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Abstract

As the title suggests, this thesis is broadly devoted to three aspects of wireless communi-
cations — channel modeling, channel estimation and achievable rates over mobile wire-
less Rayleigh fading channels. The channel modeling part which models the Rayleigh 
fading in general scattering environments can further be subdivided into two parts — 

single-input single-output (SISO) (stationary and non-stationary) time-selective model-
ing, and orthogonal frequency-division multiplexing (OFDM) based space-frequency se-
lective single-input multiple-output (SIMO) channel modeling. The channel estimation 
part concerns the development of a SISO pilot-aided channel estimation (PACE) scheme 
in conjunction with peaky signaling to improve the performance. The utility of both the 
SISO stationary channel model and the SISO channel estimation parts is highlighted by 
deriving the achievable information rates over Rayleigh fading channels.

The SISO channel modeling is, in fact, a generalization of the Clarke’s well known 
stationary Rayleigh fading channel model from two aspects. Firstly, the proposed 2D 
SISO channel model describes the Rayleigh fading statistics in general two-dimensional 
(2D) scattering environments unlike classical Clarke’s model which assumes 2D isotropic 
scattering environment. The usefulness of this generalized model is highlighted by com-
paring them firstly on the basis of their statistics — the autocorrelation and the power 
spectral density (PSD) —  and secondly on the basis of overall performance of the com-
munications system. The results suggest that the truncated-uniform, truncated-Gaussian, 
truncated-Laplacian and von Mises distributions can be considered equivalent if the an-

gular spread of the scattering around the mobile receiver is either sufficiently small or 
large. Specifically, the truncated-Gaussian and von Mises distributions are almost iden-

tical for all angular spreads and mobile dynamics. Secondly, we propose a SISO non- 
stationary Rayleigh fading model which allows the mobile to have constant acceleration 
as opposed to constant mobile velocity assumption of Clarke’s stationary model. The 
Wigner-Ville and instantaneous power spectra are derived for the non-stationary channel 
process. Specifically, the Wigner-Ville distribution is shown to be a natural generaliza-
tion of the Clarke’s model from stationary to non-stationary scenario. We also explore 
the impact of mobile acceleration on the performance of non-coherent systems in terms
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of frame overhead and payload, particularly, as a function of initial mobile velocity and 
carrier frequency, and discuss the feasibility of the use of higher carrier frequencies in 

the future wireless communications systems. The OFDM-based SIMO channel model 
establishes a framework for the calculation of space-frequency cross correlation (SFCC) 

for OFDM-based SIMO system in general 2D and 3D scattering environments. SFCC 
for 2D elliptical and inverted-parabolic scattering models is evaluated to exhibit useful-
ness of the SIMO model.

In channel estimation part of this thesis, we propose a slight modification of the so- 
called peaky signaling which, in conjunction with added signal processing at the receiver 

end, promises a significant improvement in the performance of pilot-aided channel es-
timation (PACE) over Rayleigh fading channels. Under the assumption of equal total 
available power, we analyze the performance of the proposed PACE scheme(s) against 
the non-peaky signaling. We consider two different cases: Firstly, the pilot and data 
symbol powers are constrained to be equal and, then, are allowed to be unequal. The 
proposed scheme is shown to significantly improve the overall performance of the PACE 
based communications system in the limit of zero signal-to-noise ratio (SNR). In fact, 
the gain in overall achievable rates with the proposed scheme in the low SNR regime can 
be as much as the number of idle degrees of freedom (dof) in the peaky signaling. Fi-
nally, we discuss the possible directions for the future research highlighting the potential 
usefulness of the channel modeling and estimation approaches employed in this thesis 
for efficient design and analysis of communications systems.



List of Acronyms

C S I c h a n n e l s ta te  in fo rm a tio n

P A C E p ilo t-a id e d  c h a n n e l e s tim a tio n

S IS O s in g le - in p u t s in g le -o u tp u t

M IM O m u ltip le - in p u t m u ltip le -o u tp u t

S IM O sin g le - in p u t m u ltip le -o u tp u t

O F D M o rth o g o n a l f r e q u e n c y -d iv is io n -m u ltip le x in g

A P D a z im u th  p o w e r d is tr ib u tio n

A O A a n g le -o f-a rr iv a l

A G C a u to m a tic  g a in  co n tro l

W S S U S w id e -se n se -s ta tio n a ry  u n c o r re la te d  sc a tte r in g

A C F a u to c o r re la tio n  fu n c tio n

P S D p o w e r  sp ec tra l d e n s ity

W V D W ig n e r-V ille  d is tr ib u tio n

D W V D d isc re te - tim e  W ig n e r-V ille  d is tr ib u tio n

IP S in s ta n ta n e o u s  p o w e r sp ec tru m

M IP S m e a n  in s ta n ta n e o u s  p o w e r sp e c tru m

D M IP S d isc re te - tim e  m ean  in s ta n ta n e o u s  p o w e r sp e c tru m

rm s ro o t-m e a n -sq u a re

M P S K M -a ry  p h a se -sh if t-k e y in g

A W G N a d d itiv e  w h ite  G a u ss ia n  n o ise

S N R s ig n a l- to -n o ise  ra tio

F IR fin ite  im p u lse  re sp o n se

H R in fin ite  im p u lse  re sp o n se

O L D O v e rsa m p le -L o w  p ass  filte r-D o w n sa m p le

M M S E m in im u m  m ean  sq u a re  e r ro r

N E N o -e n h a n c e m e n t

P E P ilo t-e n h a n c e m e n t

D E D a ta -e n h a n c e m e n t

P D E p ilo t an d  d a ta  e n h a n c e m e n t



SFCC
d p i
DTFT
GSM

WRLS
RLS
WiMax
TF
s i f t

CATFR
TFED
RCK
SOTV

b m f c  dtft

DMIPS
dof

space-frequency cross correlation 
continuous-time Fourier transform 
discrete-time Fourier transform 
Global System for Mobile communications 

windowed recursive least squares 
recursive least squares
Worldwide Interoperability for Microwave Access
time-frequency
short-time Fourier transform
Correlation Approach to time-frequency Representations
time-frequency energy distribution
Rihaczek distribution
spectrum of time variation
Bessel-Modulated Fourier Chirp Transform
Windowed discrete-time mean instantaneous power spectrum
degrees of freedom



Notations and Symbols

A 1 transpose of matrix A
A 11 conjugate transpose of matrix A

i
a* complex conjugate of a
* linear convolution operator

© periodic convolution operator

E {•} mathematical expectation

3? {•} real part operator

^5 {•} imaginary part operator

p signal-to-noise ratio

diag(a) a diagonal matrix with a  as its diagonal

log natural logarithm
IV  positive reals

C complex numbers

Z integers

AF (m , A)  normal distribution with mean m  and covariance matrix A  
NIgain non-isotropicity gain

a ■ b dot product between vectors a  and b
J: continuous-time Fourier transform

V  degree of non-isotropicity

o f minimum mean square error

Q MMSE gain offered by proposed peaky signaling over non-peaky signaling

Qu MMSE gain when the Doppler spectrum is Uniform

Q( MMSE gain when the Doppler spectrum is Clarke’s U-shaped

S  sensitivity of MMSE gain to mobile direction of travel

Hg percentage information rate gain

7 the fraction of total available bandwidth allocated to pilot symbols

/i the fraction of power allocated to pilot symbols



x i i

lo p t optimal fraction of total available bandwidth allocated to pilot symbols 
Hopt optimal fraction of power allocated to pilot symbols 
y® x y modulo x



Contents

Declaration i

Acknowledgements v

Abstract vii

List of Acronyms ix

Notations and Symbols xi

1 Introduction 1
1.1 Background and Motivation ........................................................................ 1

1.2 Radio Wave Propagation and Modeling: Preliminaries.............................  6

1.2.1 Types of Fading.................................................................................  6
1.2.2 Mathematical Modeling of F a d in g .................................................  8

1.2.3 Statistical Modeling of Multipath F a d in g ....................................  9

1.3 Multipath Rayleigh Fading: Dependence on Scattering Environment . . 10

1.3.1 Isotropic Scattering: Uniform and Non-Uniform A O A .............  11

1.3.2 Non-Isotropic Scattering: Uniform and Non-Uniform AOA . . . 13

1.4 Non-Stationary Mobile Rayleigh Fading Channels....................................  14

1.5 Mobile Rayleigh Fading Channels: Input-Output M odel..........................  15

1.6 Capacity of Mobile Rayleigh Fading C hannels..........................................  16

1.6.1 No-CSI Cost F u n c tio n ..................................................................... 17

1.6.2 Achievable Rates with Gaussian Signaling ................................. 18

1.6.3 Achievable Rates with MPSK S ignaling.......................................  19

1.7 Pilot-Aided Channel Estimation for Mobile Rayleigh Fading Channels . 19

1.8 Outline of T h e s i s ...........................................................................................  21

1.8.1 O verv iew ...........................................................................................  21

1.8.2 Questions to be Answered in this T h es is .........................................  22

1.8.3 Content and Contribution of T h e s i s ...............................................  23

x i i i



XIV Contents

2 Generalized Clarke Model for Mobile Radio Reception 27
2.1 Background............................................................................................  27
2.2 Channel model ......................................................................................  29

2.2.1 Autocorrelation of the Channel Fading P rocess................ 33
2.2.2 Spectral Density of the Channel Fading Process: ..................... 35
2.2.3 Common Non-isotropic Scattering Distributions ..................... 35
2.2.4 Truncation of Series Expansions......................................  36

2.3 Effect of Non-Isotropicity and Mobile Velocity on Channel Statistics . . 39
2.3.1 Clarke’s Model as a Special Case ............................................. 41
2.3.2 Effect of Mobile Velocity..................................................  42
2.3.3 Effect of Non-isotropicity ......................................................... 44

2.4 A Comparative Study of Non-isotropic Scattering Environments . . . .  46
2.4.1 Numerical Results and Discussion...................................  48

2.5 Applications of the Generalized Clarke m odel....................................... 51
2.6 Summary and Contributions.................................................................. 52

3 Achievable Information Rates Over Generalized Rayleigh Fading Channels 53
3.1 Background............................................................................................  53
3.2 Channel M o d e l......................................................................................  55
3.3 No-CSI Cost in Truncated-Uniform Scattering....................................... 56
3.4 Achievable Information Rates: Gaussian and Constant Power Signaling 58
3.5 Analysis of No-CSI Cost Function......................................................... 59

3.5.1 No-CSI Cost for Infinite Block Length.............................  59
3.5.2 Factors Affecting Information Rate Loss..........................  60

3.6 Analysis of Two Non-Isotropic Communications Scenarios.................. 67
3.6.1 Non-Isotropic Scattering with Isotropic Receive Antenna . . . .  68
3.6.2 Isotropic Scattering with Non-Isotropic Receive Antenna . . . .  69

3.7 Non-Isotropic Scattering Distributions: A Comparative Study............... 72
3.8 Marginal Gaussianity does not Imply Joint Gaussianity: A Practical Ex-

ample .....................................................................................................  76
3.8.1 Joint Distribution of the Output: Mathematical Analysis . . . .  78
3.8.2 Joint Distribution of the Output: Numerical A nalysis.....  79
3.8.3 Implications of Non-Gaussianity of Channel Output on Informa-

tion Rates .................................................................................... 81
3.9 Summary and Contributions .................................................................. 83

4 Rayleigh Fading Statistics with Constant Mobile Acceleration 87
4.1 Introduction and background...................................................................  87



Contents xv

4.1.1 Time-Varying Spectrum Due to Mobile A cceleration ................  88
4.1.2 Time-Varying Channel Coherence T im e .......................................  88
4.1.3 A Brief Background on Non-Stationary M odeling....................... 89

4.2 Problem Statement And Continuous-Time Channel Model ...................  91
4.2.1 Types of Non-Stationary Gaussian Channel Processes .............. 92

4.2.2 Is Non-Stationarity Due to Mobile Acceleration Separable from
Stationary S ta tis tics? ........................................................................  94

4.3 Joint Time-Frequency A nalysis....................................................................  95

4.3.1 Short-Time Fourier Transform (S T FT )..........................................  96

4.3.2 Cohen’s Class Distribution F u n c tio n s ..........................................  96
4.4 Discrete-Time Non-Stationary Channel Process and TF Distributions . . 103

4.4.1 Discretization of Continuous-Time Channel P r o c e s s ................  103
4.4.2 Discretization of Continuous-Time TF D is trib u tio n s ................  104

4.5 Spectral Analysis of Non-Stationary Gaussian Channel P rocess.............  106
4.5.1 Formulation of Instantaneous Channel ACF .............................  106
4.5.2 Formulation of Non-Stationary Spectra: DWVD and DMIPS . I l l
4.5.3 Analysis of DWVD and DMIPS Channel Spectra in Isotropic

Scattering...........................................................................................  117
4.6 Bounded Mobile Velocity and Finite Sampling R a te ................................. 120

4.6.1 Analog Prefilter Bandwidth ........................................................... 120
4.6.2 W indow ing........................................................................................  121
4.6.3 Windowed DMIPS spectrum ........................................................... 123

4.7 Mobile Acceleration Impact on Non-Coherent Mobile Communications 126
4.7.1 Numerical Analysis and D iscu ssio n .............................................. 128

4.8 Summary and C o n trib u tio n s ........................................................................  137

5 Improved MMSE Performance of PACE over Rayleigh Fading Channels 139
5.1 Introduction.....................................................................................................  139
5.2 Channel Model and Signaling S c h e m e ........................................................ 142

5.2.1 Channel M o d e l.................................................................................  142

5.2.2 Modified Peaky Signaling S chem e.................................................  142
5.2.3 Specification of Transmission P aram eters ....................................  145
5.2.4 Process of Downsampling and Problem Statement .................... 145

5.3 Derivation of Optimal Wiener Smoother and MMSE .............................  148

5.3.1 MMSE for uniform and Clarke’s Doppler S pectra ....................... 150
5.3.2 MMSE Performance: Proposed Signaling versus Non-Peaky Sig-

naling Scheme .................................................................................. 150
5.3.3 Numerical Analysis of MMSE g a i n .............................................. 151



XVI Contents

5.4 Optimal Resource Allocation: Mathematical Problem Formulation . . .  154
5.4.1 Expressions for Pilot and Data Symbol P ow ers.........................  154
5.4.2 Optimality C riterion .................................................................. 158

5.5 Optimal Resource Allocation: Unequal Pilot and
Data Symbol P o w ers .............................................................................. 159
5.5.1 Case 1: Optimal Pilot Insertion Rate Equals Nyquist Rate . . .  160
5.5.2 Case 2: Optimal Pilot Insertion Frequency is Greater than Nyquist

R ate ............................................................................................. 169
5.6 Optimal Resource Allocation: Equal Pilot and Data symbol Power . . .  171
5.7 Summary and Contributions..................................................................  176

6 A Framework to Calculate Space-Frequency Correlation in MultiCarrier
Systems 179
6.1 Introduction............................................................................................. 179
6.2 Space-Frequency Selective Channel Model for MultiCarrier OFDM . . 183
6.3 Space-Frequency Cross Correlation for MultiCarrier O F D M ...............  185

6.3.1 2D Scattering Environment.........................................................  186
6.3.2 3D Scattering Environment.........................................................  187
6.3.3 Some Comments on Extension to MIMO-OFDM.....................  188

6.4 Special Cases of Space-Frequency Correlation for MultiCarrier OFDM 189
6.5 Numerical Analysis of Space Frequency Correlation for MultiCarrier

OFDM...................................................................................................... 192
6.6 Generalization of Space-Frequency Cross Correlation for a 2-Carrier

SIMO system .......................................................................................... 193
6.7 Summary and Contributions.................................................................. 203

7 Conclusions and Future Research Directions 205
7.1 Conclusions............................................................................................. 205
7.2 Future Research Directions..................................................................... 207

Appendices

Appendix A 209
A. l Proof of Equation (2 .1 8 ) ......................................................................... 209

Appendix B 211
B. 1 Extrema of Information Rate Cost function ........................................... 211
B.2 Information Rate Penalty for a Single Point Scatterer C a s e ...................  214



Contents xvii

Appendix C 215
C. 1 Discrete-Time Fourier Transform of Bessel Function With Quadratic Ar-

gument ............................................................................................................... 215

Appendix D 219
D . l Optimal Wiener Filter and M M S E ............................................................... 219

D.2 MMSE for Uniform and Clarke’s Doppler Spectra ....................................223
D.3 Maximum of MMSE Gain F u n c tio n ...............................................................224
D.4 Some Auxiliary Constants Used in Chapter 5 .............................................. 227

D. 5 Proof: Optimally £ EE > £ s (Unequal Pilot and Data P o w e rs ) ..........228

Appendix E 231
E. 1 Derivation of Frequency-Selective Channel M odel........................................231
E.2 Derivation of the Space-Frequency Correlation Function ...........................233

Bibliography 235



List of Figures

1.1 A comparison of computational complexity of the proposed 2D model
and the one derived from 3D model [1]. The convergence of the latter 
model to the true Clarke’s U-shaped spectrum [2] is not achieved even 

after 10.6 seconds.............................................................................................  5

1.2 A Rayleigh distributed envelope of the time-varying complex Gaussian
channel process when the highest Doppler frequency is 100 Hz...............  11

1.3 No CSI cost function as a function of block length of transmission. . . .  18

2.1 Illustration of the key parameters: direction of mobile travel (f>v, mobile
velocity v, direction of wave arrival ß, time instances f  and j ,  and the 
origin ‘O’ of the co-ordinate system..............................................................  32

2.2 The truncation behavior of $(k): (f>v = 45, f D = 0.05 and ß0 = 90°. The 
approximation based on the argument of the Bessel function proposed 
in [3] is quite good as the figure suggests only an insignificant increase
in accuracy (at larger lags) as \mmax\ increases from 32 to 200................  36

2.3 The truncation behavior of 4>(u;): <ßv = 45, / d  =  0.05 and ß0 = 90°. . . 39

2.4 Illustration of an truncated-isotropic scattering scenario where the scat-
tered power is uniformly distributed with magnitude l /2 A r over a part 
of the azimuth with a mean angle ß0 and a maximum deviation of A r on 
each side of the mean. The direction of the mobile travel ßv is also shown. 40

2.5 The plot of squared absolute autocorrelation of the channel process as a
function of time lag k for different directions of mobile trav e l................  41

2.6 Effect of the mobile direction of travel (f)v = 0°,45°, and 90° on the 
Power Spectral Density (PSD) when ß0 = 90°, A r =  60° and / D =
0.05. The symmetric U-shaped PSD in case of isotropic scattering is
also shown which is independent of the direction of travel........................  42

2.7 Effect of non-isotropicity on squared absolute autocorrelation as a func-
tion of time lag k when ßv = 0°, ßo =  90° and / d  =  0.05. The autocor-
relation for the isotropic case is also shown.................................................. 43

xix



XX List of Figures

2.8 Effect of the degree of non-isotropicity on PSD when ßv = 0°, ß0 = 90°
and / d = 0.05. The PSD for the isotropic case is also shown.................. 44

2.9 Autocorrelation of received signal envelope for different scattering en-
vironments when angular spread of the scattering is 5°, / D — 0.05,
0V -  45° and ß0 = 90°.............................................................................  45

2.10 Autocorrelation of received signal envelope for different scattering envi-
ronments when angular spread of the scattering is 25°............................. 46

2.11 Autocorrelation of received signal envelope for different scattering envi-
ronments when angular spread of the scattering is 45°............................. 47

2.12 PSD of the received signal envelope for different scattering environ-
ments for different mobile directions of travel. The angular spread is
5°, / D = 0.05 and ß0 = 90°......................................................................  48

2.13 PSD of the received signal envelope for different scattering environ-
ments when angular spread is 25°............................................................. 49

2.14 PSD of the received signal envelope for different scattering environ-
ments when angular spread is 45°............................................................. 50

3.1 Effect of changing mobile direction of travel on information rate loss
due to unknown CSI in truncated-isotropic environment........................  61

3.2 Impact of mobile direction of travel on non-isotropicity g a i n ...............  61
3.3 Non-isotropicity gain versus block length for different Ar .....................  62
3.4 The penalty due to channel unpredictability because of no-CSI as a func-

tion of non-isotropicity for different transmission block lengths............ 63
3.5 Effect of SNR and non-isotropicity on information rate cost for unknown

CSI ........................................................................................................  63
3.6 Non-isotropicity gain versus non-isotropicity for different normalized

fading r a t e s ............................................................................................. 66
3.7 Sensitivity of non-isotropicity gain to mobile direction of travel as a

function of angular spread for different normalized fading ra tes............ 66
3.8 Impact of non-isotropicity on Gaussian signaling lower bound as a func-

tion of SNR for different fading rates...................................................... 67
3.9 Non-isotropicity gain for Gaussian signaling versus angular spread for 

different normalized fading rates when a non-isotropic antenna is used
at the mobile receiver in isotropic environment........................................  68

3.10 Impact of non-isotropicity on Gaussian signaling lower bound in the low
SNR regime for different normalized fading r a te s ................................ 69

3.11 Impact of non-isotropicity on Gaussian signaling lower bound as a func-
tion of SNR for different fading rates...................................................... 70



List of Figures xxi

3.12 Impact of non-isotropicity on MPSK signaling upper bound as a function
of SNR for different fading ra te s ............................................................  71

3.13 Comparison of non-isotropicity gain for different scattering environments
as a function of angular sp read ............................................................... 72

3.14 Comparison of non-isotropicity gain for different scattering distributions
as a function of block le n g th .................................................................. 73

3.15 Comparison of non-isotropicity gain as a function of mobile direction of
travel, </>v ................................................................................................ 73

3.16 Achievable information rates as a function of SNR when the scattering
distribution is truncated-isotropic............................................................  75

3.17 The gain sensitivity, S, for different scattering environments as a func-
tion of angular spread.............................................................................. 76

3.18 A contour plot of joint distribution of real parts of 2-dimensional Gaus-
sian channel v e c to r ................................................................................. 80

3.19 A contour plot of joint distribution of the real parts of 2-dimensional
Gaussian channel multiplied by i.i.d. BPSK in p u t.................................  82

3.20 A contour plot of joint distribution of the real parts of 2-dimensional
Gaussian channel multiplied by i.i.d. 16-PSK in p u t .............................. 83

3.21 Comparison of information rate upper bounds.......................................  84

4.1 The mobile is moving at an angle 4>v with respect to x-axis with initial 
speed \v0\ and constant acceleration a in the direction of movement. A 
plane wave is shown incident on the receive antenna at an angle ß and
Y\dwvd jn (4.69) is also depicted....................................................  92

4.2 The ACF of DW VD as a function of the lag k and absolute time index n :
I Vo I = 20m/sec, a = 10m/sec2, f c =2GHz and Ts = 5msec. Increasing
t  and n have the effect of reducing the autocorrelation faster..................  110

4.3 The ACF of DMIPS as a function of the lag k and absolute time index n:
|v0| =  20m/sec, a = 10m/sec2, f c =2GHz and Ts — 5msec. Increasing
r  and n have the effect of reducing the autocorrelation faster..................  I l l

4.4 The 2D view of the ArgDVWD — ArgDMIPS: | v0| = 20m/sec, a = 10m/sec2, 
f c =2GHz and Ts = 5msec....................................................................... 112

4.5 The 2D view of ACF for zeroth order Bessel function of the first kind as 
a function (Clarke’s model) as a function of the lag k and absolute time 
index n: |v0| = 20m/sec, a = 10m/sec2, f c =2GHz and Ts = 5msec. 
Observe that the absolute time does not change the A C F ......................  113



XXII List of Figures

4.6 The 2D view of ACF for DWVD (isotropic scattering) as a function of
the lag k and absolute time index n: |v0| — 20m/sec, a — 10m/sec2, 
f c —2GHz and Ts = 5msec. Increasing r  and n have the effect of 
reducing the autocorrelation faster............................................................ 114

4.7 The 2D view of ACF for DMIPS (scattering environment) as a function
of the lag k and absolute time index n: |v0| = 20m/sec, a = lOm/sec2, 
f c =2GHz and Ts = 5msec. Increasing r  and n have the effect of 
reducing the autocorrelation faster............................................................ 115

4.8 The plot of J0(a k) and J0(a k2). We can observe the quadratic argu-
ment makes the Bessel function non-stationary so that its spectrum is 
lag-dependent. J0(a k2) oscillates faster with lag k implying that it is no 
more a bandlimited like J0(a k) which is limited to |cc| < a....................123

4.9 Non-stationary DMIPS spectrum by Blackman-Tukey method. The fi-
nite window length is assumed to be 51 samples in the lag domain. We 
assume that the carrier frequency is 2GHz, Ts = 2.65msec, |v0| = 
20m/sec and the acceleration a = 10m/sec2. As can be observed, the 
instantaneous Doppler spread increases linearly with n exhibiting the 
same U-shaped behavior characteristic of the Clarke’s model. Notice 
that the poor resolution in the frequency domain is due to the finiteness
of the window function.............................................................................  124

4.10 The general structure of a transmission frame..........................................  128

4.11 The instantaneous percentage decrease in the duration of radio frame
(with respect to a =  Om/sec) for different mobile accelerations assuming 
mobile speed of 1 m/s, Ts — 3.69 micro second and f c = 2 GHz. Notice 
that the carrier frequency and the symbol duration correspond to GSM 
communications........................................................................................  129

4.12 The percentage change in the duration of radio frame assuming GSM
carrier frequency and symbol rate for different mobile accelerations as a 
function of mobile speed........................................................................... 130

4.13 The percentage normalized radio frame length as a function of carrier 
frequency. This is a fundamental result which is independent of the mo-
bile speed, acceleration and the absolute time index n as long as these 
parameters are assumed to be the same for f c ^  2 GHz and f c = 2 GHz. 131

4.14 The normalized percentage payload per second (after 1 sec) as a func-
tion of carrier frequency for different mobile accelerations assuming the 
symbol rate as that of GSM and mobile speed as 72 km/hr......................  132



List of Figures xxiii

4.15 The instantaneous integrated radio frames per second for different fre-
quencies and mobile accelerations. The symbol duration Ts = 20 micro 
second................................................................................................................  133

4.16 The percentage increase in integrated radio frames per second (assuming 
nTs = 1 second) for different frequencies as compared to f c = 2 GHz.
The results are given for different accelerations as a function of mobile 
speed. The symbol duration Ts = 20 micro second..................................... 134

4.17 The normalized integrated payload per second (after 2 sec) as a function
of carrier frequency assuming the symbol rate as that of GSM and mobile 
speed as 50 km/hr.............................................................................................. 135

4.18 The normalized percentage integrated frame overhead per second (after 
2 sec) as a function of carrier frequency for different mobile acceler-
ations assuming the symbol rate as that of GSM and mobile speed as
100 km/hr...........................................................................................................  136

5.1 The transmitted frame format: Ts is the data symbol duration, Tp denotes
pilot symbol insertion factor, the number of zeros (or, equivalently, un-
used d o f ) is equal to A4 — 1 where the factor A4 is the upsampling 
factor................................................................................................................... 142

5.2 The proposed scheme: The pilot symbols extracted from filtered se-
quence of received symbols are passed through Wiener smoother to get 
improved channel estimates at data symbol locations..................................  143

5.3 The spectra of the channel and the noise. We assume that the pilot sym-
bols are all set to 1............................................................................................  146

5.4 Impact of SNR and normalized fading rate on MMSE gain (Qu) for dif-
ferent A4 ........................................................................................................  152

5.5 The plot of the difference in gains offered by the proposed scheme in
uniform and Clarke’s Doppler spectra as a function of S N R .................... 153

5.6 MMSE gain for different A4 in low SNR regime with / d  =  0.005 and
K  = 1 for uniform and Clarke’s spectra.......................................................  154

5.7 Impact of oversampling factor K  on MMSE gain for uniform Doppler 
spectrum with and without PE. Notice that increasing K  shifts the MMSE 
peak towards lower SNR implying that using larger K, better MMSE 

performance can be achieved at lower SNR. Also observe that PE raises
the peak gain by the same amount for all K .................................................  155

5.8 Impact of normalized fading rate, Ad on MMSE gain {Q) with and with-
out PE for A4 =  10whenpp=  {—4 0 ,—15, 0}dB. The Doppler spectrum
is assumed to be uniform.................................................................................  156



XXIV List of Figures

5.9 Impact of varying pilot insertion period Tp on MMSE gain with for dif-
ferent pp when / d  = 0.005 and A4 = 2 both for uniform and Clarke’s 
spectra.......................................................................................................  156

5.10 Effective optimal p and £ for PE and DE assuming 7opt = 2Mfr>. The 
corresponding optimal p and ( for non-peaky signaling are also shown. 162

5.11 A comparison of Gaussian signaling capacity lower bound for the pro-
posed schemes and NP scheme for A4 = 20 and / D = 0.005. The per-
fect CSI capacity of Rayleigh fading channels is also shown as a bench-
mark..........................................................................................................  164

5.12 The plot of C ^E — C$JP for different A4..................................................  165
5.13 The plot of C ^E — C ^p for different f D ................................................ 166
5.14 A comparison of Gaussian signaling capacity lower bounds at low SNR. 167
5.15 The impact of A4 and SNR on the percentage rate gain 7Zg for NE, PE 

and DE cases. Note that absolutely optimal 7 and corresponding p have
been considered........................................................................................  168

5.16 C[b for PE and DE cases. Observe that, in general, the optimal 7 is a
vector where each element corresponds to a particular p .........................  169

5.17 Optimal 7 as a function of p for PE and DE cases...................................  171
5.18 The percentage rate gain 7Zg as a function of optimal 7 and p for PE and

DE schemes..............................................................................................  172
5.19 The impact of A4 on optimal 7 and p for PE and DE cases. The observed

‘symmetry’ across p = 0.5 is a result of very low SNR...........................  173
5.20 The impact of p on optimal 7 and p for PE and DE cases when A4 = 2

and / D — 0.01. Observe that with an increase in p , the optimal 7 for 
PE and DE tends to the minimum possible 7 , i.e., 2A4fv  (for all p) that 
satisfies the Nyquist criterion. The authors have verified that the value of 
p at which 7^  = 2A4fv  is different for PE and DE cases, and is always 
greater for DE case...................................................................................  174

5.21 The Monte Carlo simulation of the impact of normalized fading rate on 
percentage rate gain 7Zg for different p when A4 = 20 (PE case). Notice 
that the gain offered by the proposed scheme is independent of / D at
very low SNR which verifies the analytical result obtained in (5.61). . . 176

5.22 The impact of A4 on percentage rate gain 7Zg for different / d  when p =
— 15 dB. We can observe that the gains offered by the proposed scheme
depend on A4 and are different for different fading rates.........................  177

5.23 The impact of A4 on percentage rate gain 7Zg for different p when / D =
0.001.........................................................................................................  178



List of Figures xxv

6.1 A general scattering model for the frequency-selective SIMO system.
r )  is the random complex scattering gain for the waves arriving in 

direction ß  with delay r  at the receiver aperture. x p is the location of the 
pth receive antenna relative to the receiver origin ‘O’ and p = 1, • • • , n R 

and . rR >  m ax||ajp|| is the radius of the sphere which encloses the 
receiver antennas. Scatters are distributed outside of the sphere with 
radius rRR > rR and assumed they are in the farfield from the receiver 
antennas.............................................................................................................  184

6.2 Absolute value of the space-frequency correlation function (6.11) across
subcarriers on two receive antennas placed d =  0.25A apart for the IP 
uplink model (Fig. 3 in [4])............................................................................  192

6.3 Absolute value of the space-frequency correlation function (6.11) across
subcarriers on two receive antennas placed d =  0.25A apart for the IP 
downlink model (Fig. 5 in [ 4 ] ) ....................................................................  193

6.4 Absolute value of the space-frequency correlation function (6.11) across
subcarriers on two receive antennas placed d — 0.25A apart for the ellip-
tical scattering model (Fig. 5 in 1 5 ] ) ........................................................... 194

6.5 Contour plot of the space-frequency correlation function shown in Fig.
6.2 for the uplink inverted-parabolic model.................................................. 195

6.6 The contour plot of the space-frequency envelope correlations for truncated-
uniform and von-Mises (black lines) azimuth power distributions for 
broadside antenna orientation. The angular spread is assumed to be 5°. . 198

6.7 The contour plot of the space-frequency envelope correlations for truncated-
uniform and von-Mises azimuth power distributions for ßQ = 45° assum-
ing angular spread as 5°................................................................................... 199

6.8 The impact of angular spread of the scattering on the space-frequency 
correlation function for truncated-uniform distribution. The correlation 
contour value is assumed to be fixed at 0.5 and the mean scattering angle

is 45°.................................................................................................................. 200

6.9 The effect of changing mean scattering angle on space-frequency enve-

lope correlation of von-Mises distribution. The correlation contour value 
is assumed fixed at 0.7 and the angular spread is assumed to be 5° that
corresponds,to Kr  =  130 for von-Mises distribution................................... 201

6.10 A comparison of space-frequency trade-off characteristics for truncated-
uniform, Gaussian, Laplacian and von-Mises distributions ................... 202



XXVI List of Figures

D.l RHS of Eq. (D.20) as a function of pp highlighting maximum of Qc 
(MMSE gain with Clarke’s isotropic scattering model). It may be ob-
served that pp = —4.65 dB and —7.1 dB result in maximum MMSE 
gains respectively for M  = 2 and 6..........................................................225



List of Tables

2.1 Scattering Coefficients 7m for truncated-uniform, truncated-Gaussian,
cosine, von-Mises and truncated-Laplacian power distributions. \ß — 
ßo\ < 7r represents the support of AOA distribution for all scattering 
environments except the truncated-uniform environment........................... 37

3.1 Typical values of angular spread (A) at 1800M H z.................................... 64
3.2 Typical values of A at 900M H z....................................................................  65

xxvii



Chapter 1

Introduction

1.1 Background and Motivation

The mobile wireless communications lies at the helm of the explosive research in the 
field of telecommunications towards realizing the ultimate communications dream — 
the ubiquitous access to information, anywhere, anytime. The wireless communications 
offers many advantages over wired communications. One of the major advantages of 
wireless communications is the mobility — the communications source (the transmitter) 
and the destination (the receiver) can communicate while on the move. The realization of 
the communications dream, therefore, implicitly necessitates communications, at least 
somewhere in the system architecture, over wireless medium. Moreover, the simplic-
ity and cost effectiveness in addition to the possibility of communications over longer 
distances make wireless communications really attractive as compared to wired commu-
nications. The wireless medium, however, is uncontrollable and unpredictable causing 
time-varying random attenuation (fading) of the transmitted signal. The reliability of the 
wireless link has to be improved with the help of different techniques like, for example, 
signal diversity, channel estimation, coding and equalization at the receiver.

