67 research outputs found

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    Broadband wireless communication systems: Channel modeling and system performance analysis

    Get PDF
    Wideband channel modeling, which can accurately describe the most important characteristics of wideband mobile fading channels, is essential for the design, evaluation, and optimization of broadband wireless communication systems. In the field of wideband channel modeling, the tradeoff between the prediction accuracy and simulation efficiency has to be taken into account. On one hand, channel models should be as accurate as possible. On the other hand, channel models are supposed to be simple and easy to put into use. There are several commonly used approaches to channel modeling, e.g., measurement-based channel modeling and deterministic channel modeling. Both methods are efficient in capturing the fading behavior of real-world wireless channels. However, the resulting channel models are only valid for the specific environments as those where the measurements were carried out or the ray-tracing scenario was considered. Moreover, these methods are quite time consuming with high computational cost. Alternatively, the geometry-based stochastic channel modeling approach can be employed to model wideband mobile fading channels. The most attractive feature of this method is that the derived channel models are able to predict fading behavior for various propagation environments, and meanwhile they can be easily implemented. Thus, the dissertation will complete the wideband channel modeling task by adopt the geometry-based stochastic approach. In the dissertation, several geometry-based channel models are proposed for both outdoor and indoor propagation scenarios. The significance of the work lies in the fact that it develops channel models under more realistic propagation conditions which have seldom been considered, such as for non-isotropic scattering environxi ments and mobile-to-mobile (M2M) fading channels. In addition, the proposed channel models remove the scarcity that proper geometry-based channel models are missing for indoor environments. The most important statistical properties of the developed channel models including their temporal autocorrelation function (ACF), the two-dimensional (2D) space cross-correlation function (CCF), and the frequency correlation function (FCF) are analyzed. Furthermore, efficient channel simulators with low realization expenditure are obtained. Finally, the validity of the proposed channel models is demonstrated by comparing their analytical channel statistics with the empirical ones measured from real world channels. Besides the work in the field of wideband channel modeling, another part of the dissertation is dedicated to investigate the performance of SISO1 orthogonal frequency division multiplexing (OFDM) broadband communication systems and space-time (ST) coded MIMO2 OFDM broadband communication systems. This work provides a deep insight into the performance of a broadband mobile radio communication system over realistic wideband fading channels. Analytical expressions are derived for bit error probability (BEP) or symbol error rate (SER) of systems. In order to confirm the correctness of the theoretical results as well as to show the usefulness of the wideband channel models in the testing and analysis of a broadband communication system, SISO OFDM systems and space-time coded MIMO OFDM systems are simulated in the dissertation. In order to improve the reliability of digital transmission over broadband wireless radio channels, a differential super-orthogonal space-time trellis code (SOSTTC) is designed for noncoherent communications, where neither the transmitter nor the receiver needs the channel state information (CSI) for decoding. In addition, a new decoding algorithm is proposed. The new algorithm has exactly the same decoding performance as the traditional one. However, it is superior from the standpoint of overall computing complexity

