8 research outputs found

    New Full-Diversity Space-Time-Frequency Block Codes with Simplified Decoders for MIMO-OFDM Systems

    Get PDF
    Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is known as a promising solution for wideband wireless communications. This is why it has been considered as a powerful candidate for IEEE 802.11n standard. Numerous space-frequency block codes (SFBCs) and space-time- frequency block codes (STFBCs) have been proposed so far for implementing MIMO-OFDM systems. In this paper, at first we propose new full-diversity STFBCs with high coding gain in time-varying channels; the construct method for this structure is using orthogonal space-time block code for any arbitrary number of transmit antenna and then we propose a decoder with linear complexity for our proposed coding scheme. Simulation results verify that the proposed STFBCs outperform other recently published STFBCs

    Optimal Randomization of Signal Constellations on Downlink of a Multiuser DS-CDMA System

    Get PDF
    Cataloged from PDF version of article.In this study, the jointly optimal power control with signal constellation randomization is proposed for the downlink of a multiuser communications system. Unlike a conventional system in which a fixed signal constellation is employed for all the bits of a user (for given channel conditions and noise power), power control with signal constellation randomization involves randomization/time- sharing among different signal constellations for each user. A formulation is obtained for the problem of optimal power control with signal constellation randomization, and it is shown that the optimal solution can be represented by a randomization among (K+1) or fewer distinct signal constellations for each user, where K denotes the number of users. In addition to the original nonconvex formulation, an approximate solution based on convex relaxation is derived. Then, detailed performance analysis is presented when the receivers employ symmetric signaling and sign detectors. Specifically, the maximum asymptotical improvement ratio is shown to be equal to the number of users, and the conditions under which the maximum and minimum asymptotical improvement ratios are achieved are derived. Numerical examples are presented to investigate the theoretical results, and to illustrate performance improvements achieved via the proposed approach. © 2002-2012 IEEE

    Efficient cooperative OFMD localization

    Get PDF
    The author of this project has been working on the topic of cooperative OFDM localization for one year in the TU Delft as an exchange student. Nowadays there are many potential uses for cooperative localization in places in which the common systems like GPS could not provide an accurate estimation. It is an advantage to join into a wireless network with a mobile device and be able to navigate and know your position. Two critical points in this topic are the accuracy of the localization, that is required to be high, and the power consumption of the mobile devices, which is a critical resource. Existing indoor cooperative localization methods require big battery consumption for the mobile relays, and the accuracy in low SNR situations is not good enough. The scope of this thesis is to estimate the localization of an unknown mobile device in an efficient way, being accurate even in low SNR situations, with low power consumption. One first approximation and the reference [11] suggested the idea of the “feature method” which is a bandwidth efficient cooperative ZP-OFDM localization method. After testing different features and conclude that the peak to average power ratio has the best performance another new idea came up. A new simple relay is proposed, called trigger relay, which consists of forwarding a known signal when the incoming signal is received. With this new idea it is solved the bandwidth and computational problem, being the most efficient method to estimate the TDOA. This brilliant idea was published in the PIMRC conference in September, 2011.Ingeniería de TelecomunicaciónTelekomunikazio Ingeniaritz

    Space-time-frequency block codes for MIMO-OFDM in next generation wireless systems

    Get PDF
    In this thesis the use of space-frequency block codes (SFBC) and space-time-frequency block codes (STFBC) in wireless systems are investigated. A variety of SFBC and STFBC schemes are proposed for particular propagation scenarios and system settings where each has its own advantages and disadvantages. The objective is to pro-pose coding strategies with improved flexibility, feasibility and spectral efficiency,and reduce the decoding complexity in an MIMO-OFDM system. Firstly an efficient SFBC with improved system performance is proposed for MIMO-OFDM systems. The proposed SFBC incorporates the concept of matched rotation precoding (MRP) to achieve full transmit diversity and optimal system performance foran arbitrary numberoftransmitantennas,subcarrierinterval andsubcarriergrouping. The MRP is proposed to exploit the inherent rotation and repetition properties of SFBC, arising from the channel power delay profile, in order to fully capture both space and frequency diversity of SFBC in a MIMO-OFDM system. It is able to relax restrictions on subcarrier interval and subcarrier grouping, making it ideal for adaptive/time-varying systems or multiuser systems. The SFBC without an optimization process is unstable in terms of achievable system performance and diversity order, and also risks diversity loss within a specific propagation scenario. Such loss or risk is prominent while wireless propagation channel has a limited number of dominant paths, e.g. relatively close to transmitters or relatively flat topography. Hence in orderto improve the feasibility of SFBC in dynamic scenarios, the lower bound of the coding gain for MRP is derived. The SFBC with MRP is proposed for more practical scenarios when only partial channel power delay profile information is known at the transmit end, for example the wireless channel has dominant propagation paths. The proposed rate one MRP has a relatively simple optimization process that can be transformed into an explicit diagram and hence an optimal result can be derived intuitively without calculations. Next, a multi-rate transmission strategy is proposed for both SFBCand STFBC to balance the system performance and transmission rate. A variety of rate adaptive coding matrices are obtained by a simple truncation of the coding matrix, or by parameter optimization for coding matrices for a given transmission rate and constellation. Pro-posed strategy can easily and gradually adjust the achievable diversity order. As a result it is capable of achieving a relatively smooth balance between system performance and transmission rate in both SFBC and STFBC, without a significant change of coding structure or constellation size. Such tradeoff would be useful to maintain stable Quality of Service (QoS) for users by providing more scalability of achievable performance in a time-varying channel. Finally the decoding procedure of space-time block code (STBC), SFBCand STFBC is discussed. The decoding of all existing STBC/SFBC/STFBC is unified at first, in order to show a concise procedure and make fair comparisons. Then maximum likelihood decoding (MLD) and arbitrary sphere decoding (SD) can be adopted. To reduce the complexity of decoding further, a novel decoding method called compensation de-coding (CD) is presented for a given space-time-frequency coding scheme. By taking advantage of the simplicity of zero-forcing decoding (ZFD) we are able to calculate a compensation vector for the output of ZFD. After modification by utilizing the com-pensation vector, the BER performance can be improved significantly. The decoding procedure is relatively simple and is independent of the constellation size. The per-formance of the proposed decoding method is close to maximum-likelihood decoding for low to medium SNR. A low complexity detection scheme, classifier based decoding (CBD), is further proposed for MIMO systems incorporating spatial multiplexing. The CBD is a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low, whilst providing a significant improvement in the bit error rate performance

    Giannakis, “Space-time-multipath coding using digital phase sweeping

    No full text
    Abstract—We design novel space-time multipath (STM) coded multi-antenna transmissions over frequency-selective Rayleigh fading channels. We develop STM coded systems that guarantee the maximum possible space-multipath diversity, along with large coding gains, and high bandwidth efficiency for any number of transmit-receive antennas. By incorporating subchannel grouping, we also enable desirable tradeoffs between performance and complexity. Our designs rely on digital phase sweeping or block circular delay operations and apply to both single- and multi-carrier systems. Their merits are confirmed by corroborating simulations and comparisons with existing approaches. Index Terms—Coding, diversity, frequency-selective fading, multi-carrier transmission, phase sweeping
    corecore