The performance of different techniques to mitigate the random time-varying fading 
of the transmitted signal caused by the unpredictable wireless medium relies mainly on 
how good we know the instantaneous channel realization, i.e., the channel state informa-
tion (CSI). The availability of reliable CSI is of fundamental importance for the reliabil-
ity of the communications system. The perfect knowledge of CSI, however, is practically 
impossible to obtain. There are many ways to facilitate the receiver in forming an esti-
mate of CSI. The different techniques for CSI estimation can be broadly classified into 
blind, semi-blind and pilot-aided [6]. The blind CSI estimation technique relies solely 
on the channel statistics without using any pilot symbols. The pilot-aided channel es-
timation (PACE) uses known pilot symbols inserted in the transmitted stream to form
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the channel estimate. The semi-blind estimation scheme is a combination of blind and 
pilot-aided techniques. The performance of PACE is superior to the other two techniques 
at the cost of system bandwidth and power that has to be allocated to pilot symbols. The 
channel estimates at pilot symbol instants obtained through PACE are interpolated to 

obtain estimates at data symbol instants. If the channel statistics are utilized in the pro-
cess of interpolation, e.g., using Wiener filter, the PACE scheme actually falls into the 
category of semi-blind estimation.

The emerging wireless communications standards specify higher carrier frequencies1 
with higher data rates in mobile environments. The communications at higher carrier fre-
quencies is more sensitive to the the relative movement of user and the environment. As 
a possible remedy to this increased sensitivity, the emerging wireless standards specify 
shorter frame lengths over which the channel is assumed to be constant. The channel is 
estimated by sending pilot symbols resulting in reduced time for information transmis-
sion. Since the frame overhead and, perhaps, the number of pilots for channel estimation 
are to remain constant, communications at even higher carrier frequencies with mobility 
would require further reduction in the payload. The pilot-based technique of channel 
estimation might become infeasible in view of the promises of very high data rates in 
the future wireless communications systems. Such communications systems may have 
to rely on channel statistics and other redundancies in the transmissions to improve the 
overall performance of the communications systems. The channel statistics are a func-
tion of the structure of the propagation environment and the mobile dynamics 110-12]. 
The efficient utilization of channel statistics, therefore, depends strongly on the accuracy 
of the underlying mathematical model to describe the wireless propagation. However, 
the evaluation of the design of communications systems using computer simulations be-
fore its implementation has become a norm which requires the channel model to be of 
manageable computational complexity [13]. The accuracy of a particular channel model 
has, therefore, to be traded off with its computational complexity.

In most cases, it is desirable for a designed communications system to work in ma-
jority of all envisioned locations, not just in a single, specified place [14]. Statistical 
channel modeling is a preferred approach in such cases offering sufficient accuracy 
at significantly reduced complexity as compared to deterministic approaches. A well 
known statistical channel model is the classical Clarke model for single-input single-

output (SISO) narrowband mobile radio reception [2] that models the channel process 
as a complex Gaussian channel process and, equivalently, its envelope as Rayleigh dis-
tributed. The main assumption of this model is the isotropicity of the scattering environ-

1 IThe IEEE 802.16e standard also known as mobile Worldwide Interoperability for Microwave Ac-
cess (WiMax) specifies mobile communications at carrier frequencies from 2-11 GHz in non-line-of-sight 
(NLOS) environments [7-9].
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ment which implies a uniform probability distribution function (pdf) of angle-of-arrival 
(AOA) in the full azimuth and, hence, uniform azimuth (or angular) power distribution 
(APD). This model, applicable only to rich urban radio reception, is based on an over-
simplification of the AOA probability and the scattering environment as has been argued 

and experimentally demonstrated (see [15] and references therein) that the scattering 
encountered in many suburban and rural environments is non-isotropic, i.e., the pdf of 
AOA of waves is not always uniform as assumed in [2]. The use of a directional an-
tenna with non-uniform gain pattern at the receiver also results in non-isotropic APD. 
The measurements have shown that scattering in vehicle-to-vehicle communication is 

also non-isotropic [16, 17]. Commonly non-isotropic APD has been shown to be well 
modeled by truncated-uniform (isotropic), truncated Laplacian [18], truncated Cosine, 
truncated Gaussian [19] and von-Mises distribution [15]. Several statistical models exist 
in literature, for SISO and multiple-input multipleoutput (MIMO) systems, modeling the 
non-isotropicity of the mobile radio reception where either the antenna or the scattering 
environment is non-isotropic (directional) and the probability of AOA is either uniform 
or non-uniform [1,15,20-29]. A generalization of the Clarkes model from narrowband 
to wideband was presented in [28]. Unlike Clarkes model where the scatterers are as-
sumed to be uniformly distributed on a ring, it was assumed in [28] that the scatterers 
are uniformly distributed on an ellipse with the transmitter and the receiver positioned on 
the two foci of the ellipse. This structure of the scattering environment gave rise to non- 
uniform pdf of AOA over the whole azimuth. It may be emphasized that, in its current 
form, this model does not support scatterers distribution over a limited azimuth. Another 
generalization of [2] has been reported in [15] where the pdf of AOA is modelled as von 
Mises distribution. Yet another two somewhat similar generalizations of [2] to gen-
eral 3D scattering environments (characterized by uniform or non-uniform pdf of AOA), 
which are related to our work, were recently presented in [ 1,29,30] based on spherical 
harmonics expansion of the plane wave propagating in 3D. These 3D generalizations 
do include SISO 2D scattering environments as special case but, however, the equiva-
lent expressions obtained thus may be computationally expensive. In [1], for example, 
the following expression for 2D Doppler spectrum in isotropic scattering environment 

equivalent to Clarkes spectrum [2] was derived

where ccd — 27t / d  is the Doppler spread of the spectrum normalized to the symbol 
rate 1/TS, / D is the normalized maximum Doppler frequency also known as normalized

( 1 . 1 )
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fading rate and Pq(x ) is the Legendre polynomial of degree 0 and argument x.

The equivalent Clarke’s 2D Doppler spectrum defined in (1.1) (with 6 < 10) and 
original Clarke’s 2D spectrum derived in [2] (Eq. (2.25)) have been plotted in Fig. 1.1. 
The computation time for the equivalent spectrum and the original Clarke’s model was 
respectively 10.64 and 1.6 seconds. We, in this thesis, seek to develop a generalized 
Clarke model for SISO mobile radio reception assuming 2D scattering at the outset, to 
avoid increased complexity, rather than deriving it as a special case of 3D character-
izations. We do this, firstly, because in many practical communications scenario, the 
waves can be safely assumed to be arriving only from the azimuth. Secondly, the spec-
tral representations is useful for real-time estimation of the mobile to facilitate hand-off 
decisions [31] and mobility management in future ad hoc cellular networks [32]. It is 
therefore desirable to have spectral representation with less computational complexity.

The Clarke’s 2D spectrum is obtained in its original form as a special case of the 
derived generalized 2D Clarke’s model (Chapter 2). The generalized Clarke’s model is 
then used to explore the impact of mobile direction of travel on channel statistics and 
overall system performance which has not been adequately addressed previously. To 
the best of authors’ knowledge, there is no generalization of Clarke’s model to constant 
mobile acceleration scenario which is becoming more relevant particularly, as we dis-
cuss in detail in Chapter 4, for future communications systems. Finally, the motivation 
behind our development of space-frequency cross correlation (SFCC) model (Chapter 
6) for orthogonal frequency division multiplexing (OFDM) based space-frequency se-
lective channels in general scattering environments is the fact that MIMO-OFDM has 
been specified as the technology of choice for most emerging wireless communications 
standards [7,33,34]. The SIMO-OFDM model derived in this thesis is easily extendable 
to MIMO-OFDM following the approach developed in [35].

Thus, on the basis of the preceding discussion we have identified the following basic 
questions not thoroughly addressed previously:

How to generalize the classical 2D Clarke model of narrowband mobile radio re-
ception i)from isotropic scattering environment to general scattering environments and 
ii) from mobile motion with constant velocity to accelerating mobile scenario? How 
and when is it really important to have the perfect knowledge of the type of scattering 
environment and mobile dynamics? What impact will an accelerating mobile have on 
Rayleigh fading statistics and communications system performance?

Our approach to answer these questions is based on modal decomposition of the 
plane waves employed in [1,24,30,36] for 3D characterization of wireless channels. An 
important difference between previous 3D generalizations of Clarkes model discussed 
above and ours is that we use circular harmonics expansion for 2D plane wave propa-
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Using Proposed Model 
........... Using 3D Model

1.60 sec
-----10.6 sec

Normalized frequency (f/f )

Figure 1.1: A comparison of computational complexity of the proposed 2D model and 
the one derived from 3D model [1]. The convergence of the latter model to the true 
Clarke’s U-shaped spectrum [2] is not achieved even after 10.6 seconds.

gation as opposed to spherical harmonics expansion suitable for the expansion of plane 
waves propagating in 3D. The same modal decomposition technique is used to develop 
a SIMO-OFDM space-frequency selective model that is applicable in general scatter-
ing environments. We also study the impact of mobile velocity and non-isotropicity on 
channel statistics and system capacity — an important well known information theo-
retic measure with units of bits/sec—following the approach of [37]. The impact of 
mobile acceleration on the performance of communications systems is analyzed and a 

PACE based transmission scheme is developed which results in significant improvement 
in performance of PACE and communications systems. The most important assumption 
throughout this thesis is that we have the perfect knowledge of channel statistics and 
mobile dynamics. Therefore, the main theme of this thesis can be described as the role 
of the knowledge of the scattering environment and mobile dynamics in communications 
over Rayleigh fading channels in general scattering environments.
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1.2 Radio Wave Propagation and Modeling: Preliminar-
ies

In a wireless communications link, the transmitted radio frequency (RF) signal travels to 
the receiver along a number of different paths, collectively known as multipath, due to 
scattering, reflection and diffraction from different obstacles or refraction of the wireless 

medium itself [11].

Reflection

The reflection occurs when the propagating electromagnetic waves bounce off objects 
with dimensions larger than the wavelength of the wave, e.g., the earth surface, build-
ings, walls etc.. The waves are perfectly reflected if such objects are perfect conduc-
tors. For objects with imperfect conduction property, the waves are partially absorbed 
and partially reflected resulting in a loss of wave energy. The electric field intensity of 
the reflected and absorbed waves is related to the incident waves through the Fresnel 
correlation coefficient which depends on the wave polarization, angle of incidence and 
frequency of the propagating wave [38].

Diffraction

The diffraction of electromagnetic waves can be be explained by the Huygens principle, 
which states that all points on a wavefront can be considered as point sources for the 
reproduction of secondary wavelets which combine to produce a new wavefront in the 
direction of propagation [38]. It is the diffraction phenomenon which allows the radio 
waves to propagate beyond the horizon and behind obstacles.

Scattering

It occurs when a radio waves impinges on objects with rough surface such as lampposts 
and trees. The incident energy on such objects is scattered (diffused) in all directions. 
It is the scattering phenomenon which explains stronger received signal strength than is 
predicted by the reflection and diffraction models alone.

1.2.1 Types of Fading

The reflection, diffraction and scattering of electromagnetic waves results in attenuation 
(fading) of the transmitted signal as it travels to the receiver. The signal fading as a
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result of wireless transmission can be classified as path loss, long-term (slow) fading 
(also called shadowing) and short-term (fast) multipath fading.

The path loss is the reduction of radiated energy as a function of the distance between the 
transmitter and the receiver. In ideal free space propagation, the transmitted energy loss 
is proportional to the inverse square of the separation between transmitter and receiver 
so that the received signal power is given as [39], i.e.,

where Pr, Pt are the received and transmitted signal power, Ac =  c / f c is the carrier 
wavelength ( / c is the carrier frequency and c is the speed of light), D s is the separa-
tion distance between the transmitter and the receiver, and Gt and Gr are the transmit 
and receive antenna power gains. In cellular environments, the path loss exponent is 
4 implying a power loss of 40 dB/decade. In real world environments the path loss 
exponent may vary from 2.5 to 6 [ 11]. If the envelope (or squared-envelope) of the re-
ceived signal is measured over a distance of several wavelengths, the mean envelope (or 
squared-envelope) can be obtained. This mean quantity is sometimes called local mean 
corresponding to a particular locality. If the local mean is averaged over sufficiently large 
spatial distances, the area mean{average signal strength) is obtained which is directly re-
lated to the path loss. The variation in the area mean is dictated by the path loss [40]. 
It may be mentioned here that the path loss in a wireless link is usually overcome by 
automatic gain control (AGC) [41] circuitry in the receiver.

Long-Term Fading

The long-term fading (also known as macroscopic fading and shadowing) which appears 
as a variation in the local mean is a result of shadowing of the receiver from the trans-
mitter due to terrain and buildings. The shadowing is generally modeled as log-normally 
distributed [42] which implies that the received signal power in decibel (dB) is normally 
distributed, i.e.,

Pathloss

( 1.2)

where x  (in dB) is a random variable representing the long-term signal power fluctuation, 
/x and a respectively are the mean and the standard deviation of x. The mean /i is, in fact, 
path loss. The time-scale of variation in long-term fading is much longer, typically on
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the order of many seconds or even minutes, making it possible to be overcome through 
AGC system.

Short-Term Multipath Fading

The constructive and destructive interference of multipath signals with random ampli-

tudes and phases results in short-term multipath fading [2, 11]. The time-scale of vari-
ation in multipath fading is much shorter, e.g., of the order of a packet or even a single 
transmission symbol. Signal fluctuations due to multipath fading can be as large as 40 
dB or more below the mean level with successive minima occurring every half a car-
rier wavelength or so. The short-term multipath fading effect is due to the scattering 
phenomenon.

1.2.2 Mathematical Modeling of Fading

There are three fundamental approaches to modeling the signal fading as a result of 
wireless propagationdeterministic, semi-deterministic and statistical.

Deterministic Models

The deterministic models incorporate the Maxwell’s equations and all propagation mech-
anisms to give a very accurate description of the channel impulse response. One such 
approach known as ‘ray tracing’ is based on the fact that if we know the propagation 
environment exactly, it should be possible to trace paths emanating from the transmitter 
to the receiver to obtain the channel complex response from the amplitudes, delays, po-
larizations and phases of the incoming waves [43^15]. The cost which has to be paid for 
the high accuracy of deterministic techniques is very high computational complexity and 
the requirement of the physical environment data, e.g., terrain and building databases. 
Other deterministic channel modeling techniques are based on the Uniform Theory of 
Diffraction and Geometric Theory of Diffraction [46].

Semi-Deterministic Models

Semi-deterministic modeling approach combines deterministic and statistical approaches 
to reduce the computational complexity of the determiniFstic models at the cost of some 
accuracy. COST231 Walfisch-Ikegami model [47] is one such semi-deterministic chan-
nel model used for path loss prediction in an urban environment. It uses site-specific data 
such as building height, street width, block size and direction of the streets to capture 
propagation effects.
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Statistical Models

The statistical approach for channel modeling is more flexible and less complex than 
deterministic and semi-deterministic approaches providing sufficiently accurate channel 

information. These models attempt to generate artificial channel responses as represen-
tative of real world propagation channels. Such models assume that the signals arrive 
at the receiver according to a specific statistical distribution. The Okumura-Hata model 
for path loss calculation [47] and the Clarkes model for multipath fading [2] are two 

examples of statistical channel models. This thesis is devoted to statistical modeling 
of multipath fading and assumes that the path loss and long-term fading are perfectly 
compensated at the receiver through AGC and/or power control at the transmitter. We 

describe below a brief background on statistical modeling of multipath channel fading.

1.2.3 Statistical Modeling of Multipath Fading

The literature on statistical modeling of multipath fading is quite rich. Depending on the 
carrier frequency and propagation environment, several models exist for the statistical 
characterization of the impact of multipath fading on the envelope of the received signal, 
e.g., Nakagami, Weibull, Rayleigh and Rician distributions [48]. However, Rayleigh and 
Rician fading models are more popular due to their mathematical tractability and confor-
mance with the measurement data in sufficiently rich scattering environment. The defi-
nition of sufficiently rich scattering was investigated analytically by Beckmann in [49]. 
It was found that only a small number of arriving waves with their phases uniformly 
distributed over [—7r, i t ] and independent of their magnitudes is sufficient for the distri-
bution of the received signal to be approximately complex Gaussian and its envelope 
to be approximated as Rayleigh distributed. This fact was substantiated by Jakes [39] 
who developed a deterministic model to simulate Rayleigh fading where only 9 waves 
were found to be enough for sufficient accuracy of the simulated Rayleigh fading. The 
accuracy of approximation improved as the number of arriving waves was increased.

Multipath Rayleigh Fading

The first statistical multipath fading model was presented in [50] for mobile radio re-
ception in a suburban area with a line-of-sight (LOS) path between the transmitter and 
the receiver based on the reflection principle. Clarke [2] presented a more flexible sta-

tistical characterization of multipath fading based on scattering assuming sufficiently 
large (ideally infinite) number of equally strong 2-dimensional (2D) stationary scatterers 
around the mobile receiver moving with constant velocity v with no line of sight (LOS) 
path between the transmitter and the receiver. As discussed before, the probability of
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angle-of-arrival (AOA) of scattered waves was assumed to be uniform over the whole 
azimuth which implies that the APD of the scattering environment is isotropic. It was 

further assumed that the phase of each impingent electromagnetic wave is independent 
of its magnitude and is uniformly distributed over [—7r, zt]. As a result of the central limit 

theorem (CLT), the in-phase (real) and the quadrature (imaginary) components of the re-
ceived signal happened to be independent zero-mean stationary Gaussian processes with 
identical variances. Equivalently, the received signal was a zero-mean complex Gaussian 
process and the envelope r  G 5?+ of the received signal was Rayleigh distributed (Fig. 
1.2) [11], i.e.,

/M = Y exp (~Y J (]-4)

where T is the average received power an u (r ) is the unit step function defined as

u(r)
1, r > 0;
0, otherwise.

Multipath Rician Fading

If there is a LOS between the transmitter and the receiver in addition to diffuse scatter-
ing, the mean of the received complex Gaussian signal is non-zero resulting in Rician 
distributed envelope [11], i.e.,

Hr)  -  „ P  ( - K  -  »(,), (1.51

where K  is the Rician factor — the ratio of the power of the LOS component to the 
power of the scattered component — and 70 is the modified Bessel function of the first 

kind of order zero defined as

1 f 2n
Iq = —  / exp (—X cos 6) dO (1.6)

2tt Jo

1.3 Multipath Rayleigh Fading: Dependence on Scatter-
ing Environment

The zero-mean complex Gaussianity of the channel process in sufficiently rich scatter-
ing environment allows the channel process to be fully described by its second order 
statistics which depend directly on the structure of the scattering environment [10-12].
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Figure 1.2: A Rayleigh distributed envelope of the time-varying complex Gaussian chan-
nel process when the highest Doppler frequency is 100 Hz.

Throughout this thesis (except in Chapter 4), we shall assume in general that the scatter-
ing, isotropic or non-isotropic, is statistically homogeneous [11] wide-sense-stationary 
uncorrelated, i.e., WSSUS scattering [33]. The chapters in this thesis devoted to narrow- 
band channel modeling do not require WSS part of the assumption. Notice that the sta-
tistical homogeneity implies that the scattering is uncorrelated in the angle domain, the 
WSSUS assumption implies that the channel is WSS in the time and frequency domains 
and uncorrelated scattering (US) assumption implies that the scattering is uncorrelated 

in the delay domain.

1.3.1 Isotropic Scattering: Uniform and Non-Uniform AOA

The two main assumptions in the Clarkes model [2] are that the scattering around the mo-

bile receiver is isotropically random and, equivalently, the probability of AOA of waves 
impingent on the receive antenna is uniform over [—7r, i r]. Moreover, the scatterers are 
assumed static and time variation in the channel between transmitter and the receiver is 
due solely to the motion of the receiver. These assumptions result in a time-varying sta-
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tionary Rayleigh fading channel with the following real-valued envelope autocorrelation

<D(Af) =  T  J0(udAt), (1.7)

where At  is the separation in time, J 0(-) is the Bessel function of the first kind and order 
zero, and LJd is the Doppler spread (in radians per second) of the received signal Doppler 
spectrum

ud = v\v\ =  ^-\v \  =  27T— |v |, (1.8)
Ac c

where / c is the carrier frequency (in hertz (Hz)), Ac is the carrier wavelength (in meters 

(m)), 7/ is the free space phase constant of the electromagnetic wave, c is the speed of light 
and |v| is the speed of the mobile receiver. The power spectral density (PSD), <T(c j), of 
the received baseband random complex Gaussian signal is related to the autocorrelation 
(Eq. (1.7)) through the Fourier transform (Wiener-Khintchine theorem [51]) as follows

$(<*/) =
2 , \ u \  <  u j d ;

0, otherwise.
(1.9)

Notice that <f>(cj) is U-shaped symmetric about uj = 0, which is a consequence of the 
real-valued autocorrelation. The extension of Clarkes model [2] to uniform scattering 
in 3D by the same author was presented recently in 152]. The channel autocorrelation 
function in 3D isotropic scattering is given by

=  smc{uJdAt) ( 1. 10 )

where sinc(-) is defined as

sinc(x) A sin(rr)
x ( 1 . 1 1 )

The PSD of the received random signal in 3D isotropically random scattering is then 
given by the Fourier transform of (1.10) as

rect(<d) 
2  Ldd

( 1 . 12 )

where rect(-) is the rectangle function.

The assumption of uniform distribution of AOA of waves in the full azimuth was re-
laxed in [28] by allowing the scatterers to be uniformly distributed on an ellipse (instead 

of a circle) with the receiver and the transmitter positioned on the foci of the ellipse.
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The resulting channel was time and frequency selective and the distribution of AOA of 
waves was non-uniform. As a consequence of non-uniform AOA distribution, the chan-

nel statistics were shown to depend on mobile direction of travel.

1.3.2 Non-Isotropic Scattering: Uniform and Non-Uniform AOA

It has been argued and experimentally demonstrated that the scattering encountered in 
many suburban and rural environments is non-isotropic [15,18,19,53-55] and the dis-

tribution of AOA of waves is not always uniform [23,28,56-61]. The measurements 
have also shown that scattering in a vehicle-to-vehicle communication wireless link is 
also non-isotropic [16, 17]. The non-isotropicity of the scattering environment could 
well be due to the directionality of the mobile (smart) receive antenna [62, 63]. As 
pointed out earlier, only a small number of roughly equally strong arriving waves with 
phases uniformly distributed over [—7r, 7r] and independent from the magnitudes of arriv-
ing waves is sufficient for the channel process to be complex Gaussian and, equivalently, 
its envelope to be Rayleigh distributed. This implies that it is possible for the enve-
lope to have Rayleigh statistics even when the scattering is non-isotropic (with either 
uniform or nonuniform AOA of waves). The assumption of isotropic scattering in the 
Clarkes model is, therefore, an oversimplification that simplifies the mathematical treat-
ment of the subject. Commonly non-isotropic APD has been shown to be well modeled 
by truncated-uniform (isotropic), truncated Laplacian [18], truncated Cosine, truncated 
Gaussian [19] and von- Mises distribution [15]. Several other models exist in litera-
ture, for SISO and multiple-input multiple-output (MIMO) systems, which are based 
on the non-isotropicity of the mobile radio reception with either non-isotropic receive 
antenna or the scattering environment and the probability of AOA as either uniform or 
non-uniform [ 1,20-27,31].

To the best of authors knowledge, no unified framework exists for time-selective 
SISO (or MIMO) and OFDM based time-invariant space-frequency selective channels 
which could allow arbitrary APD (or AOA distribution of impingent waves) around the 
receiver. It is therefore of some interest, firstly, to develop such model for these chan-
nels which may be applicable in any scattering environment with arbitrary APD and, 
secondly, to know as to how much the knowledge of a particular scattering environment 
which improves the accuracy of the channel statistics adds to the overall performance 

of the non-coherent communications system (Chapter 3)7 In communications systems 
where instantaneous CSI is unavailable, the statistics of the received signal are of funda-
mental interest for reliable demodulation and subsequent decoding of the received signal. 

Since the statistics of the channel are controlled by the scattering environment [64], the
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knowledge of the non-isotropicity (or, equivalently, the angular spread2(AS)) and the 
non-uniformity of the distribution of AOA are essential for better estimates of the chan-
nel process. This thesis in part is devoted to the development of SISO time-selective 
channel model (Chapter 2) and OFDM based space-frequency selective time-invariant 
channel models applicable in general scattering environments (Chapter 5).

1.4 Non-Stationary Mobile Rayleigh Fading Channels

The Clarkes model assumes that the mobile receiver has a constant mobile velocity. 
As a consequence of this assumption, the second order statistics of complex Gaussian 
channel process are time-invariant. In other words, the channel process is stationary 
when the mobile receiver has constant speed and the direction of mobile travel. The 
assumption of constant mobile velocity which obviously has limited validity is yet an-
other idealization in the Clarkes model. A mobile moving with constant acceleration 
(or deceleration which is, in fact, negative acceleration) corresponds better to physical 
reality [66]. Therefore, it may be of some interest to explore the channel statistics when 
the assumption of constant mobile velocity is relaxed and the mobile is allowed to have 
constant acceleration implying a time-variant velocity and, hence, second order chan-
nel statistics. In other words, the motion of mobile with constant acceleration makes 
the channel process non-stationary. Chapter 4 in this thesis is devoted to the derivation 
of non-stationary channel statistics and its impact on the performance of non-coherent 
communications systems.

The mobile acceleration is taken due care of in the performance evaluation of ad 
hoc cellular networks because mobile acceleration affects many network parameters like 
the design of strategies for location updating and paging, quality-of-service (QoS), ra-
dio resource management (e.g., dynamic channel allocation schemes), technical network 
planning and design (e.g., cell and location area layout, network dimensioning). These 
sensitivities affect the performance of the network as a whole, and affect the ability to 
accomplish the mission assigned to a specific participant [67]. However, to the best of 
authors knowledge, the impact of mobile acceleration on channel statistics and, hence, 

on overall performance of single-user communications has not been studied so far in the 
literature. The reason behind this seems to be the fact that in the state-of-the-art commu-
nications systems the channel is estimated based on a very small segment of transmitted 
data frame typically of the order of a millisecond (msec) or less, e.g., the channel esti-
mates in a GSM system are refreshed every 577 micro-sec. Due to mass inertia effect, 

the change in acceleration for such very short bursts of transmission is negligibly small.

2Angular spread (AS) is defined as the standard deviation of APD of the scattering environment [65].
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As discussed earlier, the emerging wireless communications standards specify higher 
carrier frequencies with higher mobility so that the duration of the transmission bursts 
has to be made even shorter. Such short duration bursts may not allow the transmission 
of known pilot symbols (as, for example, in GSM) to facilitate channel estimation at 

the receiver and, therefore, future designs may have to incorporate non-coherent chan-
nel estimation strategies which might require longer observation periods for sufficiently 

reliable channel estimates. In such scenarios, the impact of mobile acceleration on the 
performance of communications systems may be significant. In Chapter 4 we study the 
effects of mobile acceleration on mobile Rayleigh fading statistics and derive Wigner- 

Ville distribution (WVD) [68] and mean instantaneous power spectrum (MIPS) [69,70].

1.5 Mobile Rayleigh Fading Channels: Input-Output

The transmission of a communications signal through wireless medium suffers from fre-
quency, time and angular dispersion. The dispersion in frequency (time-selectivity) is 
due to the Doppler effect as a result of motion of the mobile receiver. This implies that if 
a pure tone is transmitted, the received signal would have finite spectral bandwidth. The 
dispersion of the transmitted signal in the time domain (frequency selectivity) is due to 
the higher transmitted signal bandwidth than the channel coherence bandwidth". Equiv-
alently, if the signal bandwidth is sufficiently large as compared to the reciprocal of the 
root-mean-square (rms) delay spread3 4 r rms, the signal spreads in time causing intersym-
bol interference (ISI). This implies that a single transmitted pulse looks like a series of 
pulses at the receiver. The angular spread at the receiver is due to physical scattering en-
vironment around the receiver. Mathematically, the standard baseband equivalent form 
of input-output (I/O) relationship in a wireless channel at time t is given as

where r(t) and s(t) respectively are the channel output and input, and h{t,r)  denotes 
the channel response at time t and delay r  . The sign * represents the linear convolution 
operator. Equations (1.13) and (1.14) are normalized such that channel, input and noise

3At this point, it suffices to mention that the channel coherence bandwidth is qualitatively defined as 
the frequency range over which the channel remains highly correlated.

4The rms  delay spread Trms is defined as the standard deviation of the multipath power-delay profile 
which is defined as the distribution of power in the delay t  domain (see, for example, [71]).

Model

r{t) = yfp h(t, t ) * s{t) +  z{t), ( 1. 13 )

( 1.1 4 )
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processes are all of unit variance so that represents the signal-to-noise ratio (SNR). The 
main assumption underlying (1.13) and (1.14) is that the transmitted signal bandwidth 
is higher than the channel coherence bandwidth, i.e., the transmitted signal is wideband 
which causes the signal spread in the delay domain. The frequency and angular disper-

sions5 are implied in the notation h(t,r)  and would become evident later in the thesis. 
In fact, the angular (and time) dispersion shall be assumed to be time-invariant thereby 
implying that the time variation in the channel is only due to the Doppler effect, i.e., the 

motion of the mobile receiver.

If, on the other hand, the signal bandwidth is less than the channel coherence band-

width, i.e., the signal is narrowband, the convolution operator in (1.13) and (1.14) be-
comes multiplication implying no spread of the signal in delay domain. Mathematically, 
the channel I/O relationship for narrowband transmission is then given as

r(t) = y/ph(t)s(t) +  z(t), (1.15)

The discrete-time equivalents of narrowband and wideband I/O models shall be dis-
cussed respectively in Chapters 2 and 6.

1.6 Capacity of Mobile Rayleigh Fading Channels

As pointed out earlier, when no CSI is available at the receiver, it has to be estimated by 
the receiver on the basis of channel statistics which, in turn, depend directly on the 
scattering environment around the mobile receiver. We, in this thesis, claim that if 
the scattering around the mobile receiver is non-isotropic, the knowledge of the non- 
isotropicity of the scattering environment has quite noticeable impact on our knowledge 
of temporally correlated channel statistics. A comparison of two scattering scenarios 
based on channel statistics is obviously not as informative as their comparison on the 
basis of overall performance of the communications system. This is where an important 
information-theoretic function called capacity becomes useful. A better knowledge of 
channel statistics is translated into better channel estimation and, hence, higher achiev-
able information communication rates. If we can derive the achievable rates for different 
scattering environments, a quite meaningful comparison in terms of channel capacity 
can be drawn.

The problem of Rayleigh fading channel capacity with no CSI has been studied for

\Sometimes the multipath powers in the angular and delay domain are jointly distributed, i.e., there 
is a particular power-delay profile corresponding to a particular AOA [4,5]. We shall use this joint angle- 
delay power distribution concept in Chapter 6 in the study of OFDM based space-frequency selective 
channel.
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some simplified models e.g., memoryless Rayleigh fading channel [72,73], block-fading 
Rayleigh fading channel [74,75], block MPSK channels [76] and finite-state Markov 
channels [77]. The capacity achieving input signaling in noncoherent scenario has 
been shown to be discrete [72,73,78] which is in contrast to the perfect CSI scenario 
where continuous Gaussian inputs are optimal. The channel capacity for time-selective 
Rayleigh fading channels has been studied in [37,79]. The impact of scattering environ-
ment on the Rayleigh fading capacity is captured in [79] through the rank of the channel 
covariance matrix without considering a specific scattering environment. In [37], the 
scattering environment is assumed to be isotropic and the achievable rates over the re-
sultant Rayleigh fading channel are studied for two types of independent and identically 
distributed (i.i.d.) input signaling distributions: Gaussian and MPSK. The structure of 
capacity achieving input distribution is not studied in view of the difficulty of the prob-
lem and convenient upper and lower bounds to achievable rates are derived based on a 
no-CSI cost function.

The results in [37] are based mainly on the evaluation of a (normalized) no-CSI cost 
(penalty) function for MPSK signaling, p™rm — a function of the scattering environ-
ment and, equivalently, the eigenvalues of the channel covariance matrix — defined 
mathematically as (Section 3.3)

where N  is the length of transmitted symbol sequence, log is the natural logarithm and 
Ai is the zth eigenvalue of the channel covariance matrix. Notice that P™rm represents 
an upper bound to no-CSI cost function which implies that no-CSI cost for Gaussian 
signaling is less than P£orrn [37]. Fig. 1.3 shows the behavior of no CSI cost function as 

a function of block length of transmission. The cost for unknown CSI is maximum when
only one symbol is used which is in line with the intuition that the temporal correlation

•

in the channel process is useless if a single symbol is considered. The penalty due to no 
CSI reduces by «  77%, at / D =  0.01, when the channel is estimated on the basis of only 
10 symbols. The reduction in no CSI cost is not significant for block lengths greater than 

10 symbols.

1.6.1 No-CSI Cost Function

(1.16)
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Figure 1.3: No CS1 cost function as a function of block length of transmission.

1.6.2 Achievable Rates with Gaussian Signaling

The achievable information rates over mobile Rayleigh fading channels with Gaussian 

signaling IG{r, s) are given as

I g ( I*, S) >  C ftay ie ig h lp ) -  P $ (1.17)

where r and s are the channel output and input vectors of length N, and CWyieighM is 
the ergodic Rayleigh capacity per symbol [80] with perfect CSI

CWyieighM =  IEh {log ( l  +  z |^ |2)}  =  -  exp Ei , (1.18)

where E^x)  is the exponential integral defined as

exp(u)Hx) 4 r
j —<

du. (1.19)
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1.6.3 Achievable Rates with MPSK Signaling

The achievable rates for MPSK signaling, Ic{r, s), are given as

Jc(r;s) < Caw gn (p ) — p”orm5 (1.20)

where the AWGN capacity Caw g n (^) is defined as

Caw gn (^) — log(l +  x ) .  (1.21)

Notice that /<?(r, s) represents an upper bound to the achievable rates with MPSK sig-
naling. The no-CSI cost function Pgorm and achievable rates for Gaussian and MPSK 

signaling in general scattering environments are studied in Chapter 3.

