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Abstract

With the outstanding performance of coded modulation techniques in fading chan-

nels, much research efforts have been carried out on the design of communication

systems able to operate at low signal-to-noise ratios (SNRs). From this perspective,

the so-called iterative decoding principle has been applied to many signal process-

ing tasks at the receiver: demodulation, detection, decoding, synchronization and

channel estimation. Nevertheless, at low SNRs, conventional channel estimators do

not perform satisfactorily. This thesis is mainly concerned with channel estimation

issues in coded modulation systems where different diversity techniques are exploited

to combat fading in single or multiple antenna systems.

First, for single antenna systems in fast time-varying fading channels, the thesis

focuses on designing a training sequence by exploiting signal space diversity (SSD).

Motivated by the power/bandwidth efficiency of the SSD technique, the proposed

training sequence inserts pilot bits into the coded bits prior to constellation mapping

and signal rotation. This scheme spreads the training sequence during a transmitted

codeword and helps the estimator to track fast variation of the channel gains. A com-

prehensive comparison between the proposed training scheme and the conventional

training scheme is then carried out, which reveals several interesting conclusions with

respect to both error performance of the system and mean square error of the channel

estimator.

For multiple antenna systems, different schemes are examined in this thesis for

the estimation of block-fading channels. For typical coded modulation systems with

multiple antennas, the first scheme makes a distinction between the iteration in the

channel estimation and the iteration in the decoding. Then, the estimator begins

iteration when the soft output of the decoder at the decoding iteration meets some

specified reliability conditions. This scheme guarantees the convergence of the itera-

tive receiver with iterative channel estimator. To accelerate the convergence process

and decrease the complexity of successive iterations, in the second scheme, the channel
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estimator estimates channel state information (CSI) at each iteration with a combi-

nation of the training sequence and soft information. For coded modulation systems

with precoding technique, in which a precoder is used after the modulator, the train-

ing sequence and data symbols are combined using a linear precoder to decrease the

required training overhead. The power allocation and the placement of the training

sequence to be precoded are obtained based on a lower bound on the mean square

error of the channel estimation. It is demonstrated that considerable performance

improvement is possible when the training symbols are embedded within data sym-

bols with an equi-spaced pattern. In the last scheme, a joint precoder and training

sequence is developed to maximize the achievable coding gain and diversity order

under imperfect CSI. In particular, both the asymptotic performance behavior of the

system with the precoded training scheme under imperfect CSI and the mean square

error of the channel estimation are derived to obtain achievable diversity order and

coding gain. Simulation results demonstrate that the joint optimized scheme outper-

forms the existing training schemes for systems with given precoders in terms of error

rate and the amount of training overhead.
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1. Introduction

1.1 Introduction

In the last three decades, the explosive growth of mobile and wireless communi-

cations has radically changed human life. Nowadays, wireless communications cover

a wide variety of applications, from cellular telephony to global positioning system

(GPS).

Channel 
Encoder Modulator Demodulator Channel 

Decoder
Source 

Encoder
Source 

Decoder

Channel

Figure 1.1 Block diagram of a digital wireless communication system.

A wireless communication system deals with information or data transmission

from one point to another via the atmosphere or free space. Fig. 1.1 illustrates the

basic elements of a digital wireless communication system. The source generates

either analog signals such as speech, audio, image, and video, or digital data such

as text or multimedia. The source encoder prepares the signal from the source in a

compact digital form, typically in binary format. The generated binary data is then

processed by a channel encoder so that the binary data sequences can be reliably

reproduced at the receiver. The channel-encoded data stream is then modulated to

generate waveforms for transmission over a physical channel such as a high-frequency

radio link. Due to the open nature of the wireless channel, unfortunately, the channel

is subject to various noise sources. At the receiver, the operations at the transmitter

1



are reversed so as to restore the original source information. The reversed operations

include demodulator, channel decoder and source decoder.

An important requirement for providing reliable transmission technology for wire-

less applications is to have an accurate description of the wireless channel. In general

the channel models strongly depend on the radio architecture [1].

Typically, wireless channels contain objects that scatter, reflect or diffract the

transmitted signal. The effect is such that several delayed copies of the original

transmitted signal arrive at the receiver. These effects may reduce the power and

change the phase of the transmitted signal in different ways. There are two general

aspects of such a power reduction that require separate treatments. One aspect is the

large-scale effect which corresponds to the characterization of the signal power over

large distances or the time-average behaviors of the signal. This is called attenuation

or path loss and sometimes large-scale fading. The large-scale fading is more relevant

to designing link budget. The other aspect is the rapid fluctuation in the amplitude

and power of the signal and this is called small-scale fading, or just fading. It relates

to the characteristics of the signal over short distances or short time intervals. In

fact it is the rapid fluctuation of the amplitude of a radio signal over a short period

of time that limits the transmission reliability over a wireless channel and motivates

extensive research activities in the last two decades.

In short-scale, where the transmitted signal travels different paths, channels are

called multipath channels. In this case, the channel can be modeled by a linear time-

varying impulse response, h(t, τ), which may be approximated by a number of delta

functions. Mathematically,

h(t, τ) =
J∑

j=1

αj(t)δ(τ − τj(t)), (1.1)

where αj(t) and τj(t) are, respectively, the overall attenuation and propagation delay

at time t from the transmitter to the receiver on path j. The nature of the multipath

channel is such that the amplitudes of these delta functions, αj(t), are random pro-

cesses. Further, each component fades independently, i.e., αj(t) are independent. The
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randomness of the channel impulse response mainly originates from the multipath and

random locations of objects in the environment. Therefore fading is usually described

in statistical terms that show the variations of the channel distortions over time and

frequency. Indeed, different statistical models are needed to describe the variation

behavior of the amplitude and phase of the received signal in different propagation

environments.

How rapidly the channel fades is affected by how fast the receiver and/or trans-

mitter are moving. Motion causes a Doppler shift in the received signal components.

Based on this parameter, the channel can be considered fast or slow fading, which

characterizes how rapidly the channel filter taps change over a symbol duration1.

Therefore, whether the channel can be categorized as fast or slow fading depends on

both the channel and the application. Regarding the channel model in (1.1), another

important parameter is how many channel filter taps are necessary to adequately rep-

resent the wireless channel. Based on the underlying application, two typical cases of

fading channels are:

• Flat fading : Here the channel is represented by a single tap. This applies when

most of the paths arrive within one symbol time. This model is suitable for

narrowband transmission.

• Frequency-selective fading : This applies to wideband channels, where the trans-

mitted signal arrives over multiple symbol times. Equivalently, the channel

needs to be represented by multiple taps.

The channel model in (1.1) is the analog model. An useful discrete-time baseband

model of (1.1) can be obtained by applying the sampling theorem. Assume the

transmitted signal is bandlimited. From (1.1), a discrete-time baseband model of the

1Symbol duration is the time duration to transmit one information symbol, or one constellation

point in the signal constellation. For example, if the transmission rate is 2-Mbps, and if a rate-1/2

convolutional code and 16-quadrature amplitude modulation (16-QAM) constellation is used, then

the symbol rate is 1-Msymbol/sec, and consequently the symbol duration is 1 µsec.
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system in terms of channel filter taps is given by

yk =
∑

l

hk[l]xk−l + ηk, (1.2)

where hk[l] is the lth channel filter tap and ηk is the additive white Gaussian noise

(AWGN) sample at time k. The notations xk and yk represent the transmitted and

received signals, respectively.

The most popular probabilistic model for the channel filter taps is Rayleigh fading,

in which hk[l] is modeled as a zero-mean circularly symmetric complex Gaussian

random variable with variance σ2
l . Basically, this fading model is applicable when

there is no line-of-sight path from the transmitter to the receiver. Rayleigh fading is

viewed as a reasonable model for tropospheric and ionospheric signal propagation as

well as the effect of heavily built-up urban environments on radio signals.

At the receiver, detection of the originally transmitted signals xk’s is performed

based on yk’s. There are two common approaches for detection. In the first approach

the receiver does not have any knowledge about hk[l]’s. This type of receiver is called

a non-coherent receiver. It has been shown that the error probability of such a non-

coherent detection in fading channel is very poor, or one needs to use a large amount

of power for reliable communications [2].

The second approach requires that the channel gains are tracked at the receiver

so that they are known at the receiver (but still random). In practice, this is done

either by sending a known sequence (called a pilot or training sequence) or by using

data symbols detected earlier in a decision directed manner. Knowing the channel

gains, coherent detection can then be performed. However, it has also been shown

that this type of receiver has only about 3dB improvement in signal-to-noise ratio

(SNR) compared to non-coherent detection [2] and its performance is still very far

away from the performance achieved over an AWGN (i.e., no fading) channel. The

reason is that there is a significant probability that the channel is in a deep fade.

Deep fade refers to the event when the overall received signals from different paths

add destructively. Fig. 1.2 illustrates this phenomenon.
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Figure 1.2 Deep fade phenomenon in Rayleigh fading with 100 Hz Doppler shift.

To combat fading and improve the system performance, various diversity tech-

niques have been extensively studied in recent years. The main idea behind any

diversity technique is to provide different replicas of the transmitted signal at the

receiver in such a way that these different replicas are transmitted through indepen-

dently faded paths. Since the different replicas fade independently, it is less probable

to have all copies of the transmitted signal in deep fade simultaneously. Therefore,

the receiver can reliably detect the transmitted signal using these received signals.

Diversity techniques can be implemented in different ways. Some of the most

common techniques are discussed next.

Time diversity

Interleaving of coded symbols over time is the key operation in time diversity. In

effect, this operation sends adjacent signal samples that would experience the same

fading over independent fading channels. An alternative way to achieve this diversity

for coded systems is to use bit-wise interleaving [3] instead of symbol interleaving.

Bit-interleaved coded modulation (BICM) has been shown to be very effective in
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exploiting time-diversity.

A drawback of bit-interleaving is that it causes an inherent “random modula-

tion”, which significantly reduces the free Euclidean distance when used over AWGN

channels. Li and Ritcey [4] proposed a scheme, called BICM with iterative decoding

(BICM-ID), to combat this random modulation effect. Their scheme utilizes iterative

decoding in combination with hard-decision [4] or soft-decision [5] feedback from the

decoder to the demodulator. They have shown that these techniques can provide

performance improvement in both AWGN and fading environments.

Frequency diversity

The signal is transmitted using several frequency channels or spread over a wide

spectrum that is affected by frequency-selective fading. Practical implementations

of frequency diversity include orthogonal frequency division multiplexing (OFDM) in

combination with subcarrier interleaving and forward error correction [6], and spread

spectrum (for example frequency hopping or direct-sequence code division multiple

access (DS-CDMA) [2]). This diversity technique is not considered in the current

thesis.

Space diversity

Multiple transmit and/or receive antennas can be used to obtain spatial diversity.

Antenna diversity is an effective and practical means of mitigating the effect of mul-

tipath fading. The pioneering work on multiple-input multiple-output (MIMO) sys-

tems [7] shows that a MIMO system has a multiplexing gain and accordingly higher

spectral efficiency over a single-input single-output (SISO) system. Specifically, at

high SNRs, the spectral efficiency of a MIMO system increases by m bits/s/Hz for

every 3dB increase in SNR, where m is the minimum number of transmit and re-

ceive antennas. In contrast, the spectral efficiency of a SISO system increases only 1

bit/s/Hz per 3dB increase in SNR.
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Signal space diversity (or modulation diversity)

The key operation in modulation diversity is to apply a certain rotation to a clas-

sical signal constellation in such a way that any two signal points have the maximum

number of distinct components [8].

Signal space diversity (SSD) was introduced in [9] and [10] as a power and band-

width efficient technique for communication over fast fading channels. In SSD, an

N -dimensional modulation scheme is created by partitioning the data into blocks of

N symbols and performing a rotation on each group of N -successive complex (two-

dimensional) symbols. With such partitioning and rotation, the diversity order is

maximized by increasing the minimum number of distinct components between any

two N -dimensional constellation points.

For indoor wireless channels, where both time and frequency diversities may be

poor, the channels are typically modeled as block-fading channels. In a block-fading

channel model, the channel does not change for a duration of multiple symbols (called

block) and then changes independently for the next block. For these channels, the

diversity gain can be improved by using linear precoding in combination with the

MIMO technique [11]. Using linear precoding increases the diversity by mixing the

symbols of different time periods and antennas together.

1.2 Research Motivation

Unlike wireless communication systems without diversity, for systems that exploit

diversity the performance difference between coherent and non-coherent detection

techniques is significant. It has been shown that as the number of diversity paths

increases, the performance of coherent receivers over a fading channel approaches that

over an AWGN channel. In contrast, the performance of non-coherent detection in

some diversity schemes first improves when the number of diversity paths increases,

but then degrades as the number of diversity paths increases further [2].

The significant performance difference between coherent and non-coherent detec-
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tions when the number of diversity paths is large amplifies the importance of channel

knowledge. Such performance difference is observed under the assumption of perfect

channel knowledge for coherent detection. However in practice, the channel taps have

to be estimated and tracked. It is therefore important to understand the impact of

channel measurement errors on the performance of the coherent detector.

Furthermore, it has been shown that in some cases, having too many diversity

paths can have an adverse effect on the system performance due to channel estima-

tion error [12]. Therefore, increasing the diversity gain by combining BICM together

with other diversity techniques makes the task of the channel estimator more chal-

lenging. Moreover, since using diversity techniques generally adds interference to

the transmitted signals, the detection process becomes more complicated. In conse-

quence, extracting the channel information from the noise and interference-corrupted

signals takes more hardware resources. On the other hand, the study in [13] shows

that the effect of channel estimation error can be mitigated by designing channel

estimators that exploit diversity techniques. This suggests that, if properly designed,

channel estimation may benefit from diversity techniques.

Motivated by the above discussions, how to effectively utilize the diversity re-

sources in order to improve the channel estimation quality and the system error per-

formance of wireless data transmission is the main object in this thesis. The detailed

motivations and contributions of the research shall be given in each chapter.

1.3 Organization of the Thesis

This thesis is organized in a manuscript-based style. The results obtained are

included as the main content of the thesis in the form of published or submitted

manuscripts. In each chapter, a brief introduction precedes each manuscript in order

to connect the manuscript to the main context of the thesis. The remainder of the

thesis is organized as follows.

Chapter 2 presents some fundamental knowledge about channel estimation as it
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is the main subject of this thesis. First a classical channel estimator is introduced

for coded modulation systems. Then an iterative channel estimator is discussed for

BICM-ID systems. Such discussion also motivates the need of efficient channel esti-

mation schemes in order to exploit the advantages of coded modulation systems.

Two main types of channel characteristics are considered in this research which

are time-varying and time-invariant block fading channels. The first manuscript in

Chapter 3 is concerned with channel estimation in a BICM-ID system under a time-

varying fading channel. To improve the performance of the system, a new training

scheme is introduced by exploiting the SSD technique. The proposed training scheme

helps the channel estimator to track the variation of the channel even at low SNR.

To facilitate this improvement, a soft iterative channel estimator is also developed to

work with the proposed training scheme.

The second part of the thesis, which includes Chapters 4, 5, and 6, contributes to

channel estimation under block-fading environment. In Chapter 4, the performance

of BICM systems is analyzed using an iterative channel estimator under space di-

versity (i.e., MIMO channels). In this chapter, two different schemes for estimating

the MIMO channels are suggested. In both schemes, convergence behavior of the

system is studied. In the first scheme, in order to guarantee performance improve-

ment through successive iterations, conditions are put on the output of the decoder.

A less computationally intensive approach is then developed for higher code rates

in the second scheme. In this scheme, both the training and data segments of the

observation are used in each iteration.

Further results for BICM-MIMO systems are presented in Chapter 5. Motivated

by the fact that combining training and data in channel estimation improves the

performance of the system as shown in Chapter 4, the training sequence is embedded

in data symbols using a space-time precoder at the transmitter. In the conventional

scheme, the training overhead used for obtaining channel knowledge is proportional

to a power of two of the number of transmit antennas. This overhead is reduced

significantly by embedding pilot symbols within data symbols before precoding.
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To further extend the result obtained in Chapter 5 and to exploit the advantages

of using the space-time precoder, in Chapter 6, the precoder is designed taking into

account the channel estimation error. In particular, the precoder is devised to mitigate

the effect of channel estimation error on the error performance of the precoded BICM-

MIMO system. To design a precoder in the presence of channel estimation error, the

coding gain and diversity order of the precoded BICM-MIMO system are evaluated

in a block-fading channel under imperfect CSI.

Finally, Chapter 7 summarizes the contributions of this thesis and suggests po-

tential research problems for future works.
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2. Background

As discussed in Chapter 1, channel estimation error limits the performance of

a coded modulation system and this has been the subject of various studies in re-

cent years [1–4]. Channel estimation can be performed using blind, semi-blind or

data-aided methods. The blind channel estimators are mostly based on differential

detection or second and higher order statistics of the received signals [5]. However,

the performance of blind channel estimators is not comparable to that of data-based

channel estimation. The semi-blind and data-aided estimators, in which a training

sequence (or pilot) is inserted into the data sequence, are able to provide a more

accurate estimate than the blind methods.

Two major types of training sequences are time division multiplexed (TDM) train-

ing and superimposed training. These two types of training for channel estimation

have been discussed in [6–10] for fading channels. In TDM, a training sequence is

multiplexed with data symbols periodically in time with a known pattern, which

gives the position, size and power of the training sequence with respect to data in-

formation [7]. The position of a training sequence depends on the rate of channel

variation such that the channel estimator can track the variation of the channel using

the training sequence. In general, for a time-varying fading channel, the period of the

training sequence should be less than 1/2(fDTs), where fD is the Doppler shift and

Ts is the symbol duration in second. This period provides better tracking of the time-

varying channel since the Nyquist sampling theorem for the pilot symbol insertion is

satisfied. On the other hand, for superimposed training, the training sequence and

data symbols are added arithmetically and transmitted together [8, 11]. The effects
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of using these training schemes have been evaluated by measuring the mean square

error (MSE) of the channel estimator or the asymptotic error rate of the system [7].

While TDM, or also called pilot symbol assisted modulation (PSAM), has a better

error performance at high SNR for slowly time-varying channels, the superimposed

training outperforms PSAM in fast time-varying fading channels [7].

At very low SNRs, classical channel estimators (i.e., training-based estimators)

can no longer be successfully applied [12, 13]. However, since the invention of turbo

codes [14], researchers have been working on communication systems able to operate

at very low SNRs. Consequently the need for channel estimators delivering accurate

estimates at very low SNRs arises. Inspired by the turbo principle, several authors

have proposed using information of data symbols, delivered by the decoder, to improve

the estimation quality. This is referred to as turbo (or iterative) channel estimation.

Indeed, the poor performance of conventional estimators at low SNRs is attributed

to the lack of information about the data symbols.

This chapter discusses channel estimation in coded modulation systems. More

specifically, it distinguishes classical channel estimation from iterative channel esti-

mation. In the first section, a single-antenna system model with time-varying fading

channel is considered and the channel estimation is developed with PSAM. Then in

the second section, the iterative channel estimation will be explained for BICM. The

result can be easily extended to other scenarios (with different channel characteris-

tics).

2.1 Classical Channel Estimation

Classical channel estimation is usually characterized by type of the training scheme

and the criterion used for estimation. To illustrate the operation of classical channel

estimation in coded modulation systems, the block diagram of a typical coded modu-

lation system is illustrated in Fig. 2.1. Without loss of generality, a simple channel is

considered to explain the operation of the channel estimator. The following assump-

tions and settings are considered in this section:
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Figure 2.1 Block diagram of a coded modulation system with a classical channel

estimator.

• The channel is assumed to be time-varying flat fading. In this case the channel

can be modeled by a single tap, hk, at each time index k. The sequence {hk}
contains complex Gaussian random variables with zero mean. The autocor-

relation function R(n) = E{h∗khk+n} = σ2
hJ0(2πfDTsn) is given by the Jakes’

model [15], where J0(·) is the zeroth-order Bessel function of the first kind and

σ2
h is the variance of channel coefficient hk.

• A pilot symbol, denoted by x(p) with a period of L ≥ 1/2(fDTs) is inserted in

the data stream as shown in Fig. 2.2.

Pilot 
symbol Data symbols)1( −L

Figure 2.2 Representation of one period of PSAM.

• The input-output model of the channel is given by

yk = hkxk + ηk, (2.1)

where xk and yk are the transmitted and the received signals, respectively.

The noise component, ηk, is zero-mean complex Gaussian random variable with

variance N0. The linear model in (2.1) is also valid for the training phase. For
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Table 2.1 Objective functions for different channel estimators

Maximum likelihood (ML) maxhk
p(yk|hk, xk)

Least square (LS) error minhk
|yk − hkxk|2

Maximum a posteriori (MAP) probability maxhk
p(hk|yk)

Minimum mean square error (MMSE) minĥk
E{|hk − ĥk|2}

convenience, xk is set to x(p) and yk is denoted by y
(p)
k during the training phase.

Also let Es and Ep be the energy per data symbol (xk) and pilot symbol (x(p)),

respectively.

The problem is to estimate {hk} using two sources of information: the observation

at the channel output in the training phase (i.e., {y(p)
k }) and the known pilot symbol

x(p). Several channel estimators have been proposed using the following criteria: the

minimum mean square error (MMSE), the maximum a posteriori (MAP) probability,

the least square (LS) error and the maximum likelihood (ML) function. The objective

functions which these channel estimators minimize or maximize are given in Table. 2.1,

where p(x|y) and E{x} refer to probability of x given y and expected value of x,

respectively.

The solutions for these estimators based on the linear model given in (2.1) during

the training phase are given as follows:

• Since y
(p)
k = hkx

(p) + ηk, and ηk has a Gaussian distribution, it can be shown

that maximizing the likelihood function and minimizing the LS error lead to

the same estimator, given by,

ĥk =
1

|x(p)|2 (x(p))∗y
(p)
k . (2.2)

• If hk and yk are jointly Gaussian, which is the case here, then the MAP estimator

has the same expression as the MMSE estimator. The estimator is given by,

ĥk =
1

N0 + σ2
hEp

σ2
h(x

(p))∗y
(p)
k . (2.3)
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It should be mentioned that the channel taps are only estimated at training time

indexes. These estimates are then interpolated and used for other data time indexes.

The sinc filter and Gaussian filter have been used for PSAM but the Wiener filter

is the optimum interpolator in terms of minimizing the variance of the estimation

error [10]. In this case, the channel estimator prepares an estimate of the channel

gain hk using the M nearest pilot symbols by solving the Wiener-Hopf equations [16].

