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Abstract 

Much neuropsychological and neuroimaging research has been focused on the contributions 

of different medial temporal lobe (MTL) structures to recognition memory. The majority of 

these studies have linked perirhinal cortex (PrC) to item recognition, whereas the 

hippocampus and parahippocampal cortex (PhC) have primarily been associated with the 

recollection of contextual detail pertaining to a specific prior stimulus encounter. Here, I 

report results from three fMRI studies that examined the neural correlates of item recognition 

with a specific focus on the relationship between such signals and category-specific effects in 

the MTL. In Chapter 2, I reveal that category-specific representations in both PrC and PhC 

can be brought to bear on item recognition decisions. In Chapter 3, I examined the specific 

stimulus properties that determine the relative contributions of PrC and PhC to item 

recognition, with a focus on landmark suitability. The results from this study revealed item 

recognition signals for non-landmark objects in PrC and landmarks in PhC. In Chapter 4, I 

focused specifically on face recognition to characterize the manner in which PrC codes item-

recognition signals and to further explore the issue of category-specificity with independent 

functional localizer data. Results from this study indicate that item recognition signals in PrC 

can be distributed across voxels with directionally heterogeneous response profiles. Further, 

these data also revealed that the voxels comprising these patterns respond preferentially to 

faces under passive viewing conditions. Taken together, these findings suggest that item 

recognition signals are represented in a distributed, category-specific manner within both PrC 

and PhC.  
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Chapter 1  

1 General Introduction 

Declarative memory is the capacity for the conscious recovery of facts and personally 

experienced events (Milner et al., 1998). Recognition memory, a widely studied example 

of declarative memory, refers to the ability to distinguish between previously encountered 

and novel aspects of our environment, a critical component of adaptive human behaviour. 

To illustrate, we often rely upon landmark recognition while navigating to a restaurant 

and, upon arrival, we rely on face recognition to find a friend in a crowded dining room. 

Although we seldom reflect on our remarkable ability to do so, evidence from research 

attempting to identify the capacity limits of item recognition suggests that we are capable 

of discriminating between thousands of previously studied target objects and novel lures 

across varying degrees of perceptual and semantic similarity (Brady et al., 2008).  

There is broad consensus in the cognitive neuroscience of memory literature that 

recognition memory is supported by two component processes: item recognition and 

recognition associated with the recovery of contextual details from a specific prior 

stimulus encounter (Cohen and Eichenbaum, 1993; Aggleton and Brown, 1999; 

Eichenbaum et al., 2007; Squire et al., 2007). The most fundamental difference between 

these recognition processes pertains to the nature of the processing that gives rise to each. 

Namely, item recognition is based on a memory signal pertaining to an object itself, such 

as the perceptual features of an individual’s face. By contrast, the recovery of episodic 

contextual detail is associative in nature as it involves retrieval of information that is 

independent of a target stimulus. That is to say, for example, we can put a name to a face 

based on a single prior encounter. While the existence of these component processes is 

not in question, how to best characterize their cognitive and neural mechanisms remain 

the subject of much debate.  

At a phenomenological level, a number of influential theoretical models of recognition 

memory have mapped item recognition and the recovery of contextual detail onto 

subjective experiences of familiarity and recollection, respectively (Aggleton and Brown, 
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1999; for review, see Brown and Aggleton, 2001; Yonelinas, 2002; Eichenbaum et al., 

2007; Squire et al., 2007; Montaldi and Mayes, 2010). Specifically, familiarity supports 

item recognition in the absence of the retrieval of any contextual information. 

Recollection refers to the retrieval of associative information related to episodic 

contextual details. At a cognitive level, a number of theorists have suggested that 

familiarity-based item recognition and recollection are qualitatively different. On these 

accounts, familiarity is thought to be a relatively fast process based on a continuous 

memory signal that can vary in strength, whereas recollection is purported to reflect a 

slower threshold process (see Yonelinas, 2002, for review). However, other influential 

proposals challenge the notion that the differences between these processes are 

qualitative in nature (Squire et al., 2007; Wixted and Squire, 2011).  

At a neural level, research aimed at characterizing and dissociating the neural correlates 

of familiarity-based item recognition and the recollection of episodic contextual 

information has proven particularly controversial. Beginning with Scoville and Milner’s 

(1957) seminal work on patient HM, lesion research in other cases and in non-human 

species, as well as functional magnetic resonance imaging (fMRI) studies in healthy 

individuals have firmly established the link between declarative long-term memory and 

the medial temporal lobes (MTL). However, a consensus regarding how to best 

characterize the functional contributions of different MTL structures to item recognition 

and recollection is still lacking (Aggleton and Brown, 2006; Eichenbaum et al., 2007; 

Henke, 2010; Squire et al., 2007; Ranganath and Ritchey, 2012). Discussions concerning 

such contributions have focused primarily on the hippocampus (HC), perirhinal cortex 

(PrC), and parahippocampal cortex (PhC). While not universally accepted, a number of 

widely influential accounts of MTL organization suggest that PrC supports familiarity-

based item recognition, whereas the HC and/or PhC support the encoding and retrieval of 

contextual details. At the same time, however, there are also findings that point to 

category-specific effects in PrC and PhC that are difficult to reconcile with these claims 

(e.g., Davachi, 2006; Murray et al., 2007; Graham et al., 2010; Staresina et al., 2011). 

Interestingly, while categorical effects in more posterior aspects of occipitotemporal 

cortex have been well characterized in non-mnemonic task contexts, it remains unclear 

how such findings map onto the proposed distinction between item and context 
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representations in PrC and PhC. Critically, as item-based recognition memory signals 

reflect the familiarity of a stimulus itself, rather than any episodic contextual information 

from a prior stimulus encounter, the nature of the pertinent object category may play an 

important role in their neural organization.  

At the broadest level, my thesis is focused on assessing the neural correlates of 

familiarity-based item recognition and examining how category-specific effects may 

relate to the functional contributions of different MTL structures in this regard. Toward 

this end, I employed multi-voxel pattern analysis (MVPA) to decode familiarity-based 

item recognition decisions from distributed fMRI BOLD responses within the MTL. To 

gain leverage on questions concerning category-specificity I employed visually presented 

stimuli drawn from a number of discrete object categories. The results presented in 

Chapters 2, 3, and 4 have potentially important implications for a number of influential 

models of MTL organization and functioning. Based on these data, I will argue that 

representations in both PrC and PhC can be brought to bear on familiarity-based item 

recognition decisions, and that these representations are organized in a category-specific 

manner. To frame the rationale and goals of my thesis I begin with a brief review 

pertinent models of MTL organization before highlighting an apparent gap between such 

models and our understanding of categorical representations in the ventral visual pathway 

more broadly. Lastly, I review the limited extant evidence that speaks to the issue of 

category-specific item recognition signals in human MTL.  

1.1 MTL Structures and Connectivity 

The central tenets of many theories concerning MTL contributions to recognition 

memory are predicated on differential connectivity between MTL structures and more 

posterior aspects of the ventral and dorsal visual processing pathways (Aggleton and 

Brown, 1999; Eichenbaum et al., 2007; Montaldi and Mayes, 2010). Connectivity within 

the MTL is organized in a hierarchical manner with PrC and PhC providing inputs to 

entorhinal cortex (ErC), which in turn provides inputs to the HC. Perirhinal and 

parahippocampal projections remain segregated in lateral and medial aspects of ErC, 

respectively (Suzuki and Amaral, 1994). In addition to inputs from ErC, the HC also 

receives a limited number of inputs directly from PrC and PhC (Lavanex and Amaral, 
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2000). Importantly, PrC and PhC are also densely connected, though these connections 

are largely non-reciprocal; PrC receives considerably more input from PhC than it returns 

(Suzuki and Amaral, 1994; Suzuki and Naya, 2014). 

 Although a number of cortical and subcortical regions are directly connected with ErC 

and the HC, the majority of information enters the MTL from unimodal and polymodal 

association regions via projections to PrC and PhC. The majority of these inputs are from 

visual processing regions in the ventral (i.e., ‘what’) and dorsal (i.e., ‘how/where’) visual 

pathways (Mishkin and Ungerleider, 1982; Goodale and Milner, 1992). The ventral 

visual pathway constitutes an occipitotemporal network and is thought to represent object 

quality or identity. The response selectivity of neurons within the ventral visual pathway 

is hierarchically organized; cells in posterior regions such as V1 exhibit small receptive 

fields with selectivity for simple perceptual features (e.g. line orientations; Hubel and 

Wiesel, 1968), whereas cells in anterior regions such as area TE in the macaque exhibit 

large receptive fields with selectivity for object-level representations. The discovery of 

intrinsic feed-forward and feed-backward connectivity within this network has guided the 

proposal that information is transformed and represented within a series of recurrent 

loops with multiple levels of inter-activity (Kravitz et al., 2013). In contrast to the ventral 

visual pathway, the dorsal pathway comprises an occipitoparietal network that serves to 

transform real-world object metrics (e.g., size, distance, rate of acceleration) into motoric 

commands that allow for visually guided action, such as eye movements, reaching, and 

grasping (Goodale and Milner, 1992). Notably, processing regions in the ventral and 

dorsal pathways differentially project to PrC and PhC. 

Perirhinal cortex receives the large majority of its inputs from anterior aspects of the 

ventral visual pathway, whereas PhC is more broadly connected to regions within both 

the ventral and dorsal pathways. Examination of neuroanatomical connectivity in 

macaques has revealed that well over half of the inputs to PrC come from the unimodal 

visual area TE and rostral aspects of TEO, regions of the ventral visual stream that are 

recognized as critical for object perception (Suzuki and Amaral, 1994; Suzuki and Naya, 

2014). As area TE has historically been considered to be the anterior most extent of the 

ventral visual pathway, its extensive connectivity with PrC suggests that PrC may further 



5 

 

process or transform representations from TE in the support of object recognition. 

Similarly to PrC, PhC also receives substantial inputs from the ventral visual stream 

including area TEO, V4, and caudal aspects of TE. However, in contrast to PrC, it is also 

innervated by regions in the dorsal visual pathway such as the cingulate, retrosplenial 

cortex, and areas 7a and LIP in the posterior parietal lobe (Suzuki and Amaral 1994). 

This pattern of differential connectivity has informed the proposal that, within the domain 

of vision, PrC and PhC represent objects and visuospatial information such as scenes, 

respectively (Mishkin and Ungerleider, 1982). 

1.2 The MTL and Long-Term Declarative Memory 

Scoville and Milner’s (1957) seminal research with patient HM, together with the torrent 

of human neuropsychological and animal lesion research that followed, firmly 

established the link between long term declarative memory and the MTL. To treat 

intractable epilepsy, HM underwent a bilateral resection of his MTL that affected the 

majority of the amygdala, ErC, and the HC (Corkin et al., 1997). Subsequently, he 

suffered from profound anterograde amnesia. Anterograde amnesia, as a result of a 

neurological condition, refers to a deficit in forming new long-term declarative 

memories. For example, despite a relative preservation of his ability to remember events 

that had taken place prior to surgery, HM was unable to learn new word pairs or 

recognize people that he encountered subsequent to his resection. Importantly, however, 

amnesic individuals such as HM are capable of learning in the context of non-declarative 

memory tasks. This ability is often indexed by decreased reaction times or improved 

accuracy following procedural training. For example, HM benefited from practice on a 

procedural mirror-tracing task (Milner, 1962), evidence that pointed to a critical 

dissociation between declarative and non-declarative procedural memory.  

Although the impairment in forming new memories is the hallmark of anterograde 

amnesia there are three other characteristics that have been noted in research with HM 

and other similar patients with MTL lesions. The first is that the impairment is 

multimodal, i.e., declarative memory for information is affected regardless of sensory 

modality and material type (Milner, 1972; Squire, 2004). Another characteristic typical 

of MTL damage is that immediate, or short term, memory, such as processing assessed 
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with digit span, remains broadly intact (Milner et al., 1998; Squire, 2004; but see 

Ranganath and Blumenfeld, 2005, for evidence that supports a different view). Finally, 

the memory impairment is present despite largely preserved perceptual and intellectual 

functioning (Squire et al., 2004; but see Buckley et al., 2008).  

In response to the findings in HM, several researchers worked to develop animal models 

in non-human primates and rats that would mirror the memory impairments seen in 

humans with MTL lesions. The majority of these studies examined the effects of lesion 

location and extent on object recognition in the context of either delayed match to sample 

or non-match to sample tasks. Much of this work was initially guided by the assumption 

that the HC in particular supports long-term declarative memory. However, early results 

suggested that recognition memory impairments following selective hippocampal lesions 

were less pronounced than those associated with less selective lesions that also included 

the amygdala (Mishkin, 1978) or adjacent MTL cortex (i.e., ErC, PrC, and PhC; Zola-

Morgan et al., 1994). This pattern of results was generally consistent with evidence from 

human neuropsychological research demonstrating that patients with damage limited to 

the HC have less severe memory impairments than those with damage that also includes 

aspects of PrC, ErC, and PhC (Zola-Morgan et al., 1986; Rempel-Clower et al., 1996; 

Corkin et al., 1997; Stefanacci et al., 2000). Ultimately, these lines of research informed 

the development of a unitary model of MTL functioning which maintains that the HC, 

PrC, ErC, and PhC form an integrated declarative memory system with each structure 

contributing to declarative memory in a similar manner (Squire and Zola-Morgan, 1991; 

Zola-Morgan et al., 1994; Squire et al., 2004). On this account, the distinction between 

familiarity-based item recognition and recollection is thought to be quantitative in nature, 

reflecting differences in memory signal strength rather than independent cognitive 

processes. Moreover, as part of an integrated memory system each MTL structure is 

purported to play a role in supporting both component processes (Squire et al., 2004; 

Squire et al., 2007). However, results from subsequent animal lesion research pointed to 

the possibility that there is functional specialization among MTL structures with each 

making unique contributions to recognition memory. Ultimately, advocates of unitary 

models of MTL functioning acknowledged the importance of functional specialization in 



7 

 

the MTL, but maintain that it cannot be characterized by the distinction between 

familiarity and recollection (Wixted and Squire, 2011).  

1.3 Dual-Process Models of Recognition Memory and 
MTL Organization 

Despite evidence suggesting that the severity of recognition memory impairments is 

closely related to the extent of MTL lesions, further animal research revealed that item 

memory impairments were obtained only when lesions to the HC were accompanied by 

secondary damage to MTL cortical regions, an unforeseen consequence of the surgical 

procedure used to lesion the HC (Murray and Mishkin, 1986; Zola-Morgan and Squire, 

1986). Subsequent research directly assessed the effects of MTL lesions that ostensibly 

spared the HC and found that combined PrC and PhC resections resulted in item 

recognition deficits (Zola-Morgan et al., 1989), as did resection of PrC and ErC (Eacott 

et al., 1994; Gaffan and Murray, 1992; Meunier et al., 1993). Of most importance for 

theoretical models of MTL organization, Meunier et al. (1993) revealed item recognition 

deficits following selective PrC lesions that were comparable to those obtained with PrC 

and ErC lesions; selective ErC lesions minimally affected performance on a delay non-

match to sample task. Together, these findings suggest that PrC, rather than the HC 

and/or amygdala, is critical for item recognition memory.  

The accumulation of animal lesion evidence pointing to distinct contributions of different 

MTL structures to recognition memory engendered the development of models of MTL 

organization that attribute specific mnemonic functions to different structures. A number 

of similar theories concerning the functional relationship between recognition memory 

and MTL organization, though subtly distinct from one another, can be classified as dual-

process models. Such models are predicated on the notion that familiarity-based item 

recognition and the recollection of contextual details associated with the previous 

presentation of a test cue are functionally distinct processes that are supported by 

different MTL structures. That is to say, this class of models emphasizes qualitative 

differences between familiarity and recollection both in cognitive terms and in the way 

these processes are supported by MTL structures. 
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Aggleton and Brown (1999) first proposed that there is a division of labour within the 

MTL whereby PrC supports item recognition based on the familiarity of the stimulus 

itself and the HC supports the associative processing related to recollection. This initial 

proposal was informed by evidence obtained with human and animal lesion studies, 

electrophysiological recordings from both rats and monkeys, and fMRI with healthy 

humans (Brown and Aggleton, 2001; Eichenbaum et al., 2007). While a complete review 

of this literature is beyond the scope of my thesis, I will briefly review evidence from a 

number of relevant neuropsychological studies (see Section 1.6 for related fMRI 

findings). Importantly, dual-process models of MTL organization make very specific 

predictions concerning the nature of recognition memory deficits associated with 

selective damage to different MTL structures. Specifically, such accounts posit that 

patients with damage limited to the HC should exhibit impairments in recollection with 

spared familiarity-based item memory. By contrast, patients with damage limited to PrC 

should exhibit deficits related to item familiarity despite a preserved ability to recollect 

contextual detail regarding a prior stimulus encounter. 

1.4 Dual-Process Models of Recognition Memory and 
MTL Organization: Neuropsychological Evidence 

A number of neuropsychological investigations in patients with selective MTL damage 

have sought to test predictions derived from dual-process and unitary memory strength 

models of MTL organization. While the evidence remains controversial (Wixted and 

Squire 2011), a substantial number of findings from research in patients with selective 

HC lesions support dual-process models by revealing selective recollection impairments 

that leave familiarity-based item recognition intact (Vargha-Khadem et al. 1997; Mayes 

et al. 2002; Yonelinas et al., 2002; Bastin et al., 2004; Quamme et al., 2004; Aggleton et 

al. 2005; Holdstock et al., 2008; Turriziani et al. 2008; Jäger et al. 2009; Bowles et al. 

2010). Patient KN, for example, suffered from persistent anterograde amnesia associated 

with meningitis related bilateral hippocampal atrophy (Aggleton et al., 2005); volumetric 

analysis of MRI data revealed approximately 45% volume reductions in KN’s 

hippocampi bilaterally, whereas surrounding neocortical tissue, including PrC, remained 

intact. As predicted by dual-process models, KN showed selective recollection 
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impairments for words with intact familiarity across two different experimental 

paradigms that required either subjective phenomenological reports of recognition 

experience or ratings of memory confidence.  

While results from a number of studies have linked selective recollection impairments to 

MTL damage restricted to the HC, broader recognition impairments that affect the 

accuracy of both recollection and familiarity judgments have been reported in association 

with MTL lesions that include both the HC as well as aspects of surrounding MTL cortex 

(Yonelinas et al., 2002; Knowlton and Squire, 1995). In other words, restricted damage to 

the HC frequently results in impaired recollection with intact familiarity-based item 

recognition, whereas broader MTL damage that affects both the HC and PrC results in 

deficits that manifest in both component processes. This pattern of results has been 

interpreted as evidence in support of the notion that the HC and PrC are functionally 

independent. However, dissociating the functional role of PrC from the HC by way of a 

true double dissociation has proven to be difficult due to the typical nature and extent of 

naturally occurring MTL damage or surgical excisions. Unlike the HC, which is 

particularly vulnerable to insults or damage caused by anoxia, epilepsy, or encephalitis, 

selective damage to MTL cortex, including PrC, is quite rare.  

Results from a single-case study conducted with patient NB provide further support for 

the dual-process model, and complement those reported in patients with HC lesions, by 

demonstrating that selective familiarity impairments can also be observed in association 

with an MTL lesion (Bowles et al., 2007; Bowles et al., 2010). NB underwent a rare 

unilateral surgical resection of the left anterior temporal lobe for treatment of intractable 

temporal-lobe epilepsy caused by a mass in the left amygdala. Her surgical resection 

involved the most anterior extent of lateral and medial temporal cortex in the left 

hemisphere; critically, as confirmed by post-surgical MR volumetry, it included large 

aspects of PrC, ErC, and the amygdala but spared the HC entirely. Across four 

experiments using verbal material as memoranda, conducted with three different 

methodological approaches that have been developed to specifically probe familiarity and 

recollection (remember-know paradigm, receiver operating characteristics of confidence-

based recognition decisions, and a response deadline procedure), it was revealed that NB 
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has impairments in familiarity assessment with preserved recollection. This deficit 

manifested not as a phenomenological absence of feelings of familiarity, but as an 

impaired discrimination process with reduced accuracy that was observed in the context 

of overall normal recognition performance. Importantly, more recent research conducted 

with NB has revealed that the accuracy of her familiarity judgments for non-verbal 

stimuli is within the range of healthy controls (Martin et al., 2011). These results suggest 

NB’s familiarity deficit does not reflect a more general inability to make subjective meta-

memory judgments. Moreover, they also indicate that her selective impairment is 

material specific. These data are reviewed in more detail in Section 1.11.  

Additional follow-up work (Bowles et al., 2010) directly compared NB with a group of 

patients who had also been treated surgically for intractable temporal-lobe epilepsy, but 

with a unilateral intervention that targeted the amygdala and HC, while aiming to spare 

surrounding neocortical structures, including PrC. In this group, an individual with a left-

sided lesion was identified who showed a selective recollection impairment at a 

comparable level of memory strength (i.e., overall recognition performance) as the 

selective familiarity impairment reported in NB. Importantly, this double dissociation 

cannot be attributed to a potential confound related to differences in overall memory 

strength, a criticism previously related to neuroanatomical dissociations between 

familiarity-based recognition and recollection (e.g., Squire et al., 2007; Wixted, 2007).  

When considered together, evidence obtained from neuropsychological investigations in 

patients with MTL lesions provides considerable support for dual-process accounts of 

MTL organization, with findings that point to dissociable roles for PrC and the HC in 

supporting familiarity-based item recognition and recollection, respectively. However, 

the literature does present some inconsistencies in that recognition impairments in 

patients with selective HC damage are not always limited to recollection (Manns et al., 

2003; Squire et al., 2004; Wais et al., 2006). Differences related to lesion extent and 

documentation, the selection of patients, and overall memory impairment have been 

suggested to account for findings in patients in whom these impairments were not 

selective (for discussion, see Holdstock et al. 2008; Bowles et al. 2010). These discrepant 

findings may also relate to the extent to which lesions differentially affect either the 
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anterior or posterior HC, or different hippocampal subfields (see Poppenk et al., 2013, 

for related proposals). Nevertheless, the cognitive neuroscience models of recognition 

memory that map familiarity-based item recognition and recollection onto separate MTL 

structures remain contentious. 

1.5 Three-Component Models of MTL Organization 

It has recently been suggested that dual-process models require extension and further 

refinement in order to fully characterize MTL contributions to recognition memory 

(Eichenbaum et al., 2007; Diana et al., 2007; Ranganath et al., 2010; Montaldi and 

Mayes, 2010). The binding of items and contexts model (BIC; Eichenbaum et al., 2007; 

Diana et al., 2007; Ranganath, 2010) of MTL organization is a particularly promising 

three-component model that has broad explanatory power with respect to many empirical 

findings related to recognition memory. The BIC model differs from earlier dual-process 

models in two regards. First, it specifies separate roles for the HC, PrC, and PhC in 

episodic memory based on differential connectivity between these structures and more 

posterior visual processing regions. Second, the BIC model also emphasizes differences 

in information content between PrC and PhC, rather than focusing exclusively on 

process-related differences between these structures. Specifically, within this framework, 

the purported contribution of a given MTL structure to recognition memory is predicated 

on the informational content that it represents and the extent to which such information is 

required to perform a particular task (Ranganath, 2010).   

As PrC receives the majority of its input from regions within the ventral visual stream 

known to be critical for object perception (e.g., area TE/TEO in the macaque; Suzuki and 

Amaral, 1994; Ranganath and Ritchey, 2012; Suzuki and Naya, 2014), the BIC model 

suggests that it plays a critical role in item recognition. In this context, the term item 

refers to discrete objects, faces, or words that are processed at the center of attention. 

Importantly, however, PrC is thought to support item recognition based on the familiarity 

of a stimulus itself, as well as the recognition of item-item associations when discrete 

items are processed in a unitized manner, a claim that has been corroborated by empirical 

evidence linking item-item associations (Quamme et al., 2007; Haskins et al., 2008) and 

the recollection source memory related to item information (Staresina and Davachi, 2006, 
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2008), to activity in PrC. That is to say, PrC is thought to support both familiarity- and 

recollection-based recognition when the content in question pertains to an item 

representation. By contrast, the role of PhC is purported to be related to the representation 

of contextual information as it receives input from both the ventral (e.g., V4 and caudal 

aspects of TE/TEO) and dorsal (e.g., retrosplenial and posterior parietal cortices) visual 

processing streams (Suzuki and Amaral, 1994; Kravitz et al., 2011; Ranganath and 

Ritchey, 2012). Within the BIC framework, contextual information is defined as visual, 

spatial, temporal, or semantic detail that is peripheral to items at the center of attention 

during encoding. For example, context could refer to non-target items in a visual array, 

thoughts one had about a target item or its temporal sequence, semantic associations 

related to objects that often co-occur with a target item, or the spatial location of a target 

item (Ranganath, 2010; Aminoff et al., 2013). As encoding and retrieval of contextual 

detail is necessarily associative in nature, the role of PhC in recognition memory is 

purported to be linked to recollection, although the model does allow for potential 

familiarity signals for context in PhC as well. To my knowledge, however, no 

neuropsychological or fMRI study to date has revealed an empirical link between PhC 

and the familiarity of contextual information. Lastly, the HC is thought to support the 

binding of item information with contextual detail. On this account, item and context 

representations are purported to remain segregated in PrC and PhC, respectively, prior to 

their convergence in the HC, where they are linked into discrete episodic representations. 

Given the associative nature of this item-context binding, the HC is thought to support 

recollection. 