1.7 Pilot-Aided Channel Estimation for Mobile Rayleigh
Fading Channels

The performance of a non-coherent communications system depends on the quality of 
CSI estimates. Traditionally, CSI is estimated by pilot-aided channel estimation (PACE) 
scheme in which known pilot symbols are multiplexed into the transmitted stream. At 
the receiver, these pilot symbols are demultiplexed out of the received symbol stream. 
The channel is estimated at pilot symbol instants which are then used to obtain estimates 
of CSI at data symbol locations through interpolation. Due to the presence of AWGN, 
CSI estimates at pilot symbols (and, hence, at data symbols) are imperfect. The quality 
of channel estimates at pilot symbol instants depends on SNR of pilot symbols. It is, 
therefore, always desirable to improve pilot symbol SNR either by enhancing power of 
pilot symbols or by reducing AWGN. Since power is a precious resource, we may not 
always have luxury to enhance power of the pilot symbols. So reducing noise to improve 
the quality of PACE is more desirable.

The optimal technique to reduce the impact of AWGN on CSI estimates at data sym-
bol instants is to use Wiener interpolator which is optimal in the MMSE sense and re-
quires the perfect knowledge of channel and noise statistics. The wiener interpolator 
effectively rejects out-of-band AWGN noise. It can be designed as an infinite impulse 
response (HR) or finite impulse response (FIR) filter. In IIR realization, it requires the 
perfect knowledge of channel spectrum (or, equivalently, channel autocorrelation at in-
finite lags). For FIR Wiener filter implementation, however, the requirement is of finite 
but perfect autocorrelation samples. The complexity of Wiener interpolator is very large 
due to its requirement of large number of pilot symbols for sufficiently accurate channel
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estimation making it impractical to implement. It is, however, very useful as a perfor-
mance benchmark for PACE-based communications systems. Many suboptimal inter-

polating schemes have been proposed in the literature. One such approach that requires 
perfect knowledge of channel and noise spectra proposes to use Wiener filter to low pass 

filter the pilot symbol sequence but use a linear interpolator. There are simple interpo-
lation schemes which do not require the knowledge of channel and noise spectra, e.g., 
Gaussian, raised-cosine, low pass windowed sine and frequency domain interpolation 
(see [81] and references therein).

A signal processing technique based on oversampling (or upsampling6) of the pilot 
symbols followed by filtering and subsequent downsampling was proposed and numeri-
cally analyzed in [82] in connection with Doppler frequency estimation. Assuming that 
the expected maximum Doppler frequency is known a priori, it was shown that the per-
formance of Doppler frequency estimation is significantly improved because of noise 
reduction at the cost of increased complexity at the receiver. This popular technique of 
oversampling of channel samples to improve estimator performance has been adapted 
from the concept of fractionally spaced channel equalizations [83-85]. So if we can 
oversample or have oversampled channel process, we can improve the performance of 
PACE based channel estimator by incorporating a simple signal processing scheme at 
the receiver low pass filtering of the oversampled pilot sequence followed by down- 
sampling. We describe this overall signal processing scheme as Oversample-Low pass 
filter-Downsample (OLD). The pilot symbol sequence thus processed is input to the in-
terpolator to obtain CSI estimates at the data symbol instants.

While trying to develop some PACE scheme offering better quality of CSI estimates 
based on the perfect knowledge of channel statistics in general scattering environments, 
we came across the idea of so-called peaky signaling (also called flashy signaling) a 
type of signaling optimal in the low SNR regime that remains silent for most of the 
time and uses symbols of very large amplitude (approaching infinity as SNR tends to 
zero) when transmitting [78,86,87]. The peaky signaling, therefore, invariably results 
in a loss of useful degrees of freedom (d o f). To find some way to utilize these unused 
degrees of freedom to enhance the overall performance of the system is obviously of 
some interest. In a recent contribution [78], the performance of peaky signaling over 
block-fading Rayleigh channels was shown to improve in conjunction with PACE in the 

low SNR regime. Chapter 5 in this thesis is devoted to the study of a modified peaky 
signaling in conjunction with PACE in time-selective Rayleigh fading channel (Fig. 5.1). 

The pilots are periodically inserted in the transmitted stream at least at the Nyquist rate

6Both upsampling and oversampling, sometimes defined differently in literature, are equivalent from 
the point of view of their impact on the spectrum of the sampled signal. In this thesis we shall be concerned 
with signal spectra and shall use the two terms interchangeably without causing confusion.
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corresponding to the time rate of channel variation. The unused dof in the modified 
peaky signaling can equivalently be thought of as upsampling of the transmitted stream 
which can be effectively utilized by OLD scheme at the receiver to enhance SNR at 
pilot symbol instants by as much as the upsampling factor M  — the number of unused 
d o f . This pilot symbol SNR enhancement results in significant MMSE performance 
gain when the processed pilot symbol sequence is input to the wiener interpolator. Using 
improved CSI estimates, we optimize bandwidth and power allocation to pilot symbols 
following the approach of [88]. The results suggest that significant savings in power 
and bandwidth can be achieved with the proposed PACE scheme over time-selective 
Rayleigh fading channels.

1.8 Outline of Thesis

1.8.1 Overview

The primary motivation for this thesis has been to develop unified frameworks to as-
sess the impact of perfect knowledge of a particular scattering environment, the carrier 
frequency, the mobile velocity and acceleration on the channel statistics and the per-
formance of communications systems operating over mobile Rayleigh fading channels. 
The thesis can be broadly subdivided into two parts. The SISO time-selective Rayleigh 
fading channels are the subject of the first part. The space-frequency selective Rayleigh 
fading channels are considered in the second part.

SISO Time-Selective Rayleigh Fading Channels

The work on SISO time-selective Rayleigh fading channels can be further subdivided 
into twochannel modeling (and achievable information rates) and channel estimation. 
In the channel modeling part, we generalize the well known Clarkes mobile Rayleigh 
fading model [2] from two aspects. Firstly, the assumption of isotropic scattering envi-

ronment around the mobile receiver in the Clarkes model is generalized to incorporate 
general scattering environments such that the Clarkes model is a special case of the gen-
eralized model. The impact of generalized Rayleigh fading on achievable information 

rates is also studied. Secondly, the assumption of constant mobile velocity in the Clarkes 
model resulting in stationary channel statistics is generalized to the case of a constant 

mobile acceleration which corresponds better to the physical reality. The implications 
of constant mobile acceleration on the performance of communications systems is also 
studied. We propose a PACE scheme for mobile Rayleigh fading channels based on 
OLD processing scheme at the receiver which utilizes the perfect knowledge of channel
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statistics and the unused degrees of freedom in the peaky signaling [78] to significantly 
improve the system performance at low SNR. The scattering environment was assumed 

to be isotropic. We do not attempt to consider general scattering environments in view 
of the impossibility to obtain closed form solutions. However, as the results suggest, the 
proposed scheme would perform better in non-isotropic environments.

Space-Frequency Selective Rayleigh Fading Channels

The use of MIMO-OFDM in the future systems has been the motivation for us to develop 
a SIMO-OFDM framework for the calculation of channel statistics in general scattering 
environments. This SIMO-OFDM framework can be extended to the more general case 
of MIMO-OFDM. We also present a generalization of [ 19] to general scattering environ-

ments and give some useful results regarding space-frequency trade-off characteristics 
of different non-isotropic scattering distributions.

1.8.2 Questions to be Answered in this Thesis

In this section, we itemize some broad questions that would be answered in the following 
chapters of this thesis.

• Is it possible to develop a generalized SISO narrowband mobile Rayleigh fading 
model which may provide a unified framework to calculate and compare channel 
statistics in general scattering environments (with arbitrary APD)? How much dif-
ference does it make to the overall performance if a non-coherent communications 
system designed for one APD is operated in a different APD?

• The emerging wireless communications standards specify MIMO-OFDM as the 
technology of choice which has triggered recent interest in space-time coding for 
such systems. Can we develop a framework for calculating statistics of time invari-

ant space-frequency selective channels in general scattering environments? Are 
different non-isotropic scattering distributions equivalent from the point of view 
of space-frequency trade-off?

• Generally, the literature on channel modeling is based on the assumption of con-
stant mobile velocity. What happens to the channel statistics if the mobile has a 

constant acceleration? What are the implications of mobile motion with constant 
acceleration for future wireless communications systems?

•  The peaky signaling results in a loss of useful d o f . The use of PACE in con-
junction with the peaky signaling results in better achievable rates than with the
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peaky signaling alone. Is it possible to somehow make use of the unused dof to 
further improve the performance of PACE-based communications system that em-
ploys peaky signaling? How much bandwidth and power (that has to be allocated 

to the pilots symbols) can be saved when the desired performance is as good as 
achievable with non-peaky signaling?

1.8.3 Content and Contribution of Thesis

In the following, we summarize the contents of this thesis with emphasis on the contri-
bution made within each chapter.

•  Chapter 2 studies the mobile SISO Rayleigh fading modeling in general scattering 
environments. We develop a generalized Rayleigh fading model using the well 
known Jacobi-Anger plane wave expansion [89] assuming perfect knowledge of 
scattering environment and mobile dynamics. The Clarkes model [2] happens to 
be a special case of this model. The results suggest that the knowledge7 of the 
degree of non-isotropicity and the mobile direction of travel with respect to the 
mean scattering angle can have significant impact on channel statistics. In partic-
ular, estimated channel statistics may have significant errors in more non-isotropic 
scattering environments if the degree of non-isotropicity and mobile direction of 
travel are unknown. We also compare channel statistics for common non-isotropic 
scattering distributions. The results suggest that common non-isotropic scatter-
ing environments are, to good approximation, equivalent for very small and large 
angular spreads. The difference for moderate angular spreads which may be sig-
nificant depends on mobile direction of travel as well.

•  Chapter 3 is, in fact, an application of the generalized Rayleigh fading model 
developed in Chapter 2. While comparing different scattering environments the 
statement like higher (or lower) correlation does not seem to be very useful one. 
This chapter gives a physical meaning to the impact of scattering environment 

on the overall performance of a communications system by quantifying differ-
ences in channel statistics due to different scattering scenarios in terms of an in-
formation theoretic quantity bits/sec. The results suggest that the perfect knowl-

edge of mobile direction of travel and the degree of non-isotropicity may result

7It may be mentioned here that the channel estimator that we employ does not estimate the channel 
on the basis of individual realizations of the channel process. It forms the channel estimate on the basis of 
its autocorrelation function and power spectral density known a priori, which do require the knowledge of 
the degree of non-isotropicity and the mobile direction of travel with respect to the mean scattering angle. 
If we estimate the channel based on several realizations, the knowledge of channel statistics shall not be 
required.
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in significantly higher achievable rates over isotropic scattering particularly for 
higher fading rates. This chapter also studies the impact of using a directional 

antenna (or beamforming) in isotropic scattering conditions. The results indi-
cate that beamforming results in better performance only if mobility is very high. 
The poor performance of beamforming in low mobility applications is due to the 
fact that the use of directional antenna in isotropic scattering scenario results in 
poor SNR due to the rejection of useful power by the antenna resulting in over-

all performance loss as compared to isotropic antenna. The comparative study 
of different commonly used scattering distributions suggests that different scat-

tering distributions are almost equivalent for sufficiently small and large angular 
spreads. The truncated-Laplacian,truncated-Gaussian and von-Mises distributions 
are almost equivalent for all angular spreads, mobile directions of travel and block 
lengths of transmission. The truncated-uniform distribution, however, results in 
better achievable rates than other distributions. We also present a practical exam-
ple justifying the fact that the joint Gaussianity implies marginal Gaussianity but 
not vice versa. This confusion led authors in [90,91] to incorrectly claim that the 
achievable rate with MPSK signaling derived by them was in fact the capacity of 
MPSK signaling. We dispel the confusion behind the arguments that led to such 
claim by giving mathematical and numerical results.

•  Chapter 4 presents a generalization of the classical Clarke model that assumes 
constant mobile velocity to a mobile communications scenario where the mobile 
has constant acceleration. The assumption of constant velocity resulted in sta-
tionary Rayleigh fading statistics in the Clarkes model and its generalization in 
Chapter 2. The assumption of constant mobile acceleration renders the Rayleigh 
fading statistics time-varying, i.e., non-stationary. It turns out that, under the as-
sumptions of unbounded mobile velocity and infinite sampling rate, Wigner-Ville 
distribution (WVD) presents a natural extension of Clarkes model from station-

ary to non-stationary Rayleigh fading statistics. We also study the implications of 
constant mobile acceleration on the performance of emerging wireless communi-
cations systems in terms of frame overhead and payload. The impact of changes 

in carrier frequency on frame overhead and payload is also explored. The results 
show that, as compared to constant mobile velocity scenario, the mobile accelera-
tion could result in significant increase in integrated frame overhead and decrease 
in useful integrated payload. Moreover, the impact of mobile acceleration is more 
when the initial mobile velocity is lower.

•  Chapter 5 concerns the development of an improved MMSE performance of PACE
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scheme in conjunction with peaky signaling for communication over mobile Rayleigh 
fading channels in isotropic scattering environment. We do not consider this prob-

lem of channel estimation in general scattering environments, firstly, because the 
results in Chapters 2 and 3 suggest that non-isotropicity of the scattering environ-

ment, in fact, ‘slows down’ the channel fading process so that the performance 
of a communications system in isotropic environment serves as a benchmark for 
general scattering environmentsthe performance of a communications system in 
general scattering environments is at least as good as in isotropic scattering if the 
observation period is infinite. Secondly, the channel spectrum in non-isotropic en-
vironments, in general, involves summation of product of functions. The use of 
this summation, therefore, allows only numerical evaluation of the performance of 
PACE in general scattering environments. The proposed scheme utilizes the idle 
dof in the peaky signaling to enhance MMSE performance of Wiener interpolation 
using OLD scheme by as much as the number of idle degrees of freedom. This 
translates into significant gains in achievable rates, particularly in the low SNR 
regime, over PACE-based Rayleigh fading channels consuming less resources than 
with conventional non-peaky signaling (that uses the same total average power) 
without OLD scheme at the receiver. We constrain the total average power in 
peaky and non-peaky to be the same. This constraint results in power savings as 
a result of idle dof in the peaky signaling giving rise to four possibilities. The 
power savings can be utilized in enhancing the power of the pilots symbols alone 
(pilot enhancement (PE)), data symbols alone (data enhancement (DE)), pilot and 
data symbols (pilot and data enhancement (PDE)). The fourth possibility is not to 
use these power savings, i.e., no enhancement (NE). We mainly consider PE, DE 
and PDE choices and shall refer only to these unless otherwise stated. The results 
suggest that in the limit of zero SNR, all choices are equivalent irrespective of 
whether there is any constraint on pilot and data symbol powers. If the peakiness 
of the signaling is increased, we can get better performance (than NP scheme) 
with the proposed PE and DE schemes (allowing pilot and data symbol powers 
to be unequal) at even lower SNR but at the cost of deteriorated performance at 
moderately low SNR.

• Chapter 6 deals with the time-invariant space-frequency selective channels where 
we derive a general framework for the calculation of channel statistics for multi-
carrier modulation system in arbitrary scattering environments and antenna arrays. 

The proposed model of channel statistics gives SFCC between different subcarri-
ers of OFDM signals at the two receive antennas. This SIMO-OFDM model can 
be extended to MIMO-OFDM which should be very useful for the performance
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evaluation of MIMO-OFDM based system for any joint angle-delay power dis-
tribution. We apply the proposed model for the calculation of SFCC for inverted 

parabolic (IP) [4] and elliptical scattering (ES) [5] models with specified joint 
angle-delay power distributions. The results suggest that the ES results in less 
cross correlation between differen subcarriers as compared to IP model.

We also derive a generalization of [19] to general scattering environments. The 

results indicate that the variation of angular spread from 1° to 5° significantly 
changes the space-frequency trade-off behavior (mean scattering angle, ß0 = 45.). 
The variation of angular spread beyond 10°. doe not seem to have significant 
impact on trade-off characteristics. It turns out that, for a fixed correlation be-
tween envelopes at two antenna, different scattering distributions may have identi-
cal space-frequency trade-off characteristics for small antenna separations and sig-
nificantly different characteristics when the antenna separation is large and, equiv-
alently, the angular spread is small. If the correlation value and angular spread 
are fixed, the truncated-Laplacian distribution requires higher frequency separa-
tion for a given (sufficiently large) antenna spacing and vice versa. The question 
of as to if one scattering environment can be substituted for another depends on 
antenna spacing, angular spread and the mean scattering angle. When the antenna 
spacing is sufficiently small, angular spread is sufficiently large and antenna array 
orientation is more closer to being inline, such substitution may not matter. In 
other cases, however, such substitution deserves careful consideration of possible 
impacts on the design and analysis of the communications system.



Chapter 2

Generalized Clarke Model for Mobile 
Radio Reception

2.1 Background

In real world communication scenarios, the transmitter and/or the receiver may be in 
motion. In a mobile-radio situation in which the transmitter is fixed in position while 
the receiver is moving, the direct line between the transmitter and receiver may be ob-
structed. At ultra high frequencies and above, therefore, the mode of propagation of 
the electromagnetic energy from transmitter to receiver is largely by way of scatter-
ing [2]. Assuming that the scattering environment is 2D isotropic in this communication 
scenario, the amplitude fluctuations of the received signal were shown in [2] to follow 
Rayleigh distribution. The assumption of isotropic APD corresponds to uniform pdf of 
AOA of waves impingent on the omnidirectional antenna. The autocorrelation of the re-
ceived signal happened to be strictly real valued and the resulting power spectral density 
(PSD) was U-shaped symmetric [2].

It has been argued and experimentally demonstrated (see [ 15] and references therein) 
that the scattering encountered in many suburban and rural environments is non-isotropic, 
i.e., the distribution of AOA of waves is not uniform as assumed in [2]. The use of 
a directional antenna with non-uniform gain pattern at the receiver also results in non-
isotropic APD as seen by the antenna. The measurements have shown that scattering in 
vehicle-to-vehicle communication is also non-isotropic [16,17].

The assumption of uniform APD resulted in closed form expressions for the statistics 
of the channel in [2]. For non-uniform APD, the resulting expressions for the statistics of 
the channel are not in closed form [28]. A quadratic form for the probability distribution 
function (pdf) of the AOA proposed in [22] resulted in a closed form expression for the 
correlation of the complex envelope of the received signal in a non-isotropic scattering

27
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environment. In [31], von Mises distribution (also known as circular Normal distribu-
tion) was used to model the pdf of AOA and effects of non-isotropic scattering on the 

correlation properties and velocity estimation in a Rician fading channel were discussed. 
In practice, APD under non-isotropic conditions has also been shown to be well mod-
elled by truncated Laplacian, truncated Cosine, and truncated Gaussian distribution [36]. 
Some of the other work related to mobile fading channels are in [92-94],

The assumption of uniform APD introduces small errors on the first order statistics 
of the received signal but a significant error on the second order statistics [63], such 
as correlation function or, equivalently, PSD, and level crossing rates or, equivalently, 
the fading rate. There are certain communication system parameters like the estimation 
of vehicle velocity [31] for handoff decisions and the achievable information rates [37] 
without CSI that depend on the correlational properties of the received signal. It is, 
therefore, of some interest to develop a model that accurately models the statistics of 
the mobile Rayleigh fading channel in general scattering environments. In this thesis 
we shall use the term generalized Rayleigh fading to imply Rayleigh fading in general 
scattering environments.

As discussed in Section 1.1, many 3D generalizations of Clarke’s model exist in 
literature which include 2D Clarke’s model as a special case. However, these 3D gen-
eralizations do not reduce to the true Clarke’s model but equivalent expressions which 
may be computationally expensive. Moreover, while such generalizations do suggest 
that the channel statistics in general scattering environments are affected by the mobile 
direction of travel with respect to the mean scattering direction, no detailed analysis of 
the impact of mobile direction of travel and non-isotropicity of the scattering environ-
ment on channel statistics and overall communications system performance is provided. 
This motivates us to, firstly, develop a model of the mobile radio reception in general 
2D scattering environments which incorporates the true Clarke’s 2D model as its special 
and, secondly, to explore the impact of mobile direction of travel on channel statistics in 
general scattering scenarios. This chapter therefore focuses mainly on the generalization 
of the Clarke’s model of mobile radio reception in 2D scattering environment.

The chapter is organized as follows: The channel I/O model is described in Section 
2.2 and the expressions for autocorrelation and PSD of the received signal are derived. 
Some common scattering distributions are also described. The Clarke’s model is shown 
to be a special case of the derived model, and the impact of direction of mobile travel 

and the extent of non-isotropicity on channel statistics in truncated-uniform scattering 
environment is explored in Section 2.3. The comparative study of channel statistics for 
common scattering environments is performed in Section 2.4. Finally, we summarize 
the chapter highlighting specific contributions in Section 2.6.
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2.2 Channel model

We consider a downlink transmission system where the transmitter is stationary while 
the receiver is moving with some speed1 |i;| at an angle of with respect to the x- 
axis, where v = (\v\,<j>v) is the velocity of the mobile as shown in Fig. 2.1. We as-
sume that the scatterers are statistically homogeneous and are distributed in the far-field 
from the omnidirectional receiver antenna. We also assume that the channel between 
the transmitter and the mobile receiver is a strictly bandlimited, flat-fading (frequency 
non-selective), wide-sense stationary, zero mean circularly symmetric Gaussian fading 
process. We have the following remarks:

1. Channel variations in the mobile fading channel under consideration are caused by 
the movement of the mobile. Since this movement is always limited due to physi-
cal limitations on the speed of the mobile, the channel process can be assumed to 
be frequency bandlimited.

2. The assumption of zero-mean complex Gaussian channel fading process implicitly 
assumes that the scattering is rich enough with roughly equally strong paths with 
independent phases rectangularly distributed on [0, 27r), so  that the central limit 
theorem applies. This assumption further implies that the scatterers have a fixed 
density, i.e., the number of the scattered waves is constant and their amplitude and 
(uniform) phase distributions are i.i.d time-invariant. If the number of the scat-
tered wave is random and the phases are non-uniformly distributed, the resulting 
complex process is no more Gaussian and the envelope of the process is Gamma 
distributed [96].

3. The assumption of circular symmetry of the channel fading process implies that 
the pseudo-autocorrelation [97] is identically zero, and , therefore, the fading pro-
cess is completely characterized by its complex autocorrelation.

4. Our approach is similar to that employed in [98] for space-time MIMO channel 
model with some important differences. First, unlike [98] which considers contin-
uous time fading process, we employ a discrete time channel model. Secondly, we 
assume that the channel fading process is wide-sense stationary which is a much 
milder requirement than the channel fading process to be ergodic as implicitly 
assumed in [98].

'Throughout this thesis, we shall assume that the scattering environment is fixed but the receiver is 
mobile. The impact of moving scatterers on channel statistics for a fixed receiver was studied recently 
in [95].
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The baseband-equivalent received signal r(t) at time t in continuous-time form is 
given as

r(t) = yfp hc(t) s(t) + z(t)j —oo < t < oo (2.1)

where s(t) € C and r(t) G C denote the channel input and the corresponding output 
at time instant t, respectively. The additive noise z(t) is modeled as a zero-mean circu-
larly symmetric2 complex Gaussian white noise process with E {z(x)z*(y)} = S(x — y) 
where S(-) is Dirac’s delta function. The fading process hc(t) is modeled as a wide- 
sense stationary zero-mean circularly symmetric complex Gaussian process and is given 
mathematically as (with respect to some arbitrary origin ’O’ where we set t = 0)

hc{t) = j) 'ip(ß) exp (irjt v • ß'j dß, (2.2)

where ß>(ß) is the time-invariant complex scattering gain from a particular AOA ß, i = 
y/—l and 77 = 27t /Ac is the free space phase constant (Ac is the wavelength). We further 
assume that hc(t) is of unit variance, i.e., E {hc(t)h*(t)} = 1. The channel input is also 
assumed to have unit variance, i.e., E {s(t)s*(t)} = 1. With foregoing assumptions, 
equation (2.1) gets normalized such that p represents average SNR per symbol.

If the output y(t) is processed through a matched filter3, we get the following discrete-
time model

r\j\ = y/p hd[j\ s[j] + z[j], -00 < j  < 00 (2.3)

where {z[j]} is a sequence of samples of an i.i.d. zero mean4 proper complex additive 
Gaussian noise process with unit variance, {/id[J]} is a sequence of zero-mean circular 
complex Gaussian channel process with unit variance and {s[j}} is the input process of 
unit variance. In the sequel, for notational compactness, we shall use {h[j]} instead of 
{/?d[j]} to denote sampled channel process. Assuming that the symbol duration is Ts, 
the continuous-time and discrete-time models ((2.1) and (2.3) respectively) are related

2The circular symmetry of a complex random process implies that the real and imaginary parts of 
the random process are uncorrelated and zero-mean. In case of a circularly symmetric Gaussian random 
process, the circular symmetry also implies that the real and imaginary parts of the process have equal 
variances, are jointly Gaussian and, hence, are independent of each other [99,100].

3The matched filter is optimal for a white Gaussian channel but is suboptimal, in general, for fading 
channels. We still have considered matched filter because it is commonly employed in many practical 
communication systems. We assume that the filter is matched to the symbol rate and the output of the 
filter is sampled at the end of the symbol period. Moreover, it is customary to normalize the filter response 
to have unit-energy over the duration of the symbol.

4If a circularly symmetric continuous-time random process is sampled, the sampled process is also 
circularly symmetric [99,101] where circular symmetry implies that the process is zero-mean (see footnote 
2) .
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through the following:
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where $(•) in (2.7) is the covariance of the continuous channel process, hc(t). Equa-
tions (2.4)—(2.7) are based on the facts that matched filter is an integrator, the output of 
the filter is sampled at the end of the each symbol interval Ts and discrete-time input, 
output, noise and channel processes must be normalized to have the same (co)variances 
as their continuous-time counterparts. It is to be noted that while most of the material 
on channel modeling deals with continuous-time model, we have chosen to work in the 
discrete-time domain, firstly, because the two domains are equivalent as long as the sam-
pling is performed at least at the Nyquist rate. Secondly, whenever it comes to practical 
implementation of the model, discrete-time models are computationally more efficient. 
There are some instances in literature of discrete-time modeling, e.%., see [1021 and ref-
erences therein. Equation (2.3) can be obtained as a special case of the discrete-time 
triply (i.e., time-frequency-space) selective model of [102].

With no loss of generality, let the mobile be at some arbitrary point ‘O’ at the signal-
ing instant j'. Thus, at the signaling interval j  — f  +  k, the mobile will be at the point 
(\v\r]kTs, <j>v) with respect to ‘O’, where Ts is the symbol duration and k is an integer, 
which represents the time lag. Assume that the scattered signals are impinging on the 
mobile receiver from all directions on the 2D (horizontal) plane. Let ip(ß) be the scat-
tering gain at the origin due to the signals arriving from the direction ß  with respect to 

the x-axis (see Fig. 2.1). Then we write the channel gain as

h[j] -  /  'ijj(ß) exp [ iy jTs v  • 3 )  dß, (2.8)

where ß  = (1, ß) represents a unit vector along the direction ß, *•’ is the scalar product 
between two vectors and i = 1. Note that the factor exp(iyjTsv  ■ ß)  in (Eq. (2.8))
reflects the phase delay of the incoming signal from the direction ß  at the mobile receiver 
with respect to the origin.
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v

Figure 2.1: Illustration of the key parameters: direction of mobile travel (f)v, mobile 
velocity v, direction of wave arrival ß, time instances j '  and j ,  and the origin ‘O’ of the 
co-ordinate system.

It is crucial to highlight an important conceptual difference between our approach 
and that used in [2] for modelling mobile radio reception. In [2], firstly, a probability of 
arrival of waves is associated with each direction in the azimuth implying that AOA are 
random. Secondly, the complex scattering gain, ß>(ß), from a certain direction of arrival 
is also random. In this contribution, we essentially assume that there is no probability 
distribution associated with AOA, i.e., the waves are assumed to be impinging on the 
mobile receive antenna from all the directions in the azimuth. Only the complex random 

scattering gain, ß>(ß), is assumed to be random and has, associated with it, a probability 
distribution. An azimuth direction with zero associated probability of arrival of wave 
is equivalent to a direction with waves assumed to be impinging from that particular 
direction but zero complex scattering gain. In other words, our approach is a simplified 
yet equivalent form of that employed in [2] but proves more convenient, as we would 
see, for arriving at a generalized Rayleigh fading model for mobile radio reception.
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2.2.1 Autocorrelation of the Channel Fading Process

Using (2.8) we write the correlation between the channel gain at the signaling intervals 
j '  and j  as

= j> <j> E {^{ß)ip*{ß')} exp (ir)Ts(j v  ■ ß  - j ’ v  ■ ß  ) dßdß', (2.9)

where E {•} stands for the mathematical expectation. Assuming that the scattering gain 
from two distinct directions are uncorrelated [28], i.e.,

E M ß ) r ( ß ' ) }  =  E {S(ß -  ß'), (2.10)

where £ is the Dirac delta function. We have the following remarks:

1. The assumption of uncorrelated scattering (US) is a widely used assumption in 
the channel modeling literature [5,36, 103-105]. This assumption is implicit 
in [4, 105-108] for the purpose of deriving the angular power spectrum in the 
frequency-flat fading scenarios as well as the joint angular power-delay profile 
in the frequency selective fading scenarios. This assumption has been verified 
by various measurement campaigns, including [59, 106, 109,110]. However, this 
assumption is not strictly true for coherent sources in the adaptive beamforming 
literature [111, 112]. As a future research topic, one possible extension of the 
framework developed in this chapter is to take into account correlation among 
scatterers by following [113].

2. The assumption of US may not be realistic in view of the fact that the scattering 
objects can be buildings, trees, hills, etc. In order for scatterers to look like ‘point 
scatterers’ to the receiver so that the assumption of US is applicable, the dimen-
sions of the physical scatterers have to be less than the receiver bandwidth [28,56]. 
In fact, behind the assumption of complex Gaussianity of the channel process lies 
this assumption of US.

Using(2.10) in (2.9) results in

$ 0' , / )  = &(j ~  j') =  ${k) =  exp (ir)T8k v  ■ 3) dß (2.11)

where k — j  — j ' and

<n(ß) = E{\m\2}, ( 2. 12)
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normally termed as the angular (azimuth) power distribution (APD) of the received sig-
nal. Thus, d>(/3) is the average power received from the direction ß.

Notice that 'Ü(ß) and exp | ir/Tsk v  ■ ß  ̂ are both periodic in ß  with period 2ir. We 
can, therefore, express ^ (ß )  using the Fourier series as follows:

7m  =  /  * ( ß ) e ~ imßdß,  (2.13a)

1 OO

y(ß)  = 7^  E  ^ eimß’ ( 2 ' l 3 b )

m = —oo

where 7 m are the coefficients of the Fourier series expansion of d>(/3). Also, we can 
express the factor exp (ir]Tsk v  • ß^j using Fourier series (also known as Jacobi-Anger 
expansion [89, page 67]) as

oo

exp ^ir]Tsk v  • ß 'j =  im Jm{j]kTs\v\) exp (—im<f>v) exp (i m ß ) , (2.14)

where are the Fourier series coefficients and Jm(-) is the Bessel function of integer 
order m.  Using (2.13), (2.14) and the convolution property5 of the Fourier series, (2.11) 
can be written as

 ̂ ~ oo /  oo \

$(fc) =  2^ f  5 1  ( zL  7m €n-m ) exp
n——oo \m =—oo /

oo /  oo \  f
=  2^  7m ) f  exp (in^) d^’

n=—oo \m =—oo /
oo

=  ^   ̂ 7mC—m
m=—oo 

oo
=  ^  r m 7m Jm(7//cTs |i;|) ex p (zm ^ ), (2.15)

where the inner summation in the first equality represents the convolution of the Fourier 
series coefficients 7 m and <5m, the third equality is the result of the following fact:

exp (inß) dß
27T, n =  0;
0, otherwise.

sThe Fourier series coefficients of the product of two periodic functions are equal to the convolution 
of the coefficients of the Fourier series expansions of the individual functions [114].
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and the relation J_ m(-) =  (—1 )mJm(-). If we let ujd =  rj\v\ be the maximum angular 
Doppler spread (maximum doppler frequency, fd = v / \ c), (2.15) can be rewritten as

oo

$(fc) =  ^  7m Jm(u:dkTs) exp {imfiy).
m ——oo

(2.16)

Equation (2.16) is the complex autocorrelation function of the channel fading process 
as a function of time lag k. It is obvious from (2.16) that the autocorrelation of the 
fading process, in general, not only depends on the distribution of power (and, hence, 
mean scattering angle) but also on the direction of mobile travel, <j>v, maximum Doppler 

spread ujd, and the symbol duration, Ts.

2.2.2 Spectral Density of the Channel Fading Process:

Using the well-known Wiener-Khintchine theorem [51], we obtain the PSD of the fading 
process by taking discrete-time Fourier transform (DTFT) of (2.16) as follows:

oo (  oo

7rn exp(im(f)v) < ^  Jm(ujdpTs) exp (~ iupT s) > , (2.17)
m = —oo V p = —oo )

where uj £ [—7T, 7t ] is the continuous radian frequency variable. We simplify (2.17) in 
Appendix A.l to obtain

$ ( l j ) 7m exp (ira# ,) Fm (2.18)

where ujd  = UdTs = 27r / D is the normalized Doppler spread ( /D is the normalized 
fading rate) and (f)'v = ( J ) v  -H t t . It is easy to see that (2 .18) is equivalent to the following

<E>(w) =  —  
u d

2

\ / l  “  (^ /V d )2

oo

+  2 2̂ ^  (7m ex p (zm ^)) Fm
m —  1

(2.19)

where 3ft(-) is the real part of the argument. Equation (2.19) clearly shows that the PSD 
is real-valued as expected.

2.2.3 Common Non-isotropic Scattering Distributions

A number of non-isotropic azimuthal power distributions have been proposed in the lit-
erature [15,18,53, 115] for modelling the non-isotropic scattering environments. Some 
commonly used non-isotropic scattering distributions include truncated-isotropic [53],
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Figure 2.2: The truncation behavior of <b(k): ßv = 45, / d  =  0.05 and ß0 = 90°. The 
approximation based on the argument of the Bessel function proposed in [3] is quite 
good as the figure suggests only an insignificant increase in accuracy (at larger lags) as 
I m,max I increases from 32 to 200.

truncated Gaussian [1151, truncated Laplacian [181, cosine [53] and von-Mises [15,116]. 
These distributions were used to model the non-isotropic scattering environment sur-
rounding either the receive or transmit antenna arrays. These distributions are charac-
terized by the mean scattering angle ß0 and the angular spread A. Table-2.1 provides a 
summary of the distributions relevant for our work and gives the corresponding receiver 
scattering coefficients in closed-form.