If the M nearest received pilot symbols to the kth position of the channel gain is

collected in vector y
(p)
k , then the coefficients of the Wiener filter that minimizes the

variance of the estimation error (i.e., the MMSE estimator) are obtained by,

ak = E{y(p)
k (y

(p)
k )H}−1E{hk(y

(p)
k )H}, (2.4)

and the channel estimate is,

ĥk = aT
k y

(p)
k . (2.5)

Based on the Jakes’ model of the correlated time-varying channel, one has

E{y(p)
k (y

(p)
k )H}i,j =







Epσ
2
h +N0, i = j

Epσ
2
hJ0(2πfDTs|i− j|L), i 6= j

, (2.6)

and

E{hk(y
(p)
k )H}i = σ2

hJ0(2πfDTs|iL− k|)(x(p))∗. (2.7)

Then a closed-form expression for the channel estimate can be found using (2.4) and

(2.5).

When the statistic of the noise is known, the MMSE estimator has the minimum

error variance and it also has the desirable property that the resulting estimate is

uncorrelated with the estimation error [4], and hence it is selected for this research.

However, in general the estimator can be selected to have the smallest degradation on

system error performance or to have less complexity. The effect of channel estimation

error on system performance depends on the type of receiver and characteristics of

the channel and therefore needs further investigation for each case. For example
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under Rayleigh fading channel and Gaussian noise in MIMO, the ML and MMSE

estimators have the same impacts on the asymptotic error rate performance of the

ML receiver [18].

For evaluating the impact of channel estimation error on system performance, it

is still required to obtain the variance of the estimation error (or MSE). However,

sometimes the calculation of MSE is cumbersome. Hence, it is useful to establish

lower bounds on the attainable MSE.

Lower bounds on the variance of channel estimation error

There are several lower bounds on the MSE attained by a channel estimator that

show the efficiency of the channel estimator. They can be used as benchmarks for

assessing the performance of a channel estimator and show the relation between the

performance of the channel estimator and parameters of a system. The tightest

lower bound is the Barankin bound [19] which is very difficult to compute. The

Bhattacharyya bound [20, 21] is simpler to evaluate but it is still more complicated

than one of its special version: the Cramer-Rao bound (CRB).

The CRB is widely used as a performance benchmark for a channel estimator.

The bound states that the MSE matrix of any unbiased estimator ĥ is lower bounded

as [16]:

MSE(ĥ) ≡ E{[ĥ − h][ĥ − h]H} ≥ J(h)−1,

where J(h) is the complex Fisher information matrix, defined by,

J(h) = E







[

∂ ln p(y,h)

∂h∗

] [

∂ ln p(y,h)

∂h∗

]H





. (2.8)

The vectors y and h are vectors of observations and corresponding channel samples,

respectively. The expectation is taken over y and h. The CRB has been calculated

in [28] for a time-varying Rayleigh fading channel.

After calculating the CRB for a training-based channel estimation, it can be shown

that the CRB is a function of training sequence. Thus in most cases, the CRB is used
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as a criterion to design training pattern [29]. However, to design other parameters

of a system, it is required to examine the impact of channel estimation error on

other benchmarks used for performance evaluation. This issue will be studied in this

research. In the following an example of BER performance degradation due to the

imperfection of channel estimation is discussed.

Effect of channel estimation error on the performance of coded mod-

ulation systems

As an example, Fig. 2.3 compares BER performance of a coded modulation system

utilizing training-based MMSE estimator and that of a system with perfect channel

state information (CSI). The coded modulation system employs a rate-1/2 convolu-

tional code with constraint length 5 and generator polynomial [1 +D+D3 +D4; 1 +

D+D4]. The modulation is quadrature phase-shift keying (QPSK). The normalized

Doppler shift fDTs is assumed to be 0.02. The curves are plotted versus Eb/N0, where

Eb/N0 is the energy per information bit over the noise variance. For the simulated

system (i.e., rate-1/2 coding and QPSK modulation) Es/N0 = Eb/N0.

As can be seen in Fig. 2.3, the training-based channel estimator leaves a big

performance gap compared to the case of perfect CSI. The main reason is that the

training-based MMSE estimator processes only the observation samples that depend

on the pilot symbols. The observations corresponding to the data symbols are not

taken into account in the estimator. Another drawback of the training-based channel

estimation is that the transmission of pilot symbols required by the estimator reduces

the spectral and power efficiency. Indeed, the pilot symbols – unlike the data symbols

– do not carry any information.

2.2 Iterative Channel Estimation in BICM Systems

The drawback of using only a training sequence in training-based channel esti-

mation can be mitigated by utilizing the soft information of data symbols, fed back

from the decoder. To exploit the fed back symbols efficiently (i.e., soft information),
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Figure 2.3 Comparison of BER achieved with training-based MMSE estimator and

with perfect CSI when fDTs = 0.02.

a special coding structure is required. The key in such a coding structure is that they

can be decoded iteratively. This coding structure was introduced first in 1993 by

Claude Berrou’s research group and it is termed a turbo code [14]. The performance

of turbo codes closely approaches the Shannons limit while possessing a reasonable

decoding complexity.

A turbo code consists of two simple convolutional codes, concatenated in parallel

and separated by an interleaver. At the receiver, each convolutional code is separately

decoded but in order to help each other, both decoders exchange some soft extrinsic

information about the transmitted bits in an iterative fashion. In contrast to the

hard information, the soft information keeps track of the level of reliability (measured

by probability) on the latest decisions made on the transmitted bits. The exchanged

information is extrinsic information meaning that the information sent by one decoder

is only the extra information brought by another decoder. In other words, the extrinsic

information received by one decoder at a given iteration does not contain the output

by that decoder in the previous iteration.
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Because of its outstanding performance, this iterative processing at the receiver,

called turbo principle, has further been applied to other processing tasks in the re-

ceiver: demodulation [22], equalization [23], multi-user detection [24], MIMO detec-

tion [25], synchronization [26] and channel estimation [27]. When involved in an

iterative process, all these tasks are referred to as “turbo” followed by their regular

names, e.g., turbo demodulation, turbo equalization, turbo multi-user detection.

The association of a channel encoder and the discrete-time equivalent channel,

separated by an interleaver in a BICM system, may be regarded as the serial concate-

nation of two codes. Therefore, the principle of turbo decoding can also be applied

to channel estimation and decoding leading to turbo (or iterative) channel estima-

tion. This technique was investigated for the first time in [27]. Research studies

suggest that soft iterative channel estimators can lead to a significant gain in the

performance of the receiver [6]. Iterative channel estimation is a popular semi-blind

channel estimation that uses soft information of data fed back from the decoder.

Channel 
Encoder Interleaver Modulator kx

Fading 
Channel 

Soft Output 
Demodulator

De-
interleaver

Channel 
Decoder

Interleaver

ky

kĥ

Channel 
Estimator

Figure 2.4 Block diagram of a BICM-ID system with iterative channel estimation.

To explain how an iterative channel estimator works, the block diagram of a BICM

system with an iterative receiver is shown in Fig. 2.4. The model is quite general and
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can apply to any specific system considered in subsequent chapters.

2.2.1 Transmitter of a BICM System

The transmitter is built from the following fundamental blocks. First a channel

encoder with a rate-Rc error-correcting code converts the vector of information bits b

into a codeword c. Next, the coded bits are interleaved by a bit interleaver. The bit

interleaver breaks the fading correlation by which the coded bits are corrupted. Then

the interleaved coded bits are mapped into signal points of a modulation constellation.

We now describe the role of each fundamental block in more detail.

Channel Encoder

The encoder applies the bijection between the input information vector b and the

codeword c. The length of c is 1/Rc times higher than the length of b. The error

correcting code can be, for example, one of the following:

• Linear block codes (like Reed-Solomon codes).

• Trellis codes (like convolutional codes). Traditionally, convolutional codes are

considered for BICM systems. Indeed, they have the double advantage of be-

ing simple in encoding and decoded with soft-input soft-output decoders [31].

Convolutional codes are used in this thesis.

• Concatenated codes. These codes can be constructed by concatenating several

component codes (block or convolutional codes) [31] at the price of increased

decoding complexity.

Interleaver

The interleaver scrambles the coded bits. This is the main component of a BICM

system. It is crucial when performing iterative joint detection and decoding because

it enhances the independence between extrinsic and a priori probabilities in both

the soft-input soft-output detector and decoder. It is also very important for ML
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decoding (if such a decoding is tractable) because it limits the interference in the

same time period between two erroneous bits of an error event. The interleaver

can be a pseudo-random or a semi-deterministic interleaver with some deterministic

constraints.

Modulator

The interleaved coded bits are de-multiplexed into blocks of m bits, which are fed

to the mapper that converts them into a constellation symbol. The bijection between

the bit vectors and constellation symbols is called mapping or labeling. The number

of points in the constellation is equal to M = 2m. At each channel use, the mapper

reads m coded bits and generates one modulation symbol. In general, the mapping

is not unique and will be chosen depending on specific channel and application. The

Gray mapping is a very well-known mapping since it minimizes the number of different

bits between two neighbors in the constellation, which essentially minimizes the bit

error rate of an uncoded system. However, in many cases, better performance can be

achieved by using other mapping techniques (in fact the Gray mapping is shown to

be the worst mapping for BICM with ideal interleaving [32]). This thesis considers

quadrature amplitude modulation (QAM) as it achieves a good compromise between

spectral efficiency (in bits/s/Hz or bits/dim) and performance.

Training sequence for the purpose of channel estimation is embedded in this stage.

The method of embedding depends on the application. Typically in fast time-varying

channels, superimposed training is added to the data stream, whereas in slow fading,

time-multiplexed training is preferred [7].

2.2.2 Iterative Receiver

An ideal BICM receiver would perform a maximum likelihood decoding, which

requires joint demodulation, convolutional decoding and perfect knowledge of CSI.

Due to the presence of the random bit interleaver, the implementation of this receiver

is intractable in practice. Instead, the suboptimal receiver of the system includes three
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separate blocks: the soft-input soft-output demodulator, the soft-input soft-output

decoder, and the channel estimator.

Soft-Input Soft-Output Decoder

Decoding of an error correcting code has always been a topic of interest. Obviously,

the decoder depends on the code employed. For the convolutional codes used in this

thesis, the soft-input soft-output decoder could be based on the soft-output Viterbi

algorithm (SOVA) or the maximum a posteriori probability (MAP) algorithm [31].

Soft-Input Soft-Output Demodulator

A soft-input soft-output detector can achieve near maximum likelihood perfor-

mance through iteration with the decoder. Any technique that a soft-input soft-

output demodulator uses, converts the received vector of each time period into ex-

trinsic probabilities on the coded bits thanks to the a priori probabilities on the coded

bits. Some practical soft-input soft-output demodulators for BICM are:

• Maximum a posteriori probability (MAP) demodulators [33].

• Approximate MMSE-APP demodulators [34].

• MMSE soft-output demodulators [35].

Algorithms that can be used for a soft-input soft-output demodulator depend on

diversity techniques and parameters of the modulator. The algorithms applied in this

thesis are explained in detail in the following chapters for each considered system.

Interactions between Demodulator and Decoder

In any given iteration, the interaction between the demodulator and the channel

decoder can be explained as follows. After the channel estimation is performed (as

explained in the next section), a soft-input soft-output demodulator demodulates

the data. The soft-output demodulator computes the extrinsic information for the
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interleaved bits, from the received symbols. To obtain the extrinsic information, the

demodulator also exploits the a priori information of the coded bits coming from

the decoder and the channel estimates. To calculate the extrinsic information, the

following a posteriori probability (APP) expression is available for any coded bit cl

of any time period. The received signal (i.e., observation) during the considered time

period is yk. The APP probability of a coded bit cl is defined and computed by Bayes’

theorem as:

APP(cl) = p(cl|yk)

=
p(yk|cl)p(cl)

p(yk)
(2.9)

In the above expression, APP(cl) is expressed as a function of three probability quan-

tities:

• At each iteration, the probabilities given by the output of the decoder are

independent from the received signal yk. They are called a priori probabilities

on the coded bits cl and denoted by p(cl). At the first iteration, no a priori

information is available at the demodulator input, so it equally considers all the

constellation points.

• The probability p(yk) depends on the transmitted coded bits, the a priori prob-

ability and the AWGN, and is not computable. Fortunately, it can be shown

that this quantity is not necessary for the iterative processing.

• The conditioned observation p(yk|cl) can be decomposed into more explicit prob-

abilities. By marginalizing over the set of labelings having the lth bit equal to

cl, i.e., c = {c1, . . . , cl, . . . , cm}, we have,

p(yk|cl) =
∑

c

p(yk, c|cl) =
∑

c

p(yk|c, cl)p(c) (2.10)

where the condition over c, cl is equivalent to a condition over the corresponding

modulation symbol, x. Using the AWGN distribution, one has

p(yk|c, cl) = p(yk|x) =
1√

2πN0

exp
−|yk − xhk|2

2N0
. (2.11)

24



The coded bits transmitted during the same time period are supposed to be

independent. Thus, in (2.10) p(c) =
∏

i6=l p(ci).

In the above, the APP(cl), computed in the demodulator, can also be expressed

as Extr(cl)p(cl), with Extr(cl) and p(cl) are two independent variables, and Extr(cl)

is called the extrinsic probability. Moreover, using the normalization, the extrinsic

probability that the lth coded bit equals 1 is expressed as

Extr(cl) =
p(yk|cl = 1)

p(yk|cl = 1) + p(yk|cl = 0)
. (2.12)

Therefore,

Extr(cl) =

∑

x∈Ωl

{

exp
(

− |yk−xhk|2
2N0

)
∏

i6=l p(ci)
}

∑

x∈Ω

{

exp
(

− |yk−xhk|2
2N0

)
∏

i6=l p(ci)
} (2.13)

where Ω is the set of all symbols x generated by the QAM mapper, i.e., |Ω| = 2m and

the subset Ωl for l = 1, . . . , m, is restricted to include symbols x in which the lth coded

bit is equal to 1. One way to express the reliability information or soft information

is by the log-likelihood ratio (LLR) , which is defined by LLR(cl) = ln p(cl=1)
p(cl=0)

or

equivalently ln Extr(cl=1)
Extr(cl=0)

.

Then the extrinsic information are de-interleaved and become the a priori soft

information to be used in the channel decoder shown in Fig. 2.4. The channel decoder

uses the MAP algorithm to compute the extrinsic information for all coded bits, which

are used again in the next iteration in the demodulator. This process is repeated until

the iterative receiver converges.

It should be noted that in (2.11) and (2.13), it is assumed that hk is perfectly

known. However, in practice it should be estimated and thus the performance of the

demodulator is affected by the accuracy of the estimation.

Iterative Channel Estimator

The interaction between the soft-iterative channel estimator and the channel de-

coder and the demodulator can be explained as follows. At the first iteration, channel
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estimator uses only the training sequence to estimate CSI. It uses the same processing

as training-based channel estimators explained in section 2.1.

In subsequent iterations, soft information under the form of extrinsic LLRs on

coded bits output by the decoder are fed back to the estimator in order to improve

its performance. The channel estimator uses the soft information from the channel

decoder to compute new estimates of the channel coefficients using expected values

of the data symbols. Therefore the interleaved soft information from the decoder is

fed back to the estimator to calculate the expected values and variances of the data

symbols, i.e., E{xk} and σ2
xk

. Calculating E{xk} and σ2
xk

from LLRs depends on the

mapping rule in constellation set. For example Table 2.2 shows the mapping rules and

the expressions for mean values of BPSK and QPSK modulation schemes in terms of

LLRs.

The first example is explained as follows. Consider the mapping from one bit to a

BPSK symbol as b1 ∈ {0, 1}. Moreover assume that the labeling is such that xk = −1

when the transmitted bit is 0 and xk = +1 when it is 1. Then for each symbol there

is one LLR fed-back from the decoder. This LLR(b1) acts as a priori information

of symbol xk. Thus E{xk} = p(x = +1) − p(x = −1) = p(b1 = 1) − p(b1 = 0).

Dividing by p(b1 = 1) + p(b1 = 0) = 1 and using the definition of LLR, one has

E{xk} = exp(LLR(b1))−1
exp(LLR(b1))+1

= tanh(LLR(b1)/2). The variance is σ2
xk

= 1 − |E{xk}|2.

The refined estimates of the channel gains are then sent to the demodulator.

It should be pointed out that the iterations related to the feedback of soft extrinsic

information from the decoder to the estimator (referred to as “estimation iterations”)

may differ from those related to the feedback of the same information from the decoder

to the demodulator (referred to as “decoding iterations”). For instance, two decoding

iterations may be performed per estimation iteration.

Since iterative channel estimation has interactions with the decoder and the de-

modulator through LLRs, its performance may be affected by the design parameters

of the channel encoder and modulator. Moreover, since for the first iteration, the
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Table 2.2 Conversion of soft information to the mean value of symbols

Modulation scheme Bits Symbol Mean Value

b1 xk

BPSK 1 +1 tanh LLR(b1)
2

0 −1

b1b2 xk

00 1 + j

QPSK 01 1 − j tanh LLR(b1)
2

+ j tanh LLR(b2)
2

10 −1 + j

11 −1 − j

channel is estimated using the training sequence, the estimation performance also

depends on the training sequence.

To analyze the effect of the channel estimation error on the performance of a

BICM system with an iterative receiver, different quantities and tools have been

used in [36] and [6], which include the pairwise error probability (PEP), asymptotic

BER and extrinsic information transfer (EXIT) chart. These quantities were used

to develop channel estimators for different channel scenarios in order to improve the

performance. These quantities may also be used to analyze the effect of BICM system

parameters on channel estimation. In parts of this research, PEP and EXIT chart

shall be considered.

2.3 Summary

Two types of channel estimations for coded modulation systems have been briefly

discussed in this chapter. For training-based channel estimation, with certain as-

sumptions on channel properties, different criteria are examined. Among those cri-

teria, MMSE estimator is selected as it has a promising performance. By evaluating

the coded modulation system with training-based channel estimation, it was shown

that there are two drawbacks. To compensate for the first one, which is the lack of
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information, the use of an iterative channel estimation has been discussed. In Chap-

ter 3, this estimator is developed for BICM systems that exploit SSD. Since it has

been shown that one of the parameters that the performance of the channel estimator

depends on is the training sequence, Chapter 3 investigates the training design for

a time-varying system that exploits SSD technique. In Chapter 4, an algorithm for

the iteration process in the iterative channel estimator is applied. This algorithm is

considered for MIMO block-fading channels. The second drawback is the signalling

overhead of the training sequence. This issue is investigated in Chapters 5 and 6 for

MIMO block-fading channels under the CRB and PEP performance criteria.
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In the previous chapter, classical and iterative channel estimators for time-varying

fading channels have been discussed. It was shown that the performance of a classical

channel estimator depends on the training sequence while for the iterative channel

estimator, the performance depends also on the modulator design (i.e., mapping and

the constellation set). On the other hand, for a time-varying fading channel it was

shown in [3] that the performance of a BICM system is improved by introducing

extra diversity. This extra diversity is provided by applying certain rotation after the

modulator, a technique called signal space diversity (SSD). Indeed applying SSD can

be considered as a part of the modulator.

The manuscript included in this chapter studies iterative channel estimation in a

BICM system with the SSD technique. In addition, different from the conventional

training sequence for a simple BICM system as in [12], a training sequence is inserted

before the modulator. The iterative channel estimator is designed to work effectively

with the SSD training sequence.
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Channel Estimation in Bit Interleaved Coded Modulation

with Iterative Decoding

Zohreh Andalibi, Ha H. Nguyen, J. Eric Salt

Abstract

This paper improves the fading channel estimation in bit-interleaved coded modulation sys-

tems with iterative decoding (BICM-ID) and signal space diversity (SSD) by embedding a training

sequence. Existing training schemes work well at high signal-to-noise ratio (SNR) or slowly time-

varying channels while the applications of BICM-ID are beneficial at low SNR and fast time-varying

fading channels. Motivated by the power/bandwidth efficiency of the SSD technique and the fact

that superimposed training outperforms pilot symbol assisted modulation (PSAM) training over

relatively fast time-varying channels, a new superimposed training sequence is explored. The pro-

posed training sequence inserts pilot bits into the coded bits prior constellation mapping and signal

rotation. This becomes a superimposed training sequence in the rotated symbols and helps the esti-

mator to track fast variation of the channel gains. A soft iterative channel estimator is developed to

work with the superimposed training sequence. Performance of the proposed scheme, namely SSD-

pilot, is shown to be superior to PSAM scheme. To gauge the performance improvement achieved

with the proposed channel estimation, an analytical bound on the asymptotic bit error probability

for BICM-ID using SSD over correlated fading channels is provided. The Cramer-Rao bound on

the mean-square error of the channel estimator is also derived to evaluate the performance of the

iterative channel estimator.
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3.1 Introduction

Signal space diversity (SSD) was introduced in [1] and [2] as a power and band-

width efficient technique for communication over fading channels. In SSD, an N -

dimensional modulation scheme is created by partitioning the data into blocks of

N symbols and performing a rotation on each group of N -successive complex (two-

dimensional) symbols. With such partitioning and rotation, the diversity order is

maximized by increasing the minimum number of distinct components between any

two N -dimensional constellation points. Among the various applications of SSD, bit-

interleaved coded modulation (BICM) with iterative decoding (ID) over fast fading

channels has been studied in [3]. In [3], the transmitter and receiver are designed

under the assumption that the channel state information (CSI) is known at the re-

ceiver. However, in practical applications, this is not the case and the CSI must be

estimated. Imperfect CSI due to channel estimation degrades the performance, espe-

cially at low signal-to-noise ratio (SNR) regime. This drawback can be mitigated by

using a soft-iterative channel estimator [4].

Soft iterative channel estimation has been intensively studied in turbo-coded sys-

tems, see e.g., [5], [6] and [7] and references therein. Soft iterative channel estimation

uses soft information from the soft-input soft-output (SISO) decoder in a semi-blind

fashion to improve channel estimation performance, and consequently the system’s

bit-error-rate (BER) , over fading channels. The concept of semi-blind estimation

is rooted in functions of both known and unknown signals. In the context of wire-

less communications, known signals can be either time-multiplexed or superimposed

training sequence. In a time-multiplexed training sequence, pilot symbols are inserted

regularly in the data stream. Such schemes, which are commonly called pilot-symbol

assisted modulation (PSAM) schemes perform well over slowly time varying chan-

nels [8, 9]. To work in a fast fading channel the pilot symbols in a PSAM scheme
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have to be inserted more often, which causes bandwidth expansion. Alternatively a

superimposed training scheme, which in effect superimposes a training signal on each

transmitted symbol, can be used. Superimposed training schemes work well in fast

fading channels provided that the SNR is sufficiently high. Such schemes are also

effective in multi-path channels [10].