The Convergence, Recollection, and Familiarity Theory (CRAFT; Montaldi and Mayes, 

2010) is a second three-component model of MTL organization that also builds upon 

dual-process predecessors. Similar to BIC, CRAFT also specifies particular roles for PrC, 

PhC, and the HC in episodic memory and links these roles to differences in information 

content. Specifically, PrC is thought to represent item information and within domain 

item-item associations (e.g., two words), PhC is thought to represent context and within 

domain context-context associations, and the HC is purported to bind items with contexts 

as well as across domain items (e.g., a name and a face) or contexts. Beyond the 

distinction between within- and between-domain associations, CRAFT also deviates from 
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the BIC model in how familiarity and recollection map onto PrC and PhC. Namely, 

CRAFT theorists maintain that PrC and PhC represent information in a manner that 

supports familiarity-based recognition of items and contexts, respectively, but not 

recollection. Recall that on the BIC model both structures can support familiarity-based 

recognition and recollection. Montaldi and Mayes (2010) argue that because PrC and 

PhC have similar cytoarchitectonic structures they likely represent and process 

information in a comparable manner. However, both PrC and PhC differ in this regard 

from the HC, pointing to the potential for fundamentally different processing. 

Specifically, the HC is thought to perform rapid pattern separation of bound item-context 

representations in a manner that subsequently allows for recollection, whereas PrC and 

PhC are unable to encode pattern separated item and context information, thus 

representing information that supports familiarity-based recognition.  

1.6 Three-Component Models of MTL Organization: 
fMRI Evidence 

In addition to the neuropsychological research reviewed in section 1.4, a number of fMRI 

investigations have also examined the neural correlates of recognition memory. 

Importantly, the unitary memory strength model, dual-process models, the BIC model, 

and CRAFT make different predictions concerning differential fMRI BOLD responses in 

PrC, PhC, and HC in relation to familiarity-based item recognition and recollection. 

Pertinent fMRI studies have probed familiarity and recollection using either subjective 

reports of either familiarity- or recollection-based recognition, source memory judgments 

that assess recognition of a target item as well as the ability to recall contextual detail 

from the initial encounter, or recognition confidence ratings that index the certainty with 

which participants feel an item is old or new. In the context of experiments that have 

employed these paradigms, fMRI BOLD responses related to recollection have been 

isolated by contrasting recollected trials with those judged as being familiar [R > F], 

source memory correct versus incorrect [Source Correct > Incorrect], and highest 

confidence responses versus all lower confidence ratings [e.g., 5 > 1-4]. By contrast, 

familiarity related activity is assessed by contrasting correct familiar judgments with 

target items called ‘new’ [F < Miss], trials on which a target item is correctly identified 
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but not the source with misses [Target Correct + Source Incorrect < Miss], and by 

identifying regions in which changes in BOLD response correlate with changes in 

confidence levels after excluding the highest response option.  

Evidence obtained across many studies using the paradigms noted above converges in a 

remarkably consistent manner with respect to the neural correlates of recollection and 

familiarity, although these findings have not gone unchallenged (Wixted and Squire, 

2011). Specifically, most fMRI studies that have examined recognition memory report 

differential activity related to recollection at both the time of encoding and retrieval in the 

HC and PhC. Critically, however, these regions are generally insensitive to differences 

related to familiarity-based recognition (Eldridge et al., 2000; Davachi et al., 2003; Kahn 

et al., 2004; Ranganath et al., 2004; Weis et al., 2004; Dolcos et al., 2005; Uncapher and 

Rugg, 2005;  Woodruff et al., 2005; Yonelinas et al., 2005; Montaldi et al., 2006; 

Daselaar et al., 2006; Uncapher et al., 2006; Vilberg and Rugg, 2007; Wang et al., 2014; 

see Diana et al., 2007, for review). In contrast to results obtained in the HC and PhC, 

activity in PrC has been demonstrated to be sensitive to familiarity-based item 

recognition, but not the recollection of contextual detail (Henson et al., 1999; Davachi et 

al., 2003; Ranganath et al., 2004; Weis et al., 2004; Uncapher and Rugg, 2005; Yonelinas 

et al., 2005; Daselaar et al., 2006; Montaldi et al., 2006; Kensinger and Schacter 2006; 

Uncapher et al., 2006; Yassa and Stark, 2008; Kafkas and Montaldi, 2012; Wang et al., 

2014; see Diana et al., 2007, for review).  

Rather than detailing the experimental design and specific results from each of these 

studies, I will elaborate on just one that has figured prominently in the literature. 

Ranganath et al. (2004) scanned participants during the encoding stage of a recognition 

memory task and in a subsequent un-scanned test stage asked that they discriminate 

between previously studied and novel words. During the test stage, participants indicated 

how confident they were that each item was studied and also performed a two alternative 

forced-choice source memory judgment that probed recollection of the encoding task 

associated with each trial. Scanned encoding trials were then scored according to 

subsequent memory judgments and whole-brain voxel-wise contrasts revealed that left 

PrC was the only MTL structure in which activity linearly indexed recognition 
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confidence ratings (i.e., a graded familiarity signal). By contrast, the right HC and right 

PhC were the only MTL structures that showed differential effects between correct and 

incorrect source memory judgments (i.e., recollection).  

The results from Ranganath et al. (2004), together with those not reviewed in further 

detail (see above), are largely consistent with predictions derived from dual-process 

models of MTL organization regarding PrC and the HC. Specifically, evidence from the 

majority of fMRI studies link PrC to familiarity-based item recognition and the HC to the 

recovery of episodic contextual detail. However, in addition to the HC, these data also 

implicate PhC in the recovery of contextual detail. With respect to competing three-

component models of MTL organization, the overall pattern of results obtained with 

fMRI studies favours the BIC model over CRAFT as differential activity in PhC is 

typically observed in relation to the encoding and retrieval of recollection or the recovery 

of source detail, not familiarity-based context recognition.  

In addition to informing the development of the theoretical models of MTL organization, 

results from these fMRI investigations have also guided proposals concerning the 

mechanism by which familiarity-based item recognition signals are coded in PrC. 

Specifically, the observation that familiarity signals measured at the time of retrieval tend 

to manifest in fMRI BOLD responses as a relative decrement in activity has been taken 

as evidence favouring the notion that it is a decrease in PrC activity that codes for 

stimulus familiarity (c.f., Yassa and Stark, 2008; Kafkas and Montaldi, 2012). 

Interestingly, such findings are consistent with results from neurophysiological data 

obtained with single-cell recordings from PrC in both macaques and rats. Specifically, 

these studies most typically reveal a decrease in neural spiking for repetition of visually 

presented stimuli (Xiang and Brown, 1998; cf. Thome et al., 2012). However, as will be 

discussed in Chapter 4, there are a number of challenges associated with mapping 

neurophysiological recordings and fMRI BOLD responses onto one another. 

By linking the functional contributions of MTL structures to differences in informational 

content, rather than mnemonic processes as such, the BIC model of MTL organization 

can account for much, though not all, extant fMRI and neuropsychological data that 
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speak to the issue of functional specialization pertaining to familiarity-based item 

recognition and recollection of contextual detail. Importantly, however, the neural 

correlates of familiarity-based item recognition have primarily been probed using words 

as memoranda. Accordingly, no systematic effort has been made to examine potential 

differences between contributions of MTL structures to recognition memory in relation to 

stimulus content. This point is particularly pertinent for discussions concerning the roles 

of PrC and PhC, as fMRI data obtained in non-mnemonic task contexts point to category-

specific differences between these structures in relation to visually presented objects. 

How these categorical effects relate to the distinction between item and context 

representations remains unclear.  

1.7 Representational Account of MTL Functioning 

Classically, the MTL has been characterized as a dedicated declarative memory system, a 

bias reflected in each of the theories reviewed thus far. However, the representational 

account of MTL functioning challenges theoretical frameworks that ascribe purely 

mnemonic functions to MTL structures. At its core, the representational account suggests 

that the MTL supports not only long-term memory, but short-term memory, implicit 

memory, and perception, as well. Moreover, the specific contributions of different MTL 

structures to both memory and perception is determined by the type of visual content in 

question (Murray and Bussey, 1999; Bussey and Saksida, 2007; Graham et al., 2010). 

Specifically, PrC is thought to code for complex object representations whereas the HC 

and PhC are thought to represent scenes (Graham et al., 2006; Lee et al., 2006; Taylor et 

al., 2007; Lee et al., 2008; Barense et al., 2010). Notably, however, discussions pertaining 

to the proposed interface between memory and perception in the MTL have focused 

primarily on the distinction between PrC and the HC. 

Critically, PrC is purported to generate highly integrated representations of complex, 

multi-feature objects. These representations code not only the co-occurrence of features 

comprising an object (e.g., eyes, nose, and mouth), but also their unique configuration 

(e.g., what distinguishes one face from another). In this regard, object representations in 

PrC are thought to differ from those in earlier regions of the ventral visual stream (e.g., 

lateral occipital complex) which are less integrated or even coded at the individual 



17 

 

feature level (Bussey and Saksida, 2002; Cowell et al., 2006); the level of object feature 

integration is thought to increase as information progresses rostrally along the ventral 

visual stream with PrC at the apex. This hierarchical framework assumes that object 

representations in PrC are recruited only when task demands require discrimination 

between complex objects that are highly similar, and therefore, are discriminable only at 

the level of feature conjunctions (i.e., categorized stimuli), rather than any one single 

feature. If the objects in question are not sufficiently complex and/or have limited feature 

overlap, it is assumed that discriminations can be resolved based on less integrated or 

feature level representations at earlier stages of the ventral visual pathway. The 

representational account suggests that the HC and PhC generate highly integrated scene 

representations in a manner that is comparable to that of objects in PrC. Importantly, 

integrated object representation in PrC and scene representations in either the HC or PhC 

can be brought to bear on both mnemonic and perceptual discriminations in a task 

dependent manner. Put another way, the representational account suggests that there may 

not be a sharp distinction between memory and perception as discriminations at either 

level are predicated on common representations.  

Proponents of representational accounts maintain that the memory deficits associated 

with MTL damage reflect the consequence of an inability to form new, and to access 

previously stored, conjunctive representations of objects in PrC and scenes in the HC and 

PhC. In other words, the model predicts category-specific impairments associated with 

MTL damage that selectively affects either PrC or the HC and PhC. With respect to the 

distinction between familiarity-based item recognition and recollection, the model 

predicts that object representations in PrC and scene representations in the HC and PhC 

support both component processes.  

1.8 Representational Account of MTL Functioning: 
Neuropsychological and fMRI Evidence 

While development of the representational account was guided primarily by animal 

lesion studies, predictions derived from this model have also been tested with 

neuropsychological research conducted in humans. Such approaches have focused on 

characterizing perceptual deficits in patients that have either selective HC lesions or 
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broader MTL damage that includes aspects of the HC, PrC, and PhC. At the outset, it 

should be noted that results favouring a representational account of MTL function have 

not gone unchallenged (Levy et al., 2005; Shrager et al., 2006; Baxter, 2009; Suzuki, 

2009). Here, however, I will highlight results from only a few exemplary studies that 

provide support for this model (see Graham et al., 2010, for review).   

Lee et al. (2005) examined performance on a perceptual discrimination task using a 

simultaneous match to sample paradigm in healthy control participants, patients with 

selective hippocampal damage, and patients with broader MTL damage that included 

PrC. The task required participants to judge which of two images was most similar to a 

simultaneously presented sample image; the similarity between each option and the 

sample image was manipulated through image morphing with one option adopting 

relatively more features from the sample. When compared to age-matched controls, 

patients with hippocampal damage exhibited deficits limited to the discrimination of 

scenes, whereas patients with broader MTL damage were impaired at discriminations of 

scenes, faces, and objects. This pattern of results is consistent with the representational 

account as it not only implicates MTL structures in perceptual judgments in the absence 

of long-term declarative memory demands, but it does so in a category-specific manner. 

Moreover, both patient groups performed as well as controls when discriminating colors 

and abstract art that could be resolved based on a simple perceptual feature. Lee et al. 

(2006) have replicated these findings using different experimental procedures for scenes 

and faces in neurological patients with more pronounced atrophy of the HC than 

surrounding neocortical structures (i.e., Alzheimer’s disease) and those with more 

significant damage to PrC than the HC (i.e., semantic dementia patients).  

In addition to neuropsychological investigations, a number of studies have also evaluated 

the representational account using fMRI in healthy humans. For example, Barense et al. 

(2010) compared PrC activation during difficult and easy oddity discriminations for 

faces, objects, and scenes. In this task, stimulus triplets were presented, two of which 

were identical, and participants were required to identify the oddball. In the easy 

condition, all stimuli were presented with viewpoint held constant. As such, the target 

could be identified based on overall differences in item shape or contrast whereas the 
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difficult condition required feature integration. In the difficult condition, viewpoint varied 

across stimuli in the triplet and required consideration of integrated feature conjunctions. 

Comparison of BOLD responses in each condition, within each stimulus class, revealed 

PrC involvement for perceptual judgments pertaining to objects and faces, but not scenes. 

Lee et al., (2008) have revealed similar effects in PrC for faces and in the HC for scenes 

in the context of a comparable oddity paradigm.  

O’Neil et al., (2009) directly examined the role of PrC when perceptual and mnemonic 

discriminations are made for morphed faces, using similar stimulus arrays for each 

condition. The memory task required that participants identify a previously studied face 

from an array that included the simultaneous presentation of two lures that varied with 

respect to perceptual similarity with the target. The perceptual discrimination task 

required selection of the odd item from the stimulus triplet display. Critically, both tasks 

were found to activate PrC similarly, compared to a control task that could be solved 

based upon a simple perceptual feature (i.e., a luminance discrimination task).  

When considered together, the pattern of results obtained across neuropsychological and 

fMRI investigations does indeed suggest that PrC and the HC play a critical role not only 

in declarative memory tasks but in perceptual discrimintation, as well. Perhaps more 

important for current consideration, however, are predictions concerning category-

specific recognition memory effects pertaining to objects and scenes in these structures. 

While many of the core principles of the representational account have been carefully 

tested, the notion that recognition memory signals may be category-specific has not been 

the subject of systematic investigation. Given that memory and perception may indeed be 

closely related at the level of MTL processing, hypotheses regarding category-specific 

item recognition signals are likely to benefit from consideration of category-specific 

responses in more posterior aspects of the ventral visual stream and the MTL.   

1.9 Category-Specific Responses in Ventral Temporal 
Cortex 

Efficient categorization of stimuli is among the most fundamental functions of our visual 

system. Evidence obtained over decades of neuropsychological and fMRI research 
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indicates that the ventral visual pathway is critically important for object recognition and 

categorization (Goodale and Milner, 1992; Mishkin and Ungerleider, 1982). Given the 

broad implications associated with understanding object recognition, these lines of 

research have generated a massively large, yet nuanced literature that cannot be fully 

reviewed here. Rather, I will provide only a brief summary of robust findings related to 

categorical representations in ventral temporal cortex (VTC) that are particularly relevant 

to the rationale and goals of this thesis. At the broadest level, fMRI research has revealed 

two types of categorical responses in VTC (see Op de Beeck et al., 2008; Grill-Spector 

and Weiner, 2014, for review). The first comprise contiguous regions of cortex that 

respond preferentially to stimuli from a specific category (e.g., faces) as compared to 

stimuli from other categories (e.g., scenes). The second type of categorical 

representations are distributed across the entirety of VTC and coded at a population level.  

Discrete category selective regions of cortex have been identified for numerous types of 

stimuli including faces (Kanwisher et al., 1997), scenes (Epstein et al., 1998), words 

(Cohen et al., 2000), and body parts (Peelen and Downing, 2005). These regions are 

typically contiguous voxel clusters functionally defined based on differential BOLD 

responses and often encompass more than one distinct anatomically defined structure. 

Parahippcampal place area, for example, is comprised of the posterior extent of the 

parahippocampal cortex and adjacent lingual gyrus and is defined as the contiguous 

cluster of voxels that preferentially respond to scenes as compared to faces, objects, and 

scrambled scenes. Importantly, fMRI findings suggesting that specific areas of VTC 

support specialized visual processing of categorical stimuli is consistent with 

neuropsychological evidence linking damage in different aspects of VTC to various 

forms of visual agnosia (i.e., the inability to recognize stimuli from specific categories; 

for comprehensive review see Farah, 2004). For example, prosopagnosia, perhaps the 

most well-known form of agnosia, refers to an inability to recognize faces despite a 

preserved ability to name inanimate objects, and can be associated with damage to the 

fusiform gyrus (e.g., Moscovitch et al., 1997). While agnosia for multiple stimulus 

categories are often comorbid, careful consideration of lesion overlap across individuals 

suggests that category-specific forms of agnosia can be linked to focal damage in regions 

of VTC that correspond to functionally defined regions in healthy individuals (Milner and 
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Goodale, 1995). Together, these lines of research have informed proposals suggesting 

that categorical perception is sub-served by visual modules that are specialized for 

processing specific types of stimuli. 

In contrast to evidence supporting a modular view of visual perception and object 

categorization, the introduction of multi-voxel pattern analysis (MVPA) has also revealed 

overlapping categorical representations that are distributed across broad swaths of VTC, 

including voxels with no clear categorical preference. These analysis approaches can be 

used to ask whether the patterns of activation associated with stimuli from one specific 

category are more similar to one another than they are to those corresponding to stimuli 

from a different category. Seminal work conducted by Haxby et al. (2001), was among 

the first MVPA studies to reveal these distributed regularities in VTC using stimuli from 

eight distinct categories, including faces and various classes of man-made objects. 

Importantly, this study revealed categorical sensitivity across visually responsive voxels 

in VTC even after exclusion of regions that showed category-selective responses, i.e., 

accurate classification of face stimuli even after excluding voxels that responded 

maximally to faces, for example. Further, stimuli from non-preferred categories could 

also be classified in discrete, classically defined category-selective regions. This finding 

has since been replicated using both fMRI (Spiridon and Kanwisher, 2002; Carlson et al., 

2003; O’Toole et al., 2005) and single-cell recordings in macaques (Kiani et al., 2007). 

Notably, striking similarities have been reported between the representational structure of 

these distributed responses across humans and macaques (Kriegeskorte et al., 2008). 

Moreover, these cross-species data revealed that this categorical representational 

structure is not present in early or intermediate visual areas (V1-4) in either humans or 

monkeys. Biologically plausible computational models have also been developed that 

further support the notion of distributed and overlapping categorical representations in 

VTC (Cowell and Cottrell, 2013).  

Ultimately, a categorical representational structure that is distributed across VTC and 

coded at the population level can accommodate the observation that humans and other 

species are able to recognize and categorize stimuli from thousands of categories at 

varying levels of abstraction (i.e., exemplar, basic, subordinate, and superordinate) 
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despite the fact that there are relatively few regions dedicated to processing specific 

categories of stimuli. As it relates to recognition memory, however, it is not clear how 

these category specific responses in the ventral visual stream map onto models of MTL 

organization that emphasize a distinction between items and contexts in PrC and PhC, 

respectively. This issue is even more striking when considered in the context of research 

that implicates both PrC and PhC in object processing.  

1.10 Category-Specific Responses in the MTL 

Although it has been suggested that PrC constitutes the anterior most aspect of the ventral 

visual stream (Murray and Bussey, 1999; Bussey and Saksida, 2007; Graham et al., 

2010), fMRI investigations of categorical representations have primarily focused on more 

posterior aspects of VTC. Recently, however, a number of studies have specifically 

examined content-specific responses in MTL with a particular focus on identifying 

categorical dissociations between PrC and PhC. Although the MTL is known to play a 

critical role in recognition memory, this line of research concerning categorical effects 

has not been directly linked to specific mnemonic processes.  

In addition to the face-selective regions that have been identified in more posterior VTC 

(e.g., fusiform face area), results from recent fMRI and animal neurophysiological 

research indicate that aspects of PrC may also exhibit specialization for face processing. 

Specifically, examination of the face processing network in the macaque has implicated a 

contiguous patch in a ventral aspect of the anterior temporal lobe (Freiwald and Tsao, 

2010; Moeller et al., 2008; Mur et al., 2010; Pinsk et al., 2009; Rajimehr et al., 2009; 

Tsao et al., 2003; Tsao et al., 2008). Targeted assessment of face selectivity in humans 

has been probed using mnemonic tasks including 1-back identity tasks (Mundy et al., 

2012; Nasr and Tootell, 2012; Rossion et al., 2012), and non-mnemonic tasks such as 

gender discrimination or passive viewing conditions (Mundy et al., 2012; Rajimehr et al., 

2009). Together, these lines of research converge in revealing a region in the vicinity of 

PrC that is functionally comparable to that revealed in non-human primates (Nasr and 

Tootell, 2012; Rajimehr et al., 2009; Rossion et al., 2012; Tsao et al., 2008; Von Der 

Heide et al., 2013). Interestingly, MVPA of fMRI data has also revealed distributed 
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categorical information in PrC with evidence for a potential specialized role related to 

faces, as compared to either scenes, words, or sounds (Liang et al., 2013).   

As noted in section 1.9, early research on categorical perception linked PhC to the 

processing of scene stimuli (i.e., the parahippocampal place area; Epstein and Kanwisher, 

1998). Indeed, obtaining differential responses to scenes as compared to faces, tools, or 

scrambled scenes in posterior aspects of PhC is one of the most robust fMRI effects in the 

literature. The initial link between PhC and scene processing was one line of evidence 

that informed the notion that this structure represents contextual detail relevant for 

episodic recollection (Davachi, 2006; Eichenbaum et al., 2007). However, results from 

subsequent investigations of category preference in PhC have revealed differential 

responses not only to content that can serve as contextual information, such as scenes, but 

also to some categories of objects that can potentially serve as target items in a 

recognition memory task, such as buildings (Aguirre et al., 1998; Epstein and Kanwisher, 

1998; Janzen and van Turrenout, 2004; Epstein, 2005; Cate et al., 2011). A number of 

fMRI studies have since sought to identify the stimulus properties that modulate PhC 

responses to objects.  

While the object properties that evoke differential responses in PhC in the absence of 

mnemonic demands are only beginning to be understood, evidence from a number of 

studies suggests that landmark suitability may be a critical determinant (Mullally and 

Maguire, 2011; Konkle and Oliva, 2012; Troiani et al., 2014). Specifically, objects that 

are large and typically fixed in location are suitable landmarks as these properties confer 

potential navigational relevance. For example, Troiani et al. (2014) examined PhC 

responses to objects that were independently rated along a number of dimensions (i.e., 

real-world size, visual size, fixedness, placeness, context, and distance) in the context of 

an experiment that asked participants to press a button each time a stimulus was 

presented. Results from a factor analysis revealed that PhC responses to objects loaded 

primarily on visual size and the landmark suitability of an object (i.e., the extent to which 

an object is large, fixed in place, and defines a physical space). This pattern of results is 

consistent with previous research which suggested that PhC represents objects that define 
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a three-dimensional space that one could operate within by virtue of being large and fixed 

in location (Mullally and Maguire, 2011).    

In general, and to the extent that faces can be considered discrete items, evidence from 

research linking PrC to face processing is consistent with both the BIC model and 

representational account of MTL functioning. They are also consistent with the notion 

that PrC plays a critical role in face and object perception. However, the observation of 

object-specific representations in PhC raises interesting questions regarding the proposal 

that this structure supports only contextual information and that PrC supports familiarity-

based item recognition for objects from all stimulus categories. The implications of these 

category-specific effects on distinctions between PrC and PhC at the level of items and 

contexts, or familiarity and recollection remain poorly understood. Given that extant 

fMRI studies of recognition memory have primarily employed words as stimuli (for 

review, see Diana et al., 2007; Kim, 2013; cf. Montaldi et al., 2006), whether objects that 

are differentially represented in PhC in non-mnemonic task contexts are also associated 

with familiarity signals in PhC remains unknown. In fact, few efforts have been made to 

systematically probe the relationship between stimulus content and familiarity-based item 

recognition.  

1.11 Evidence of Material-Specific Familiarity  
Signals in PrC 

Given that the controversy over whether familiarity-based item recognition and 

recollection are supported by different MTL structures has dominated the discussion 

regarding functional specialization within the MTL over recent years, very few studies 

have systematically examined the relationship between stimulus content and the neural 

correlates of familiarity-based item recognition. However, a much older 

neuropsychological literature has been concerned with the question of whether left versus 

right-sided MTL structures differ in their functional role (for reviews, see Smith, 1989; 

Lee et al., 2002; Saling, 2009). The most influential account of lateralization in the MTL 

builds on the notion of material-specificity and entails that hemispheric differences in 

MTL functioning are determined by the nature of the stimuli processed in declarative 

long-term memory (Milner, 1972); left MTL structures are thought to be specialized for 
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memory processing of verbal materials whereas right MTL structures make differential 

contributions to processing of materials that cannot easily be verbalized. Overall, the link 

between left sided lesions and verbal-memory deficits appears to be more consistent 

across neuropsychological studies, in particular those conducted in patients with temporal 

lobe epilepsy, than that between right-sided lesions and deficits in memory for non-verbal 

material (e.g., Lee et al., 2002). However, even for verbal memory impairments, the 

laterality literature is by no means conclusive (for discussions, Blaxton and Theodore, 

1997; Dobbins et al., 1998; Saling, 2009).  

Much of the literature on lateralization and material specificity predates our current 

understanding of recognition memory in terms of two independent processes with distinct 

neural mechanisms in the MTL. As such, the question of whether item recognition and 

recollection are lateralized in specific ways has received significantly less systematic 

investigation than examining differential contributions of HC as compared to 

neighbouring neocortical structures to these two processes. Research from several studies 

in patients with selective recollection impairments that are associated with unilateral HC 

lesions suggests that this component process may not be clearly lateralized (Peters et al., 

2009; Bowles et al., 2010; but see, Moscovitch and McAndrews, 2002; Bird et al., 2007). 

By contrast, data from two recent studies in patients with large, unilateral temporal-lobe 

lesions suggest that the processes supporting familiarity-based item recognition may be 

more clearly lateralized than those supporting recollection (Cohn et al., 2009; Aly et al., 

2010). Critically, however, in both studies these familiarity impairments were observed in 

the context of accompanying broad recollection impairments.  