2.2.4 Truncation of Series Expansions

Equations (2.16) and (2.19) involve summation over infinite number of terms. However, 
it is almost always possible in cases of practical interest to safely truncate the respective 

series up to a finite number of terms in the light of the following two facts:

i) For a fixed order m, Jm(x) starts small and reaches its maximum at argument 
x «  0(m)  before it starts decaying slowly. It was shown in [3] that Jm(x) ~  0
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P S D Distribution Function ^ ( ß ) 7 m  x  exp(-zm ^o)

truncated-Uniform 1 / 2  A r
ß  £  (ßo ~  A r , ß o  +  A r)

sinc(mAr)

truncated-Gaussian K g  exp { — ( ß  -  ß 0 ) 2 / 2 a ^ }  

V2n(JGe rf(*\ /2

e r f ( z )  =  - j t J o  e ~ z 2 d z

exp(—zm2cr^/2 )

truncated-cosine tfc c o s 2 ( 'J7 °)

22pr- 1r 2(Pr+i) 
n r ( 2 p r +  l )

r 2(Pr+i)
r(pr-m+l)r(pr+m+l)
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Table 2.1: Scattering Coefficients 7 m for truncated-uniform, truncated-Gaussian, cosine, 
von-Mises and truncated-Laplacian power distributions. \ß — ßo\ <  tt represents the 
support of AOA distribution for all scattering environments except the truncated-uniform 
environment.

for \m\ > 2\x /2 \  +  1 with e =  2.7183__  Since the argument of Jm(kujv)
depends on the lag variable k, the approximation would also depend on k for a 
fixed normalized fading rate.

ii) The Fourier coefficients 7m must decay with m  for Fourier series to be convergent 

(see, e.g., [117]). The rate of decay depends on the smoothness of the function 
which is, in turn, related to the number of continuous derivatives of the function. 
In fact, the Fourier coefficients of an analytic (infinitely differentiable) function 

decay exponentially with m. Fourier coefficients of a Gaussian distribution, for 
example, decay exponentially with m, and decay polynomially for Laplace distri-
bution [118]. The Fourier coefficients for a uniform distribution decay as 1/m . 
In all these cases, the Fourier coefficients approach zero6 with m. The faster the

6The Delta distribution is an exception to this behavior. The Fourier coefficients of a Delta distribution
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decay of the Fourier series coefficients, the less the number of Fourier modes (7 m) 
with significant contribution and vice versa.

For small k, the fact (i) above is useful in approximating (2.16) due to the presence 
of J m(/cu;D). When k = 0, for example, Jm(kujD) = 1 for m = 0 and zero otherwise. 

In other words, none of the Fourier modes 7 m except m  = 0 contribute to the autocorre-
lation of the channel process. For k = 1, Jm(kcüv) ~  0 after 7 \m\ > (2\kujD/2] + 1). 
As k increases, the number of Fourier coefficients that are “allowed” to contribute also 
increases. In the limit k —» oo, the number of Fourier modes that contribute to (2.16) 

also approaches infinity. This is where the fact (ii) comes into effect. Due to the decay 
(e.g., exponential for a Gaussian distribution) of 7 m with m, the values of 7 m become 
increasingly small so that there must exist some finite r a 0 such that 7 m ~  0 for all 
\m\ > mo- We can , therefore, truncate the infinite summation in (2.16) to a summa-
tion over \m\ =  m 0 terms. The foregoing discussion implies that lesser Fourier modes 
are required in truncated-Gaussian, truncated-Laplacian and von-Mises distributions to 
achieve a particular accuracy as compared to truncated-uniform distribution. Fig.2.2 
shows the impact of increasing number of modes in the summation in (2.16).

The approximation of the PSD of the fading process in (2.19) seems difficult due to 
the presence of the factor* * 7 8 Fm(uj/ujD) ((A.2) with x = (jo/ l o d ) which, for all m, sharply 
increases as uj approaches ujd  becoming infinite at uod - The approximation, therefore, 
would depend on the the decay of the Fourier coefficients of a particular scattering distri-
bution. As long as the decay of 7 m is sufficiently fast, we can use the fact (ii) to approx-
imate (2.19) to some finite \m\ = m'0 with the approximation error that approaches zero 
as mo approaches infinity. The accuracy of this approximation, however, depends on the 
angular spread of the scattering distribution and the mobile direction of travel. Again the 
faster decay of scattering coefficients of truncated-Gaussian, truncated-Laplacian and 
von Mises distributions as compared to the truncated-uniform distribution is due to their 

higher ‘smoothness’. Fig. 2.3 shows PSD for different number of Fourier modes used in 
the summation in (2.19) for truncated-uniform distribution. The observed ringing effect 
is absent in other scattering distributions due to their ‘smoothness’.

do not tend to zero at all, indicative of the fact that it is not an ordinary function and its Fourier series does
not converge in the standard sense.

7For a normalized fading rate / d  =  0.05 and a maximum time lag of k =  10 symbols, this approxi-
mation requires only \m\ = 3 terms.

8Notice that the Fourier transformation of in (2.17), that gave rise to the factor Fm (uj/ c j d ),
involves summation over k =  ±oo which implies that infinite number of modes are allowed to contribute 
to the PSD of the fading process.
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Figure 2.3: The truncation behavior of $(<*;): 4>v = 45, / D — 0.05 and ß0 = 90°.

2.3 Effect of Non-Isotropicity and Mobile Velocity on 
Channel Statistics

Equations (2.16) and (2.19) describe the second order channel statistics, namely auto-
correlation and power spectral density (PSD) for any 2D scattering environment around 
the receiver. For illustration purposes, throughout this section, we consider the so-called 
truncated uniform (uniform-limited [36]) scattering scenario, i.e., scattered waves are 
arriving uniformly from an angular sector as shown in Fig. 2.4. For this case, we have

nß)
l / ( 2 A r ), if \ß -  ßo\ <  A r

0, otherwise
(2.20)

where ß0 is the mean angle of arrival, ß  is any other angle of arrival, and 2A r is the 
angular spread of the truncated-uniform scattering arrival signals as illustrated in Fig. 
2.4. The values of 7m for some common scattering distributions were derived in closed 
form in [36] and are given in Table-2.1. The scattering coefficients for truncated-uniform
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Figure 2.4: Illustration of an truncated-isotropic scattering scenario where the scattered 
power is uniformly distributed with magnitude 1/2A r over a part of the azimuth with a 
mean angle ßQ and a maximum deviation of A r on each side of the mean. The direction 
of the mobile travel <f>v is also shown.

distribution are

7m = exp (—imßo) sinc(mAr). ( 2 .21)

Degree of Non-isotropicity

We shall use the following definition throughout this thesis:

Definition 2.3.1 I f  A denotes the angular spread, the degree o f non-isotropicity, V, is 
defined as

V  = l -
A

103.9’
( 2.22)

where A is in degrees and 103.9° is the angular spread o the isotropic scattering environ-
ment [119]. Notice that V  ranges from 1 (extremely non-isotropic) to 0 (isotropic) and 

is inversely related to angular spread.
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Figure 2.5: The plot of |<f>(/c)|2 as a function of time lag k for different directions of 
mobile travel (j>v = 0°,45°, and 90°, when ß0 = 90°, A r =  60° and / D =  0.05. The 
autocorrelation for the isotropic case is also shown, which is independent of <j>v.

Autocorrelation and PSD in Truncated-Uniform Scattering

Using (2.21) in (2.16) and (2.18), we can write the autocorrelation and the PSD of the 
channel process respectively as follows

In the rest of this section we first show that the classical Clarke’s model is a special 

case of the generalized Clarke’s model introduced in this contribution. We then explore 
the effect of the degree of non-isotropicity and mobile velocity on channel autocorrela-
tion and PSD.

2.3.1 Clarke’s Model as a Special Case

When A r =  n, i . e when the scattered power is uniformly distributed over the full az-
imuth plane around the mobile receiver, it can easily be verified that (2.23a) and (2.23b)

oo

im sinc(mAr ) Jm(uj£)k) exp (—im  (ß0 — <j)v) ) , (2.23a)
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Figure 2.6: Effect of the mobile direction of travel <j)v =  0°, 45°, and 90° on the Power 
Spectral Density (PSD) when ßo =  90°, A r =  60° and / d  =  0.05. The symmetric 
U-shaped PSD in case of isotropic scattering is also shown which is independent of the 
direction of travel.

collapse to the following equations for autocorrelation and PSD, respectively,

$(k)  =  J0(vDk), (2.24)

----------/- - 2 ■------ , (2.25)
1 -  ( w / w D ) 2

which is the well-known Clarke’s description of channel statistics in 2D isotropic scat-

tering around the receive antenna. Thus, Clarke’s model is a special case of the general-

ized model developed in this contribution. Notice that, in general, the autocorrelation in 

(2.23a) is complex valued unlike that given in (2.24) for isotropic scattering environment 

which is strictly real valued.

2.3.2 Effect of Mobile Velocity

For a truncated-isotropic scattering scenario, the effect of changing the mobile direction 

of travel on the autocorrelation and PSD of the received signal has been shown in Figures
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Figure 2.7: Effect of non-isotropicity on squared absolute autocorrelation as a function 
of time lag k when (f>v =  0°, ßo = 90° and / d  =  0.05. The autocorrelation for the 
isotropic case is also shown.

2.5 and 2.6 respectively. The autocorrelation and PSD for isotropic case have also been 
plotted for comparison. A marked deviation from the isotropic case can be observed. The 
skewness of the PSD is easily observed: If the mobile is moving into the non-isotropic 
scattering environment, the Doppler spectrum becomes (emphasized and) concentrated 
towards positive Doppler frequency axis. On the other hand, the Doppler spectrum is 
skewed towards negative Doppler frequency axis if the mobile moves away from the 
scatterers. The spectrum is symmetric about the mean only when the mobile moves at 
right angles to the mean scattering angle.

The above discussion of the autocorrelation and PSD implicitly assumes that the 

direction of mobile travel is perfectly known which is usually not the case in practice. It 
may be of some interest to find out the autocorrelation and PSD if the mobile direction of 
travel is unknown at the receiver. Suppose the mobile direction of travel is equiprobable 
in all directions, i.e., p (<f>v) — 1/27r, then, from (2.23a), the average autocorrelation, 

^avg(^) is given by

$ avg (k) = y  im sinc(mAr) Jm(Ldvk) exp (—imßo) [  ^ ^—^-d(f)v, (2.26)
„  „  J o  2 7 r27r
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Figure 2.8: Effect of the degree of non-isotropicity on PSD when (ftv = 0°, ßo =  90° and 
/ d =  0.05. The PSD for the isotropic case is also shown.

and using (2.23b), the average PSD, <f>avg(a;) , is given by

$avgM  =  —  V  sinc(raAr)Fm (—\ exp(-zm /30) f exp 
<^D ' \ ^ D  /  Jo

(2.27)

It is not hard to see that, irrespective of A r and the ß0, the integrals in (2.26) and (2.27) 
are zero for all m  ^  0, and these two equations converge, respectively, to (2.24) and 
(2.25), i.e., the Clarke’s isotropic case. In other words, if the mobile direction of travel 
is equiprobable in all directions, a non-isotropic scattering environment on average is as 
good as an isotropic scattering environment.

2.3.3 Effect of Non-isotropicity

For a fixed direction of mobile travel, the effect of changing the degree of non-isotropicity 
on the autocorrelation and PSD of the fading process has been plotted in Figures 2.7 and 

2.8 respectively. It can be seen from Fig. 2.7 that the channel fading process can have sig-
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Figure 2.9: Autocorrelation of received signal envelope for different scattering environ-
ments when angular spread of the scattering is 5°, / D =  0.05, </>v =  45° and ß0 = 90°.

nificantly higher correlation over time in non-isotropic scattering environments as com-
pared to the isotropic scattering environment. With increasing A r (or, in other words, 
decreasing the non-isotropicity) the correlation curves tend towards those of isotropic 
case.

Figure 2.8 shows the effect of changing the degree of non-isotropicity on the PSD of 
the channel process. The normalized Doppler spread seems to be directly proportional 
to A r . For a fixed carrier frequency, / D depends directly on the mobile speed. In our 
case none of the parameters, except the scattering environment (Ar), is being changed. 
It can, therefore, be concluded that changing the degree of non-isotropicity is actually 
equivalent to changing the normalized fading rate to some effective value, foeff. In other 
words, the channel seems to have ‘slowed down’ as a result of non-isotropicity of the 
scattering environment. Similar ‘slowing down9, of the channel is observed through 
beamforming, i.e., using a non-isotropic antenna [120]. This ‘slowing down’ of chan-
nel rate of variation verifies the point of view of [63] that the assumption of isotropic

9This slowing down of the channel depends on the direction o mobile travel relative to the mean 
scattering angle an the degree of non-isotropicity as observed earlier in this chapter.
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Figure 2.10: Autocorrelation of received signal envelope for different scattering envi-
ronments when angular spread of the scattering is 25°.

distribution of scattered power when the power is actually non-isotropically distributed 
introduces significant errors in the second order statistics.

2.4 A Comparative Study of Non-isotropic Scattering En-
vironments

It may be of some interest to investigate the impact on channel statistics of having dif-
ferent scattering distributions. In order to compare different scattering environments 
on a common basis, we have to fix all parameters and use the same angular spread 
for all scattering distributions. For that purpose, let us denote the angular spread of 
truncated-isotropic, truncated Laplacian, truncated Gaussian and von-Mises10 distribu-
tions by c j t u ^ l ^ g  and cry, respectively. The angular spread for truncated-isotropic

l0The circular variance Vo of the von-Mises distribution is defined as Vo =  2(1 — I i (k ) /Iq(k,)) [121]. 
The circular variance can be transformed to the standard deviation ay  (or, equivalently, the angular spread) 
in the linear data sense using the transformation [122], ay — (—21og(l — Vq ) ) 1̂ 2.
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Figure 2.11: Autocorrelation of received signal envelope for different scattering envi-
ronments when angular spread of the scattering is 45°.

distribution is given by

A t u  — A r /  Vs. (2.28)

For the truncated Laplacian distribution, the angular spread AL is related to standard 

deviation g l  o f untruncated distribution as follows [20]

A L O L 1 -
e- &

1 -  e ~ ^
(2.29)

where £/ =  >/27r/ g l . For small angular spreads, AL «  crL which is indicative of the 

fact that truncating the distributions’ tails to [—7r, 7r] has negligible effect. The angular 

spread for the truncated Gaussian distribution Aq  is related to ere as

A g  =  CTG y j  1 -  K g  erf ( £ G )  e x p (^ ) ) ]  \ (2.30)
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Figure 2.12: PSD of the received signal envelope for different scattering environments 
for different mobile directions of travel. The angular spread is 5°, / d  =  0.05 and ß0 = 
90°.

where £G =  For small angular spreads, AG ^  <jG.
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2.4.1 Numerical Results and Discussion

In the light of foregoing discussion, we consider truncated-isotropic, truncated Gaussian, 
truncated Laplacian and von-Mises scattering distributions and explore their impact on 
channel statistics. An important assumption made throughout this chapter is that the 
received signal envelope follows Rayleigh statistics for all scattering environments. Fig-
ures 2.9—2.14 give simulation results.
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Figure 2.13: PSD of the received signal envelope for different scattering environments 
when angular spread is 25°.

Autocorrelation of received signal envelope has been plotted in Figures 2.9—2.11 
for all four scattering distributions for different values of angular spread. The mobile 
direction of travel < f ) v  is fixed at 45°, mean scattering angle /?0 is taken as 90°. Normalized 
fading rate / D chosen for simulations is 0.05. It can be observed from these figures that, 
firstly, truncated Gaussian and von-Mises distributions are identical for small angular 
spread (e . g ., 5° or less) and almost identical for moderate angular spread of 25°. The 

difference between the two distributions, though slight, appears when angular spread is 
45°. Von-Mises and Gaussian distributions are usually considered equivalent for small 
angular spreads [123,124J. The simulation results however confirm that this assumption 
remains true for moderate angular spreads. Secondly, no universal conclusion can be
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Figure 2.14: PSD of the received signal envelope for different scattering environments 
when angular spread is 45°.

drawn as to which scattering model has more favorable statistics (i.e., higher correlation) 
than others. Any such conclusion would depend on observation length. The Laplacian 
model, for example, is “optimistic” (i.e., has higher correlation) than others for angular 
spreads between 5° and 25° whereas it is “pessimistic” (i.e., has lower correlation) than 
others when the angular spread is 45°. In the next chapter, we shall compare different 
scattering environments on the basis of a no-CSI cost function which depends on the 

channel statistics and translates differences in statistics into bits of information [125] 
thus giving a physical meaning to differences in scattering environments.

The comparison of PSD of received signal envelope is given in Figures 2.12—2.14. 

Normalized fading rate and mean scattering angle are the same as before. For each value
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of angular spread, we give results for three different directions of mobile travel. We can 
observe from these figures that direction of mobile travel has significant impact on PSD 

(and, hence, autocorrelation) irrespective of the type of non-isotropic scattering environ-
ment. For ( j)v  >  0, PSD for all scattering distributions is skewed unlike Clarke’s [2]. PSD 
plots also confirm the observation that truncated Gaussian and von-Mises distribution are 

almost identical even for moderate angular spreads (e . g ., as large as 25°).
From PSD plots (especially when 0V =  0°) we can see that the Doppler spread is di-

rectly proportional to the angular spread irrespective of the scattering model. As angular 
spread approaches 0, the Doppler spread would approach a single Doppler frequency for 

all scattering distributions which suggests that all scattering models are almost equivalent 
for very small angular spread. Similarly, as angular spread approaches 104° (maximum 
angular spread), all scattering models become equivalent.

2.5 Applications of the Generalized Clarke model

The generalized Clarke model presented in this contribution can be used for accurate 
performance evaluation and prediction of a communication system in Rayleigh fading 
under any scattering environment. Among many possible applications, following are 
some important applications of the generalized model:

•  The modeling approach adopted herein to arrive at the generalized model lends 
itself easily to be extended to a generalized 3D Rayleigh fading environment.

•  Most velocity and Doppler estimators are based on second order channel statistics. 
The performance of different velocity estimators in a non-isotropic Rician fading 
environment where the AOA distribution is modelled by Von-Mises distribution 
has been evaluated in [31]. The generalized Rayleigh fading model developed 
herein can be extended to include the Rician component and, then, it can be used 
to quantify the difference in performance of various velocity estimators (designed 
to operate in a particular environment) in general scattering environments.

•  Blind and semi-blind channel estimation and equalization techniques based on sec-

ond order channel statistics have been proposed in the literature [126]. The perfor-
mance of these estimators and equalizers can be predicted accurately in Rayleigh 
fading in any scattering environment with the help of the proposed model.

•  Second order statistics based blind and semi-blind channel identification tech-
niques have been proposed in the literature [127]. The effect of having a different 
scattering environment on the performance of these identification techniques can 

be analyzed using the generalized model.
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• The work of [37] on noncoherent communication over Rayleigh fading channel 
assumes isotropic scattering environment. Using the generalized model, we can 

extend this work to generalized Rayleigh fading with the results of [37] as a special 
case.

•  Simulation model based on [2] was proposed in [39]. The generalized model pre-
sented here includes Clarke’s model (and, hence, Jakes’) as a special case which 
makes it possible to simulate Jakes’ and non-Jakes’ Doppler spectrum in a unified 

frame.

2.6 Summary and Contributions

A time-selective generalized Rayleigh fading model has been presented in this chapter 
that extends the Clarke’s classical isotropic scattering model of mobile radio reception to 
general scattering environments. This model can be used to simulate non-Jakes’ Doppler 
spectrum. It turned out that the statistics of a generalized Rayleigh fading channel de-
pend on the direction of mobile travel and the mean angle of arrival, and can be signif-
icantly different from those in an isotropic environment. In general, the autocorrelation 
is complex-valued and the power spectral density is asymmetric. Moreover, if the mo-
bile direction of travel is equiprobable in all directions and the mean angle of arrival 
is fixed, then a non-isotropic scattering environment, on the average, is identical to the 
isotropic scattering environment. The numerical results for truncated isotropic scattering 
environment verified that the assumption of isotropic scattering in a non-isotropic envi-
ronment can introduce significant errors in the estimation of second order statistics. We 
also compared commonly used non-isotropic scattering distributions such as truncated- 
isotropic, truncated Gaussian, truncated Laplacian and von-Mises, on the basis of their 
Autocorrelation and PSD. Simulation results showed that truncated Gaussian and von- 

Mises distributions have almost identical second order statistics even for moderate an-
gular spreads. Results for autocorrelation and PSD showed that the mobile direction of 
travel significantly affects second order channel statistics in a non-isotropic scattering 
environment irrespective of the type of scattering model. For small and large angular 
spreads, different scattering models have almost identical statistics. For moderate angu-
lar spreads, different scattering models can have different statistics and replacement of 
one scattering model by others will introduce errors in estimation of channel statistics.



Chapter 3

Achievable Information Rates Over 
Generalized Rayleigh Fading Channels

3.1 Background

In the previous chapter, we developed a generalized Clarke model to describe the Rayleigh 
fading statistics in general scattering conditions. We used generalized model to explore 
the impact of the extent of non-isotropicity and the mobile direction of travel on the 
channel statistics in different scattering environments. The comparative study of differ-
ent scattering scenarios was done qualitatively using the terms like ‘higher’ and ‘lower’ 
correlation which may not be very useful from the point of view of system design. We, 
in this chapter, seek to quantify the impact of the degree of non-isotropicity and the mo-
bile direction of travel with the help of some more meaningful measure. The difference 
between scattering conditions is reflected in different channel statistics which, in turn, 
implies a different channel quality. In this respect, the information theoretic measure 
of channel quality known as capacity [128J (the ultimate limit of achievable rates on a 
particular channel) seems to be the most suitable candidate which effectively translates 
differences in channel statistics into bits/sec — a useful term from the point of view of 
system design.

The capacity of wireless communication over fading channels have been explored in 

literature [129] for a variety of cases depending on channel models and availability of 
CSI at the transmitter and the receiver. It is well known that when CSI is perfectly known 
to the receiver, the channel capacity is achieved by i.i.d. Gaussian inputs [128]. If, in ad-
dition, CSI is available to the transmitter, Gaussian inputs are still optimal and the capac-
ity is achieved by waterfilling the transmit power. However, the perfect CSI is not often 
available, for instance, due to the time variation of the channel as a result of the mobility 
of the sender or the receiver or both. Therefore, achieving reliable communication over

53
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fading channels where CSI is not available at the transmitter and the receiver (but only 
channel statistics are known), is of particular interest. In such communications scenarios, 

the channel capacity problem has been studied for some simplified models, e.g., a mem-
oryless1 Rayleigh fading channel [72,73], block-fading Rayleigh fading channel [74,75], 

block MPSK channels [76] and finite-state Markov channels [77]. The capacity achiev-
ing distribution in noncoherent scenario has been shown to be discrete [72-74] which 
is in contrast to the perfect CSI scenario where continuous Gaussian inputs are optimal. 
In non-coherent communications systems, the receiver has to form the estimate of CSI 
before demodulation of the data.

The CSI estimation techniques, in general, can be categorized into data-aided (pilot- 
assisted) and non-data-aided (blind). In data-aided channel estimation, known symbols 
are multiplexed into data stream. The receiver uses these known symbols to estimate the 
channel at pilot locations and then uses those estimates to form estimates of the channel 
at data symbol locations [130-132]. In non-data-aided channel estimation, no separate 
known symbols are transmitted along with data. Instead, channel statistics are used to 
estimate the channel (see for example [133] and references therein). In applications 
where mobility is moderate, data-aided channel estimation is employed due to its sim-
plicity and superior performance. In the presence of additive noise, the estimates formed 
by receiver on the basis of noisy pilot symbols are imperfect. The performance of the 
receiver, therefore, depends on how good the channel estimate is [134,135]. Capacities 
of systems with imperfect channel estimation have been studied in [88,136-145].

Achievable rates over time-selective Rayleigh fading channel have been studied in 
[37,79] assuming isotropic scattering environment. No specific signaling schemes and 
the type of scattering environment were considered in [79] and some general bounds on 
achievable rates were derived for block-fading model (where channel changes correl- 
atively across each block of length V  symbols, and independently across blocks) and 
subblock-fading model2 (where channel remains constant over a subblock and changes 
correlatively across subblocks). It was shown that when SNR is very large, the chan-
nel capacity grows logarithmically with SNR and this logarithmic growth is same for 
block-fading and subblock-fading channel models.

The work in this chapter is based3 on [37] where achievable rates over continuously 
fading noncoherent Rayleigh fading channels were studied for Gaussian and constant

1A channel is memory less if a symbol does not contain any information about any other symbol. More 
precisely, the channel is memoryless if its realizations are i.i.d..

2In subblock fading model, a block of length T' is subdivided into Q subblocks of length L' where Q 
is the rank of correlation matrix.

2The work presented in [37] is, in fact, a special case of [79]. While no particular scattering environ-
ment is assumed in [79], the results in [37] assume that the mobile receiver is surrounded by isotropically 
random scattering.
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power (or MPSK) signaling schemes with scattering around the mobile receiver assumed 
to be isotropic. The assumption of isotropic scattering implies real valued correlation 

for the channel process and symmetric U-shaped Doppler spectrum [2]. Also channel 
statistics are independent of mobile direction of travel. We have observed in Chapter 

2, Section 2.2 that, in general, autocorrelation of the channel fading process is complex 
valued and the Doppler spectrum is not symmetric. Moreover, channel statistics depend 
on the direction of mobile travel with respect to mean scattering angle. In this chapter 

we use the generalized mobile Rayleigh fading model and follow the approach of [371 
to extend the available results to include non-isotropic communication scenarios. The 
numerical results suggest that the achievable rates depend on the angular spread, mo-
bile direction of travel, normalized fading rate and the transmission block length. We 
also present comparative study for commonly employed non-isotropic scattering models 
from communication theoretical point of view with common assumptions and geometric 
references which gives new insights, which were not available before.

This chapter is organized as follows. The Section 3.2 describes the channel model. 
In Sections 3.3-3.5 we generalize the results of [37] by extending no-CSI cost function 
and information rates achievable in isotropic scattering environment to general scatter-
ing scenarios with uniform AOA distribution. We, in Section 3.6, discuss two specific 
non-isotropic communications scenario where either the antenna or the scattering envi-
ronment is non-isotropic.In Section 3.7, we utilize the information rate cost function for 
unknown CSI introduced in Section 3.3 to compare and quantify the effect on no-CSI 
cost of having different non-isotropic scattering environments. These common non-
isotropic scattering distributions are also compared with the isotropic environment. A 
practical example and implications of the fact that marginal Gaussianity does not imply 
joint Gaussianity is presented in 3.8. Finally, we summarize the chapter and emphasize 
specific contributions in 3.9.

3.2 Channel Model

We consider a downlink SISO transmission system where the transmitter is stationary 
while the receiver is moving with some velocity v  (Fig. 2.4). A sequence of N symbols, 

s =  [si, s2, • • *, sa t ]7 is transmitted and the received N  x 1 vector r  obtained by sampling 
the output of the matched-filter is given in complex baseband form as (Eq. (2.3))

r  =  y/pSh +  z, ( 3 . 1)
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where S =  diag(si,-s2, * * -,Sjv) is the diagonal matrix of average power constrained 
(E{|sj|2} =  1 for j  = 1,2,- • •, N ) transmitted symbols, z =  [z1, z 2,- • -,zNy  is 
N-dimensional noise vector with zero mean vector and covariance matrix I and h =  
[hi, h2, • • •, hN]T represents the samples of a band-limited, flat-fading (frequency non- 
selective) wide-sense stationary, zero-mean complex Gaussian process with Toeplitz 
positive semidefinite covariance matrix Q  =  E {hh*}.

Let (j  +  k, j )  entry of the channel covariance matrix be expressed as

[Chb+tj = E {hj+ = * ( * ) , ( 3 . 2 )

where <£>(&) is the autocorrelation function of channel fading process. For an isotropic 

environment [37],

[Ch]j+kj  = </o(2t t / d /c), (3.3)

where J 0 is the Bessel function of the first kind of order 0 and / d  is normalized fading 
rate. For a generalized Rayleigh fading environment with truncated-uniform APD, we 
have from (2.16), after some manipulation,

oo

[Chlj+kj = X! *m 7m J m(27r/D/c) exp(im(f)v) , (3.4)
m = —oo

where 7m are the scattering coefficients, / d  is the normalized fading rate and cf)v is the 
mobile direction of travel with respect to the x-axis.

3.3 No-CSI Cost in Truncated-Uniform Scattering

In this section, we seek to generalize the results derived in [37] regarding achievable rates 
for Gaussian and MPSK signaling in isotropic scattering environment. We, therefore, 
consider a truncated-isotropic scattering model described in Section 2.3 and obtain the 
achievable rates in isotropic scattering scenario as a special case.

For length N  sequence of input symbols, s =  [ s i ,  s2, • • *, s a t ] 7 , the (unnormalized) 
mutual information, 7(r; s), between the output vector r received by the mobile receiver 

and the input vector s can be expressed using the chain rule as follows

7(r;s) -  / ( r;s,h) -  7(r;h|s),

-  7(r; s|h) -  {7(r; h|s) -  7(r; h)}

(3.5a)

(3.5b)
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where the first term in (3.5b) is the mutual information with perfect CSI and, therefore,

P& — 7(r; h|s) — 7(r; h), (3.6)

is the loss of information rate due to channel unpredictability when CSI is unknown. 
Since / ( r; h) is non-negative,

Ps < /(r;h |s). (3.7)

Thus 7(r;h|s) is the upper bound on the no-CSI cost. Making use of the Jensen’s in-
equality and the determinant identity, det(I + AB) = det(I + BA), it can be shown that 
Ps normalized by the sequence length denoted by p™rm is given as

pnorm  < I l ogdet(I +  „),

1 A
=  m  X ,  lo § (* +  A )  -

Z =  1

where \ , i  = 1, 2, • • •, TV, are the eigenvalues of the covariance matrix C. In Appendix 
B.l we show that p™orm is maximum when channel fading process is uncorrelated, i.e., 
\ i  =  A2 =  • • • =  XN and is minimum when all eigenvalues are equal to zero except 
one which is equal to N. This scenario corresponds to a perfectly correlated channel 
process. We have the following comments:

• The difference between non-isotropic and isotropic scattering models is reflected 
in eigenvalues of the correlation matrices. The different correlation matrices for 
non-isotropic and isotropic environment (Eqs. (3.4) and (3.3) respectively) imply 
different set of { A J  which implies different information rate cost for unknown 
CSI (Eq. (3.8b)) and, hence, different achievable rates.

• The dependence of penalty (and, hence, achievable information rates) on eigen-
values {A*} implies the dependence on the degree of non-isotropicity, normalized 
fading rate, mobile direction of travel and mean scattering angle.

• The equality holds in (3.8b) for MPSK signaling.

• Equation (2.23a) together with (3.8b) gives information rate loss due to unknown 
CSI in a truncated-isotropic scattering (with isotropic environment as a special 
case) for any block length N.

(3.8a)

(3.8b)
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3.4 Achievable Information Rates: Gaussian and Con-
stant Power Signaling

Let Ic { r ;  s) and I q {r ;  s) denote the mutual information without CSI for constant power 
and Gaussian signaling, respectively. The following upper bound on the mutual infor-
mation has been derived in [37] for MPSK (Eq. (1.20))

I c ( r - s ) <CAWGN( p ) - P r m,

At this point, it is important to refer to a recent work related to OFDM system capac-
ity [90,91 ] where the authors have followed the approach of [37] to derive the achievable 
rates for an OFDM system. On the basis of incorrect arguments involving the concept 
of the Gaussianity of the channel output vector, they ended up with an exact information 
capacity expression. Since the information capacity of a system is an important bench-
mark that guides the coding community to devise codes that approach channel capacity, 
an erroneous capacity expression could lead to confusion about the performance of the 
codes. A code, for example, that may have performance close to the ‘true’ capacity 
might still be far behind the erroneous capacity which could lead the coding commu-
nity into useless research efforts. Moreover, the constant power signaling [146] is one 
of the most widely-used signaling schemes among modern (state-of-the-art and future) 
digital modulation techniques mainly due to its relative robustness to noise and ease of 
implementation with inexpensive non-linear power amplifiers [147]. It is therefore of 
information-theoretic interest to have correct benchmarks for the performance of con-
stant power signaling. We, in Section 3.8, therefore analyze the arguments that formed 
the basis of the inaccurate conclusion about constant power signaling capacity for OFDM 
based system in [90,91] and numerically show that these achievable rates claimed to be 
exact capacity are, in fact, an upper bound to the capacity of OFDM system.

The Gaussian signaling lower bound in isotropic scattering environment as derived 
in [371 is given as (Eq. (1.17))

I g ( r , s ) > C Rayleigh( p ) - _ P r m,

where CRayieigh(^) is the ergodic Rayleigh capacity per symbol [80] with perfect CSI 
defined in (1.18).

Equations (1.20) and (1.17) implicitly specify a trade-off between the degree of non- 
isotropicity (or, equivalently, eigenvalues) and SNR as we would discuss in Section 
3.6.2.
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3.5 Analysis of No-CSI Cost Function

We have observed from (3.8b) that information rate cost function, PJlorm, is a function 
of the block length, N, SNR and the spectrum of the channel fading process through 
eigenvalues, {A;}. It is of some interest to analyze the behavior of no-CSI cost function 
as a function of the degree of non-isotropicity, N  and SNR which is the subject of this 
section4. In particular it is of interest from information theoretic perspective to analyze 
cost asymptotics for large (possibly infinite) block lengths and high (possibly infinite) 
SNR. For clarity of presentation, we in this section shall restrict ourselves to truncated- 
uniform scattering scenario.

3.5.1 No-CSI Cost for Infinite Block Length

Since the information rate loss, P$ in (3.8b) is a non-increasing sequence of N (the block 
length), it has a limit as N  —> oc. The application of Szego’s limit theorem [148] to 
(3.8b) gives

Jim Ps = [  log (1 + £s 4>(cu)) du. (3.9)
N ~ > o c  Z 7T J _ n

Since $( l j) (Eq. (2.23b)) involves summation, it is not possible to find a closed form 
solution for limAr̂ oo due to that summation appearing within log in (3.9).

When A—► 103.9° (angular spread of an isotropic environment), we have [37]

where

UmN-*  OO 2/d9(4 }’ (3 . 10)

e(p)
' o ,  i f g =  0

< f  9 + log \  + \ / l  -  g2 + log , if 0 < g < 1

 ̂f  9 + log § — 2y/g2 — 1 + tan-1 , if g > 1.

(3 .11)

When A—>0° (corresponding to a single point scatterer), it is shown in Appendix B.2 
that for a given SNR

lim PVZ0rm
oo ’

0, (3 .12)

4In this section, an important assumption is that SNR in truncated-uniform environment is the same 
as would be in isotropic environment.



