1,278 research outputs found

    A decentralized framework for cross administrative domain data sharing

    Get PDF
    Federation of messaging and storage platforms located in remote datacenters is an essential functionality to share data among geographically distributed platforms. When systems are administered by the same owner data replication reduces data access latency bringing data closer to applications and enables fault tolerance to face disaster recovery of an entire location. When storage platforms are administered by different owners data replication across different administrative domains is essential for enterprise application data integration. Contents and services managed by different software platforms need to be integrated to provide richer contents and services. Clients may need to share subsets of data in order to enable collaborative analysis and service integration. Platforms usually include proprietary federation functionalities and specific APIs to let external software and platforms access their internal data. These different techniques may not be applicable to all environments and networks due to security and technological restrictions. Moreover the federation of dispersed nodes under a decentralized administration scheme is still a research issue. This thesis is a contribution along this research direction as it introduces and describes a framework, called \u201cWideGroups\u201d, directed towards the creation and the management of an automatic federation and integration of widely dispersed platform nodes. It is based on groups to exchange messages among distributed applications located in different remote datacenters. Groups are created and managed using client side programmatic configuration without touching servers. WideGroups enables the extension of the software platform services to nodes belonging to different administrative domains in a wide area network environment. It lets different nodes form ad-hoc overlay networks on-the-fly depending on message destinations located in distinct administrative domains. It supports multiple dynamic overlay networks based on message groups, dynamic discovery of nodes and automatic setup of overlay networks among nodes with no server-side configuration. I designed and implemented platform connectors to integrate the framework as the federation module of Message Oriented Middleware and Key Value Store platforms, which are among the most widespread paradigms supporting data sharing in distributed systems

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Safety-Critical Communication in Avionics

    Get PDF
    The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is used. As reference architecture analogue point-to-point is used. The protocols are described and evaluated regarding features such as services, maturity, supported physical layers and topologies.Pros and cons with each protocol are then illustrated by a theoretical implementation of a flight control system that uses each protocol for the highly critical communication between sensors, actuators and flight computers.The results show that from a theoretical point of view TTP/C could be used as a replacement for a point-to-point flight control system. However, there are a number of issues regarding the physical layer that needs to be examined. Finally a TTP/C cluster has been implemented and basic functionality tests have been conducted. The plan was to perform tests on delays, start-up time and reintegration time but the time to acquire the proper hardware for these tests exceeded the time for the thesis work. More advanced testing will be continued here at Saab beyond the time frame of this thesis

    Implementation of the advanced encryption standard algorithm on an FPGA for image processing through the universal asynchronous receiver-transmitter protocol

    Get PDF
    Communication among end users can be based either on wired or wireless technology. Cryptography plays a vital role in ensuring data exchange is secure among end users. Data can be encrypted and decrypted using symmetric or asymmetric key cryptographic techniques to provide confidentiality. In wireless technology, images are exchanged through low-cost wireless peripheral devices, such as radio frequency identification device (RFID), nRF, and ZigBee, that can interface with field programmable gate array (FPGA) among the end users. One of the issues is that data exchange through wireless devices does not offer confidentiality, and subsequently, data can be lost. In this paper, we propose a design and implementation of AES-128 cipher algorithm on an FPGA board for image processing through the universal asynchronous receiver transmitter (UART) protocol. In this process, the advanced encryption standard (AES) algorithm is used to encrypt and decrypt the image, while the transmitter and receiver designs are implemented on two Xilinx BASYS-3 circuits connected with a ZigBee RF module. The encrypted image uses less memory, such as LUTs (141), and also consumes less chip power (0.0291 w), I/O (0.003), block RAM (0.001 w), data, and logic to provide much higher efficiency than wired communication technology. We also observe that images can be exchanged through the UART protocol with different baud rates in run time

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd
    corecore