃓⃓⃓

cost(D,C)
cost(X,C) − 1

⃓⃓⃓
(corresponding to ϵ in the definition of a coreset).

Since by definition a coreset preserves the objective for all center sets, we

evaluate the empirical error by randomly picking 2000 center sets C ⊆ V

from V, and reporting the maximum empirical error err(D, C) over all these

C. For the sake of evaluation, we compare the maximum empirical error of

84

Table 4.1: Comparison of empirical error of our coreset with the baseline of uniform
sampling when k = 25 and varying coreset sizes, for both data sets Xuni and Xman.

SIZE
Xuni Xman

OURS UNI. OURS UNI.

25 32.1% 35.8% 32.1% 151.6%
50 26.6% 23.0% 22.1% 90.3%
75 17.8% 23.2% 23.2% 62.3%

100 17.2% 17.2% 15.2% 49.9%
500 7.72% 8.53% 8.34% 31.7%

1250 4.57% 5.32% 4.87% 21.2%
2500 4.14% 4.03% 3.29% 9.53%
3750 2.49% 3.21% 2.89% 14.39%
6561 2.00% 2.11% 2.38% 5.83%

13122 1.50% 1.70% 1.53% 6.53%
19683 1.27% 1.36% 1.39% 3.73%

our coreset with a baseline of a uniform sample, where points are drawn

uniformly at random from X and assigned equal weight (that sums to |X|). To

reduce the variance introduced by the randomness in the coreset construction,

we repeat each construction 10 times and report the average of their maximum

empirical error.

4.6.3.1 Results

We report the empirical error of our coresets and that of the uniform sam-

pling baseline in Table 4.1. Our coreset performs consistently well and quite

similarly on the two data sets X, achieving for example 5% error using only

about 1000 points. Compared to the uniform sampling baseline, our coreset is

3− 5 times more accurate on the Manhattan-concentrated data Xman, and (as

expected) is comparable to the baseline on the uniform data Xuni.

85

Figure 4.3: The left plot shows the accuracy of coresets (k = 25) on uniform X’s
with varying sizes. Each line is labeled with the size of each respective X ⊆ V. The
right plot shows the accuracy of coresets constructed with k = 25 but evaluated with
smaller center sets C on the same uniform X with |X| = 104.

In addition, we show the accuracy of our coresets with respect to varying

sizes of data sets X in Figure 4.3 (left). We find that coresets of the same size

have similar accuracy regardless of |X|, which confirms our theory that the

size of the coreset is independent of |X| in structured graphs. We also verify in

Figure 4.3 (right) that a coreset constructed for a target value k = 25 performs

well also as a coreset for fewer centers (various k′ < k). While this should

not be surprising and follows from the coreset definition, it is very useful in

practice when k is not known in advance, and a coreset (constructed for large

enough k) can be used to experiment and investigate different k′ < k.

4.6.4 Speedup of Local Search

An important application of coresets is to speed up existing approximation

algorithms. To this end, we demonstrate the speedup of the local search

algorithm of [42] achieving 5-approximation for graph k-MEDIAN by using

our coreset. In particular, we run the local search on top of our coreset D

(denoted as D×V), and then compare the accuracy and the overall running

86

Figure 4.4: Performance of local search on X ×V, D×V, and D× D. The running
time is shown on the left, where the coreset construction time Tcs is separated out (so
TD×V and TD×D do not include Tcs). The objective values reached are shown on the
right. Here k = 25 and X = V is the whole NYC of size |X| ≈ 106.

time with those of running the local search on the original data X (denoted

as X ×V). Notice that by definition of k-MEDIAN, the centers always come

from V, which defines the search space, and a smaller data set can only affect

the time required to evaluate the objective. This limits the potential speedup

of local search, and therefore we additionally evaluate the running time and

accuracy of local search on D when also the centers come from D (denoted as

D× D).

We report separately the running time of the coreset construction, denoted

Tcs, and that of the local search on the coreset. Indeed, as mentioned in Sec-

tion 4.6.3, a coreset D constructed for large k can be used also when clustering

for k′ < k, and since one can experiment with any clustering algorithm on D

(e.g. Jain-Vazirani, local search, etc.), the coreset construction is one-time effort

that may be averaged out when successive clustering tasks are performed on

D.

The results are illustrated in Figure 4.4, where we find that the coreset

87

construction is very efficient, about 100 times faster than local search on X, not

to mention that the coreset may be used for successive clustering tasks. We

see that the speedup of local search D×V is only moderate (which matches

the explanation above), but the alternative local search on D× D performs

extremely well — for example using |D| ≈ 1000, it is about 1000 times faster

than the naive local search on X, and it achieves similar objective value (i.e.

5%− 10% error). This indicates that local search on D × D may be a good

candidate for practical use.

88

References

[1] Daniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C.
Jiang, Robert Krauthgamer, and Xuan Wu. “Coresets for Clustering in
Graphs of Bounded Treewidth”. In: CoRR abs/1907.04733 (2019).

[2] Silviu Maniu, Pierre Senellart, and Suraj Jog. “An Experimental Study
of the Treewidth of Real-World Graph Data (Extended Version)”. In:
CoRR abs/1901.06862 (2019). arXiv: 1901.06862. URL: http://arxiv.
org/abs/1901.06862.

[3] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
https://www.openstreetmap.org. 2020.

[4] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. “Local
Search Yields Approximation Schemes for k-Means and k-Median in
Euclidean and Minor-Free Metrics”. In: SIAM J. Comput. 48.2 (2019),
pp. 644–667. DOI: 10.1137/17M112717X.

[5] Mikkel Thorup. “Quick k-Median, k-Center, and Facility Location for
Sparse Graphs”. In: SIAM J. Comput. 34.2 (2005), pp. 405–432. ISSN:
0097-5397. DOI: 10.1137/S0097539701388884.

[6] Sariel Har-Peled and Soham Mazumdar. “On coresets for k-means and
k-median clustering”. In: 36th Annual ACM Symposium on Theory of
Computing. 2004, pp. 291–300. DOI: 10.1145/1007352.1007400.

[7] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. “Ap-
proximating Extent Measures of Points”. In: J. ACM 51.4 (2004), pp. 606–
635. ISSN: 0004-5411. DOI: 10.1145/1008731.1008736.

[8] Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn,
and Christian Sohler. “BICO: BIRCH Meets Coresets for k-Means Clus-
tering”. In: ESA. Vol. 8125. Lecture Notes in Computer Science. Springer,
2013, pp. 481–492. DOI: 10.1007/978-3-642-40450-4_41.

89

https://arxiv.org/abs/1901.06862
http://arxiv.org/abs/1901.06862
http://arxiv.org/abs/1901.06862
 https://www.openstreetmap.org
https://doi.org/10.1137/17M112717X
https://doi.org/10.1137/S0097539701388884
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1007/978-3-642-40450-4_41

[9] Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. “Distributed
k-means and k-median Clustering on General Topologies”. In: NIPS.
2013, pp. 1995–2003.

[10] Lingxiao Huang, Shaofeng Jiang, Jian Li, and Xuan Wu. “Epsilon-Coresets
for Clustering (with Outliers) in Doubling Metrics”. In: 59th Annual Sym-
posium on Foundations of Computer Science (FOCS). IEEE. 2018, pp. 814–
825.

[11] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour.
“Local Search Yields a PTAS for k-Means in Doubling Metrics”. In: SIAM
J. Comput. 48.2 (2019), pp. 452–480.

[12] Jeff M. Phillips. “Coresets and Sketches”. In: Handbook of discrete and
computational geometry. Ed. by Csaba D Toth, Joseph O’Rourke, and
Jacob E Goodman. 3rd. Chapman and Hall/CRC, 2017. Chap. 48. DOI:
10.1201/9781315119601-48.

[13] Alexander Munteanu and Chris Schwiegelshohn. “Coresets-Methods
and History: A Theoreticians Design Pattern for Approximation and
Streaming Algorithms”. In: KI 32.1 (2018), pp. 37–53.

[14] Dan Feldman. “Core-sets: An updated survey”. In: Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 10.1 (2020).

[15] Sariel Har-Peled and Akash Kushal. “Smaller Coresets for k-Median and
k-Means Clustering”. In: Discrete & Computational Geometry 37.1 (2007),
pp. 3–19. DOI: 10.1007/s00454-006-1271-x.

[16] Dan Feldman and Michael Langberg. “A unified framework for approx-
imating and clustering data”. In: 43rd Annual ACM Symposium on Theory
of computing. ACM. 2011, pp. 569–578.