60 Achievable Information Rates Over Generalized Rayleigh Fading Channels

which is independent of SNR. A natural question to ask here is: Even though the channel 
is perfectly correlated, why the penalty due to unknown CSI is non-zero for finite block 

lengths and is zero only when block length is infinite? An intuitive answer is that AWGN 
noise enters into the penalty expression through SNR (Eq. (3.8b)) and channel estimation 

on the basis of a finite observation length in the presence of noise can not be perfect 
even though channel gain has perfect correlation because the additive noise does not get 
perfectly averaged out. When observation length is infinite, noise would be averaged out 
and the estimate would be perfect resulting in zero penalty due to unknown CSI.

3.5.2 Factors Affecting Information Rate Loss

In addition to SNR and block length of transmission, the information rate loss in a 

truncated-isotropic environment depends on mean scattering angle, ß0, mobile direc-
tion of travel, and non-isotropicity. In the following, we shall use numerical means to 
evaluate the impact of each of these parameters on the no-CSI cost function.

Definition 3.5.1 Suppose Pjso and Pj^Iso respectively denote information rate loss in 
isotropic and a non-isotropic scattering scenarios. Let I\so and / n iso respectively denote 
achievable rates in isotropic and non-isotropic environments. We define non-isotropicity 
gain, NIgain, as

A positive NIgain implies that loss due to unknown CSI is lower (and achievable 
rates are higher) in non-isotropic environment than in isotropic case and vice versa.

With no loss of generality, unless explicitly stated, we shall assume in the sequel 
that mean scattering angle, ßo = 90° and p =  10 dB both in isotropic and non-isotropic 
environments.

Impact of Mobile Direction of Travel

Unlike isotropic reception where the statistics of received signal (and, hence, information 

rate loss due to unknown CSI) are independent of mobile direction of travel, the infor-
mation rate loss in a non-isotropic environment depends strongly on mobile direction of 
travel. Fig. 3.1 shows the effect of changing mobile direction of travel on information 
rate loss in truncated-isotropic environment. We can observe that there is a significant 
change in loss when mobile direction of travel changes from 0° to 90°. Also informa-
tion rate loss is maximum (at least for macro and microcellular environments) when the

NIgain =  P1/ 0 -  P£»Tn Iso 6 (3.13)

(3.14)
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Figure 3.1: Effect of changing mobile direction of travel on information rate loss due to 
unknown CSI in truncated-isotropic environment when A r=45° and f o = 0.1.

-< t>v = 1 5 °
fD=°.i;

N =100;

0 20 40  60  80 100
Angular Spread (deg)------->

Figure 3.2: Impact of mobile direction of travel on non-isotropicity gain as a function of 
non-isotropicity when A =100 and / D=0.1. For the limiting cases of A—>-0 and A—>104°, 
non-isotropicity gain is not affected by direction of mobile travel.
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Ar=10°
Ar=25°
Ar=50°
Ar=100°
Ar=180°

$  Clarke's Case
— Ar=10° (Infinite N)
— Ar=50° (Infinite N)
— Clarke' s Case (Infinite N)

Block length (N)

Figure 3.3: Non-isotropicity gain versus block length for different A r when (J)v=00 and 
A =  100. We can observe that penalty is less for smaller A r (or in other words, higher 
degree of non-isotropicity).

mobile moves directly into the mean scattering angle, ß0.
We have plotted non-isotropicity gain, NIgain, against A for different (fiv in Fig. 

3.2. We can observe that <j)v =  90° does represent a worst-case scenario for moderate 
angular spreads and <j)v = 0° corresponds to least information rate loss (and maximum 
correlation). These plots assume that mobile direction of travel is known a priori to the 
receiver. If mobile direction of travel is unknown to the receiver and is equally probable 
in all directions, it can be shown that truncated-isotropic environment, on average, is 
no different from isotropic case (Section 2.3.1). In other words, gain offered by non- 
isotropicity requires knowledge about the mobile direction of travel.

Impact of Transmission Block Length and Non-isotropicity

p n o r m  jn (3 gb) js a non-increasing sequence in N which implies that with increasing 

block length of transmission, the loss in information rate due to unknown CSI can be re-

duced, with all other parameters fixed. Fig. 3.1 shows the effect of changing block length 
on penalty for different directions of mobile travel. We can observe a non-increasing 
behavior of cost function against increasing block length. Notice that at block length 
N=100, the information rate loss seems to have reached asymptotic value for all scatter-
ing scenarios which implies that increasing transmission block length in a non-coherent 

communication system beyond 100 reduces information rate loss by a very small amount
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f  - ' ---4-- « ■g  0.6
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— »—  Non-isotropic (N Infinite) 
-  • — Isotropie Case (N Infinite)

80
Ar (deg)-

Figure 3.4: The penalty due to channel unpredictability because of no-CSI as a function 
of non-isotropicity for different transmission block lengths when / D= 0.05, p=10 dB and 
0^=90°. Though not shown for other <j>v, penalty remains less than or equal to that of 
isotropic environment when block length is infinite. The horizontal lines correspond to 
penalty in isotropic environment. An important observation is that penalty in a non- 
isotropic scenario is not, in general, monotonic in A r (or A), i.e., non-isotropicity.

Ar=10° 
Ar=25° 
Ar=50° 
Ar=100° 
Clarke's Case

"a  0.6

SNR (dB) —

Figure 3.5: Effect of SNR and non-isotropicity on information rate cost for unknown 
CSI when </>v=45°, / d =0.05 and N —t oo. The effect of changing non-isotropicity is to 
change the slope of penalty-p curve.
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and there is no real temptation for making block lengths much larger than that.

Figs. 3.4 and 3.3 show the behavior of penalty for finite and infinite block lengths 
against non-isotropicity. Fig. 3.4 suggests that for finite block lengths, penalty in non-
isotropic scenario can even be greater than in an isotropic environment. The intuition 
here is that for a certain block length, the correlation for a specific non-isotropic scat-
tering scenario may remain higher than another scenario. However if block length is 
increased, the correlation in additional symbols could be lower for the first scenario than 

the second scenario (see correlation plot in [149], for example). An increase in block 
length might, therefore, have the net impact of lowering penalty for the second scenario 
in comparison to the first scenario. Fig. 3.4 confirms this intuition as we can see that 
for finite block lengths, information rate cost for non-isotropic scattering is higher than 
isotropic case for certain angular spreads. As the transmission block length is increased 
to infinity, isotropic penalty becomes an upper bound to the penalty in non-isotropic sce-
nario. In other words, when transmission block length is infinite, isotropic scattering is 
worse than any truncated-uniform scenario. The same behavior can be shown for any (pv 
and fading rate.

Table 3.1: Typical values of angular spread (A) at 1800MHz

Environment A r(deg) A(deg)
Flat rural (Macro) 0.5 0.29
Urban (Macro) 10 5.77
Hilly (Macro) 15 8.66
Urban (Micro) 60 35
Indoor (Pico) 180 103.9

Impact of SNR

Fig. 3.5 shows the impact of varying SNR for different scattering scenarios when the 

block length is infinite. Observe that the effect of a change in non-isotropicity is to 
change the slope of penalty-p curve. We can observe a gradual decrease in the slope 
with increasing non-isotropicity. In the limiting case of A—>0°, the penalty and the slope 
of penalty-p curve would be zero (Section 3.5.1) implying independence from SNR of 
information rate loss due to no-CSI. Similar reduction of slope can be observed in [37] 

as a result of changing fading rates in isotropic environment. The normalized fading 
rate is kept constant, and only degree of non-isotropicity is changed. This implies that 

changing non-isotropicity is tantamount to changing the effective fading rate /o eff- We 

argue that /Deff^/ü when the transmission block length is infinite.
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Table 3.2: Typical values of A at 900MHz

Environment A r(deg) A(deg)
Flat rural (Macro) 2.5 1.44
Urban (Macro) 2 . 5 - 5 1 .4 4 -2 .9
Suburban (Macro) 2 . 5 - 5 1 .4 4 -2 .9
Micro 2 0 - 4 5 11.54 -  25.98
Indoor (Pico) 45 -  180 25.98 -  103.9

Impact of Fading Rate

As discussed in previous subsection, changing non-isotropicity is equivalent to chang-
ing fading rate. We can therefore argue that the impact of changing fading rate for a 
fixed non-isotropicity is equivalent to changing non-isotropicity for a fixed fading rate. 
Fig. 3.6 shows the impact of changing fading rate on non-isotropicity gain. We can 
observe that non-isotropicity gain is greater for higher fading rates and high degree of 
non-isotropicity. For small fading rates, non-isotropicity gain is nominal and remains 
almost insensitive to a change in non-isotropicity.

Definition 3.5.2 Let NIgain0O and NIgain90o respectively denote the non-isotropicity 
gain for (j>v — 0° and 90° assuming a fixed block length, SNR and mean scattering angle. 
We define sensitivity, S, o f non-isotropicity gain to a change in mobile direction o f travel 
as

S  =  NIgain90o — NIgain0O, (3.15)

where a large S  would indicate a large swing in non-isotropicity gain due to a change in 
mobile direction of travel from 0° to 90° implying a greater sensitivity of non-isotropicity 
gain to mobile direction of travel.

Fig. 3.7 shows the effect of changing fading rate on S  as a function of non-isotropicity. 
Note that non-isotropicity gain is more sensitive to a change in mobile direction of travel 
for moderate A and high fading rates. It means that in order to make use of gains offered 
by non-isotropicity at moderate angular spreads in high mobility applications, there is a 
greater need to have accurate knowledge of mobile direction of travel. The gain is less 

sensitive to a change in <fv for small and large A irrespective of fading rate. We can 
observe that S  is negative for a range of (large) angular spreads when / D =  0.5. We 
argue that this is again due to finiteness of block length and not due to any numerical 
approximation.
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N=100; f =0.01
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Figure 3.6: The non-isotropicity gain versus non-isotropicity for different normalized 
fading rates when (pv= 0° and A  =  100. We can observe that non-isotropicity gain is 
highest when scattering is most non-isotropic, i.e., when A->0. And gains are higher for 
higher fading rates.
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Figure 3.7: Sensitivity o f non-isotropicity gain to mobile direction o f travel as a function 
o f angular spread for different normalized fading rates when A =100. We can observe 
that non-isotropicity gain is most sensitive to a change in mobile direction o f travel for 
moderate angular spreads and higher fading rates, and is least sensitive when either A —»0 
or A —>T04o and fading rates are small.
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10 15 20
SNR (dB)------->

Figure 3.8: Impact of non-isotropicity on Gaussian signaling lower bound as a function 
of SNR for different fading rates when A=35° and <^=0°. It can be observed that use 
of a non-isotropic antenna in an isotropic scattering environment is useful only for high 
mobility applications.

3.6 Analysis of Two Non-Isotropic Communications Sce-
narios

This section is devoted to the analysis of two specific non-isotropic communications 
scenarios. In the first scenario the scattering is isotropic but the antenna is directional 
with uniform gain pattern (beamforming). On the other hand, the scattering is non-
isotropic with uniform AOA but the antenna is isotropic in the second scenario. In 
both cases the scattered power is assumed to be the same. A directional antenna in 
the first case intercepts only a portion of the available scattered power. In the light of the 
discussion so far in this and the previous chapter, the use of directional antenna would 

result in better channel statistics at the cost of reduced SNR. On the other hand, the 
isotropic antenna in the second case implies that no useful scattered power is rejected. 
Our purpose in this section is to compare the performance of the communications system 

in these two scenarios to isotropic scattering-isotropic antenna.
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Figure 3.9: Non-isotropicity gain for Gaussian signaling versus angular spread for differ-
ent normalized fading rates when a non-isotropic antenna is used at the mobile receiver 
in isotropic environment. <j>v—0° and 7V =  100 and p= {15 ,40} dB. The figure suggests 
that a non-isotropic antenna offers significant gains as compared to an isotropic scatter-
ing environment when normalized fading rates are higher. Compare this figure to Fig. 
3.6 which corresponds to isotropic antenna at the receiver in a non-isotropic environment 
assuming equal SNR in isotropic and non-isotropic scattering.

3.6.1 Non-Isotropic Scattering with Isotropic Receive Antenna

Using (1.20) and (1.17), the comparison of achievable rates with Gaussian and MPSK 
signaling for truncated-uniform and isotropic scattering models assuming equal SNR 
and large block length is given in Fig. 3.16. Significant gains in achievable rates with 
truncated-isotropic scattering can be observed. As we can see, the MPSK signaling upper 
bound is nearly 2.6 nats/symbol in case of truncated-uniform scattering (Ar =  10°) 
for SNR of 12 dB which represents 30% increase over isotropic scattering model. For 
p = 25 dB, this gain rises to over 1 nat/symbol, an increase of 25% over isotropic case. 
These gains would be higher when (j>v—0°.

Similarly, Gaussian signaling lower bounds for truncated-uniform scattering are higher 
than in isotropic environment. At p = 10 dB, gain due to non-isotropicity is around 0.7 
nats/symbol when A r =  10° (which represents ^47%  gain over isotropic reception). 
When SNR is 25 dB, this gain rises to around 1.1 nats/symbol.
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Figure 3.10: Impact of non-isotropicity on Gaussian signaling lower bound in the low 
SNR regime for different normalized fading rates when ^ = 0 ° ,  A=35° and A=100. The 
figure suggests that it is better to have a non-isotropic antenna in an isotropic scattering 
environment only when normalized fading rates are higher, i.e., in very high mobility 
applications. At low to moderate fading rates, non-isotropic reception is counterproduc-
tive.

3.6.2 Isotropic Scattering with Non-Isotropic Receive Antenna

Equations (1.20) and (1.17) specify a trade-off between SNR and correlation (or eigen-

values). Notice that AWGN ( or Rayleigh) capacity is a function of SNR while P form 
is a function of SNR and eigenvalues {A*}. As we discussed before, changing the de-

gree of non-isotropicity changes eigenvalues {A*}. I f  the degree of non-isotropicity is 

increased (or equivalently, angular spread is reduced), {A J  change in a way to reduce 
p n o rm  (see pjg 3 3  for example). We, in this section, seek to find answer to the follow-

ing question: Is it feasible to use a non-isotropic antenna in an isotropic environment? In 

other words, the question is of the feasibility of beamforming in isotropic environment? 

Obviously, the use of a non-isotropic antenna in an isotropic environment w ill result in 

reduced average received SNR due to a portion of useful available power being rejected. 

The non-isotropic reception would however result in increased correlation ( if the block 

length is sufficiently large). SNR reduction and increased correlation both have the ef-

fect of reducing P form, However, reduction in SNR reduces corresponding AWGN and 

Rayleigh capacity. Therefore, the use of a non-isotropic antenna results in a trade-off
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Figure 3.11: Impact of non-isotropicity on Gaussian signaling lower bound as a function 
of SNR for different fading rates when A=5° and <^=0°. It can be observed that use 
of a non-isotropic antenna in an isotropic scattering environment is useful only for high 
mobility applications. And lower bound is insensitive to a change in the fading rate.

between received SNR and correlation of the channel process. We intend to see if  this 

trade-off can work in favor of a non-isotropic antenna in an isotropic environment.

The received SNR with an isotropic antenna is p. The SNR in case of a non-isotropic 

antenna, denoted by p' would be

A
p  103.9 ’

(3.16)

where both A r and A are in degrees. Note that p' <  p because a directional antenna in an 

isotropic scattering captures only a portion of the available power. The modified MPSK 

signaling upper bound and Gaussian signaling lower bound respectively become

/ c ( r ,s ) < C AWQN (p ') -^N A m, (3.17)

and

I'G( r , s ) > C ^ yieish( p ' ) - P ^ r , (3.18)
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Figure 3.12: Impact of non-isotropicity on MPSK signaling upper bound as a function of 
SNR for different fading rates when A=35° and <^=0°. It can be observed that use of a 
non-isotropic antenna in an isotropic scattering environment seems useful only for high 
mobility applications. For low to moderate fading rates, isotropic reception performs 
much better than non-isotropic reception.

where P ^ n ™ is the same as (3.8b) but the received SNR is p ' .
We numerically evaluated (3.17) and (3.18) and plotted the results in Figures 3.8- 

3.12 along with Rayleigh and AWGN capacities for comparison. Observe from these 
plots that the non-isotropic antenna performs quite poorly as compared to isotropic re-
ception for small fading rates for all SNR. It can also be observed that as SNR decreases 
below OdB, penalty for unknown CSI increases. When SNR is OdB, isotropic reception 
with / D= 0.005 almost achieves Rayleigh perfect CSI capacity. When SNR is -25dB, the 
difference between noncoherent isotropic reception and perfect CSI Rayleigh capacity 
is 0.00275 nats/symbol. Non-isotropic reception, however, outperforms isotropic recep-
tion when fading rate is high5. For p =  33 dB, achievable rates with Gaussian inputs 
with non-isotropic reception are higher than isotropic reception by ~  2.5 nats/symbol. 
We can also observe that at small angular spread of 5°, Gaussian signaling lower bound 

is insensitive to a change in fading rate (Fig. 3.11). Similar behavior can be shown to 
exist for A<5°. This implies that at very small angular spreads, a change in fading rate

‘’Since / d  =  a high fading rate implies high mobility and/or high frequency of transmission 
and/or low symbol rate.
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Figure 3.13: Comparison of non-isotropicity gain for different scattering environments 
as a function of angular spread, A, for (f)v =  {0°, 30°, 60°, 90°}, / D =  0.05 and L =  100.

does not alter channel statistics significantly.

3.7 Non-Isotropic Scattering Distributions: A Compar-
ative Study

In Section 2.2.3, we briefly discussed commonly used non-isotropic scattering models 
and explored the impact of various scattering models on the channel statistics, i.e., auto-
correlation and PSD in Section 2.4. In this section, we use no-CSI cost function (which 
depends on the channel statistics) introduced in Section 3.3 (Eq. (3.8b)) to compare dif-
ferent non-isotropic scattering models. While looking at the autocorrelation and PSD 

plots in Chapter 2, we can only qualitatively describe the differences between different 
scattering models. By using no-CSI cost function, the difference in statistics is translated 
to nats/symbol thus specifying in information theoretic context the differences in statis-
tics of different scattering models. In the subsequent analysis, we assume equal SNR for 
non-isotropic and isotropic scenarios.

For a fixed transmission block length and the normalized fading rate, Fig. 3.13 shows 
the comparison of the non-isotropicity gain for truncated-isotropic, Laplacian, Gaussian
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Figure 3.14: Comparison of non-isotropicity gain for different scattering distributions as 
a function of block length for (j>v=0°, / d  =  0.1 and A =  45°.
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Figure 3.15: Comparison of non-isotropicity gain as a function of (j>v when / D =  0.1, 
N  = 100 and A =  45°.

and von Mises scattering distributions as a function of the angular spread for different 

mobile directions of travel. No significant change in this behavior has been observed
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if the block length is changed. Notice that for small and large angular spreads, differ-
ent scattering distributions are almost identical. The difference among scattering dis-
tributions is noticeable for moderate angular spreads. Truncated-isotropic environment 
is “optimistic” (i . e ., it has higher correlation) as compared to other scattering models. 
Moreover, a Laplacian distribution is the “worst” among different models being studied 
for moderate angular spreads while Gaussian distribution becomes “worst” for large an-
gular spread. It can also be observed that for ( f ) v — 0°, the difference among scattering 

environments is more pronounced. Similarly while the pattern of behavior as a func-
tion of fading rate remains the same (with other parameters fixed) as in Fig. 3.13, the 
difference among scattering models in terms of nats/symbol becomes higher for higher 
fading rates. For the following analysis, unless explicitly stated, we therefore choose 
( f ) v = 0°, / d  =  0.1 (very fast fading scenario) and moderate angular spread to highlight 
approximately worst case scenario.

For a fixed angular spread, mobile velocity and fading rate, the non-isotropicity gain 
for different scattering models has been plotted as a function of block length of trans-
mission in Fig. 3.14. No significant change in this behavior has been observed if the 
angular spread is changed keeping the angular spread in the moderate range. Notice 
an upward trend (as a function of block length) in gain for truncated-uniform envi-
ronment and a downward trend for Gaussian, Laplacian and von Mises distributions. 
An upward trend implies that every extra symbol carries more (incremental) informa-
tion in truncated-isotropic case as compared to isotropic case. A downward trend for 
other scattering models indicates lesser information (than isotropic case) for every ad-
ditional symbol. In this respect Gaussian, Laplacian and von Mises distributions are 
worse than isotropic environment. Notice that Gaussian and von Mises distributions are 
almost identical and Laplacian distribution is the “worst” of all scattering distributions. 
The truncated-uniform environment differs from other three distributions significantly. 
Therefore, assumption of truncated-isotropic environment could, in general, introduce 
significant errors in the analysis based on channel statistics if, in reality, scattering dis-
tribution is different.

As we discussed in Section 2.2, the channel statistics in a non-isotropic environ-
ment depend on the mobile direction of travel. Fig. 3.15 shows the behavior of non- 
isotropicity gain in common non-isotropic scattering scenarios as a function <f>v  keeping 
block length of transmission, fading rate and the angular spread fixed. The sensitivity of 

non-isotropicity gain to mobile direction of travel is shown in Fig. 3.17 for different scat-
tering distributions. Notice that all scattering distributions are almost equally sensitive 
to a change in mobile direction of travel. To be more precise, the truncated-Laplacian 
distribution is least sensitive to a change in ( f ) v  when the angular spread is moderate. No
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Figure 3.16: Achievable information rates as a function of SNR when the scattering 
distribution is truncated-isotropic for 4>v =  65° in case of different Ar. The potential 
gains for Gaussian signaling have been highlighted at two values of SNR.

significant change in this pattern of behavior has been observed as a result of a change 
in block length of transmission.

In the light of the preceding analysis, we can conclude that the truncated-uniform, 
truncated-Gaussian, truncated-Laplacian and von Mises distributions can be considered 
equivalent for small and large angular spreads, and small fading rates. Therefore, the 
replacement of one distribution for the other will not cause any significant errors in 
channel statistics and system analysis or design based on channel statistics. For mod-
erate angular spreads and large fading rates, statistics of these distributions may differ 
significantly and replacement of one distribution for the other might introduce signif-
icant errors. Therefore, if the communications systems designer can have the perfect 
knowledge of the type of scattering environment and the mobile direction of travel (at 
the receiver6), the performance of the communications system can be enhanced Section 
3.5.2.

throughout this thesis, we assume that the it is the receiver that knows the channel statistics. If, in 
addition, the knowledge of statistics is assumed at the transmitter as well, the overall performance of the 
system can be further improved by allowing the transmitter to adapt its transmissions according to the 
expected channel statistics.
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Figure 3.17: The gain sensitivity, S, for different scattering environments as a function 
of angular spread for / D = {0.01,0.1} and N = 100.

3.8 Marginal Gaussianity does not Imply Joint Gaus- 
sianity: A Practical Example

The complex channel vector h in (3.1) is Gaussian (or equivalently jointly Gaussian) 
because it is obtained by sampling a complex Gaussian channel process {/i} where the 
complex Gaussianity of the channel process is due to the assumption of rich scattering 
with the phases of scattered electromagnetic waves uniformly distributed over [—7r, 7t ] . 

The question that we seek to answer in this section is the following: Given a Gaussian 
vector h, is the output vector r in (3.1) in response to i.i.d. constant power signaling a 
Gaussian vector? The motivation behind the consideration of this problem lies in the 
recent contributions with contradictory results. In [90,91], the authors claim to have 
derived exact OFDM channel capacity for constant power signaling arguing that the 
channel output is jointly Gaussian when the input is i.i.d. MPSK. In [37], on which 
the work in this chapter is mainly based, the authors are more cautious about the joint 
Gaussianity of the output vector and derive an upper bound on the capacity with i.i.d. 
constant power signaling (Eq. (1.20)).
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The MPSK capacity upper bound (Eq. (1.20)) is correctly based on the premise that 
the entropy of any random process with a fixed covariance matrix is maximized when 
the process is jointly Gaussian. However, no comments have been made about the strict-
ness of this upper bound in [37]. The marginal Gaussianity of the channel output in 
response to constant power signaling led authors in [90,91] to tacitly conclude that the 
channel output sequence is also jointly Gaussian and hence, to report an exact informa-
tion rate for OFDM systems. In order to verify this claim, we propose to rigorously 

study the marginal and joint probability distributions of the channel outputs in response 
to i.i.d. MPSK in time-selective Rayleigh fading channels. This is carried out through 
mathematical analysis and computer simulations. We show that the system model under 
consideration is a clear example of the case where marginal Gaussianity does not imply 
joint Gaussianity. As a result, we show that the information rates reported in [90,91] are, 
in fact, strict upper bounds. We then examine the tightness of these bounds by comparing 
them with the perfect CSI upper bound for MPSK inputs. Interestingly, the comparison 
reveals that the perfect CSI upper bound can provide tighter bounds than those in [37,90] 
in slow fading channels and high SNR conditions, especially when the MPSK dimension 
is low (such as binary signaling).

Since the scattering environment has been assumed to be isotropic in [90,91] and 
[37], the channel vector h has covariance matrix as defined in (3.3). To derive the 
marginal distribution of the channel output, we need to consider an arbitrary sample 
of the channel output at discrete time index E, which is given as

r£ = s£h£ +z£, (3.19)
X(_

=  y/p exp (iOi) Ih£I exp (ifa) +  z£,

= y / p \ h £\ exp (i (0£ + &)) + zt , (3.20)

where fading amplitude \h£\ is Rayleigh distributed and the fading phase j)£ is uniformly- 
distributed over [—7T, 7r]. yj~pel6e is the transmitted constant power signal. Because the 
additive noise is Gaussian and independent of x£ = s£h£, the Gaussianity (or non- 
Gaussianity) of the output vector is determined by x£. For MPSK, the signal phase 
can be one of the M  possible phases as 0£ = 2iim /M  for m  £  { 0 , • • • , M  — 1}. Since 
the transmitted signal has constant modulus, the distribution of \x£\ = p\h£\ remains 
Rayleigh. To prove the Gaussianity of x£ = s£h£ (and hence marginal Gaussianity of r£), 

we only need to prove that the phase of x£ (which is (9£+(j)£)®2n) is uniformly distributed 
over [—7T, 7r). If the input phase was continuously uniform between — n and 7r, one could 

show that (0£ +  (f>£)®2ir remains uniform over [—7r, 7r] by invoking standard arguments 

in probability theory [ 150]. Intuitively, one expects that the distribution of (0£ +  </>e)®2*
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remains uniform for MPSK signals with discrete distributions at 0£ =  2irm/M . This 
intuitive reasoning has been used in [90] to show marginal Gaussianity of the output.

In fact, the following theorem from [151] provides even a stronger result.

Theorem 3.8.1 If two processes a(t) and b(t) have the probability density functions 
Pi(a,t) and P2 {b,t), respectively, such that a(t), modulo q, is statistically independent 
ofb(t) and uniformly distributed, i.e.,

P iK ,  t) =  -  {u{a) -  u(a -  q)} ,

where u(-) is the unit step function, then the probability density function of(aq(t) =t b(t))
, modulo q, is also uniformly distributed, regardless of the probability density function 

ofb(t). That is, ifw(t)  =  aq{t) =t b(t), then

P(wq, t) = -  {u(w) -  u(w -  q)} .
Q

By directly applying the above theorem to the problem at hand, we formulate the fol-
lowing result:

Theorem 3.8.2 The distribution of the phase process of the output {O =  (</> +  0)®2n}> 
where f  and 6 are statistically independent channel and input phase processes, is uni-
form over [0, 27t ) and is independent of the distribution of the input phase, 6.

An immediate consequence of the second part of the theorem 3.8.2 is the following 
corollary.

Corollary 3.8.1 The channel output rg in a time-selective Rayleigh fading channel is 
marginally Gaussian with zero-mean for any MPSK input distribution.

3.8.1 Joint Distribution of the Output: Mathematical Analysis

In the previous section, we proved that each element xg of the vector x in (3.19) is zero- 

mean Gaussian. While joint Gaussianity implies marginal Gaussianity, the reverse is 
not necessarily true [152]. Therefore, x is not guaranteed to be multivariate Gaussian, 
although it is marginally Gaussian.

In the following, with the help of analytical arguments and numerical simulations we 
show that x is indeed jointly non-Gaussian and, hence, the output vector r, which is the 
sum of independent non-Gaussian vector x and Gaussian vector z, is non-Gaussian.

Firstly, we know that Gaussianity is preserved under invertible linear transformation 

[146]. Notice that if S were known, then x =  Sh would represent an invertible linear
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transformation of the Gaussian random vector h and hence, would be jointly Gaussian. 
For example, in a pilot-aided data transmission scheme [ 153], S is known during the pilot 
transmission phase and the distribution of x and, hence, the output vector r in (3.1) is 
N-dimensional complex Gaussian. However, in the current scenario, S is the transmitted 
data, which is random and unknown. The product Sh therefore represents a linear and 
random non-invertible transformation. Thus, the output r can not be guaranteed to be 
Gaussian.

We construct the distribution of r using conditional distribution of r given s. It can 

be noticed from (3 .1) that the conditional distribution of r given s, /(r |s ) , is M  (0, Cr|s), 
where Cr|s =  SChS7/ -I- I  is the conditional covariance of r given s. The distribution of 
r, / ( r), is then given by

where represents the TV-dimensional probability space for s, p(s) is the probability 
mass function for discrete constant power input and M  is the number of points in the 
MPSK constellation. Equiprobable i.i.d. MPSK inputs have been assumed to arrive at 
the second equality. Equation (3.21) shows that / ( r) is a summation of Gaussians and 
is, therefore, non-Gaussian. In the next subsection, we shall verify the non-Gaussianity 
of the output sequence with the help of numerical simulations.

3.8.2 Joint Distribution of the Output: Numerical Analysis

In order to prove that the output r is non-Gaussian, it is sufficient to show that x in (3.19) 
is non-Gaussian for N = 2. We proceed step-by-step as follows:

First, we generate a long sequence of channel fading process h according to the 
Clarke’s model. This can be easily implemented using the L-th order autoregressive 
(AR) approximation of the process [154] with some high AR order such as L = 500. 
For notational simplicity, let us denote two consecutive channel realizations as hi and 
h2. Since the fading process is marginally circularly symmetric complex Gaussian, the 

contour plot (2D-histogram) of $l(hi) and ^s(hi) consists of concentric circles. This is 
not shown here for the sake of brevity. However, hi is correlated with h2. Therefore, the 

contour plot of the joint distribution of ?R.(hi) and $l(h2) consists of concentric ellipses 
(the same statement applies to imaginary parts). Fig. 3.18 shows one such contour plot 
for a fading channel with the normalized Doppler frequency shift of f DT — 0.2 and 

verifies the joint Gaussian distribution of and 3 ? ( / i 2 ) .  The number of samples

f(r)  =  5 3  / ( r ls ) p ( s ) ,
SG XN

1 1
(3.21)
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generated is P — 106 and the number of bins for each element is 62.

Second, we generate a long sequence of x = Sh by multiplying h with i.i.d. realiza-
tions of input S from the MPSK constellation. For notational simplicity, let us denote 
two consecutive realizations of s as s\ and s2, given as follows

x' = [X1X2] = [exp(idi)hi exp (i02) h2]T. (3.22)

Note that x\ and x2 are jointly Gaussian if and only if

x" = [3ft(exp (i0\) h\) 3ft(exp (i02) h2) 9f(exp(iO\ ) h\) Of(exp(z02) ^2)]T , (3.23)

is jointly Gaussian [155]. Since any subset of a Gaussian vector is also jointly Gaus-
sian, to prove that x" is not Gaussian, we only need to show that at least two ele-
ments of x" are jointly non-Gaussian. For example, it is sufficient to show that w = 
[5R(ez01 hi) 3ft(el°2 h2) \1 are jointly non-Gaussian.

Fig. 3.19 shows a contour plot of the joint distribution of w  for M  = 2 binary MPSK 
signaling and confirms its non-Gaussian joint distribution.

Fig. 3.20 shows a contour plot of the joint distribution of w  for 16-PSK signaling. 
Compared with Fig. 3.20, the contour plot is somewhat more ‘rounded’. Nevertheless, it 
is still not quite circular.

.CM 50

2- 40

Bin index  for th e real part o f h1

Figure 3.18: A contour plot of joint distribution of 3ft(/ii) and 3ft(/i2)• / d  = 0.2.
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3.8.3 Implications of Non-Gaussianity of Channel Output on Infor-
mation Rates

In Sections 3.8.1 and 3.8.2, we showed that a sequence of channel outputs of length N  
in response to MPSK signaling is jointly non-Gaussian. To see the consequence of this 

result on information rates, we first write an element of channel output covariance matrix 
at row k and column j  as

which is a consequence of the independence between the input and channel processes. 
E {h j+kh*} was defined in (3.2). In (3.24), 5kj  =  0 for j  ^  k. Therefore, we can upper 
bound the entropy rate of channel output sequence as follows

where e =  2.718 • the first inequality holds because the entropy of any random vector 
is upper bounded by the entropy of a Gaussian random vector with the same covariance 
matrix. The second inequality follows from Hadamards inequality [156], with equality 
if and only if [Cr]fcj =  0, k j ,  i.e., if the input symbols are uncorrelated. The above 
procedure is correctly followed in [37]. We note from (3.24) that the output process 
becomes uncorrelated for i.i.d MPSK inputs, but since the output is not jointly Gaussian, 
one cannot conclude independence. The point of view of [90,91] that i.i.d. constant 
power signaling whitens the channel process is not justified.

The mutual information rate 7(r; s) between the output r  and the input x with no-CSI 
is given by

[Cr\k,j = E  {rkr*} = E {hkh*} E { s ks*} +  6kj , (3.24)

(3.25)

n = 1

=  log(p+  1)

(̂r;s) = jj(h(r) -  h{r\a)). (3.26)

Using (3.25), one can upper bound the information rate as

/( r ;s )  < log (p+  1) -  j j h ( r|s). (3.27)

Therefore, the use of “capacity” in [90,91] for the RHS of (3.27) is misleading and 
should be considered as a strict upper bound to the information rates achievable with M-
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Figure 3.19: A contour plot of joint distribution of w: BPSK signaling.

PSK signaling. Thus, we have shown, firstly, that the achievable rates derived in [90,91] 
for MPSK are an upper bound to the channel capacity. Secondly, the upper bound is 
strict in contrast to non-strict upper bound derived in [37].

