6 research outputs found

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Channel Estimation in Coded Modulation Systems

    Get PDF
    With the outstanding performance of coded modulation techniques in fading channels, much research efforts have been carried out on the design of communication systems able to operate at low signal-to-noise ratios (SNRs). From this perspective, the so-called iterative decoding principle has been applied to many signal processing tasks at the receiver: demodulation, detection, decoding, synchronization and channel estimation. Nevertheless, at low SNRs, conventional channel estimators do not perform satisfactorily. This thesis is mainly concerned with channel estimation issues in coded modulation systems where different diversity techniques are exploited to combat fading in single or multiple antenna systems. First, for single antenna systems in fast time-varying fading channels, the thesis focuses on designing a training sequence by exploiting signal space diversity (SSD). Motivated by the power/bandwidth efficiency of the SSD technique, the proposed training sequence inserts pilot bits into the coded bits prior to constellation mapping and signal rotation. This scheme spreads the training sequence during a transmitted codeword and helps the estimator to track fast variation of the channel gains. A comprehensive comparison between the proposed training scheme and the conventional training scheme is then carried out, which reveals several interesting conclusions with respect to both error performance of the system and mean square error of the channel estimator. For multiple antenna systems, different schemes are examined in this thesis for the estimation of block-fading channels. For typical coded modulation systems with multiple antennas, the first scheme makes a distinction between the iteration in the channel estimation and the iteration in the decoding. Then, the estimator begins iteration when the soft output of the decoder at the decoding iteration meets some specified reliability conditions. This scheme guarantees the convergence of the iterative receiver with iterative channel estimator. To accelerate the convergence process and decrease the complexity of successive iterations, in the second scheme, the channel estimator estimates channel state information (CSI) at each iteration with a combination of the training sequence and soft information. For coded modulation systems with precoding technique, in which a precoder is used after the modulator, the training sequence and data symbols are combined using a linear precoder to decrease the required training overhead. The power allocation and the placement of the training sequence to be precoded are obtained based on a lower bound on the mean square error of the channel estimation. It is demonstrated that considerable performance improvement is possible when the training symbols are embedded within data symbols with an equi-spaced pattern. In the last scheme, a joint precoder and training sequence is developed to maximize the achievable coding gain and diversity order under imperfect CSI. In particular, both the asymptotic performance behavior of the system with the precoded training scheme under imperfect CSI and the mean square error of the channel estimation are derived to obtain achievable diversity order and coding gain. Simulation results demonstrate that the joint optimized scheme outperforms the existing training schemes for systems with given precoders in terms of error rate and the amount of training overhead

    Bit-Interleaved Coded Modulation

    Get PDF

    Bit-interleaved coded modulation

    Full text link
    corecore