    MIMO channel modelling and simulation for cellular and mobile-to-mobile

    Get PDF
    Recently, mobile-to-mobile (M2M) communications have received much attention due to several emerging applications, such as wireless mobile ad hoc networks, relay-based cellular networks, and dedicated short range communications (DSRC) for intelligent transportation systems (e.g., IEEE 802.11p standard). Different from conventional fixed-to-mobile (F2M) cellular systems, in M2M systems both the transmitter (Tx) and receiver (Rx) are in motion and often equipped with low elevation antennas. Multiple-input-multiple-output (MIMO) technologies, employing multiple antennas at both the Tx and Rx, have widely been adopted for the third generation (3G) and beyond-3G (B3G) F2M cellular systems due to their potential benefits of improving coverage, link reliability, and overall system capacity. More recently, MIMO has been receiving more and more attention for M2M systems as well. Reliable knowledge of the propagation channel obtained from channel measurements and corresponding channel models serve as the enabling foundation for the design and analysis of MIMO F2M and M2M systems. Furthermore, the development of accurate MIMO F2M and M2M channel simulation models plays a major role in the practical simulation and performance evaluation of these systems. These form the primary motivation behind our research on MIMO channel modelling and simulation for F2M cellular and M2M communication systems. In this thesis, we first propose a new wideband theoretical multiple-ring based MIMO regular-shaped geometry-based stochastic model (RS-GBSM) for non-isotropic scattering F2M macro-cell scenarios and then derive a generic space-time-frequency (STF) correlation function (CF). The proposed theoretical reference wideband model can be reduced to a narrowband one-ring model, a new closed-form STF CF of which is derived as well. Narrowband and wideband sum-of-sinusoids (SoS) simulation models are then developed, demonstrating a good agreement with the corresponding reference models in terms of correlation functions. Secondly, based on a well-known narrowband two-ring single-input single-output (SISO) M2M channel reference model, we propose new deterministic and stochastic SoS simulation models for non-isotropic scattering environments. The proposed deterministic simulator is the first SISO M2M deterministic simulator with good performance, while the proposed stochastic simulator outperforms the existing one in terms of fitting the desired statistical properties of the corresponding reference model. Thirdly, a new adaptive narrowband MIMO M2M RS-GBSM is proposed for nonisotropic scattering environments. To the best of our knowledge, the proposed M2M model is the first RS-GBSM that has the ability to study the impact of the vehicular traffic density on channel statistics. From the proposed theoretical reference model, we comprehensively investigate some important M2M channel statistics including the STF CF, space-Doppler-frequency power spectral density, envelope level crossing rate, and average fade duration. A close agreement between some channel statistics obtained from the proposed reference model and measurement data is observed, confirming the utility of our model. Finally, we extend the above narrowband model to a new wideband MIMO M2M RSGBSM with respect to the frequency-selectivity. The proposed wideband reference model is validated by observing a good match between some statistical properties of the theoretical model and available measurement data. From the wideband reference model, we further design new wideband deterministic and stochastic SoS simulation models. The proposed wideband simulators can be easily reduced to narrowband ones. The utilities of the newly derived narrowband and wideband simulation models are validated by comparing their statistical properties with those of the corresponding reference models. The proposed channel reference models and simulators are expected to be useful for the design, testing, and performance evaluation of future MIMO cellular and M2M communication systems.Scottish Funding Counci

    MIMO techniques for higher data rate wireless communications

    Get PDF
    The demand for higher data rate, higher spectral efficiency and better quality of service in wireless communications is growing fast in the past few years. However, obtaining these requirements become challenging for wireless communication systems due to the problems of channel multi-path fading, higher power loss and power bandwidth limitations. A lot of research interest has been directed towards implementing new techniques in wireless communication systems, such as MIMO an OFDM, to overcome the above mentioned problems. Methods of achieving higher data rate and better spectral efficiency have been dealt with in the thesis. The work comprised three parts; the first part focuses on channel modelling, the second looks at fading mitigation techniques, and the third part deals with adaptive transmission schemes for different diversity techniques. In the first part, we present multiple-input multiple-output (MIMO) space-time geometrical channel model with hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment. The model is based on one-ring scattering assumption. This MIMO model provides statistics of the time of arrival (TOA) and direction of arrival (DOA). Our analytical results are validated with measurement data and compared to different geometrical based signal bounce macro-cell (GBSSBM) channel models including Gaussian scatterer density (GSD) channel model, the geometrical based exponential (GBE) channel model. On the other hand, for the same channel model we investigate the analytical methods which capture physical wave and antenna configuration at both ends representing in a matrix form. In the second part, we investigate the proposed channel model using joint frequency and spatial diversity system. . We combine STBC with OFDM to improve the error performance in the fading channels. We consider two different fading scenarios namely frequency selective and time selective fading channels. For the first scenario we propose a new technique to suppress the frequency error offset caused by the motion of mobile (Doppler shift). On the other hand, we examine the performance of STBC-OFDM in time selective macro-cell channel environment. In the last part, we evaluate the spectral efficiency for different receiver diversity namely maximal ratio combiner (MRC), selection combiner (SC), and Hybrid (MRC/SC). We derive closed form expressions for the single user capacity, taking into account the effect of imperfect channel estimation at the receiver. The channel considered is a slowly varying spatially independent flat Rayleigh fading channel. Three adaptive transmission schemes are analysed: 1) optimal power rate and rate adaptation (opra), constant power with optimal rate adaptation (ora), and 3) channel inversion with fixed rate (cifr). Furthermore, we derive analytical results for capacity statistics including moment generating function (MGF), complementary cumulative distribution function (CDF) and probability density function (pdf)