It is reasonable to ask how tight the information rate upper bounds on the RHS 
of (3.27) are for practical MPSK schemes? We know trivially that log2(M ) bits per 
channel use is an upper bound for MPSK information rates. With this in mind, we com-
pare (3.27) with the perfect CSI upper bound /(r;s|h) =  [/i(r|h) — /?-(r|s, h)]/7V. To 
compute the RHS of (3.27), we use a closed-form expression for h(r\s)/N provided 
in [37]. Fig. 3.21 shows two information upper bounds using (3.27) for normalized 

Doppler frequency shifts of f DT  = 0.05 and f DT  = 0.2. Relatively, we refer to the 
former as slow fading and the latter as fast fading. It is clear that for low MPSK dimen-
sions (such as M  = 2 or BPSK), (3.27) goes rapidly above the trivial upper bound of 

log2(M ) =  1 bits per channel use. For slow fading channels, BPSK and 16-PSK CSI up-
per bounds provide tighter results for almost all SNRs. For the faster fading conditions, 
(3.27) provides relatively tighter bounds than the CSI upper bound for 16-PSK signaling 
for a wide range of SNR, but is still loose for BPSK signaling unless for very low SNR.
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Figure 3.20: A contour plot of joint distribution of w: 16-PSK signaling.

3.9 Summary and Contributions

This chapter has investigated information rate penalty for unknown CSI and achievable 
rates for i.i.d. MPSK and Gaussian inputs over a noncoherent generalized time-selective 

Rayleigh fading channel. With the assumption of equal SNR for isotropic and non-

isotropic scattering environments and an omnidirectional antenna at the receiver, the 

results suggested a significant reduction in information rate penalty for unknown CSI 

and gains in communication rates in a non-isotropic scattering scenario as compared 

to isotropic reception. We analyzed the impact of different parameters on information 

rate loss due to no-CSI and achievable rates. We also looked into the feasibility of a 

non-isotropic antenna in an isotropic environment taking into account the reduction in 

SNR due to the rejection of useful power by non-isotropic antenna. We compared com-

mon non-isotropic scattering environments using information rate penalty function, and 

explored the ways in which these distributions differ from the point of view of commu-

nication theory.

We investigated the statistical properties of the channel output in response to constant 

power signaling in Rayleigh fading channels. We showed that although the channel out-

put at any given time is marginally Gaussian, a sequence of channel outputs are not 

jointly Gaussian. Therefore, one can only obtain upper bounds on the achievable infor-

mation rates. We then compared these information rate upper bounds with the perfect 

CSI upper bound. The comparison showed that the obtained upper bounds from (3.27)
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Figure 3.21: Comparison of information rate upper bounds.

become loose for high SNR and slow fading channels, especially for low-dimension 
MPSK signalling.

Some specific results of this chapter are as follows:

1. For infinite transmission block length, information rate loss due to unknown CSI 
in isotropic environment is an upper bound to the penalty in non-isotropic envi-
ronments. For finite block lengths, however, a non-isotropic environment can have 
higher penalty than isotropic case.

2. Non-isotropicity gain is higher for small angular spreads and higher fading rates. 
In other words, communication in a non-isotropic environment offers gains over 
isotropic reception when both the mobility and the degree of non-isotropicity are 
high.

3. Non-isotropicity gain is more sensitive to a change in mobile direction of travel 
when normalized fading rates are higher and angular spread is moderate.

4. A non-isotropic antenna in isotropic environment outperforms isotropic antenna 
reception for high fading rates. For low fading rates, isotropic reception is much 
better than non-isotropic reception.
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5. From information theoretic point of view, common non-isotropic scattering distri-
butions are almost identical for small and large angular spreads when the fading 

rate is small. Gaussian and von Mises distributions are almost identical for all an-
gular spreads keeping other parameters fixed. Moreover, truncated-isotropic dis-
tribution is significantly more “optimistic” than other distributions for moderate 
angular spreads and is more sensitive to a change in mobile direction of travel.

6. We presented an example of the classical fact that marginal Gaussianity does not 

imply joint Gaussianity and highlighted the fallacy behind the recent claim about 
the MPSK capacity over Rayleigh fading channels.



Chapter 4

Characterization of Rayleigh Fading 
Statistics with Constant Mobile 
Acceleration

4.1 Introduction and background

The Clarke’s model of mobile radio reception and its generalization introduced in Chap-
ter 2 are based on the assumptions of statistically homogeneous uncorrelated isotrop-
ically random scattering, independence between the magnitudes and phases of the ar-
riving waves, uniform pdf of the distribution of AOA over [—t t , n\ and constant mobile 
velocity. These assumptions gave rise to a zero-mean circularly symmetric WSS com-
plex Gaussian fading process. Since the channel process is complex Gaussian, WSS 
implies strict sense stationarity of the channel process. The complex Gaussianity of the 
fading process implied that the zero-mean channel can be perfectly described by its auto-
correlation (or, equivalently, its PSD). The stationarity of the complex Gaussian channel 
process imply that its autocorrelation (or PSD) is time-invariant. In this chapter, we re-

tain all assumptions about the scattering and arriving waves but relax the assumption of 
constant mobile velocity allowing the mobile to have constant acceleration which cor-
responds better to the physical reality because a mobile user may experience changes 
in velocity caused by traffic lights or road conditions [66]. We seek to characterize the 
channel statistics under the assumption of constant mobile acceleration and its impact 
on the performance of communications systems.

87
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4.1.1 Time-Varying Spectrum Due to Mobile Acceleration

For a fixed carrier frequency f c, the Doppler spectrum of the channel fading process 
depends directly on the mobile velocity. In fact, we have the following relationship 

between a particular mobile velocity v  and a particular Doppler frequency /d present in 
the Doppler spectrum

where Ac =  c / f c is the carrier wavelength (c is the speed of light), and 7 is the angle 
between the scattering angle and the unit vector v  (pointing in the direction of mobile 
movement). The maximum Doppler frequency, /^nax =  \v\ /Xc corresponds to the wave 
impinging on the mobile receiver head-on. When the mobile receiver has constant ac-
celeration a, the velocity of the mobile changes continuously with time. If, for example, 
v'  denotes the mobile velocity at some time t', the velocity of the mobile at time t > t! 
is given by

The time-varying velocity would imply a time-varying PSD and, hence, autocor-
relation. Equivalently, the channel would become a non-stationary complex process 
as a result of mobile acceleration and the estimation of the spectral contents of the 
non-stationary fading process based on stationarity assumption would be inaccurate 
1157-159].

4.1.2 Time-Varying Channel Coherence Time

The channel coherence, Tc, is an important design parameter in communication system 
design. It is a function of the maximum Doppler frequency (Doppler spread) in the 

channel Doppler spectrum and can qualitatively be considered as the time over which 
the channel fading process is highly correlated. Mathematically, as a rule of thumb [160]

(4.1)

v(t)  = v'  +  a (t — t'). (4.2)

T  =J c
0.423

(4.3)
fd ’

where fd is the maximum Doppler frequency in the channel frequency response. Equa-
tion (4.3) gives Tc in units of time whereas Tc is given in terms of number of symbols
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where f o  is the maximum Doppler frequency normalized by the symbol rate Ts, i.e.,

f o  =  fd T s . (4.5)

For a wide-sense stationary fading process, Tc is time-invariant and a fixed transmission 
scheme can be designed to maintain a constant average information transfer rate. For 

an accelerating mobile, on the other hand, Tc becomes time-variant as a result of time- 
variant Doppler spread and the instantaneous normalized fading rate is given as

fo( t )  = ut) Ts . (4.6)

4.1.3 A Brief Background on Non-Stationary Modeling

A non-stationary model was introduced in [161] which is, in fact, a 2-state model for 
land mobile satellite channels. This model can be generalized to an M-state model 
where each state is represented by a specific stationary process, i.e., a non-stationary 
process can equivalently be represented by M stationary processes [162]. The impact of 
non-stationarity on the achievable rates over mobile Rayleigh fading channels has been 
considered in [163]. One part of this work addresses the problem of the instantaneous 
mean channel capacity of the frequency-selective channel at a fixed time with channel 
frequency response perfectly known, first, at the receiver and the transmitter and, then, 
at the receiver only. In the second part, an imperfect channel estimation is considered 
and assuming the estimation error to be additive Gaussian, capacity lower and upper 
bounds are shown for Global System for Mobile communications (GSM) in a hilly mo-
bile environment. Though not explicitly stated, the plots suggest that a band of channel 
frequency spectrum where the frequency response is flat is considered. In other words, 
the capacity bounds with channel estimation errors correspond to frequency flat time- 
selective Rayleigh fading channels where the channel fading is implicitly assumed to 
be block-fading1. In other words, the channel gain is assumed to stay constant for the 
duration of the block of 142 symbols in a GSM time slot.

Recently, the impact of constant mobile acceleration has been discussed in [165] in 
relation to correlation based speed estimation for indoor positioning where the constant 
mobile acceleration introduced errors in speed estimation. The impact of mobile acceler-

‘So far in this thesis we have assumed that the channel is time-selective and fades continuously. The 
block-fading model which assumes the channel gain to be constant over a block of transmitted symbols 
is a simplified version of the more general time-selective model. Let Tc denote the coherence time of the 
channel, i.e., the time over which the channel fading is highly correlated, Lf be the length of the data 
frame transmitted and Nb be the number of coherence blocks in the data frame, i.e., Nb =  Lf/Tc. Now 
if Tc =  1, the channel is fast-fading (fully-interleaved). If 1 <  Tc = Lf /Nb, the channel is block-fading. 
And if Tc = Lf, the channel is said to be quasi-static [164],
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ation on linear prediction (and subsequent equalization) of the envelope of frequency-flat 
complex Gaussian fading was investigated in [166]. The constant mobile acceleration 

was shown to have an impact on the choice of the adaptive prediction algorithm. For 
example, the linear prediction based on windowed recursive least squares (WRLS) al-
gorithm performed better than the recursive least squares (RLS) algorithm for a mobile 
with constant acceleration.

To the best of our knowledge, the wireless channel statistics and the performance 
of a cellular wireless mobile communication system with accelerating (or decelerating) 
mobile receiver have not been analyzed in the literature as yet perhaps because, as we 
shall see in this chapter, the state-of-the-art wireless communication systems operate at 
frequencies of the order of 2 GHz and have sufficiently short transmission frame lengths. 
In such cases, the impact of mobile acceleration on the estimation of parameters of in-

terest such as channel gain and maximum Doppler frequency, is not significant over 
the duration of the frame and can be ignored without significantly losing accuracy for 
all practical acceleration possibilities for mobile speeds as high as «  200 Km/hr. At 
this point it should be emphasized that, unlike state-of-the-art cellular communication 
systems, peer-to-peer ad hoc networks (where the mobiles can communicate with each 
other like Motorola Talkabout Family Radio Service (FRS) and IEEE 802.11 wireless 
local area network (WLAN) mobile units [167], can act as routers and can share re-
sources among them) are significantly affected by mobile speed and acceleration [66]. 
The reason for increased mobility impact on the network performance is due to the fact 
that, in addition to channel and Doppler estimation, network and application protocols 
are sensitive to route discovery and maintenance, which are strongly sensitive to mobil-
ity patterns. This is so because, in an ad hoc network, the participants move so that the 
network may not rely on static (or slowly changing) routing protocols to deliver infor-
mation and must, therefore, adapt to changing connectivity. Moreover, mobility impacts 
the design of strategies for location updating and paging, quality-of-service (QoS), ra-
dio resource management (e.g., dynamic channel allocation schemes), technical network 
planning and design (e.g., cell and location area layout, network dimensioning). These 

sensitivities affect the performance of the network as a whole, and affect the ability to 
accomplish the mission assigned to a specific participant [67].

The future wireless communication systems, e.g., cellular like mobile WiMax are 
expected to operate at much higher carrier frequencies2 and would accommodate high 
mobility where the impact of mobile acceleration could not be ignorable. Therefore, it is 

of some interest to develop a framework to determine the impact of mobile acceleration

2The use of 62 GHz for future cellular communication with mobility has been suggested in [168] and 
experimental analysis of the propagation at this frequency has been reported in [169].



4.2 Problem Statement And Continuous-Time Channel Model 91

on the performance of wireless cellular communication systems which is the subject of 
this chapter.

This chapter is organized as follows. The Section 4.2 describes the channel model 
and communications scenario that we look into, and specifies different assumptions 

about various parameters involved. The instantaneous channel autocorrelation and cor-
responding PSD for continuous-time channel process are derived in the Section 4.3. The 
discretization of the non-stationary channel process is discussed in Section 4.4. The well 

known Wigner-Ville and instantaneous power spectra are derived for the non-stationary 
channel assuming infinite sampling rate and unbounded mobile velocity in Section 4.5. 
The implications of the assumption of bounded mobile velocity and finite sampling rate 
are discussed in Section 4.6. The impact of mobile acceleration on the design of the fu-
ture mobile communication systems is discussed with numerical results in Section 4.7. 
Finally, the chapter summary and contributions are described in Section 4.8.

4.2 Problem Statement And Continuous-Time Channel

We consider a mobile communications scenario in which the transmitter is stationary 
while, at time t, the receiver equipped with an omni-directional antenna moving with 
initial velocity v  and constant acceleration1 a  at angle ip with respect to x-axis in a 2D 
scattering environment (Fig. 4.1). While mobile acceleration is normally assumed to 
be zero for mobile radio characterization, our intention here is to explore the impact of 
constant mobile acceleration on channel statistics.

We consider the baseband equivalent form of the I/O relationship defined in (2.1) 
with additional superscript ‘ns’ to denote non-stationarity

Assume that the accelerating mobile moving with initial velocity v 0 is at some arbitrary 

origin ’O’ at t = 0. The continuous-time non-stationary channel process h™s(t)

where v(t) is the instantaneous velocity and 77 is the plane wave phase constant. We 
retain the assumptions underlying the circularly complex Gaussianity of the channel

3We assume that the mobile acceleration is aligned with velocity. The term ‘acceleration’ may, there-
fore, be interpreted as the magnitude of the acceleration.

Model

r(t) = y/p hTps(t) s(t) 4- z(t) — 00 < t <  00. (4.7)

(4.8)



92 Rayleigh Fading Statistics with Constant Mobile Acceleration

Plane-Waves

x-axis

Figure 4.1: The mobile is moving at an angle 4>v with respect to x-axis with initial speed 
\v0\ and constant acceleration a  in the direction of movement. A plane wave is shown 
incident on the receive antenna at an angle ß  and Udwvd defined in (4.69) is also depicted.

process so that the channel process at any arbitrary time t is circular complex Gaussian.

4.2.1 Types of Non-Stationary Gaussian Channel Processes

The Gaussianity of the channel process allows us to restrict our analysis of the impact 
of acceleration on the first two moments of the channel process, i.e., the mean and the 
autocorrelation because a Gaussian process is completely characterized by its first two 

moments. Various types of non-stationarities in the Gaussian channel process are possi-
ble depending on whether mean, variance and/or covariance is time dependent. Usually, 

a sample record of a composite non-stationary continuous-time Gaussian channel pro-
cess h™s(t) can be written as

h™(t) = A(t) + B(t)hsc(t), (4.9)

where A(t) and B(t) are deterministic (or random) functions of time and {/?.*(/)} is a 
sample record from unit-variance zero-mean stationary random channel process which 
corresponds to a mobile moving with constant velocity (and zero acceleration) in rich
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Scattering environment. The different possibilities of non-stationarity in the Gaussian 
channel process h^s(t) can be classified as follows:

• If B(t) = 1, we can rewrite (4.9) as

h™(t) = A{t) + hsc(t), (4.10)

which implies that for every t, a constant is added to the zero mean unit variance 
stationary process hsc(t) so that

E = A(t(4.11)

implies that the mean of the channel process is time-varying and, hence, non-
stationary. Because the variance and covariance of the random process are in-
dependent of the mean, h(t) in (4.10) has stationary (i.e., time-invariant) variance 
and covariance. Thus the channel process has non-stationary mean when B(t) = 1

• If A(t) =  0, equation (4.9) becomes

hncs(t) = B(t)hsc(t), (4.12)

which implies that for every t, if B(t) is assumed to be deterministic, a time- 
dependent constant is multiplied with hsc(t). Observe that

E{h™{t)} - 0 ,  (4.13)

implying that the mean of the channel process h(t) is zero and stationary. We 
know that multiplying a random variable by a constant increases the variance by 
the square of the constant, and the covariance of two random variables increases 
by the product of the two constants (if each random variable is multiplied by a 
different constant) [170]. Therefore, using (4.12) the variance and covariance of 
h(t) are given respectively as

E { \hncs(t)\2} = B2(t) E { I I2}, (4.14)

E{hncs{h)h'r(h)} = B(t!)B(t2)E  (4.15)

which imply that the random process has non-stationary variance and covariance.

• If A(t), B(t) are deterministic and positive, in the light of above discussion, we 
can infer that the Gaussian process would have non-stationary mean, variance and
covariance.
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•  If B(t) = 1 and A(t) is random with time-varying mean and/or variance and co- 
variance, the overall process h™s(t) shall have non-stationary mean and/or variance 

and covariance.

4.2.2 Is Non-Stationarity Due to Mobile Acceleration Separable from 
Stationary Statistics?

Firstly, we have to see what type of non-stationarity is caused by the mobile motion with 
constant acceleration. The assumptions of statistical homogeneity of the scattering envi-
ronment and uniform distribution of AOA of arriving waves over [—7r, 7r] ensure that the 
non-stationary complex Gaussian channel process is zero-mean and has time-invariant 
variance. The mobile acceleration causes the mobile velocity to continuously change 
which implies a time varying autocorrelation function and PSD. Therefore, an acceler-
ating mobile in sufficiently rich scattering environment results in a complex Gaussian 
channel process which has stationary mean and non-stationary covariance4. In the fol-
lowing we discuss if the non-stationary introduced due to the mobile acceleration is 
separable from stationary statistics.

Look at (4.9). A complex Gaussian process with stationary mean and variance but 
non-stationary covariance may be constructed if we assume that A(t) = 0 and B(t)  is a 
unit variance, not necessarily zero-mean, random rather than deterministic5 function of 
time. Mathematically,

h?( t )  = B { t ) h ’c(t), (4.16)

This separability would allow us to write the autocorrelation of the composite process 
hc(t) as the product of individual autocorrelation functions of B(t)  and h*(t). However, 
the separability would be useful only if we know the covariances of individual compo-
nent processes.

We know from the classical probability theory that the sum of two independent Gaus-

sian random variables is Gaussian but the product of two (correlated or independent) 
random variables is non-Gaussian. Particulary, when the Gaussian random variables 
are zero-mean, the pdf of their product is a modified Bessel function of the second 

kind [172]. Therefore, since we have assumed h*{t) to be a zero-mean unit variance 
complex process, B(t)  obviously can not be Gaussian if hc(t) has to be Gaussian (again 
by assumption). While the product of a Gaussian random variable with a constant is

4Precisely speaking, the channel under consideration turns out to be a particular case of a non-WSS 
US channel [171].

5 Assumption of deterministic B(t )  would result in a composite process with non-stationary variance 
(Eq. (4.9)) and will, therefore, be in contradiction with our assumption of homogeneous scattering.
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Gaussian, we argue that the same is not true for the multiplication of a Gaussian random 
variable either by another dependent or independent non-Gaussian random variable. For 
any time t =  t0, equation (4.16) can be reduced to multiplication of a Gaussian random 

variable, i.e., /i®(£0), by a constant if  and only if B ( t0) is known which is not the case. 
We therefore can assume the channel process hc(t) to be complex Gaussian as a whole 
which implies that the non-stationary and stationary channel statistics are not separable. 
Notice that the statistics of B(t),  in general, would be dictated by the mobile acceleration 
in addition to other transmission parameters, e.g., the carrier frequency. We shall have 
more comments regarding the inseparability of stationary and non-stationary statistics in 
Section 4.5.2.

4.3 Joint Time-Frequency Analysis

Unlike stationary signals (and random processes), the structure of the non-stationary 
signals (and random processes), e.g., a time-varying chirp signal, EEG signal, a wireless 
channel etc. is time-variant. The spectral contents of such time-varying signals change 
with time. The classical Fourier transform works well for the estimation of the spec-
tral contents of the stationary processes because timing information is not important for 
such processes. However, for non-stationary signals and processes with time-varying 
spectrum, the timing information is very important for the analysis to be useful. The 
classical Fourier transform, therefore, fails for non-stationary signals and processes with 
time-dependent spectrum as was recognized by D. Gabor [173] who introduced the con-
cept of time-frequency (TF) representation of the spectrum of non-stationary signals. 
However, TF representation of non-stationary signals (and processes) is not unique and, 
in fact, the number of valid6 spectral representations is infinite which implies that one has 
a certain degree of freedom in non-stationary spectrum analysis. The joint TF represen-
tations are either parametric or non-parametric. We here assume the perfect knowledge 
of the parameters (e.g., mean, variance, autocorrelation etc.) of the Gaussian channel 
process so that our approach is inherently parametric. The TF representations can be 
broadly classified into linear and quadratic distributions. In the following, we briefly 

describe a member of the linear TF distributions and then different quadratic TF distri-
butions (relevant to our work) grouped into a single class, the Cohen’s class [174].

6 A spectral distribution is valid if it can be used to generate the signal or a random process.
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4.3.1 Short-Time Fourier Transform (STFT)

The STFT is a linear technique that simply selects a segment of the data centered around 
the analysis time t, assumes data to be stationary over the selected segment and applies 
the classical Fourier transform to give a short-time Fourier transform of the signal s(t). 
Mathematically, STFT is given in continuous form as

roo
STFT (£, / )  =  /  s(t) w(t — T)e~l2lTf Tdr, (4.17)

J  — o o

where w(-) is the window function used to select the length of the data segment to be 
Fourier transformed. The square of the absolute value of STFT is called spectrogram 
(a member of the Cohen’s class of quadratic distributions discussed later), SPEC (t, / ) ,  
i.e.,

SPEC ( t , f )  =  |STFT ( t , f ) j 2, (4.18)

implying that the spectrogram gives the distribution of signal energy in the TF plane. 
Even though STFT and spectrogram are widely used due to their simplicity, they suffer 
from the so-called window effect, i.e., the time and frequency resolutions of STFT and, 
the resulting, spectrogram are dictated by the Hiesenberg-Gabor uncertainty principle 
[173,175] which states

At wA f w > - ^ - ,  (4.19)
47r

where A tw and A f w respectively are the average duration and average bandwidth of the 
analysis window. Equation (4.19) implies that it is not possible to simultaneously achieve 
very good time and frequency resolutions and, therefore, the window characteristics 
must be chosen taking into account the signal structure and the impact of time-variation 
on its components.

4.3.2 Cohen’s Class Distribution Functions

In [176], Cohen formulated a generalized quadratic TF representation to give energy 

distribution of the non-stationary signal in TF plane. Most of the time-dependent spectra 
are a special case of the this class [157]. While there is no precise definition for the 
Cohen’s class of distribution functions, it is usually defined as a set of all bilinear TF 
representations which are covariant under time and frequency translations. In general, 
the Cohen’s class can be considered as a 2D filtering of the Wigner-Ville distribution 
(WVD) [68] (to be discussed later). Therefore, the cross-term interference which is
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characteristic of WVD (and other quadratic TF representations) is less in Cohen’s class 
distributions as compared to WVD due to the averaging. Mathematically, Cohen’s class 
distribution function is given as

pO O  pOG

Ch(t, f )  = /  / A h{g,T)JC(g,r)exp(i27T(gt -  r / ) )  dgdr, (4.20)
7 —00 7 —00

where Ah (g, t ) is the well-known ambiguity function (AF) defined as the following 
Fourier transform

A h(g,r) (t, t ) exp (—i2ntg) dt. (4.21)

where $ h (£, r) is the instantaneous one-sample autocorrelation function and K.(g, r )  is 
the kernel function which controls the characteristics of a particular distribution function 
of the Cohen’s class.

A Correlation Approach to Quadratic TF Representations

A method called Correlation Approach to TF Representations (CATFRs) was put for-
ward in [177] to explain various quadratic TF distributions based on the intuitive idea 
of non-stationary correlation. In view of the fact that the only non-stationarity in the 
Gaussian fading process under consideration is in the autocorrelation, CATFR provides 
a unified framework to analyze different TF representations of the non-stationary Gaus-
sian channel process. For that purpose, we define a general instantaneous temporal ACF7 * 

of the channel process, t2)» as [177]

$J(£1,£2) = E { / i (£1)/i*(£2)} , (4.22)

where the expectation is over the ensemble of the channel process. The corresponding 
TF energy distribution (TFED), E(t , / ) ,  is given as

poo

£ { t , f ) =  /  $ 9h(t ,r )  exp (—i 2 n f r )  dr. (4.23)
7 —00

Notice the change of variables from t\,  t2 in (4.22) to t , r  in (4.23). This change of

7Notice that we have emphasized that the ACF is temporal. The same ACF has been termed as time- 
frequency ACF (TFACF) in [177] which is inaccurate in view of the fact that we are considering samples
of the channel process itself at two different times. The TFACF must have implied the multiplication of a 
sample of the channel process (at some time) and the magnitude of a particular frequency in its spectrum
(at some other time). In fact, TFACF is commonly known as the ambiguity function, AF (Eq. (4.21)).
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variables is governed by the following set of transformations, not necessarily linear [1771

t = 9i{tut2) ti = g3(t,r)

(4.24)

r = g2 {ti,t2) t2 = g±{t,r)

A TFED is said to satisfy marginals if the integration over all time t gives the signal 

energy density at frequency / ,  integration over all frequencies results in the signal’s 
energy density at time t, and the integration of TFED over all time and frequencies gives 
the total energy Eh of the process. Mathematically, [69]

roo/ £(t, f) dt =
7 —00

/>oo

/  £ ( t j )  df = \h(t)\2,
7 —00

\  I  £( t , f )  dtdf  = Eh,
^ 7 —oo

where H(f )  is the Fourier transform of TFED at time t.
Remarks: It can also be observed that the ensemble averaging in (4.22) is equivalent 

to smoothing operation. This smoothing is possible only if the statistics of the channel 
process are known a priori which is what we assumed at the outset. However, as we shall 
see later, most of the proposed spectral estimation techniques to estimate the spectrum 
are based on only one sample of instantaneous ACF (or, equivalently, a single realization 
of the random process) which is the main reason behind very noisy spectral estimates 
[177]. Following are some important member distributions in the Cohen’s class derived 
on the basis of CATFR.

(4.25)

(4.26)

(4.27)

Wigner-Ville Distribution (WVD)

The WVD (a special case of Cohen’s class with JC (g, r) = 1) is one of the most widely 
used TF methods [68]. This approach was developed by Wigner [178] in 1932 for use 
in Physics. Later Ville [179] introduced this technique to signal processing community 

in 1948. The classical method of determining the spectral contents of a random process 
is based on the well-known Wiener Khintchine theorem, i.e., the spectrum of a random 
process equals the Fourier transform of the classical ACF which is a function of the lag 
variable, r , only. The classical ACF is time-invariant because the time is integrated out 
of the result. The WVD is based on a variation of the classical ACF so that it retains time 

variable in the result. Such ACF is termed as instantaneous ACF, r) (assuming
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a deterministic signal s(t)) given as

(4.28)

which can be obtained from (4.24) through the following variable transformation

Observe that the AF is the Fourier transform of the ACF with respect to t while 
WVD is the Fourier transform of ACF with respect to r  (Eqs. (4.21) and (4.30)). The 
WVD is, in fact, a distribution of the mean instantaneous power versus frequency, or 
equivalently, a distribution of the mean energy in the joint TF plane [159J. The WVD 
satisfies marginals but can be negative. However, the Gaussian smoothing implemented 
by convolving a Gaussian function with instantaneous ACF in (4.28), can ensure that it 
is always positive. Importantly, the smoothing makes WVD identical to a spectrogram 
[180] with reduced cross-term interference when multiple components are present in the 
signal, e.g., a mobile radio signal. The smoothing operation in time results in a smoothed 
WVD, the smoothing in frequency results in pseudo-WVD and the smoothing in both 
time and frequency would result in smoothed pseudo-WVD [181,182].

Equation (4.30) is valid for deterministic signal s(t) (or a random process with only 
a single realization). Since we are dealing with a random channel process, we need to 

have a definition of WVD for random process with known statistics. The WVD for the 
random channel process h™s(t) is defined as the expectation of WVD (£, / )  (Eq. (4.30)) 
over all possible realizations implied by the assumed channel statistics, i.e.,

t\  ~  t2 
2

11 =  t +  t /2

(4.29)

r  =  ti -  t2 t2 = t — t /2

and corresponding TFED called WVD is then defined as

£ wvd(t, f )  =  WVD ( t j )

(4.30)

(4.31)

where E {4>J”vd(t, r)}  represents the average instantaneous ACF for WVD. The inter-
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change of the expectation and the integral in (4.31) is justified if the integral exists in the 
mean-square sense for which a necessary and sufficient condition is [183]

^{qh( t i T2)ql(t,T2)} e - i2 * /(n -T a )d r i dr2  <  Qo. (4.32)

Rihaczek Distribution

While most member energy distributions of the Cohen’s class are real-valued, Rihaczek 
distribution, RCK(£ ,/) , is a complex energy distribution [184] obtained from Cohen’s 
class by setting /C (p, r )  — exp(—Z7rrp). The real valued energy distributions describe 
the energy concentration in TF plane but do not carry any information about the phase of 
the deterministic (or random) signal which is exactly what Rihaczek distribution does. 
This distribution can be obtained from TFED by using the following variable transfor-
mation (Eq. (4.24))

t = 11 t\ — t
(4.33)

T =  t i  -  t 2 t 2 =  t — T

for a deterministic signal s(t) as follows (Eq. (4.23))

r-oo
RCK (t, f )  =  /  s(t)s*(t — t ) exp ( —2tt f r )  dr,

7 —00

(4.34)

r-oo
=  /  &sck(t, t ) exp (—2tr / r )  dr, 

7—00
(4.35)

=  s(t)S*(ui) ex p (—2 n f t ) , (4.36)

where < f > J r )  is the unsymmetrical instantaneous ACF and S(u)  is the Fourier trans-
form of s(t). Equations (4.34)—(4.36) are different forms of the complex-valued Ri-
haczek distribution [22]. Notice that the Rihaczek distribution is essentially AF except 
that the latter is defined for the complex envelope of real signal s(t) [ 184]. The Rihaczek 
distribution also turns out to be the complex conjugate of Levin’s “complex instanta-
neous autocorrelation function” [70], It satisfies the marginals (Eqs. (4.25)-(4.27)) and 
is useful to determine the phase coherence between two signals [185].

The Rihaczek distribution RCKr(£, / )  for the random (channel) process is defined in 

a manner similar to WVD, i.e.,

RCKr ( t , / )  =  E { R C K (t,/)}
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E { $ rhck(t, r )}  exp ( - 2 t t / t ) dr, (4.37)

Instantaneous Power Spectrum (IPS)

The idea IPS was put forth by Page [69] as the rate of increase of the total energy (ex-
pended till any time t disregarding the future behavior of the real signal s(t)). Let IPS 
as defined by Page be denoted as IPS~(£, / ) .  Mathematically,

/*oo

I P S - ( t , / ) =  /  £(t,  f )  df,
J — o o

=  2 3? IJ  s(t)s(t  +  r )  exp (—27r/r) d r |  , (4.38)

where {•} is the real part operator. Equation (4.38) is a result of a change of variables 
(different from but equivalent to the one adopted in [69]). Notice that equation (4.38) is 
always positive as it should be to be a ‘true’ power spectrum [69].

Levin [70] disregarded the past values of s{t) and derived an alternate IPS (also 
known as Levin’s distribution8 [180]) by considering only the future values of s(t), i.e.,

IPS+(L / )  =  2 3ft |s (£ )  el2nft s(x) exp (—2nfx)  d x |  , 

=  2 3ft  ̂J  s(t) s(t -P r)  exp (—i 2nf r )  dr  j> ,

(4.39)

(4.40)

where (4.40) is a result of a simple change of variable approach similar to [69] that 
produced (4.38). Levin defined another IPS, IPS(f, / ) ,  by taking the average of two 
instantaneous power spectra defined earlier as follows

IPS ( ( , / )  =  i  {IP S- ( t j )  + IPS+(t, / ) }  ,

=  3? / J  s(t) s( exp (—i w r ) l ,

=  3ft^s(£) exp (i2nft)  S(o;)^,

(4.41)

(4.42)

where we utilized (4.38) and (4.40) to arrive at (4.41). Equation (4.42) is a result of 
the application of time-shifting property of the Fourier transform [186]. Interestingly, 
IPS (£, / )  turns out to be the real part of the Rihaczek distribution which allows us to 

imagine IPS as being the energy expended, till time t, by an ideal bandpass filter centered 
at the frequency /  [187]. Notice that even though £( t , f )  can be negative, its integral 
over all frequencies is always positive real implying that IPS > 0. Moreover, like other

8The kernel function o f the Levin’s distribution in (4.20) is /C (£>, r) =  ex p (—?7r|r|£>).
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members of the Cohen’s class, IPS also satisfies the marginals.

Making use of CATFR and a priori knowledge of the statistics of random channel 
process h™s(t), we can explicitly perform the ensemble averaging on (4.41) to get mean 
IPS (MIPS) representing an extension of IPS (Eq. [70]) from real deterministic signals 
to random processes as follows

DMIPS (t, / )  =  E {IPS ( t j ) } ,

h"cs(t) h™s(t + t ) exp (—z27t / t ) dr
—oo

= 3ft { I  E {h*cns(t) h™s(t +  t )} exp (—z27r/r) dr j  , 

J  E {h™(t) h*cns(t — t )} exp (—i2nf r )  dr j  , 

J  $ 7™ps (£,t ) exp (—z27r/r) dr j  ,

5ft

5 f t

where (4.45) is a result of the following equivalent variable transformation

(4.43)

(4.44)

(4.45)

(4.46)

t = t2 

r = ti -  t2

t2 = t

t\ — t — T.

and 4>mzps(f, r) is defined as

<!>mips(t, t ) = E {h™(t) h*ns(t -  r)} ,

(4.47)

(4.48)

which is effectively the average instantaneous ACF for the Levin’s IPS (Eq. (4.44)) 
obtained from (4.24) by transforming t\ and t2 as follows

t = 11 

T = t2 ~ ti

t i = t

t2 = t + T,
(4.49)

Now that we have derived a number of quadratic TF distributions non-stationary 
channel process h™s(t), our next logical step is to describe these continuous TF distri-
butions to discrete-time domain so that we may subsequently utilize important commu-
nication system design parameters like symbol rate and normalized fading rate, / D to 
determine the impact of non-stationarity in the channel process due to mobile accelera-
tion on the performance of future communication systems. In the next section, we first
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study the discretization of random channel process h™s(t) followed by corresponding 
discrete-time TF distributions.

4.4 Discrete-Time Non-Stationary Channel Process and 
TF Distributions

The evaluation of non-stationary channel spectrum and its impact on communications 

system performance with the help of a computer necessitates the discretization of the 
continuous-time channel process and its corresponding TF distributions.