Although there has been no study on the impact of channel estimation on the

design of the transmitter and receiver for a BICM-ID-SSD system, the use of PSAM

or superimposed schemes was widely considered for coded and un-coded systems,

see, e.g., [11–17]. In particular, using pilot symbols for channel estimation in turbo

coded systems has been examined in [11]. The study assumed that the channel is

flat fading with a gain that depends on time but is constant for the duration of a

symbol. Such channels are referred to as correlated fading channels. The study in [11]

used an iteratively filtered PSAM (IF-PSAM) algorithm in the receiver. Reference

[12] proposes sparsely interleaved estimation and decoding (SIED) as an alternative

algorithm for iterative channel estimation in BICM-ID systems. In these papers,

pilot symbols are used to initialize the channel estimates and then these estimates

are refined in subsequent iterations by an interpolator that uses information fed back

from the decoder. In [12] it was shown that in order to improve the performance, the

refining phase of the channel estimation is not needed for each iteration of decoding

stage. In [13], the performances of PSAM and superimposed training schemes are

compared using the worst-case un-coded BER as the performance measure. It was

shown for uncoded systems at high SNR that PSAM performs better for slowly time-

varying fading channels and the superimposed training scheme performs better in

fast time-varying fading channels. This observation also applies to coded systems.

For BICM systems, performance of PSAM has been studied in [14] for a range of

SNR. In particular, the relation between fade rates and required power of pilots has

been investigated using extrinsic information transfer (EXIT) chart. Similar analysis

Hereafter the abbreviation BICM-ID-SSD refers to a system that implements bit-interleaved

coded modulation, iterative decoding and signal space diversity technique.
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has been investigated for coded systems with superimposed schemes in [15] using

BER simulation. However, at low SNR in a fast time-varying fading environment,

conventional training schemes fail. On the other hand, since BICM works well at low

SNR and over a fast time-varying channel, it is of interest to develop a new training

scheme for this system.

This paper proposes and examines alternative training sequences for a BICM-

ID-SSD system operating over a correlated fading channel. Specifically, the paper

investigates injecting pilots at the bit level instead of the symbol level. The intent is

to exploit SSD technique to improve the performance of the iterative receiver. The

proposed method inserts pilot bits into the coded bits before constellation mapping

and signal rotation. As a result, the rotated superimposed symbols, which shall be

referred to as SSD-pilots, can be considered as a superimposed training sequence that

is inherent to the rotated transmitted symbols. A soft iterative receiver is developed

for the bit level embedded training sequence. In particular, the estimator in the pro-

posed receiver uses the training sequence in addition to the soft information from the

decoder to produce estimates of the time-varying channel gains for the demodulator.

Moreover, the demodulator uses the training part in the received signal to provide

reliable extrinsic information for the decoder. It shall be demonstrated that perfor-

mance of the proposed receiver is significantly better than that of the conventional

PSAM scheme.

The paper is organized as follows. The system model of BICM-ID-SSD is presented

in Section 3.2. In this section, the structure of the training sequence is described and

the transmitter and receiver are developed for the proposed method of training design.

Section 3.3 analyzes the performance of the BICM-ID-SSD system over a correlated

fading channel. In particular a lower bound of the asymptotic BER is first obtained

under the perfect CSI. Then the Cramer-Rao bound (CRB) for the proposed channel

estimation method is derived. Section 4.5 provides numerical results and performance

comparisons. Section 6.6 offers conclusion.

Notation: Upper and lower boldface letters denote matrices and column vectors,
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respectively. Superscripts (·)H and (·)T indicate Hermitian and transpose, respec-

tively. For matrix A, Ai,j denotes its (i, j)th entry while Aj indicates the jth row.

The log-likelihood ratio of bit b is defined as Λ(b) = log
[

P (b=1)
P (b=−1)

]

.

3.2 System Model
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Figure 3.1 Block diagram of BICM-ID-SSD with the proposed pilot insertion and

iterative channel estimation.

The block diagram of the transmitter and receiver in discrete-time equivalent

baseband is shown in Fig. 4.2.1.

3.2.1 Transmitter

A sequence {uj}, 1 ≤ j ≤ L, of information bits is first encoded by a rate-r

convolutional encoder. The encoded bits {ci}, 1 ≤ i ≤ L/r are then passed to a

bit-interleaver with length of L/r. Next, the interleaved sequence {c̃i} is segmented

into groups of (N−Np)×m bits, where N is the size of the rotation matrix, Np is the

number of pilot symbols in N rotated symbols and m is the number of bits carried

by one symbol of a QAM constellation whose size is |Ω| = 2m. Next, known pilot

bits {pn}, n = 1, 2, . . . , mNp, is inserted in the segmented group of (N − Np) × m

bits. The pilot bits can be placed at the beginning, at the end, or somewhere in

between as long as every m pilot bits are inserted as a block in the segmented group
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and mapped to one QAM constellation point. This is necessary so that the channel

estimator can work with known pilot QAM symbols in the initialization phase. Each

expanded group of size Nm is then mapped to one complex N -dimensional “super”

symbol, s = [s1, s2, . . . , sN ]T .

There are many possible mappings between Nm bits and a super symbol. The

sigma mapping scheme in [3] facilitates a low-complexity soft-output minimum mean-

square error (MMSE) demodulator and for that reason is used here. In general, the

sigma mapping relates a binary vector z to the super symbol s with the equation,

s = V(2z− 1) = Vb, (3.1)

where V, z and b are defined as follows:

• V = diag (v,v, . . . ,v)
︸ ︷︷ ︸

Nv′s

is anN×Nm block diagonal matrix and v = [v1, v2, . . . , vm]

is the basis vector whose elements are unit-norm complex numbers.

• z is an Nm × 1 binary vector of interleaved coded bits and pilot bits whose

entries are either 1 or 0.

• b is a binary vector whose entries are ±1 and represents both pilot and coded

bits.

With the proper design of v, each component si is guaranteed to belong to a

standard two-dimensional QAM constellation Ω [3]. As an example, Fig. 3.2 shows

the sigma mapping of 4-QAM and 16-QAM.

Rotation is accomplished with a matrix, G, which could take on one of several

forms. One form which can be used when N is a power of 2 [3], is

G =
1√
N













1 α1 . . . αN−1
1

1 α2 . . . αN−1
2

...
...

...

1 αN . . . αN−1
N













, (3.2)
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where αi = exp
(

 2π
4N

)

exp
(

2π(i−1)
N

)

and  =
√
−1. The matrix rotates a super

symbol, s into a rotated super symbol, denoted by x = Gs.

Let Γ = GV and introduce subscripts as the time index to the super symbols and

rotated super symbols. Then the lth rotated super symbol can be represented by,

xl = [x(l−1)N+1, . . . , x(l−1)N+N ]T

= Γ[b(l−1)Nm+1, . . . , b(l−1)Nm+Nm]T

= Γbl, 1 ≤ l ≤ 1

N −Np

L

rm
. (3.3)

Thus by showing the time index in form of k = (l − 1)N + i, 1 ≤ i ≤ N , the kth

transmitted complex symbol is given by,

xk = Γibl = x
(d)
k + x

(p)
k , k = 1, 2, . . . ,

N

N −Np

L

rm
, (3.4)

where x
(d)
k and x

(p)
k are the data and pilot portions of the transmitted symbols, re-

spectively, and l = ⌊ k
N
⌋ and i = k−(l−1)N . For the ease of exposition, it is assumed

that all the pilot bits take on the same value of 1.

It is of interest to measure the effective energy of the system. The energy efficiency

of SSD-pilot scheme can be expressed as

̺SSD-pilot =
(N −Np)Es

(N −Np)Es +NpEp

=
N −Np

N −Np + ηNp

, (3.5)

when Ep = ηEs, and Ep and Es are the energy per pilot symbol and the energy per

data symbol before rotation, respectively. For the purpose of comparison to PSAM,

it is pointed out that the energy efficiency of PSAM is given by M−1
M−1+η

, where M is

the pilot symbol spacing [12].

3.2.2 Iterative Receiver

The sequence of received symbols, denoted {rk}, is given by,

rk = hkxk + wk, k = 1, 2, . . . ,
N

N −Np

L

rm
, (3.6)

where wk is a noise sample and hk is a channel gain at time k. The sequence of

{wk} is a set of i.i.d. zero-mean circularly symmetric Gaussian random variables
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with variance N0. The sequence {hk} contains complex Gaussian random variables

with zero mean and autocorrelation R(k) = σ2
hJ0(2πfdTsk), which is given by the

Jakes’s model [18]. The function J0(·) is the zeroth-order Bessel function of the first

kind, fd is the Doppler spread (assumed to be known at the receiver) and Ts is the

symbol duration.

An iterative receiver operates on the received signals in an iterative manner. In

the first iteration, the received signals are filtered to produce initial estimates of

the channel gains, denoted {ĥk}. In essence, only the known information, i.e., pilot

portions of the transmitted signals, {x(p)
k }, is used. The extrinsic information for the

de-mapped bits, {Λ(c̃i)
ext }, is obtained in the same iteration using the soft-output MMSE

demodulator proposed in [19]. The mismatched demodulator uses {ĥk}, the a priori

information of the coded bits, {Λ(ci)
ap }, which is “0”, and the extrinsic information of

the pilot bits, {Λ(pn)
ap } to obtain {Λ(c̃i)

ext }. The demodulator can be simplified without

sacrificing significant accuracy by using a smaller number for Λ(pn)
ap , say ±100, which

has a theoretical value of ±∞. After demodulation, the extrinsic information of the

de-mapped pilot bits, {Λ(pn)
ext }, is removed and the sequence is de-interleaved. Next

a SISO decoder takes the de-interleaved version of {Λ(c̃i)
ext } and treats it as a priori

information {Λ(ci)
ap } to compute {Λ(ci)

ext } of the coded bits. Here, the SISO decoder uses

the maximum a posteriori probability (MAP) algorithm [20].

In subsequent iterations, soft information from the decoder is used to improve the

performance of the channel estimator. The channel estimator uses such information

to compute new estimates of the channel coefficients using expected values of the

data symbols. Therefore the interleaved {Λ(ci)
ext } from the decoder are fed back to the

estimator to calculate the expected values and variances of the data symbols, i.e.,

E{xk} and σ2
xk

. Using (3.4), E{xk} and σ2
xk

are computed as,

E{xk} = ΓiE{bl} (3.7)

σ2
xk

=
Nm∑

j=1

|Γi,j|2σ2
bNm(l−1)+j

=
1

N

Nm∑

j=1

σ2
bNm(l−1)+j

, (3.8)
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where the {Λ(c̃i)
ap } should be used to calculate E{bi} = tanh

[
Λ(bi)

2

]

and σ2
bi

= 1 −
|E{bi}|2. For the pilot bits, since {pn} are known at the receiver, one has E{pn} = pn.

The demodulator uses the {Λ(c̃i)
ap } and Λ(pn)

ap directly to calculate {Λ(c̃i)
ext } for the

rest of the iterations, as in the first iteration. The detailed operation of the channel

estimator is discussed next.

3.2.3 Channel Estimator

In this section, an iterative MMSE channel estimator is developed for the SSD-

pilot training sequence. It is shown in Section 4.5 that inserting pilot bits with the

coded bits lowers error probability in each successive iteration. If the transmitted

sequence was known at the receiver, then the best linear MMSE estimates of the

channel gains would be found by using the Wiener interpolator. However, using the

pilot portions of the transmitted signals for the first iteration and the soft information

of the transmitted signals for the successive iterations produces a good approximation

of the channel gains.

The kth channel gain is estimated by a filter of length (2K0 + 1), where K0 is

a constant. The tap weights of this filter are updated in each iteration. To get a

compact expression for ĥk the following definitions are used:

• The observation vector r̆k = [rk−K0, . . . , rk, . . . , rk+K0]
T is the collection of the

(2K0 + 1) received symbols nearest to rk.

• The pilot portion of the transmitted symbols is x̆
(p)
k = [x

(p)
k−K0

, . . . , x
(p)
k , . . . , x

(p)
k+K0

]T ,

which is a known vector at the receiver.

• The vector of the transmitted symbols, x̆k = [xk−K0, . . . , xk, . . . , xk+K0]
T is the

collection of the (2K0 + 1) symbols that surround xk.

In general the choice of K0 is governed by the trade-off between complexity and performance.

A detailed discussion on how to choose K0 and its effect on the performance can be found in [12]

and [11].
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• The covariance matrix of the observation vector is obtained with E{r̆kr̆
H
k }.

• The covariance vector, which has length (2K0 + 1) is obtained by E{r̆kh
∗
k}.

With these definitions, the linear MMSE estimate of the channel gain is

ĥk =
(

E{r̆kr̆
H
k }−1E{r̆kh

∗
k}
)H

r̆k. (3.9)

Expressions for the covariance matrix and covariance vector must be obtained to

calculate ĥk with (3.9) for the first iteration, where only the pilot portions of the

received signals are known. For the pilot portion E
{

x
(p)
i (x

(p)
j )∗

}

= x
(p)
i (x

(p)
j )∗, ∀i, j

and E{x(p)
i } = x

(p)
i . For the data portion of the transmitted signal, E

{

x
(d)
i (x

(d)
j )∗

}

=
(

N−Np
N

)

Es for i = j, E
{

x
(d)
i (x

(d)
j )∗

}

= 0 for i 6= j and E{x(d)
i } = 0 for the first

iteration. Assembling this information leads to

E{r̆kr̆
H
k }i,j =







(

|x̆(p)
k,i |2 + N−Np

N
Es

)

σ2
h +N0, i = j

x̆
(p)
k,i (x̆

(p)
k,j)

∗σ2
hJ0(2πfd|i− j|Ts), i 6= j

, (3.10)

where E{r̆kr̆
H
k }i,j is the (i, j)th element of the covariance matrix and x̆

(p)
k,i = x

(p)
k+i−(K0+1)

is the ith element of vector x̆
(p)
k . In addition, E{r̆kh

∗
k}i = σ2

hJ0(2πfd|i|Ts)x̆
(p)
k,i . Note

that the above calculations imply that the matrix E{r̆kr̆
H
k } and vector E{r̆kh

∗
k} can

be calculated off-line for the first iteration.

In the next iterations, for calculating the covariance matrix and covariance vec-

tor, the soft information of data is taken into account. Using (3.7), E {xi(xj)
∗} =

|E{xi}|2 + σ2
xi

if i = j and E {xi(xj)
∗} = E{xi}E{xj}∗ for i 6= j. Then the elements

of the covariance matrix are,

E{r̆kr̆
H
k }i,j =







(

|E{x̆k,i}|2 + σ2
x̆k,i

)

σ2
h +N0, i = j

(E{x̆k,i}E{x̆k,j}∗)σ2
hJ0(2πfd|i− j|Ts), i 6= j

, (3.11)

and the entries of the covariance vector are obtained as E{r̆kh
∗
k}i = σ2

hJ0(2πfd|i|Ts)×
E{x̆k,i}. In the above last two expressions E{x̆k,i} and σ2

x̆k,i
are computed using (3.7)

and (8), respectively, and by associating x̆k,i to the ith element of vector x̆k, i.e.,

x̆k,i = xk+i−(K0+1).
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3.3 Bound for Asymptotic Error Performance and Cramer-

Rao Bound for Channel Estimation

3.3.1 Analytical Bound of Asymptotic BER with Perfect CSI

The union bound on the BER for BICM-ID-SSD is helpful for evaluating the sys-

tem performance in a correlated fading channel. The bound for a rate-r convolutional

code can be written as,

Pb ≤ 1

r

∞∑

d=dH

cdf(d,Ψ, ζ), (3.12)

where parameters d, dH , cd, Ψ, and ζ as well as function f(·) are defined as: d is

the Hamming distance, dH is the free Hamming distance of the code, cd is the total

input weight of error events at Hamming distance d, Ψ is the N -dimensional complex

constellation set, and ζ is the mapping rule. The function f(d,Ψ, ζ) denotes the

average pairwise error probability (PEP) , which depends on the Hamming distance

d, the signal constellation set Ψ and the mapping rule ζ . In general, f(d,Ψ, ζ) can

be approximated as in [3] by,

f(d,Ψ, ζ) ≈ 1

2
(δ(G,Ω, ζ))d , (3.13)

where, for an uncorrelated Rayleigh fading channel,

δ(G,Ω, ζ) =
1

N

1

m2m

N∑

u=1




∑

k:sk∈Ω

m∑

j=1

N∏

i=1

(

1 +
|Gi,u(sk − sk∼j)|2

4N0

)−1


 . (3.14)

In the above sk is a constellation point in Ω and notation k ∼ j is used to refer to a

signal whose mapping is the same as that of sk, except that the jth bit is toggled (i.e.

complemented). As an example for 16-QAM, if sk has the mapping 1111 and j = 2

then sk∼j would be the signal that has the mapping 111̃1 = 1101. As an illustration,

the signals s15 and s15∼2 are shown in Fig. 3.2 for the sigma mapping scheme.

The union bound over a correlated fading channel is now derived using the pro-

cedure of [3]. To account for the correlation, the joint probability density function of

the channel is expressed as

p(h) =
1

πN detC
exp

(

−hHC−1h
)

, (3.15)

44



2~15s

3v

4v
2v 1v 1v

2v15s

Figure 3.2 Sigma mappings for 16-QAM and 4-QAM. For 16-QAM the basis vec-

tors are v1 = 2v2 =
√

1.6 exp(0), v3 = 2v4 =
√

1.6 exp(π
2
). For

4-QAM, v1 = exp(0) and v2 = exp(π
2
).

where h = [h1, . . . , hN ]T is a correlated fading vector and C = E{hhH} is an N ×N

covariance matrix, with

Ci,j =







σ2
h, i = j

σ2
hJ0(2πfd(i− j)Ts), i 6= j

. (3.16)

After some manipulation and then diagonalizing the data vector, i.e., Du =

diag(|G1,u(sk − sk∼j)|2, . . . , |GN,u(sk − sk∼j)|2), and using the method in [21], one

recognizes that f(d,Ψ, ζ) has the same form as (3.13), but with δ(G,Ω, ζ) given as

δ(G,Ω, ζ) =
1

N

1

m2m

N∑

u=1




∑

k:sk∈Ω

m∑

j=1

N∏

i=1

(

1 +
λi,u

4N0

)−1


 , (3.17)

where λi,u are the eigenvalues of DuC. It is clear that there are at most N nonzero

eigenvalues. It is also noted that the number of eigenvalues equals the average number

of distinct channel states in one rotated super symbol. Therefore, it follows from

(3.13) that the diversity order of the system must be less than or equal to NdH . If

the rank of DuC is less than N , then the number of nonzero eigenvalues and therefore

the diversity order is less than or equal to the rank of C times dH . For example, if

fdTs = 0.02, the rank of C is 8 when N = 32. This implies that the maximum

diversity order is 8dH.
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3.3.2 Cramer-Rao Bound for Mean-Square Error of the Chan-

nel Estimation

Cramer-Rao bound (CRB) is widely used as a benchmark for the performance of

any channel estimator. The bound states that the mean-square error (MSE) matrix

of any unbiased estimator ĥ is lower bounded by [22],

MSE(ĥ) ≡ E{[ĥ − h][ĥ − h]H} ≥ J(h)−1,

where J(h) is the complex Fisher information matrix defined by,

J(h) = E







[

∂ ln p(r,h)

∂h∗

] [

∂ ln p(r,h)

∂h∗

]H





. (3.18)

A closed form expression for J(h) is found by taking the expectation of (5.6) over

r and h. To this end, it is convenient to express p(r,h) as p(r|h) · p(h), where p(h) is

defined in (3.15), p(r|h) = 1

(πN0)
N
2

exp
(

− 1
N0

‖r −XDh‖2
)

, r = [r1, . . . , rN ]T = XDh+

w and XD = diag(x1, . . . , xN). After some manipulations, the Fisher information

matrix is given in terms of XD as follows:

J(h) =
1

N0

E{XDXH
D} + C−1. (3.19)

Note that E{XDXH
D} is a diagonal matrix which has E{|xi|2} = |E{xi}|2 +σ2

xi
on its

diagonal, i = 1, . . . , N . The terms E{xi} and σ2
xi

can be numerically calculated based

on (3.7) and (3.8). The vast simulations are arranged even at low SNR to obtain an

accurate CRB.

3.4 Simulation Results

The performance of the proposed method is investigated using a computer simula-

tion to calculate the MSE of the channel estimator and the resulting BER. The same

convolutional code, data frame, bit-interleaver and modulation format is used in all

simulations. The channel code is a rate-1/2 convolutional code with constraint length

5 and generator polynomial [1+D+D3 +D4; 1+D+D4]. The data frame consists of

11, 996 data bits and 4 tail bits. The bit-interleaver has length L = 2 × 12, 000. The
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modulation is quadrature phase-shift keying (QPSK) with sigma mapping, where the

basis vector is v = [1, ].
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Figure 3.3 Comparison of BER obtained from SSD-pilot and PSAM with the it-

erative channel estimator when N = 16, fdTs = 0.02 and Np = 1, and

for 1 and 5 iterations.

Fig. 4.9 plots BER versus Eb/N0, where Eb is the energy per information bit, and

the normalized fade rate is taken to be fdTs = 0.02. The size of the rotation matrix is

N = 16 while Np = 1 and η = 1. From (3.5) this means that the energy efficiency is

̺ = 0.9375, since Ep = Es = 2. The length of the Wiener filter is set to 2K0 + 1 with

K0 = 40. This has the Wiener filter estimating each channel tap with 81 channel

realizations. For each value of Eb/N0 considered, 105 independent frames were run.

The performance of the SSD-pilot scheme is compared to the performance of the

PSAM training scheme as well as the analytical bound in Fig. 4.9. Note that for a

fair comparison, the channel estimator used with PSAM is also based on the iterative

approach with rotated data symbols. For the PSAM scheme, the pilot symbol is 1+ 

and the pilot spacing is M = 16, which yields the same energy efficiency as that of

SSD-pilot scheme. The other simulation parameters are the same as in SSD-pilot

scheme.
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Figure 3.4 Comparison of BER obtained from SSD-pilot and PSAM with the it-

erative channel estimator when N = 8, fdTs = 0.05 and Np = 1, and

for 1 and 5 iterations.

There are five curves in Fig. 4.9. The top two provide the performance after the

first iteration for the SSD-pilot and the PSAM schemes. The middle two curves show

the performance after 5 iterations. The bottom curve, shown as a dashed line, is a

plot of the bound. The curves for the first iteration show that the performance of

the proposed scheme is about 2 dB worse than the conventional PSAM scheme. This

is expected because only the pilot portions of the transmitted symbols are used for

channel estimation in the first iteration in SSD-pilot scheme. However, the results

are quite different after 5 iterations. The SSD-pilot scheme is from 1 to 1.5 dB better

than the PSAM scheme, depending on Eb/N0. The reason for this is that the pilot

information is embedded in the rotated symbols for the SSD-pilot scheme and not for

the PSAM scheme. Since the SSD-pilots are embedded in the SSD received symbols,

the demodulator can make use of this information for its training. In contrast, the

pilots in PSAM, which are not embedded in the rotated symbols cannot be used

by the demodulator. In the end the SSD-pilot information used in the demodulator

iteratively improves the overall performance of the receiver. The improvement is such
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that after 5 iterations the performance closely approaches the analytical bound. Note

that there is a gap between the union bounds and the BER curves, which is because

the union bound is calculated assuming perfect CSI.