To determine whether recognition impairments that are selective for familiarity-based 

item recognition are material-specific we recently examined whether NB’s familiarity 

impairment, associated with a left MTL resection that included PrC (see section 1.4), was 

limited to verbal stimuli or generalizes across materials (Martin et al., 2011). Towards 

this end, I administered three different recognition tasks using aurally presented 

pronounceable non-words, faces, and abstract designs as stimuli. Familiarity and 

recollection were specifically probed by asking participants to indicate whether their 

subjective recognition experience associated with each trial during a recognition test were 
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based on familiarity of the stimulus itself or recollection of contextual detail. We found 

that NB exhibited a deficit in overall recognition of aurally presented pronounceable non-

words that reflected a specific impairment of familiarity assessment with preservation of 

recollective processes. Examination of recognition memory for faces and abstract designs 

did not reveal any impairment. Importantly, this pattern was observed even though task 

difficulty, as reflected in overall recognition performance, was matched between the tasks 

with auditory pronounceable non-words and faces.  

This pattern of results suggests that stimulus material is a factor that influences whether 

familiarity impairments will be observed with unilateral lesions. More broadly, these 

findings suggest that the neural mechanisms that support familiarity assessment in the 

temporal lobe operate in a manner that is tied to the specific stimulus class being 

assessed. While these data provide a promising starting point, they do not speak to 

questions related to potential category-specific differences between structures within the 

MTL in each hemisphere, namely PrC and PhC, and how they relate to familiarity-based 

item recognition in particular.   

1.12 Goals of Current Studies 

My thesis describes research I conducted with the aim of addressing the relationship 

between familiarity-based item recognition signals and category-specific effects in the 

MTL. Within this context, I have also examined and characterized the manner in which 

such signals are reflected in fMRI BOLD responses. At the broadest level, the 

experiments presented here were designed to answer three questions.  

1)  As they relate to recognition memory, do PrC and PhC make category-specific 

contributions to familiarity-based item recognition?  

In Chapter 2, I present an fMRI study that sought to evaluate the BIC model’s strong 

claim that PrC supports item recognition for stimuli from all categories. To evaluate this 

possibility I employed faces, chairs, and buildings as stimuli. It was hypothesized that 

activity in PrC would be associated with the familiarity of faces, whereas activity in PhC 

would be associated with the familiarity of buildings even in the absence of recovery of 
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episodic contextual detail. No strong a priori predictions were made concerning the 

familiarity of chairs. To anticipate my findings, MVPA revealed face familiarity signals 

in right PrC, but not PhC. By contrast, I found evidence for familiarity signals pertaining 

to buildings in right PhC, but not PrC. Lastly, the familiarity of chairs was associated 

with distributed patterns of activation in both PrC and PhC. 

2) What specific stimulus properties determine the relative contributions of PrC and 

PhC to item-based recognition memory? 

In Chapter 3, I present results from an experiment that follows directly from results 

reported in Chapter 2. The primary objective of this study was to 1) replicate our previous 

results pointing to the coding of item recognition signals for buildings in PhC, and 2) 

assess the stimulus properties that push such familiarity signals toward either PrC or PhC. 

For the latter purpose, I focused specifically on landmark suitability while holding size 

constant. Towards this end, buildings, trees, and airplanes were used as stimuli. Decoding 

results revealed above chance classification of familiarity-based item recognition 

judgments for buildings and trees from patterns of activity distributed across PhC, but not 

PrC. By contrast, classifier accuracy was above chance when decoding recognition 

decisions for airplanes from distributed activity patterns in PrC. 

3) Are item-based recognition signals in PrC coded in a distributed, category-specific 

manner? 

The research presented in Chapter 4 aimed to address novel questions concerning the 

distributed nature of face familiarity signals in PrC and the extent to which they can be 

characterized as content specific. I focused specifically on PrC as familiarity-based item 

recognition signals in this structure have been widely characterized and it has been linked 

to face processing in non-mnemonic task contexts. Interestingly, results obtained using 

MVPA revealed that the familiarity of faces can be reflected in patterns of activation that 

are distributed across voxels with heterogeneous response profiles. Moreover, through 

comparison with activity from an independent functional localizer scan, my results 

indicate that familiarity signals pertaining to faces are category-specific, despite being 
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coded in a pattern that extend beyond the contiguous patch of voxels within PrC that 

preferentially responded to faces. 
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Chapter 2  

 

2 Distinct Familiarity-Based Response Patterns for Faces 
and Buildings in Perirhinal and Parahippocampal 
Cortex 

2.1 Introduction 

The functional organization of the medial temporal lobes (MTL) remains a topic of 

intense debate in neuroscience. Much pertinent research in human and non-human 

species has focused on recognition memory, i.e., the ability to discriminate between 

previously encountered and novel stimuli, and the question of whether different MTL 

structures make distinct functional contributions. An influential view is that the 

hippocampus (HC) plays a specific role in the encoding and subsequent recovery of 

episodic contextual information about a specific prior stimulus encounter, whereas 

perirhinal cortex (PrC) supports recognition based on the familiarity of the item itself 

(Aggleton and Brown, 1999; Eichenbaum et al., 2007; Mayes et al., 2007). However, 

there are also findings that point to category-specific contributions of different MTL 

structures to recognition memory (Davachi, 2006; Murray et al., 2007; Graham et al., 

2010). An important, currently unresolved question is how category-specific effects relate 

to the distinction between item- and contextually-based recognition processes. This issue 

is of particular relevance for characterizing the functional contributions of the perirhinal 

and parahippocampal cortices (PhC; Ranganath and Ritchey, 2012). 

In the visual modality, the strongest category-specific neural responses have been 

observed for faces and scenes. Differential fMRI responses to faces are typically most 

pronounced in aspects of the lateral occipital and posterior fusiform gyrus (e.g., 

Kanwisher et al., 1997; see Gobbini and Haxby, 2007 for review), but have also been 

reported more rostrally in PrC (Tsao et al., 2008; Nasr and Tootell, 2012; O’Neil et al., 

2013). Differential responses to scenes, by contrast, have predominantly been found in 

posterior aspects of PhC (Epstein and Kanwisher, 1998; Epstein, 2008). Scene specific 
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responses in PhC have informed the proposal that this structure represents episodic 

context in recognition memory and recall (Davachi, 2006; Eichenbaum et al., 2007). This 

role of PhC has been considered as distinct from both the role of PrC in the representation 

of objects, and from the role of the HC in item-context binding (Diana et al., 2007; 

Eichenbaum et al., 2007).  

Interestingly, fMRI research has also revealed that preferential PhC responses extend 

beyond scenes to certain types of objects, including buildings (Aguirre et al., 1998; Cate 

et al., 2011). While the exact object characteristics that ‘drive’ PhC responses are only 

beginning to be understood, initial findings suggest that PhC is preferentially tuned to 

objects that are large (Konkle and Oliva, 2012), that evoke a sense of three-dimensional 

space (Mullally and Maguire, 2011), and/or that have navigational relevance (Janzen and 

van Turrenout, 2004; Troiani et al., 2012). That PhC responds not only to scenes but also 

to certain types of objects is of direct relevance to its proposed role in recognition 

memory. Specifically, the summarized findings raise the question of whether the role of 

PhC in recognition memory is indeed limited to representing episodic contextual 

information, or whether it also represents item-based familiarity for certain types of 

objects. Phenomenologically, buildings, like any other objects, can be recognized as 

‘old’, even when episodic contextual detail about a specific prior stimulus encounter is 

absent. Corresponding item-based familiarity signals in PhC would be of broader 

theoretical significance towards understanding MTL organization, as they could suggest 

that familiarity is not invariably supported by PrC.  

Here, we employed high-resolution fMRI in combination with multi-voxel pattern 

analyses (MVPA) to examine distributed patterns of activity in MTL structures that carry 

information about the perceived familiarity of three categories of objects, namely faces, 

buildings, and chairs. 

2.2 Materials and Methods 

2.2.1 Participants 

Nineteen right-handed participants took part in the study (21-30 years of age, mean age = 

25.2 years; 12 females). They were screened for the absence of a history of neurological 
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disorders. Data from one participant were excluded from all analyses due to excessive 

head movement (> 5 mm along one axis) during scanning. Participants received financial 

compensation for their participation and provided informed consent according to 

procedures approved by the University of Western Ontario Health Sciences Research 

Ethics Board. 

2.2.2 Stimuli and Procedure 

Grayscale images depicting exemplars from three different object categories (faces, 

chairs, and buildings) were used as stimuli. Images of chairs and buildings were obtained 

from the internet using Google Image Search. Images of faces were obtained from a 

database we acquired for another study (O’Neil et al., 2009). All visual background was 

removed from the target object depicted in each image and replaced by an artificial, 

homogenous background without any space-defining features (see Fig. 2.1). For example, 

sidewalks, lawns, and any visible horizon were removed from each image depicting a 

building. Presented in this manner, all items fulfill the definition of an object as being a 

discrete entity bounded by a single contour that does not have background elements or a 

horizon, in line with previous research that aimed to characterize the response properties 

of PhC regions (Troiani et al., 2012). Image size was constrained by a 375 x 250 pixel 

bounding box and each object image was scaled to fit this box, with at least one 

dimension corresponding to its limits. Final item selection was optimized based on 

behavioural pilot data so as to match recognition accuracy and maximize the proportion 

of familiarity-based recognition responses across the three object categories. For each 

category, three sets of 40 items were selected. Two of these sets served as items 

presented prior to scanning during a study session and as corresponding targets in the 

subsequent recognition-memory test during scanning; items from the third set served as 

novel lures in the recognition task. Assignment of the three item sets as targets or lures 

was counterbalanced across participants.  

All participants completed an initial study session outside of the scanner that was 

preceded by a brief practice phase. The study session was separated into six blocked 

sequences of 40 trials, with blocks corresponding to the two sets of items from each of 

the three categories. Blocks were presented in an ABCCBA order, with each stimulus 
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category corresponding to one of the letters. Stimuli were presented for 3000ms each 

with a 2000ms ISI and participants were asked to rate the relative attractiveness, comfort, 

or value for faces, chairs, and buildings, respectively, using a five-point scale. Refer to 

Figure 2.1 for a schematic representation of the experimental design. 
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Figure 2.1 Experimental task design. During encoding, participants rated the relative 

attractiveness, comfort, or value for faces, chairs, and buildings, respectively. In the 

subsequent scanned recognition-test stage, participants provided a rating of perceived 

item familiarity. They were asked to avoid voluntary attempts to recollect contextual 

details pertaining to a specific prior item encounter, but were offered an opportunity to 

indicate recollection when it occurred involuntarily. 
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Following a delay of approximately one hour that allowed for scanning preparation, 

participants completed a recognition memory test consisting of the 80 previously studied 

targets and 40 lures from each category, for a total of 360 trials. Items were distributed 

over eight functional runs, each comprised of 45 trials with 10 previously studied and 5 

novel items from each stimulus class. Each stimulus was presented for 2500 ms 

(corresponding to the length of one TR), with a jittered fixation-baseline separating trials. 

Baseline fixation ranged from 2.5s to 15s and the order of trials and jitter were optimized 

within each run, using the OptSeq2 algorithm 

(http://surfer.nmr.mgh.harvard.edu/optseq/). Each of the three counterbalanced versions 

of the experiment used a unique jitter sequence and trial order. Participants viewed the 

stimulus displays through a mirror at a distance that yielded an approximate object size of 

18 x 13° visual angle. Participants were asked to make recognition judgments with one of 

five different response options using an MRI-compatible keypad. 

For their recognition judgments, participants were instructed to focus on their 

experienced item familiarity and provide a rating of perceived strength on a scale 

between one (least familiar) and four (most familiar). They were asked to respond 

quickly and avoid intentional attempts to recollect contextual details pertaining to a 

specific prior item encounter; however, they were offered an opportunity to indicate 

recognition based on spontaneous, involuntary recollection with a separate response 

button when it occurred. Pertinent prior fMRI research suggests that participants can 

strategically control the extent to which they attempt to retrieve contextual details in 

recognition decisions (Dobbins and Han, 2006; Quamme et al., 2010; the specific 

instructions were guided by those provided by Montaldi et al., 2006; see also Migo et al., 

2012 for further rationale). Participants were informed that, despite their efforts to focus 

on familiarity, spontaneous recollection could be expected to occur on some trials. 

Recollection of contextual details was defined as any situation that involved conscious 

awareness of information about the past item encounter that was not included in the 

stimulus itself, such as internal thoughts and associations that were formed during the 

initial item encounter, or related uncontrolled external events (e.g., a knock on the door 

during that item’s presentation at study). Participants were familiarized with these 

response options in a practice phase that required them to justify any recollection 
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response with a description of the contextual detail retrieved. They were also informed 

that two thirds of the items to be presented had been encountered in the study phase. 

2.2.3 fMRI Acquisition Protocol 

All MRI data were acquired on a 3-Tesla Siemens TIM MAGNETOM Trio scanner with 

a high-resolution fMRI protocol optimized for MTL examination. Functional MRI 

volumes were collected using a T2*-weighted single-shot gradient-echo-planar 

acquisition sequence [TR = 2500 ms, TE = 26 ms, slice thickness = 2 mm, in-plane 

resolution = 2 X 2 mm, FOV = 220 mm X 220 mm, matrix size 110 X 110 mm, flip angle 

= 90°]. Each functional volume included 37 contiguous slices collected in an interleaved 

manner. For each experimental run, 176 volumes were collected. To optimize MR signal 

in the anterior temporal lobes, a transverse orientation was chosen with the effort to 

include the entire temporal lobes and as much visual cortex as possible. This slice 

selection resulted in full coverage of the ventral aspects of occipital and full coverage of 

the entire temporal lobes in all participants, with exclusion of the most superior aspects of 

frontal, parietal, and occipital cortices. A saturation band was applied during functional 

runs in order to minimize artifacts related to eye-movements and the sinus cavity. T1-

weighted anatomical images were obtained using an ADNI MPRAGE sequence [192 

slices, time to repetition (TR) = 2300 ms, field of view (FOV) = 240 X 256 mm, matrix 

size = 240 X 256, flip angle = 9 mm, echo time (TE) = 4.25 ms, 1 mm isotropic voxels]. 

2.2.4 fMRI Data Pre-Processing 

fMRI data were pre-processed in native space using BrainVoyager QX version 2.3 (Brain 

Innovation). Functional images were slice-scan time corrected, 3-D motion corrected 

with reference to the functional volume taken just prior to the anatomical scan, and high-

pass filtered using a linear trend and a Fourier basis set of 2 cycles/run. Images were then 

co-registered with the anatomical image, aligned with the AC-PC plane, and smoothed 

using a three-dimensional Gaussian kernel with a full-width at half maximum of 3 mm. 

Functional data were convolved using a standard double gamma hemodynamic response 

function (Friston, 1998). Participant-specific GLMs of these data allowed for extraction 

of z-scored trial-specific beta estimates in all voxels of interest. Beta estimates derived 
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from a modeled HRF were chosen as target measure for the MVPA (i.e., as classifier 

input) because they are particularly well suited to account for overlap in the 

hemodynamic response in fast-event related designs (Misaki et al., 2010). Changes in 

mean intensity across runs were modeled by including them as predictor of no interest in 

the participant-specific GLMs. 

2.2.5 Anatomical ROI Definition 

The main structures of interest in our investigation were PrC, PhC, and the HC. To 

conduct our MVPA, we obtained anatomically defined ROIs in native MRI space with 

manual tracing separately in each participant, using an established MR-based protocol 

that specifies anatomical landmarks for demarcation of these MTL structures and their 

boundaries (Pruessner et al., 2000, 2002). Specifically, we obtained ROIs for PrC, PhC, 

anterior HC (aHC), posterior HC (pHC), and the entire HC in each hemisphere. 

Entorhinal cortex was identified at the time of tracing to aid in the identification of 

anatomical landmarks but was not considered for the functional analyses. The distinction 

between anterior and posterior HC was introduced based on recent findings pointing to 

distinct functional specialization, and followed the protocol described by Poppenk and 

Moscovitch (2011) with the uncal apex serving as the critical boundary. Figure 2.2 

depicts a graphical representation of these ROIs in a representative participant. 
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Figure 2.2 Coronal structural MRI slices from a representative participant with 

anatomically defined ROIs used for MVPA of fMRI data. 
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2.2.6 Multivariate Pattern Analysis of fMRI Data 

MVPA (see Norman et al., 2006; Kriegeskorte and Bandettini, 2007; Tong and Pratte, 

2012, for reviews and rationale) was employed to address two different types of 

questions. First, we used it to determine whether distributed patterns of activity could be 

identified in any of the MTL structures examined that distinguished between the stimulus 

categories (i.e., faces, chairs, and buildings). Second, and more importantly, it allowed us 

to examine whether distributed patterns of activity could be identified that reflected a 

memory signal, i.e., differences between familiar and novel stimuli within a given 

stimulus category. In these analyses, we specifically focused on perceived familiarity or 

novelty given that our main interest was in understanding the role of MTL structures in 

explicit recognition judgments. To the extent that the response distribution for items 

perceived as familiar or novel (i.e., familiarity levels 3, 4 versus familiarity levels 1, 2, 

respectively) varied within participants, and to the extent that such unequal item 

distributions can introduce unwanted classification biases, we introduce a sampling 

procedure that matched item numbers of perceived familiar and novel trials within each 

stimulus category. This sampling procedure operated in pseudo-random manner and 

underwent 10 iterations, with the provision that all trials be included in the classification 

analysis at least one time. It reduced the number of trials in the condition with the larger 

number (familiar or novel) so that it corresponded with the number in the other condition 

of interest. For example, if one participant had 50 ‘familiar’ and 42 ‘novel’ responses for 

faces, the number of ‘familiar’ trials included in the classification analysis for faces was 

reduced to 42. We decided to use 10 different sampling iterations in each familiar/novel 

classification based on initial pilot analyses in two participants, which showed that 

classifier performance did not differ statistically when more sampling iterations (up to 

100) were included. 

Pattern classification analyses were conducted using the Princeton MVPA toolbox 

(http://www.pni.princeton.edu/mvpa) and custom MATLAB code (The MathWorks, 

Natick, MA). As a first step, we performed feature selection in order to reduce noise in 

the functional data. For each ROI in each participant separately, the subset of voxels that 

appeared most informative for classification based on initial univariate GLM were 
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selected (ANOVA; see Norman et al., 2006 for discussion). Specifically, a one-factorial 

ANOVA, with number of conditions being equal to the number of conditions pertinent 

for the classification at hand (two or three), was conducted on the beta weights of all 

voxels in each ROI and in each cross-validation. For all familiar-novel classifications this 

analysis was also performed separately for each of the 10 iterations of item sampling. The 

resulting F-values were then rank-ordered across all voxels, and the voxels corresponding 

to the top 10% of that ranking were selected for the MVPA-based classification. Note 

that with this type of feature selection, the number of voxels considered for classifier 

training still scales with the overall size of the ROI. To illustrate the outcome of this 

feature selection, the number of voxels (2x2x2 mm in size), averaged across participants, 

that were included in the subsequent MVPA for each ROI were:  right PrC 55.1, left PrC 

54.9, right PhC 41.2, left PhC 41.2, right aHC 26.2, left aHC 24.3, right pHC 30.5, and 

left pHC 30.0. 

A linear support vector machine (SVM; libSVM, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm) was used for classification of the beta-values 

for the various experimental conditions, with a linear kernel function and a constant cost 

parameter of C = 1. The SVM was trained on all trials minus one from each of the 

conditions that were included in the analysis at hand; those trials not included in the 

training data set subsequently served as test trials for assessment of classification 

performance. This procedure was repeated multiple times such that every trial served as 

the test stimulus for classification, providing a k-fold cross validation (Duda, 2001; 

Chadwick et al., 2010), where k reflects the number of trials that were included in the 

relevant analysis. For each trial in the test set, the classifier provided probability 

estimates that reflected the likelihood that the activity pattern across voxels associated 

with that trial corresponded to each of the different conditions included in the 

classification. These estimates were expressed in a binary manner such that classification 

was either correct (i.e., when the ‘true’ experimental condition was assigned the highest 

probability) or incorrect. Classification accuracy was then calculated based on the 

percentage of test trials that were classified correctly in this binary schema. This 

calculation was performed and averaged across all 10 sampling iterations in the 

familiar/novel classifications to provide an unbiased performance estimate. 
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Finally, we also conducted additional cross-classification analyses to probe whether any 

decision boundary yielding above-chance classification between familiar/novel trials in a 

stimulus category might also allow for successful classification between familiar and 

novel trials from other stimulus categories. The MVPA cross-classification procedure 

used for this purpose employed the same linear SVM, cross-validation technique, and 

sampling procedure described above. However, the sampling procedure was performed in 

order to equate the number of trials across four, rather than two, conditions (i.e., novel 

and familiar trials from two stimulus categories). 

To obtain inferential statistics, we primarily examined whether classification performance 

was above chance (0.5 or 0.33 depending on whether two or three conditions were 

included, respectively), focusing on each ROI independently. For this purpose, we 

employed a single sample t-test to test against a population mean of chance level, 

applying Bonferroni correction based on the number of independent comparisons made 

(i.e., the number of ROIs examined). 

2.3 Results  

2.3.1 Behavioural Performance 

Raw percentages of the different recognition-response types for each stimulus category 

are presented in Table 2.1 Visual inspection of these data demonstrates that recognition 

decisions for previously studied items were based more frequently on familiarity (F3 and 

F4 collapsed; M = 40.2%, 41.0%, and 43.5% for faces, chairs, and buildings, 

respectively) than on recollection (R; M = 11.2%, 12.9%, and 12.5% for faces, chairs, 

and buildings), as intended. Overall recognition performance, i.e., the ability to 

distinguish between previously studied items and novel lures, irrespective of subjective 

recognition experience, was quantified using the discriminability index d’, which 

considers hits and false alarms in the context of signal-detection theory, considering F3, 

F4 and R as ‘old’ responses. Familiarity estimates were calculated using d’ based on F1, 

F2, F3, and F4 responses, and corrected assuming independence between familiarity and 

recollection (Yonelinas, 1999). A one-way ANOVA conducted on these measures 

revealed that performance was closely matched across stimulus categories; there were no 
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significant differences between categories for overall discrimination (F2,51 = .81, p = .45), 

estimates of familiarity (F2,51 = .45, p = .64), nor for estimates of recollection (R hits 

minus R false alarms; F2,51 = .01, p = .99). Although performance levels were low, due to 

the high similarity between all items within each stimulus category, familiarity 

discrimination was above chance for each category (all t17’s > 8.4, p’s < .001). We note 

that the limited number of R responses observed in the present study (collapsed across 

hits and false alarms M = 9.56, 11.67, and 11.06 for faces, chairs, and buildings, 

respectively) did not allow for any investigation of fMRI responses associated with 

recollection.  

With respect to reaction times, a 2 x 3 ANOVA (response type x stimulus category) 

revealed neither a main effect of category (F2,102 = 2.00, p = .14) nor a significant 

interaction (F2,102 = 2.13, p = .12), providing further evidence that all three stimulus 

categories were matched behaviourally. This analysis did reveal a significant main effect 

of response type (F2,102 = 44.39, p < .001), with recollection responses (M = 1336.2 ms, 

SD = 233.9 ms) being faster than judgments of familiarity (F1-F4; M = 1648.8 ms, SD = 

261.4 ms).  
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Table 2.1 Recognition-response distribution and discrimination estimates for each stimulus category. 

Stimulus 

Category 
Percentage responses to studied items     Percentage responses to novel items     Discrimination 

  1 2 3 4 R 1 2 3 4 R Recognition d' Familiarity d' 

Faces 
            

Mean 21.9% 26.7% 20.8% 19.4% 11.2% 42.9% 30.9% 16.3% 8.0% 2.0% .76 .64 

SEM 3.1% 2.1% 1.4% 2.1% 2.0% 5.1% 3.1% 1.8% 1.9% 0.9% .08 .08 

Chairs 
            

Mean 21.4% 24.6% 20.7% 20.3% 12.9% 46.5% 26.8% 15.4% 7.8% 3.5% .76 .66 

SEM 2.5% 1.5% 2.1% 1.8% 3.6% 3.4% 2.2% 1.4% 1.6% 1.2% .06 .06 

Buildings 
            

Mean 24.3% 19.7% 18.4% 25.1% 12.5% 48.0% 25.4% 14.2% 10.2% 3.1% .84 .73 

SEM 3.5% 1.4% 1.7% 2.5% 2.6% 5.6% 2.6% 2.5% 1.6% 1.1% .07 .07 
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2.3.2 fMRI Results - Between Category Classification 

With our MVPA, we first sought to determine whether distributed patterns of activity 

across voxels in any of the anatomically defined ROIs in the MTL could discriminate 

between the three stimulus categories. For this purpose, we considered all novel trials 

regardless of the recognition responses provided by the participants, with an equal 

number of trials for each stimulus category. The one-sample t-tests conducted with 

Bonferroni correction for 8 comparisons (i.e., ROIs), revealed that classification 

performance was above chance in right PrC (t17 = 3.96, p < .01 corrected), left PrC (t17 = 

4.56, p < .01 corrected), right PhC (t17 = 12.89, p < .001 corrected), left PhC (t17 = 9.13, p 

< .001 corrected), and right pHC (t17 = 3.46, p < .05 corrected), with all other regions (left 

aHC, right aHC, and left pHC) showing classifier accuracy not significantly greater than 

chance (all p’s > .37). While these data point to category-specific representations in some 

MTL regions, they do not allow for any inferences as to whether all stimulus categories 

can be discriminated from one another. Figure 2.3 presents the results of additional 

analyses that focused on pair-wise classifications. Activation patterns in right PrC (t17 = 

3.82, p < 01 corrected), left PrC (t17 = 3.19, p < .05 corrected), right PhC (t17 = 12.04, p < 

.001 corrected), left PhC (t17 = 7.25, p < .001 corrected) were sensitive to differences 

between faces and buildings (p’s for remaining ROIs were > .11). These regions were 

also sensitive to differences between faces and chairs (right PrC t17 = 3.46, p < .05 

corrected; left PrC t17 = 5.67, p < .001 corrected; right PhC t17 = 7.31, p < .001 corrected; 

left PhC t17 = 7.14, p < .001 corrected). Another region that showed above-chance 

classification for these categories was the right pHC (t17 = 3.66, p < .05 corrected; all 

other p’s > .41). Lastly, for discriminations between buildings and chairs, classifiers for 

activation patterns in right PrC (t17 = 3.19, p < .05 corrected), right PhC (t17 = 5.41, p < 

.001 corrected), and left PhC (t17 = 6.06, p < .001 corrected) produced above chance 

performance (all other p’s > .30). Together, these results revealed evidence for category-

specific representations reflected in sensitivity to differences between all pairs of 

stimulus categories in PrC as well as in PhC, with the most clear-cut pattern emerging in 

the right hemisphere. Evidence for category-specific representations in the hippocampus 

was limited. 
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Figure 2.3 Pairwise MVPA classification of different stimulus categories in left and 

right PrC, PhC, aHC, and pHC. Classification was based on examination of all trials in 

which novel stimuli were presented. Dashed lines indicate chance level for classification. 