[17] Christian Sohler and David P. Woodruff. “Strong Coresets for k-Median
and Subspace Approximation: Goodbye Dimension”. In: FOCS. IEEE
Computer Society, 2018, pp. 802–813.

[18] Santo Fortunato. “Community detection in graphs”. In: Physics reports
486.3-5 (2010), pp. 75–174.

[19] Ivan Herman, Guy Melançon, and M. Scott Marshall. “Graph Visualiza-
tion and Navigation in Information Visualization: A Survey”. In: IEEE
Trans. Vis. Comput. Graph. 6.1 (2000), pp. 24–43.

[20] Shashi Shekhar and Duen-Ren Liu. “CCAM: A Connectivity-Clustered
Access Method for Networks and Network Computations”. In: IEEE
Trans. Knowl. Data Eng. 9.1 (1997), pp. 102–119.

90

https://doi.org/10.1201/9781315119601-48
https://doi.org/10.1007/s00454-006-1271-x

[21] Man Lung Yiu and Nikos Mamoulis. “Clustering Objects on a Spatial
Network”. In: SIGMOD Conference. ACM, 2004, pp. 443–454.

[22] Matthew J Rattigan, Marc Maier, and David Jensen. “Graph clustering
with network structure indices”. In: Proceedings of the 24th international
conference on Machine learning. ACM. 2007, pp. 783–790.

[23] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming
Li. “Geometry-based edge clustering for graph visualization”. In: IEEE
Transactions on Visualization and Computer Graphics 14.6 (2008), pp. 1277–
1284.

[24] Barbaros C Tansel, Richard L Francis, and Timothy J Lowe. “State of
the art—location on networks: a survey, Part I and II.” In: Management
Science 29.4 (1983), pp. 482–497.

[25] Ke Chen. “On coresets for k-median and k-means clustering in met-
ric and euclidean spaces and their applications”. In: SIAM Journal on
Computing 39.3 (2009), pp. 923–947.

[26] Neil Robertson and Paul D. Seymour. “Graph minors. II. Algorithmic
aspects of tree-width”. In: Journal of algorithms 7.3 (1986), pp. 309–322.

[27] Ton Kloks. Treewidth: computations and approximations. Vol. 842. Springer
Science & Business Media, 1994.

[28] Silviu Maniu, Pierre Senellart, and Suraj Jog. “An Experimental Study
of the Treewidth of Real-World Graph Data”. In: ICDT. Vol. 127. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, 12:1–12:18.

[29] Dan Feldman, Melanie Schmidt, and Christian Sohler. “Turning Big
Data Into Tiny Data: Constant-Size Coresets for k-Means, PCA, and
Projective Clustering”. In: SIAM J. Comput. 49.3 (2020), pp. 601–657.

[30] Kamal Jain, Mohammad Mahdian, and Amin Saberi. “A new greedy
approach for facility location problems”. In: STOC. ACM, 2002, pp. 731–
740.

[31] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan,
and Khoa Trinh. “An Improved Approximation for k-Median and Posi-
tive Correlation in Budgeted Optimization”. In: ACM Trans. Algorithms
13.2 (2017), 23:1–23:31.

[32] Vincent Cohen-Addad, Marcin Pilipczuk, and Michal Pilipczuk. “Effi-
cient Approximation Schemes for Uniform-Cost Clustering Problems
in Planar Graphs”. In: ESA. Vol. 144. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019, 33:1–33:14.

91

[33] Alaa Maalouf, Ibrahim Jubran, and Dan Feldman. “Fast and Accurate
Least-Mean-Squares Solvers”. In: NeurIPS. 2019, pp. 8305–8316.

[34] Pankaj K Agarwal and Cecilia Magdalena Procopiuc. “Exact and approx-
imation algorithms for clustering”. In: Algorithmica 33.2 (2002), pp. 201–
226.

[35] Sariel Har-Peled. “Clustering motion”. In: Discrete & Computational Ge-
ometry 31.4 (2004), pp. 545–565.

[36] Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, and
Xuan Wu. “Coresets for Ordered Weighted Clustering”. In: ICML. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 744–753.

[37] Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. “Fair
Coresets and Streaming Algorithms for Fair k-Means Clustering”. In:
CoRR abs/1812.10854 (2018).

[38] Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. “Core-
sets for Clustering with Fairness Constraints”. In: NeurIPS. 2019, pp. 7587–
7598.

[39] Yair Marom and Dan Feldman. “k-Means Clustering of Lines for Big
Data”. In: NeurIPS. 2019, pp. 12797–12806.

[40] Daniel N. Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C.
Jiang, Robert Krauthgamer, and Xuan Wu. “Coresets for Clustering
in Graphs of Bounded Treewidth”. In: Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020,
pp. 569–579. URL: http://proceedings.mlr.press/v119/baker20a.
html.

[41] Kamal Jain and Vijay V. Vazirani. “Approximation algorithms for metric
facility location and k-Median problems using the primal-dual schema
and Lagrangian relaxation”. In: J. ACM 48.2 (2001), pp. 274–296.

[42] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh
Munagala, and Vinayaka Pandit. “Local search heuristic for k-median
and facility location problems”. In: STOC. ACM, 2001, pp. 21–29.

[43] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.
https://www.openstreetmap.org. 2020.

92

http://proceedings.mlr.press/v119/baker20a.html
http://proceedings.mlr.press/v119/baker20a.html
 https://www.openstreetmap.org

Chapter 5

Fast and memory-efficient
scRNA-seq k-means clustering with
various distances

5.1 Context

This thesis chapter is comprised of the Minicore paper [1], published as the

proceedings of the ACM-BCB (Association for Computing Machinery - Bioin-

formatics, Computational Biology and Health Informatics) conference. The

generating process of droplet single-cell RNA-Sequencing (scRNA-seq) is not

Gaussian but something close to Poisson or Negative-Binomial models, sum-

marization methods based on Euclidean space fail to account for the nature of

the data. These models belong to the regular exponential family distributions,

for which Bregman divergences provide a notion of distance or dissimilarity

between instances.

Recent theory for clustering and coresets for regular exponential family

models provides us generalized extensions of the kmeans++ and kmeans

clustering algorithms [2, 3, 4, 5]. We then implemented fast vectorized code

93

for computing these distances for both sparse dense data, vectorized weighted

sampling implementation which we make available in libsimdsampling [6],

and provide both complete and mini-batch k-means implementations. To

avoid undefined values, we apply a nonzero pseudocount adjustment to all

fields, which corresponds to a Γ(β, β) prior on the Poisson model.

We demonstrate our method’s correctness by comparing solutions and

runtime to sci-kit learn, yielding speed-up factors in the hundreds. By working

on sparse representations directly, we cluster a 4-million cell atlas with over

60,000 features in minutes and using 11GiB of RAM.

5.2 Introduction

Single-cell RNA-sequencing (scRNA-seq) is capable of measuring transcriptome-

wide gene expression in millions of cells per experiment. With the arrival

of multi-million-cell datasets [7, 8], and larger efforts like the Human Cell

Atlas [9] on the horizon, the need for methods that rapidly analyze and cluster

(empirically group) cells is growing. This necessitates computational advances

in methods for unsupervised clustering and summarizing large collections of

cells.

k-meansis one popular clustering framework. It is classically formulated

as an expectation maximization problem that starts from an initial set of k data

points that act as “centers” [10], iterating to obtain final centers. These centers

induce a clustering of the observations into k classes. k-means++[2] improves

how the initial centers are found, yielding clear mathematical guarantees for

94

the overall clustering. Besides their direct application as clustering methods, k-

means and k-means++ are useful as individual components of other methods,

including for data quantization [10], spectral clustering [11], outlier detection

[12], machine learning [13] and construction of sketches and coresets [5, 14].

For example, in scRNA-seq analysis, sketching – the selection of a possibly

weighted subset of cells to use – can be used to identify rare cell types. The

Geometric sketching [15], Hopper [16], and submodular sketch [17] methods

all employ some form of center-finding as a subroutine.