Fig. 3.4 has the same curves as Fig. 4.9 for a fade rate of fdTs = 0.05. For

this larger fade rate, parameters N , Np and K0 are changed to accommodate better

channel tracking. The following values were used: N = 8, Np = 1, and K0 = 45. For

the PSAM scheme, M was changed from 16 to 8 to make the energy efficiency the

same. It is observed that the SSD-pilot method also outperforms conventional PSAM

under this faster fade rate. SSD-pilot gain is as high as 1.25 dB at lower BERs. From

these two figures it can be seen that the tracking ability of SSD-pilot is better than

PSAM scheme.
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Figure 3.5 MSE obtained from SSD-pilot with the iterative channel estimator

when N = 16, fdTs = 0.02 and Np = 1, and for 1, 2, 5 and 8 iter-

ations.

The MSE performance of the SSD-pilot estimator is shown in Fig. 4.10 and Fig. 3.6

after 1, 2, 5 and 8 iterations for fdTs = 0.02 and fdTs = 0.05, respectively. The CRBs

of the channel estimator are also plotted in Fig. 4.10 and Fig. 3.6 (dashed lines) for
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Figure 3.6 MSE obtained from SSD-pilot with the iterative channel estimator

when N = 8, fdTs = 0.05 and Np = 1, and for 1, 2, 5 and 8 itera-

tions.

comparison. The simulation results after 5 iterations are very close to the CRBs in

both figures. It is observed that MSE curves for Eb/N0 ≥ 5 dB exhibit flat slopes

with higher numbers of iterations. This is explained as follows. In high Eb/N0 region,

the genie condition (i.e., error-free feedback from the decoder) is basically achieved

after a sufficiently large number of iterations (say 5 iterations). This condition implies

that, E{|xi|2} = Es in (3.19). Therefore the slope of the CRB can be approximated

by (Es

N0
IN + C−1)−1 where IN is an identity matrix with size N and Ep = Es. This

approximation is also plotted in Figs. 4.10 and 3.6 and the approximated curves are

seen to tightly approach the CRB curves.

3.5 Conclusions

In this paper, a superimposed training sequence for a BICM-ID-SSD system over

a correlated fading channel has been proposed. Information of the pilot bits, which

are inserted into the coded bits before modulation and signal rotation, has been used
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by the channel estimator and the demodulator. The soft iterative channel estimator

was developed to exploit the pilot information and the soft information of the rotated

symbols. In order to analyze the effectiveness of using SSD-pilot symbols, the ana-

lytical bound of the BER over a correlated channel with perfect CSI was obtained.

Simulation results verified that, compared to PSAM, the BER performance is im-

proved by about 1 dB at the BER level of 10−4 under both fade rates of 0.02 and 0.05

and at the same energy efficiency. Finally, a Cramer-Rao bound for the MSE of the

estimated channel coefficients was derived. Simulation results showed that the MSE

of the iterative channel estimator closely approaches the Cramer-Rao bound after 5

iterations.
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4. Analyzing BICM-MIMO Systems with

Channel Estimation Error

Published as:

Zohreh Andalibi, Ha H. Nguyen and J. Eric Salt, “Analyzing BICM-MIMO Sys-

tems with Channel Estimation Error”, to appear in IET Communications.

As mentioned in Chapter 2, the two main channels considered in this thesis are

fast time-varying and slow (or block-fading) fading channels. The manuscript in

Chapter 3 concentrated on BICM systems in fast-time varying channels. In fact, the

diversity techniques that are employed in these systems are time diversity in the form

of SSD. However, using space diversity is attractive in slow time-varying flat fading

channels, since other diversity resources are poor in these environments. Using MIMO

technology in conjunction with BICM is considered as one of the attractive space-time

coding techniques.

The manuscript included in this chapter studies the operation of channel estima-

tors in BICM-MIMO systems, especially an iterative channel estimator. As mentioned

in Chapter 2, the iteration of the channel estimator differs from the iteration of the

decoder and demodulator. Built on the fact that the iterative channel estimator uses

the output of the decoder at each iteration, the performance of the channel estima-

tor depends on the reliability of the output of the decoder. A threshold is therefore

used to indicate in which decoding iteration the iterative channel estimator should

be activated. In addition, it is shown that combining training sequence with soft

information at each iteration of the decoder makes the estimation iteration to follow
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the iteration of the decoder. Simulation results are provided to confirm that the two

proposed estimation schemes can significantly improve the BER performance of the

BICM-MIMO when compared to conventional schemes.
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Analyzing BICM-MIMO Systems with Channel Estimation

Error

Zohreh Andalibi, Ha H. Nguyen, J. Eric Salt

Abstract

The performance of bit-interleaved coded modulation in multiple-input multiple-output (BICM-

MIMO) systems using an iterative channel estimator is analyzed. In a conventional iterative channel

estimator, after initialization with the training phase, the channel estimator switches to the data

phase. However, such a conventional iterative channel estimator does not always improve the perfor-

mance of the receiver. In order to guarantee the performance improvement, a condition on when the

output of the decoder should be used by the estimator is determined. Such a condition is related to

the reliability of the soft information utilized by the channel estimator. The key in establishing this

relationship is to use the mutual information (MI) that the observation vector has about the chan-

nel gains given the output of the decoder at each iteration. In this switch-augmented conventional

iterative channel estimator, referred to as SAICE, the condition is theoretically found and indicates

the needed reliability of the soft information for the channel estimator at the switching time. The

switch-augmented scheme guarantees performance improvement of the iterative receiver with each

iteration, however, it might need many iterations to converge for moderate to low signal-to-noise

ratios (SNRs) . A less computationally intensive approach is to use both the training and data seg-

ments of the observation. This approach produces a combined iterative channel estimator (CICE)

for BICM-MIMO systems. The performance behavior of the BICM-MIMO system is illustrated

through the extrinsic information transfer (EXIT) chart with imperfect channel state information

(CSI). Analytical results are verified with computer simulations.
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Bit-interleaved coded modulation, MIMO, iterative receiver, channel estimation, EXIT chart.

4.1 Introduction

Implementing bit-interleaved coded modulation (BICM) in a multiple-input multiple-

output (MIMO) system can significantly improve the system’s spectral efficiency, even

at a low signal-to-noise ratio (SNR) [1, 2]. This achievement has been demonstrated

largely with coherent detection and an assumption of perfect knowledge of the channel

state information (CSI) at the receiver [3–5]. However, only imperfect channel state

information (ICSI) can be realized in practice by a data-aided or semi-blind channel

estimator in the receiver. The channel estimation error limits the performance of a

BICM system and this has been the subject of various studies in recent years.

By investigating the effects of ICSI, solutions have been proposed to improve the

system performance of coherent receivers in a BICM system [6–8]. Depending on

how the system performance is defined, previous investigations can be classified in to

two main categories: 1) information theoretic approaches, and 2) signal processing

approaches. The information theoretic approaches have been used in [6] to calculate

the achievable data rate for a MIMO system in the presence of channel estimation

error. In particular, the effect of channel estimation error was represented as an SNR

degradation, which was used to determine the number of pilot symbols needed in the

pilot-symbol-assisted modulation (PSAM) based channel estimator. In [9], power and

time allocation schemes were designed for single-input single-output systems, under

both time-multiplexed and superimposed pilots.

The signal-processing approaches were used in [5,7,8,10,11] to investigate the effect

of channel estimation error on the bit-error-rate (BER). In particular, this approach

was used in [10] to relate the channel estimation error to both the BER and frame-

error-rate (FER) . A similar approach was carried out in [7] and the authors suggest

that an adaptive-rate PSAM can be used for a MIMO system with a maximum-ratio
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combining (MRC) receiver. In [11] a BICM-MIMO system, which is also the system

of interest in this paper, was analyzed to determine the effect of ICSI. This effect was

represented as an SNR degradation for the case of a zero-forcing receiver and PSAM.

A soft metric was derived in [5] for the MIMO receiver by taking the variance of the

estimation error into account. The overhead required for the training sequence was

established based on computer simulation.

In fact the information theoretic and signal processing approaches are connected.

The SNR degradation is a key parameter in modeling the estimation error in both

approaches (e.g., in [6] and [11]). The SNR degradation is a function of the mean

squared channel estimation error (MSE). The function depends on the structure of

the receiver and the operation of the channel estimator. The MSE, on the other

hand, depends on the statistics of the channel, the estimation criterion and more

importantly the design of the training in a training-based channel estimator.

Despite the abundance of literature on training-based channel estimators, other

research works suggest that soft iterative channel estimators can improve the perfor-

mance of the receiver. In [12], a comprehensive analysis of the soft channel estimation

has been done for multi-user systems. Specifically, the MSEs of different soft itera-

tive channel estimators were derived and compared. Yet, the interactions among the

detector, decoder and estimator were not clearly considered in [12]. Understanding

these interactions could be useful in designing effective channel coding in coded mod-

ulation systems in the presence of ICSI. The interactions among different blocks in an

iterative receiver are best understood by the extrinsic information transfer (EXIT)

chart technique.

Recently, EXIT chart analysis in the presence of channel estimation error has

gained some interests for BICM-OFDM [13], BICM [14] and BICM-MIMO [15] sys-

tems. Reference [13] showed that, for BICM systems with different types of channel es-

timation algorithm employed by the soft-iterative estimator, the system performance

improves with iterations. The authors illustrated the effect of the error using BER

curves and transfer charts of the joint detector and estimator. In [15], EXIT curves
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for a BICM-MIMO detector were analyzed when only the training-based channel es-

timator was used. In these two references, the channel estimator and the detector are

considered jointly as one block in the iterative receiver.

EXIT curves were used mainly to investigate the property of the detector under

channel estimation error. To our knowledge, only the works in [14] and [16] use the

EXIT chart to take into account the effect of the channel estimator on the property

of the detector. In [14], the effect of channel estimation error on the EXIT chart was

analyzed using the so-called correlation parameter with a PSAM-based estimator. It

is shown that lower-rate codes can recover the performance loss due to imperfect CSI

and they are more robust to channel estimation error. In [16], the authors showed that

switching from PSAM to a soft-iterative estimator, referred to as an iterative filtering

algorithm, does not always improve the performance of the receiver. Therefore, the

authors put conditions on when the output of the decoder should be used by the

estimator. They called this algorithm “sparsely interleaved estimation and decoding”

(SIED). However, in [16] those conditions are neither based on performance of the

channel estimator nor theoretical derivations. Instead, the conditions in [16] test the

convergence of the decoder using computer simulation.

In this paper, the switching time is related to the reliability of soft information

based on the performance of the channel estimator. The key in establishing this rela-

tionship is using the mutual information (MI) that the observation vector has about

the channel gains. This switch-augmented conventional iterative channel estimator

will be referred to as SAICE. In contrast to the analysis in [16], only one condition is

placed on the mutual information at the input of the channel estimator. This condi-

tion is theoretically found and indicates the needed reliability of soft information for

the channel estimator at the switching time.

The switch-augmented scheme guarantees performance improvement of the itera-

tive receiver with each iteration, however, it might need many iterations to converge

for moderate to low SNRs. A less computationally intensive approach is to use both

the training and data segments of the observation. This approach produces a channel
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estimator for BICM-MIMO systems that will be referred to as a combined iterative

channel estimator (CICE), since it combines both the training and data segments.

Since this new channel estimator makes use of training sequence and soft information

from the output of the decoder in every iteration, its performance also improves with

every iteration. This helps the iterative receiver converge at higher code rates for low

SNRs. At moderate to high SNRs, the complexity of the receiver is reduced since the

receiver converges with a lower number of iterations.

Notation: Upper and lower boldface letters denote matrices and column vectors,

respectively. Superscripts (·)H and (·)T indicate Hermitian and transpose operations,

respectively. For matrix A, Ai,j denotes its (i, j)th entry. The log-likelihood ratio of

bit b is defined as Λ(b) = log
[

P (b=1)
P (b=−1)

]

. For convenience, the log-likelihood ratio shall

be referred to as the Λ-value in this paper. In addition, E{·} denotes the expectation

of a random variable and X ∼ CN (Υ,Θ) signifies the random matrix X has complex

normal distribution with mean Υ and covariance matric Θ.

4.2 BICM-MIMO System with Iterative Receiver

4.2.1 Transmitter

Channel 
Encoder Interleaver

Time-
Multiplex

n�-dim 
Mapper dX

c~cb

pX

Fading 
Channel 

(H)
Y

W

Figure 4.1 Block diagram of a BICM-MIMO transmitter.

The block diagram of a BICM-MIMO system with an iterative receiver is shown in

Fig. 4.1. A channel encoder with a rate-Rc error-correcting code converts the vector of

information bits b into a codeword c. Next, the coded bits are interleaved by a pseudo-

random interleaver with length Li to produce the interleaved codeword c̃. Then the

coded bits of c̃ are mapped to a complex-valued super symbol of a multi-dimensional
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signalling set, Ψ = {Ω × Ω × · · · × Ω
︸ ︷︷ ︸

nt

}, where Ω is 2m-QAM constellation, and nt is

the number of transmit antennas.

The next block is the time-multiplexer. It has several inputs. Input Xd is the

data matrix whose rows contain super data symbols, i.e., Xd = [xT
1 ,x

T
2 , . . . ,x

T
L]T

and xk is a data super symbol coming from the nt-dimensional mapper as xk =

[x(k−1)nt+1, x(k−1)nt+2, . . . , xknt]. Here, k is the time index and xi’s are complex data

symbols belonging to the 2m-QAM constellation Ω. Input Xp is the training signal.

The length of Xp is np super symbols and the length of Xd is L. The time-multiplexer

concatenates Xd to Xp to form blocks of length L + np super symbols. To exploit

the time diversity gain associated with the use of an interleaver, Li is selected such

that Li/(ntm) (i.e., the number of super symbols contained in one codeword) be much

greater than L+np. The output of the time-multiplexer is transmitted on nt antennas

for spatial diversity.

The channel is assumed to be frequency non-selective with block fading. Let nr be

the number of receive antennas. The nt × nr channel matrix H remains constant for

each block duration (i.e., over L+np) super symbols, but changes independently from

block to block. It has a zero-mean complex Gaussian distribution with covariance

matrix of CH, i.e., H ∼ CN (0,CH). The additive noise is indicated as matrix W in

Fig. 4.1. The output of the channel is shown as matrix Y. It is given by

Y = Yp = XpH + Wp (4.1)

during training, and

Y = Yd = XdH + Wd (4.2)

during data transmission. In general, the noise matrices Wp and Wd are zero-mean

Gaussian with covariance matrices CWp and CWd , respectively. The dimensions

of Y are different for training and data transmission phases. During training, the

dimensions are np × nr, whereas the dimensions are L× nr during data transmission.
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Figure 4.2 Block diagram of the iterative receiver with channel estimation.

4.2.2 Iterative Receiver

The iterative receiver is shown in Fig. 4.2 as a system of 5 blocks. The channel

estimator is the block of main interest in this paper and shall be discussed in detail

in Section 4.3. It produces a quick estimate of the channel using Yp on the first

iteration and refines the estimates on subsequent iterations.

After the channel estimation is performed using the training signal, the soft-input

soft-output demodulator uses the MMSE criterion to demodulate the data. There is a

number of practical demodulation approaches for MIMO systems but the soft-output

MMSE demodulator is used here, since it has low complexity and good performance.

The soft-output MMSE demodulator can only be used if the coded bits are mapped

on each transmit antenna independently [17], which is the case considered in this

paper. The soft-output MMSE demodulator computes the extrinsic information for

the interleaved bits, {Λ(c̃i)
ext }Li

i=1, from the received symbols. To obtain Λ-values, the

demodulator exploits the a priori information of the coded bits coming from the

decoder, {Λ(c̃i)
ap }, and the channel estimate Ĥ. In the first iteration, the demodulator

assumes that the a priori Λ-values are zero.

The de-interleaved outputs, i.e., {Λ(ci)
ap }, become the a priori Λ-values used in the

If the coded bits are not mapped independently, other demodulators such as a sphere decoding

demodulator can be used.
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channel decoder shown in Fig. 4.2. The channel decoder uses the log-MAP algorithm

to compute the extrinsic Λ-values {Λ(ci)
ext } for all coded bits, which are used again in

the next iteration in the demodulator.

It should be pointed out that to be consistent with the concept of an EXIT

chart, mutual information (MI) at the inputs of the demodulator and the decoder are

defined as I(c̃)
ap and I(c)

ap , respectively. The MI at the outputs of the demodulator and

the decoder are defined as I
(c̃)
ext and I

(c)
ext, respectively.

The structure of Fig. 4.2 is well known. However, the performance of the receiver

can vary greatly depending on the operation of the iterative channel estimator. In

this paper, an operation is suggested to improve the performance of the receiver at

each iteration and to lessen the complexity of the receiver. The operation includes

the iterative algorithm and the criterion used by the iterative channel estimator to

refine the channel estimates. A theoretical derivation for the channel estimator is

given in the next section.

4.3 Channel Estimator

The iterative channel estimator has three inputs: (i) the noisy channel observa-

tion Y, which can be Yd or Yp, (ii) the training signal Xp, and (iii) the a priori

information {Λ(c̃i)
ap } of the interleaved bits. The estimator has one output which is

an estimate of the channel coefficient matrix, Ĥ. A simple block diagram that shows

inputs and output is given in Fig. 4.3.

Channel 
Estimator

}{ )~(
ap

icΛ
Y

Ĥ
pX

Figure 4.3 Inputs and output of the channel estimator.

Although the log-MAP algorithm can be applied to both block codes and convolutional codes,

it is most efficient and practical for decoding convolutional codes based on their well-defined trellis

diagrams.
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To study the behavior of the iterative channel estimator as an independent block

in the iterative receiver, it is necessary to determine how much information the inputs

of the channel estimator have about the channel and how to use this information to

estimate the channel gains. The key in measuring this information is the MI at the

input of the channel estimator.

In a conventional iterative channel estimator, after initialization with the training

phase, the channel estimator switches to the data phase. During the training phase,

the information that the channel observations (i.e., Yp) contain about the channel

gains at the input of the channel estimator can be expressed by

I(H;Yp) = h(H) − h(H|Yp) (4.3)

where h(Ξ) ≡ − ∫ p(Ξ = ξ) · log p(Ξ = ξ)dξ is the entropy of random variable Ξ. To

find a closed-form expression for this MI, it is assumed that H ∼ CN (0,CH) which

implies that h(H) = log πe|CH|. The expression of h(H|Yp) as stated in [18], is

bounded by log πe|CH|Yp |, where CH|Yp = C−1
H + (Xp)HC−1

WpXp is the conditioned

covariance of H. Therefore,

I(H;Yp) = log |Int + CH(Xp)HC−1
WpX

p|. (4.4)

During the data phase, at each iteration {Λ(c̃i)
ap } and Yd are the inputs. The

Λ-values are known random variables which are independent of the channel gains.

Therefore I({Λ(c̃i)
ap };H) = 0. However, to use the soft information, define the mutual

information I(H;Yd, {Λ(c̃i)
ap }), which indicates how much information Yd has about

H knowing Λ-values.

Since Λ-values are known in subsequent iterations, (4.2) can be rewritten as

Yd = E{Xd}H + (Xd − E{Xd})H + Wd

= E{Xd}H + V, (4.5)

where V is approximately a zero-mean Gaussian matrix with covariance matrix CV,

which represents the total effective noise matrix in subsequent iterations. The entries
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of E{Xd} are calculated using {Λ(c̃i)
ap } at each iteration by E{Xd

i,j} =
∑

x∈Ω x·p(Xd
i,j =

x). The detailed derivations of the probability p(Xd
i,j = x) from Λ-values are given

in [19] (note that the calculation depends on the mapping rule in Ω).

Moreover, the covariance matrix CV is given by,

CV = CWd +
(

E{XdCH(Xd)H} −E{Xd}CH(E{Xd})H
)

It follows that the entries of CV are

(CV)i,j =







(CWd)i,i +
∑nt

k=1 σ
2
Xd

i,k

(CH)k,k , i = j

(CWd)i,j , i 6= j.

(4.6)

where σ2
Xd

i,k

=
∑

x∈Ω |x|2 · p(Xd
i,k = x) − |E{Xd

i,k}|2 is the variance of Xd
i,k.

Finally, the MI at the input of the channel estimator during the data phase can

be obtained by

I(H;Yd, {Λ(c̃i)
ap }) = log |CHCH|Y

−1|

= log |Int + CH(E{Xd})HC−1
V E{Xd}|

Now, the question is how to use this information to estimate the channel. Dif-

ferent channel estimators can be used to exploit this information. To quantify the

amount of information exploited by the channel estimator, a new parameter can be

defined as I(Ĥ;H), which measures the information at the output of the channel

estimator. Among different channel estimators, it can be shown that the MMSE

channel estimator fully exploits the mutual information at the input of the channel

estimator. Specifically, with the MMSE channel estimator I(H; Ĥp) = I(H;Yp) and

I(H; Ĥd) = I(H;Yd, {Λ(c̃i)
ap }), where Ĥp and Ĥd are the channel estimations at the

training and data phases, respectively. For a linear channel estimator Ĥp = ApYp,

where Ap is the matrix of the linear channel estimator in the training phase and

Ĥd = AdYd, where Ad is the matrix of the linear channel estimator in the data

phase. Expressions for the linear MMSE channel estimators at the training and data
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phases are given by

Ap = E{H(Yp)H}(E{Yp(Yp)H})−1

=
(

C−1
H + (Xp)HC−1

WpX
p
)−1

(Xp)HC−1
Wp (4.7)

and

Ad =
(

C−1
H + (E{Xd})HC−1

V E{Xd}
)−1

(E{Xd})HC−1
V , (4.8)

respectively.

As mentioned, the conventional iterative channel estimator is not guaranteed to

converge. For the estimator to converge, the information at the input of the channel

estimator during the data phase should be more than the information during the

training. This means that I(H;Yd, {Λ(c̃i)
ap }) > I(H;Yp) must hold for each iteration.

Since the soft information from the decoder is not as reliable as training signal for

the first few iterations, this condition is not guaranteed. Thus, in general, although

increasing the number of iterations increases the reliability of the soft output from

the decoder and increases I(H;Yd, {Λ(c̃i)
ap }) iteratively, this does not guarantee that

I(H;Yd, {Λ(c̃i)
ap }) > I(H;Yp) at each iteration.

To solve the problem, a constraint is placed on the input of the estimator. The mu-

tual information I(H;Yd, {Λ(c̃i)
ap }) can be tested at each iteration and the channel es-

timator is enabled in the data phase on iteration where I(H;Yd, {Λ(c̃i)
ap }) > I(H;Yp).

This translates to placing a constraint on the soft information at the output of the

decoder, which depends on channel length and system’s parameters. The number

of iterations with which the condition is met depends on coding design. This new

scheme is referred to as a switch-augmented conventional iterative channel estimator

(SAICE) .