Numbers within bars represent the number of participants for whom classification 

performance was numerically above chance level. All error bars indicate the SEM 

calculated across participants. * p < .05, ** p < .01, *** p < .001. 
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2.3.3 fMRI Results - Within Category Classification of Familiar and 
Novel Trials 

While the previous analyses revealed category-specific effects in both PrC and PhC, their 

selective focus on novel items does not speak to mnemonic signals as such. In other 

words, the results of these analyses do not imply that these structures carry information 

about the perceived familiarity of items in any of the relevant categories. Therefore, we 

next examined whether subjectively perceived familiarity would also be reflected in 

patterns of activity in PrC and PhC that are category specific. For these analyses, trials 

were considered regardless of objective item status and were collapsed across familiarity 

ratings F1 and F 2 (novelty or low familiarity) and contrasted with familiarity ratings F3 

and F4 (high familiarity). This approach ensured that SVM training could be based on a 

sufficiently large number of trials (≥ 24) for the familiarity-based classification in each 

category and individual participant. The average number of trials included for the 

classification of faces, chairs, and buildings at each familiarity level (i.e., low versus 

high) was 39.8, 39.7, and 38.3, respectively. The results of these analyses are presented in 

Figure 2.4. We found evidence for activation patterns that reflected subjectively 

perceived familiarity in both PrC and PhC, but not in the HC in either hemisphere. 

Specifically, in right PrC, patterns of activity could be classified according to subjective 

familiarity with above-chance accuracy for faces (t17 = 4.77, p < .001 Bonferroni 

corrected for 3 comparisons, i.e., number of stimulus categories) and chairs (t17 = 3.47, p 

< .01 corrected), but not for buildings (t17 = .17, p = .87). Notably, classifier accuracy for 

both faces and chairs was significantly greater than for buildings in right PrC (t34 = 3.83, 

p < .01; t34 = 2.68, p < .05, respectively; corrected). By contrast, in right PhC, patterns of 

activity could be classified according to subjective familiarity with above-chance 

accuracy for buildings (t17 = 3.91, p < .01 corrected) and chairs (t17 = 5.27, p < .001 

corrected), but not faces (t17 = 1.20, p = .25). Classifier accuracy for both buildings and 

chairs was significantly greater than for faces in right PhC (t34 = 2.42, p < .05; t34 = 2.48, 

p < .05, respectively; corrected). In the left hemisphere, classifier performance in PrC did 

not exceed chance level for any stimulus category (faces, t17 = 1.15, p = .26; chairs, t17 = 

1.95, p = .06; buildings, t17 = .44, p = .67). Classification accuracy was above chance in 



58 

 

left PhC for chairs (t17 = 3.53, p < .01), but not faces (t17 = .05, p = .96) or buildings (t17 = 

.72, p = .48).  

Critically, in the HC, we found no evidence for patterns of activation that allowed for 

classification based on subjective familiarity for any stimulus category. This held 

regardless of whether we assessed the posterior or the anterior portion of the HC, and 

regardless of whether we did this in right or the left hemisphere (all p’s > .15). One issue 

to consider in these analyses is that the four hippocampal ROIs were generally smaller 

than those in PrC and PhC. Moreover, in as much as they focused only on the anterior or 

posterior section separately, they would not capture diagnostic patterns that might be 

distributed across the entire HC. Accordingly, we also determined whether results would 

differ if we examined the whole HC in a single analysis (for each hemisphere). Note that 

in these analyses the right hippocampal ROIs were on average, and in the majority of the 

participants, numerically larger than the ROIs for right PrC and for right PhC. Still, we 

found no evidence for patterns of responses in the right HC that allowed for classification 

based on subjective familiarity for faces (M = .50, SEM = .01), chairs (M = .49, SEM = 

.01), or buildings (M = .50, SEM = .02). Similarly, we found no such evidence when the 

HC was considered as a whole in the left hemisphere for faces (M = .49, SEM = .01), 

chairs (M = .50, SEM = .01), or buildings (M = .49, SEM = .01). 

Although our primary interest was in perceived familiarity, we also explored whether 

patterns of responses in any ROI would allow for successful classification based on 

objective item status (i.e., previously studied vs. new items irrespective of recognition 

response). No significant effects were revealed for any stimulus category in any region 

examined (PrC, PhC, anterior HC, posterior HC, entire HC in left or right hemisphere; all 

p’s > .05, uncorrected). These divergent results for classification based on perceived (i.e., 

subjective) familiarity versus objective item status mirror previous fMRI findings 

obtained with MVPA for the whole brain in the context of recognition memory for faces 

(Rissman et al., 2010).  
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Figure 2.4 MVPA classification of perceived familiar versus novel trials for the 

three different stimulus categories in left and right PrC, PhC, aHC, and pHC. 

Dashed lines indicate chance level. Numbers within bars represent the number of 

participants for whom classification performance was numerically above chance level. 

All error bars indicate the SEM calculated across participants. * p < .05, ** p < .01, *** p 

< .001. 
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2.3.4 fMRI Results - Between Category Cross-Classification and 
Voxel Overlap Analysis 

Given that our MVPA revealed signals related to subjectively perceived familiarity for 

two stimulus categories in both PrC (faces and chairs) as well as PhC (buildings and 

chairs), an important question that arises is whether the patterns of activity that could be 

classified successfully are indeed category-specific. The analyses conducted so far would 

not rule out, for example, that above chance classifier performance in right PrC for faces 

and chairs is based on a common familiarity signal. Likewise, they do not rule out that 

the familiarity signal for buildings and chairs in PhC is shared. To address category 

specificity of the observed familiarity signals more directly, we first explored the extent 

of overlap between voxels that contribute to the classification of familiar and novel 

responses in one stimulus category, and those that contribute to classification in the other. 

Towards this end we examined overlap at the level of voxels that were selected in the 

initial feature-selection procedure to be the most informative for use in the SVM. We 

found that 52% of the voxels in right PrC that entered the classification analysis for faces 

also entered the classification for chairs (and vice versa). The corresponding averaged 

value for overlap in right PhC in the context of classification of buildings and chairs was 

53%. These results suggest that the distributed memory representations for the categories 

supported by each of these MTL structures show partial overlap. In the next step, we 

examined this issue more formally with inferential statistics by conducting a cross-

classification analysis for faces and chairs in right PrC, and for buildings and chairs in 

right PhC. If familiarity-based classification in PrC, for example, is based on strongly 

overlapping distributed representations for faces and chairs, these analyses should reveal 

that the pattern of activity that distinguishes between familiar and novel faces can also be 

used to discriminate between familiar and novel chairs, and vice versa. The classification 

accuracies we obtained for these cross-classification analyses in right PrC and right PhC 

are presented in Figure 2.5. Again, these analyses were conducted using the item-

sampling procedure described previously, which matched item numbers across both 

stimulus class and recognition responses (with 33.7 trials included on average). Critically, 

cross-classification was at chance in right PrC when the linear decision boundary of the 

SVM trained on faces was used to classify familiar and novel chairs (M = .50; p > .45 
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uncorrected) as well as when the SVM trained on chairs was used to classify familiar and 

novel faces (M = .49 p > .58). Cross-classification performance for buildings and chairs 

in right PhC was equally unsuccessful (M = .52, p > .18 and M = .51 p > .32). These data 

suggest that the distributed patterns of voxels that contribute to classification of familiar 

versus novel faces and chairs in PrC, and those that contribute to classification of familiar 

versus novel buildings and chairs in PhC show some specificity within each of these 

structures. 

In the interest of completeness, we also conducted the remaining cross classification 

analyses that can be brought to bear on our data in right PrC and right PhC (i.e., cross-

classification involving buildings in PrC and faces in PhC). None of these analyses 

revealed any significant effects (all p’s > .11, uncorrected). 
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Figure 2.5 MVPA cross-classification for the two stimulus categories for which 

reliable familiarity-based classification was found in right PrC and PhC. Within-

category classification performance is shown for reference in the left column of each data 

pair as displayed in Figure 4. Cross classification data are displayed in green in the right 

column. A Classification and cross classification of familiarity signals for faces and 

chairs in PrC B Classification and cross classification of familiarity signals for buildings 

and chairs in PhC. Dashed lines indicate chance performance level. Numbers within bars 

represent the number of participants for whom classification performance was 

numerically above chance level. All error bars indicate the SEM calculated across 

participants. Cross classification performance did not exceed chance level in any 

condition. 
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2.4 Discussion 

In the current study we examined distributed patterns of activity in the MTL that are 

associated with the perceived familiarity of faces, buildings, and chairs. Our primary 

analyses of interest focused on patterns of activity that distinguished between 

subjectively experienced familiar or novel items in each object category. In right PrC, 

MVPA revealed such familiarity signals for faces but not buildings. In right PhC, by 

contrast, we observed familiarity signals for buildings but not faces. Familiarity signals 

for chairs were present in both structures, but shared limited overlap with the patterns we 

observed for faces and buildings. Contrasting with these findings for PrC and PhC, we 

found no evidence for familiarity signals in the HC for any of the object categories 

examined. 

A number of studies have previously documented category specific responses in the MTL 

(e.g., Litman et al., 2009; Preston et al., 2010; Staresina et al., 2011), some of which were 

also based on MVPA of fMRI data (Diana et al., 2008; Liang et al., 2013). As in the 

literature on category-specific effects in the ventral visual stream more broadly, the most 

widely used comparison in these studies has been between faces and scenes. In research 

concerned with item-based familiarity, such comparisons can pose challenges for 

interpretation. When a scene (such as a bedroom), is endorsed as being familiar, the 

response may be based on individual objects (e.g., furniture), the spatial relationships 

among these objects, or the geometric properties of the background (e.g., shape and size 

of the room). Unless the relationships between target scenes and their distractors are 

systematically manipulated (e.g., Cleary et al., 2012), the source of information in the 

stimulus display that guides the memory judgment is unknown and may even vary from 

trial to trial (see Preston et al., 2010; Martin et al., 2012 for discussion).  

In the present study, we addressed the potential role of PhC in item familiarity by 

examining familiarity signals for items from three different object categories, all of which 

were presented without any scene context. Results from our initial examination of MVPA 

classification (when only novel stimuli were considered) revealed that patterns of activity 

in both PrC and PhC were sensitive to differences among all three object categories, and 

that the most consistent differences were present in the right hemisphere. Critically, 
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patterns of activity that gave rise to reliable classification of memory signals, more 

specifically item-based familiarity, revealed noticeable functional differences between 

both structures. In right PrC, familiarity signals could be classified reliably only for faces 

and chairs. In right PhC, by contrast, familiarity signals could be classified reliably only 

for buildings and chairs. This pattern of findings suggests that PhC, like PrC, carries 

information about the familiarity of objects. However, both structures differ in their 

response profile across the three different object categories examined here. To the extent 

that these results were obtained with analyses that excluded any recollection-based 

behavioural responses, this difference in neural response profile cannot be captured with 

reference to the distinction between items and episodic-context. 

The preferential responses in PrC and PhC we observed for faces and buildings in 

familiarity-based judgments are consistent with findings from prior research in other 

tasks. For example, recent evidence from fMRI studies in human and non-human 

primates points to the presence of a cortical patch in rostral aspects of the collateral 

sulcus that shows preferential responses to faces even during passive viewing (Tsao et al., 

2008; Rajimehr et al., 2009; Ku et al., 2011; Nasr and Tootell, 2012). Other studies have 

revealed preferential responses to buildings in PhC (Aguirre et al., 1998; Cate et al., 

2011; Maguire et al., 2001; Nasr and Tootell, 2012), and have shown adaptation effects in 

perceptual judgments (Pourtois et al., 2008).  

That familiarity signals for chairs were found to be present in PrC as well as in PhC 

suggests that reference to stimulus category alone may ultimately be insufficient to 

account for the difference in response profiles exhibited by both structures. What other 

factors might determine whether reliable familiarity signals are observed in PrC or PhC 

then? The current findings would be consistent with the idea that these structures are 

differentially sensitive to specific stimulus dimensions that are often correlated in various 

object categories (Op de Beeck et al., 2008). Based on the characterization of PhC 

responses in other studies, we speculate that critical dimensions may include the size, 

mobility, and sense of space that objects evoke (Mullally and Maguire, 2011; Cate et al., 

2011; Konkle and Oliva, 2012; Troiani et al., in press). From a functional perspective, 

these dimensions are essential determinants of the navigational relevance of objects 
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(Janzen and van Turennout, 2004; Troiani et al., in press). In such a framework, PhC may 

carry familiarity signals for objects that tend to be large, immobile, and evoke a sense of 

three-dimensional space. Conversely, PrC may carry familiarity signals for objects that 

are smaller in real world size and are not tied to a specific geographical location. 

Familiarity for chairs would be represented in both PrC and PhC because chairs are 

characterized by some stimulus attributes that ‘drive’ PrC and others that ‘drive’ PhC. 

Namely, like faces, they are not tied to a specific location. Like buildings, they can evoke 

a sense of surrounding three-dimensional space (Mulluly and Maguire, 2011). An 

account that makes reference to object dimensions, rather than categories, could also 

explain why the voxels within each structure that carry information about the familiarity 

for one object category, although not allowing for cross classification, show some overlap 

with those that are diagnostic for the familiarity of another. Given that fMRI studies in 

recognition memory have most commonly focused on verbal stimuli, with no systematic 

manipulation of specific features of the referent objects, we acknowledge, however, that 

extant evidence that speaks to this proposal is currently limited. 

Another explanation as to why certain types of objects preferentially engage PhC invokes 

the degree to which different objects elicit contextual associations. In particular, it has 

been suggested that PhC is involved in representing contextual associations for those 

objects (e.g., pillow) that are typically encountered in the same context (e.g., bed or 

bedroom; Bar and Aminoff, 2003). These types of contextual associations can be seen as 

semantic in nature, in that they specify a typical context that may or may not hold for any 

specific episodic encounter. It seems unlikely that such semantic contextual associations 

would be of diagnostic value in familiarity-based recognition memory decisions that 

require discrimination between studied and non-studied exemplars within restricted 

object categories, such as the buildings used in the current study. While some buildings 

may be more likely to elicit such contextual associations than others, these associations, 

to the extent that they become conscious at the time of encoding and retrieval, would be 

captured with recollective rather than familiarity-based responses. Taken together with 

other recent evidence showing that the contextual effects in PhC reported by Bar and 

Aminoff (2003) may in fact reflect scene imagery (Epstein and Ward, 2008), or the sense 

of surrounding space that some objects evoke (Mullully and Maguire, 2011), these 
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considerations argue against the idea that the differences in item-based familiarity signals 

we observed for PhC and PrC reflect differential influences of semantic contextual 

associations.  

In the current study, the primary focus of analysis centered on discrete MTL structures 

that were defined anatomically. Another approach in the literature has been to examine 

functional gradients that cross the boundary of both structures in the parahippocampal 

region (e.g., Litman et al., 2009; Staresina et al., 2011; Liang et al., 2013). We focused on 

differences between discrete structures because our primary objective was to evaluate 

theoretical claims regarding differences in functional properties between PrC and PhC 

that have been proposed to be present at this neuroanatomical scale (Eichenbaum et al., 

2007; Graham et al., 2010). These models of functional MTL organization have typically 

been informed by differences in cytoarchitectonic composition and anatomical 

connectivity of PrC and PhC (e.g., Lavenex and Amaral, 2000; Manns and Eichenbaum, 

2006). In the future, it will be important to develop and test models of MTL organization 

that directly map distributed patterns of mnemonic signals to more fine grained 

neuroanatomical subdivisions in neocortical MTL structures (e.g., Ding and Van Hoesen, 

2010), and to corresponding differences in connectivity. 

Concerning HC function, we observed that distributed patterns of activation in this 

structure did not allow for any reliable classification of familiarity signals. These results 

held across both hemisphere and across anterior and posterior aspects of the HC, 

irrespective of stimulus category. Inasmuch as the patterns probed were specific to trials 

that were not accompanied by recollection of episodic contextual information, this 

finding is consistent with the influential idea that the HC does not support item-based 

familiarity (Aggleton and Brown, 1999). We recognize, however, that considered in 

isolation this hippocampal finding reflects a null effect. As such, it is amenable to 

alternate interpretations, and could also be accommodated by the proposal that the HC 

only carries memory representations of high strength, which are associated with high 

levels of behavioural accuracy (Squire and Wixted, 2007). Nevertheless, we note that 

recent data from intracranial EEG recordings strongly argue against a single-process 

account of medial temporal lobe organization that attributes functional differences 
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between PrC and the HC to any differential sensitivity of both structures to a 

unidimensional strength signal (Staresina et al., 2012; see also Horner et al., 2012). 

In conclusion, our findings indicate that both PrC and PhC contribute to the assessment 

of item familiarity. They show that the role of PhC is not limited to representing 

information about context, and that PrC is not involved in representing familiarity for all 

object categories. Considered within the larger literature reviewed, these findings suggest 

that a comprehensive model of MTL organization for PrC, PhC, and the HC will 

ultimately require consideration of representational distinctions that include, but go 

beyond the division between item and context information.   
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Chapter 3  

 

3 Parahippocampal and Perihinal Cortex Differentially 
Support Item Recognition Memory for Objects With and 
Without Navigational Relevance  

3.1 Introduction 

Recognition memory refers to the ability to discriminate between previously encountered 

and novel stimuli and is known to be critically dependent on the medial temporal lobes 

(MTL). However, the question of whether different MTL structures make distinct 

functional contributions to recognition memory remains a topic of intense debate in 

neuroscience (Montaldi and Mayes, 2010; Ranganath, 2010; Wixted and Squire, 2011). 

The binding of items and contexts (BIC) model purports that perirhinal cortex (PrC) 

supports item recognition, parahippocampal cortex (PhC) supports the encoding and 

retrieval of episodic contextual details, and the hippocampus (HC) serves to bind items 

and contexts into discrete episodic events (Eichenbaum et al., 2007; Diana et al., 2007; 

Ranganath, 2010). However, there are also findings that point to category-specific 

contributions of different MTL structures to recognition memory (Davachi, 2006; Murray 

et al., 2007; Graham et al., 2010). An important, currently unresolved question is how 

category-specific effects relate to the distinction between item- and contextually-based 

recognition processes. This issue is of particular relevance for characterizing the 

functional contributions of PrC and PhC (Ranganath and Ritchey, 2012). 

One of the most robust category-specific effects in the visual modality is differential 

responses to scenes in posterior aspects of PhC (Epstein and Kanwisher, 1998; Epstein, 

2008). These scene specific responses have informed the proposal that PhC represents 

episodic context in recognition memory and recall (Davachi, 2006; Diana et al., 2007; 

Eichenbaum et al., 2007). Interestingly, however, fMRI research conducted in non-

mnemonic task contexts has also revealed that preferential PhC responses extend beyond 

scenes to objects from specific categories, such as buildings (Aguirre et al., 1998; Cate et 
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al., 2011). Initial evidence from research aimed at identifying the object properties that 

‘drive’ PhC responses suggest that PhC is preferentially tuned to objects that are large 

(Konkle and Oliva, 2012), that evoke a sense of three-dimensional space (Mullally and 

Maguire, 2011), and/or that have navigational relevance (Janzen and van Turrenout, 

2004; Troiani et al., 2012; Bastin et al., 2013). Evidence linking PhC responses to certain 

types of objects is of direct relevance to its proposed role in recognition memory. 

Namely, this observation raises the question of whether the role of PhC in recognition 

memory is indeed limited to representing episodic contextual information, or whether it 

also supports familiarity-based item recognition for some categories of objects. 

Importantly, objects that evoke differential responses in PhC can indeed be recognized as 

‘old’, even in the absence of episodic contextual detail about a specific prior stimulus 

encounter. Corresponding item-based familiarity signals in PhC would be of broader 

theoretical significance towards understanding MTL organization, as they could suggest 

that familiarity is not invariably supported by PrC.  

Recent fMRI research has indeed examined the relationship between category-specific 

effects and familiarity-based item recognition signals in the MTL. Specifically, Martin et 

al. (2013) employed multi-voxel pattern analysis (MVPA) to decode item recognition 

decisions pertaining to faces, buildings, and chairs from patterns of activation in PrC and 

PhC. Results from this experiment revealed category-specific item recognition signals in 

both structures, even in the absence of retrieval of episodic contextual detail. Specifically, 

above chance classifier performance was obtained in right PrC for faces, but not 

buildings. By contrast, the perceived familiarity of buildings, but not faces, could be 

decoded from activity patterns in right PhC. Evidence of item recognition signals for 

chairs was present in both structures, but shared little overlap with the patterns observed 

for faces and buildings on a more fine-grained scale. This pattern of results provides 

initial evidence suggesting that item recognition signals in PrC and PhC are represented 

in a category-specific manner. However, that familiarity signals for chairs were observed 

in both structures suggests that reference to stimulus category alone may ultimately be 

insufficient to account for the difference in response profiles exhibited by PrC and PhC.  
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The primary aim of the current study was to replicate our previous results linking PhC to 

item recognition (Martin et al., 2013) and, more importantly, identify the object 

properties that determine whether item recognition signals are coded in PrC or PhC. 

Specifically, we used MVPA to examine whether the extent to which objects are fixed in 

location plays a critical role, while holding real-world size constant. Towards this end, we 

employed images depicting buildings, trees, and planes as stimuli. At a functional level, 

the navigational utility of an object is primarily determined by its mobility; objects that 

are fixed in location (e.g., buildings and trees) necessarily have more navigational 

relevance than those that are not (e.g., planes). However, object fixedness is often highly 

correlated with real-world size (Mullally and Maguire, 2011; Troiani et al., 2012), a 

dimension that has been linked to differential responses to objects in PhC (Konkle and 

Oliva, 2012). Critically, as stimuli selected for the current study were matched across 

categories with respect to perceived real-world size, we were able to specifically probe 

the importance of fixedness in determining whether PrC or PhC code item familiarity. 

Demonstrating that item recognition signals in PrC and PhC are dissociable for objects 

that are either fixed in location or not would strongly argue for the role of potential 

navigational relevance as a critical determinant.  

3.2 Materials and Methods 

3.2.1 Participants 

Twenty right-handed participants took part in the fMRI study (21-29 years of age, mean 

age = 24.3 years). They were screened for the absence of a history of neurological 

disorders. Additionally, twenty participants (21-28 years of age,  mean age = 24.1 years), 

six of whom also participated in the fMRI study, provided relative real-world size 

estimates for all stimuli in an independent behavioural rating task. Participants received 

financial compensation for their participation and provided informed consent according 

to procedures cleared by the University of Western Ontario Health Sciences Research 

Ethics Board. 
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3.2.2 Stimuli and Procedure 

The stimuli employed in the current study consisted of 360 colour images depicting 

objects that were evenly distributed across three categories: buildings, trees, and planes. 

All images were obtained from the internet using Google Image Search; building stimuli 

were full color versions of those used in Martin et al. (2013). All stimuli were initially 

selected from a larger pool of images following a series of behavioural pilot experiments 

intended to optimize experimental design with respect to difficulty and the extent to 

which recognition was based on familiarity judgments across categories. In line with 

previous research, objects were defined as discrete entities bounded by a single contour 

that does not have background elements or a horizon (Troiani et al., 2012; Bastin et al., 

2013). Accordingly, target objects were cropped from their natural background in their 

original form and placed on a homogenous white background without cues providing 

information related to size, distance, or horizon (see Figure 3.1). Specifically, all objects 

were depicted in the absence of contextual visual detail such as ground, horizon, and 

other non-target objects or features. All objects were proportionally scaled in a manner 

that ensured at least one dimension corresponded to the limits of a 375 x 250 pixel white 

background. Behavioural size ratings were obtained for all 360 stimuli to ensure that all 

categories were matched on this dimension. Participants were asked to rate the relative 

real-world size of the object depicted in each image on a 1-10 scale (1 = the smallest 

object, 10 = the largest object). Notably, all stimulus categories were matched with 

respect to perceived real-world size (buildings, M = 6.69, SD = 1.81; trees, M = 5.61, SD 

= 1.76; planes, M = 6.38, SD = 1.69; F2,57 = 2.01, p = .14). These data suggest that any 

potential differences observed between categories at the level of behavioural recognition 

performance or decoding performance are not attributable to variation in size across 

categories.  