We describe a new open source, highly efficient software library called

minicore, which implements an array of algorithms to find the “center” of

a group of cells – essentially a rough clustering – and for performing k-

meansclustering seeded by those centers. The advantages of minicoreare

threefold. First, minicoreuses a new vectorized weighted reservoir sampling

algorithm for its initial center-finding step, making it far more efficient than

competing k-means++implementations, such as scikit-learn [18] or pycluster-

ing [19]. Second, Minicoreimplements a variety of distance measures, includ-

ing the widely-used squared Euclidean distance, but also including others like

Jensen-Shannon Divergence, Kullback-Leibler Divergence, and Bhattacharyya

distance, which can be directly applied to count data or probability distribu-

tions. Third, minicoreis able to process both dense, dimensionality-reduced

data – the typical input for scRNA-seq clustering methods – as well as full,

sparse, non-reduced matrices of counts. Minicoreis unique in its ability to

handle scRNA-seq data in both sparse and dense forms, and its support for

distance measures that account for the original count-based nature of the data.

95

On real scRNA-seq datasets with up to millions of cells and using squared

Euclidean distance, minicoreis substantially faster than scikit-learn and achieves

lower objective-function cost. Further, minicorecan produce centers using a

wide variety of distance measures with only minor differences in the overall

running time, facilitating use of distance measures that are better attuned to

the count nature of the data and do not require prior transformations [20].

Finally, we show that a complete pipeline consisting of minicore’s implemen-

tations of k-means++, localsearch++ and mini-batch k-meanscan cluster a

4-million cell dataset in minutes using 20 threads and a maximum resident set

size (RAM) of less than 10 GiB.

5.3 Related work

Due to its wide applicability, several methods for accelerating k-means algo-

rithms have been introduced. These include reducing point-center compar-

isons, reducing the cost of centroid calculation, and approximation, whether

by sampling or dimensionality reduction.

For distance metrics and ρ-metrics, the triangle inequality can provide

substantial runtime improvements without altering the result [21]. Other

approaches use nearest neighbor oracles [22] or LSH tables [23] to select points

for centroids [22]. These can provide asymptotic improvements with high

probability, though they are dependent on the success of neighbor retrieval.

For ℓ2, data dimensionality can be reduced before clustering, as in Makarychev,

Makarychev and Razenshteyn [24] (2018), and applied to scRNA-seq in

SHARP [25] which works with high probability. This uses all data points

96

at each iteration, but in reduced dimensions. Alternatively, the points can be

sampled during centroid calculation, as in [26, 27], which minicoresupports.

In fact, for applications in Euclidean space, these techniques could be used

together.

However, many of the dissimilarity measures that motivate our work,

including KLD, and ISD, and JSD, do not satisfy the triangle inequality or

support fast and effective LSH querying. Also, dimension reduction transfor-

mations typically operate in Euclidean space, not capturing the count nature

of scRNA-seq data. For this reason, we prioritized accelerating distance calcu-

lations in the sparse high-dimensional setting, though advances in neighbor

retrieval may allow us to make further runtime improvements.

5.4 Results

We collected scRNA-seq datasets of varying size: (a) the PBMC dataset con-

sisting of 68,579 peripheral blood mononuclear cells (PBMC) from human [28],

(b) the Cao et al. mouse organogenesis dataset (Cao2m) consisting of 2,058,652

cells [7], and (c) the Cao et al. human fetal gene expression dataset (Cao4m)

consisting of 4,062,980 cells [29]. In all cases, the original form of the data is

a sparse matrix of gene-by-cell nonnegative integer counts. For datasets not

originally represented in compressed-sparse-row (CSR) format, we convert

them to that format prior to our experiments. Each of the three datasets has

an associated set of cell-type labels, obtained by the original authors through

an analysis that combined an initial clustering with foreknowledge of specific

marker genes [28, 7, 29]. While these label assignments are not “ground truth,”

97

they capture some biological foreknowledge and so we use them to evaluate

our final clusterings below.

While minicorecan cluster sparse counts directly, we also generated a dense

version of each of the three datasets after applying a dimensionality reduction

method. Specifically, we used the truncated Singular Value Decomposition

(SVD) from scikit-learn. Rows of the final matrix consist of the original data’s

projection into the first 500 principal components. We note that a standard

PCA has a “centering” step where the mean is subtracted from each feature.

We used a non-centered SVD since centering causes the matrix to lose its zero

entries and become dense, in turn requiring terabytes of memory for an SVD

computation over millions of cells. While non-centered SVD avoids this prob-

lem by keeping the matrix sparse, a drawback is that the resulting principal

components are selected based not just on the amount of variability but also

on the magnitudes of the values. This is addressed further in Discussion.

5.4.1 Fast and accurate center finding

We used minicorev0.3 and compared it to scikit-learn’s v0.24 function for k-

means++center finding (sklearn.cluster.kmeans_plusplus). We considered

various values for the number of centers, k. We note that scikit-learn supports

only the squared Euclidean distance measure and does not support the use of

multiple threads in parallel. For the most direct comparison, we used a single

thread and the squared Euclidean distance only. In all cases, we measured

the running time and squared-Euclidean objective cost of the resulting set of

centers. In the case of minicore, we benchmarked both the k-means++method

98

(MC), as well as the k-means++method augmented by localsearch++ (MCLS).

The scikit-learn results are labeled SKL.

0

100

200

300

25 50 75 100
k

T
im

e
in

 s
ec

on
ds

PBMC (sparse)

0

5000

10000

25 50 75 100
k

T
im

e
in

 s
ec

on
ds

Cao2m (sparse)

0

10000

20000

30000

40000

25 50 75 100
k

T
im

e
in

 s
ec

on
ds

Cao4m (sparse)

Minicore KM++ Minicore KM++LS++ Scikit−learn KM++

1

10

100

25 50 75 100
k

Lo
g1

0(
tim

e
in

 s
ec

on
ds

)

PBMC (dense)

10

100

1000

10000

25 50 75 100
k

Lo
g1

0(
tim

e
in

 s
ec

on
ds

)

Cao2m (dense)

1e+02

1e+03

1e+04

1e+05

25 50 75 100
k

Lo
g1

0(
tim

e
in

 s
ec

on
ds

)

Cao4m (dense)

Minicore KM++ Minicore KM++LS++ Scikit−learn KM++

Figure 5.1: minicorek-means++is faster than scikit-learn k-means++. Performance
evaluation (y-axis) of elapsed time (seconds) for sparse data (top) and log10 trans-
formed time for dense data (bottom) for increasing sizes of k (x-axis) for the PBMC
dataset with 68k cells (left), Cao et al. dataset with 2 million cells (middle), and Cao
et al. dataset with 4 million cells (right). Results for minicorek-means++are in red
(standard) and green (with localsearch++); scikit-learn k-means++is blue.

Using the three datasets, we found that our minicorek-means++(MC) im-

plementation is significantly faster when compared to scikit-learn k-means++(SKL)

using both sparse and dense data (Figure 5.1, Table 5.4.2). For dense input

data, the MC mode of minicorehad a dramatic speed advantage, achieving

100–150 times greater speed for the PBMC dataset compared to scikit-learn,

about 50–100 times greater for Cao2m, and about 240–280 times greater for

Cao4m. For sparse data, the MC mode of minicorewas 3–9 times faster than

99

scikit-learn depending on the experiment. Our implementation of minicorek-

means++augmented by the localsearch++ procedure (MCLS) was also always

faster than SKL, and was only about 2.5–5 times slower than the MC mode,

depending on the experiment.

Further, we found that both of our minicorek-means++implementations

(MC and MCLS) obtained comparable or lower costs of the objective function

compared to SKL (Table 5.4.2). MCLS obtained the lowest objective in nearly

all cases across the three datasets (both dense and sparse).

Overall, the results showed that minicoreproduces high-quality centers

and readily scales to multi-million cell datasets, even in their original sparse

form. For example, the MC mode used about 2h:15m (single-threaded) to find

k = 100 centers for the 4-million cell Cao4m dataset.

Similarly, minicoremakes economical use of memory even when working

directly on sparse representations. The 4-million cell dataset can be clustered

using less than 10 GiB RAM, allowing it to run on commodity hardware.