Another way to guarantee increasing mutual information at the input of the chan-

nel estimator is to use information from the previous iterations. Exploiting the in-

herent latency of bit-interleaver and the property of a block-fading channel, the ob-

servation vector can be constructed from both the training and data segments of the
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observations in this approach. The mutual information at the input of the channel

estimator then can be expressed as I(H; [Yp,Yd], {Λ(c̃i)
ap }) and it is given by,

I(H; [Yp,Yd], {Λ(c̃i)
ap }) = log |Int + CH(Xp)HC−1

WpX
p + CH(E{Xd})HC−1

V E{Xd}|.(4.9)

A new MMSE channel estimator can be devised such that it uses both training

and data segments of the observation matrices at each iteration. This estimator is

given by Ĥc = [ApcAdc][YpYd]T and shall be referred to as a combined iterative

channel estimator (CICE). Apc and Adc indicate the training and data phases of the

combined estimator, respectively. They can be obtained by,

[ApcAdc] = E{H[YpYd]H}(E{[YpYd][YpYd]H})−1.

It follows that

Apc =
(

C−1
H + (E{Xd})HC−1

V E{Xd} + (Xp)HC−1
WpX

p
)−1

(Xp)HC−1
Wp ,(4.10)

and

Adc =
(

C−1
H + (E{Xd})HC−1

V E{Xd} + (Xp)HC−1
WpX

p
)−1

(E{Xd})HC−1
V .(4.11)

In contrast to the mean-square error or correlation parameter analysis, the above

MI analysis can be used to determine when the information at the input of the channel

estimator is beneficial. In addition, it can be applied to any channel estimator, since

it is measured at the input of the channel estimator. Besides, for a correlated channel

environment it can be used to design the training sequence in order to maximize the

information at the input of the channel estimator.

4.4 Good Approximations of the Proposed Channel Estima-

tors

The statistical property of the channel and the system’s parameters affect the

performance of the channel estimator. To reduce the complexity of the analysis that

determines these effects, the following simplifying assumptions are made.
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• The channel is assumed to be Rayleigh fading. This means the channel coeffi-

cients are i.i.d. complex Gaussian, i.e., CH = E{HHH} = nrσ
2
hInt, where σ2

h is

the variance of each entry.

• The noise corrupting the channel is i.i.d. AWGN. This means the entries of noise

matrices in (4.1) and (4.2) are i.i.d., i.e., CWp = E{Wp(Wp)H} = nrN0Inp and

CWd = E{Wd(Wd)H} = nrN0IL, where N0 is the one-sided spectral density of

each noise source in the channel.

• The training signal is chosen such that (Xp)HXp = npEpInt , where Ep =

1
ntnp

trace{(Xp)HXp}. For i.i.d. Rayleigh channel coefficients, this training max-

imizes I(H, Ĥ).

In addition, two signal to noise ratios are introduced to simplify the notation. They

are SNRd =
σ2

h
Es

N0
and SNRp =

σ2
h
Ep

N0
, where Es is the energy per data symbol. More-

over, IH is used to indicate the MI at the input of the channel estimator in general

and Ip
H, Id

H and Ic
H are simplified notations used for I(H;Yp), I(H;Yd, {Λ(c̃i)

ap }) and

I(H; [Yp,Yd], {Λ(c̃i)
ap }), respectively.

The channel estimator in (4.10) has about the same complexity as the conventional

estimators of (4.7) and (4.8). However the complexity of the estimators given by (4.8)

and (4.10) can be significantly reduced with two simplifying approximations. To

simplify the term (E{Xd})HC−1
V E{Xd} in (4.10) and (4.8), the entries of diagonal

matrix CV, which are

(CV)i,i = nrN0 + nrσ
2
h

nt∑

j=1

σ2
Xd

i,j
, (4.12)

are approximated by

(CV)i,i ≈ nrN0 + nrσ
2
hñtEs, (4.13)

The Rayleigh fading and AWGN assumptions assures CV is diagonal.
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where ñt represents the effect of residual interference and is defined by ñt ≡
1

LEs

∑L
i=1

∑nt
j=1 σ

2
Xd

i,j

. From the approximation in (4.13) it follows that

(E{Xd})HC−1
V E{Xd} ≈ (E{Xd})HE{Xd}

nrN0 + nrσ
2
hñtEs

. (4.14)

Yet one more approximation is made. Assuming a long interleaver and i.i.d. Λ-

values of the data symbols, the off-diagonal elements of matrix (E{Xd})HE{Xd} are

negligible. Therefore this matrix can be approximated by

(E{Xd})HE{Xd} ≈ L̃EsInt, (4.15)

where L̃ ≡ 1
ntEs

∑L
i=1

∑nt
j=1 |E{Xd

i,j}|2.

The simplifying approximations lead to compact expressions for the estimators of

(4.8) and (4.10). The estimator of (4.8) simplifies to

Ad ≈ σ2
h/N0

1 + (ñt + L̃)SNRd

(E{Xd})H , (4.16)

while the estimator of (4.10) simplifies to

Apc ≈ [(1 + ñtSNRd)σ
2
h/N0] (X

p)H

1 + npSNRp + ((1 + npSNRp)ñt + L̃)SNRd

Adc ≈ [σ2
h/N0] (E{Xd})H

1 + npSNRp + ((1 + npSNRp)ñt + L̃)SNRd

.

(4.17)

It is useful to examine the performance of the channel estimators at the following

extreme (corner) cases:

• The performance of the iterative channel estimator for the first few iterations

with low SNR.

• The performance of the iterative channel estimator after a large number of

iterations (sufficient for convergence) with high SNR.

For the first few iterations and at low SNR the soft information at the output of

the channel decoder is not reliable, i.e., E{Xd} ≃ 0. This leads to Apc ≃ Ap and
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Adc ≃ Ad ≃ 0. Therefore, in this case it is reasonable to use only the training signal

to reduce complexity. In using only the training signal, the MI at the input of both

channel estimators is log (1 + npSNRp).

For high SNR and after a large number of iterations, the so-called genie condition

can be approached and E{Xd} can be approximated by Xd. In this case, the approxi-

mations made earlier in this section are more accurate. Moreover, ñt → 0 and L̃→ L

which implies Ad ≈ σ2
h
/N0

1+LSNRd
(E{Xd})H , Apc ≈ σ2

h
/N0

1+npSNRp+LSNRd
(Xp)H and Adc ≈

σ2
h
/N0

1+npSNRp+LSNRd
(E{Xd})H . Treating these approximations as equalities leads to a

tight upper bound for Ic
H which is

log (1 + npSNRp + LSNRd). Furthermore, for the SAICE and for the conventional

iterative channel estimator, the upper bound simplifies to log (1 + LSNRd).

Under the approximations made in the two corner cases, IH for both the conven-

tional and proposed channel estimators does not depend on the modulation order nor

the number of antennas. To be more precise, the upper bound of the CICE depends

on the length of the channel, the power of the data symbols, and the power and time

duration of the training signal. For the channel estimator with the switch-augmented

scheme, the upper bound only depends on the length of the channel and power of the

data symbols.

In other more typical cases, the conclusions for the corner cases do not apply. The

reason for this is that ñt does not contribute to IH in either corner case but does most

of the time. Except for the corner cases, the number of transmit antennas affects the

performance of the iterative channel estimators, since ñt depends on the number of

transmit antennas. This is illustrated with simulation results in section 4.5.

The insight gain from the analysis is now used to develop a new iterative algo-

rithm for both the conventional and proposed channel estimators. The conventional

soft-iterative channel estimator uses (4.7) for initialization and switches to (4.8) to

refine the estimated channel gains. However, the analysis shows that for the first few

iterations Id
H is less than Ip

H, which means that the soft-iterative channel estimator
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(which is responsible for Id
H) should be turned off for the first few iterations. To

optimize performance, the soft-iterative channel estimator should be turned on when

Id
H exceeds the value of Ip

H.

As with the conventional estimator, the performance of the switch-augmented

estimator is a sole function of {Λ(c̃i)
ap }. For this to be true the switching threshold

must be a sole function of {Λ(c̃i)
ap }. This threshold is established by Id

H > Ip
H which is

equivalent to

L̃ > npSNRp

(
1

SNRd
+ ñt

)

, (4.18)

when the approximations in this section hold. Since L̃ and ñt are sole functions of

{Λ(c̃i)
ap }, the threshold is a sole function of {Λ(c̃i)

ap }.

It should be pointed out that even with the switching scheme, in some cases at

low SNR, the receiver fails to converge, while the switching scheme mitigates the

convergence problem it does not eliminate it. The proposed estimator, which has no

switch, does not have a convergence problem.

The guarantee of convergence is the main advantage of the proposed estimator

over the SAICE. Convergence is guaranteed since the performance of the proposed

channel estimator improves after each iteration. In addition, the proposed channel

estimator reduces the convergence time of the iterative receiver. This translates to a

lower-complexity receiver since the decoder and the demodulator need less iterations

to converge.

4.5 Evaluation Results

The performance of a BICM-MIMO system is evaluated using the EXIT charts

and BER curves for the switch-augmented and the proposed channel estimators. For

a fair comparison, L = 30 (the length that the channel stays the same) is fixed for

all the simulations, while the channel coefficients have a Rayleigh distribution with a

variance of 1, i.e., σ2
h = 1. A rate-1/2 convolutional code and a bit-interleaver with

length Li = 4, 800 are used. In addition, Ep is set to Es, np is set to nt and thus
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SNR = SNRd = SNRp for all the figures.

4.5.1 Mutual Information at the Input of the Channel Esti-

mator

A Monte-Carlo simulation is used to calculate the MI at the input of the channel

estimator. However, closed-form expressions and approximations found in Section 4.4

are tested and found to be valid for the all simulations.
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Figure 4.4 The MI at the input of the conventional channel estimator with training

and data phases and the CICE, with QPSK modulation, nt = nr =

np = 2 and nt = nr = np = 4, where SNRd = 3dB.

Fig. 4.4 plots IH for a range of I(c̃)
ap , where SNRd = 3dB for 2 × 2 and 4 × 4

MIMO configurations. The input to the channel estimator, {Λ(c̃i)
ap } is generated for

a given I(c̃)
ap . The performance of the conventional channel estimator is shown with

two curves; one with Ip
H at initialization and with the Id

H for the iterations in the

data phase. The performance of the CICE is also plotted and compared with the

conventional estimator for QPSK with sigma mapping scheme proposed in [20]. It

is observed that Ic
H starts from Ip

H and converges to 5.93 and 5.98 which are the

upper bound for the two MIMO configurations, respectively. At the beginning Ic
H is

72



larger than Id
H, which is essential for the convergence of the iterative receiver in BICM

systems. It should be pointed out that since np = nt in Fig. 4.4, Ip
H is larger for nt = 4

than for nt = 2. Moreover, at the so-called genie condition, i.e., I(c̃)
ap = 1, both MIMO

configurations approach the upper bounds for both conventional estimator and the

proposed CICE.
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Figure 4.5 The MI at the input of the conventional channel estimator with training

and data phases and the CICE, with 16QAM modulation, nt = nr =

np = 2 and nt = nr = np = 4, where SNRd = 8dB.

The curves for the MI at the input of the channel estimators are also plotted

in Fig. 4.5 for 16QAM, where SNRd = 8dB. From Fig. 4.5 it is observed that for

16QAM, Id
H for switch-augmented scheme crosses Ip

H at a larger value of I(c̃)
ap than for

QPSK. The reason for this is the SNRp in Fig. 4.5 is larger than that used in Fig. 4.4.

To examine the sensitivity of the CICE estimator with respect to SNRd, I
c
H versus

SNRd is plotted in Fig. 4.6 for QPSK and 16QAM. Three values 0, 0.5 and 1 for I(c̃)
ap

are considered in simulations. From Fig. 4.6 it is clear the MI at the input of the

channel estimator is a linear function of SNR and does not change significantly as the

SNR increases from 2 to 10. It should be pointed out that Ic
H for I(c̃)

ap = 0 corresponds

73



2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

11

12

SNR

I H

QPSK
16QAM

I
(c̃)
ap = 1

I
(c̃)
ap = 0.5

I
(c̃)
ap = 0

Figure 4.6 The MI of the CICE versus SNR for QPSK and 16QAM for a range of

I(c̃)
ap , where nt = nr = np = 2.

to the training phase and SNR corresponds to SNRp for that case. From the result,

it is clear that the MI is basically the same for a given SNR for both QPSK and

16QAM.

From Figs. 4.4, 4.5 and 4.6, it appears that the operation of the channel estimator,

if the channel estimator is considered independently, does not depend on the order

of modulation. Moreover, the system’s parameters that most affect the operation of

the channel estimators are SNR and nt in addition to channel length.

4.5.2 EXIT Chart with ICSI

In this section the EXIT chart is examined to understand the convergence behavior

of an iterative system with imperfect CSI. In the previous section, channel estimator

was treated as an independent block. Here, the interactions among the decoder,

detector and channel estimator are determined through the EXIT chart. To do this

the trajectory curves, which are found iteratively, are obtained.

In Fig. 4.7, the channel code is a rate-1/2 convolutional code with constraint

length 5 and generator polynomial G = [33; 31]. The parameter SNRd is set to 3dB
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and parameters nt, nr and np are all set to 2. The modulation is QPSK, performed

independently on each antenna.
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Figure 4.7 EXIT chart of the BICM-MIMO receiver with two methods of channel

estimation for QPSK, where SNR = 3dB.

The interaction among the three blocks begins with the initialization of the channel

estimator. Therefore, for the first iteration, IH is 2.2487 with I(c̃)
ap = 0. Using IH =

2.2487 and I(c̃)
ap = 0 then it follows that I

(c̃)
ext = 0.32. From Fig. 4.7, I(c)

ap = I
(c̃)
ext = 0.3210

which leads to I
(c)
ext = 0.75. This value is the input for the two channel estimators and

the demodulator for the second iteration (i.e., (IH, I
(c̃)
ap ) → I

(c̃)
ext(I

(c)
ap ) → I

(c)
ext(I

(c̃)
ap ) →

(IH, I
(c̃)
ap ) → · · · ). This information exchange process continues until the trajectory

curve reaches a point on the coding curve (called optimum point). The outputs of

switch-augmented estimator and CICE are used by the demodulator to produce the

curves in Fig. 4.7 (shown as solid and dash lines, respectively). The interactions,

which illustrated by these curves, can be seen clearer by examining the MI values at

each iteration shown in Table 4.1. In the second and the last two columns of Table 4.1,

two values are inserted in each column. The first value corresponds to the system

with the SAICE and the second one corresponds to the system with the CICE. It

should be pointed out that for the first iteration only one value is represented which
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Table 4.1 Interaction of the MI for three iterations.

Number of iterations I(c̃)
ap I

p/d
H Ic

H I
(c̃)
ext = I(c)

ap I
(c)
ext

1 0 2.2412 2.2412 0.46 0.39

2 0.39 3.4235 4.0070 0.58/0.64 0.72/0.91

3 0.72/0.91 4.7389 5.6351 0.72/0.78 0.96/0.98

4 0.96/0.98 5.5952 5.8588 0.78/0.80 0.99/1

is obtained from the system using only the training sequence.

For comparison, the transfer function of the demodulator under perfect CSI as-

sumption is also plotted in Fig. 4.7. It is observed that the demodulators with both

estimators of SAICE and CICE converge after 4 iterations. However the demodulator

with the SAICE has more residual error than the CICE. In fact the performance of

the demodulator with the CICE is the same as the demodulator with perfect CSI

after 4 iterations.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
(c̃)
ap , I

(c)
ext

I
(c̃

)
e
x
t,

I(c
)

a
p

 

 

G = [5, 7], (Rc = 1/2, m = 2)
Perfect CSI

Demodulation with CICE

Demodulation with SAICE

Figure 4.8 EXIT chart of the BICM-MIMO receiver with two methods of channel

estimation for 16QAM, where SNR = 8dB.

The result of the same simulation performed for 16QAM is shown in Fig. 4.8.

Since the soft information of the 16QAM demodulator is not as reliable as that of
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the QPSK demodulator at the first few iterations, the channel code with constraint

length 3 and generator polynomial [7; 5] is used for 16QAM and SNRd is set to 8dB.

The other simulation parameters are the same as that for Fig. 4.7. From Fig. 4.8,

the demodulator with the SAICE fails to converge after 4 iterations. However the

demodulator with the CICE converges after 7 iterations.

4.5.3 BER Performance

The BER performance of the proposed algorithm for the receivers in Fig. 4.7

and Fig. 4.8 are compared for different channel estimators in Fig. 4.9 and Fig. 4.10,

respectively.
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Figure 4.9 BER of the BICM-MIMO receiver with QPSK modulation after 5 iter-

ations for SAICE and CICE.

Fig. 4.9 plots BER versus SNR, where for each value of SNR considered, 105

independent frames were run to obtain a BER value. Compared in the figure are

performances of two receivers, one with the CICE and the other with the SAICE. The

BER curve of the receiver with perfect CSI is also plotted to serve as a benchmark.

The curves in Fig. 4.9 show that the performance of the CICE is about 1.5 dB better

than the performance with the SAICE after 5 iterations at BER = 10−5. Since the
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Figure 4.10 BER of the BICM-MIMO receiver with 16QAM modulation after 5

iterations for SAICE and CICE.

CICE uses the information of both pilot and data to estimate the channel coefficients,

it has the better performance at the beginning of the iterative process. Thus it

facilitates convergence and therefore, iteratively improves the overall performance of

the receiver. It is also noted that the BER performance with the CICE approaches

that of the receiver that has perfect CSI.

The performance curves for 16QAM in Fig. 4.10 indicate an improvement of about

2dB at BER = 10−3. The reason is the soft information at the output of the 16QAM

demodulator is less reliable than the soft information at the output of the QPSK

demodulator at the first few iterations. Thus for 16QAM the improvement in relia-

bility of the soft outputs from the channel decoder is more helpful to the estimators

and thus demodulator in the beginning. In other words, for higher-order modulation

the performance of the receiver is more sensitive to the performance of the channel

estimator.

4.6 Conclusions

The problem of channel estimation for BICM-MIMO systems has been investi-
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gated in this paper. First, the conventional iterative channel estimator was improved

using a switching scheme (SAICE). The improvement involves switching from the

training phase to the data phase based on the performance of the iterative channel

estimator. The demodulator with the SAICE, however, does not converge quickly at

low SNR and with a higher-order modulation. To overcome this problem, a new esti-

mator, referred to as CICE, that guarantees convergence is devised utilizing both the

training and data segments on every iteration. For the development of both SAICE

and CICE, a closed-form expression for the mutual information at the input of the

channel estimator was derived. Carefully crafted approximations for the MI in the

corner cases show that for the CICE, the MI is a function of the system’s parameters,

channel length and power allocation to the training sequence. They also show that

the MI at the input of the SAICE is only a function of the system’s parameters and

the channel length after the first iteration. EXIT chart results show that for QPSK,

the demodulator with both estimators converges after 4 iterations for an SNR of 3dB.

Moreover, the BER results show that the performance of the receiver with the more

robust CICE approaches the performance of the receiver that has perfect CSI and a

moderate to high SNR. Changing the modulation to 16QAM increases the number of

iterations required for convergence.
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5. Training Design for Precoded BICM-MIMO

Systems in Block-Fading Channels

Published as:

Zohreh Andalibi, Ha H. Nguyen and J. Eric Salt, “Training design for precoded

BICM-MIMO systems in block-fading channels”, EURASIP Journal on Wireless

Communications and Networking 2012, 2012:80.

As shown in the previous chapter, one way to implement space-time coding tech-

niques is to concatenate multiple antennas with BICM. Further improvements in

diversity and coding gain are provided by applying a linear precoder in BICM-MIMO

systems. On the other hand, it was shown that using the information of training se-

quence in subsequent iterations of an iterative channel estimator results in significant

performance improvement. However, by increasing the number of transmit antennas,

the training overhead required for the initialization of the channel estimator increases.

Given the importance of training overhead (i.e., bandwidth efficiency) and mo-

tivated by the performance improvement using training information in subsequent

iteration, the manuscript in this chapter studies a new training design for BICM-

MIMO system with a linear precoder. In particular, the training sequence is inserted

before the precoder and within data symbols. The manuscript designs training sym-

bols and their positions (i.e., training pattern) by minimizing the CRB. It is shown

that depending on system parameters, the training overhead decreases at least by the

power of two while the error performance of the system improves significantly.
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Training Design for Precoded BICM-MIMO Systems in

Block-Fading Channels

Zohreh Andalibi, Ha H. Nguyen, J. Eric Salt

Abstract

In order to improve bandwidth efficiency and error performance, a new training scheme is pro-

posed for bit-interleaved-coded modulation in multiple-input multiple-output (BICM-MIMO) sys-

tems. Typically, in a block-fading channel, the training overhead used for obtaining channel knowl-

edge is proportional to a power of 2 of the number of transmit antennas. However, this overhead

can be reduced by embedding pilot symbols within data symbols before precoding. The values,

positions, and the number of pilot symbols are found by minimizing the Cramer-Rao bound on the

channel estimation error. Computer simulations are presented to demonstrate the advantage of the

proposed scheme over other training methods, in terms of both the mean-square-error of the channel

estimation and the system’s frame-error-rate.

Index terms

BICM-MIMO, block fading, channel estimation, training design, pilot symbols, Cramer-Rao

bound, iterative receiver.

5.1 Introduction

The pioneering work on multiple-input multiple-output (MIMO) systems [1] shows

that a MIMO system can provide a multiplexing gain and accordingly high spectral
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efficiency over slow fading channels. On the other hand, to achieve a high diversity or-

der, space–time transmission techniques can be implemented at the transmitter [2,3].

To achieve both high diversity order and coding gain in coded modulation systems,

the concept of space–time transmission has also been applied [4,5]. In such systems,

space–time transmission is typically implemented using a linear space–time matrix,

or equivalently a linear precoder, so that a single modulation symbol is efficiently

transmitted across multiple transmit antennas. Among many research works on pre-

coder design for coded modulation systems with multiple antennas, the design that

considers all the relevant components of the transmitter, namely precoding, modu-

lation, and interleaver, can be found in [5–7]. Specifically, a full-rate precoder with

any size and for any number of transmit antennas is designed in [6] to maximize the

achievable diversity order and coding gain in MIMO block-fading channels.

It is shown in [6] that the maximum achievable diversity order can be realized by

an iterative receiver that employs a soft-input soft-output detector [5] and under the

assumption of having the perfect channel state information (CSI) at the receiver. In

practice, however, CSI has to be estimated using a channel estimator and it is never

perfect. Two types of channel estimators have been used for MIMO block-fading

channels in coded modulation systems, i.e., training-based and semi-blind channel

estimators [8, 9]. In both types of channel estimators, known signals are used to

estimate the CSI at the first iteration of the iterative receiver.

