579 research outputs found

    Know-how, intellectualism, and memory systems

    Get PDF
    ABSTRACTA longstanding tradition in philosophy distinguishes between knowthatand know-how. This traditional “anti-intellectualist” view is soentrenched in folk psychology that it is often invoked in supportof an allegedly equivalent distinction between explicit and implicitmemory, derived from the so-called “standard model of memory.”In the last two decades, the received philosophical view has beenchallenged by an “intellectualist” view of know-how. Surprisingly, defenders of the anti-intellectualist view have turned to the cognitivescience of memory, and to the standard model in particular, todefend their view. Here, I argue that this strategy is a mistake. As it turns out, upon closer scrutiny, the evidence from cognitivepsychology and neuroscience of memory does not support theanti-intellectualist approach, mainly because the standard modelof memory is likely wrong. However, this need not be interpretedas good news for the intellectualist, for it is not clear that theempirical evidence necessarily supp..

    Neural processes underpinning episodic memory

    Get PDF
    Episodic memory is the memory for our personal past experiences. Although numerous functional magnetic resonance imaging (fMRI) studies investigating its neural basis have revealed a consistent and distributed network of associated brain regions, surprisingly little is known about the contributions individual brain areas make to the recollective experience. In this thesis I address this fundamental issue by employing a range of different experimental techniques including neuropsychological testing, virtual reality environments, whole brain and high spatial resolution fMRI, and multivariate pattern analysis. Episodic memory recall is widely agreed to be a reconstructive process, one that is known to be critically reliant on the hippocampus. I therefore hypothesised that the same neural machinery responsible for reconstruction might also support ‘constructive’ cognitive functions such as imagination. To test this proposal, patients with focal damage to the hippocampus bilaterally were asked to imagine new experiences and were found to be impaired relative to matched control participants. Moreover, driving this deficit was a lack of spatial coherence in their imagined experiences, pointing to a role for the hippocampus in binding together the disparate elements of a scene. A subsequent fMRI study involving healthy participants compared the recall of real memories with the construction of imaginary memories. This revealed a fronto-temporo-parietal network in common to both tasks that included the hippocampus, ventromedial prefrontal, retrosplenial and parietal cortices. Based on these results I advanced the notion that this network might support the process of ‘scene construction’, defined as the generation and maintenance of a complex and coherent spatial context. Furthermore, I argued that this scene construction network might underpin other important cognitive functions besides episodic memory and imagination, such as navigation and thinking about the future. It is has been proposed that spatial context may act as the scaffold around which episodic memories are built. Given the hippocampus appears to play a critical role in imagination by supporting the creation of a rich coherent spatial scene, I sought to explore the nature of this hippocampal spatial code in a novel way. By combining high spatial resolution fMRI with multivariate pattern analysis techniques it proved possible to accurately determine where a subject was located in a virtual reality environment based solely on the pattern of activity across hippocampal voxels. For this to have been possible, the hippocampal population code must be large and non-uniform. I then extended these techniques to the domain of episodic memory by showing that individual memories could be accurately decoded from the pattern of activity across hippocampal voxels, thus identifying individual memory traces. I consider these findings together with other recent advances in the episodic memory field, and present a new perspective on the role of the hippocampus in episodic recollection. I discuss how this new (and preliminary) framework compares with current prevailing theories of hippocampal function, and suggest how it might account for some previously contradictory data

    The hippocampus and visual perception

    Get PDF
    In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe (MTL). Instead, these studies point toward a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates

    Hippocampal sclerosis affects fMR-adaptation of lyrics and melodies in songs

    Get PDF
    Songs constitute a natural combination of lyrics and melodies, but it is unclear whether and how these two song components are integrated during the emergence of a memory trace. Network theories of memory suggest a prominent role of the hippocampus, together with unimodal sensory areas, in the build-up of conjunctive representations. The present study tested the modulatory influence of the hippocampus on neural adaptation to songs in lateral temporal areas. Patients with unilateral hippocampal sclerosis and healthy matched controls were presented with blocks of short songs in which lyrics and/or melodies were varied or repeated in a crossed factorial design. Neural adaptation effects were taken as correlates of incidental emergent memory traces. We hypothesized that hippocampal lesions, particularly in the left hemisphere, would weaken adaptation effects, especially the integration of lyrics and melodies. Results revealed that lateral temporal lobe regions showed weaker adaptation to repeated lyrics as well as a reduced interaction of the adaptation effects for lyrics and melodies in patients with left hippocampal sclerosis. This suggests a deficient build-up of a sensory memory trace for lyrics and a reduced integration of lyrics with melodies, compared to healthy controls. Patients with right hippocampal sclerosis showed a similar profile of results although the effects did not reach significance in this population. We highlight the finding that the integrated representation of lyrics and melodies typically shown in healthy participants is likely tied to the integrity of the left medial temporal lobe. This novel finding provides the first neuroimaging evidence for the role of the hippocampus during repetitive exposure to lyrics and melodies and their integration into a song

    The hippocampus reevaluated in unconscious learning and memory: at a tipping point?

    Get PDF
    Classic findings from the neuropsychological literature invariably indicated that performances on tests of memory that can be accomplished without conscious awareness were largely spared in amnesia, while those that required conscious retrieval (e.g., via recognition or recall) of information learned in the very same sessions was devastatingly impaired. Based on reports of such dissociations, it was proposed that one of the fundamental distinctions between memory systems is whether or not they support conscious access to remembered content. Only recently have we come to realize that the putative systemic division of labor between conscious and unconscious memory is not so clean. A primary goal of this review is to examine recent evidence that has been advanced against the view that the hippocampus is selectively critical for conscious memory. Along the way, consideration is given to criticisms that have been levied against these findings, potential explanations for differences in the reported results are proposed, and methodological pitfalls in investigations of unconscious memory are discussed. Ultimately, it is concluded that a tipping point has been reached, and that while conscious recollection depends critically on hippocampal integrity, the reach of the hippocampus extends to unconscious aspects of memory performance when relational memory processing and representation are required

    Medial temporal lobe contributions to visuospatial memory and cognition.

    Get PDF
    The contributions of human medial temporal lobe (MTL) structures to perceiving and remembering visuospatial features of the environment were investigated from the perspective of human cognitive neuropsychology. The experimental chapters focussed on three main issues: the contribution of the right-sided MTL to spatial awareness the roles of the right MTL and hippocampus in spatial and non-spatial scene perception and memory and the role of the hippocampus in anterograde memory for different types of memoranda. Visual neglect (a failure of spatial awareness), was investigated after lesions of the right medial occipitotemporal lobe. Lesion analyses and diffusion tensor imaging demonstrated that the lesions associated with neglect interrupted a white matter pathway connecting the parahippocampal gyrus with the parietal lobe. The interaction of these areas may be critical to subserve normal spatial awareness. Perception and short-term retention of spatial and non-spatial aspects of visual scenes were investigated using a new task - the 4 Mountains Test. Right MTL damage impaired both spatial perception and memory. Hippocampal damage impaired spatial memory but had little impact on scene perception. Damage to these areas did not affect non-spatial perception or memory, suggesting a role for the hippocampus in the short-term retention of allocentric spatial information. A rather similar pattern of performance was documented in patients with possible Alzheimer's disease. The role of the hippocampus in anterograde memory was investigated in two patients using recognition tests for words, scenes and faces. Receiver operating characteristics analyses were used to assess the contribution of recollection and familiarity to performance. Hippocampal damage impacted upon scene and word recognition but not face recognition. In terms of scene recognition, the hippocampus may be critical to make recognition judgements based on both recollection and highly confident feelings of familiarity

    The distinct and overlapping brain networks supporting semantic and spatial constructive scene processing