5.4.2 Support for both count data and continuous data

To evaluate minicore’s speed for distance measures beyond the commonly

used squared Euclidean distance (SQE) , we ran minicoreusing other mea-

sures, including the Bhattacharyya Metric (BAT), Kullback-Leibler Divergence

(KLD), Jensen-Shannon Divergence (JSD), and cosine distance (COS). While

these measures involve computationally demanding operations like loga-

rithms and square roots, minicoreoptimizes these inner loops using the SLEEF

library and vectorization [30]. An additional challenge is the need to handle 0

100

1.6e+08

1.8e+08

2.0e+08

25 50 75 100
k

K
−

m
ea

ns
 o

bj
ec

tiv
e

co
st

PBMC (dense)

2.5e+09

3.0e+09

3.5e+09

4.0e+09

25 50 75 100
k

K
−

m
ea

ns
 o

bj
ec

tiv
e

co
st

Cao2m (dense)

1.0e+10

1.2e+10

1.4e+10

1.6e+10

25 50 75 100
k

K
−

m
ea

ns
 o

bj
ec

tiv
e

co
st

Cao4m (dense)

Minicore KM++ Minicore KM++LS++ Scikit−learn KM++

Figure 5.2: The choice of distance has minor impact on the speed of minicorek-
means++. Performance evaluation (y-axis) of elapsed time (seconds) for sparse data
for increasing sizes of k (x-axis) for Cao et al. dataset with 2 million cells (left), and Cao
et al. dataset with 4 million cells (right). For a given dataset and k, the slowest measure
never requires more than 61% more time than is required by the fastest measure. All
experiments used 16 simultaneous threads and the localsearch++ improvement was
not run.

counts, which can result in infinite divergence for measures like the KLD. To

address this, we use a lazily applied prior that avoids having to instantiate

a dense version of the matrix at any point. See Methods for more details on

both these points.

101

Dense Sparse
Dataset k Method Time Cost Time Cost

PBMC 10 MC 0.43 2.10e+08 6.67 2.57e+08
MCLS 1.49 2.06e+08 23.92 2.52e+08
SKL 61.77 2.13e+08 24.50 2.57e+08

25 MC 1.07 1.85e+08 15.74 2.33e+08
MCLS 3.38 1.76e+08 54.53 2.24e+08
SKL 144.16 1.83e+08 59.47 2.39e+08

50 MC 2.94 1.69e+08 34.46 2.20e+08
MCLS 7.50 1.60e+08 107.64 2.17e+08
SKL 317.10 1.67e+08 146.53 2.20e+08

100 MC 4.51 1.57e+08 74.12 2.12e+08
MCLS 15.06 1.50e+08 226.45 2.03e+08
SKL 668.40 1.55e+08 299.97 2.08e+08

Cao2m 10 MC 13.47 3.80e+09 277.72 5.34e+09
MCLS 51.70 3.32e+09 970.49 5.39e+09

102

SKL 1, 389.78 4.38e+09 1, 244.76 5.81e+09

25 MC 44.35 3.12e+09 916.31 5.05e+09
MCLS 132.44 2.99e+09 3, 069.49 5.04e+09
SKL 2, 599.96 3.01e+09 3, 673.07 5.28e+09

50 MC 89.98 2.96e+09 1,240.03 5.00e+09
MCLS 267.69 2.67e+09 4, 115.19 4.95e+09
SKL 5, 241.62 2.76e+09 6, 849.92 4.96e+09

100 MC 128.20 2.61e+09 2,519.19 4.69e+09
MCLS 416.85 2.51e+09 7, 843.00 4.60e+09
SKL 9, 985.61 2.60e+09 13, 176.25 4.78e+09

Cao4m 10 MC 31.90 1.71e+10 478.84 2.60e+10
MCLS 110.01 1.68e+10 2, 158.43 2.35e+10
SKL 7, 863.25 1.74e+10 4, 350.81 2.61e+10

25 MC 71.26 1.43e+10 1,378.24 2.03e+10
MCLS 235.75 1.29e+10 6, 839.51 1.95e+10
SKL 19, 889.98 1.45e+10 10, 160.67 2.02e+10

50 MC 156.88 1.20e+10 5,229.03 1.91e+10
MCLS 482.96 1.20e+10 14, 629.39 1.77e+10
SKL 41, 450.85 1.26e+10 17, 937.88 1.86e+10

100 MC 285.76 1.09e+10 8,085.92 1.67e+10
MCLS 913.19 1.02e+10 22, 974.58 1.64e+10
SKL 79, 269.90 1.04e+10 40, 560.60 1.70e+10

Using the 2 million and 4 million Cao et al. datasets, we found that the

choice of distance metric used for minicore’s k-means++algorithm does im-

pact speed, but not dramatically (Figure 5.2). Specifically, we found that the

Bhattacharyya Metric (BAT) required less time than squared Euclidean in all

cases, whereas KLD required roughly the same amount of time as SQE, and

JSD generally required the most time. Importantly, the slowest measure (often

the JSD) never requires more than 61% more computation time than the fastest

measure.

103

5.4.3 k-means and mini-batch k-means clustering algorithms

The minicorelibrary also supports both full k-meansclustering using Lloyd’s

algorithm [31], and the faster mini-batch k-meansalgorithm [27, 4]. We sought

to measure the efficiency and accuracy of a full k-meansclustering pipeline

built from the k-means++, localsearch++, and mini-batch k-meanscomponents

of the minicorelibrary. We chose mini-batch k-meansrather than Lloyd’s

algorithm because the mini-batch approach has recently been shown to be

significantly faster for large datasets and provides similar results [4]. In all

cases, we used k = 25, a mini-batch k-meansbatch size of 10,000, 25 rounds of

localsearch++, and a prior of 0.01

We again analyzed the PBMC, Cao2m and Cao4m datasets. We evalu-

ated the clusterings using the cell-type labels provided by the authors of the

datasets [28, 7, 29]. Specifically, we used our k-meansclusters as empirical

cell labels, using the Adjusted Rand Index (ARI) to compare these to the

provided labels. Notably, the provided labels are not “ground truth,” but

were derived using a combination of K-nearest-neighbor graph clustering

and marker gene analysis. While the ARIs we measured were generally low

(sometimes negative), we caution against over-interpreting these values since

the given labeling is only somewhat biologically meaningful.

While we began with the full sparse matrix, we subsampled the rows to

consist of the 500 most variable genes [32], as this often achieved greater Ad-

justed Rand Index compared to analyzing the entire matrix. We tried several

distance measures: Bhattacharyya Metric (BATMET), Jensen-Shannon Diver-

gence (JSD), the Kullback-Leibler Divergence (KLD), and Squared Euclidean

104

Distance (SQE). We ran minicoreusing 20 simultaneous threads.

We found that minicorewas able to cluster the cells in all three datasets in

minutes, with the slowest experiment taking about 12 minutes (Figure 5.3).

For the Cao2m and Cao4m datasets, timings were in the range of 325–365

seconds and 200–700 seconds respectively.

pbmc cao2m cao4m

17.25 17.50 17.75 330 340 350 360 200 300 400 500 600 700

0.0

0.1

0.2

0.3

Time in seconds

A
dj

us
te

d
R

an
d

In
de

x

Bhattacharyya Metric

Jensen−Shannon Divergence

Kullback−Leibler Divergence

Squared Euclidean

Figure 5.3: Clustering accuracy (ARI, vertical) versus running time (seconds, hori-
zontal) for various datasets and distance measures. All experiments used the 500
most variable genes, k = 25, a mini-batch k-meansbatch size of 10,000, 25 rounds of
localsearch++, and a prior of 0.01.

For both Cao2m and Cao4m, the Bhattacharyya Metric (BATMET) was

superior to the Kullback-Leibler Divergence (KLD) and Squared Euclidean

distance (SQE), achieving both greater speed and a higher Adjusted Rand

Index for its final clustering. In the case of Cao2m, the JSD was superior to

BATMET on both speed and ARI, but this relationship is reversed for the

Cao4m dataset.

We measured minicore’s peak memory footprint (resident set size) when

processing the Cao4m dataset and found that it was less than 10GiB RAM.

In short, we found that minicorewas capable of analyzing a 4-million cell

105

dataset in a few minutes using computational resources consistent with a

typical commodity laptop.

5.5 Discussion

We introduced a new library called minicorefor k-meansclustering of scRNA-

seq datasets. An efficient, vectorized sampling kernel fuels both its k-means++center

finding algorithm and its localsearch++ algorithm for refining centers. Com-

bined with an efficient mini-batch k-meansimplementation, these components

form a complete and efficient pipeline for k-meansclustering of scRNA-seq

data, requiring about 3.5 minutes to cluster a >4 million cell dataset when

using 20 threads and less than 10GiB RAM. This low memory requirement

brings even atlas-scale clustering within reach of laptops and other commod-

ity hardware. While we applied minicoreto scRNA-seq here, its algorithms

are readily adaptable to other applications, for instance in data quantization,

outlier detection and spectral clustering [10, 11, 12].