For the purpose of counterbalancing in our fMRI experiment, stimuli from each category 

were divided into three sets of 40 items. Two of these sets were presented during an 

initial encoding stage and served as target items in in the subsequently scanned 

recognition memory test stage. Items comprising the third set were presented as lures 

during the test stage. Assignment of item sets as targets or lures was counterbalanced 
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across participants. Prior to the scanned recognition test stage of the experiment, all 

participants completed an initial encoding session. Objects were presented in one of six 

encoding blocks with each block corresponding to one set of target items. The order in 

which categories appeared was counterbalanced across participants. Stimuli were 

presented for 3000ms each and separated by a 2000ms fixation. Participants were asked 

to focus on the size and form of the object depicted in each trial and rate whether each 

building had more or less than 10 interior rooms, whether each tree was climbable, and 

whether each plane could seat more or fewer than 20 passengers. Refer to Figure 3.1 for a 

schematic representation of the experimental design.  
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Figure 3.1 Experimental task design. During encoding, participants rated whether 

buildings had more or less than ten interior rooms, whether trees were climbable, and 

whether planes could seat more or less than 20 passengers. In the subsequent scanned 

recognition-test stage, participants provided a rating of perceived item familiarity. They 

were asked to avoid voluntary attempts to recollect contextual details pertaining to a 

specific prior item encounter, but were offered an opportunity to indicate recollection 

when it occurred involuntarily. 
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The initial encoding stage and subsequent test stage were separated by approximately one 

hour to allow for administration of test instructions, completion of a brief practice test, 

and scanning preparation. Participants were asked to indicate their recognition judgments 

using one of five response options corresponding to sure novel, unsure novel, unsure 

familiar, sure familiar and recollection. The differences between these response options 

were made clear through detailed instruction with a particular emphasis on the distinction 

between familiar responses and recollection. Toward this end, recollection was defined as 

recognition that was accompanied by conscious retrieval of contextual detail from the 

initial item encounter (i.e., during the encoding stage of the experiment). Participants 

were told that such retrieval could reflect cognitive context (e.g., trial unique internal 

thoughts and associations that were formed during the initial item encounter), temporal 

context (e.g., which trial preceded or followed a given object presentation), or 

environmental context (e.g., a passing voice that could be heard from the testing room). 

Familiarity was defined as an acontextual impression of oldness pertaining to the 

perceptual details of an object itself. Participants were asked to focus on evaluating the 

perceived familiarity of each stimulus and discouraged from intentionally attempting to 

recollect contextual details. To optimize the proportion of familiarity-based judgments 

we asked that participants respond quickly and in an intuitive manner. At the same time, 

however, participants were encouraged to indicate recognition based on spontaneous, 

involuntary recollection when it did occur. This specific procedure was adapted from 

previous fMRI research that focused on familiarity-based responding (Montaldi et al., 

2006; see also Migo et al., 2012, for further rationale). Participants were not provided any 

information pertaining to the relative proportion of targets and lures presented during the 

recognition test stage. Immediately prior to scanning, all participants completed a brief 

practice test that required justification for any recollection response with a description of 

the contextual detail retrieved. 

The scanned recognition test stage comprised 360 trials (80 targets and 40 lures from 

each category) evenly divided over eight runs of functional data acquisition. Stimuli were 

presented for 2500 ms, with a jittered fixation-baseline separating trials (fixation ranged 

between 2.5s and 15s). Trial order and jitter interval were optimized for each run using 

the OptSeq2 algorithm (http://surfer.nmr.mgh.harvard.edu/optseq/), with unique 

http://surfer.nmr.mgh.harvard.edu/optseq/
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sequences and timing across counterbalanced versions of the experiment. Participants 

viewed the stimuli through a mirror at a distance that yielded an approximate object size 

of 18 x 13° visual angle. Recognition responses were recorded using an MRI-compatible 

keypad. 

3.2.3 fMRI Acquisition Protocol 

All MRI data were acquired on a Siemens 3-Tesla Magnetom Prisma scanner with a 

high-resolution fMRI protocol optimized for MTL examination. Functional MRI volumes 

were collected using a T2*-weighted single-shot gradient-echo-planar acquisition 

sequence [TR = 2500 ms, TE = 26 ms, slice thickness = 2 mm, in-plane resolution = 2 X 

2 mm, FOV = 220 mm X 220 mm, flip angle = 90°]. Each functional volume included 37 

contiguous slices collected in an interleaved manner. For each experimental run, 176 

volumes were collected. To optimize MR signal in the anterior temporal lobes, a 

transverse orientation was chosen with the effort to include the entire temporal lobes and 

as much visual cortex as possible. This slice selection resulted in full coverage of the 

ventral aspects of occipital and full coverage of the entire temporal lobes in all 

participants, with exclusion of the most superior aspects of frontal, parietal, and occipital 

cortices. A saturation band was applied during functional runs in order to minimize 

artifacts related to eye-movements and the sinus cavity. T1-weighted anatomical images 

were obtained using an ADNI MPRAGE sequence [192 slices, TR = 2300 ms, TE = 4.25 

ms, 1 mm isotropic voxels, FOV = 240 X 256 mm, flip angle = 9°]. 

3.2.4 fMRI Data Pre-processing 

fMRI data were pre-processed using BrainVoyager QX version 2.8 (Brain Innovation). 

Functional images were slice-scan time corrected, 3-D motion corrected with reference to 

the functional volume taken just prior to the anatomical scan, and high-pass filtered using 

a linear trend and a Fourier basis set of 2 cycles/run. Images were then co-registered with 

the anatomical image, aligned with the AC-PC plane, and smoothed using a three-

dimensional Gaussian kernel with a full-width at half maximum of 3 mm. Functional data 

were convolved using a standard double gamma hemodynamic response function 

(Friston, 1998). Participant-specific GLMs of these data allowed for extraction of trial-
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specific beta estimates in all voxels of interest. Beta estimates derived from a modeled 

HRF were chosen as target measure for the MVPA (i.e., as classifier input) because they 

are particularly well suited to account for overlap in the hemodynamic response in fast-

event related designs (Misaki et al., 2010).  

3.2.5 Anatomical ROI Definition 

Our primary interest in the current paper centered on patterns of activity related to item 

recognition in anatomically defined PrC and PhC. However, we also considered 

activation patterns in the HC and entorhinal cortex (ErC), as well. To conduct MVPA, we 

considered distributed patterns of activation within ROIs that were defined in native MRI 

space based on anatomical demarcations detailed in established tracing protocols 

(Pruessner et al., 2000, 2002; Franko et al., 2012). All ROIs were manually traced in each 

participant separately. Specifically, we obtained ROIs for PrC, PhC, anterior HC (aHC), 

and posterior HC (pHC) in each hemisphere. The posterior extent of PhC ROIs was 

defined using anatomical landmarks described by Frankó et al. (2012). The distinction 

between anterior and posterior HC was introduced based on recent evidence suggesting 

distinct functional specialization across the long axis of the HC, and followed the 

protocol described by Poppenk and Moscovitch (2011) with the uncal apex serving as the 

critical boundary.  

In addition to conducting MVPA using patterns of activation distributed across either PrC 

or PhC in their entirety, we also tested for the presence of familiarity signals along an 

anterior-posterior gradient of non-overlapping ROIs within these structures. For the 

purpose of these analyses we focused specifically on the right hemisphere. Toward this 

end, complete PrC and PhC ROIs were parsed in a manner that honoured the anatomical 

boundary between these structures and also ensured that each resultant ROI within the 

gradient had approximately the same number of voxels. Moreover, voxels comprising all 

gradient ROIs were independent with the boundary between the last slice of a given ROI 

and the first slice of the next (along the anterior-posterior axis) being entirely non-

overlapping. In satisfying these criteria, PrC was divided into four distinct ROIs and PhC 

was parsed into three sub-sections for each participant independently. A one-way 
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ANOVA conducted on the number of voxels across gradient ROIs revealed no significant 

differences (F6,133 = .57, p = .74). 

3.2.6 Multivariate Pattern Analysis of fMRI Data 

MVPA was performed to examine the extent to which distributed patterns of activation 

within each of the ROIs considered were reliably discriminable at the level of 1) 

distinctions between stimulus categories and 2) within-category differences that reflect 

familiarity-based item recognition. To address questions related to stimulus category we 

considered only those patterns of activation obtained during presentation of objectively 

novel lures, irrespective of subjective memory judgments. As trials were not defined in 

relation to subjective responses, results from these analyses reflect differences in 

activation patterns corresponding to presentation of all 40 novel lures from each stimulus 

category.   

Given the primary objective of the current study, i.e., to determine whether distributed 

patterns of activity within each ROI differentiate between recognition decisions for each 

stimulus category, we focused on perceived familiarity. Toward this end, we collapsed 

across both accuracy and levels of familiarity and novelty (i.e., ‘unsure’ and ‘sure’) to 

obtain patterns of activation comprising a familiar class of trials (hits and false alarms for 

both familiarity response options) and a novel class of trials (correct rejections and 

misses for both novel response options). Given that an unequal number of trials between 

classes can bias classification outcome we also implemented a pseudo-random sampling 

procedure that equated the number of trials corresponding to each class across runs. 

Specifically, familiar and novel trials were sampled so as to equate the number of trials 

both within and between runs, using the run with the fewest number of trials in either 

class as baseline. This procedure was repeated over 10 iterations to ensure that all trials 

for a given participant were included in the classification analysis at least one time. 

Specifically, 10 separate instances of the classification analysis (i.e., cross-validated 

classifier train-test) were completed and inferential statistical analyses were performed on 

classifier accuracy averaged over these 10 iterations.  
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Pattern classification analyses were conducted using the Princeton MVPA toolbox 

(http://www.pni.princeton.edu/mvpa) and custom MATLAB code (The MathWorks, 

Natick, MA). Feature selection, beyond that of selecting voxels within anatomically 

defined ROIs, was guided by voxel-wise measures of discriminability. Specifically, 

voxel-wise t-tests were conducted between beta values across trials from each class to 

identify features that, on their own, best discriminated between the pertinent classes at 

hand. Voxels were then rank-ordered based on absolute obtained t-values and the top 

10% were selected for inclusion in the classification analysis irrespective of spatial 

proximity, direction of differential responses, or t-value magnitude. Averaged across 

participants, this procedure yielded the following number of functional voxels in each 

ROI: right PrC 52.5, left PrC 50.63, right PhC 46.2, left PhC 44.5, right ErC 30.2, left 

ErC 30.2, right aHC 24.3, left aHC 23.3, right pHC 28.4, and left pHC 29.5.  

No additional feature selection was performed for the purpose of MVPA within gradient 

ROIs (i.e., ROIs along the anterior-posterior axis of right PrC and right PhC). 

Accordingly, classification results for these analyses were based on all voxels within each 

ROI. Right PrC ROIs, from anterior to posterior, consisted of 142.9, 145.5, 136.9, and 

139.0 voxels. Right PhC ROIs, from anterior to posterior, consisted of 133.7, 140.1, and 

132.5 voxels.  

The extent to which distributed patterns of activation could discriminate between pairs of 

classes of interest was formally assessed through implementation of a linear support 

vector machine (SVM; libSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm) with a linear 

kernel function and a constant cost parameter of C = 1. For the purpose of cross 

validation, the SVM was initially trained using data from all but one run, with trials from 

the run held out serving as test data for classification. This train-test procedure was fully 

cross validated with each run being held out one time. For each test trial, the classifier 

returned a probability estimate that reflected the likelihood that the observed activity 

pattern corresponded to either of the classes pertinent to the analysis at hand. However, 

these probability estimates were considered in a winner takes all manner; classification 

was either correct (i.e., when the ‘true’ experimental condition was assigned the highest 

probability) or incorrect. Averaged across all 10 iterations, classifier accuracy reflects the 
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percentage of test trials that were classified correctly in this binary manner, for each 

participant separately. To obtain inferential statistics, we examined whether classifier 

performance, averaged across all participants, was above chance (i.e., 0.5). For this 

purpose, we employed a single sample t-test using a Bonferroni correction based on the 

number of independent comparisons made (i.e., the number of ROIs examined). 

Lastly, for ROIs in which familiarity-based classification was significantly greater than 

chance for more than one stimulus category, we also conducted cross-classification 

analyses to test for the presence of a familiarity signal that is common to multiple object 

categories. With this approach, a SVM decision boundary was initially established based 

on familiar and novel trials in one stimulus category and subsequently used to classify 

familiar and novel trials from a second category. Cross-classification employed the same 

linear SVM, cross-validation technique, and sampling procedure described above. 

However, the sampling procedure was performed in order to equate the number of trials 

across four, rather than two, conditions (i.e., novel and familiar trials from two stimulus 

categories). 

3.3 Results 

3.3.1 Behavioural Performance 

Response percentages corresponding to each of the recognition response options are 

presented in Table 3.1. Target object recognition was primarily driven by familiarity-

based responses (collapsed across ‘unsure’ and ‘sure’ response options; M = 48.3%, 

61.5%, and 48.3% for buildings, trees, and planes, respectively), as compared to 

recollection (R; M = 6.8%, 7.1%, and 8.2% for buildings, trees, and planes, respectively). 

Overall recognition performance, i.e., the ability to discriminate between targets and lures 

irrespective of subjective recognition experience, was quantified using the 

discriminability index d’. Estimates were derived using hits and false alarm rates in the 

context of signal-detection theory through consideration of ‘old’ responses collapsed 

across the ‘unsure familiar’, ‘sure familiar’ and ‘R’ response options. In contrast, 

familiarity estimates were calculated using d’ based on hits and false alarm rates 

corresponding to collapsed familiarity responses, and corrected for independence 
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between familiarity and recollection (Yonelinas, 1999). A one-way ANOVA conducted 

on these measures revealed that performance was closely matched across stimulus 

categories; there were no significant differences between categories for overall 

discrimination (F2,57 = .82, p = .44), estimates of familiarity (F2,57 = .35, p = .71), nor for 

estimates of recollection (R hits minus R false alarms; F2,57 = .1.20, p = .31). Although 

performance levels were low, due to the high similarity between all items within each 

stimulus category, familiarity discrimination was above chance for each category (all t19’s 

> 7.33, p’s < .001). We note that the limited number of R responses observed in the 

present study (collapsed across hits and false alarms M = 5.9, 6.7, and 6.5 for buildings, 

trees, and planes, respectively) did not allow for any investigation of fMRI responses 

associated with recollection. 
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Table 3.1 Recognition-response distribution and discrimination estimates for each stimulus category 

Stimulus 
Category 

Percentage responses to studied items     Percentage responses to novel items     Discrimination 

  1 2 3 4 R 1 2 3 4 R Recognition d' Familiarity d' 

Buildings 
            

Mean 15.5% 29.4% 28.7% 19.6% 6.8% 29.4% 39.0% 21.9% 8.1% 1.5% .64 .57 

SEM 2.6% 2.3% 2.6% 2.2% 2.0% 3.8% 3.2% 2.0% 1.5% 0.7% .06 .06 

Trees 
            

Mean 10.2% 21.2% 30.6% 30.9% 7.1% 20.1% 32.3% 26.7% 17.9% 3.0% .59 .56 

SEM 2.3% 2.4% 2.4% 2.2% 2.0% 2.3% 3.7% 2.3% 2.7% 1.2% .07 .07 

Planes 
            

Mean 14.8% 28.7% 27.5% 20.8% 8.2% 29.6% 38.9% 22.4% 8.6% 0.5% .73 .64 

SEM 2.5% 3.2% 2.4% 3.3% 2.2% 3.5% 3.8% 2.4% 2.0% 0.4% .10 .09 
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With respect to response latencies (refer to Table 3.2), a 3 x 3 ANOVA [response type 

(novel, familiar, recollection) x stimulus category (buildings, trees, planes)] was 

conducted after collapsing across objective item status (i.e., target or lure) and response 

options (novel = ‘unsure novel’ and ‘sure novel’; familiar = ‘unsure familiar’ and ‘sure 

familiar’). This specific approach was implemented to match that employed for the 

purpose of classification of fMRI data (see below). This analysis revealed a main effect 

of response (F2,171 = 13.43, p < .001) but not stimulus category (F2,171 = .93, p = .40). The 

interaction between response and stimulus category was not significant (F4,171 = .61, p = 

.66), providing further evidence that all three stimulus categories were matched 

behaviourally. Post-hoc analyses revealed that the main effect of response type was 

driven primarily by shorter response latencies for recollection responses as compared to 

either novel (t59 = -5.19, p < .001) or familiar (t59 = -5.08, p < .001) responses. Response 

latencies for novel and familiar did not differ from one another (t59 = .18, p = .85).  
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Table 3.2 Recognition response latencies for each stimulus category 

Response Novel Familiar Recollection 

 

Buildings 

 

 

1774 (91) 

 

 

1956 (84) 

 

 

1554 (99) 

 

Trees 

 

1830 (97) 

 

1889 (85) 

 

1671 (105) 

 

Planes 

 

1880 (132) 

 

2006 (131) 

 

1549 (132) 

 

 

  



89 

 

3.3.2 fMRI Results - Between Category Classification 

Our first analyses of fMRI data were conducted to evaluate the extent to which 

information pertaining to stimulus category, rather than recognition memory decision per 

se, could be decoded from distributed patterns of activity across voxels in each 

anatomically defined ROI. Specifically, we focused on activity corresponding to all 

objectively novel trials (i.e., lures) from each stimulus classes (i.e., buildings vs. trees vs. 

planes), regardless of the recognition responses provided by the participants. One-sample 

t-tests were conducted with a Bonferroni corrected threshold, based on 10 comparisons 

(i.e., ROIs), for the purpose of establishing significance of decoding accuracy (chance 

performance = .33). Classifier performance was above chance in right PrC (t19 = 5.89, p < 

.01 corrected), left PrC (t19 = 4.01, p < .01 corrected), right PhC (t19 = 10.17, p < .001 

corrected), and left PhC (t19 = 8.44, p < .001 corrected), with classifier accuracy not 

differing from chance in any other structure (right and left ErC, aHC, pHC; all p’s >.10).  

To determine whether activity related to each stimulus category could be discriminated 

from all other categories we next performed additional analyses that assessed pair-wise 

classifications. Classification results are presented in Figure 3.2. We obtained above 

chance classification when discriminating between activation patterns associated with 

buildings and trees in right PrC (t19 = 3.32, p < 01 corrected), left PrC (t19 = 4.37, p < 

.001 corrected), right PhC (t19 = 12.77, p < .001 corrected), left PhC (t19 = 6.83, p < .001 

corrected). Classifier accuracy was not significantly greater than chance in any of the 

remaining ROIs (all p’s > .17). The same regions were also sensitive to differences 

between buildings and planes (right PrC t19 = 7.26, p < .001 corrected; left PrC t19 = 6.54, 

p < .001 corrected; right PhC t19 = 8.41, p < .001 corrected; left PhC t19 = 8.86, p < .001 

corrected). No other structures yielded above chance decoding (all other p’s > .11). 

Lastly, classifier accuracy was also above chance in right PrC (t19 = 4.81, p < .001 

corrected), left PrC (t19 = 5.98, p < .001 corrected), right PhC (t19 = 7.12, p < .001 

corrected), and left PhC (t19 = 7.76, p < .001 corrected) when discriminating between 

planes and trees (all other p’s > .15). When considered together, these results suggest that 

PrC and PhC do indeed carry information pertaining to stimulus category. Conversely, 

we found little evidence for category-specific representations in either ErC or the HC.  
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Figure 3.2 Pairwise MVPA classification of different stimulus categories in left and 

right PrC, PhC, aHC, and pHC. Classification was based on examination of all trials in 

which novel stimuli were presented. Dashed lines indicate chance level for classification. 

Numbers within bars represent the number of participants for whom classification 

performance was numerically above chance level. All error bars indicate the SEM 

calculated across participants. * p < .05, ** p < .01, *** p < .001. 
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3.3.3 fMRI Results - Within Category Classification of Familiar and 
Novel Trials 

We next examined whether we could accurately decode item recognition decisions from 

activation patterns in any of our MTL ROIs. Two classes of trials were initially defined 

for each stimulus category by collapsing across novelty (‘sure novel’ and ‘unsure novel’) 

and familiarity ratings (‘sure familiar’ and ‘unsure familiar’), regardless of objective item 

status. Across participants, the average number of trials from each class (i.e., familiar and 

novel) included for the classification of buildings, trees, and planes was 49.3, 42.1, and 

42.9, respectively, with a minimum of 19 and maximum of 58 trials. Our first analysis 

focused specifically on the patterns of activation that were obtained following feature 

selection of voxels (i.e., top 10% based on voxel-wise ability to discriminate between 

classes) drawn from the entirety of each anatomically defined ROI. Decoding accuracies 

for PrC and PhC are presented in Figure 3.3. We found evidence for activation patterns 

that reflected subjectively perceived familiarity in both PrC and PhC, but not in ErC, 

aHC, or pHC in either hemisphere. Specifically, in right PrC, patterns of activity could be 

classified according to subjective familiarity for planes (t19 = 5.28, p < .001 Bonferroni 

corrected for 3 comparisons, i.e., number of stimulus categories), but not for buildings 

(t19 = -.20, p = .42) or trees (t19 = .35, p = .37). Classifier accuracy for planes was 

significantly greater than that obtained for buildings or trees in right PrC (t19 = 4.63, p < 

.001; t19 = 4.11, p < .001, respectively; corrected). By contrast, familiarity could 

successfully be decoded from patterns of activity obtained in right PhC for buildings (t19 

= 7.71, p < .001 corrected) and trees (t19 = 5.92, p < .001 corrected), but not planes (t19 = 

.92, p = .18). Classifier accuracy for both buildings and trees was significantly greater 

than that obtained for planes in right PhC (t19 = 4.31, p < .001; t19 = 2.84, p < .05, 

respectively; corrected). In the left hemisphere, classifier performance in PrC did not 

exceed chance level for any stimulus category (buildings, t19 = -.79, p = .42; trees, t19 = 

.27, p = .40; planes, t19 = .68, p = .25). Classification accuracy was above chance in left 

PhC for buildings (t19 = 5.99, p < .001 corrected), but not trees (t19 = 1.19, p = .14) or 

planes (t19 = .92, p = .19). While our results point to category-specific item recognition 

signals in PrC and PhC, we were unable to decode familiarity in either right or left ErC, 

aHC, or pHC for any stimulus category (all p’s > .07). Similarly, classifier accuracy did 



92 

 

not exceed chance levels in the HC for any stimulus category when considered in its 

entirety rather than as an anterior and posterior segment independently (all p’s > .38). 
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Figure 3.3 MVPA classification of perceived familiar versus novel trials for the 

three different stimulus categories in left and right PrC and PhC. Dashed lines 

indicate chance level. Numbers within bars represent the number of participants for 

whom classification performance was numerically above chance level. All error bars 

indicate the SEM calculated across participants. *** p < .001. 
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To further characterize the manner by which category specific item recognition signals 

are reflected in activity patterns within PrC and PhC we also examined whether such 

information would also be carried in sub-structure ROIs along an anterior-posterior 

gradient within each. This approach was guided by previous fMRI research that has 

revealed differential responses to varying types of stimulus content (e.g., objects and 

scenes) across an anterior-posterior gradient that encompasses PrC and PhC in both 

mnemonic (Staresina et al., 2011) and non-mnemonic task contexts (Litman et al., 2009; 

Liang et al., 2013). As previously noted, each anatomically defined ROI was further 

segmented into a subset of smaller ROIs that were all comparable in size (from anterior 

to posterior: PrC1, PrC2, PrC3, PrC4, PhC1, PhC2, and PhC3). We focused specifically 

on activity in the right hemisphere, given that our initial results primarily implicated right 

PrC and PhC. Classifier accuracy obtained for each of these ROIs was based on activity 

distributed across all voxels without any additional feature selection (i.e., 100% of voxels 

within each region). Decoding results are presented in Figure 3.4. Statistical significance 

was established using a Bonferroni correction for seven comparisons (i.e., the number of 

ROIs). Classification was significantly greater than chance when decoding the familiarity 

of planes from activity in PrC2 (t19 = 6.13, p < .001 corrected), PrC3 (t19 = 5.67, p < .001 

corrected), PrC4 (t19 = 6.86, p < .001 corrected), and PhC1 (t19 = 5.22, p < .001 

corrected). No other regions yielded above chance classification for planes (all p’s > .11). 

The same analysis conducted with data corresponding to familiar and novel trees revealed 

above chance classification in PhC1 (t19 = 5.53, p < .001 corrected), PhC2 (t19 = 6.95, p < 

.001 corrected), and PhC3 (t19 = 5.80, p < .001 corrected). Classifier accuracy for trees 

was not greater than chance in any of the PrC ROIs (all p’s > .14), nor the anterior most 

region of PhC (PhC1, p > .09). Lastly, the perceived familiarity of buildings was 

successfully decoded from activity patterns in PhC2 (t19 = 5.07, p < .001 corrected) and 

PhC3 (t19 = 9.16, p < .001 corrected), but not any of the remaining ROIs (all p’s > .06).  

Lastly, in addition to assessing perceived familiarity, we also examined whether response 

patterns in any ROI would allow for successful classification based on objective item 

status (i.e., targets vs. lures irrespective of recognition response). In line with results from 

our previous investigation (Martin et al., 2013) and those reported for faces uses whole 

brain MVPA by Rissman et al. (2010), we did not find any significant effects for any 
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stimulus category in any region examined (PrC, PhC, ErC, aHC, pHC, entire HC in either 

the left or right hemisphere; all p’s > .09, uncorrected). 
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Figure 3.4 MVPA classification of perceived familiar versus novel trials for the three different stimulus categories across an 

anterior-posterior gradient encompassing right PrC and PhC. A) Classifier accuracies obtained for planes, trees, and buildings in 

each of seven ROIs in right PrC and PhC. Dashed lines indicate chance level. B) Depiction of ROI segments in a representative 

participant. * p < .001. 
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3.3.4 fMRI Results – Correlations Between Behavioural 
Recognition Accuracy and fMRI Classifier Performance 

We next examined whether any of the different types of classification reported show a 

relationship to the accuracy of memory decisions when inter-individual differences are 

considered. Note that all classification analyses presented are based on the outcome of 

recognition decisions regardless of their accuracy, an analyses approach that maximized 

the number of trials on which training of the classifier could be based. To get leverage in 

answering questions about behavioural performance, we assessed the relationship 

between the accuracy of recognition decisions (i.e., familiarity-based d’) and classifier 

accuracy across participants. These analyses revealed significant positive correlations 

between behavioural performance and classifier accuracy for planes in right PrC [r(18) = 

.46, p < .05] and buildings in right PhC [r(18) = .59, p < .01]. For trees, the correlation 

between classification accuracy in PhC and behavioural performance was in the expected 

direction, but did not reach statistical significance [r(18) = .33, p < .10].  