    Channel Simulators for MmWave and 5G Applications

    Get PDF
    Along with the tremendous growth of extremely high traffic demand, 5G radio access technology, is becoming the core component to support massive and multifarious connected devices and real-time, and to offer high reliability wireless communications with high data rate. And millimeter-wave (mmWave) range with a huge frequency spectrum from 3 GHz to 300GHz will perfectly meet the multi-gigabit communicative demand. However, mmWave usage also generally brings new challenges, such as coping with high attenuation or path losses. As an effective method to evaluate the performance of the new concept in communication networks, nowadays, several channel models and simulators have been proposed and developped, such as, WINNER, COST-2100, IMT-Advanced, METIS, NYU Wire-less and QuaDRiGa etc. The thesis goals have been to offer an overview of the advantages and disadvantages of various mmWave channel models existing in the literature, based on the published literature, and to compare based on simulations some of the main features of two selected open-source models, namely the WINNER 2 and QuaDRiGa channel models. In the future, more mmWave channel models are planned to be tested and simulated for a better understanding of their suitability for various mmWave applications

    Characterization of Single- and Multi-antenna Wireless Channels

    Get PDF
    The wireless propagation channel significantly influences the received signal, so that it needs to be modeled effectively. Extensive measurements and analysis are required for investigating the validity of theoretical models and postulating new models based on measurements. Such measurements, analysis, and modeling are the topic of this thesis. The focus of the included contributions are Multiple-Input Multiple-Output (MIMO) propagation channels and radio channels for sensor network applications. Paper I presents results from one of the first MIMO measurements for a double-directional characterization of the outdoor-to-indoor wireless propagation channel. Such channels are of interest for both cellular and wireless LAN applications. We discuss physical aspects of building penetration, and also provide statistics of angle and delay spreads in the channel. The paper also investigates the coupling between DOD and DOA and the two spectra are found to have non-negligible dependence. We test the applicability of three analytical channel models that make different assumptions on the coupling between DODs and DOAs. Our results indicate that analytical models, that impose fewer restrictions on the DOD to DOA coupling, should be used preferrably over models such as the Kronecker model that have more restrictive assumptions. Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO measurements analyzed in Paper I. A subset of parameters of the COST 273 channel model, a generic model for MIMO propagation channels, are characterized for the outdoor-to-indoor scenario. MPC parameters are extracted at each measured location using a high-resolution algorithm and clusters of MPCs are identified with an automated clustering approach. In particular, the adopted clustering approach requires that all MPC parameters must be similar in order for the MPCs to form a cluster. A statistical analysis of the identified clusters is performed for both the intra- and inter-cluster properties. Paper III analyzes the spatial fading distribution for a range of canonical sensor deployment scenarios. The presented results are relevant to communicating within, and between, clusters of nodes. Contrary to the widely accepted assumption in published literature that the channel is AWGN at a small-enough distance, our measurements indicate that values of the Rice factor do not, in general, increase monotonically as the Tx-Rx distance is reduced. A probability mixture model is presented, with distance dependent parameters, to account for the distance dependent variations of the Rice factor. A simulation model that includes small- and large-scale fading effects is presented. According to the modeling approach, a sensor node placed anywhere within the spatial extent of a small-scale region will experience the channel statistics applicable to that region. Paper IV presents results characterizing a radio channel for outdoor short-range sensor networks. A number of antennas are placed on the ground in an open area and time-variation of the channel is induced by a person moving in the vicinity of the nodes. The channel statistics of both the LOS path and the overall narrowband signal are non-stationary. We investigate the stationarity interval length to be used for small-scale analysis. Our analysis of the various measured links shows that the Rx signal strength is significantly influenced by a moving person only when the person blocks the LOS path. We present a generic approach for modeling the LOS blockage, and also model the time-variant Doppler spectrum of the channel's scattered components
    corecore