Conventionally, for block-fading channels, known signals or the training sequence

is included at the beginning of each data block, which is called time-multiplexed

training or pilot symbol-assisted modulation (PSAM) scheme [10]. This scheme how-

ever reduces bandwidth efficiency of MIMO systems, since the amount of training

overhead needed is at least a power of 2 of the number of transmit antennas [11] to

ensure the identifiability of the MIMO channel. A straightforward application of the

PSAM scheme to a BICM-MIMO system would be time-multiplex data information

with the training information after the precoder.

As an alternative to the above conventional PSAM scheme, a potential benefit can
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be sought by time-multiplexing data information with the training information before

the precoder in the transmitter. This new approach shall reduce the required training

overhead compared to the conventional PSAM, since the transmitted training symbols

are spread over more time periods; thanks to the precoder. This approach shall be

referred to as precoded PSAM (PPSAM) . Investigating power and time allocations

of the training symbols in PPSAM scheme is the main objective of this article.

Moreover, by multiplexing the training sequence before precoder, training symbols

can be exploited in both the initialization and iteration phases of the iterative channel

estimation process. This is different from a conventional iterative channel estimator

using PSAM scheme, in which training sequence is only used at the initialization

phase. A natural question is whether the optimal training design for the initialization

phase using PPSAM scheme is still optimal for subsequent iterations of an iterative

channel estimator. On the one hand, the channel estimation error at the initialization

phase translates to an SNR shift in the BER performance [8]. On the other hand,

the channel estimation error from the last iteration of the iterative estimator has a

strong impact on the error floor of the BER performance [12]. Therefore, optimal

training sequence should be designed carefully that considers both initialization and

iteration phases.

One of different criteria that have been used to design training sequences is the

minimization of the Cramer-Rao bound (CRB) of the channel estimation error [10].

This criterion shall be used in this article due to two main reasons. First, it is di-

rectly related to the channel estimation error. Second, since the CRB is a lower

bound on the mean-squared-error (MSE) of any unbiased estimator, designing train-

ing sequences using this criterion would be applicable to many estimation algorithms.

Other design criteria, such as maximizing the channel capacity [8] and minimizing

the outage probability [13], are based on some specific channel estimation algorithms.

The article is organized as follows. The system model of BICM-MIMO is presented

in Section 5.2. In Section 5.3 a lower bound on the MSE of the channel estimator is

obtained and the training sequence is designed by minimizing this bound. Section 5.4
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provides numerical results and comparisons. Section 5.5 concludes the article.

5.2 System Model
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Figure 5.1 Block diagram of a BICM-MIMO system with a linear precoder and

proposed training insertion.

Fig. 5.1 shows the block diagram of a BICM-MIMO system under consideration.

At the transmitter, a channel encoder with a rate-r error-correcting code converts the

vector of information bits b into a codeword c. The coded bits are then interleaved

by a random interleaver as described in [6] to produce the interleaved codeword c̃.

The interleaved codewords are segmented into groups of (Nnt −Np)×m bits, where

N is the spreading factor of the precoder, nt is the number of transmit antennas,

Np is the number of pilot symbols in Nnt precoded symbols and m is the number

of bits carried by one symbol of a QAM constellation whose size is |Ω| = 2m. Next,

the coded bits are mapped to (Nnt − Np) QAM constellation points. In this step,

Np known pilot symbols are inserted in every segmented group of (Nnt − Np) data

symbols to produce N super-symbols. Here, each super-symbol refers to a group of

nt consecutive symbols. Investigating the positions and the number of pilot symbols
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(i.e., Np) to be used in each Nnt symbols is the main objective of this article.

Every group of N super-symbols is then spread over N time periods using a

linear precoder G. The Nnt × Nnt matrix G multiplies a vector of Nnt QAM

symbols at the precoder input, and generates Nnt symbols to be transmitted over

nt antennas, over N time periods. This is illustrated in Fig. 5.2. Let xk =

[x(k−1)Nnt+1, x(k−1)Nnt+2, . . . , x(k−1)Nnt+Nnt] be the kth vector to be precoded. Then,

xkG gives the precoded symbols. Here, xi’s are complex data or pilot symbols be-

longing to the 2m-QAM constellation Ω. It is assumed that the data symbols xi’s are

i.i.d with variance σ2
x. After precoding, precoded symbols are transmitted through nt

transmit antennas over a block-fading channel.
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Figure 5.2 Spreading a precoded symbol over nt antennas and N time periods -

denoted by Zk = [Z1,k, Z2,k, . . . , Znt,k]
T .

With nt transmit antennas and nr receive antennas, the channel is modeled by an

nt × nr matrix. For frequency-flat Rayleigh fading, coefficients of the channel matrix

are i.i.d. zero-mean circularly symmetric complex Gaussian random variables with

variance σ2
h. The channel is assumed to be block fading with nc different channel

realizations during each codeword. For the kth symbol to be precoded, xk, the Nnt×
Nnr extended channel matrix, Hk, can be written as

Hk = diag







H
[1]
k , . . . ,H

[1]
k

︸ ︷︷ ︸

N/ns

,H
[2]
k , . . . ,H

[2]
k , . . . ,H

[ns]
k , . . . ,H

[ns]
k







, (5.1)
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where ns is the number of distinct channel realizations during N time periods of

each codeword. To simplify the notation it is also assumed that ns divides N . For

example, if the length of a codeword is 64 and nc = 32, then choosing N = 2 would

make ns = 1, whereas choosing N = 4 gives ns = 2. Notation H
[t]
k refers to the

nt×nr complex matrix that defines the tth channel realization included in ns channel

realizations. The extended channel input/output relationship is expressed by

yk = xkGHk + wk (5.2)

where yk = [y(k−1)Nnr+1, y(k−1)Nnr+2, . . . , y(k−1)Nnr+Nnr] is the received vector at the

kth precoding time period and wk is the noise vector with size 1 ×Nnr whose com-

ponents are i.i.d zero-mean circularly symmetric Gaussian random variables with

variance N0.

It is noted from (5.2) that although both data and pilot symbols are precoded,

the part of the precoder that multiplies the pilot symbols depends on the positions

of the pilot symbols in xk. Equivalently, the design of the pilot symbols is governed

by the properties of the precoder used. Since this study adopts the transmission

framework and precoder design in [6], it is useful to review the properties of the

precoder proposed in [6].

In general, the properties of the precoder in [6] are established by the maximum-

likelihood decoding analysis and an assumption of ideal channel interleaving. Specif-

ically, this linear precoder which achieves full diversity order and maximum coding

gain satisfies the following two conditions:

• A genie condition, which guarantees orthogonal and equal norm sub-rows in the

linear precoding matrix. Each sub-row has size nt in a precoding matrix with

size Nnt ×Nnt.

• Dispersive nucleo algebraic (DNA) condition, which is based on Proposition 2

In practice, since ns is typically an approximated value over some range and since N can be

selected, such an assumption can be fulfilled.
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in [6], forces null and orthogonal nucleotides with size s′ = N/ns. Nucleotides

refer to subparts of sub-rows with size s′.

A linear precoder that satisfies the above two sets of conditions is called DNA-cyclo

precoder and has the best performance in terms of achieving diversity and coding gains

with low complexity receiver when N ≤ nt. It is suggested in [6] that to generate one

class of such a precoder, a Ns′ ×Ns′ cyclotomic rotator, denoted by Φ, that satisfies

the genie condition is first selected. Then the orthogonal nucleotides are placed inside

an Nnt × Nnt matrix and they are separated with null nucleotides. Therefore, the

DNA-cyclo precoder matrix can be expressed by subparts of a cyclotomic rotator as

follows:

G =













Int/s′ ⊗ Φ[1][1] · · · Int/s′ ⊗Φ[N ][1]

Int/s′ ⊗ Φ[1][2] · · · Int/s′ ⊗Φ[N ][2]

...
. . .

...

Int/s′ ⊗Φ[1][Ns′] · · · Int/s′ ⊗ Φ[N ][Ns′]













(5.3)

where Φ[i][j] is the ith sub-row of the jth row of Φ with size 1 × s′, In is an identity

matrix with size n× n and ⊗ denotes the Kronecker product.

The properties that shall be useful for the problem considered in this article,

which are implied directly from the genie and DNA conditions, are ΦΦH = INs′ and

Φ[i][t](Φ[j][t])H = 1
N
δ(i − j). It is also useful to point out that each component of Φ

has an exponential form with a scaling factor of 1√
Ns′

.

The iterative receiver is also shown in Fig. 5.1. The channel estimator produces

an estimate of the channel using the minimum MSE (MMSE) criterion based on the

training sequence. Details about channel estimation with the proposed method of

inserting training sequence shall be given in Section 5.3. After channel estimation

is performed using the training signal, the soft-input soft-output demodulator uses

the MMSE criterion to demodulate the data. The soft-output MMSE demodulator

computes the extrinsic information for the interleaved bits, {Λ(c̃l)
ext }, from the received

symbols. To obtain Λ-values, the demodulator exploits the a priori information of
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the coded bits coming from the decoder, {Λ(c̃l)
ap }, and the channel estimate Ĥk. In the

first iteration, the demodulator assumes that the a priori Λ-values are zero, except for

the pilot symbols. For the corresponding bits of the pilot symbols, the demodulator

uses a large number, say ±100 as their a priori Λ-values. The de-interleaved outputs,

i.e., {Λ(cl)
ap }, become the a priori Λ-values used in the channel decoder shown in

Fig. 5.1 after removing the information of pilot symbols. The channel decoder uses

the maximum a posteriori probability (MAP) algorithm to compute the extrinsic

Λ-values {Λ(cl)
ext } for all coded bits, which are used again in the next iteration in the

demodulator. In subsequent iterations, soft information from the decoder is used to

improve the performance of the channel estimator. The detailed operation of the

iterative channel estimator is discussed in the following sections.

5.3 Training Design and Channel Estimator

As discussed before, the criterion used for training design in this article is the CRB

on the channel estimation error. The bound states that the MSE of any unbiased

estimator is lower bounded by the trace of inverse of complex Fisher information

matrix (FIM) [14]. To derive FIM, the relation between the channel input and

channel output during one block-length, i.e., N/ns time periods, whose corresponding

channel matrix is H
[t]
k , is of interest. In the following, index k is omitted, since it

suffices to consider the transmission of a single precoded symbol for the purpose of

channel estimation. With the previously described structure of the precoder, the

channel output during one super-symbol time is given by

y[i,t] =



Inr ⊗




Ns′∑

τ=1

x[τ ] ⊗Φ[i,t][τ ]







h[t] + w[i,t]; t = 1, . . . , ns, i = 1, . . . , s′ (5.4)

where y[i,t] = y[(t−1)s′+i] represents the ((t− 1)s′ + i)th received symbol during N time

periods, with size nr × 1. Moreover, h[t] is the column vector formed by vertically

stacking the columns of an nt × nr channel realization matrix H[t] and x[τ ]’s are

constructed by splitting x in Ns′ sub-vectors with size 1×nt/s
′. In the following, we

call these sub-vectors x[τ ]’s nucleo symbols.
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It is quite obvious from (5.4) that, to have all the received super-symbols, y[i,t],

contain training information, there should be at least one pilot nucleo (i.e., nt/s
′ pilot

symbols) in each group of Ns′ nucleos to be precoded.

With the above structure of the proposed training sequence, the number of pilot

symbols in Nnt transmitted symbols would be Np = np × nt/s
′, where np nucleo

symbols in a symbol to be precoded are assigned to training sequence. Therefore,

(5.4) can be rewritten as

y[i,t] =



Inr ⊗



∑

τ∈Id

x
[τ ]
d ⊗ Φ

[i,t][τ ]
d +

∑

τ∈Ip

x[τ ]
p ⊗ Φ[i,t][τ ]

p







h[t] + w[i,t], (5.5)

where Id and Ip are sets of indexes from {1, . . . , Ns′}, that are assigned to data and

pilot nucleos, respectively, and |Id| + |Ip| = (Ns′ − np) + np = Ns′. Note that the

subscripts “d” and “p” are used to differentiate between data and pilot nucleos. For

convenience, the notations Φ[i,t][τ ]
p and Φ

[i,t][τ ]
d are used to refer to sub-rows of Φ that

are multiplied by pilot and data nucloes, i.e., x[τ ]
p and x

[τ ]
d , respectively. Furthermore,

in the following the notation T[i,t] is used for Inr ⊗
(
∑

τ∈Ip
x[τ ]

p ⊗ Φ[i,t][τ ]
p

)

.

The derivation of FIM is given in the next section. Pilot symbols are exploited at

the initialization phase and in subsequent iterations considering the special structure

of the training sequence. In general, training design can be investigated for these

two phases separately. However, for the precoder adopted in this article, the optimal

training design obtained for the initialization phase turns out to also be optimal for

the iteration phase. Nevertheless, the optimal numbers of pilot nucleos in these two

phases of channel estimation are not the same.

5.3.1 Fisher Information Matrix

The key steps in deriving the FIM in the initialization phase are now given. With-

out loss of generality we drop superscript t in (5.5) and perform all the derivations

for the first block period (i.e., t = 1). Collecting all the observations during the first

block period of length s′ in a vector ϕ, the FIM for the channel estimation problem
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at the initialization phase is defined and computed as

FIMinit(np,xp, Ip) = Eϕ,h







[

∂ ln p(ϕ,h)

∂h∗

] [

∂ ln p(ϕ,h)

∂h∗

]H






= Eh






Eϕ







[

∂ ln p(ϕ|h)

∂h∗

] [

∂ ln p(ϕ|h)

∂h∗

]H ∣∣
∣
∣
∣
h













+ Eh







[

∂ ln p(h)

∂h∗

] [

∂ ln p(h)

∂h∗

]H





(5.6)

where FIMinit(np,xp, Ip) shows the dependency of FIM on those parameters of in-

terest. Using the i.i.d. assumption on noise and data, p(ϕ|h) can be approxi-

mated as a complex normal distribution with mean µ = [µT
1 , . . . , µ

T
s′]

T and covariance

Rϕ = diag[R1, . . . ,Rs′]. Moreover, it follows from (5.5) that µi = Eϕ{y[i]|h} = T[i]h

and

Ri = H
(

σ2
xInt/s′ ⊗ ((Φ

[i]
d )T (Φ

[i]
d )∗)

)

HH +N0Inr (5.7)

where H = (H[1])T and Φ
[i]
d is the ith sub-matrix of Φ with size (Ns′ − np) × s′ that

is assigned to data symbols.

The i.i.d. assumptions on noise and data make the FIM additive. Specifically,

FIMinit(np,xp, Ip) =
∑s′

i=1 FIMinit
i . The quantity FIMinit

i is obtained as follows:

FIMinit
i = Eh






Ey







∂ ln p(y|h)

∂h∗

(

∂ ln p(y|h)

∂h∗

)H ∣∣
∣
∣
∣
h












+ σ−2

h Intnr.

We know that

ln p(y|h) = Constant − ln |Ri| − (y − µi)
HR−1

i (y − µi). (5.8)

and ∂ ln |Ri|
∂h∗

l

= trace
(

R−1
i

∂Ri

∂h∗

l

)

. Therefore,

∂Ri

∂h∗l
= H

(

σ2
xInt/s′ ⊗ ((Φ

[i]
d )T (Φ

[i]
d )∗)

)

ΣT
l (5.9)

where Σl is an nr ×nt null matrix with only a single element of 1 at position (⌊ l−1
nt

⌋+

1, (l − 1 mod nt) + 1). The derivative of the third term in (5.8) is

∂(y − µi)
HR−1

i (y − µi)

∂h∗l
= −∂µ

H
i

∂h∗l
R−1

i (y − µi) + (y − µi)
H ∂R

−1
i

∂h∗l
(y − µi)
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where
∂R

−1
i

∂h∗

l

= −R−1
i

∂Ri

∂h∗

l

R−1
i and ∂Ri

∂h∗

l

is given by (5.9). In addition,

∂µH
i

∂h∗l
=

∂hH

∂h∗l
(T[i])H = eT

l (T[i])H

where el is an ntnr × 1 null vector with a single element 1 at position l.

Using all the above equations and after some manipulations, one has

(FIMinit
i )l,j = Eh{eT

l (T[i])HR−1
i T[i]ej

+ tr(R−1
i HA[i]ΣT

l R−1
i Σj(A

[i])HHH)} + σ−2
h δ(l − j),

where A[i] ≡
(

σ2
xInt/s′ ⊗ ((Φ

[i]
d )T (Φ

[i]
d )∗)

)

.

Using the fact that tr(ABC) = tr(CAB) and summing over s′ quantities FIMinit
i ,

the total FIM is given by,

FIMinit(np,xp, Ip) = Eh







s′∑

i=1

R−1
i ⊗

(

(X[i]
p )HX[i]

p

)

+ R−1
i ⊗ Qi






+ s′σ−2

h Intnr (5.10)

where X[i]
p =

∑

τ∈Ip
x[τ ]

p ⊗Φ[i][τ ]
p , and Qi = (A[i])THTR−1

i H∗(A[i])∗.

For designing training sequence, (5.10) can be simplified further using numerical

calculation. Using numerical calculation, it is observed that for a Rayleigh-distributed

channel, the matrix Eh{R−1
i } in (5.10) is approximately a diagonal matrix, αInr. This

observation means that Eh{Qi} can be approximated by nrασ
2
h(A

[i])T (A[i])∗. Then,

by performing the expectation operation and using the factorization property of the

Kronecker product, (5.10) can be represented as

Eh







s′∑

i=1

αInr ⊗
(

(X[i]
p )HX[i]

p

)

+ αInr ⊗ nrασ
2
h(A

[i])T (A[i])∗






+ s′σ−2

h Inr ⊗ Int =

Inr ⊗




s′∑

i=1

α
(

(X[i]
p )HX[i]

p

)

+ nrα
2σ2

h(A
[i])T (A[i])∗ + s′σ−2

h Int





Moreover, using the property of the Kronecker product (A⊗B)(C⊗D) = (AC)⊗
(BD), it follows that (X[i]

p )HX[i]
p =

∑

τ∈Ip

∑

τ ′∈Ip
((x[τ ]

p )Hx[τ ′]
p ) ⊗ ((Φ[i][τ ]

p )HΦ[i][τ ′]
p ).

Using the matrix inversion lemma, one has R
−1
i =

(
HA

[i]HH + N0Inr

)
−1

= N−1
0 Inr

+

N−2
0 HA

[i]HH
(
Inr

+ N−1
0 HA

[i]HH
)
−1

. Therefore, for high SNR, E{R−1
i } can be approximated

by N−1
0 Inr

.
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Therefore (5.10) can be further simplified to

FIMinit(np,xp, Ip) = Inr⊗


α
∑

τ∈Ip

∑

τ ′∈Ip

(x[τ ]
p )Hx[τ ′]

p ⊗
s′∑

i=1

(Φ[i][τ ]
p )HΦ[i][τ ′]

p + nrα
2σ2

h

s′∑

i=1

(A[i])T (A[i])∗ + s′σ−2
h Int





(5.11)

In general, the second term in (5.11) depends on Ip, but not on the training symbols,

whereas the first term depends on both xp and Ip. Although both terms depend on

np, how FIMinit depends on np is determined by Ip. Therefore, in the following Ip

and xp are first optimized. Then np is determined for the optimized Ip.

For the iteration phase, specifically the last iteration, estimation and detection are

implemented using information about the data symbols as well as the pilot symbols.

Thus, the parameter of interest in deriving FIM is θ = [hT xd]
T . Moreover, µi =

Eϕ{y[i]|θ} =
(

Inr ⊗
(
∑

τ x[τ ] ⊗ Φ[i][τ ]
))

h and Ri = N0Inr. By replacing θ in (5.6)

for h and after some manipulations, the FIM for channel estimation in the iteration

phase is given by

FIMiter(np,xp, Ip) = N−1
0 Inr⊗

(

Ns′ − np

N
σ2

xInt+
∑

τ∈Ip

∑

τ ′∈Ip

(x[τ ]
p )Hx[τ ′]

p ⊗
s′∑

i=1

(Φ[i][τ ]
p )HΦ[i][τ ′]

p

)

+ s′σ−2
h Intnr. (5.12)

5.3.2 Optimization of Training Symbols and Their Positions

This section is first concerned with minimizing the CRB expression for the initial-

ization phase. The minimization is under a constraint on the power budget for the

training sequence. Such a constraint is expressed as

∑

τ∈Ip

(

x[τ ]
p ⊗Φ[i][τ ]

p

) (

(x[τ ]
p )H ⊗ (Φ[i][τ ]

p )H
)

≤ Pt. (5.13)

Using the properties of the precoder employed in this study, the above constraint can

be simplified to s′

N

∑

τ ′∈Ip
x[τ ]

p (x[τ ]
p )H ≤ Pt. The other obvious constraint is that the

training symbols should be selected from QAM constellation Ω. Then, the training
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symbols, xp’s and their positions, specified by Ip, are obtained by solving the following

constrained optimization problem:

min
xp,Ip

CRBinit(np,xp, Ip) = min
xp,Ip

tr(FIMinit(np,xp, Ip)
−1)

s.t.







s′

N

∑

τ∈Ip
x[τ ]

p (x[τ ]
p )H ≤ Pt

(x[τ ]
p )j ∈ Ω, j = 1, . . . , nt/s

′, τ ∈ Ip

(5.14)

where (x[τ ]
p )j is the jth pilot symbol in the τth pilot nucleo and the FIM is given in

(5.11).

To proceed, lets consider two separate cases for problem (5.14): np = 1 and

np ≥ 2.

Case 1 (np = 1): In this case the FIM is simplified to

Inr ⊗


α
(

(x[τ ]
p )Hx[τ ]

p

)

⊗
s′∑

i=1

(

(Φ[i][τ ]
p )HΦ[i][τ ]

p

)

+nrα
2σ2

h

s′∑

i=1

(A[i])T (A[i])∗ + s′σ−2
h Int

)

, (5.15)

Because of the shift-invariant property of (5.15) with respect to τ , τ can be any value

in the set {1, 2, . . . , Ns′}. For simplicity, set τ = 1 and the superscript τ is omitted.

Using the fact that if X > 0 then tr(X−1) ≥ ∑

i 1/(X)i,i, the original optimization

problem is simplified by minimizing the lower bound of the objective function.

On the other hand,
∑s′

i=1

((

Φ[i][τ ]
p

)H
Φ[i][τ ]

p

)

= 1
N
Is′,

∑s′

i=1(A
[i])T (A[i])∗ = σ4

x

s′

(

(Ns′−1
N

)2 + ( 1
N

)2
)

I

and the constraint is s′

N
xpx

H
p = s′

N

∑nt/s′

j=1 |(xp)j |2. Therefore, it is not hard to see that

the solution of the simplified optimization problem is |(xp)1|2 = |(xp)2|2 = · · · =

|(xp)nt/s′|2 = NPt

nt
. It means that all pilot symbols should have the same power. For

example, one can select corner points of the QAM constellations for the training

symbols.