5.5.1 Applications

Minicore’s fast implementations of various distance measures, gives users

the flexibility to tailor the distance measure to the data. Different measures

might be appropriate depending on whether cells are best viewed as vectors of

real numbers, vectors of counts, or probability distributions. We showed that

distance measures other than squared Euclidean can perform substantially

better when evaluated using given cell type labels. In future work, we plan

to explore how minicorecan be applied beyond to work, for example, with

106

graph-induced metrics [33].

Another likely application of the algorithms in minicoreis to build “sketches”

of large single-cell data compendia. A sketch is a weighted subset of cells

that effectively span the gene-expression space and – like centers – facilitate

the identification of accurate predicted cluster labels downstream. Sketching

approaches have been applied to the problem of obtaining cluster labels that

accurately capture empirical groupings of rare cell types [16, 15, 34].

Finally, we further seek to explore whether our optimized weighted sam-

pling kernel may also be applicable in the mini-batch k-meansalgorithm,

specifically for the importance sampling required to drive the gradient-descent

version of mini-batch k-means[26, 35].

In some experiments described here, we used a non-centered version of

the truncated Singular Value Decomposition (SVD) to project datasets into

their first 500 principal components. We avoided the mean centering in order

to keep the data sparse in preparation for the SVD. This has the drawback that

the truncated SVD was selecting components based not only on variability,

but also on the magnitudes of the points. In the future, we would like to

address this by implementing or otherwise integrating a sparse version of a

centered SVD computation into minicore. This could become an optional first

step allowing users to create smaller, dense representations.

107

5.6 Methods

5.6.1 k-means++ algorithms

k-meansgives an efficient way to choose an initial set of centers in preparation

for the more work-intensive k-meansoptimization procedure. Unlike the sim-

ple strategy of choosing centers uniformly at random, k-means++guarantees

that the objective achieved by the downstream k-meansprocedure will be

within a multiplicative O(log k) factor of the optimal cost objective.

The k-means++algorithm involves choosing one center per step across k

steps. In the first step, a center is chosen from among the data points uniformly

at random. In subsequent steps, a new center is chosen in a weighted random

fashion, with the probability of selecting a given point being proportional to

its cost, specifically the distance to the nearest already-selected center. The

algorithm therefore is a weighted sampling procedure. We now describe in

detail, as similar sampling procedures form the core of multiple components

of minicore.

5.6.1.1 Sampling kernel

In a given step of k-means++, a simple sampling strategy would be to cal-

culate the cost of each as-yet-unchosen data point (potential “center” gene)

then draw a random variate from a multinomial distribution weighted by

those costs. Computationally, this can be accomplished in four steps: first,

calculate a cost for each point, next calculate a prefix sum over the array of

all costs, next generate a uniform random variate in [0, C] where C is the total

cost, then perform binary search over the prefix-sum array to identify the

108

point corresponding to the random variate. While binary search is fast, the

costs, and therefore the prefix sum, must be at least partially re-computed

in each of the k steps. Further, the prefix sum computation has an inherent

dependence structure that inhibits parallelization, though O(n log n)-time

parallel solutions exist.

Minicoreinstead uses a parallelized reservoir-sampling approach that ex-

tends an algorithm by Hübschle-Schneider & Sanders [36]. That algorithm

uses the fact that weighted sampling without replacement is equivalent to gen-

erating an exponential random variate for each data point, then selecting the

point(s) with minimal variates. Importantly, variates can be drawn in parallel

batches using single instruction multiple data (SIMD) instructions, providing

instruction-level parallelism. Specifically, we use the SIMD-accelerated Poly-

nomial Congruential Generator (PCG) SIMDPCG [37, 38]. Because variates are

drawn independently for each point, minicorecan additionally use multiple

simultaneous threads to generate variates in parallel across processors.

While drawing the random variates involves a computationally expen-

sive logarithm, we used the SLEEF library to compute batches of logarithms

accurately and in parallel using SIMD instructions. As described in [36], expo-

nential random variates can be sampled equivalently either by generating a

random value v ∼ U(0, 1) and exponentiating by the inverse of the weight

v
1
w , or, equivalently logging and dividing by the weight − ln v

w , which is more

numerically stable. We found this numerically stable alternative to be about 3

times as fast as exponentiating.

It is common for k-means++implementations to select more than one

109

potential new center in a single step, ultimately choosing the center that yields

the lowest overall cost. Our parallel implementation accomplishes this using

a per-thread heap data structure. SIMD instructions are used to determine

which from among the random variates in a chunk are small enough to be

added to the heap. If any are small enough, a serial loop extracts the variates

and adds them. As a thread proceeds along the array of variates, heap updates

become rarer, allowing the vast majority of the computation to remain SIMD

parallelized. Finally, the samples in the per-thread heaps are combined to

obtain an overall sample.

We can eliminate a significant number of branches in building the heap

using Population Counts (popcount) and Count Trailing Zeros (CTZ) instruc-

tions. For each vector of new candidate variates, we compare it to the broad-

casted ceiling, convert to a bitmask, and popcount, and switch on the value

of the popcount, performing the heap update once per nonzero in the bit-

mask. We access the “current” bit by counting trailing zeros and indexing the

relevant variate.

This sampling kernel is a core feature of our library, accessible with C and

C++ APIs in the free and MIT-licensed [6] library. While we described the

sampling approach in the context of k-means++, it also forms the core of the

localsearch++ algorithm described below.

5.6.1.2 localsearch++.

Lattanzi and Sohler suggested an augmentation of k-means++that adds sam-

pling with local search heuristics [39]. At each iteration in localsearch++, the

110

Name Abbreviation Formula

Squared Euclidean SQE ∑i(Xi −Yi)
2

Kullbeck-Liebler Divergence KLD ∑i X̂i × log X̂i
Ŷi

Jensen-Shannon Divergence JSD 1
2 × (KLD(X, X+Y

2) + KLD(Y, X+Y
2))

Bhattacharyya Metric BATMET
√︁

1−
√

X ·
√

Y

Table 5.2: Formulas for distance measures implemented in minicore. Let Xi, Yi
denote the ith observation (gene) for cells X and Y. Let X̂i and Ŷi denote the scaled
(normalized by total cell-wide count) version of this entry. These all belong to the class
of Bregman divergences, except the JSD which is a convex combination of Bregman
divergences.

center whose removal increases the objective the least is removed, and a new

point is sampled in proportion to its cost. We re-use the previous sampling

kernel to implement the weighted sampling required by this approach. To our

knowledge, this is the first application of localsearch++ to distance measures

beyond squared Euclidean distance.

5.6.2 Distances, and sparsity in minicore

While k-means++is most commonly implemented using squared Euclidean

distance, it has also been shown that the k-means++procedure yields aO(log k)-

approximate solution in expectation when using other distance measures and

divergences [3]. Specifically, this applies to the class known as Bregman di-

vergences. This class includes relevant measures such as Kullback-Leibler Di-

vergence (KLD), Squared Euclidean distance (SQE), Itakura-Saito divergence.

Other relevant distances are convex combinations of these (Jensen-Shannon

Divergence) and . Given this fact, we decided to implement the four distance

measures detailed in Table 5.2.

111

An important concern when implementing these other measures is how

they handle 0 values in the data matrix. KL Divergences can be infinite for zero-

valued entries, and other measures can have issues with numerical stability in

these cases. This can be addressed by the use of a “prior” [40] of a Gamma(β, β)

distribution, with a value β > 0. The a posteriori estimates are then Ni +

β, ensuring no 0-valued entries. These are effectively “pseudo-counts,” a

common way to adjust scRNA-seq data. Selecting β = 1 corresponds to

a Dirichlet prior, while smaller values will penalize missing or low-count

observations, and larger values will move points closer together for probability

distribution-based distances.

This in turn creates another concern: a matrix adjusted by the prior will

have no zero-valued entries, essentially becoming a dense matrix. This greatly

increases the space and time required, making these distances impractical for

large datasets. We instead compute distances with a lazy prior adjustment

for all features, accounting for the zero-count features in aggregate. This is

particularly advantageous for sparse matrices with a small number of nonzero

values (nnz). In particular, we can perform distance computations in O(nnz)

space and time rather than O(d), where d is the number of features. The

general pseudocode for our distance computations is in Algorithm 1 3. For

perspective, the 4-million cell dataset with 63,561 columns would require

960GiB of memory, nearly 100 times the 9.8GiB of the Compressed-Sparse

Row (“CSR”) representation when using 16-bit indices and data fields. In this

way, minicorecan cluster atlas-scale datasets in reasonable working memory,

operating directly on the sparse data.