3.3.5 fMRI Results - Between Category Cross-Classification of 
Familiar and Novel Trials and Voxel Overlap Analysis 

Decoding from activity patterns in right PhC revealed signals related to subjectively 

perceived familiarity for both buildings and trees. Accordingly, it is critical to determine 

whether this pattern of results reflects a shared, stimulus general familiarity signal, or 

whether there is indeed evidence to support the notion that item recognition signals are 

coded in a category specific manner. To address this issue, we first evaluated the extent 

to which voxels with diagnostic relevance for the classification of familiar and novel 

trials overlapped between categories. Specifically, we examined overlap at the level of 

voxels that were selected in the initial feature-selection procedure to be the most 

informative for use in the SVM; recall that only 10% of all voxels within each region 

were selected for each cross-validated step of classification. To minimize the influence of 

noise, only those voxels that were selected in at least six of the 10 classification iterations 

were considered. The extent of voxel overlap for voxels with diagnostic relevance for 

decoding recognition decisions for buildings and trees from activity within right PhC is 

depicted for a representative participant in Figure 3.5. This approach revealed that 43% 
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of the voxels in right PhC with diagnostic relevance in the context of SVM optimization 

for classification of buildings were also included in the classification analysis for trees. In 

the opposite direction, 54% of the voxels that were selected for classification of familiar 

and novel trees were also selected for the corresponding analysis for buildings. These 

results indicate that the distributed memory representations in PhC that reflected the 

familiarity of buildings and trees show partial overlap, suggesting that these activity 

patterns are somewhat independent.  
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Figure 3.5 Spatial distribution of voxels with diagnostic relevance for familiarity-

based decoding in a representative participant. For illustrative purposes, the data 

presented were obtained from one fully cross-validated iteration of the classification 

analysis. Only those voxels that appear consistently across iterations (i.e., included in at 

least one cross-validated train-test classification in a minimum 6 out of 10 trial sampling 

iterations) are depicted. 
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To address the issue of independence more formally, we conducted a cross-classification 

analysis using activity patterns associated with familiar and novel buildings and trees in 

right PhC. If classification in PhC is predicated on a memory signal that is common to 

buildings and trees, these analyses should reveal that the pattern of activity that 

distinguishes between familiar and novel trials from one stimulus category should also 

accurately discriminate for the other, and vice versa. Again, these analyses were 

conducted using the item-sampling procedure described previously, which matched trial 

numbers across both stimulus class and recognition responses. Critically, cross-

classification was at chance in right PhC when the linear decision boundary optimized 

during SVM training for discrimination of familiar and novel buildings was used to 

classify familiar and novel trees (M = .52; p > .11 uncorrected). The complementary 

analysis, which established a decision boundary for trees and applied it to buildings, also 

yielded classifier accuracy that did not differ from chance (M = .49, p > .32). These data 

suggest that the distributed patterns of voxels that contribute to classification of familiar 

versus novel buildings and trees in PhC show evidence of functional independence. 

In a final step, we also performed cross-classification analyses in the PrC/PhC gradient 

ROIs that yielded above chance classification for more than one stimulus category (i.e., 

planes and trees in PhC1, and trees and buildings in PhC2 and PhC3). As no additional 

feature selection was performed on data from these segmented ROIs, activity patterns 

associated with different stimulus categories within the same ROI are distributed over 

voxels that are entirely overlapping. Despite this spatial correspondence between voxels, 

our results suggest that the patterns of activity related to item recognition within each 

gradient ROI differ between categories as cross-classification was unsuccessful for each 

pertinent analysis (planes and trees in PhC1, M = .49, p > .27; tees and buildings in PhC2, 

M = .52, p > .16, and trees and buildings in PhC3, M = .50, p > .46). 

3.4 Discussion 

In the current study, we examined distributed patterns of activity in the MTL associated 

with the perceived familiarity of buildings, trees, and planes. Our primary goal was to 

examine whether the distributed patterns of activation pertaining to item recognition 

differed between PrC and PhC for objects that are typically fixed in location (i.e., 
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buildings and trees) and those that are not (i.e., planes), while holding real-world size 

constant across categories. Moreover, we also sought to determine whether familiarity 

signals within each structure were dissociable in a category-specific manner. Our 

classification results revealed item recognition signals for planes in right PrC, but not for 

trees and buildings. By contrast, we observed familiarity signals for trees and buildings in 

right PhC, but not planes. Importantly, we found significant correlations between 

behavioural recognition performance and classifier accuracy for planes in right PrC and 

buildings in right PhC. Results from our cross-classification analyses suggest that the 

distributed patterns of activation in PhC that carry information pertinent to item 

recognition decisions for trees and buildings are distinct from one another. When 

considered together, this pattern of results suggests that fixedness in location in the 

environment is one object property that leads to differential item-recognition effects 

between structures. At a more fine-grained level, these data also point to category-

specific patterns of item recognition signals in PhC.  

The evidence revealed in the current study converges with findings from our previous 

research (Martin et al., 2013) in suggesting that representations in both PrC and PhC can 

be brought to bear on item recognition decisions. To the extent that the recognition 

memory judgments of interest (i.e., familiar vs. novel) were not confounded by 

unreported recovery of contextual detail, these findings argue against the notion that a 

distinction between items and contexts can fully characterize functional specialization 

with respect to recognition memory in PrC and PhC (Eichenbaum et al., 2007; Diana et 

al., 2007; Ranganath, 2010; Montaldi and Mayes, 2010). What, then, determines whether 

item recognition signals are carried by either PrC or PhC? One potential explanation is 

that stimulus category may be a critical determinant as extant fMRI research has revealed 

that visual stimuli are indeed represented in a categorical manner in MTL cortex (Diana 

et al., 2008; Litman et al., 2009; Liang et al., 2013; Huffman and Stark, 2014), and the 

ventral visual pathway more broadly (Haxby et al., 2001; Kriegeskorte et al., 2008; for 

review, see Grill-Spector and Weiner, 2014). However, our results, together with those 

from our previous research (Martin et al., 2013), provide initial evidence suggesting that 

reference to stimulus category alone may be insufficient to account for the difference in 

response profiles exhibited by these structures. Rather, specific object properties may 
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constitute a more fundamental distinction that determines whether item representations in 

PrC or PhC carry information pertaining to the prior occurrence of a given stimulus in the 

context of a recognition memory task. Importantly, however, these object properties may 

be continuous rather than dichotomous dimensions.  That we observed above chance 

decoding of item recognition decisions for planes in both PrC and the anterior most 

extent of PhC in our ROI gradient analysis, and in both structures for chairs in our 

previous research (Martin et al., 2013), provides support for this proposal. 

What specific object properties determine the relative contributions of PrC and PhC to 

item recognition? Previous fMRI research that has examined the representation of visual 

information in the absence of mnemonic demands has revealed preferential responses for 

objects with large real-world size, as compared to small real-world size, in medial aspects 

of ventral temporal cortex that include PhC (Cate et al., 2011; Konkle and Oliva, 2012). 

Other research has indicated that objects that are fixed in location, a feature that is 

correlated with object size, also tend to evoke differential responses in PhC (Mullally et 

al., 2011; Troiani et al., 2012). While the stimulus dimensions of fixedness and size are 

often correlated, being fixed in location critically defines the extent to which a given 

object can be characterized as a landmark with potential navigational relevance. Here, we 

have sought to evaluate the relative importance of landmark suitability in relation to item 

recognition signals carried by PrC and PhC using categorized objects that were equated 

in perceived real-world size. Our results indicate that PhC carries item recognition signals 

for objects that have potential navigational relevance, rather than all large objects. 

Specifically, the familiarity of buildings and trees was associated with distinct fMRI 

BOLD responses in PhC, but not PrC. Conversely, PrC carried item recognition signals 

for planes, which are large but have limited navigational relevance. How can this pattern 

of results be squared with previous fMRI research that has revealed differential PhC 

responses to large objects (Konkle and Oliva, 2012)? One possibility is that such 

differential responses are driven primarily by large objects that are also fixed in location. 

Alternatively, PhC may indeed process large objects independently of fixedness and the 

difference between item recognition signals for fixed and mobile objects may reflect the 

top-down abstraction of semantic information regarding these properties. Notably, 

information pertaining to object fixedness may not necessarily be an inherent property of 
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an object’s perceptual features (see Bastin et al., 2013, for related proposals). Ultimately, 

further empirical research is required to evaluate these alternative explanations as the 

current study was not specifically designed to asses the potential role of semantic or other 

top-down processes in relation to item recognition signals in PrC and PhC.    

While we interpret our results as evidence suggesting that the potential navigational 

relevance of a given object critically determines whether PhC carries information 

pertaining to familiarity-based item recognition, we do not wish to claim that familiarity-

based item recognition alone can support successful navigation based on landmark 

recognition. To successfully serve as a navigational cue, an object must not only be 

recognized as one that has been previously encountered, but the associative information 

related to direction or bearing must also be recovered in a task-dependent manner. That is 

to say, recognizing a particular building does not confer a navigational advantage on its 

own accord. However, given that our participants had no pre-experimental exposure to 

the building and tree stimuli employed in the current study, either within the context of an 

active navigation task or otherwise, it appears impossible that the effects we observed in 

PhC are related to the representation of such navigationally relevant contextual 

information. What our data do suggest is that objects such as buildings and trees, which 

have potential navigational relevance by virtue of being fixed in location, are represented 

in PhC. Perhaps more importantly, however, that we could successfully decode 

familiarity-based item recognition judgments from patterns of activity related to such 

objects indicates that PhC represents them in a manner that carries information relevant 

for familiarity-based discrimination between target items and perceptually similar lures.  

Findings from a number of neuropsychological investigations in patients with lesions that 

include aspects of PhC also point to a possible role in item recognition. Specifically, 

lesions that include PhC and more posterior lingual gyrus have been linked to landmark 

agnosia (e.g., Landis et al., 1986; Takahashi and Kawamura, 2002; cf Epstein et al., 

2001). Landmark agnosia refers to the inappropriate selection and utilization of 

landmarks for the purpose of orienting in both novel and previously encountered 

environments. Although lesion location, extent, and descriptions of behavioural outcomes 

have varied across case studies, patients with landmark agnosia typically have both 
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perceptual and mnemonic impairments related to landmarks that are often observed 

despite a preserved ability to represent spatial information, reproduce maps, and describe 

routes (see Aguirre and D’Esposito, 1999, for review). As a whole, evidence from such 

patients is largely consistent with our MVPA results in suggesting that aspects of PhC 

play a critical role in landmark recognition. 

Beyond linking the functional differences between PrC and PhC to specific stimulus 

properties, the current study also revealed category-specific item recognition signals 

within PhC. Specifically, results from our cross-classification analyses suggest that 

familiarity signals in PhC that pertain to buildings are distinct from those pertaining to 

trees. This observation is consistent with our previous research which has revealed 

distinct patterns of activation associated with the decoding of familiar and novel faces 

and chairs from distributed activity in PrC, and buildings and chairs from patterns of 

activation in PhC (Martin et al., 2013). This pattern of distributed category-specific item-

recognition signals in MTL cortex mirrors the distributed category-specific effects that 

have been reported in more posterior ventral temporal cortex in non-mnemonic task 

contexts (Haxby et al., 2001; Kriegeskorte et al., 2008; for review, see Grill-Spector and 

Weiner, 2014; cf. Spiridon and Kanwisher, 2002). Given that familiarity-based item 

recognition is by definition based on a stimulus itself, rather than associative detail, we 

suggest that categorical representations in MTL cortex may provide a substrate upon 

which information pertaining to prior occurrence is coded. This explanation is generally 

in line with the proposal that MTL structures support category-specific representations 

that can be brought to bear on both mnemonic and perceptual discriminations, although 

on this account PhC is not thought to represent scene stimuli rather than objects (Murray 

and Bussey, 1999; Bussey and Saksida, 2007; Graham et al., 2010). 

In summary, our findings indicate that item-recognition memory is supported by 

distributed representations in both PrC and PhC, suggesting that a distinction between 

item information and contextual detail cannot fully characterize the functional 

contributions of these structures to recognition memory. Importantly, based on the stimuli 

employed we found that landmark suitability may be a critical factor that determines 
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whether item recognition signals are coded in either PrC or PhC. Moreover, our results 

reveal category-specific item recognition signals within each structure. 
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Chapter 4  

 

4 Distributed Category-Specific Recognition Memory 
Signals in Human Perirhinal Cortex 

4.1 Introduction 

Humans have a remarkable capacity to discriminate between previously encountered and 

novel stimuli, an ability that is typically referred to as recognition memory or recognition 

of prior occurrence. A large body of research in humans, non-human primates, and 

rodents converge in suggesting that perirhinal cortex (PrC), a structure in the medial 

temporal lobe (MTL) that is intimately connected with the ventral visual pathway for 

object identification, plays a critical role in recognition memory (Brown and Aggleton, 

2001; Eichenbaum et al., 2007; Murray et al., 2007; Squire et al., 2007). In humans, PrC 

has been implicated in recognition memory for many different stimulus classes, including 

objects, faces, and words (see Diana et al., 2007; Kim 2013). A noticeable but less 

consistent body of research also suggests that recognition of prior occurrence does not 

require the integrity of the hippocampus, and can proceed normally in the absence of 

recollection of contextual detail about specific past stimulus encounters (see Montaldi 

and Mayes, 2010; Ranganath, 2010; Squire et al., 2010; Yonelinas et al., 2010, for review 

and discussion). Such acontextual item-based recognition has been linked to 

phenomenological feelings of familiarity. While numerous neuroimaging studies have 

focused on dissociations between perirhinal and hippocampal contributions to recognition 

memory, the precise nature of PrC computations and representations that support item-

based recognition still remains poorly understood. Important outstanding questions 

concern how differential signals for familiar versus novel items are reflected in the fMRI 

BOLD response, whether such signals are spatially distributed within PrC, and whether 

they show specificity for different object categories.  

Electrophysiological evidence from a number of studies in rodents and in non-human 

primates suggests that the mechanism by which PrC could code for recognition of prior 
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occurrence is a decrease in neuronal firing rate (i.e., repetition suppression; Zhu et al., 

1995; Desimone, 1996; Ringo, 1996; Xiang and Brown, 1998; Aggleton et al., 2012; c.f. 

Hölscher et al., 2003). It has been reported that as many as 25% of PrC neurons in 

macaque monkeys show response decrements for familiar as compared to novel objects 

in the context of delayed-matching to sample, delayed non-matching to sample, or 

continuous recognition-memory tasks (Brown et al., 1987; Sobotka and Ringo, 1996; 

Xiang and Brown, 1998). It should be noted, however, that not all studies with 

electrophysiological recordings have revealed response reductions in PrC in association 

with the repeated occurrence of objects. For example, Thome et al. (2012) did not 

observe any reduction in PrC firing rates in association with stimulus repetition in a 

passive viewing experiment, a finding that has been interpreted to suggest that such 

signals could be task dependent (Brown et al., 2012). Alternatively, this finding is open to 

the interpretation that item-based recognition may not be coded exclusively by a 

reduction in local firing rates but may involve distributed coding over populations of 

neurons in PrC (Thome et al., 2012; Burke et al., 2014).   

Evidence obtained with fMRI in healthy humans has also linked item-based recognition 

to differential responses in PrC for previously studied as compared to novel items at the 

time of retrieval (see Diana, et al., 2007; Kim, 2013, for review). Notably, several studies 

have demonstrated a negative relationship between confidence in the perceived ‘oldness’ 

of test items, which is often assumed to track item-memory strength, and the BOLD 

response in PrC (e.g., Daselaar et al., 2006a, 2006b; Montaldi et al., 2006; Wang et al., 

2014; see also Gonsalves et al., 2005). Given that this decrease in response for previously 

encountered items parallels the pattern of repetition suppression in electrophysiological 

recordings, it has attracted considerable attention in the literature. However, there are 

numerous challenges associated with mapping repetition effects in single-cell recordings 

onto fMRI BOLD signals (see Henson and Rugg, 2003; Grill-Spector et al., 2006; Gotts 

et al., 2012, for discussion). In fact, there is evidence to suggest that BOLD activity is 

more closely related to local-field potentials detected with multi-unit recordings than to 

neuronal spiking (Logothetis et al., 2001; Logothetis, 2008). Against this background, it 

is perhaps not surprising that some fMRI studies have also revealed a relative increase in 

BOLD signal for familiar as compared to novel items in PrC (e.g., Kafkas and Montaldi, 
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2012), with one investigation even reporting increases and decreases in distinct PrC 

clusters in the same study (Yassa and Stark, 2008). Such findings point to the possibility 

that item-based recognition memory signals are reflected in patterns of decreases and 

increases in the fMRI BOLD response that are spatially distributed across PrC.   

Most studies on the role of PrC in recognition memory have examined the neural 

correlates of item recognition with univariate statistical analyses that probe for clusters of 

contiguous voxels with homogeneous response profiles (e.g., Daselaar et al., 2006a) or by 

averaging activity across all voxels in anatomically defined regions of interest (e.g., 

Wang et al., 2014). Multi-voxel pattern analyses (MVPA) of fMRI data, by contrast, can 

detect information carried in activity patterns distributed over multiple voxels even when 

these voxels are not part of a contiguous cluster, and, critically, even when they show a 

heterogeneous directional response to an experimental manipulation  (for review, see 

Norman et al., 2006; Rissman and Wagner, 2012; Tong and Pratte, 2012).  

We recently conducted an MVPA-based fMRI study, aiming to reveal distributed patterns 

of BOLD activity in MTL structures that may distinguish between subjectively familiar 

and novel items (Martin et al., 2013). We reasoned that it might be possible to decode the 

perceived mnemonic status of an item from patterns of PrC activity if patterns of activity 

for familiar items are generally more similar to each other than to patterns associated with 

items considered as novel, and vice versa (see also Rissman et al., 2010). We scanned 

participants while they made recognition-memory judgments for visual stimuli from 

several different object categories (faces, chairs, and buildings). Using a linear support 

vector machine (SVM) in separate training sessions for items from each stimulus 

category, we were able to successfully decode the perceived familiarity of individual 

faces and chairs (but not buildings) from distributed activity patterns in right PrC. As the 

MVPA approach employed was blind to the direction of effects it may indeed have 

revealed information distributed across voxels with a heterogeneous response profile. 

Based on the analyses reported, however, we cannot rule out that the classifier detected 

subtle differences in the mean response (in one direction) across all voxels that comprised 

the pattern (see Coutanche, 2013 for discussion). 
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The present report describes a series of new analyses conducted on the dataset reported 

by Martin et al. (2013) that test a number of new questions about how PrC codes for prior 

occurrence. Our primary goal was to determine whether patterns of activity in PrC that 

allow for the classification of the perceived familiarity of faces do indeed consist of 

voxels with heterogeneous response profiles in terms of direction of effects, and, if so, 

whether classification could still be successful if patterns were restricted to include only 

voxels with changes in one direction. To obtain further leverage on the issue, we also 

investigated whether classification accuracy for any such voxel patterns is correlated with 

behavioural performance across participants. 

A second goal of the current investigation was to determine whether voxels in patterns of 

PrC activity that carry information about the familiarity of faces show specificity in their 

response for this particular stimulus category. Inasmuch as item-based recognition 

memory signals are, by their definition, based on the stimuli rather than any contextual 

information about a prior stimulus encounter, the nature of the pertinent object category 

may play an important role in their neural organization (see Graham et al., 2010; Cowell 

et al., 2010; Martin et al., 2012, for further discussion). Prior fMRI research that has 

examined category specific responses for visually presented stimuli in non-mnemonic 

tasks has revealed two types of effects in more posterior occipito-temporal regions. First, 

studies based on univariate analyses have revealed clusters of contiguous voxels in the 

ventral visual pathway that show maximal responses for exemplars from a specific visual 

category. Such clusters are often referred to as category-selective regions and have been 

reported for several ecologically relevant categories, including faces, body parts, words, 

and places (see Op de Beeck et al., 2008, for review). Second, MVPA-based studies have 

revealed patterns of activity distributed across voxels in wider swaths of posterior ventral 

temporal cortex that show category-specific responses even when clusters with 

preferential responses are excluded, and even for categories that are not associated with 

any contiguous clusters in univariate analyses (see Grill-Spector and Weiner, 2014; 

Haxby et al., 2014, for review). For example, the latter types of studies have revealed the 

presence of informational content relevant for face identity in distributed patterns of 

activity in ventral visual pathway regions that go beyond the classic lateral occipital and 

posterior fusiform- ‘face areas’ previously identified in univariate analyses (Haxby et al., 
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2001; Kriegeskorte et al., 2008; Nestor et al, 2011). At present, it remains unknown 

whether patterns of recognition-memory signals for faces in PrC show a similar 

functional organization. This issue is of particular interest given that a category-specific 

region with a preferential response for faces has recently also been identified in the 

anterior collateral sulcus of PrC, a region sometimes referred to as the anterior temporal 

face patch (ATFP; Rajimehr et al., 2009; Nestor et al., 2011; Nasr and Tootell, 2012; 

O’Neil et al., 2013, 2014; Collins and Olson, 2014).  

In the present study, we examined whether voxels with diagnostic relevance for decoding 

recognition memory judgments for faces in PrC show category specificity when probed 

with an independent functional localizer of the type that has been used to identify face-

specific responses in the ventral visual pathway in many prior studies under passive-

viewing conditions. Moreover, we investigated whether these voxels are restricted to the 

ATFP or are more widely distributed in PrC. We pursued this issue within the context of 

our broader goals to characterize the nature of item-based recognition-memory signals in 

human PrC, which, as discussed, also aimed to address whether pertinent information is 

reflected in distributed patterns of voxels with heterogeneous directional response 

profiles.  

4.2 Materials and Methods 

4.2.1 Participants 

Nineteen right-handed individuals participated in the study (21-30 years of age, mean age 

= 25.2 years; 12 females). All participants were screened for the absence of a history of 

neurological disorders. Data from one participant were excluded from all analyses due to 

excessive head movement during scanning. Participants received financial compensation 

for their participation and provided informed consent according to procedures approved 

by the University of Western Ontario Health Sciences Research Ethics Board. 

4.2.2 Stimuli and Behavioural Procedure 

Stimuli were grayscale images depicting exemplars from three different object categories 

(i.e., faces, chairs, and buildings), though the current study focuses specifically on 
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patterns of BOLD activity related to the familiarity of face trials. Each target object was 

presented in isolation on a homogeneous, white background. The size of each image was 

bounded at 375 x 250 pixels, with at least one dimension corresponding to these limits. 

For the purpose of counterbalancing, images from each stimulus category were divided 

into three sets of 40 objects, two of which (i.e., 80 objects) served as items presented 

prior to scanning during a study session, and as corresponding targets in the scanned 

recognition-memory test stage. The remaining 40 items served as novel lures in the 

recognition task. Assignment of item sets to either target or lure lists was counterbalanced 

across participants.  

The experimental task consisted of two discrete stages: an encoding session and a 

subsequently scanned recognition memory test. The initial encoding session was 

separated into six blocked sequences that were counterbalanced across participants. Each 

block consisted of 40 trials corresponding to one target list. Stimuli were presented for 

3000ms with a 2000ms fixation ISI, and participants were asked to rate the relative 

attractiveness of each face, comfort of each chair, or value of each building using a five-

point scale. 

Participants subsequently completed a scanned recognition memory test consisting of 80 

previously studied targets and 40 lures from each category, for a total of 360 trials 

distributed over eight functional runs of equal length and composition. Of these trials, 

120 corresponded to presentation of face stimuli (i.e., 80 studied and 40 novel lures). 

Stimuli were presented for 2500 ms, with a jittered fixation-baseline separating trials 

(jitter sequence was optimized using the OptSeq2 algorithm; 

http://surfer.nmr.mgh.harvard.edu/optseq/). While in the scanner, participants viewed the 

stimulus display through a mirror at a distance that yielded an approximate object size of 

18 x 13° visual angle. For their recognition judgments, participants were instructed to 

provide a rating of perceived familiarity on a scale between one (least familiar) and four 

(most familiar), with a fifth response option corresponding to recollection. Critically, they 

were asked to respond with a fast and intuitive assessment of their perceived item 

familiarity and to avoid attempting to recollect contextual details from the encoding stage 

of the experiment (see Dobbins and Han, 2006; Montaldi et al., 2006; Quamme et al., 
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2010; Martin et al., 2013, for further discussion). Recollection of contextual details was 

defined as any situation that involved conscious awareness of information about the past 

item encounter that was independent of perceptual details of the stimulus itself, such as 

internal thoughts and associations that were formed during the initial item encounter. 