    Get PDF
    Scene imagery features prominently when we recall autobiographical memories, imagine the future and navigate around in the world. Consequently, in this study we sought to better understand how scene representations are supported by the brain. Processing scenes involves a variety of cognitive processes that in the real world are highly interactive. Here, however, our goal was to separate semantic and spatial constructive scene processes in order to identify the brain areas that were distinct to each process, those they had in common, and the connectivity between regions. To this end, participants searched for either semantic or spatial constructive impossibilities in scenes during functional MRI. We focussed our analyses on only those scenes that were possible, thus removing any error detection that would evoke reactions such as surprise or novelty. Importantly, we also counterbalanced possible scenes across participants, enabling us to examine brain activity and connectivity for the same possible scene images under two different conditions. We found that participants adopted different cognitive strategies, which were reflected in distinct oculomotor behaviour, for each condition. These were in turn associated with increased engagement of lateral temporal and parietal cortices for semantic scene processing, the hippocampus for spatial constructive scene processing, and increased activation of the ventromedial prefrontal cortex (vmPFC) that was common to both. Connectivity analyses showed that the vmPFC switched between semantic and spatial constructive brain networks depending on the task at hand. These findings further highlight the well-known semantic functions of lateral temporal areas, while providing additional support for the previously-asserted contribution of the hippocampus to scene construction, and recent suggestions that the vmPFC may play a key role in orchestrating scene processing

    Worth a Glance: Using Eye Movements to Investigate the Cognitive Neuroscience of Memory

    Get PDF
    Results of several investigations indicate that eye movements can reveal memory for elements of previous experience. These effects of memory on eye movement behavior can emerge very rapidly, changing the efficiency and even the nature of visual processing without appealing to verbal reports and without requiring conscious recollection. This aspect of eye movement based memory investigations is particularly useful when eye movement methods are used with special populations (e.g., young children, elderly individuals, and patients with severe amnesia), and also permits use of comparable paradigms in animals and humans, helping to bridge different memory literatures and permitting cross-species generalizations. Unique characteristics of eye movement methods have produced findings that challenge long-held views about the nature of memory, its organization in the brain, and its failures in special populations. Recently, eye movement methods have been successfully combined with neuroimaging techniques such as fMRI, single-unit recording, and magnetoencephalography, permitting more sophisticated investigations of memory. Ultimately, combined use of eye-tracking with neuropsychological and neuroimaging methods promises to provide a more comprehensive account of brain–behavior relationships and adheres to the “converging evidence” approach to cognitive neuroscience

    A brief history of developmental amnesia

    Get PDF

    Category-Specific Item Recognition and the Medial Temporal Lobe

    Get PDF
    Much neuropsychological and neuroimaging research has been focused on the contributions of different medial temporal lobe (MTL) structures to recognition memory. The majority of these studies have linked perirhinal cortex (PrC) to item recognition, whereas the hippocampus and parahippocampal cortex (PhC) have primarily been associated with the recollection of contextual detail pertaining to a specific prior stimulus encounter. Here, I report results from three fMRI studies that examined the neural correlates of item recognition with a specific focus on the relationship between such signals and category-specific effects in the MTL. In Chapter 2, I reveal that category-specific representations in both PrC and PhC can be brought to bear on item recognition decisions. In Chapter 3, I examined the specific stimulus properties that determine the relative contributions of PrC and PhC to item recognition, with a focus on landmark suitability. The results from this study revealed item recognition signals for non-landmark objects in PrC and landmarks in PhC. In Chapter 4, I focused specifically on face recognition to characterize the manner in which PrC codes item-recognition signals and to further explore the issue of category-specificity with independent functional localizer data. Results from this study indicate that item recognition signals in PrC can be distributed across voxels with directionally heterogeneous response profiles. Further, these data also revealed that the voxels comprising these patterns respond preferentially to faces under passive viewing conditions. Taken together, these findings suggest that item recognition signals are represented in a distributed, category-specific manner within both PrC and PhC
    corecore