112

5.6.3 Other optimizations

While minicorecan cluster datasets in a fraction of the space the dense in-

stantiation would require, it can scale even further while managing memory

requirements through the use of memory-mapping. This can be done in

Python by loading the input data from disk via numpy.memmap instead of

numpy.fromfile, applied either to the original matrix (in the case of dense data)

or on the “data”, “indices”, and “indptr” arrays (in the case of CSR arrays).

Because these arrays are often traversed in predictable fashion, typically

sequential, we can off-load to disk, running transparently on datasets which

significantly exceed machine RAM even in compressed form.

We also use memory-mapping by default in localsearch++, as an array

of size (k, npoints) may exceed available memory, and its sequential access

patterns are convenient for memory-mapped data.

5.7 Acknowledgments

We thank Daniel Lemire and Wenzel Jakob for their fast SIMD Polynomial

Congruential Generator Pseudorandom Number Generators.

Part of this research project was conducted using computational resources

at the Maryland Advanced Research Computing Center (MARCC).

113

Algorithm 3: Generic Algorithm for Sparsity-Preserving distance
computations given a prior adjustment β

Result: Distance under prior β
Given: X = (Vx, Ix, Nx)
Y = (Vy, Iy, Ny),
d = dimensionality of data,
and β > 0;
X and Y are in triple notation, where (Vj, Ij, Nj) represents a

compressed-sparse vector’s “data”, “indices”, and “length” fields.
Nnsnz: number of shared non-zero fields in the merged pair of vectors
xi and yi are indexing variables into left and right sparse vectors
xi ← 0, yi ← 0
Bx and By = empty buffers;
Nnsnz = 0 Number of nonzeros in the merged vector
while xi < Nx or yi < Ny do

if xi < yi then
append(Bx, (Vxi

x + β));
append(By, (β));
Nnsnz ← Nnsnz + 1
xi ← xi + 1;

end
else if yi < xi then

append(Bx, (β));
append(By, (Vyi

y + β));
Nnsnz ← Nnsnz + 1
yi ← yi + 1;

end
else

append(Bx, (Vxi
x + β));

append(By, (yxi
i + β));

Nnsnz ← Nnsnz + 1
xi ← xi + 1; yi ← yi + 1;

end
end
return (d− Nnsnz)× distance(0, 0) + ∑x,y∈(Bx,By) distance(x, y)

114

References

[1] D. N. Baker, N. Dyjack, V. Braverman, S. C. Hicks, and B. Langmead.
“k-means clustering with various distances”. In: ACM BCB 2021 (2021).

[2] David Arthur and Sergei Vassilvitskii. “K-Means++: The Advantages of
Careful Seeding”. In: SODA. SODA ’07 (2007), 1027–1035.

[3] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep
Ghosh. “Clustering with Bregman Divergences”. In: Journal of Machine
Learning Research 6.58 (2005), pp. 1705–1749. URL: http://jmlr.org/
papers/v6/banerjee05b.html.

[4] Stephanie C. Hicks, Ruoxi Liu, Yuwei Ni, Elizabeth Purdom, and Davide
Risso. “mbkmeans: Fast clustering for single cell data using mini-batch
k-means”. In: PLOS Computational Biology 17.1 (2021), pp. 1–18. DOI:
10.1371/journal.pcbi.1008625. URL: https://doi.org/10.1371/
journal.pcbi.1008625.

[5] Mario Lucic, Olivier Bachem, and Andreas Krause. “Strong Coresets for
Hard and Soft Bregman Clustering with Applications to Exponential
Family Mixtures”. In: CoRR (2016). arXiv: 1508.05243 [stat.ML].

[6] Daniel Baker. libsimdsampling. http://github.com/dnbaker/libsimdsampling.
2008.

[7] J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F.
Zhang, S. Mundlos, L. Christiansen, F. J. Steemers, C. Trapnell, and
J. Shendure. “The single-cell transcriptional landscape of mammalian
organogenesis”. In: Nature 566.7745 (2019), pp. 496–502.

[8] Paul Datlinger, André F Rendeiro, Thorina Boenke, Thomas Kraus-
gruber, Daniele Barreca, and Christoph Bock. “Ultra-high through-
put single-cell RNA sequencing by combinatorial fluidic indexing”.
In: bioRxiv (2019). DOI: 10.1101/2019.12.17.879304. eprint: https:
//www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.

115

http://jmlr.org/papers/v6/banerjee05b.html
http://jmlr.org/papers/v6/banerjee05b.html
https://doi.org/10.1371/journal.pcbi.1008625
https://doi.org/10.1371/journal.pcbi.1008625
https://doi.org/10.1371/journal.pcbi.1008625
https://arxiv.org/abs/1508.05243
http://github.com/dnbaker/libsimdsampling
https://doi.org/10.1101/2019.12.17.879304
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf

full.pdf. URL: https://www.biorxiv.org/content/early/2019/12/
18/2019.12.17.879304.

[9] O. Rozenblatt-Rosen, M. J. T. Stubbington, A. Regev, and S. A. Te-
ichmann. “The Human Cell Atlas: from vision to reality”. In: Nature
550.7677 (2017), pp. 451–453.

[10] Stuart P. Lloyd. “Least squares quantization in pcm”. In: IEEE Transac-
tions on Information Theory 28 (1982), pp. 129–137.

[11] Xinlei Chen and Deng Cai. “Large Scale Spectral Clustering with Landmark-
Based Representation”. In: Proceedings of the Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence. AAAI’11. San Francisco, California: AAAI
Press, 2011, 313–318.

[12] Yuanyuan Wei, Julian Jang-Jaccard, Fariza Sabrina, and Timothy R.
McIntosh. “MSD-Kmeans: A Novel Algorithm for Efficient Detection
of Global and Local Outliers”. In: CoRR abs/1910.06588 (2019). arXiv:
1910.06588. URL: http://arxiv.org/abs/1910.06588.

[13] Euijoon Ahn, Ashnil Kumar, Dagan Feng, Michael J. Fulham, and Jin-
man Kim. “Unsupervised Feature Learning with K-means and An En-
semble of Deep Convolutional Neural Networks for Medical Image
Classification”. In: CoRR, arXiv:1906.03359 (2019). arXiv: 1906.03359.

[14] Dan Feldman and Michael Langberg. “A Unified Framework for Ap-
proximating and Clustering Data”. In: CoRR abs/1106.1379 (2011). arXiv:
1106.1379. URL: http://arxiv.org/abs/1106.1379.

[15] B. Hie, H. Cho, B. DeMeo, B. Bryson, and B. Berger. “Geometric Sketch-
ing Compactly Summarizes the Single-Cell Transcriptomic Landscape”.
In: Cell Syst 8.6 (2019), pp. 483–493.

[16] B. DeMeo and B. Berger. “Hopper: a mathematically optimal algorithm
for sketching biological data”. In: Bioinformatics 36 (2020), pp. i236–i241.

[17] Wei Yang, Jeffrey Bilmes, and William Stafford Noble. “Submodular
Sketches of Single-Cell RNA-Seq Measurements”. In: Proceedings of the
11th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics. BCB ’20. Virtual Event, USA: Association for
Computing Machinery, 2020. DOI: 10.1145/3388440.3412409. URL:
https://doi.org/10.1145/3388440.3412409.

116

https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304
https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304
https://arxiv.org/abs/1910.06588
http://arxiv.org/abs/1910.06588
https://arxiv.org/abs/1906.03359
https://arxiv.org/abs/1106.1379
http://arxiv.org/abs/1106.1379
https://doi.org/10.1145/3388440.3412409
https://doi.org/10.1145/3388440.3412409

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-
learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[19] Andrei Novikov. “PyClustering: Data Mining Library”. In: Journal of
Open Source Software 4.36 (2019), p. 1230. DOI: 10.21105/joss.01230.
URL: https://doi.org/10.21105/joss.01230.

[20] F. W. Townes, S. C. Hicks, M. J. Aryee, and R. A. Irizarry. “Feature
selection and dimension reduction for single-cell RNA-Seq based on a
multinomial model”. In: Genome Biol 20.1 (2019), p. 295.

[21] Charles Elkan. “Using the Triangle Inequality to Accelerate K-Means”.
In: Proceedings of the Twentieth International Conference on International
Conference on Machine Learning. ICML’03. Washington, DC, USA: AAAI
Press, 2003, 147–153. ISBN: 1577351894.