Case 2 (np ≥ 2): In this case there are two options for the placements of pilot

nucleos. The first option is to group all pilot nucleos in one single cluster and the

second option is to spread pilot nucleos. It can be shown that the CRB is invariant
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with respect to a shift of the placements of pilot nucleos in both options. Therefore,

it suffices to select one cluster or one spread placement. However, the precoder has

been designed such that the soft-output demodulator works with uncorrelated inputs

and putting pilot nucleos between data nucleos may violate this condition. That

condition is satisfied when A[i] has a diagonal form. The implication of this property

is to place pilot nucloes equi-spaced in xk and Ip = {i0 + kn; k = 0, . . . , np − 1},
where n = Ns′/np and i0 ∈ {1, . . . , n}, which leads to A[i] = σ2

x
Ns′−np

Ns′
Is′. In this

selection it is supposed that np is divisible by Ns′.

Then the FIM in (5.11) can be represented by

Inr ⊗



1

N
α
∑

τ∈Ip

(x[τ ]
p )Hx[τ ]

p ⊗ Is′ + nrα
2σ4

xσ
2
h

1

s′
(
Ns′ − np

N
)2Int + s′σ−2

h Int



 (5.16)

To obtain the above expression of the objective function, the following property has

been used:




s′∑

i=1

(Φ[i][τ ]
p )HΦ[i][τ ′]

p





n,l

=







1
N
, τ = τ ′;n = l

0, otherwise

(5.17)

Moreover, the only term that depends on the training symbols is
∑

τ∈Ip
(x[τ ]

p )Hx[τ ]
p

in (5.16).

Finally, using the constraint on training power, which can be written as

s′

N

∑

τ∈Ip

nt/s′
∑

j=1

|(x[τ ]
p )j |2 ≤ Pt, (5.18)

the solution is given by
∑

τ |(x[τ ]
p )j |2 = NPt

nt
; j = 1, . . . , nt/s

′.

Now consider the training design for the iteration phase. Observe that all the

terms in (5.12) have diagonal forms with equal diagonal elements, except
∑

τ∈Ip

∑

τ ′∈Ip
(x[τ ]

p )Hx[τ ′]
p ⊗∑s′

i=1(Φ
[i][τ ]
p )HΦ[i][τ ′]

p . This means that the solution of prob-

lem (5.14), but with FIMinit(np,xp, Ip) replaced by FIMiter(np,xp, Ip), is to choose

equal diagonal elements for this term. Therefore, the training sequence designed for

the initialization is also optimal for the iteration phase.
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Table 5.1 Optimum np for several sets of parameters {nt, nr, N}

nt nr N np

2 2 2 1

4 2 2 2

4 2 4 4

4 4 2 1

4 4 4 1

In summary, by selecting pilot nucleos such that the sum of the powers of their

corresponding pilot symbols with the same indexes are equal, the bound on CRB

is minimized. The above condition can give different selections for pilot symbols

from a two-dimensional constellation. It should be pointed out, however, that not all

selections guarantee that pilot symbols belong to standard QAM constellations.

5.3.3 Determination of the Number of the Training Symbols

For block-fading channels, the number of pilot nucleos, i.e., np, should be as

small as possible that meets the power constraint. Using a larger value for np wastes

bandwidth and does not change the system performance.

The optimum numbers of the training symbols in the initialization phase and

iteration phase are not the same. This is explained as follows. At the initialization,

by looking at (5.7), it is observed that the first term in (5.11) is an increasing function

of np. However, the second term is a decreasing function of np that is multiplied by

nr. Therefore, np that minimizes the CRB are determined by the summation of

these two terms, which is also determined by the value of nr. Table 5.1 gives several

examples of optimal np for different sets of nt, nr and N . For the iteration phase, the

expression in (5.12) means that the CRB in the iteration phase always increases by

increasing np. Since it is assumed that there is perfect information about the data

symbols in the iteration phase, which is not the case in reality, it is most appropriate
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to select np considering only the initialization phase.

To demonstrate the optimal training design, Fig. 5.3 shows a graphical structure

for a simple example, where Pt = 4σ2
x, np = 2, N = 2, nt = 4 and nr = 2. In

this example, ns = 1. Then the size of pilot nucleos should be nt/s
′ = 2, where

s′ = N/ns = 2.

Data symbols before pilot insertion

Pilot symbols

Symbol to be precoded

Pilot and data symbols after precoding
Training part
Data part

2=N

4=tn

)( x

Figure 5.3 Structure of the proposed scheme for the training sequence - when

N = 2, nt = 4, nr = 2 and np = 2.

5.3.4 Channel Estimation

For the channel estimation task, one can view the received vector during one block

length as ϕ[t] = [(y[1,t])T , (y[2,t])T , . . . , (y[s′,t])T ]T .

At the initialization, the mean and covariance matrix of this vector are given

in Section 5.3.1. By treating the data symbols as nuisance parameters, the MMSE
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channel estimate can be found as [14]

ĥ[t] = σ2
hT

H
(

σ2
hTTH + R

ϕ[t]

)

ϕ[t] (5.19)

where T = [(T[1])T , . . . , (T[s′])T ]T .

In the subsequent iterations, soft information from the decoder is used to im-

prove the performance of the channel estimator. The channel estimator uses such

information to compute new estimates of the channel coefficients using expected val-

ues of the data symbols. Therefore, the interleaved {Λ(ci)
ext } from the decoder are

fed back to the estimator to calculate the expected values of the data symbols,

i.e., E{xd}. The entries of E{xd} are calculated using {Λ(c̃i)
ap } at each iteration

by E{(xd)i} =
∑

x∈Ω x · p((xd)i = x). The detailed derivations of the probability

p((xd)i = x) from Λ-values are given in [15] (note that the calculation depends on

the mapping rule in Ω).

To verify the results obtained in this section, Section 5.4 compares numerically

the MSE performance of the above channel estimator obtained with the optimal and

suboptimal training sequences.

5.4 Illustrative Results

In this section, the frame-error-rate (FER) and MSE performances of BICM-

MIMO systems using a MMSE iterative channel estimator are presented. The space–

time precoder is the DNA-cyclo precoder that satisfies the properties outlined in

Section 5.2. We consider quadrature phase-shift keying (QPSK) modulation with

Gray mapping.

The MSE performance of a BICM-MIMO for a codeword length of 4 × 1024 bits

is shown for a 4 × 2 block-fading MIMO channel in Fig. 5.4, when nc = 2. In this

figure, Eb is the energy per information bit. The code used is the 16-state con-

volutional code with generator polynomials (23, 35) in octal form. In Fig. 5.4, the

MSE curves are obtained after 1 and 5 iterations of the iterative channel estima-
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Figure 5.4 Comparison of MSE performance obtained with the optimal PPSAM

and the sub-optimal PPSAM - over a 4 × 2 block-fading channel with

nc = 2, when N = 2 and np = 2 after 1 and 5 iterations of iterative

channel-estimation/demodulation/decoding.

tion/demodulation/decoding, with the following cyclotomic rotator [16]:

Φ =
1
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ej6π/15 −jej6π/15 −ej12π/15 −jej12π/15













and when the setting for N , ns, np and Pt in Fig. 5.3 are used. The channel is

generated randomly and is assumed to be Rayleigh distributed. For the purpose of

comparison, the results for MSE performances of the optimal PPSAM, denoted by

O-PPSAM and the suboptimal PPSAM, denoted by SO-PPSAM as well as the CRB

are shown in Fig. 5.4.

For SO-PPSAM, two pilot nucleos are inserted as one cluster in front of data

nucleos in a symbol to be precoded. In contrast, in the case of O-PPSAM, the

optimized training sequence embeds the pilot nucleos at the first and third positions
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of Ns′ = 4 positions for nucleos. The MSE curves show that the performance of

the optimal scheme is better than the sub-optimum scheme for the first iteration

(i.e., initialization). In fact the MSE performance of the proposed scheme closely

approaches the CRB at high Eb/N0 after 5 iterations.
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10
−2

10
−1

10
0

Eb/N0(dB)

F
E

R

 

 

PSAM
SO-PPSAM
O-PPSAM
Perfect CSI

1st iteration

5th iteration

Figure 5.5 Comparison of FER performance obtained with the optimal PPSAM,

sub-optimal PPSAM and PSAM scheme - over a 4 × 2 block-fading

channel with nc = 2, when N = 2 and np = 2 after 1 and 5 iterations

of iterative channel-estimation/demodulation/decoding.

In Fig. 5.5, the FER performance of the system with the PPSAM schemes is

compared with the conventional PSAM training scheme for the same system param-

eters as in Fig. 5.4. The top curve is the FER performance of the system with the

conventional PSAM training scheme. Note that for a fair comparison, the training

scheme in PSAM also meets the training power constraint as trace(XpX
H
p ) = Pt,

where Xp is the training matrix placed at the beginning of each block of the precoded

symbols. The optimal option for PSAM scheme in terms of minimizing the FER as

proposed in [11] is to select Xp to have orthogonal columns. The simplest option

is
√

2 × σ2
x/ntInt =

√

σ2
xInt, which results in the same power budget as that of the
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proposed scheme. As can be seen from Fig. 5.5, the O-PPSAM scheme offers 0.5 dB

performance gain as compared to the SO-PPSAM scheme at FER= 10−2. In com-

parison with PSAM, the performance of the PSAM scheme is about 0.5–1.5 dB worse

than the proposed scheme depending on Eb/N0 after 5 iterations. This is expected

because the pilot information is embedded in the precoded symbols for the proposed

scheme and not for the PSAM scheme. In this way, the demodulator can also make

use of this information. Note, however, that for the first iteration, since there is no

information about data, PSAM works the best. More importantly, while the proposed

scheme uses a little bandwidth for training information (for the system considered in

this figure the training overhead is np × nt/s
′ = 4), the training overhead of PSAM

scheme is nt × nt = 16, which is quadruple.

2 3 4 5 6 7 8
10

−4

10
−3

10
−2

Eb/N0(dB)

M
S
E

 

 

Simulation, 5th iteration
CRB

4 × 2

2 × 2

Figure 5.6 Comparison of MSE performance obtained with the optimal PP-

SAM for 2 × 2 and 4 × 2 block-fading channel with nc = 2,

when N = 2 and np = 2 after 5 iterations of iterative channel-

estimation/demodulation/decoding.

To investigate the effect of the number of transmit antennas, two different systems,

one with 2× 2 channel and one with 4× 2 MIMO channel, are compared in Figs. 5.6
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Figure 5.7 Comparison of FER performance obtained with the optimal PP-

SAM for 2 × 2 and 4 × 2 block-fading channel with nc = 2,

when N = 2 and np = 2 after 5 iterations of iterative channel-

estimation/demodulation/decoding.

and 5.7 in terms of MSE and FER, respectively. For both channels, np = 2 and

the optimum scheme are used when N = 2, while other system parameters are the

same as those used for Fig. 5.4. As can be seen from Fig. 5.6, the MSE of the

channel estimation increases when increasing the number of transmit antennas. This

is expected because there are more channels to be estimated for the same amount of

training information and power as done in the comparison. Nevertheless, the gain in

diversity by using more antennas can still improve the overall FER performance as

seen in Fig. 5.7.

5.5 Conclusion

In this article, a new training design for a BICM-MIMO system over a block-fading

channel has been proposed. The design inserts pilot symbols into the data symbols

before precoding. The new training sequence improves bandwidth efficiency as com-

103



pared to the conventional PSAM scheme and can also be used by the demodulator

in the receiver. In order to design the optimal training symbols and their positions,

the CRB on the channel estimations at the initialization and at the iteration phases

are minimized. Compared to PSAM, performance improvement achieved with the

proposed training is about 1.5 dB at a FER level of 10−2.
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6. Precoder Design for BICM-MIMO Systems

under Channel Estimation Error

Submitted as:

Zohreh Andalibi, Ha H. Nguyen and J. Eric Salt, “Precoder Design for BICM-

MIMO System under Channel Estimation Errors” (submitted to Springer Wireless

Personal Communications).

In Chapter 5, it was shown that putting training sequence before the precoder

with an equi-spaced and equi-power pattern improves the error performance and

decreases the required training overhead in precoded BICM-MIMO systems. Part of

this improvement is due to sending less training which results in sending more data

symbols in one codeword and consequently exploiting more diversity and coding gain.

In this chapter the effect of the training sequence on the diversity order and coding

gain is studied for an arbitrary precoder. To compensate better for the signalling

overhead used for the training, the part of the precoder used for sending training

symbols and the training symbols are designed jointly to maximize the achievable

diversity and coding gain. To investigate these effects, the coding gain and diversity

order are obtained by analyzing the PEP under the imperfect CSI and for a precoded

training sequence. It is shown that the proposed precoder and training sequence lead

to a less training overhead and a further improvement in error performance compared

to the approach presented in Chapter 5.
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Precoder Design for BICM-MIMO Systems under Channel

Estimation Error

Zohreh Andalibi, Ha H. Nguyen, J. Eric Salt

Abstract

If properly designed, the use of a linear precoder can achieve the maximum coding gain and

diversity order in bit-interleaved coded modulation with multiple-input multiple-output (BICM-

MIMO) systems. However, such maximum coding gain and diversity order are compromised under

the practical scenario of having imperfect channel state information (CSI) at the receiver. To

alleviate the impact of imperfect CSI on the coding gain and diversity order, joint linear precoder

and training pattern are designed in this paper. The design is carried out by considering both the

pairwise error probability (PEP) and the mean square error (MSE) of the channel estimator. The

effectiveness of the proposed design is illustrated by comparing its performance with the performance

obtained when only the training pattern is designed for an precoder optimized under the perfect

CSI. In particular, simulation results show that a 1.5 dB gain is achieved by the proposed design.

Index terms

BICM-MIMO, pairwise error probability, diversity order, coding gain, linear precoder, pilot

symbols, mean-square error, iterative receiver.

6.1 Introduction

To enjoy the maximum coding gain in a BICM-MIMO system with iterative de-

modulation/decoding, CSI needs to be perfectly known at the iterative receiver. Con-

ventionally, CSI is estimated using a known training sequence [1,2] that is embedded

Zohreh Andalibi, Ha H. Nguyen and J. Eric Salt are with the Department of Electrical

& Computer Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, Canada

S7N 5A9, and TRLabs of Saskatchewan. Emails: z.andalibi@usask.ca, ha.nguyen@usask.ca,

eric.salt@usask.ca.
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within data symbols at the transmitter. When a space-time precoder is used, it

has been shown that inserting training sequence between data symbols before the

precoder leads to a significant performance improvement in [3]. Inserting training

before precoding also saves time and space for sending data symbols as compared

to the conventional training scheme (i.e., pilot-symbol assisted modulation (PSAM)

scheme).

In particular, reference [3] designs training sequences to work with a full-rate linear

precoder. This full-rate precoder, proposed in [4], is called dispersive nucleo algebraic

(DNA) precoder. The DNA precoder was shown in [4] to maximize the coding gain

and diversity order of a BICM-MIMO system in a block-fading environment. It should

be pointed out, however, that the DNA precoder is devised under the assumption of

perfect CSI and maximum-likelihood (ML) detection. This means that the DNA

precoder might not effectively minimize the impact of channel estimation error. This

is because by adding a training sequence before the precoder, a part of the precoder

is used for the training sequence and the main purpose of using the DNA precoder

for data detection is compromised.

In this paper, the impact of imperfect CSI is analyzed by obtaining the asymptotic

pairwise error probability (PEP). The derivation is based on the classical analysis

approach of ML detector in [4] and MMSE detector in [5]. Then the coding gain and

diversity order are quantified from the obtained PEP expression. It will be shown

how the channel estimation error is characterized by the structure of the precoder.

The precoder and the training sequence are then jointly designed by maximizing the

coding gain and diversity order and minimizing MSE of the channel estimation.

The paper is organized as follows. The system model of BICM-MIMO is presented

in Section 6.2. In Section 6.3, the asymptotic PEP performance is analyzed for the

MMSE detector under a block-fading channel and imperfect CSI. Then, the channel

estimation error of an iterative channel estimator with the training sequence is ob-

tained. The precoder and the training sequence are designed in Section 6.4. Section

6.5 provides numerical results and performance comparison. Section 6.6 concludes
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the paper.

6.2 System Model

Channel 
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Figure 6.1 Block-diagram of a BICM-MIMO system with linear precoder and it-

erative receiver.

The BICM-MIMO system model considered in this paper is presented in Fig. 6.1.

The vector of information bits b is first encoded with a rate-r binary convolutional

code into a codeword c. The coded bits are then interleaved and mapped to QAM con-

stellation points. For the purpose of channel estimation, pilot symbols are embedded

in data symbols at this stage. Let xk = [x(k−1)Nnt+1, x(k−1)Nnt+2, . . . , x(k−1)Nnt+Nnt]

be the kth symbol vector to be precoded and L be the time duration in which the

CSI is nearly the same. Here, N is the spreading factor of the precoder and nt is the

number of transmit antennas. In one block length of L, the first P symbol vectors to

be precoded contain pilot symbols and for the rest of (L/N) − P symbol vectors, xk

has only data symbols. The data symbols are segmented into groups of Nnt symbols,

while for those symbol vectors that contain both data and pilots, Np pilot symbols

are inserted in every segmented group of (Nnt − Np) data symbols to produce xk.

The selection of P and Np for the training sequence shall be discussed in Section 6.4.

The resulting Nnt symbols in xk, are then precoded by matrix Gk. As an exam-
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ple, Fig. 6.2 shows one block length of precoded symbols with the training insertion

scheme where nt = 2, N = 2, P = 1, Np = 2, and L = 10. The design and analysis

in this paper only focuses on the first part of each block that contains both data and

pilot symbols.

2=N

2=tn

10=L

Figure 6.2 Example of one block of precoded symbols with training sequence.

After precoding, precoded symbols are transmitted through nt transmit antennas

over a block-fading channel with nc different channel realizations during each code-

word. Each of these nc channel realizations, denoted by Ht, is the same for whole

block length L. It has size nt × nr and changes independently in the next block.

For frequency-flat Rayleigh fading, coefficients of the channel matrix are i.i.d. zero-

mean circularly symmetric complex Gaussian random variables with variance σ2
h. For

simplicity, it is assumed that σ2
h = 1 and N divides L. Then, corresponding to the

kth vector to be precoded, xk, the Nnt ×Nnr extended channel matrix, Hk, can be

written as Hk =diag

{

Ht, . . . ,Ht
︸ ︷︷ ︸

N

,

}

. By definition, t = ⌊ k−1
(L/N)

⌋ + 1 and 1 ≤ t ≤ nc.

The extended channel input/output relationship is expressed by

yk = xkGkHk + wk (6.1)

where yk = [y(k−1)Nnr+1, y(k−1)Nnr+2, . . . , y(k−1)Nnr+Nnr] is the received vector at the

kth precoding time period and wk is the noise vector with size 1 × Nnr, whose

components are i.i.d zero-mean circularly symmetric Gaussian random variables with

variance N0. Gk is the precoder matrix that can be partitioned into two parts. The

first part contains only the rows of Gk that are multiplied by data symbols. This

part does not change with the time index and is denoted by G(d). The second part

contains the rows that are multiplied by the pilot symbols in xk and is denoted by

110



G
(p)
k . In essence, the purpose of G(d) is to implement space-time coding on data

symbols, while G
(p)
k is used to assist channel estimation.

At the receiver, data symbols are detected using a soft-input soft-output MMSE

detector. Among practical demodulation approaches for MIMO systems, the soft-

output MMSE demodulator is used as it has low complexity and good performance.

Under the assumption of perfect CSI, the MMSE detector calculates the lth compo-

nent of the kth symbol vector at each iteration as [6],

x̂l,k = (yk − zlH̃k)(H̃
H
k ΓlH̃k +N0INnr)

−1h̃H
l,k,

1 ≤ l ≤ Nnt, (6.2)

where H̃k = GkHk is an equivalent correlated MIMO channel, whose correlation

is due to Gk. Furthermore, zl = [x̄1, x̄2, · · · , 0, x̄l+1, · · · , x̄Nnt] and Γl =

diag(σ̄2
x1
, · · · , σ2

x, σ̄
2
xl+1

, · · · , σ̄2
xNnt

), where x̄l and σ̄2
xl

are the a priori mean and vari-

ance of the lth coded symbol, xl, calculated from the soft information delivered by the

decoder (i.e., the log-likelihood-ratios, Λ(c̃l)
ap ) at each iteration, respectively. Lastly,

h̃l,k = Gl,kHk is the lth row of H̃k generated from the lth row of Gk (written as Gl,k).

The asymptotic performance analysis is based on the assumption of perfect soft

information from the decoder and therefore the error-free feedback analysis of (6.2)

is of interest. With such an assumption, zl = 0 and Γl = σ2
xINnt. It is not hard to

see that the lth detected symbol under error-free feedback from the decoder can be

modeled as

x̂l,k = µl,kxl,k + ηl,k, (6.3)

where µl,k is the mean, given by h̃l,k(σ
2
xH̃

H
k H̃k + N0I)

−1h̃H
l,k, and ηl,k is the noise

component with distribution of N (0, σ2
ηl,k

), where σ2
ηl,k

= µl,k(1−µl,k). It can be seen

that as long as GH
k Gk = I, µl,k and σ2

l,k for detection of data symbols can be replaced

by µl,t and σ2
l,t for all indexes k corresponding to t = ⌊ k−1

(L/N)
⌋ + 1.

To consider the effect of imperfect CSI, the above MMSE detector can be adapted

by modeling the channel estimation error as an additional SNR loss. This ap-

plies well for linear MMSE channel estimation since the interference introduced by
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channel estimation error is independent of the data symbols [7]. Specifically, (6.2)

and (6.3) are modified by replacing Hk → Ĥk and N0 → N0 + ntσ
2
xσ

2
e , where

Ĥk = diag

{

Ĥt, . . . , Ĥt
︸ ︷︷ ︸

N

,

}

. Here, Ĥt and σ2
e are the estimated channel and the

variance of estimation error, respectively [8]. The estimation error is defined as

Et = Ht − Ĥt, where Ĥt is obtained by an iterative channel estimator. The channel

estimation process will be explained in detail in the next section.

6.3 Performance Analysis

6.3.1 PEP under Imperfect CSI

As explained earlier, the first P symbols in each L/N precoded symbols contain

pilot symbols. As a result, the data rate for the first part is (Nnt − Np)/Nnt and

that for the second part is one. In this situation, it is not straightforward to evaluate

the total error performance since it is hard to find an interleaver to uniformly spread

the error events over all L × nc time periods (i.e., one codeword). Furthermore,

finding a closed-form expression for the total error performance is not useful in terms

of investigating the effect of the channel estimation error. Therefore, the PEP for

two parts of the block, i.e., the hybrid part and the data part, should be assessed

separately. The PEP for a full-rate linear precoder (i.e. the second part of the block

length) has been completely analyzed in [9]. As such, the following analysis focuses

on the PEP calculation corresponding to the first part.