4.4.1 Discretization of Continuous-Time Channel Process

The discrete-time equivalent of the continuous-time input-output relationship is as fol-
lows (Eq. (4.7))

r[j] = sfp h[j] s\j] +  z[j], -o o  < j  < oo (4.50)

where, for simplicity of notation in the sequel, we have dropped the subscript td' (de-
noting discrete-time) and superscript ‘ns’ for discretized channel process. An important 
difference between the discrete-time models of (2.3) and (4.50) is in the sampling pro-
cess. While the transmission and sampling rate are fixed in stationary channel model 
due to time-invariant spectrum of the channel fading process, we are at freedom either 
to fix or use variable transmission and sampling rates for non-stationary channel model 
(Eq. (4.50)).

Fixed Transmission and Sampling Rates

If the communication system designer can foresee the maximum time for which the 
mobile keeps on moving with the constant acceleration or, equivalently, the maximum 
Doppler spread is known at the transmitter a priori, it is possible to fix the transmission 
rate such that the channel is sampled at least at the Nyquist rate in worst channel condi-
tions. As an example, let us assume that the maximum Doppler frequency is 200 Hz. The 

Nyquist rate corresponding to this rate of channel variation equals 400 Hz which implies 
that the channel samples required at the receiver to form CSI estimate must be furnished 

at least at the rate of 400 samples per second. This sampling rate, in turn, requires the 
symbol duration to be 2.5 msec. Since the symbol rate is fixed and the channel has to be 
sampled at symbol rate, at a time when the maximum Doppler frequency is 100 Hz, the 

channel would get oversampled at twice the Nyquist rate. In fact, when the transmission
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rate is fixed according to worst channel conditions, the channel gets oversampled for al-
most the full duration of transmission. Therefore, the cost that has to be paid for keeping 

the transmission rate fixed is the added complexity due to oversampling of the channel 
process.

Adaptive Transmission and Sampling Rates

Equation (4.6) implies that the normalized fading rate / D can be forced to be constant 
if we can change Ts or equivalently, the symbol rate at the transmitter. Equivalently, 
the transmission scheme should be adaptive to the instantaneous Doppler spread which 
requires a priori knowledge of the instantaneous channel spectrum at the transmitter. 
The receiver must also have the exact knowledge of the transmission rate implying that, 
in this adaptive transmission case, there may be more stringent adaptive synchronization 
requirements at the receiver as compared to the fixed transmission scheme.

4.4.2 Discretization of Continuous-Time TF Distributions

The extension of continuous-time TF representations to the discrete-time case may not 
always be straightforward even if the underlying random process has been sampled at 
the Nyquist rate, e.g., aliasing problems appear if continuous-time WVD (Eqs. (4.30) 
and (4.31)) is extended to the discrete-time domain if the signal (or random process) has 
been sampled at the Nyquist rate [ 188J. In the following, we shall restrict our attention 
to the two widely used TF distributions, WVD and MIPS, the discretization of which is 
discussed below.

Discrete-time Wigner-Ville distribution (DWVD)

Assuming that the underlying Gaussian random channel process has been sampled at 
least at the Nyquist rate (using either a fixed or adaptive transmission scheme), the 
continuous-time WVD has the following logical extension to the discrete-time domain

where &h(n ,k)  is the discrete-time equivalent of the continuous-time autocorrelation 

function k) and is given as

oo

DWVD (nT„ f )  = & f k T , ) , (4.51)
k = —oo

(4.52)
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Notice that (4.51) requires samples of the channel process at non-integer instants 
which are not available if the channel process is sampled at the symbol rate. A number 
of different methods have been proposed in literature to overcome this problem [189]. 
Usual remedy to this problem is to oversample the channel process by a factor of 2, i.e., 
twice the Nyquist rate so that the samples at non-integer sampling instants (otherwise un-
available) are made available [190]. Another method has been proposed in [191] which 
modifies the WVD kernel by inserting zeros at the non-integer sampling instants and 
an averaging operation is performed after taking the discrete Fourier transform (DFT). 
Yet another method that requires only Nyquist rate sampling is to use the analytic pro-
cess corresponding to a real-valued non-stationary process so as to remove the negative 
frequencies in the spectrum of the process. The analytic processes, however, are in gen-
eral improper so that this method can not be employed for the complex channel process 
under consideration which is by assumption a proper process. A comparative study of 
different discretizing functions was performed in [188] where it was concluded that the 
technique based on oversampling outperforms others. Therefore, we shall follow the 
technique based on oversampling and assume that the channel process is sampled at 
twice the Nyquist rate. This assumption enables us to write (4.51) as follows [190]

oo

DWVD (nTs, / )  =  2 ^  <id̂ vd{n exp , (4.53)
k= —oo

where

$h“vd(n, k) = E {h(n + h)h’ (n -  k)} . (4.54)

Equation (4.54) gives DWVD for a general channel autocorrelation function <l>f‘L!Vd(n, k). 
We shall later use it to describe Wigner-Ville spectrum of the Gaussian channel process,

h?(t).

Discrete-Time Mean Instantaneous Power Spectrum (DMIPS)

For the random channel process sampled at least at the Nyquist rate, the continuous-time 
MIPS spectra in (4.44)—(4.46) are logically extended to the discrete-time domain as

oo

DMIPS (nTs, f )  = E {h*(n) h{n +  k)} exp (—i2n fkTs) , (4.55)
k——oo 

oo

=  E {h(n) h*(n — k)} exp {—i2'nfkTs) , (4.56)
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oo

^ 2  K m p s ( n i k )  exp(-«27r/A:T;), (4.57)
k= —oo

where we have defined $ dmiPs(n, k) as

<f>dmips(n, k) = E {h*(n) h{n +  k)} , 

= E{h{n)  h * ( n - k ) } ,

(4.58)

(4.59)

where there is no k /2  factor in $ dmip8(n,k)  and, therefore, no spectrum foldover is 

observed in DMIPS if Nyquist rate sampling of the channel process is performed.

In the following section, we analyze the spectrum of the non-stationary Gaussian 

channel fading process in accelerating mobile environment by, first, formulating the in-

stantaneous ACFs for DWVD and DMIPS and then using these ACFs respectively in 

(4.54) and (4.55)—(4.57) to obtain DWVD and DMIPS representations of the channel 

spectra.

4.5 Spectral Analysis of Non-Stationary Gaussian Chan-
nel Process

The evaluation of mobile channel spectra using DWVD and DMIPS techniques requires 

the formulation of instantaneous ACF, <f>x(n, k) where x  stands respectively for DWVD 

and DMIPS. In the following, we first derive $ x(n, k) and then determine the channel 

spectra taking discrete-time Fourier transform (DTFT) of the ACFs.

4.5.1 Formulation of Instantaneous Channel ACF

Let the mobile moving with initial velocity Vq = | Vo|, and acceleration a  be at an 

arbitrary origin O at the signaling instant 0 (Fig. 4.1). We can see from (4.54) and (4.58) 

that the formulation of ACFs for DWVD and DMIPS would require the determination of 

channel gains at instants n , n  — k and n  +  k where k is the lag in number of symbols. At 

the signaling interval n, let the mobile be at the point (IIn, ( j> v )  with respect to 0, where ( f ) v  
is the direction of the mobile with respect to x-axis. At the signaling interval n — k, the 

mobile is assumed to be at point (n n_fc, <j>v). Similarly, at the signaling instant n  +  k, the 

mobile is assumed to be at (ITn+fc, (f>v). Using the fact that the mobile is accelerating in 

the direction of mobile travel, we have the following relationships for distances covered
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by the mobile

n„  =  \v0\nTs +  ia ( n T s)2, (4.60)

n n-k = |vo|(n -  k)Ts +  \ a  ((n -  k)Ts))2 , (4.61)

n n+fc =  \v0\(n +  k)Ts +  ((n +  k)Ts))2 , (4.62)

(4.63)

and corresponding channel gains are

h[n\ = j) ip(ß) exp ^ir]Unv  ■ ß) d ß , (4.64)

h \ n - k ]  = j>m<*  p(^n»_*s.■ ft )  dß, (4.65)

h[n +  k] = j) ip(ß) exp (ir]Un+kv ■ ft) dß. (4.66)

Now that we have instantaneous channel gains, using (4.65) and (4.66), the instanta-
neous ACF for DWVD is given as (Eq. (4.54))

<bdß“vd(n, k) = E {h(n +  k ) h \ n  -  k )}, (4.67)

=  2 £  jE U>{ßW(ß')}exp (*77 ( n „ + t® • ft -  ■ ß ' ) )  dß'

= 2 j  <Ü(ß) exp (irjUdwvdv  • dß, (4.68) 

where (4.68) is the result of assumption of statistically homogeneous scattering and

n<w = (iw  -  nn_fc),
=  2 kT$ ( |u0| +  a(nTs) ) , (4.69)

is the distance covered by the mobile at signaling instant n +  k with respect to the 
signaling instant n — k (Fig. 4.1).

Similarly, using (4.64) and (4.65), the ACF for DMIPS as defined by (4.58) can be 
shown to be

<bdhmips{n, k) = E {h(n +  k)h*(n)} ,

=  j  ^ (ß )  exp [iTjXVlmilps v  • ß'j dß ,

(4.70)

(4.71)



108 Rayleigh Fading Statistics with Constant Mobile Acceleration

where we have defined Udmips as

ndmips = ( un+- n„),
(4.72)

Equations (4.68) and (4.71) respectively represent channel ACFs for DWVD and DMIPS 

in general scattering environments. It can be observed that unlike WSS channel process 

where the phase of the plane wave in autocorrelation expression turns out to vary linearly 

with lag k, the mobile acceleration causes a time-dependent non-linear plane wave phase 

variation with k.

for either DWVD or DMIPS) are periodic in ß. We follow the approach adopted in 

Chapter 2, firstly, to represent d>(/?) in circular Fourier series form by the following pair 

of equations (Eqs. (2.13a) and (2.13b)), i.e.,

where m  is an integer, 7m are Fourier series coefficients. Secondly, we invoke the well- 

known Jacob-Anger expansion of the plane wave (2.14) to decompose exp ^iriUx v  • ß'j 
into its modes as follows

Equations (4.68) and (4.71) involve the product of two periodic functions, 'l'(ß) and 

exp (ir]Ilx v  • ß ' j . The representation of these periodic functions by their respective 

Fourier series would result in their Fourier series coefficients to be convoluted (see foot-

note 5 in Chapter 2). Using (2.13) and (4.74) and following the steps taken in the Chapter 

2 (Eqs. (2.11)—(2.16)), we can rewrite equations (4.68) and (4.71) respectively in the 

following form

x v  ■ ß )  (where the superscript x  stands

m ——oo

oo

ip Jp(r]Ux) exp (—ip<(>v) exp (ipß) . (4.74)

00

¥ r \ n , k )  = 2 Y, 7 m  Jm fan"'1"4) exp (im<j>v) , (4.75)
m = —oo

oo

$ dhmips(n, fc )=  £  iv 7„ J„(rjUips) exp (w</)v) , (4.76)
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where v  is an integer. It is easily verified that if the mobile were moving with constant 
velocity {a = 0), (4.75) and (4.76) would collapse to (2.16) and the channel process 
would therefore be WSS. For all a > 0, (4.75) and (4.76) are not only a function of the 
lag k but also the absolute time index n  implying a non-WSS channel process.

Let us define the initial time-invariant Doppler spread as

^ d ,  0 =  T]\V0 \, (4.77)

so that the normalized initial Doppler spread cJd ,o shall be given by

Wd,0
CJD'0 _  ( i / T . y

We also define the normalized mobile acceleration a A as

(4.78)

\vo \(i /Tsy
(4.79)

where the normalization is by the initial velocity v0 and the symbol rate 1/TS.
Using (4.69), (4.72) and (4.77)-(4.79), we can rewrite (4.75) and (4.76) respectively 

as follows

$ i wvd(n, k) = 2 Y2 7m Jm ( u d ,o  k  +  u D,o k(  1 +  2 exp (im(f)v) ,  (4.80)
m

$ dhmips(n , k ) = Y ^  iv 7^ Jv ( u D$ k +  c c d ,o  k ( a N(n +  0.5 k ) ^  exp (iv(j)v) , (4.81)
V

where each subscript with the summation sign indicates summation over that subscript 
from — oo to oo. Notice that the stationary and non-stationary parts of the ACFs in 
(4.80) and (4.81) are not separable. The best thing we can do to show stationary and 
non-stationary parts apart is the use of the Bessel function addition theorem [192]

oo

Jp( x i + x 2) =  2̂ Jk{xi)Jp-k(x2), (4.82)
k= — 0 0

which obviously does not indicate separability.

ACFs for DWVD and DMPIS Spectra in Isotropic Scattering Environment

While equations (4.80)—(4.81) represent average instantaneous ACF for DWVD and 

DMIPS in a general scattering environment, more intuition behind the impact of non-
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Figure 4.2: The ACF of DWVD as a function of the lag k and absolute time index n : 
|t?o| =  20m/sec, a  = lOm/sec'2, f c =2GHz and Ts = 5msec. Increasing r  and n  have 
the effect of reducing the autocorrelation faster.

stationarity due to mobile acceleration on channel ACF can be obtained if these equations 
are specialized to the case of isotropic scattering (see Chapter 2, Section 2.3.1). When 
the scattering power is isotropically distributed over the azimuth, equations (4.80) and 
(4.81) respectively become

^ so  d(n i k) = ^ Jo ( u d ,o k +  u j d ,o k ^1 +  2aNn  ̂^ , (4.83)
V

Due to Non—Stationarity

4>fŝ ps(n, k) = J0( u D,o k + k ( a N(n +  0.5 /c)) ^ . (4.84)

Due to Non—Stationarity

We can make the following observations regarding ACFs for DWVD and DMIPS in 

isotropic scattering environment

1. The unsymmetrical ACF formulation in DMIPS results in quadratic dependence 
of non-stationary ACF on the lag variable k as can be observed in (4.84). The 
symmetrical ACF formulation for DWVD, on the other hand, depicts a linear de-
pendence of non-stationary ACF on k (Eq. (4.83)). However, a slight manipulation 

of (4.83) reveals that the symmetrical ACF introduces a factor 2 in the argument
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Figure 4.3: The ACF of DMIPS as a function of the lag k and absolute time index n :
Iro I — 20m/sec, a = 10m/sec2, f c =2GHz and Ts = 5msec. Increasing r  and n have 
the effect of reducing the autocorrelation faster.

of the Bessel function which can be considered as having the impact of doubling 
the effective mobile speed.

2. The non-stationarity impact due to a constant mobile acceleration not only depends 
on the absolute time index n but also on the lag variable k, the initial velocity v 0 
and the symbol rate.

3. As long as n and k are finite, ACFs corresponding to DWVD and DMIPS are in 
closed-form which is due to the presence of the Bessel functions (see Chapter 2).

4.5.2 Formulation of Non-Stationary Spectra: DWVD and DMIPS

The substitution of the instantaneous ACF for DWVD (Eq. (4.81)) in (4.54) gives the 
DWVD of the non-stationary channel process which is, in fact, the DTFT of the ACF 
with respect to k thereby giving the PSD of the channel process in the conventional sense 
(Wiener-Khintchine theorem [51])

DWVD ( nTsJ)
OO

= k) exp (—i2ukTs) ,
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Figure 4.4: The 2D view of the ArgDVWD — ArgDMIPS: |v0| =  20m/sec, a =  10m/sec2, 
f c =2GHz and Ts =  5msec.

=  2 ^ 2  7rn exp (im(\)v) Jp k) Jm_p {uDJQ k( 1 +  2a Nn)) exp ( - iukTs),
m,p,k

(4.85)

where (4.85) is a result of the application of the Bessel function addition theorem defined 
in (4.82). Observe that (4.85) involves a product of two functions. We know that the 
multiplication of functions in the time-domain implies convolution of their spectra in the 
frequency domain [114]. We have, therefore, to define the following DTFTs

Y  S  JpiuDpKj  exp(—iukTs) =  DTFTfc(cu), (4.86)
s k = —oo

1 oo

-  ^  0 *(1 +  2«*"«)) exp {-iwkTs) 4  D T F T f  ̂ (w), (4.87)
5 k = —oo

the use of which along with the fact that DTFT is linear, we can rewrite Wigner-Ville 

spectrum in (4.85) as follows

DWVD (nTs, f )  = Ts J27 m  exp {im<t>v) (D T F T f  “ V )  © DTFT f ”V ) ) ,
m,p

(4.88)
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Figure 4.5: The 2D view of ACF for zeroth order Bessel function of the first kind as a 
function (Clarke’s model) as a function of the lag k and absolute time index n: |v 0| — 
20m/sec, a = lOm/sec2, f c =2GHz and Ts = 5msec. Observe that the absolute time 
does not change the ACF.

The convolution of the stationary and non-stationary spectra again implies that non- 

stationarity is not separable from stationary statistics of a complex Gaussian channel 

with a mobile receiver moving with constant acceleration. Similarly, DMIPS spectrum 

is obtained by substituting the corresponding instantaneous channel ACF (Eq. (4.71)) in 

(4.57) as follows

DMIPS 0nTsJ )

=  2 ^  iv 7 „ JpfuJDßk'j J„-p (uJD,ok(aN (n +  0.5 k ) ^  exp (iv<j)v) exp (—iujkTs) ,
u,p,k

= TSJ 2 ^ e x p  (w<pv)( ü T F T f ^ »  © D T F T ^ ips(o ;)), (4.89)
v,p

where we have defined D T F T ^ rk ps as

-. oo

DTFT*mkips( ü ü )  = — J„_p( ôDjo k ( a N(n + 0.b k ) ^  exp ( - i u k T s) , (4.90)
s k——oo
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Figure 4.6: The 2D view of ACF for DWVD (isotropic scattering) as a function of 
the lag k and absolute time index n : |u0| =  20m/sec, a = 10m/sec2, f c =2GHz and 
Ts — 5msec. Increasing r  and n have the effect of reducing the autocorrelation faster.

and

DTFTf*ip5(a;) =  D T FT f“’<V ) .  (4.91)

2D DWVD and DMIPS Spectra

The Wigner-Ville and instantaneous power spectra considered so far describe the spectral 

contents of the underlying channel process as a function of time in the conventional 

sense, i.e., the time-varying spectral contents are obtained by taking DTFT with respect 

to lag k. Sometimes it is of some interest to determine the spectrum of time-variation 

(SOTV) of this conventional spectrum. The SOTV, in fact, is a joint spectrum of time 

n  and lag k domains. Such spectrum which was derived in [193] is obtained by taking 

DTFT of the conventional time-dependent spectrum with respect to the time index n. 
The SOTV of DWVD (Eq. (4.88)) is given as

SOT Vd™d(g,f) = Y , exp(im<l>v)(DTFT
m,p

(4.92)
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Figure 4.7: The 2D view of ACF for DMIPS (scattering environment) as a function of 
the lag k and absolute time index n: |u0| =  20m/sec, a = 10m/sec2, f c =2GHz and 
Ts = 5msec. Increasing r  and n have the effect of reducing the autocorrelation faster.

where g = 2irg is frequency in radians and g is the frequency variable in Hz, and

D TFTk(g, f )  =  ~  Jp (u D$ k \  exp ( - i T s (ng +  u k ) ) , (4.93)
n,k

m F T dnwvd(g, Jm- P (uD,o fe(l +  2 exp (ng +  , (4.94)
s n,k

and for DMIPS (Eq. (4.89)), we have

SOT V äm'p5{gj )  =  Y , e x p { i v < t > v)(DTFTj*mips (p, © D T F T ^ p . u ; ) ) ,
v,p

(4.95)

where we have defined

D T F T ^ T ( S, / )  =  T  ^  +  0.5 fc))) exp ( - iT ,  (ng +  wfc)).

Equations (4.88) and (4.89) respectively describe the instantaneous channel spectra 
according to WV and IPS definitions whereas (4.92) and (4.95) represent SOTV of the
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instantaneous conventional spectra of the channel process. An alternative formulation of 
all these equations which does not involve any convolution of spectra is possible if we 
do not make use of the Bessel function addition theorem in the formulation of ACFs and 
derive the DVWD and DMIPS spectra based on (4.67) and (4.58) respectively. These 
alternative relations respectively for DVWD, DMIPS and their corresponding SOTV are 
given as

DW VD (nTsJ )

=  2 y  1m exp (im(f)v) ( y  Jm ( 2 k  ( l  +  a Nn) )  exp (- i u k T s) j , (4.97)
m \ l s  k J

DM IPS 0n T s J )

(4.98)

= iv*tvexp (ivcfrv) ( j r  y  Jrn(uD,ok 4- uD$ k { a N{n + 0.5 k ) ^  exp(-icjkTs)
V \ s k

SOTVdvwd(g, / )

= y  im^m exp (im^ )  ( j v  X] Jm (2u;°-° k {1 + aNn) )  exP (~ iTs {ng + cok)) I ,
m \  S n ’fc /

(4.99)

SOT V dmips{g, f)

Y  iu exp (iv<t>v) x ^ 2  ' y  -7m (^Dfik ( l  4- q a  n 4- 0.5kaN)  ̂ exp (—iTs (ng + u k ) ) ,

(4.100)
n,k

which are all applicable in general scattering environments.

DWVD, DMIPS and Corresponding SOTV in Isotropic Scattering Environment

Equations (4.97)-(4.100) describe DWVD, DMIPS and their corresponding SOTV in 
arbitrary scattering environments. These equations respectively reduce to the following 
set of equations when the scattering environment is isotropic9

& D ,n

DWVD iso(nTs, / )  =  — y  J0(  2u Di0 (l + a Nn) k) exp ( - iu kT s) , (4.101)
s k

U D ,n ,k

DMIPS iso(nTs, f )  = — y  Jq ( u d ,o (l + a Nn + 0.5kaN) exp ( - iu kT s) ,
s k

(4.102)

9When scattering is isotropic, these equations are non-zero only for m =  0.
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SOT V*™d(g, =  k) exP (ne + u * )) , (4-103)
s n,k

SO TV *7s(S, / )  =  ^ ^ J o ( D D,n,*A:) e x p H T f n j  +  r f ) ) ,  (4.104)

where cc£)in and u)D,n,k respectively are instantaneous normalized Doppler spread for 
DWVD and DMIPS spectra. Mathematically,

UJD ,„  =  2wd ,o (1 + 0 "») ,
_  ( ,  , a n T s\

V  V K l  )

and

(4.105)

(4.106)

u D,n,k = Wd ,0 ( l +  +  0.5fcaN) ,

K l ^
Ac

cyT
1 +  7— 7  (n +  0.5fc)

l̂ ol

(4.107)

(4.108)

where (4.106) and (4.108) shall be particularly useful in Section 4.7 for the analysis of 
the impact of mobile acceleration, initial velocity, symbol rate and carrier wavelength 
(or, equivalently, carrier frequency) on time-varying DVWD and DMIPS spectra of 
the channel process. The instantaneous normalized Doppler spreads for DVWD and 
DMIPS, u jd ,u and uiD,n,k, are fundamentally related to the channel coherence time Tc 
through the following relations (Eq. (4.4))

T  =-1 c,n

T c,n ,k

2.6578
UD,n

2.6578
^D ,n ,k

(4.109)

(4.110)

where Tc>n denotes channel coherence at time n. Equations (4.109) and (4.110) are 
obviously useful for analyzing the impact mobile acceleration, initial velocity, symbol 
rate and carrier wavelength on the channel coherence time and functions thereof. Notice 
that Tc>n is implicitly dependent on the lag variable k which is a result of unsymmetrical 

ACF formulation for DMIPS (Eq. (4.59)).

4.5.3 Analysis of DWVD and DMIPS Channel Spectra in Isotropic 
Scattering

Equations (4.101) and (4.102) respectively describe DVWDD and DMIPS channel spec-
tra when the mobile receiver equipped with omnidirectional antenna moves with constant
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acceleration in isotropic scattering environment. At this point it is instructive to observe 
that the instantaneous normalized Doppler spread for DVWD, 1 is a function of time 
variable n only and for DMIPS, lcD n̂ k̂, is not only a function of the time index n but 
also the lag k — the variable in Fourier transformation.

DWVD

We consider the following DTFT relationship for the Bessel function of the first kind of 
integer order z with linear argument (Eq. (A.4)) [194,195]

oo

Y Jz{Ü D ,n t)  exp (~iuj£Ts)
£ — — o o

Fz (u /u jD,n)
F  ^D ,n

(4.111)

where Fz is given in (A.2). Using (4.101) and (4.111) and discarding all terms except 
corresponding to z =  0, we can write DWVD in isotropic scattering environment as

DWVD (nTsJ ) 2 ^D,n (4.112)

which is true for uj < A comparison of (4.112) with the Clarke’s model of station-
ary channel statistics ((2.25)) suggests that DWVD represents a natural generalization 
of channel spectrum from stationary to non-stationary scenario. We emphasize that in 
order to arrive at the DWVD spectrum (Eq. (4.112)) we have had to assume that the lag 
k is allowed to approach infinity as required by the definition of DTFT. By allowing k to 
approach infinity for any n < oo, we are in fact assuming that the transmission frame is 
of infinite length and the mobile velocity is allowed to increase without bound becoming 
infinite when k is infinity. Moreover, the discretization of the continuous-time Bessel 
function of the first kind of order zero with linear argument without aliasing requires 
infinite sampling rate10 [196]. The assumption of infinite sampling rate is obviously a 
convenient mathematical construct rather than a physical reality in view of the fact that 
nothing can move faster than the speed of the light [197] and only finite sampling rate 
is possible. To be more relevant, the maximum speed of vehicles is only a few hundred 
Km/hr, i.e., only a very slight fraction of the speed of the light and a vehicle can keep on

l0Our assumption of the availability of infinite sampling rate removes the need for an analog prefilter 
before analog-to-digital converter (ADC) used to limit the bandwidth of infinite-bandwidth AWGN noise. 
A consequence of infinite sampling rate is that the discrete-time AWGN in (4.50) is truly white. The usual 
bandlimitation of AWGN using analog prefilter results in colored AWGN noise. We had to allow infinite 
noise bandwidth into the digital receiver because our useful channel spectrum assumed to be known also 
extends to infinity due to unbounded mobile velocity. The use of an analog prefilter to limit the undesired 
AWGN noise may also result in a loss useful signal information . In this section, we restrict ourselves to 
the case of an analog prefilter with infinite bandwidth (or, equivalently, no prefilter).
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accelerating only for a finite time. Both of these real-world facts imply that neither n nor 
k can approach infinity. The finiteness of n  and k would require finite-length windows in 
the time n and lag k domains in the DTFT representation defined in (4.111). An impor-
tant implication of (4.112) is that, for a finite n, the channel process has a bandlimited 
representation.

DMIPS

The argument of the zeroth order Bessel function in DMIPS representation ((4.102)) is 
quadratic in k. In order to give an idea of what this quadratic dependence on k could 
mean for the DMIPS spectrum, we have plotted J0(a k ) and J0(a k2) in Fig. 4.8 assum-
ing a = 1. Unlike J 0(a k), the quadratic argument causes J 0(a k 2) to oscillate faster and 
faster without bound with increasing k in a chirp-like behavior [198]. As we have as-
sumed an infinite sampling rate, the chirp-like behavior due to the Bessel function with 
quadratic argument causing the spectrum to extend to infinity is not a problem in the 
derivation of discrete-time MIPS.

Using (4.105), we use the following equivalent form of (4.102)

DMIPS isoijiTs, / )  =  — Y '  Jo f 0.5 l j d ,u  k +  0.5ujD)a k 2} exp ( - iu k T s), (4.113)
l s  k V /

-  DTFT^mips(w) © DTFT^mips(oj), (4.114)
v

where we have defined acceleration-dependent normalized Doppler spread

UD,a — CJo,0, (4-1 15)

and the following DTFTs

D TFTrfmips(w) a  _L J 2  J _ „ (0.5 Dd ,„ * ) exp (■-kokT s) ,
S k

DTFTdmips(w) a  1 J 2  Jp{0.5wD,a k2)  e x p (~iujkTs) ,
s k

The DTFT^mtps(o;) which involves the —pth order Bessel function of the first kind with 
linear argument can be obtained using (4.111) as follows

DTFT^m‘ps(aj) =  ( - l ) P FP ^ J 5a;-p -’J  (4.118)
UD,n

(4.116)

(4.117)

where we have used the relation J - P{y) = ( —1 )pJp(y). In the Appendix C .l, we show
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that D T F T ^mps(cj) involving pth order Bessel function of the first kind with quadratic 
argument is given by

DTFTf ps(w) ^  DTFT { Jp(udta (kTs)2)}

=  (1 + exp (z p 7r)) BMFCdt/t, (4.119)

where BMFCdtft — Bessel-Modulated discrete-time Fourier Chirp transform — is de-
fined as

BMFC = —  ^ D a exp(ip  arcsin (/iN/u)D,a)) 
dtft 27r

^ WD,q  Wn

D T F T ^ rp(oi ) d p N. (4-120)

where D T F T ^rp(a;) is the DTFT of the discrete-time Chirp (exp (i/i^  kTs)) defined as

1 oo
DTFTS.irp(w) -  7f  exp (* ^ kT>f) exp (~iukT t ) ,T

-1  s  ik = —oo

( .  * y/2 ,= z—  exp —z
ßN J V 4 /î r

(4.121)

which implies that a linear chirp in time-domain is Fourier transformed to a linear chirp 
in the frequency domain.

4.6 Bounded Mobile Velocity and Finite Sampling Rate

So far in this chapter we assumed that the mobile velocity could be unbounded resulting 
in a channel process with spectrum extending over the whole real line. The infinite band-
width necessitated infinite sampling rate for discretizing of the channel process without 
aliasing. However, in reality neither mobile velocity can increase without bound nor we 
can have infinite sampling rate capability at our disposal. One of the immediate implica-

tions of a bounded mobile velocity is that we can not transmit a frame of data of infinite 
length without violating our main assumption of bounded mobile. Secondly, since the 
resulting channel process is bandlimited, we do not need to employ infinite sampling 

rate to sample the channel.

4.6.1 Analog Prefilter Bandwidth

In the previous section, since we allowed the mobile velocity to increase without bound, 
we had assumed an infinite bandwidth analog prefilter before ADC so as to pass the 

infinite-bandwidth channel undistorted. Since the channel process is always going to be
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a bandlimited process in view of physical limitations to the mobile velocity, an analog 
prefilter with finite bandwidth would suffice. Usually, the spectrum of the stationary 
channel process is much narrower as compared to the signal of interest, e.g., the max-
imum frequency in the channel spectrum for radio reception in a vehicle with speed of 
500 km/hr would be «  926Hz for a carrier frequency of 2GHz which is ~  22 times 
less than the maximum frequency in an audio signal. In other words, the channel is 
narrowband as compared to the signal. In communications scenario with accelerating 

mobile, the spectrum widens with time which gives rise to the possibility of the narrow- 
band channel becoming wideband. Since the channel spectrum is our useful signal1 11 
in addition to the transmitted signal, the prefilter bandwidth has to be dictated by the 
maximum of the channel and transmitted signal bandwidth. Now the amount of noise 
that enters into the receiver is also proportional to the filter bandwidth with more noise 
implying reduced SNR. Our interest in allowing the channel to pass through to the re-
ceiver system undistorted is that we wish to estimate the channel based on its known 
spectrum. These CSI estimates would then be used for transmitted signal demodulation. 
One of communications system design priorities, on the other hand, is to limit the white 
noise that enters the receiver. As long as our channel is narrowband as compared to the 
useful transmitted signal, we can choose the prefilter bandwidth based on useful signal 
bandwidth without losing channel information. However, when the channel is wideband 
and we opt to allow channel spectrum which is wider than the useful signal spectrum, 
we are in fact allowing extra than necessary noise in the receiver. We, therefore, have to 
keep in view the detrimental effects of the excess noise. There seems to be a trade-off 
between extra knowledge that we obtain by allowing full channel spectrum and the ex-
cess noise that degrades the SNR. The bandwidth of the analog prefilter, therefore, has to 
be optimized taking into account the impact of additional channel knowledge and excess 
noise. While we do not attempt to address this question in this thesis, this optimization 
problem seems to be worth scrutinising in later research.

4.6.2 Windowing

The spectrum of the channel is directly proportional to the observation time (or the trans-
mission frame length) we select. Fortunately, in a wireless environment with accelerating 
mobile, increasing observation time may not be desirable in most instances of practical 

interest in view of the fact that larger lags contain increasingly less information due 
to faster and faster decorrelation with time (see Fig. 4.8 for example) which suggests

1 'in the present non-coherent communication scenario, the knowledge of channel statistics is all what
we have about the channel. If the channel gets distorted as a result of bandlimitation of the receiver, we 
are supposed to lose information about the channel that could otherwise be useful.
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shorter transmission frame lengths for higher accelerations. As we have discussed be-
fore, under the assumption of constant mobile acceleration, the transmission length has 

to be finite in view of bounded mobile velocity. When the data are finite, the need for the 
use of windowing12 naturally arises as a way to control the resolution, bias and variance 
of the spectral estimates. In a wireless communication environment, we may be more 
interested in the width, i.e., the maximum frequency of the spectrum instead of the shape 
of the spectrum in view of the fact that the shape of the spectrum does not significantly 
affect the quality of the channel estimation13 based on the knowledge of channel statis-
tics [199, 200] which implies that we might be more interested in reducing bias in the 
estimated spectrum rather than the resolution while making a choice about the window.

There is a great deal of literature on the design of windows with scores of windows 
proposed [198,201-205]. The most popular among the proposed windows are rectan-
gular (Boxcar or Dirichlet window), Hamming, Hann, Kaiser, Blackman windows etc., 
with each window having some merits and demerits representing some sort of trade-
off between bias and resolution of the estimated spectrum. The length and the type of 
the window used affects the resolution and bias of the estimated spectrum. A window 
with infinite length (providing least time resolution) does not alter the DTFT spectrum 
(providing maximum resolution in the spectrum). We do not intend to go into the details 
about the design of the windows. Rather we shall qualitatively describe the impact of the 
use of a general window on the channel ACF and its spectrum (in DMIPS formulation).