4.2.3 Functional Localizer Tasks 

Subsequent to the experimental task, each participant completed two independent 

functional localizer scans (which were not considered in our initial report, Martin et al., 

2013). The localizer task followed a protocol that has previously been used in several 

other studies from our lab (e.g., Ganel et al., 2006; O’Neil et al., 2009, 2013; Cate et al., 

2011) and is similar to that used in many other studies in the visual cognition literature 

more broadly. It involved presentation of grayscale faces, common objects, and places 

(scene landscapes and buildings with naturally occurring background) under passive 

viewing instructions. Importantly, stimuli employed in the localizer task were 

independent of those comprising the experimental recognition memory task. Stimuli from 

each category were presented in a blocked manner with alternating blocks of scrambled 

images corresponding to each stimulus category. 

4.2.4 fMRI Acquisition Protocol 

All MRI data were acquired on a Siemens TIM Trio 3-Tesla scanner with a high-

resolution fMRI protocol optimized for MTL examination. Functional MRI volumes 

were collected using a T2*-weighted single-shot gradient-echo-planar acquisition 

sequence [TR = 2500 ms, TE = 26 ms, slice thickness = 2 mm, in-plane resolution = 2 X 

2 mm, FOV = 220 mm X 220 mm, flip angle = 90°]. Each functional volume included 37 

contiguous slices collected in an interleaved manner. For each experimental run (8 per 

participant), 176 volumes were collected. Each localizer scan (2 per participant) consisted 

of 150 functional volumes. To optimize MR signal in the anterior temporal lobes, a 

transverse orientation was chosen with the effort to include the entire temporal lobes and 

as much visual cortex as possible. This slice selection resulted in full coverage of the 

ventral aspects of occipital and full coverage of the entire temporal lobes in all 

participants, with exclusion of the most dorsal aspects of frontal and parietal cortices, as 
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well as occipital cortex in some participants. A saturation band was applied during 

functional runs in order to minimize artifacts related to eye-movements and the sinus 

cavity. T1-weighted anatomical images were obtained using an ADNI MPRAGE 

sequence [192 slices, TR = 2300 ms, TE = 4.25 ms, 1 mm isotropic voxels, FOV = 240 X 

256 mm, flip angle = 9°]. 

4.2.5 fMRI Data Pre-processing 

fMRI data were pre-processed in native space using BrainVoyager QX version 2.3 (Brain 

Innovation). Functional images were slice-scan time corrected, 3-D motion corrected 

with reference to the functional volume taken just prior to the anatomical scan, and high-

pass filtered using a linear trend and a Fourier basis set of 2 cycles/run. Images were then 

co-registered with the anatomical image and aligned with the AC-PC plane. For the 

purpose of MVPA, experimental data were minimally smoothed using a three-

dimensional Gaussian kernel with a full-width at half maximum of 3 mm. Functional data 

from the localizer experiment were smoothed using a three-dimensional Gaussian kernel 

with a full-width at half maximum of 8 mm. Functional data were convolved using a 

standard double gamma hemodynamic response function (Friston, 1998). Participant-

specific GLMs of these data allowed for extraction of trial-specific beta estimates in all 

voxels of interest. Beta estimates derived from a modeled HRF were chosen as target 

measure for the MVPA (i.e., as classifier input) because they are particularly well suited 

to account for overlap in the hemodynamic response in fast-event related designs (Misaki 

et al., 2010). Changes in mean intensity across runs were modeled by including them as 

predictor of no interest in the participant-specific GLMs. 

4.2.6 Identification of the Anterior Temporal Face Patch in 
Functional Localizer Scans 

This region of interest was defined functionally, for individual participants, in the right 

hemisphere, using data from the localizer scans. A general linear model was specified for 

each localizer run with faces, places, and objects as predictors. Scrambled images served 

as the baseline condition. Participants’ ATFPs were derived from the contrast [faces > 

places], which corresponded to a subject-specific fixed-effects contrast image. ROIs were 
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defined based on activation maps that were statistically thresholded using a whole-

volume, uncorrected p-value < .05, and anatomical criteria that related to PrC boundaries 

(Pruessner et al., 2002).  

4.2.7 Anatomical Definition of PrC for MVPA of Recognition 
Signals in Experimental Task 

To conduct MVPA, an anatomically defined ROI for PrC in the right hemisphere was 

created in native MRI space with manual tracing separately for each participant. For this 

purpose, we used an established protocol that specifies anatomical landmarks for 

demarcation of PrC from surrounding cortical structures in the MTL (Pruessner et al., 

2000, 2002).  

4.2.8 MVPA of fMRI Data 

For the purpose of classification, data were collapsed across response options such that 

the ‘familiar’ class of face trials corresponded to hits and false alarms at the two highest 

levels of familiarity (i.e., response options 3 and 4) and the ‘novel’ class of face trials 

comprised hits and false alarms at the two lowest levels of familiarity (i.e., response 

options 1 and 2). To eliminate potential classifier bias related to unequal trial numbers we 

employed a pseudo-random sampling procedure that equated the number of trials 

between the ‘familiar’ and ‘novel’ classes. This procedure was repeated over 10 iterations 

to ensure that all trials for a given participant were included in the classification analysis 

at least one time. Accordingly, 10 separate instances of the classification analysis (i.e., 

cross-validated classifier training and testing) were completed and inferential statistical 

analyses were performed on classifier accuracy averaged over these 10 iterations. Across 

participants, the average number of trials included for the classification of faces at each 

familiarity level (i.e., ‘familiar’ versus. ’novel’) was 39.8.  

Pattern classification analyses were conducted using the Princeton MVPA toolbox 

(http://www.pni.princeton.edu/mvpa) and custom MATLAB code (The MathWorks, 

Natick, MA). As a first step, we performed feature selection in order to minimize the 

influence of noise in the functional data. The feature selection procedure employed here 

allowed for multivariate classification of perceived familiarity of faces based on activity 



119 

 

within a subset of PrC voxels that were not necessarily clustered in any systematic 

manner and showed either homogeneous or heterogeneous response profiles. 

Specifically, feature selection was based on voxel-wise measures of discriminability (i.e., 

t-tests between ‘familiar’ and ‘novel’). When contrasted with multivariate feature 

selection procedures, such as a multivariate searchlight which considers weighted 

combinations of voxel responses for class separation, the primary advantage of the 

current approach pertains to increased sensitivity for detection of cognitive states coded 

in activity patterns comprised of spatially distributed voxels. Accordingly, this approach 

is sensitive to meaningful patterns that are distributed beyond the spatial scale of a 

searchlight. 

Feature selection was performed in each participant separately by choosing the subset of 

voxels in right PrC that appeared most informative for classification based on an initial 

univariate statistical analysis (see Norman et al., 2006 for discussion). Specifically, a t-

test was conducted between beta values for ‘familiar’ and ‘novel’ trials in all voxels in 

right PrC for each cross-validation separately. All voxels were subsequently rank ordered 

according to their obtained t-statistic and those corresponding to the top 10% of that 

ranking were selected as features included for SVM classification (see below for 

additional detail regarding directional and non-directional feature selection procedures). 

For all familiar-novel classifications this analysis was also performed separately for each 

of the 10 iterations of item sampling. This feature selection procedure yielded an average 

of 55.1 functional voxels (2x2x2 mm) in right PrC across participants. 

A linear support vector machine (SVM; libSVM, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm) was used for classification of beta values with 

a linear kernel function and a constant cost parameter of C = 1. For each cross-validated 

classification analysis, the SVM was trained on all but two face trials; those trials not 

included in the training data set (i.e., one ‘familiar’ and one ‘novel’ trial) subsequently 

served as test trials for assessment of classifier performance. This train and test procedure 

was completed in a fully cross-validated manner such that every trial served as the test 

stimulus for classification. For each trial in the test set, the classifier returned a 

probability estimate that indicated the likelihood that the activity pattern corresponded to 
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either the ‘familiar’ or ‘novel’ class that was used for SVM training purposes. Probability 

estimates were then binarized in a winner takes all manner; classification was either 

correct (i.e., when the ‘true’ experimental condition was assigned the highest probability) 

or incorrect. Averaged across all 10 iterations, classifier accuracy for the perceived 

familiarity of faces reflects the percentage of test trials that were classified correctly in 

this binary manner. To obtain inferential statistics, we examined whether average 

classification performance was above chance (i.e., 0.5). For this purpose, we employed a 

single sample t-test to test against a population mean of chance level. 

4.3 Results 

As indicated in our initial report (Martin et al., 2013), MVPA based analyses of right PrC 

activity allowed us to successfully decode the perceived familiarity or novelty of  

individual faces with a mean classifier accuracy of 57% (Bonferroni corrected p < .001), 

and 14/18 participants showing activity patterns that could be classified with numerical 

above chance performance.  

4.3.1 Direction of Signal Change in PrC Activity Patterns that 
Allow for Decoding of Recognition Memory Decisions for 
Faces  

Successful decoding of recognition memory decisions, as summarized, above indicates 

greater within- than between-class similarity in PrC activity patterns for subjectively 

familiar as compared to novel trials. To characterize precisely how these class differences 

are reflected in BOLD activity we first examined the extent to which voxels with 

diagnostic relevance for classification showed the same or a varied response with respect 

to familiarity in terms of direction. Decoding results from our previous investigation 

(Martin et al., 2013) were obtained following a commonly used non-directional feature 

selection procedure that was based on initial voxel-wise measures of experimental effects 

in a GLM derived test statistic (i.e., t-values for contrast between familiar and novel). 

Specifically, voxels were rank ordered according to the absolute value of their obtained t-

statistic, and the top 10% of voxels were selected for the purpose of SVM training and 

classification. In this manner, voxels in which activity decreased with familiarity, as well 

as others in which activity increased with familiarity could be included in feature 
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selection. However, it is also possible that all selected voxels responded to familiarity in a 

similar manner, resulting in successful decoding based on SVM leveraging of a spatially 

distributed mean difference. To evaluate this possibility we calculated mean beta values 

for subjectively familiar and novel trials based on activity in voxels that survived feature 

selection in the majority of classification analysis iterations (i.e., included in at least one 

cross-validated train-test classification in a minimum of 6 out of 10 trial sampling 

iterations). Mean beta values, collapsed across participants, are presented in Fig 1. At the 

group level, no significant difference was observed between beta values that 

corresponded to ‘familiar’ and ‘novel’ trials (t17 = 0.21, p = .83). Of the voxels included, 

only 46% showed a numerical decrease in activation for ‘familiar’ trials, indicating that 

both response directions were strongly represented in the selected voxel populations. At 

the single subject level, only 5 of 18 participants had a significant mean difference (p < 

.05) between both types of trials; moreover, only two of these five participants showed a 

decrease (familiar < novel) in beta values when averaged across the selected PrC voxels. 

Although these mean differences between classes were clearly limited and not consistent 

across participants, we also sought to determine whether classification would still be 

successful after demeaning familiar and novel beta values. Specifically, in this analysis, 

beta values across all voxels that survived feature selection were z-scored for each trial 

and participant separately; this ensures that mean differences are exactly zero. Critically, 

we found that classifier performance remained above chance in this scenario (M = 56%, 

t17 = 5.04, p < .001). Decoding results obtained with and without z-scored beta values are 

presented in Fig. 2 for comparison. These results suggest that successful decoding of 

recognition memory decisions does not rely on the presence of a mean difference. By 

extension it suggests that feature selection that is blind to direction yields classification 

about recognition decisions based on patterns of voxels that have heterogeneous response 

profiles.  
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Figure 4.1 Mean Beta values in right PrC for familiar and novel trials. Mean Beta 

values were calculated across participants based on voxels that were reliably selected for 

classification following non-directional and both directional feature selection procedures. 

For this purpose, reliable voxels were those that survived feature selection in at least 6 

out of 10 analysis iterations. All error bars indicate the SEM calculated across 

participants. *** p < .001. 
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4.3.2 Decoding of Recognition Memory Decisions from PrC 
Activity Patterns when Direction of Signal Change is 
Constrained 

We next sought to determine whether successful classification of recognition decisions 

necessitates consideration of voxels with heterogeneous response profiles. We addressed 

this question using MVPA based on a feature selection approach that allowed for 

inclusion of voxels with a change in signal in only one direction. Towards this end, we 

ran two separate analyses with feature selection constrained to be based on voxels with 

decreases or increases in signal, respectively. Voxels were rank ordered according to raw, 

rather than absolute, t-values and those corresponding to the top or bottom 10% of these 

rankings were selected for the two separate MVPAs. Thus, in the first set, all voxels 

showed a decrease in response for familiar as compared to novel trials, while voxels in 

the second set showed the opposite response profile.  

Mean beta values for voxels that survived this directionally constrained feature selection 

are presented in Figure 4.1 collapsed across participants. Not surprisingly, directionally 

constrained feature selection resulted in a significant mean differences in beta values 

across the selected voxels for subjectively familiar versus novel trials (familiar < novel t17 

= 11.58, p < .001; familiar > novel t17 = 14.97, p < .001); these differences were also 

consistently present at the single subject level (n = 18, all p’s < .001). Noticeably, 

directionally constrained feature selection still resulted in classifier accuracy that was 

significantly greater than chance for both types of analyses (see Figure 4.2; familiar < 

novel M = 63%, t17 = 11.67, p < .001; familiar > novel M = 63%, t17 = 10.32, p < .001). 

These results suggest that information pertaining to item recognition decisions can also 

be successfully decoded from patterns of voxels with a homogeneous response profile 

and a significant mean difference in response between familiar and novel trials, 

regardless of whether this difference reflects a decrease or an increase.   
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Figure 4.2 Decoding accuracy for perceived familiar versus novel trials from raw 

and z-scored patterns of activation across feature selection approaches. z-scoring was 

performed on Beta values across all voxels for each trial and participant separately to 

ensure that familiar and novel trials were equated at the level of mean activation. Dashed 

line indicates chance level for classification. All error bars indicate the SEM calculated 

across participants. *** p < .001. 
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4.3.3 Relationship between Classifier Accuracy for PrC Activity 
Patterns and Behavioural Recognition Memory Performance  

Taken together the results of the analyses presented thus far suggest that recognition 

decisions can be successfully decoded from distributed activity patterns in PrC when 

there is no mean difference in response across the voxels comprising the patterns, but 

also when there is a difference in mean following directionally constrained feature 

selection. Is it possible to determine which of these different patterns in PrC is most 

relevant for successful behaviour? Note that all analyses presented involve decoding of 

recognition decisions without taking their accuracy, on a trial-by-trial basis, into account. 

This approach was chosen so as to maximize the number of trials available for training of 

the classifier. To get leverage in answering questions about behavioural performance, 

however, one can also examine the relationship between classifier performance and 

behavioural accuracy on a subject-by-subject basis (i.e., by focusing on inter-individual 

differences). Accordingly, we assessed this relationship for each of the three feature 

selection procedures previously described. To obtain an estimate of behavioural 

performance, we calculated familiarity-based discrimination between targets and lures 

using a measure derived from signal-detection theory (d’). The results of these correlation 

analyses are plotted in Figure 4.3. Critically, we found a significant positive correlation (r 

= .47, p < .05) between familiarity-based discrimination and classifier performance for 

voxel patterns in PrC using the unconstrained feature-selection procedure that allowed for 

the inclusion of voxels with decreases or increases in their response. In other words, those 

participants in whom decoding of recognition decisions from patterns of PRC activity 

patterns was more successful tended to perform better in familiarity-based discrimination 

of faces. By contrast, classifier accuracy and behavioural performance were not 

significantly correlated when feature selection was constrained to include only voxels 

with changes in signal in one direction (for voxels showing familiar < novel: r = .16, p = 

.27; for voxels showing familiar > novel: r = .11, p = .33). These data suggest that, 

although successful decoding of recognition-memory decisions from activity patterns in 

PrC can be obtained in multiple ways, only decoding based on patterns that consist of 

voxels with increases and decreases in signal shows a relationship to memory 

performance. 
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Figure 4.3 Pearson correlations between decoding accuracy and familiarity-based behavioural discrimination (d') across 

participants. A, Correlation obtained following non-directional feature selection. B, Correlation obtained following directional feature 

selection of voxels that showed activity reductions for familiar relative to novel trials. C, Correlation obtained following directional 

feature selection of voxels that showed increased activity for familiar relative to novel trials. 
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4.3.4 Spatial Distribution of PrC Voxels That Allow for Decoding of 
Recognition Memory Decisions for Faces  

A second goal of the present study was to characterize the relationship between 

recognition-memory signals for faces in PrC and the ATFP, as defined with an 

independent functional localizer that employed a passive viewing paradigm. Toward this 

end, we first assessed the extent to which voxels with diagnostic relevance for the 

classification of recognition-memory decision for faces in PrC overlapped with the 

ATFP. For this purpose, we concentrated on the MVPA approach with a feature-selection 

procedure that allowed for inclusion of voxels with either direction of signal change. 

Diagnostic voxel distributions are depicted in Figure 4.4 with voxel-wise SVM weights 

projected onto the cortical surface of each of the 13 participants for whom we could 

identify the ATFPs with our functional localizer. Of the right PrC voxels that were 

selected in the majority of iterations for successful classification of recognition decisions, 

17.7% (averaged across participants; range = 10.4 – 25.3%) overlapped with the ATFP. 

In other words, the large majority of voxels that were part of the patterns that allowed for 

successful decoding of recognition-memory decisions for faces were located outside of 

the ATFP, even when the latter was defined at the individual subject level. To determine 

whether the relatively small proportion of voxels within the ATFP are critical for 

decoding recognition decisions, we also conducted an MVPA excluding PrC voxels that 

were part of the contiguous clusters that defined the ATFP in these 13 participants. 

Critically, this analysis still revealed above chance classifier performance (M = 57%, t12 = 

2.29, p < .05). Taken together, these results suggest that voxels carrying information 

pertinent to recognition-memory decisions for faces are spatially distributed in PrC, and 

clearly extend beyond the ATFP.  
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Figure 4.4 Spatial distribution of voxels with diagnostic relevance for decoding of 

item-recognition decisions in each participant. For illustrative purposes, the data 

presented for each participant were obtained from one representative, fully cross-

validated iteration of the classification analysis. Only those voxels that appear 

consistently across iterations (i.e., included in at least one cross-validated train-test 

classification in a minimum 6 out of 10 trial sampling iterations) are depicted. Hot colors 

denote voxels with diagnostic relevance for classification of face familiarity and 

correspond to absolute values of normalized SVM weights averaged across cross-

validations. SVM voxel weights reflect the relative contribution of each voxel in defining 

the decision boundary used for classification. Cool color patches correspond to the 

anterior temporal face patch in those participants for whom one could be identified based 

on independent functional localizer data [faces > scenes, whole-volume voxel-wise p < 

.05]. 
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4.3.5 Category Specificity of Responses in PrC Voxel Patterns 
That Allow for Decoding of Recognition Memory Decisions 
for Faces  

Does the limited overlap between voxels with diagnostic relevance for the decoding of 

recognition memory decisions for faces and the ATFP indicate that these spatially 

distributed voxels do not have any tuning or response selectivity for face stimuli? 

MVPA-based research on representations of faces (and other stimulus classes) in more 

posterior temporal lobe regions in non-mnemonic tasks suggests that even voxels outside 

of classic category-selective regions can show tuning for specific object categories (e.g., 

Haxby et al., 2001). Against this background, we assessed whether PrC voxels that form 

the distributed patterns allowing for classification of recognition decisions for faces, even 

though largely located outside of the ATFP, might still show a preferential response to 

face stimuli when probed with an independent functional localizer. Specifically, we 

examined localizer activity in voxels that were consistently included in feature selection 

in at least 6 of our 10 classification iterations for decoding of recognition memory 

decisions, excluding voxels that showed overlap with the ATFP in those participants for 

whom we were able to identify such clusters. A histogram of mean difference scores 

(averaged across blocks) for faces as compared to common objects, and faces as 

compared to scenes, are shown in Figure 4.5. Notably, the distribution is visually skewed 

towards positive values, hinting at predominant preferential tuning for faces in these 

voxel populations. Statistically, the mean difference score was indeed different from zero 

in both comparisons with other stimulus categories (faces > objects, M = .12, t17 = 2.31, p 

< .05; faces > places, M = .16, t17 = 3.09, p < .01). These data suggest that, although 

spatially more widely distributed than the ATFP, the voxels in patterns of PrC activity 

that allow for decoding of recognition-memory decisions for faces still show a modest 

tuning preference for faces under passive-viewing conditions in a classic functional-

localizer paradigm.   
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Figure 4.5 Distributions of category preference revealed with functional localizer 

data in right PrC voxels with diagnostic relevance for decoding of face familiarity. 

Histograms depict the proportion of voxels that show a preference for either A, faces (red 

bars) or objects (open bars), and B, faces (red bars) or scenes (open bars). Difference 

scores were calculated based on activity from the functional localizer scans in voxels 

with diagnostic relevance for decoding of recognition decisions for each participant 

separately. All difference scores were calculated after exclusion of voxels that overlapped 

with anterior temporal face patches. These values were then collapsed across participants 

and plotted as a proportion of the total number of voxels. 
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4.4 Discussion 

We used fMRI-based MVPA to characterize the patterns of activity in right PrC that 

allow for successful decoding of item-based recognition-memory decisions for faces. We 

observed that, when no constraints for the direction of signal change in relation to 

familiarity were imposed, patterns that allowed for successful classification did indeed 

include voxels with decreases as well as voxels with increases in signal. Moreover, 

classification did not rely on any mean difference in activity across the voxels in the 

pattern in this situation. While we also found above chance classification when analyses 

were constrained to include only voxels with signal changes in one direction (and a 

corresponding mean difference), decoding accuracy across participants was related to 

behavioural accuracy of recognition decisions only when patterns of voxels with 

heterogeneous response profiles were considered. A second set of analyses revealed that 

the patterns of activity in right PrC that allow for decoding of recognition-memory 

decisions for faces are comprised of voxels that show category specificity in their 

response when probed with an independent functional localizer. We also found that these 

voxels are spatially distributed in PrC, and extend beyond the ATFP region that has 

previously been associated with face processing in univariate analyses.  

Extant fMRI evidence obtained with univariate statistical analyses has typically linked 

the outcome of item-based recognition-memory decisions (i.e., familiar vs new) to mean 

activity differences in clusters of contiguous PrC voxels with the same direction of signal 

change. Such effects have often been associated with relative decreases in activity for old 

as compared to novel stimuli at the time of retrieval (Henson et al., 2003; Daselaar et al., 

2006a, 2006b; Montaldi et al., 2006; Danckert et al., 2007; Wang et al., 2014), a finding 

that has attracted considerable attention due to its parallels in neurophysiological 

recordings in PrC. However, some fMRI studies have also reported relative increases in 

activity (e.g., Kafkas and Montaldi, 2012), or both types of effects for different clusters in 

the same study (Yassa and Stark, 2008). At present, the factors that drive the direction of 

signal change remain poorly understood (see Yassa and Stark, 2008, for discussion). 

Further, as discussed previously, the parallels in the direction of signal change across 

fMRI and neurophysiological recordings are not straightforward in terms of interpretation 
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(see Henson and Rugg, 2003; Grill-Spector et al., 2006; Logothetis, 2008; Gotts et al., 

2012, for discussion). In light of this background, analytical approaches that do not 

require a priori directional predictions, such as MVPA, offer a clear advantage for 

probing the role of PrC in memory processing. They may reveal functional properties that 

would not be observed if the focus of enquiry were restricted to clusters of voxels with a 

homogenous response profile, or even to patterns of non-contiguous voxels with such a 

profile. Indeed, while above chance classification of recognition decisions could still be 

observed in the current study when feature selection was constrained to include PrC 

voxels with signal changes in one direction, classification accuracy was related to 

behavioural accuracy of item-based recognition-memory decisions only when patterns of 

activity included PrC voxels with decreases as well as voxels with increases in response. 

Put another way, these analyses revealed a relationship of PrC activity to inter-individual 

differences in memory performance only when predictions were unconstrained in terms 

of direction for signal change.   

That we obtained above chance classification in the absence of significant mean 

activation differences between subjectively familiar and novel trials suggests that there is 

a systematic change in activity patterns across PrC voxels that is common across all trials 

within one class (i.e., familiar trials), which distinguishes it from activity patterns in the 

other class (i.e., novel trials). To the extent that these within-class similarities and 

between-class differences are reflected in patterns comprised of voxels with 

heterogeneous response profiles in terms of direction, these data support the idea that 

item-based recognition memory signals in PrC are distributed in nature, a suggestion that 

has recently also been raised in the neurophysiological literature (Thome et al., 2012; 

Burke et al., 2014). It is worth noting, however, that this interpretation does not 

automatically allow for the inference that the information content carried by pertinent 

patterns in PrC is multidimensional (Davis et al., 2014). A multidimensional code is 

typically defined with respect to multiple psychological, stimulus, or behavioural 

dimensions that are reflected in neural response patterns. Establishing the presence of 

such a coding schema requires a targeted experimental design and further probing of the 

distributed response patterns that allow for decoding of recognition memory decisions.  
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While the present study was not designed to determine the number of dimensions that are 

reflected in PrC recognition-memory signals, it does provide a starting point for asking 

related questions. A promising first step to address this issue is to examine whether 

distributed item-recognition signals in PrC show specificity for different stimulus 

categories. The results from the current study suggest that this is indeed the case. PrC 

voxels comprising patterns that allowed for decoding of recognition decisions for faces 

responded preferentially to faces as compared to common objects or scenes when probed 

with an independent functional localizer. Notably, we found that information diagnostic 

for the classification of familiar versus novel faces is coded in activity patterns that are 

spatially distributed and extend beyond a region of right PrC that has previously been 

shown to demonstrate preferential response to faces in univariate analyses, i.e., the 

ATFP. In fact, our analyses revealed successful decoding from activity patterns in right 

PrC even after exclusion of voxels comprising the ATFP from feature selection for the 

classifier.  