[22] Andrei Broder, Lluis Garcia-Pueyo, Vanja Josifovski, Sergei Vassilvitskii,
and Srihari Venkatesan. “Scalable K-Means by Ranked Retrieval”. In:
Proceedings of the 7th ACM International Conference on Web Search and
Data Mining. WSDM ’14. New York, New York, USA: Association for
Computing Machinery, 2014, 233–242. ISBN: 9781450323512. DOI: 10.
1145/2556195.2556260. URL: https://doi.org/10.1145/2556195.
2556260.

[23] Qiuhong Li, Peng Wang, Wei Wang, Hao Hu, Zhongsheng Li, and Junx-
ian Li. “An Efficient K-means Clustering Algorithm on MapReduce”. In:
Database Systems for Advanced Applications. Ed. by Sourav S. Bhowmick,
Curtis E. Dyreson, Christian S. Jensen, Mong Li Lee, Agus Muliantara,
and Bernhard Thalheim. Cham: Springer International Publishing, 2014,
pp. 357–371. ISBN: 978-3-319-05810-8.

[24] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn.
“Performance of Johnson-Lindenstrauss Transform for k-Means and
k-Medians Clustering”. In: CoRR abs/1811.03195 (2018). arXiv: 1811.
03195. URL: http://arxiv.org/abs/1811.03195.

[25] Shibiao Wan, Junil Kim, and Kyoung Jae Won. “SHARP: hyper-fast and
accurate processing of single-cell RNA-seq data via ensemble random
projection”. In: Genome Research (2020). DOI: 10.1101/gr.254557.119.
eprint: http://genome.cshlp.org/content/early/2020/01/28/

117

https://doi.org/10.21105/joss.01230
https://doi.org/10.21105/joss.01230
https://doi.org/10.1145/2556195.2556260
https://doi.org/10.1145/2556195.2556260
https://doi.org/10.1145/2556195.2556260
https://doi.org/10.1145/2556195.2556260
https://arxiv.org/abs/1811.03195
https://arxiv.org/abs/1811.03195
http://arxiv.org/abs/1811.03195
https://doi.org/10.1101/gr.254557.119
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html

gr.254557.119.full.pdf+html. URL: http://genome.cshlp.org/
content/early/2020/01/28/gr.254557.119.abstract.

[26] Leon Bottou and Yoshua Bengio. “Convergence properties of the k-
means algorithms”. In: Advances in neural information processing systems.
1995, pp. 585–592.

[27] D. Sculley. “Web-Scale k-Means Clustering”. In: Proceedings of the 19th
International Conference on World Wide Web. WWW ’10. Raleigh, North
Carolina, USA: Association for Computing Machinery, 2010, 1177–1178.
ISBN: 9781605587998. DOI: 10 . 1145 / 1772690 . 1772862. URL: https :
//doi.org/10.1145/1772690.1772862.

[28] G. X. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson,
S. B. Ziraldo, T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory,
J. Shuga, L. Montesclaros, J. G. Underwood, D. A. Masquelier, S. Y.
Nishimura, M. Schnall-Levin, P. W. Wyatt, C. M. Hindson, R. Bharadwaj,
A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland, K. R. Loeb,
W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen,
B. J. Hindson, and J. H. Bielas. “Massively parallel digital transcriptional
profiling of single cells”. In: Nat Commun 8 (2017), p. 14049.

[29] J. Cao, D. R. O’Day, H. A. Pliner, P. D. Kingsley, M. Deng, R. M. Daza, M.
A. Zager, K. A. Aldinger, R. Blecher-Gonen, F. Zhang, M. Spielmann, J.
Palis, D. Doherty, F. J. Steemers, I. A. Glass, C. Trapnell, and J. Shendure.
“A human cell atlas of fetal gene expression”. In: Science 370.6518 (2020).

[30] Naoki Shibata and Francesco Petrogalli. “SLEEF: A Portable Vectorized
Library of C Standard Mathematical Functions”. In: IEEE Transactions on
Parallel and Distributed Systems 31.6 (2020), 1316–1327. ISSN: 2161-9883.
DOI: 10.1109/tpds.2019.2960333. URL: http://dx.doi.org/10.1109/
TPDS.2019.2960333.

[31] Stuart P. Lloyd. “Least squares quantization in PCM”. In: IEEE Trans.
Information Theory 28 (1982), pp. 129–136.

[32] P. Brennecke, S. Anders, J. K. Kim, A. A. Kołodziejczyk, X. Zhang, V.
Proserpio, B. Baying, V. Benes, S. A. Teichmann, J. C. Marioni, and
M. G. Heisler. “Accounting for technical noise in single-cell RNA-seq
experiments”. In: Nat Methods 10.11 (2013), pp. 1093–1095.

[33] Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. “Distributed
k-means and k-median Clustering on General Topologies”. In: Advances
in Neural Information Processing Systems 26 (2013), pp. 1995–2003.

118

http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.abstract
http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.abstract
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1109/tpds.2019.2960333
http://dx.doi.org/10.1109/TPDS.2019.2960333
http://dx.doi.org/10.1109/TPDS.2019.2960333

[34] Wei Yang, Jacob Schreiber, Jeffrey Bilmes, and William Stafford No-
ble. “Submodular sketches of single-cell RNA-seq measurements”. In:
bioRxiv (2020). DOI: 10.1101/2020.05.01.066738. eprint: https://www.
biorxiv.org/content/early/2020/05/07/2020.05.01.066738.full.
pdf. URL: https://www.biorxiv.org/content/early/2020/05/07/
2020.05.01.066738.

[35] Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic Gradient
Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm. 2015.
arXiv: 1310.5715 [math.NA].

[36] Lorenz Hübschle-Schneider and Peter Sanders. “Communication-Efficient
(Weighted) Reservoir Sampling from Fully Distributed Data Streams”.
In: CoRR (2020). arXiv: 1910.11069 [cs.DS].

[37] Daniel Lemire. SIMDPCG. https://lemire.me/blog/2018/06/07/
vectorizing-random-number-generators-for-greater-speed-pcg-
and-xorshift128-avx-512-edition/. 2016-2018.

[38] Wenzel Jakob Daniel Lemire. SIMDPCG. https://github.com/lemire/
simdpcg. 2013.

[39] Silvio Lattanzi and Christian Sohler. “A Better k-means++ Algorithm
via Local Search”. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdi-
nov. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019,
pp. 3662–3671. URL: http://proceedings.mlr.press/v97/lattanzi19a.
html.

[40] Daniela M. Witten. “Classification and clustering of sequencing data
using a Poisson model”. In: The Annals of Applied Statistics 5.4 (2011),
2493–2518. ISSN: 1932-6157. DOI: 10 . 1214 / 11 - aoas493. URL: http :
//dx.doi.org/10.1214/11-AOAS493.

119

https://doi.org/10.1101/2020.05.01.066738
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738.full.pdf
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738.full.pdf
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738.full.pdf
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738
https://www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738
https://arxiv.org/abs/1310.5715
https://arxiv.org/abs/1910.11069
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
https://github.com/lemire/simdpcg
https://github.com/lemire/simdpcg
http://proceedings.mlr.press/v97/lattanzi19a.html
http://proceedings.mlr.press/v97/lattanzi19a.html
https://doi.org/10.1214/11-aoas493
http://dx.doi.org/10.1214/11-AOAS493
http://dx.doi.org/10.1214/11-AOAS493

Chapter 6

Discussion and Conclusion

In this thesis, we have leveraged randomness, exploited sparsity, inverted

indexes, and hardware improvements to provide practical, efficient tools

capable of scaling to both enormous datasets and large collections thereof.

We used Sketching and MinHash to practically analyze large genomes,

and we applied coresets to large collections, from sparse single-cell expression

data to real-world road networks and facility location problems.

In the future, we see both many possible applications and extensions of

these methods.

6.1 Applications

6.1.1 Farther downstream

In our method, we primarily use the MinHash sketches as the final structure

being compared. Many applications, however, use sketching to pre-filter

candidates for more exhaustive analysis. For example, Dashing2 uses an LSH

table to generate candidates with either OrderMinHash or k-mer set minhash,

120

and can be instructed to emit near neighbors as evaluted by edit distance.

This could be easily extended to dynamic programming, multiple sequence

alignment, or genome mapping after reference selection.

6.1.2 Sequence MinHash Applications

We see sequence similarity search via edit distance LSH as a primary future

application. For instance, when grouping protein sequences or small ribo-

somal subunit sequences, an the edit distance LSH is more specific than a

k-mer MinHash LSH. We could use dynamic programming alignment as the

final step instead of edit distance. If we had more specific LSH functions

for dynamic programming alignment (compared to edit distance), this could

perform even better.