The average PEP corresponding to the error event with Hamming weight d is

denoted by f(d,Ω, ζ), which depends on the constellation Ω and the mapping rule ζ .

The function f(d,Ω, ζ) is obtained by averaging the conditional PEP over the channel

realization. Let c and c̆ be the transmitted and decoded codewords, respectively. Also

let the corresponding transmitted and decoded symbol vectors be χ and χ̆, which

differ in d positions. The PEP, conditioned on the channel realization H̃ and the

Hamming weight d can be expressed as P (c → c̆|H̃, d) = P (χ → χ̆|H̃, d).

Knowing that a correct decision is taken when the LLR is positive, then, for a
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given set of channel realizations H̃, P (χ → χ̆|H̃, d) = P (
∑d

ι=1 LLRι < 0). Thus,

P (c → c̆|d) = EH̃
{

P (
∑d

ι=1 LLRι < 0)
}

=
∫ 0
−∞ p

E
H̃
{
∑d

ι=1
LLRι}(x)dx, where EH̃{·}

indicates the expectation over H̃.

The set H̃ contains d channel realization vectors. Each of them with size Nnr is

used to transmit one symbol. Furthermore, for simplicity the error correcting code is

selected such that d ≥ (Nnt −Np)nc. By this assumption, the maximum number of

independent channel realization vectors is (Nnt −Np)× nc for an (Nnt −Np)×Nnr

equivalent MIMO nc-block-fading channel (i.e., nc number of the equivalent correlated

channel G(d)Hk used for sending only data symbols).

The d random variables, LLRι, can be grouped into (Nnt − Np)nc independent

groups. Specifically, let LLRi,l,t be the log-likelihood ratio of the ith bit in the con-

stellation symbol transmitted on the lth antenna of the tth block, t = 1, . . . , nc,

l = 1, . . . , Nnt − Np and i = 1, . . . , κl,t, where κl,t is the number of bits transmitted

on the lth antenna of the tth block. Then by definition
∑

t

∑

l κl,t = d and it fol-

lows that LLR =
∑

t

∑

l

∑

i LLRi,l,t is the sum of (Nnt − Np)nc independent random

variables.

Let ∆i,l,t denote the Euclidean distance between the two signal points χi,l,t and

χ̆i,l,t that determine the calculation of LLRi,l,t. Then using (6.3) for the MMSE

detector, the LLRi,l,t, conditioned on ∆2
i,l,t, is given by

LLRi,l,t =
|χ̂i,l,t − χ̆i,l,t|2 − |χ̂i,l,t − χi,l,t|2

σ2
ηl,t

=
µ2

l,t∆
2
i,l,t + 2Re(∆2

i,l,tµl,tηl,t)

σ2
ηl,t

(6.4)

It should be pointed out that the distance spectrum {∆2
i,l,t} depends on the mod-

ulation type, its size and the mapping rule. It can be seen that, all LLRi,l,t for a

given t and l share the same equivalent channel vector h̃l,t through parameters µl,t

and σ2
ηl,t

. Defining ∆2
l,t =

∑

i ∆
2
i,l,t and using the relation between µl,t and σ2

η2
l,t

, one has

LLRl,t|Ĥt ∼ N
(

µl,t

1−µl,t
∆2

l,t, 2
µl,t

1−µl,t
∆2

l,t

)

and LLRt|Ĥt ∼ N
(
∑

l
µl,t

1−µl,t
∆2

l,t,
∑

l 2
µl,t

1−µl,t
∆2

l,t

)

.

Therefore, the expectation over Ĥt can be done instead by the expectation over the
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random variable ξt =
∑

l
µl,t

1−µl,t
∆2

l,t. The pdf of ξt can be obtained for the MMSE

detector. For this detector, the variable ξt is equivalent to
∑

l ∆
2
l,tG

(d)
l Ĥk(Ĥ

H
k Ĥk +

Ñ0/σ
2
xI)

−1ĤH
k (G

(d)
l )H , where G

(d)
l is the lth row of G(d). From the definition of Ĥk

it can be shown that

ξt=
∑

l

∆2
l,ttrace



G̃
(d)
l Ĥt

(

ĤH
t Ĥt +

Ñ0

σ2
x

I

)−1

ĤH
t (G̃

(d)
l )H





=trace

(
∑

l

∆2
l,tG̃

(d)
l UΛtU

H(G̃
(d)
l )H

)

(6.5)

In the above G̃
(d)
l indicates an N ×nt matrix that is constructed from G

(d)
l as G̃

(d)
l =

[G
(d)
(l,1:nt)

; . . . ;G
(d)
(l,(N−1)nt+1:Nnt)

]. Note that Ĥt

(

ĤH
t Ĥt + Ñ0

σ2
x
I
)−1

ĤH
t is interpreted as

signal-to-interference-plus-noise ratio (SINR) at the output of MMSE detector in an

un-precoded MIMO system [10]. Using eigenvalue decomposition, the eigenvalues of

Λt can be approximated by a Gamma distribution with parameters (α, β), where [10]

α =
(nt − 1)ρ2

σ2
(6.6)

β =
1

nr

(SNRe)2σ2

ρ
. (6.7)

In the above expressions, ρ, σ2 and SNRe are defined as [5, 10]

• ρ = κ−SNRe(1−γ)+1
2SNReγ

, where

κ =
(

(SNRe)2 (1 − γ)2 + 2SNRe(1 + γ) + 1
)1/2

,

and γ ∼ nt

nr
,

• σ2 = ρ− 1+SNRe(1+γ)−κ
2SNReγκ

, and

• SNRe =
nrσ2

x(σ2
h
−σ2

e)

N0+ntσ2
eσ2

x
is the received SNR per transmit antenna for imperfect CSI.

Now let define Mt as an nt × nt Hermitian square-root matrix of Ξt =
∑Nnt−Np

l=1 ∆2
l,t(G̃

(d)
l )HG̃

(d)
l . Then ξt = trace (MtΛtMt) and MtΛtMt is a random

matrix that has a Wishart distribution with α degrees of freedom and parameter

matrix Ξt [11]. By taking the expectation over ξt, the characteristic function of LLRt
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is given by

ψt(jν) = Eξt

{

eν(j−ν)(trace(MtΛtMt))
}

=
nt∏

u=1

(1 − ν(j − ν)βυt,u)
−α , (6.8)

where υt,u is the uth eigenvalue of Ξt. Moreover, there are nc independent ψt(jν)

and therefore,

ψ(jν) =
nc∏

t=1

nt∏

u=1

(1 − ν(j − ν)βυt,u)
−α . (6.9)

Based on this characteristic function and using the partial fraction expansion and after

some manipulations, the asymptotic expression of f(d,Ω, ζ) can be approximated by

f(d,Ω, ζ)N0→0 ≈






2⌊αNδ⌋ − 1

⌊αNδ⌋






nδ∏

ϑ=1

(

1

βδ2
ϑ

)λϑα

(6.10)

where {δ2
ϑ} is the set of nδ distinct nonzero eigenvalues extracted from the sequence

defined by υt,u values. Each δ2
ϑ is repeated λϑ times and Nδ =

∑nδ

ϑ=1 λϑ is the total

number of eigenvalues. It should be pointed out that to use partial fraction expansion

theorem, the integer value of the exponent
∑nδ

ϑ=1 αλϑ = αNδ was used in (6.10). Also

the result obtained in (6.10) agrees with Eq. (24) of [4] in the case of perfect CSI (i.e.,

when σ2
e = 0), except that α = nr and β = 1/N0 for ML detector.

The diversity associated with the considered Hamming weight d from (6.10) is
∑nδ

ϑ=1 αλϑ = αNδ. The coding gain defined as the coefficient dividing N0, which is

given by (
∏nδ

ϑ=1 (N0βδ
2
ϑ)

λϑ)
1

Nδ .

From the above equations, it is obvious that coding gain and diversity order

depend on G(d) through δ2
ϑ and Nδ, respectively. The coding gain and the diversity

order are also functions of σ2
e through β and α, respectively. In addition, the diversity

order depends on the number of pilot symbols by Nδ. In contrary to BICM-MIMO

systems without precoding, σ2
e should also be itself a function of the precoder design in

precoded BICM-MIMO systems. The reason is that the information of both precoded

pilot and data symbols is used in each iteration of the iterative channel estimator.

Therefore, for designing the precoder this relationship shall be explained in the next

section.
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6.3.2 MSE of the Channel Estimator

Without loss of generality, the following channel estimation process is explained

for the first block (i.e., when t = 1). For the iterative linear MMSE channel es-

timation, the estimate of the channel, Ĥ, is obtained using a linear filter as AY̆,

where A = E
{

Ĥ(Y̆)H
}

E
{

Y̆(Y̆)H
}−1

, Y̆ is the NP × nr observation matrix dur-

ing P precoding time periods that is constructed from the vector y1, . . . ,yP as

Y̆ = [(y
[1]
1 )T , . . . , (y

[N ]
1 )T , . . . , (y

[1]
P )T , . . . , (y

[N ]
P )T ]T , where y

[i]
k =

[y(k−1)Nnr+(i−1)nr+1, . . . , y(k−1)Nnr+inr].

From (6.1), y
[i]
k can be expressed in terms of data and training symbols as

y
[i]
k = xkG

[i]
k H + w

[i]
k = x

p
kG

[i,p]
k H + xd

kG
[i,d]H + w

[i]
k ,

where for convenience, the notations G
[i]
k refers to the ith sub-rows of Gk with size

Nnt×nt, i = 1 : N , and G[i,d] and G
[i,p]
k refer to the rows of G

[i]
k multiplied by data and

pilot symbols, respectively. Here, the data and pilot symbols are denoted by x
(d)
k and

x
(p)
k , respectively. Then, when the data symbols are decoded correctly, the covariance

matrix of the channel estimation error, denoted by Σ, after some manipulations is

obtained by

Σ =

(

σ−2
h Int +

Pσ2
x

N0

N∑

i=1

(G[i,d])T (G[i,d])∗+

1

N0

P∑

k=1

N∑

i=1

(G
[i,p]
k )T (xp

k)
T (xp

k)
∗(G

[i,p]
k )∗

)−1

⊗ Inr (6.11)

Now σ2
e is the trace of Σ which is a function of the precoder matrix and pilot symbols.

6.4 Designing the Precoder

To design the precoder, one can try to maximize achievable diversity order and

coding gain. However, it can be shown that they are maximized when all the eigenval-

ues δ2
ϑ are as equal as possible (i.e., Nδ = ncnt and δ2

ϑ = δ2). On the other hand coding

gain and diversity order are decreasing functions of the variance of estimation error,

σ2
e , which as well depends on precoder structure. Therefore, the designing problem
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can be converted to jointly optimize G(d) to make eigenvalues equal and G(d), G
(p)
k

and x
(p)
k to minimize σ2

e . Moreover, all constraints can be summarized as,







1
P
trace

∑P
k=1

∑N
i=1(G

[i,p]
k )T (x

(p)
k )T (x

(p)
k )∗(G

[i,p]
k )∗ ≤ Pt

x(p)
j,k ∈ Ω; 1 ≤ j ≤ Np

GH
k Gk = INnt

In general two objective functions in the optimization problem may not be op-

timized with the same G(d). However, in our model, it can be shown that if G(d)

is extracted from the DNA precoder proposed in [4], it would be optimum for both

functions with some conditions explained in the following.

First, let’s review the structure of the DNA precoder as

GDNA =













Int/N ⊗ Φ[1][1] · · · Int/N ⊗ Φ[N ][1]

Int/N ⊗ Φ[1][2] · · · Int/N ⊗ Φ[N ][2]

...
. . .

...

Int/N ⊗Φ[1][N2] · · · Int/N ⊗ Φ[N ][N2]













(6.12)

where Φ is an N2 × N2 rotator matrix with orthogonal sub-rows (i.e., Φ[i][j] ⊥
Φ[i′][j′]; ∀i 6= i′ & j = j′). Φ[i][j] is the ith sub-row of the jth row of Φ with size

N and ⊗ denotes the Kronecker product.

Now let’s explain the conditions. It can be seen from (6.11) that σ2
e has its

minimum when the second and the third terms are scaled identity matrices, i.e.,
∑N

i=1(G
[i,d])T (G[i,d])∗ = ̺Int and

∑P
k=1

∑N
i=1(G

[i,p]
k )T (x

(p)
k )T (x

(p)
k )∗(G

[i,p]
k )∗ = ∇Int. In-

terestingly, selecting Nnt−Np rows of the Nnt×Nnt DNA precoder matrix, satisfies

the first constraint as
∑N

i=1(G
[i,d])T (G[i,d])∗ = (N − (Np/nt))Int, if Np divided by

nt/N . Then to maximize the diversity order and coding gain Np should have its

minimum value, nt/N . This choice also minimizes the training overhead.

The remaining design parameters are G
(p)
k ,x

(p)
k and P such that they minimize

σ2
e subject to the remaining constraints. One selection for x

(p)
k would be repeating
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the same symbol Np = nt/N times and then utilizing it for all P precoded symbols.

Then, (x(p))T (x(p))∗ = |x(p)|21nt/N , where 1nt/N is an nt/N × nt/N matrix in which

all components have unit values and |x(p)|2 is the power of selected pilot symbol. By

this selection for x(p) and considering the structure of matrix G(d), it is suggested

that the block diagonal form for G
[i,p]
k is

G
[i,p]
k = diag

[

Θ
[i][1]
k ,Θ

[i][2]
k , . . . ,Θ

[i][nt/N ]
k

]

(6.13)

where Θ is an P ×Nnt matrix that should be designed and Θk is the kth row of Θ.

Here, Θ
[i][j]
k is the jth sub-row with size N of Θ

[i]
k , where Θ

[i]
k is the ith sub-row of

Θk with size nt. Then,

P∑

k=1

N∑

i=1

(G
[i,p]
k )T (x

(p)
k )T (x

(p)
k )∗(G

[i,p]
k )∗ =

|xp|2
P∑

k=1

N∑

i=1

(Θ
[i]
k )T (Θ

[i]
k )∗ (6.14)

It can be seen that for the above equation to be a scaled identity matrix, P should

be selected such that P ≥ nt/N . This result matches with the fact that for obtaining

the CSI at the receiver at the first iteration, spanning all antennas with training

is necessary, since there is no information about data at the first iteration. The

expression in (6.14) is an identity matrix if Θ is row-orthogonal and Θk 6= Θk′; ∀k, k′.
The other constraint which is GH

k Gk = I satisfies if

Θ
[i][j]
k ⊥ Φ[i′][j′]; ∀k & i 6= i′ & j = j′ (6.15)

The above conditions are meet when Θ
[i][j]
k = exp

(

2π
√
−1(j − 1)(k − 1)(N/nt)

)

Φ[i][n]; i =

1 : N, j = 1 : nt/N, k = 1 : nt/N , where n is the index of the row of Φ which is not

used in G(d).

In summary the parameters are designed as

• Np = nt/N .

• P = nt/N .

Although the proposed design attains the minimum on σ2
e , the optimal design may not be unique.
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• G(d) = GDNA
nt
N

+1:Nnt
.

• G
(p)
k : (6.15) and (6.13) are used to provide G

(p)
k . It is noted that for N = nt,

Gk = GDNA.

6.5 Illustrative Results

In this section, the FER and MSE performances of precoded BICM-MIMO systems

using the proposed precoder and the training sequence are presented. We consider

quadrature phase-shift keying (QPSK) modulation with Gray mapping. Note that,

to determine the FER the errors in the whole codeword (including hybrid and pure

symbols) are counted.

The FER and MSE performance of a BICM-MIMO for a codeword length of

4 × 1024 bits are shown for a 4 × 2 block-fading MIMO channels in Fig. 6.3 and

Fig. 6.4, respectively. In these figures, nc = 2 and Eb is the energy per information

bit. The code used is the 16-state convolutional code with generator polynomials

(23, 35) in octal form. In Fig. 6.3, the FER curves are obtained after 5 iterations of

the iterative channel estimation/demodulation/decoding and when N = 2. To verify

the results obtained in Section 6.3, the FER curves of the following four systems are

compared. For a fair comparison, in the first three cases, P = 2.

1. The system with the proposed precoder and training sequence, Np = nt/N = 2.

2. The system using the full DNA precoder with the training sequence proposed

in [3]. This system has its optimum performance when Np = 4 pilot symbols

are inserted equi-spaced in each group of 12 data symbols.

3. The system using the full DNA precoder and with the same power budget for

the training symbols as in the first system, i.e., with Np = 2.

4. The system with perfect CSI.

From the results presented in Fig. 6.3, it is clear that the proposed precoder
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outperforms the DNA precoder. More importantly, while the proposed scheme uses

a little bandwidth for training information (for the system considered in this figure

the training overhead is PNp = 4), the training overhead with the DNA precoder is

2 × 4 = 8, which is double. The improvement is even more impressive if considering

the fact that the training power for using the proposed precoder is half of that using

DNA precoder. The improvement in FER is about 0.25 dB at the FER of 10−3.

Furthermore, by comparing the FER curves of the first and the third systems, one

can see that for the same training overhead of Np = 2, for both the proposed precoder

and the DNA precoder, the improvement is about 1.5 dB at FER of 10−2.

Similar results are also observed in Fig. 6.4 for the MSE curves. The system

parameters are the same as those used for Fig. 6.3. It can be seen that for the same

amount of training information and power (Np = 2 for both the proposed precoder

and the DNA precoder), the performance improvement by our proposed design is

about 2 dB at the MSE of 10−3.
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DNA, Np = 2, 5th iter.
DNA, Np = 4, 5th iter.
Proposed precoder, Np = 2, 5th iter.
Perfect CSI

Figure 6.3 FER performances obtained with the proposed precoder and DNA pre-

coder over a 4 × 2 block-fading channel, when N = 2.
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Figure 6.4 MSE performances obtained with the proposed precoder and DNA pre-

coder over a 4 × 2 block-fading channel, when N = 2.

6.6 Conclusion

In this paper, a linear precoder for a BICM-MIMO system is devised that takes

into account channel estimation error. The design uses the same structure of DNA

precoders for precoding data symbols. However, for the pilot symbols, the subparts of

the precoder assigned to precode pilot symbols change over time. The pilot symbols

are also designed in order to effectively assist the proposed precoder. In order to

design the precoder and the training sequence, the coding gain and diversity order

under imperfect CSI are maximized. Compared to the DNA precoder, performance

improvement achieved with the proposed precoder is about 1.5 dB at a FER level of

10−2 for the same power budget on training. Moreover, for a 4×2 MIMO channel, the

amount of signalling overhead that can be eliminated for transmitting data symbols

is 4 symbols, while maintaining the same FER performance.
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7. Summary and Suggestions for Further Study

7.1 Summary

The main contribution of this thesis was to develop iterative channel estimation

for BICM systems incorporating different diversity techniques and under two distinct

types of channel environments, namely slow fading and fast fading. The thesis also

focused on exploiting different diversity techniques to mitigate the effect of imperfect

CSI. Specifically, the main contributions of this thesis are summarized as follows:

• A novel iterative channel estimation technique has been developed for BICM-ID

systems. Signal space diversity has been exploited to construct a new training

sequence in Chapter 3. Using a rotator which implements signal space diversity

before the transmission spreads the training sequence over the time duration of

a rotated symbol. This facilitates the channel estimator to track the variation of

the fading channel over time. An upper-bound of the BER expression has also

been derived. Simulation results with different training schemes revealed that

performance improvement by SSD-pilot is realized through successive iterations.

• In the second contribution, space diversity has been considered in block-fading

channels to examine the tradeoff between exploiting diversity techniques and

the effect of channel estimation error on BICM systems. By increasing the di-

versity order (i.e., by increasing the number of transmit antennas), interference

from other antennas on the received signal increases and the channel estimation

error makes the convergence process of an iterative receiver more challenging.

The convergence problem due to channel estimation error has been solved in
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Chapter 4 by working out conditions on the estimation iteration versus decod-

ing iteration. Better performance improvement has been obtained by combining

training and data information at each estimation iteration.

• For the third contribution, a space-time coding technique has been implemented

using a DNA linear precoder in Chapter 5. By spreading data symbols over

time and space using a linear precoder, training symbols have been suggested

to be used with the precoder. The training pattern in this new scheme has

been designed by minimizing the CRB. The proposed training pattern uses less

time and space for sending data. Furthermore, the channel estimator has been

developed to work with this new training scheme in an iterative manner.

• In the last contribution, a further improvement in the system error rate of pre-

coded BICM-MIMO, as well as bandwidth and power allocation of the training

sequence have been provided by designing joint precoder and training scheme.

In Chapter 6, the PEP of the system and the MSE of the channel estimator

have been derived and used as the criteria to design joint training sequence and

precoder. Performance comparison revealed that employing joint optimized pre-

coder and training sequence leads to a considerable performance improvement

of BICM-MIMO systems with a small power and signalling overhead allocated

to the training sequence.

7.2 Suggestions for Further Studies

The work done in this thesis might constitute a significant step toward the design

of channel estimators and training sequences for systems exploiting various diver-

sity techniques under different channel environments. While conducting our research

works, several issues arose that should be interesting for further studies. These issues

are elaborated next.

• In Chapters 3, 5 and 6, precoders for improving diversity and coding gain have

been adopted. Then training sequence has been designed by exploiting pre-
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coders such that pilot symbols are precoded with data symbols. By inserting

pilot symbols before the precoder, the demodulator uses the information of pi-

lot symbols to facilitate the convergence and to increase the reliability of the

extrinsic soft information. Further improvement might be realized by inserting

pilot bits before the channel encoder. By this structure, the decoder can also

exploit the information of pilot bits in the same way of the demodulator. How-

ever, the main purpose of using pilot bits is to estimate the channel. Therefore,

channel encoder and bit-interleaver should be designed carefully such that pilot

bits after encoding and interleaving can still be distinguishable by the channel

estimator and the demodulator.

• The pilot symbols in Chapters 5 and 6 have been designed for estimating block-

fading channels in BICM-MIMO systems. The pilot symbols are inserted at the

beginning of each block independently. However, in fast time-varying fading

channels, to track the variation of CSI, new design for training sequence with

intended correlation among pilot symbols is useful.

• As presented in this thesis, our work concentrated on channel estimation and

the use of diversity techniques in frequency-flat fading channels. In frequency-

selective fading channels, one can combine frequency diversity with coded mod-

ulation systems to combat fading and improve the system performance. To es-

timate the channel efficiently with less training overhead and reasonable perfor-

mance, implementation of this diversity technique can be modeled by a precoder

(i.e., a frequency precoder) in single-antenna systems and with space-frequency

precoder in MIMO systems. With this model, one can follow the same proce-

dure of Chapter 3 for constructing an iterative channel estimation and designing

training sequence to track the CSI in frequency and time domains.

• Currently, much research efforts have focused on relaying techniques and co-

operative networks as new implementations of diversity techniques. Optimal

training design and placement in these implementations are of interest and

worthwhile to study.
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