Previous research has also revealed category specificity in distributed PrC response 

patterns. For example, Liang et al. (2013) used MVPA in the context of a target detection 

task and found that distributed patterns of BOLD activity in PrC honoured differences 

between faces, scenes, words, and sounds, with face representations being significantly 

different from all other types of stimulus categories examined (see also Diana et al., 

2008; Huffman and Stark, 2014). The present study extends this prior research by 

revealing category specificity in memory signals in PrC at retrieval that are related to 

participants’ recognition memory responses. That memory signals in PrC show such 

category-specific in their organization is also supported by findings that we summarized 

in our initial report on this study (Martin et al., 2013). Specifically, these earlier analyses 

revealed only limited spatial overlap between patterns of activity in right PrC that 

allowed for classification of recognition memory decisions for faces and those that 

allowed for classification of recognition memory decisions for chairs. Moreover, we 

found that classification was unsuccessful when the linear classifier that had been trained 

for classification of familiar versus novel faces was used to decode the familiarity of 

chairs.  
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Considered together, the results from the current analyses suggest specificity in PrC 

response patterns for recognition-memory decisions at two levels.  First, such patterns 

have specificity at the level of stimulus category. Second, they have specificity that 

relates to the perceived memory status of items within a category. While the successful 

classification of perceived memory status in our study implies that activity patterns in 

PrC generalize, at least in part, across different exemplars of familiar faces and across 

different exemplars of novel faces, respectively, this regularity does not imply that the 

specificity required for exemplar recognition is not retained in PrC response patterns. 

Indeed, previous fMRI research has successfully employed MVPA to decode the identity 

of specific exemplars, i.e., facial identities, from activity patterns in PrC and in 

neighboring anterior temporal regions, when participants were required to identify a 

small set of repeatedly presented individuals (Nestor et al., 2011; Anzellotti et al., 2013; 

Anzellotti and Caramazza, 2014; Kriegeskorte et al., 2007). Moreover, fMRI research has 

also revealed object specific response patters in PrC for other stimulus categories in non-

mnemonic tasks (Clarke and Tyler, 2014). An important goal for future research is to 

characterize distributed response patterns in PrC for specific exemplars of faces and 

objects as they change from being perceived as novel to being familiar.  
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Chapter 5  

 

5 General Discussion  

5.1 Summary of Goals and Findings 

George Mandler (1980) first invoked the example of the ‘butcher on the bus’ to illustrate 

how familiarity and recollection support the recognition of prior occurrence: 

Consider seeing a man on a bus whom you are sure that you have seen 

before; you “know” him in that sense. Such a recognition is usually 

followed by a search process asking, in effect, where could I know him 

from? Who is he? The search process generates likely contexts (Do I know 

him from work; is he a movie star, a TV commentator, the milkman?). 

Eventually the search may end with the insight, that’s the butcher from the 

supermarket! (p. 252-3) 

However, in addition to capturing the critical distinction between familiarity-based item 

recognition and the recollection of contextual details, his example also speaks to the 

stimulus specific nature of familiarity-based recognition. When encountered in an 

atypical context, it is the butcher who is familiar, not the bus more generally, the scene 

outside the window, or other passengers; an impression of familiarity typically pertains to 

a specific item (i.e., person or object), rather than the entire immediate environment more 

generally. Accordingly, based on this simple observation we may infer that there is 

indeed a relationship between familiarity-based recognition and stimulus content. 

Moreover, previous neuropsychological and fMRI research has revealed that visually 

presented stimuli are represented in the ventral visual stream in a manner that preserves 

categorical differences between stimuli (see Op de Beeck et al., 2008; Grill-Spector and 

Weiner, 2014, for review). However, extent studies that have examined the neural 

correlates of recognition memory have primarily employed words as stimuli (Diana et al., 

2007; Kim, 2013) with the objective of determining the extent to which familiarity-based 
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item recognition can be dissociated from recollection based on recovery of contextual 

information. Accordingly, there has been little empirical consideration of potential 

differences between memory signals for items from different stimulus categories. Against 

this background, the overarching goals of my thesis were to systematically examine and 

characterize item recognition signals for different stimulus categories. Specifically, the 

studies presented here sought to identify how and where the information underlying such 

representations are coded in the MTL and to incorporate these findings into a theoretical 

framework concerning the representation of objects in visual processing regions more 

broadly. Towards this end, I have employed MVPA of fMRI data to decode item-based 

recognition decisions from activity patterns in anatomically defined MTL structures in 

the context of experimental tasks that use categorized stimuli as memoranda.  

In Chapter 2, I presented results from an experiment that sought to evaluate the claim that 

PrC carries item information in recognition decisions whereas PhC carries representations 

of context information, as purported by the BIC model of MTL organization. Results 

from this experiment revealed item recognition signals in both PrC and PhC, despite the 

absence of retrieval of contextual detail concerning the initial stimulus encounters on the 

analyzed trials. In right PrC, I found patterns of activity that distinguished familiar from 

novel faces. In right PhC, by contrast, I observed such patterns for buildings. Familiarity 

signals for chairs were present in both structures, but shared little overlap on a more fine-

grained scale with the patterns observed for faces and buildings. Importantly, these 

results suggest that PrC and PhC make category-specific contributions to familiarity-

based item recognition. By implication, PhC does not only represent episodic context in 

recognition-memory decisions and the involvement of PrC in representing item 

familiarity is not ubiquitous. 

The rationale and questions addressed in Chapter 3 were directly motivated by results 

reported in Chapter 2. Here, I conducted a second fMRI study that examined the specific 

stimulus properties that might determine whether item recognition signals are present in 

PhC, rather than PrC, with a focus on landmark suitability as indexed by object fixedness. 

While landmark suitability is likely not the only stimulus property that critically drives 

differential signals in PhC, it was selected as a starting point in addressing this question 
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in light of recent fMRI evidence linking both large size and/or fixedness in location to 

object representations in PhC (Mullally and Maguire, 2011; Konkle and Oliva, 2012; 

Troiani et al., 2012). The results from this study revealed a dissociation between PrC and 

PhC with item recognition signals related to non-landmark objects (i.e., planes) coded in 

PrC and landmarks (i.e., buildings and trees) in PhC. Importantly, patterns of item 

recognition signals in PhC that pertained to buildings were distinct from those pertaining 

to trees in the same structure. These results suggest that landmark suitability is a critical 

stimulus factor that determines whether item recognition signals will be obtained in PrC 

or PhC. Moreover, they buttress results from Chapter 2 suggesting that item recognition 

signals within each of these structures have a category-specific organization. 

In Chapter 4, I returned to issues concerning recognition-memory for faces, aiming to 

characterize the manner in which PrC codes familiarity signals and to explore the issue of 

category-specificity with independent functional localizer data. While previous univariate 

fMRI research has suggested that item recognition is often associated with activity 

decreases in PrC for familiar as compared to novel items at the time of retrieval (e.g., 

Daselaar et al., 2006, Wang et al., 2014), I provide evidence obtained with MVPA 

indicating that such signals can be distributed across voxels with directionally 

heterogeneous response profiles; in other words, some voxels showed activity decrements 

with familiarity while others showed increments. Importantly, decoding accuracy 

obtained from these distributed patterns with a linear classifier was correlated with 

behavioural recognition accuracy across participants. Lastly, these data also revealed that 

the voxels comprising patterns in which item recognition are coded respond preferentially 

to faces when compared to either man-made objects or scenes under passive viewing 

conditions.   

5.2 Implications for Current Theories of MTL 
Contributions to Recognition Memory 

The results presented in the current thesis support a number of tenets central to each of 

the models reviewed in Chapter 1. However, they also raise important theoretical 

questions related to how well each can accommodate category-specific item recognition 

effects in PrC and PhC. Ultimately, the extent to which predictions derived from each 
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model are consistent with the results I have reported varies across models and specific 

aspects of the data. Here, I will place my results into the context of each of these models, 

noting support and challenges associated with each. Importantly, as the studies that I have 

reported in my thesis focused specifically on item recognition, my results do not speak to 

predictions concerning the recollection of contextual detail made by any of the models 

reviewed.  

As previously noted, dual-process models purport that MTL contributions to recognition 

memory are fractionated in a process-based manner; PrC is thought to support 

familiarity-based recognition whereas recollection is associated with hippocampal 

processing (Aggleton and Brown, 1999). Evidence from Chapters 2 and 3 linking activity 

patterns that carry information about the familiarity of faces, chairs, and planes to PrC is 

consistent with this proposal. However, the observation of familiarity signals for 

buildings, chairs, and trees in PhC argues against the notion that PrC is the only MTL 

region that codes for familiarity-based item recognition. Moreover, the category-specific 

effects reported in Chapters 2, 3, and 4 cast doubts on the notion that process-based 

differences fully capture functional specialization in the MTL.  

Recall that the BIC model and CRAFT are both guided by neuroanatomical research that 

has revealed differential connectivity between MTL structures and the ventral and dorsal 

visual processing pathways (Eichenbaum et al., 2007; Diana et al., 2007; Montaldi and 

Mayes, 2010; Ranganath et al., 2010). Specifically, it is assumed that differential 

connectivity in the MTL confers privileged access to representations pertaining to items 

and contexts in PrC and PhC, respectively. The BIC model suggests that item 

representations in PrC and context representations in PhC can both support familiarity-

based recognition as well as the associative processing related to recollection. CRAFT 

diverges at this level as it suggests PrC and PhC are limited to supporting item and 

context familiarity, respectively. Evidence presented in Chapters 2, 3, and 4 indicating 

that PrC carries information about the familiarity of faces, chairs, and planes is consistent 

with predictions from both the BIC model and CRAFT. However, demonstrating that 

item recognition signals for landmarks, including buildings, trees, and possibly chairs, are 

carried by PhC, even under conditions in which items are presented in isolation without 
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any background, is largely inconsistent with both models. Moreover, in their adherence to 

a distinction that makes reference to items versus contexts, neither model can readily 

account for the category-specific effects obtained both across and within PrC and PhC in 

Chapters 2 and 3. At the very least, this pattern of results suggests that a distinction 

between items and contexts does not fully characterize differences in functional 

specialization between PrC and PhC. 

 Lastly, on the representational account recognition memory and perceptual 

discriminations are considered to be supported by common representations in the MTL 

that are engaged in a task dependent manner (Murray and Bussey, 1999; Bussey and 

Saksida, 2007; Graham et al., 2010). Given the importance of this link between memory 

and perception, proponents of this account maintain that stimulus category, rather than 

process-based differences or the distinction between items and contexts, determine the 

relative contributions of different MTL structures to discriminations between complex 

stimuli with high feature overlap. Specifically, it has been proposed that PrC supports 

object representations that can support familiarity-based recognition as well as 

recollection. By contrast, the HC is thought to support representations for scene stimuli in 

such processes. Ultimately, my results do not address predictions regarding scenes as the 

stimuli employed in the recognition-memory experiments were limited to objects 

presented in isolation, as depicted in Figures 2.1 and 3.1. The representational account’s 

emphasis on stimulus representations is generally consistent with my results suggesting 

that item recognition signals are represented in a category specific manner. Notably, in 

Chapters 2, 3, and 4 I demonstrate that item recognition signals related to objects that 

show preferential responses in PrC (i.e., faces) and PhC (i.e., buildings) in non-mnemonic 

task contexts are also coded in these structures. However, the category-specific effects 

that I obtained across different object categories in PrC and PhC suggest that the 

representational account is underspecified.  

To conclude, although each of the models reviewed predict different aspects of the 

findings that comprise my thesis, no single theoretical position can fully account for the 

entire pattern of results. Accordingly, a novel model that synthesizes and incorporates 

features of the BIC model, CRAFT, the representational account, and current proposals 
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regarding the organizational structure of information coding in the ventral visual stream 

more broadly may provide a more comprehensive account of the current results and 

findings in the literature at large.    

5.3 Hierarchical Model of MTL Contributions  
to Recognition Memory  

A comprehensive model of MTL contributions to recognition memory that can account 

for extant neuropsychological and fMRI evidence and accommodate the results presented 

in the current thesis is currently lacking. Given the seeming importance of categorical 

information in the ventral visual stream together with its high degree of connectivity with 

the MTL, a framework for the development of such a model should be consistent with the 

organizational structure of representations pertaining to visually presented stimuli in the 

ventral temporal cortex. Results from a number of studies suggest that VTC codes 

categorical information in distributed and overlapping representations (e.g., Haxby et al., 

2001; Kriegeskorte et al., 2008). Importantly, similar conclusions can be drawn from 

findings revealed using MVPA to decode categorical information from PrC and PhC 

(e.g., Diana et al., 2008; Liang et al., 2013; Huffman and Stark, 2014). The ability to 

decode category membership from such representations is predicated on greater similarity 

in distributed responses for stimuli from the same category than for distributed responses 

from a different category (i.e., representations generalize across stimuli from the same 

category). The work that I have presented here extends this general framework by 

revealing that patterns of activity in PrC and PhC that differentiate familiar from novel 

recognition responses generalize across stimuli from the same category, but not to other 

categories (i.e., inability to cross-classify in Chapters 2 and 3). For example, at one level, 

distributed PrC responses corresponding to faces are more similar to one another than 

they are to those corresponding to stimuli from different categories (e.g., chairs). At 

another level, the distributed responses corresponding to familiar faces are also more 

comparable to one another than they are to those corresponding to faces judged to be 

novel (see Grill-Spector and Weiner, 2014, for related proposals regarding VTC).  

Against this background, I am proposing a hierarchical model of MTL functioning which 

suggests that category-specific information in PrC and PhC is reflected in highly 
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integrated object representations that can be brought to bear on both mnemonic and 

perceptual discriminations in a task dependent manner. On this account, information 

pertaining to the prior occurrence of an object is nested within these distributed category-

specific representations in both PrC and PhC. In this regard, the proposed model can 

accommodate the category-specific item recognition effects obtained in PrC and PhC in 

Chapters 2, 3, and 4 of this thesis. Moreover, depending on task demands, these item 

representations can support either familiarity-based item recognition or associative 

recollection of item-based contextual detail. Lastly, one of the central tenets of the 

proposed model is that, familiarity-based item recognition effects differ between PrC and 

PhC in a manner that is related to specific stimulus properties. The findings presented in 

Chapter 4 suggest that the extent to which objects are fixed in location constitutes one 

pertinent dimension (see section 5.4 for further elaboration), though others may be 

identified through future research. With respect to the HC, this account adopts the 

functional role specified by the BIC model. Namely, the HC serves to bind item and 

context information into discrete episodic representations. 

Within the framework outlined, it is perhaps not immediately clear how findings 

implicating PhC in item recognition can be reconciled with the well-established literature 

indicating that this structure supports contextual representations that are not easily 

conceptualized as objects or items. For example, it has been proposed that PhC can 

represent spatial, cognitive, emotional, and semantic context (Bar and Aminoff, 2003; 

Diana et al., 2007; Ranganath, 2010; Aminoff et al., 2013). Importantly, evidence from 

two recent lines of research indicates that PhC may in fact represent objects and contexts 

in functionally distinct manners. Specifically, Bastin et al. (2013) have revealed 

important latency differences related to the processing of object and scene stimuli in 

aspects of PhC (additional details provided in section 5.4). Further, functional 

connectivity analyses have revealed that PhC is broadly connected to two non-

overlapping visual networks. The first includes retrosplenial cortex and regions of the 

dorsal visual stream and the second includes object processing regions situated in the 

ventral visual stream, such as lateral occipital complex (Baldassano et al., 2013). 

Critically, these findings can bridge the apparent gap between representations related to 

items and those pertaining to more abstract contextual information. 
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5.4 Role of Top-Down Semantic Abstraction 

Results from previous fMRI research suggest that representations of visually presented 

stimuli are organized at a large-scale in a medial to lateral manner in VTC (see Grill-

Spector and Weiner, 2014, for review). This medial to lateral division has been mapped 

onto distinctions pertaining to the real-world size of objects (large versus small; Konkle 

and Oliva, 2012), eccentricity biases (peripheral versus foveal; Hasson et al., 2002), and 

object animacy (inanimate and animate; Haxby et al., 2011). While such studies typically 

do not include functional maps extending as far anterior as PrC, they do include PhC. For 

the purpose of the current discussion, studies that have linked PhC to differential 

representation of objects with large real-world size or objects that tend to be processed in 

peripheral vision (e.g., buildings) are of particular interest. Although PhC ostensibly 

represents information pertaining to large objects, the results I present in Chapter 3 

suggest that the mere presence of such size does not necessarily translate to 

corresponding item recognition signals being coded in this region. Specifically, I revealed 

familiarity signals in PhC for buildings and trees, but not planes, despite the fact that 

stimuli comprising these categories were matched with respect to perceived real-world 

size. I interpret this pattern of results as evidence suggesting that, although PhC may 

process visually presented objects with large real-world size, such representations are 

only brought to bear on familiarity-based item recognition decisions when the objects are 

also suitable landmarks with potential navigational relevance. This interpretation is in 

line with fMRI research that has revealed differential responses in PhC to objects that are 

large and fixed in location even in the absence of mnemonic demands (Mullally et al., 

2011; Troiani et al., 2012).  

Importantly, the critical difference between large objects that are either fixed in location 

or not may not necessarily be gleaned from information related to object form as reflected 

in perceptual details. For example, there are no inherent perceptual properties in a static 

image of a plane that indicate such objects are not necessarily fixed in location. Rather, 

the relative mobility of an object, a stimulus property related to landmark suitability, may 

correspond to abstract semantic or conceptual knowledge regarding its function. 

Interestingly, top-down processing has recently been proposed to account for differential 
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object responses in aspects of PhC. Bastin et al. (2013) examined local field potentials 

obtained with intracranial EEG recordings in neurosurgical patients with intractable 

temporal lobe epilepsy. Specifically, the authors examined the time course of responses 

associated with scene, building, and non-building object stimuli. Their results revealed 

that aspects of PhC differentiate between scene and non-scene objects as early as ~80 ms 

after stimulus onset, whereas differential responses to buildings and non-building objects 

did not emerge until ~170 ms after stimulus onset. This pattern of results was interpreted 

as evidence suggesting that there are two information processing stages in PhC. The first 

is an early stage that distinguishes scenes from non-scenes on the basis of bottom-up 

perceptual information of geometric elements that are unique to scenes, such as spatial 

layout or visual summary statistics. The second stage occurs at longer latencies and 

serves to distinguish navigationally relevant objects from other objects that are not 

suitable landmarks on the basis of top-down semantic processing.  

Although speculative, it may be this latter top-down feedback stage that determines the 

extent to which familiarity-based item recognition signals are obtained in PhC versus 

PrC. Given that PrC receives inputs from PhC, object representations initially processed 

in more medial aspects of VTC based on their large real-world size or a peripheral 

eccentricity bias may subsequently be fed forward to PrC for mnemonic processing after 

top-down semantic processes deem large objects, such as planes, to have limited 

navigational relevance. That I obtained item recognition signals for planes in PrC is 

consistent with this notion. Interestingly, evidence of familiarity signals for chairs in both 

PrC and PhC suggests that the object properties that determine whether item recognition 

signals are coded in PrC or PhC may be continuous rather than dichotomous dimensions.  

Accordingly, the familiarity of some objects may be coded in both structures when they 

satisfy both inclusion and exclusion criteria for consideration as landmarks. 

5.5 Characterizing the Distributed Nature of  
Item Recognition Signals in PrC 

Results reported in Chapter 4 suggest that familiarity-based item recognition signals 

related to faces are coded in a distributed manner in right PrC. Specifically, obtaining 

above chance classification in the absence of significant mean activation differences 
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between familiar and novel trials indicates that there is a systematic profile of activation 

across voxels that is common within, but not between, recognition decisions. Moreover, 

these within-class similarities and between-class differences were carried by patterns of 

directionally heterogeneous activity, further pointing to a distributed signal. At another 

level, examination of the relationship between the ATFP (i.e., a face selective patch in 

PrC) and the patterns of activation that allowed for classification of item recognition 

decisions for faces revealed that these signals are spatially distributed within PrC.  

Demonstrating that item recognition decisions could be decoded from directionally 

heterogeneous activity patterns in the absence of mean activity differences cannot be 

interpreted as evidence to suggest that the informational content underlying such signals 

is multidimensional (Davis et al., 2014). A multidimensional code refers to information 

that is distributed across voxels that carry different types of information related to 

multiple psychological states; informational content not present in any single voxel can 

emerge as a latent dimension when responses across multiple voxels are considered at a 

pattern level. By contrast, when activity within all voxels tracks a single psychological 

state, though to varying degrees, information is coded as a single dimension. Davis et al. 

(2014) have convincingly demonstrated that MVPA is indeed sensitive to informational 

content reflected in either a multidimensional or unidimensional code. Notably, the 

directionally heterogeneous item-recognition signals revealed using MVPA in Chapter 4 

can potentially be interpreted as reflecting varying degrees of responses along a single 

dimension of familiarity. Alternatively, this pattern may reflect a multidimensional code 

with response increases and decreases reflecting non-identical information (i.e., different 

cognitive processes or stimulus properties) represented across voxels. Indeed, it has been 

suggested that familiarity signals may be multiply determined with interactions between 

episodic, semantic, and perceptual memory systems contributing to recognition decisions 

(Henson and Gagnepain, 2010). For example, familiarity-based recognition judgments 

have been linked to implicit memory signals such as conceptual fluency purportedly 

generated by a semantic memory system that has been suggested to interact with episodic 

memory signals (Voss and Paller, 2009; Voss and Federmeier, 2011). If familiarity 

signals are related to multiple, interactive mnemonic sources they may ultimately be 
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coded in a multidimensional manner. However, further research is required to 

systematically adjudicate between these possibilities.  

While I favour an interpretation of directionally heterogeneous item recognition signals 

in PrC that makes reference to distributed coding, there is at least one alterative 

interpretation of this finding that warrants further consideration. Given that the majority 

of extant fMRI and neurophysiological evidence suggests that it is a reduction in neural 

responses that denotes recognition of prior occurrence, it is plausible that the incremental 

responses in the directionally heterogeneous patterns of activation may reflect correlated, 

but functionally unrelated processing. Specifically, PrC likely represents and transforms 

information that is entirely unrelated to item recognition. As one example, results from 

recent fMRI research points to a role of PrC in the coding of semantic information related 

to visually presented objects (e.g., Bruffaerts et al., 2013; Clarke and Tyler, 2014). This 

type of processing need not carry information related to specific prior stimulus 

encounters. Moreover, it may be reflected in increased BOLD responses that in some way 

correlate with the signal of interest (i.e., item recognition). If this is indeed the case, then 

it is possible that, through the process of selecting features for the purpose of 

classification based on responses that discriminate between item recognition decisions, 

these correlated signals could masquerade as item recognition signals. While, 

demonstrating that the accuracy of decoding item recognition decisions from 

directionally heterogeneous patterns of activation is correlated with behavioural 

recognition performance argues against this alternative interpretation, the analyses and 

results that I have presented cannot unequivocally rule it out.      

5.6 Future Research Directions 

Results obtained from the research presented in Chapter 3 indicate that relative mobility 

is an object property that critically determines whether familiarity-based item recognition 

signals are coded in PrC or PhC. As noted, this finding is in line with previous proposals 

suggesting that PhC represents scenes as well as landmark objects with potential 

navigational relevance. However, relative mobility may be only one stimulus property 

that has implications for the dissociation between PrC and PhC. It is also possible that the 

apparent importance of relative mobility may be a reflection of the specific stimulus 
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categories selected as memoranda. Additional research is required to systematically 

evaluate the possibility that other stimulus dimensions may play equally important roles 

in this regard. As a starting point, future research should assess distinctions that have 

been linked to the medial to lateral large scale organization of information coded in 

ventral temporal cortex. For example, living objects tend to evoke differential responses 

in medial aspects of VTC, including PhC, as compared to non-living objects, which are 

processed in more lateral regions.     

A second matter that requires further research concerns the identification of the 

experimental conditions under which distributed item recognition signals emerge in PrC. 

While previous univariate analyses of fMRI data have primarily linked familiarity-based 

item recognition to mean activity differences obtained in clustered PrC voxels, 

comparable analyses conducted using a group level GLM with the data reported in 

Chapter 4 failed to reveal any such effects. Rather, results obtained using MVPA indicate 

that item-recognition signals can also be reflected in distributed activation patterns. It 

should be noted that I do not wish to refute results obtained in previous fMRI studies that 

have employed univariate statistical analyses to reveal familiarity signals coded in blobs 

with mean activity differences. Indeed, numerous studies have found such effects (e.g., 

Ranganath et al., 2004; Gonsalves et al., 2005; Daselaar et al., 2006; Montaldi et al., 

2006; Wang et al., 2014). Rather, I emphasize that under some circumstances item 

recognition signals can be reflected in activity patterns that differ from those coded in 

contiguous voxels with homogeneous response profiles. Nevertheless, this discrepancy 

raises important questions concerning the experimental conditions and/or manipulations 

that evoke these different signals.  

One speculative explanation that can account for these apparent coding schemes makes 

reference to potential differences related to perceptual and semantic processing. The 

stimuli used in the experiment from Chapter 4 were categorized (i.e., faces) and differed 

primarily at the level of subtle perceptual details that may be difficult to verbalize or 

elaborate upon at either the time of encoding or retrieval. By contrast, the large majority 

of studies that have linked mean activity differences in PrC to item recognition have 

employed words as stimuli (see Diana et al., 2007, for review; cf Montaldi and Mayes, 
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2006). Importantly, item information represented in PrC may be coded in a 

fundamentally different manner when stimuli are processed at a perceptual level as 

compared to those that include a much richer semantic analysis. Notably, recent fMRI 

research has indicated that PrC may indeed play an important role in conceptual 

processing, in addition to its well documented role in perceptual processing (Bruffaerts et 

al., 2013; Clarke and Tyler, 2014). Whether item-recognition signals are reflected in 

directionally heterogeneous, distributed patterns of activation may be related to the extent 

to which successful task performance is predicated upon perceptual, rather than semantic, 

processing. Ultimately, further research is required to systematical evaluate this 

possibility.   
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