These techniques may be applicable to improving seeding for sequence

aligners. These could be inserted into graph minimizer indexes (in place of

graph k-mers), or involve weighting of minimizers for linear genomes such as

WinnowMap.

Lastly, these could also serve as part of bait design and sequence subset

selection techniques. For computational biology applications, often one must

design bait sequences for molecular assays, to which only sequences close to

the complement of the bait will bind. Using either edit distance LSH (for select-

ing subsets of sequences) or k-mer set LSH, we could very quickly select a set

of non-redundant sequences to include. An orthogonal approach would be to

generate set of sampled minimizers from a collection of sequences. For either

of these approaches, minimizer weighting schemes related to WinnowMap

121

might yield practical improvements. For instance, entropy-weighted minimiz-

ers might generate more easily-detected sequence minimizers in long-read

technology.

6.2 Method Improvements

6.2.1 MinHash Improvements

The next steps to push forward Locality-Sensitive Hashing applications lies

in moving the sampling further into the problem at hand. Winnowmap [1]

provides a useful example. They weight k-mers by their occurrence count,

so as the more often select rarer k-mers for seeding. In Dashing2, we pro-

vide an entropy-weighted option for selection, which tends to select higher-

information items.

The edit distance LSH [2] is particularly important. For many downstream

applications, k-mers which match have different affinities. For dynamic pro-

gramming alignment, certain pairs of residues give higher or lower scores.

A family of LSH functions for dynamic programming alignment would be a

crucial next step. We suspect that weighting OrderMinHash keys according

to the match score given a specific scoring matrix could yield such a method.

6.2.2 LSH Table Improvements

While our LSH tables built on hash tables are very efficient and work correctly,

they do require a substantial amount of memory, and the randomized nature

of hash table probing causes many cache misses. We suspect that building on

the storage and query formats that [3] uses would improve speed, especially

122

for bulk lookups. This also would give us the flexibility to not choose a-priori

the exact number of registers we wish to match at a time.

Additionally, we investigated LSH tables for the generalized Jensen-Shannon

divergence [4], but found that naive tables did not significantly improve

lookups. We suspect that this may be related to the simplicity of our method.

If more flexible trie-based matching is implemented and more candidates

are considered, we suspect that we could build effective tables for nearest

neighbors over this distance.

6.2.3 Count Vector Sketching

For our work with sketching streaming read sets, we used feature hashing to

limit the memory requirements of the streaming inputs.

We could incorporate improvements in some randomized structures; we

could take generalizations or improvements of the Count-Min sketch, such as

the weighted median sketch [5] and counting quotient filter [6], respectively.

Approximate-counting variants [7] can be used to reduce storage, and bulk

updates can amortize memory page requests.

Alternatively, we could modify the counting structure so as to prioritize

counts of certain relative magnitudes. We could use the Count-Sketch, which

would prioritize preserving the quantities of heavy-hitting algorithms, at

the expense of lower-count items. The Heavy Keeper sketch [8] prioritizes

tracking the highest-magnitude options. While its worst-case behavior has no

guarantees, it might be good for applications with large streams with few but

large heavy hitters.

123

6.2.4 Bitwise Interleaving

Further performance improvements could be gained by interleaving bits

between signatures. This is the technique used in BinDash which allowed it

to sometimes surpass Dashing2’s comparison speed.

This interleaving process allows comparison computation to stop once

all bits in all signatures have diverged. This algorithm, for comparing b-

bit signatures for equality, could be extended to greater than and less than

calculations. We will leave this step to future work, as Dashing2 is still very

efficient.

124

References

[1] C. Jain, A. Rhie, H. Zhang, C. Chu, B. P. Walenz, S. Koren, and A. M.
Phillippy. “Weighted minimizer sampling improves long read map-
ping”. In: Bioinformatics 36.Suppl_1 (2020), pp. i111–i118.

[2] G. Marçais, D. DeBlasio, P. Pandey, and C. Kingsford. “Locality-sensitive
hashing for the edit distance”. In: Bioinformatics 35.14 (2019), pp. i127–
i135.

[3] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli.
“PUFFINN: Parameterless and Universally Fast FInding of Nearest
Neighbors”. In: CoRR abs/1906.12211 (2019). arXiv: 1906.12211. URL:
http://arxiv.org/abs/1906.12211.

[4] Lin Chen, Hossein Esfandiari, Thomas Fu, and Vahab S. Mirrokni.
Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and
Beyond. 2019. arXiv: 1910.12414 [cs.LG].

[5] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. “Finding
Heavily-Weighted Features in Data Streams.” In: CoRR abs/1711.02305
(2017). URL: http://arxiv.org/abs/1711.02305.

[6] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. “A
General-Purpose Counting Filter: Making Every Bit Count”. In: Proceed-
ings of the 2017 ACM International Conference on Management of Data. SIG-
MOD ’17. Chicago, Illinois, USA: Association for Computing Machinery,
2017, 775–787. ISBN: 9781450341974. DOI: 10.1145/3035918.3035963.
URL: https://doi.org/10.1145/3035918.3035963.

[7] Jelani Nelson and Huacheng Yu. “Optimal bounds for approximate
counting”. In: CoRR abs/2010.02116 (2020). arXiv: 2010.02116. URL:
https://arxiv.org/abs/2010.02116.

125

https://arxiv.org/abs/1906.12211
http://arxiv.org/abs/1906.12211
https://arxiv.org/abs/1910.12414
http://arxiv.org/abs/1711.02305
https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1145/3035918.3035963
https://arxiv.org/abs/2010.02116
https://arxiv.org/abs/2010.02116

[8] Junzhi Gong, Tong Yang, Haowei Zhang, Hao Li, Steve Uhlig, Shi-
gang Chen, Lorna Uden, and Xiaoming Li. “HeavyKeeper: An Accu-
rate Algorithm for Finding Top-k Elephant Flows”. In: 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX
Association, 2018, pp. 909–921. ISBN: 978-1-939133-01-4. URL: https:
//www.usenix.org/conference/atc18/presentation/gong.

126

https://www.usenix.org/conference/atc18/presentation/gong
https://www.usenix.org/conference/atc18/presentation/gong

	Abstract
	Thesis Committee
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Sketching
	Linear Sketching
	Count-Min
	Count Sketch
	p-stable sketching & JL Transform

	MinHash & HyperLogLog
	MinHash Applications

	Coresets
	Coresets for Single-cell Applications

	Dashing: Fast and Accurate Genomic Distances using HyperLogLog
	Context
	Background
	Results
	Design
	Accuracy for complete genomes
	Computational efficiency
	Thread scaling

	Discussion
	Methods
	HyperLogLog
	Estimation methods
	Optimizing speed
	Sketching sequencing data
	Hash function

	Availability of Data and Materials

	Dashing 2: fast and flexible sketching with multiplicities and Locality-Sensitive Hashing filtering
	Context
	Abstract
	Background
	Results
	Sketching Improvements
	Use of SetSketch
	Use of locality-sensitive hashing
	Practical implementation
	Rare Event Filtering

	Scaling to millions: Sparse Similarity and Applications
	Other Improvements: Exact mode, minimizers, & Alphabets
	Iteration Order
	Memory Management
	Input Data Types

	Sketch accuracy
	Performance: All-Pairs
	All-pairs comparisons using LSH

	Methods
	Sketching sequencing data

	Discussion
	Future Improvements

	Coresets for Clustering in Graphs of Bounded Treewidth
	Context
	Abstract
	Introduction
	Coresets for k-Clustering
	Clustering in Graph Metrics

	Results
	Experiments
	Related Work

	Coresets for k-Median in Graph Metrics
	Referral

	Experiments
	Optimized Implementation
	Experimental Setup
	Performance of Coresets
	Results

	Speedup of Local Search

	Fast and memory-efficient scRNA-seq k-means clustering with various distances
	Context
	Introduction
	Related work
	Results
	Fast and accurate center finding
	Support for both count data and continuous data
	k-means and mini-batch k-means clustering algorithms

	Discussion
	Applications

	Methods
	k-means++ algorithms
	Sampling kernel
	localsearch++.

	Distances, and sparsity in minicore
	Other optimizations

	Acknowledgments

	Discussion and Conclusion
	Applications
	Farther downstream
	Sequence MinHash Applications

	Method Improvements
	MinHash Improvements
	LSH Table Improvements
	Count Vector Sketching
	Bitwise Interleaving