Recall that, irrespective of a particular non-stationary spectral estimation technique, 
the ACF has been formulated as the ensemble average of the instantaneous ACF. It is 
important to answer the question of as to how does the ensemble averaging of the in-
stantaneous ACF affect the non-stationary spectral estimation? The ensemble averaging 
is in fact ideal averaging so that the ACF samples thus obtained are free from any noise 
due to estimation error. The use of a window in connection with DMIPS is to limit the 
span of the lag domain at any time n. No weighting of the ACF samples is required in 
view of the fact that all ACF samples are noiseless and equally reliable. The rectangular 
window (also called the Boxcar or Dirichlet window) which gives equal weightage to 
all samples seems to be a logical choice. However, the use of rectangular window in the 

time domain results in ripples in the convoluted spectrum of the signal and the window,

l2Recall that the DWVD is always a bandlimited process as long as the current time index n < oo 
whereas DMIPS spectrum is never bandlimited, irrespective of the current time index n if the lag domain is 
allowed to extend to infinity. While the discussion here about windowing applies to Wigner-Ville spectrum 
as well, we shall, for the purpose of brevity, explicitly discuss DMIPS spectrum which inherently needs 
windowing in the lag domain in order to be bandlimited.

n This must be true for channel spectra which are symmetric about cu =  0. In Chapters 2 and 3, 
we have observed that when the channel spectra are asymmetric, the shape of the spectrum does affect 
the autocorrelation properties of the channel to an extent that the shape of the spectrum does matter for 
correlation based channel estimation and functions thereof.
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Figure 4.8: The plot of J0(a k) and J0(a k2). We can observe the quadratic argument 
makes the Bessel function non-stationary so that its spectrum is lag-dependent. J0(a k2) 
oscillates faster with lag k implying that it is no more a bandlimited like Jo(a k) which 
is limited to M  < a.

due to unwanted side lobes in the window’s spectrum. On the other hand, the use of 
any window with unequal weights for spanned ACF samples, e.g., Hamming, Hanning, 
Bartlett and Gaussian windows, would introduce unnecessary bias in the ACF samples 
and, hence, the spectrum but ,however, such windows would improve the ripple effect 
due to smooth transition of these windows to zero at the edges. Such windows with 
unequal weights across the length of the window can really be useful when we do not 
have ensemble averaged ACF samples. In fact, in most instances we have only noisy 
estimates of ACF samples and the use of windows with unequal weights is warranted. 
The process of windowing in the lag domain consists of multiplication of the window 
function with the ACF. The multiplication of the channel ACF in (4.113) by the window 

would result in convolution of Fourier spectra of the window and the channel.

4.6.3 Windowed DMIPS spectrum

The DMIPS spectrum obtained by windowing ACF using a length (2K  +  1) symmetric 

window W x ( k )  in the lag domain (resulting in windowed DTFT) is given as

DMIPSiso(nTs, / )
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Figure 4.9: Non-stationary DMIPS spectrum by Blackman-Tukey method. The finite 
window length is assumed to be 51 samples in the lag domain. We assume that the 
carrier frequency is 2GHz, Ts = 2.65msec, |u0| — 20m/sec and the acceleration a = 
10m/sec2. As can be observed, the instantaneous Doppler spread increases linearly with 
n exhibiting the same U-shaped behavior characteristic of the Clarke’s model. Notice 
that the poor resolution in the frequency domain is due to the finiteness of the window 
function.

= Y  W K(k)J0(o.hLJDn̂ k + 0.5u D,a kA  exp (-iuokTs), (4.122)
s k v——■ " ■ s

Windowed Instantaneous ACF

=  J-P (0-5^d ,q k2̂  exp (-iujkTs) , (4.123)
s k p

Po

= T 2 DTFTw (w ) © DTFT^m'ps(w) © D TFTjnips(w), (4.124)
P = -P o

where we have defined the following DTFTs in the last equation

DTFTw (u;) =  exp ( - iu k T s) , (4.125)
s k

DTFT*mps((j) =  JP(o.buDtTl k) exp(-iüükTs) , (4.126)
s k

DTFTq (o;) =  y  ^  J_p ^0.5ccD;Q k2̂ j exp ( - iu kT s) . (4.127)
s k

Notice that the summations in (4.122)-(4.123) are always finite because of the finite 
window. These summations can be taken as zero beyond the length of the window. The



4.6 Bounded Mobile Velocity and Finite Sampling Rate 125

summation in (4.124) is finite due to the presence of the Bessel function(s) (see discus-
sion on Bessel function approximation in Section 2.2.4 in Chapter 2). This summation 

can be taken as zero beyond \p\ > Po(n, K)  where Po(n, K)  is given as

Po(n, K)  =  min { a rg (Jp (0.5ccD,n A')) ,arg  (J_p (0.5cuD,a AT2))}  , (4.128)

where arg(t/) represents the argument of y. Notice that (4.122) is essentially the Blackman- 
Tukey method of estimating the spectrum of a random process and (4.123) is a result of 
the application of Bessel function addition theorem. It may be emphasized that the 
DMIPS spectrum obtained by windowing in the lag domain is no more a true DMIPS 
spectrum. Instead, it is a psuedo DMIPS. The true DMIPS spectrum can be obtained 
using an infinite length of the window.

Asymptotic Analysis of DMIPS Spectrum

Since the quadratic argument in the Bessel functions in DMIPS spectrum causes the 
channel to decorrelate faster and faster with increasing lag k, the length of the window 
has to be time-dependent (irrespective of transmission strategy) so as to limit the inclu-
sion of highly oscillatory and increasingly less useful lags. To appreciate this point, we 
consider the asymptotic behavior of the channel ACF, i.e., when lag k and n are such 
that the argument of the Bessel function in the DMIPS spectrum is either very small or 
very large. The following asymptotic relationships14 for Bessel function of order zero 
with argument x  exist [206]:

where we can observe that for zeroth order Bessel function argument much smaller than 
unity, the value of the Bessel function is 1. The DTFT15 of 1 is 2t t6(ui) implying that for 
sufficiently small n and k (and in fact for sufficiently small symbol rate, mobile initial 

velocity and the carrier frequency), the channel process is essentially a non-random (or, 
more precisely, a constant gain) process with no time-variation. If it is just the lag k that

l4These relationships are of no concern if the channel has stationary statistics because these special 
cases are taken care of in the evaluation of stationary channel spectrum. In the non-stationary scenario, 
these asymptotic relationships become important because we are less concerned about the average spec-
trum. Rather we need to know the instantaneous spectrum.

l?We know that the evaluation of DTFT involves infinite k. The DTFT of 1 must therefore involve 
infinite k. But we can not allow infinite k in view of the constraint on Bessel function argument x  < <  1 
which implies that it is grossly inaccurate to use the term DTFT for the asymptotics applicable over only 
a certain range of the argument x. However, we shall continue to make use of the concept of DTFT here 
as it matches with the intuitive expectations about the spectrum of the Bessel function asymptotics.

I<1

X » 1,
(4.129)
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we can control assuming all other parameters fixed, the behavior of Bessel function at 
small arguments suggests keeping the maximum transmission block length such that the 
argument of the Bessel function remains much less than 1. This discussion implies that 
we should use sufficiently small transmission block length if we want the channel gain 
to remain constant during the whole transmission.

The Bessel function asymptotics for arguments much larger than 1 suggest that it 
behaves like a damped cosine (or, equivalently, sine) function for sufficiently large ar-
guments. As x approaches infinity, the correlation approaches zero implying that the 

channel process gets fully decorrelated with no correlation between two consecutive 
symbols. In the context of DMIPS spectrum, infinite Bessel function argument in (4.84) 

can be achieved even if the current time index n = 0. The channel decorrelation at 
infinite k implies that transmission frame length can be made very large if the current 
time-index is sufficiently small. And if the current time index n is itself infinite, looking 
for channel correlation even at lag k = 1 is useless because the channel would have fully 
decorrelated. This suggests that the transmission block length has to be made increas-
ingly smaller as the current time index n increases. Therefore, a time-dependent window 
length is to be used to reduce the complexity at the receiver.

4.7 Mobile Acceleration Impact on Non-Coherent Mo-
bile Communications

We have so far been concerned with the effect of mobile acceleration on the statistics 
of Rayleigh fading, i.e., the ACF and the spectral density of the channel process. We 
observed that the impact of mobile acceleration on channel statistics strongly depends on 
a particular formulation of the instantaneous channel autocorrelation. The symmetrical 
ACF formulation in the Wigner-Ville spectrum results in a time-variant channel Doppler 
spectrum that is only a function of the time index n. The unsymmetrical channel ACF 
formulation underlying instantaneous power spectrum technique results in time-varying 
channel spectrum that is not only a function of time index n but the lag k as well. In this 
section we seek to explore the impact of mobile acceleration on the overall performance 
of the wireless communications system. We also investigate the role played by the carrier 

frequency and initial mobile velocity on the channel coherence time Tc with accelerating 
mobile receiver.

In the non-stationary channel under consideration, Tc which is directly related to 
the Doppler spread of the channel also turns out to be time-varying. Using (4.106), 

(4.108), (4.109) and (4.110), we get the following relationships between Tc (in number
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of symbols) and instantaneous Doppler spread respectively for WVD and MIPS

\ v o \ T s  ^ 1  +

f c,n =  2.6578 Ac (|t>0|r ,  (l +  aTs (?| ^ |0'5 , (4.131)

where |v0| > 0.
The knowledge of Tc enables the communication system designer to design the basic 

transmission unit at the physical layer commonly called radio frame [207] (or a time 
slot). We denote the duration of the radio frame as Trf. A generic radio frame with 
dedicated portions for overhead (including channel estimation, channel signaling) and 
payload is shown in Fig. 4.10. Usually the radio frame has to perform the following 
tasks [208]:

•  Time structuring of the radio interface,

• To provide the receiver with updated channel estimates so as to assist the receiver 
with power control

•  To assist receiver synchronization,

•  Transportation of signaling and user data (payload).

The assumption of quasi-static fading16 is true only if the radio frame duration is 
much smaller than Tc. In other words, for stable channel estimation and, hence, reliable 
information transmission, the size of the radio frame must be adapted to the time-varying 
Tc in accelerating mobile environment. One of the design goals in communication sys-
tem design is to keep the signaling and channel estimation overhead to as small a fraction 
of the radio frame as possible because the time slots used up by overhead do not carry 
any payload. However, the overhead provides the receiver with useful information to fa-
cilitate the receiver with auxiliary information for proper decoding the received payload. 
While the optimal design of the frame duration must depend on the particular application 
requirements, we shall follow [208] to assume that the radio frame duration is 10% of 
T  i eJ- Cl

Tc,„ =  1.3289 A<
anT,
Kl (4.130)

Trf  = 0.1 Tc, (4.132)

1 Precisely speaking, the assumption of quasi-static fading is not applicable in time (and/or frequency 
selective) channels. However, by keeping the length of the radio frame sufficiently smaller than Tc, the 
channel fading can approximately be assumed as quasi-static. The wireless communication systems are 
always designed to transmit data in short frames to optimize the sharing of available resources and to 
provide the receiver with regular auxiliary information in the form of overhead and coded user data to 
facilitate reliable decoding of the received information.
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Figure 4.10: The general structure of a transmission frame.

where Tc (in number of symbols) is given (4.109) and (4.110) respectively for WVD and 
MIPS spectra. While it is possible to adapt the frame overload to the prevailing channel 
conditions17 provided that certain parameters are known a priori at the transmitter, we 
shall assume [208] that the frame overload is 1/4 of the frame length at 6 GHz and 

I Vo I =  250 km/hr, and remains constant as the channel dynamics change over time 
implying that the receiver can have the knowledge of the instantaneous channel statistics 
(and hence the fading rate) but the transmitter may not so that no overhead adaptation is 
possible. An implication of the assumption of fixed frame overhead is that any channel 
dynamics affecting the channel coherence time Tc and, therefore, Trf would result in a 
change in the size of the useful payload.

4.7.1 Numerical Analysis and Discussion

In this section, we aim to give quantitative impact of mobile acceleration as a function 
of carrier frequency and the initial velocity of the mobile on channel coherence time 
and, in fact, the radio frame in the context of some state-of-the-art and future commu-
nication systems. Since the channel gain is assumed to be constant over the duration 
of the radio frame, the mobile acceleration would not affect the quality of estimation 
within one frame. However, any (possibly adaptive18) channel estimation strategy that 
takes into account the channel gains over multiple frames (destined for the same user) 

for prediction or interpolation of channel estimates would obviously be affected by the 
mobile acceleration. For the sake of brevity and simplification, we shall consider only 

the channel coherence dynamics for WVD as defined in (4.130).

17When the channel fading is quite slow, for example, it may be possible to reduce the training bits 
(and hence the frame overhead) in the radio frame so as to include more user data.

18Such scheme corresponds to adaptive overhead scenario. This scheme may not use equal number of 
pilots in all frames destined for the same user.
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Figure 4.11: The instantaneous percentage decrease in the duration of radio frame (with 
respect to a =  Om/sec) for different mobile accelerations assuming mobile speed of 
1 m/s, Ts = 3.69 micro second and f c = 2 GHz. Notice that the carrier frequency and 
the symbol duration correspond to GSM communications.

Equations (4.130) suggests that the change in channel coherence due to mobile ac-
celeration is dependent on

• the absolute time index n

• the initial mobile speed |u0|

• the carrier wavelength Ac (or, equivalently, carrier frequency)

• the symbol rate.

As the time progresses, the accelerating mobile gains more speed so that the channel 
coherence time being a function of mobile speed becomes dependent on the absolute 
time index n. In Fig. 4.11, we have plotted instantaneous percentage decrease in radio 
frame duration Trf  for different accelerations19. The percentage decrease in Trf has been

l9The accelerations below or equal to 1 m/sec2 are representatives of the pedestrian (or vehicle) ac-
celeration whereas the acceleration between 1-5 represent the vehicle accelerations. The accelerations 
beyond 5m/sec2 have been chosen for our model calculations.
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Figure 4.12: The percentage change in the duration of radio frame assuming GSM carrier 
frequency and symbol rate for different mobile accelerations as a function of mobile 
speed.

defined with respect to a  =  Om/sec2. Mathematically,

% Decrease in T rf =
Trf

a
Trf

a = 0

Trf
Q =  0

x 100 (4.133)

where Trf\a indicates the radio frame duration for a particular a  > 0. The figure sug-
gests a linear percentage decrease in Trf  for smaller a  whereas the decrease becomes 
increasingly non-linear for larger a. The instantaneous radio frame duration for a = 15 
m/sec2 decreases by ^  60% after just 1 second of mobile movement. Similarly, Fig. 
4.12 depicts the percentage decrease in Trj  with acceleration as a function of the initial 
mobile speed. Notice that the mobile acceleration impact is more pronounced for smaller 
Iv01 (/•£., for slow to moderate fading channels). At higher |v0| (i.e., for faster fading 
channels), the decrease in Trf  turns out to be ^ 10%. This implies that the communica-
tion schemes exploiting slow fading character of the wireless channel by sending data in 

large blocks seem to have greater need to take the mobile acceleration into account.

The future wireless communications standards specify the use of higher carrier fre-
quencies for wireless communications. The WiMax standard, for example, proposes the 
use of 5-10 GHz as carrier frequency. In [208], the feasibility of higher carrier frequen-
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Figure 4.13: The percentage normalized radio frame length as a function of carrier fre-
quency. This is a fundamental result which is independent of the mobile speed, accel-
eration and the absolute time index n as long as these parameters are assumed to be the 
same for / c 2 GHz and f c — 2 GHz.

cies as compared to 2 GHz has been discussed assuming constant mobile velocity. It 
was concluded that the the suitable spectrum should be chosen as close as possible to the 
state-of-the-art mobile communication systems. The maximum tolerable frequency was 
argued to be around 6 GHz. It is of some interest to see as to what impact the mobile ac-
celeration may have on mobile communications at higher carrier frequencies? The Fig. 
4.13 shows a fundamental result quantifying the effect of changing carrier frequency on 
the duration of radio frame normalized20 to the radio frame length at f c = 2 GHz. This 
result is independent of mobile velocity, acceleration and, even, the absolute time index 
n as long these parameters are kept to be the same for f c = 2 GHz and any other fre-
quency being compared. Using (4.130) and (4.132), it is easily shown that normalized 
percentage radio frame duration denoted by Tfj  is given as

20In the sequel, unless otherwise specified, we use the term normalized to mean normalization of a 
particular parameter to its value at f c =  2 GHz.

Tr/ \
____________ f c x 100,
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Figure 4.14: The normalized percentage payload per second (after 1 sec) as a function 
of carrier frequency for different mobile accelerations assuming the symbol rate as that 
of GSM and mobile speed as 72 km/hr.

where A2C' is the carrier wavelength at 2 GHz. Fig. 4.13 is simply a plot of (4.134) 
suggesting that Trf  at 10 GHz reduces to just 20% of that at 2 GHz.

The normalized payload per frame after 1 second of mobile movement is shown 
in Fig. 4.14 as a function of carrier frequency. Notice that the effect of acceleration 
is emphasized at lower carrier frequencies. At an acceleration of 5 m/sec2 and 2GHz 
carrier frequency, the payload per frame is 20% lower than without acceleration at the 
same frequency. At 6GHz, the payload per frame with acceleration of 5 m/sec2 reduces 
by just over 75% which is quite significant.

Since we have assumed the frame overhead to be constant, any changes in coherence 
time (or radio frame duration) due to mobility must be at the cost of payload. It may be 
of interest to have an idea of the mobile acceleration impact on the integrated number 
of frames, overhead and payload for wireless transmission spanning 1 second. Fig. 4.15 
shows the instantaneous integrated number of radio frames that can be transmitted at 
different frequencies and accelerations. When a — 1 m/sec2, the number of transmit- 
table frames is approximately insensitive to a change in time for different frequencies 
whereas rise in umber of frames is noticeable when a = 5 m/sec2. It may be empha-

(4.134)
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Figure 4.15: The instantaneous integrated radio frames per second for different frequen-
cies and mobile accelerations. The symbol duration Ts =  20 micro second.

sized again, however, that being able to send more frames per second is not beneficial 
here. In fact, adding more frames per second is adding to the integrated frame overhead 
and reducing the integrated payload per second. Fig. 4.16 depicts the integrated number 
of frames per second as a percentage of the number of frames for f c =  2 GHz as a func-
tion of mobile speed. Again, we can observe that low mobile speeds are more sensitive 
to a change in mobile acceleration. Fig. 4.17 shows the reduction in integrated payload 
as compared to payload at f c =  2 GHz as a function of carrier frequency for different 
mobile accelerations. We have also plotted integrated payload per second for stationary 
channel ( a  =  0) assuming mobile speed of 250 km/hr. In 2 seconds, the mobile moving 
with initial speed of 50 km/hr and acceleration 15 m/sec2 would have attained speed 
of 158 km/hr. Observe that for f c <  4 GHz, the accelerating mobile scenario where 
the mobile achieves speed of 158 km/hr behaves worse than the stationary channel case 
with mobile speed 250 km/hr. Similarly, the normalized integrated overhead per sec-
ond shown in Fig. 4.18 suggests a linear increase in overhead with increasing carrier 
frequency. The figure shows that a mobile moving with initial speed of 100 km/hr and 

acceleration of 15 m/sec2 supposed to achieve speed of 208 km/hr is worse than a mobile 
moving with no acceleration but speed of 250 km/hr (which is obviously greater than 
208 km/hr). At 6 GHz, the normalized integrated overhead per second rises to 400% for 

mobile acceleration of 5 m/sec2.
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Figure 4.16: The percentage increase in integrated radio frames per second (assuming 
nTs = 1 second) for different frequencies as compared to f c = 2 GHz. The results 
are given for different accelerations as a function of mobile speed. The symbol duration 
Ts — 20 micro second.

The results suggest that the performance of a communication system in terms of data 
rate is more (less) sensitive to acceleration at lower (higher) mobile velocities. Finally, 
the calculations in this chapter have been based on the Doppler spectrum of the SISO 
channel. The overall performance of emerging wireless networks might depend on chan-
nel dynamics in more complicated ways and the results could be different. In Chapter 
2, we observed a significant slowing down of the channel dynamics with non-isotropic 
reception. We argue that the use of a directional antenna in accelerating mobile case 

would lead to significant reduction in dependence of channel dynamics (and, therefore, 
channel coherence) on mobile acceleration.

The numerical results presented here taking into account the mobile acceleration 
reinforce the conclusion drawn in [208] that the spectrum of future wireless mobile 

communications systems should be chosen as close as possible to the state-of-the-art 
systems. The mobile acceleration renders the channel dynamics even worse resulting in 
less overall data rate. The rise of integrated overhead per second to 400% at 6 GHz sig-
nificantly adds to the complexity (and hence power requirements) at the mobile receiver 
which is of course not desirable for power-limited mobile terminals suggesting the use of 
lower carrier frequencies. While the use of lower carrier frequencies might result in en-
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Figure 4.17: The normalized integrated payload per second (after 2 sec) as a function of 
carrier frequency assuming the symbol rate as that of GSM and mobile speed as 50km/hr.

hanced transmission efficiency, less cost of the semiconductor devices and components, 

reduced complexity and decreased power consumption at the mobile receiver, there are 
many merits of choosing a higher carrier frequency for wireless communication, e.g., as 

the carrier frequency is raised [208]

•  more spectrum becomes available in view of the fact that spectrum allocations are 

usually in direct proportion to the frequency of the band which implies availability 

of higher data rates (capacity).

•  it is possible to employ low order modulation schemes (e.g., instead of 8-PSK 

we might be able to use 4-PSK or even BPSK) yet maintaining the same system 

capacity by using large bandwidth resulting in reduced carrier to noise and in-

terference requirements for the system which actually enhances the range of the 

wireless communications systems.

•  the financial cost of licensing is significantly reduced in view of the fact that higher 

frequencies are considered less ’ favorable’ and the optimized frequency bands are 

very expensive due to higher demand.

•  the gain of the (dish) antennas being employed is expected to be higher since, in 

general, antennas have higher gain at higher frequencies. This merit though may
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Figure 4.18: The normalized percentage integrated frame overhead per second (after 2 
sec) as a function of carrier frequency for different mobile accelerations assuming the 
symbol rate as that of GSM and mobile speed as 100 km/hr.

not be very attractive because the mobile communication devices use dipole an-
tenna which exhibit a different performance as compared to a dish antenna. More-
over, an increase in antenna gain inherently makes antenna directional which ne-
cessitates some sort of dynamic controlling of the directivity for correct alignment 
of the antennas. It may here be pointed out that the discussion on the directional 
antenna and scattering in Chapter 2 naturally applies to wireless communications 
at higher carrier frequencies due to antenna directivity.

•  it becomes possible to make mobile terminals based on multiple-input multiple- 
output (MIMO) technology (which is an integral part of any future communica-
tions system) more compact because at higher frequencies the size of antennas and 

the displacement between antennas is reduced.

•  the use of relaying and adaptive antennas in future communications systems can 
overcome the inherent problem of short range while communicating at higher fre-
quencies.
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4.8 Summary and Contributions

This chapter presents a generalization of Clarke’s model from mobile motion with con-
stant velocity to constant acceleration. The mobile motion with constant acceleration 
through sufficiently rich statistically homogeneous scattering environment renders the 

channel process non-stationary assuming unbounded mobile velocity and infinite sam-
pling rate. We derived Wigner-Ville distribution (VWD) and instantaneous power spec-
trum (IPS) for the non-stationary complex Gaussian process. It turned out that DWVD 

represents a natural generalization of the Clarke’s model and retains the U-shaped char-
acteristic of the spectrum. On the other hand, IPS spectrum representation is more in-

volved as a result of ACF involving Bessel function with quadratic argument. The effect 
of bounded mobile velocity and finite sampling rate is also discussed. The impact of 
mobile acceleration on the performance of communications systems was also discussed. 
The results suggest that the acceleration affects the performance when the initial mobile 
velocity and the carrier frequency are low. The non-coherent communications at higher 
carrier frequencies is infeasible if the mobile moves with constant acceleration.

The specific contributions of this chapter are summarized below.

• We generalize the Clarke’s well known model of mobile radio reception which 
assumes the mobile motion with constant velocity to mobile motion with constant 
acceleration. The expressions for VWD and IPS are derived for the non-stationary 
complex Gaussian channel process under the assumptions of unbounded mobile 
velocity and infinite sampling rate. The VWD turns out to be a natural generaliza-
tion of the Clarke’s stationary model to non-stationary scenario.

•  We discuss the impact of mobile acceleration when the mobile velocity remains 
bounded and the channel sampling rate is finite.

•  The impact of mobile acceleration on the performance of communications systems 
is explored in terms of frame overhead and payload. The results suggest that it is 
more infeasible to communicate at higher carrier frequencies if the mobile moves 
with constant acceleration.



Chapter 5

Improved MMSE Performance of 
PACE over Rayleigh Fading Channels 
Using Modified Peaky Signaling

5.1 Introduction

A wide variety of digital communication systems (particularly in wireless, satellite, 
deep-space, and sensor networks) operate in the power-limited (or, equivalently, wide-
band) region [209] where the so-called peaky signaling is known to achieve capacity 
of a noncoherent average power constrained Rayleigh fading channel. The pilot-aided 
channel estimation (PACE) in conjunction with peaky signaling results in improved per-
formance over Rayleigh fading channel at low signal-to-noise ratio (SNR) [78]. Since 
the peaky signaling remains silent most of the time, a significant number of dof may 
be lost. It is therefore of some interest to make use of the unused degrees of freedom 
to enhance the performance of the communication systems operating at very low SNR. 
In this chapter, we seek to answer three questions regarding a PACE based system over 
continuously fading Rayleigh channel employing peaky signaling. Firstly, how to make 
use of the unused degrees of freedom in the peaky signaling to improve minimum mean 

square error (MMSE) performance of PACE scheme? Secondly, how does improved 
MMSE performance affect the optimum resource allocation between pilot/data sym-

bols? Thirdly, what is the impact of any change in the optimum resource allocation on 
overall gains in communication system performance?

The accurate knowledge of channel state information (CSI) quite significantly affects 
the performance of wireless communication systems because it permits the realization 
of coherent demodulation. In PACE, pilot symbols are time-multiplexed into the data 

stream [140]. The channel estimates obtained at pilot symbol locations are then used to

139
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predict or interpolate the channel estimates at data symbol locations for demodulation. 
The channel estimates thus obtained and subsequent demodulation, is imperfect due to 
the presence of noise and, therefore, the performance of the communication system is 
directly affected by the level of noise that corrupts pilot symbols [136,210J. The pilot 

symbol SNR can be enhanced either by allocating more power to pilot symbols or by 
reducing the noise. Since power is a precious resource, it may not be feasible in most 
instances to allocate more power to pilot symbols. It is, therefore, of fundamental interest 
to devise some method to mitigate the degrading noise.

Generally speaking, PACE is based on either the least squares (LS) or the linear 
MMSE (LMMSE) technique (an approximation of MMSE1) [211-214]. The essential 

difference between these two types of techniques is that the channel coefficients are 
treated as deterministic but unknown constants in the former, and as random variables of 
a stochastic process in the latter. Compared with LS-based techniques, LMMSE-based 
techniques yield better performance because they additionally exploit and require prior 
knowledge of the channel correlation.

A technique based on oversampling of the pilot symbols followed by filtering and 
subsequent downsampling was proposed in [82] in connection with Doppler frequency 
estimation. We describe this overall signal processing scheme as Oversample-Low pass 
filter-Downsample (OLD). With an ideal low pass filter, the technique offered significant 
performance improvement for slow fading scenarios at low SNR. Though it was not 
explicitly mentioned in 182], we shall later show that ideally, at low SNR, this scheme 
can improve performance by as much as the oversampling factor by enhancing SNR by 
the same factor. This SNR enhancement can be explained if we consider the fact that the 
process of oversampling reduces the required filter bandwidth to pass the useful signal 
intact thus reducing the output noise by decreasing the noise bandwidth [8]. The obvious 
cost for the improved performance of Doppler frequency estimator proposed in [82] was 
increased complexity at the receiver end necessitated by oversampling of pilot symbols 
in addition to the filtering. We, in this chapter, propose a PACE based transmission 

scheme that works in conjunction with the modified peaky signaling which consists of 
unused dof resulting in pilots-plus-zeros stream at the receiver. The pilots-plus-zeros 
stream effectively represents an oversampled pilot sequence which is low pass filtered 
and then downsampled to obtain pilots-only sequence. Thus, the explicit oversampling 
as required by OLD scheme is avoided at the cost of inherent oversampling of the pilot 

sequence due to the peakiness of the signaling.

The peaky signaling has been well researched in literature from the point of view of

'If the observation process and the the parameter to be estimated are jointly Gaussian [132], MMSE 
and LMMSE are equivalent.
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its design and performance over fading channels. With a fourthegy (a fourth-order cost 
function related to the number of diversity paths) constraint, it was confirmed in [215] 
that signals need to be peaky in time (and/or frequency) to be able to achieve constant in-
formation rates per unit power over very-wide-band wide-sense stationary uncorrelated 
scattering (WSSUS) fading channels [216]. Non-peaky signals like those used in direct- 
sequence (DS) spread-spectrum systems do not have enough fourthegy per unit energy 
to achieve significant values of reliably communicated bits per unit energy for a WS-
SUS fading channel. The performance of peaky signaling was analyzed with an average 
power constraint for noncoherent bandlimited multipath fading channels in [217] and 
lower and upper bounds to the error probability were derived. In [218], the peaky signal-
ing was considered for fading relay channels with memory. The performance of peaky 
Gaussian signaling was studied for Rayleigh fading channels in the low SNR regime 
in [78]. The channel was assumed to remain constant over the length of the block of 
symbols and a lower bound to the capacity of Gaussian peaky signaling was proposed in 
terms of peakiness and coherence time. A comparison was also made between the peaky 
and non-peaky (NP) signaling schemes. We emphasize that, unlike [78], we do not make 
block fading assumption in this chapter. Rather, we allow the channel to continuously 
fade across the block of symbols.

The performance of PACE technique for non-peaky signaling over continuously fad-
ing Rayleigh channel without proposed additional filtering of pilot symbols has been 
considered in [88] (this work shall be taken as representative of the non-peaky signaling 
over time-selective rayleigh fading channels for the sake of comparison). The optimal 
resource allocation for pilot and data symbols was determined by maximizing the Gaus-
sian signaling Rayleigh capacity lower bound. Our approach in the second part of this 
chapter closely follows [88,210] to determine optimal resource allocation to pilot/data 
symbols in order to ascertain the impact of improved MMSE performance of the pro-
posed scheme. To the best of our knowledge, the results reported in this chapter are not 
available in literature in connection with PACE based peaky signaling over time-selective 
fading channels.

The rest of the chapter is organized as follows. In Section 5.2 we describe the dis-
crete time Rayleigh fading model on which the subsequent analysis is based. We also 
describe the proposed peaky signaling scheme. In Section 5.3 we derive an expression 
for MMSE assuming an infinite number of pilot symbols. The results of Section 5.3 are 
used in Sections 5.4-5.6 to optimize the allocation of resources to pilot and data symbols 
for transmission over Rayleigh fading. Finally, the chapter is summarized and specific 
contributions are highlighted in Section 5.7.
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Original peaky signaling

IT m m 1 I n
Modified peaky signaling |

Pilot Symbol Data Symbol

Figure 5.1: The transmitted frame format: Ts is the data symbol duration, Tp denotes 
pilot symbol insertion factor, the number of zeros (or, equivalently, unused d o f) is equal 
to M  — 1 where the factor M  is the upsampling factor.

5.2 Channel Model and Signaling Scheme

5.2.1 Channel Model

The channel between the transmitter and the mobile receiver is modeled as a stationary, 
frequency non-selective circularly-symmetric complex Gaussian random process. At 
this point, we do not make any assumption about the scattering environment around the 
receiver. We use the following I/O model

r[m] = \fE s h[m\ s[m] + z{m], (5.1)

where r[m\, s[m], h[m] and z[m] respectively are the samples of complex channel out-
put, input, gain and discrete AWGN at signaling interval m. Equation (5.1) is normal-
ized such that E {|s[m]|2} =  1, E{\h[m]\2} = 1, E{|z[m]|2} =  No so that Es /N 0 
represents the average received SNR per data symbol. We also assume that the data, 
channel and noise sequences are independent processes and channel statistics are per-
fectly known to the receiver. Notice that the I/O models described by (5.1) and (2.1) 
differ in the normalization of the noise process.

5.2.2 Modified Peaky Signaling Scheme

We consider a slight modification2 of the original peaky signaling scheme with A4 — 1 
unused degrees of freedom of the original peaky signaling rearranged as shown in Fig. 
5.1 where the factor M  can be considered as upsampling factor [114]. It is assumed that

2This modification is assumed to facilitate the process of demultiplexing at the receiver. If we are to 
use the conventional peaky signaling, a little thought would reveal that we shall need to incorporate a more 
complex demultiplexer (Fig. 5.1).
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Downsampling Wiener Smoother

Downsampling

LP Filter

Figure 5.2: The proposed scheme: The pilot symbols extracted from filtered sequence of 
received symbols are passed through Wiener smoother to get improved channel estimates 
at data symbol locations.

the pilot symbols are inserted in the transmitted stream at least at the Nyquist rate, i.e., 
2 /d  where / D is the channel fading rate normalized to the symbol rate, l /T s.

Traditionally, as we know, the received pilots-plus-data symbols stream is down- 

sampled to separate pilot and data streams. The pilot symbol sequence is first used to 

estimate the channel gains at pilot symbol instants. These channel estimates are then 

interpolated to obtain channel estimates at data symbol locations. The use of OLD pro-

cessing scheme requiring an oversampled pilot symbol stream improves the performance 

of PACE [82]. In this chapter, we propose a scheme (Fig. 5.2) which is based on the 

same OLD processing scheme but does not require explicit oversampling of the pilot 

observation process at the receiver. This scheme makes use of the unused dof in the 

transmitted stream to obtain improved channel estimates at the receiver. In the proposed 

scheme, the symbol stream to be transmitted consists of pilot and data symbols, and, 
in addition, M  — 1 zeros3 multiplexed between two consecutive pilot symbols in the 

stream. If we assume that the total available power is Tp£s , the unused dof result in 

savings in transmitted power corresponding to zeros giving rise to the following four 

possible transmission schemes.

No Enhancement (NE) Scheme

One of the possibilities is not to use savings in power implying that the average pilot 

symbol power and data symbol powers are equal. Though the total power used by this 

scheme is less than that of NP scheme, the performance of this scheme is intuitively 

inferior to that of NP scheme which utilizes more power. From the point of view of 

data transmission, NE signaling scheme can be considered as pseudo-peaky because 

in this scheme only the silent period changes while the average power during the data 

transmission remains fixed.

^Notice that 2 < M < T P — 2 is an integer where Tp is the spacing in number of symbols between 
two successive pilot symbols. Also, the zeros occupy data symbol locations, i.e.there is no bandwidth 
expansion, as compared to the traditional schemes, due to the insertion of zeros.
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Pilot Enhancement (PE) Scheme

The second possibility is to use the power savings to enhance the power of the pilot 

symbols only. When the number of unused dof is M ,  the pilot symbol power in PE 
scheme would be, i.e.:

£pPEt =  M £ „ , (5.2)

and the data symbol power £d =  £s . This scheme can also be considered as pseudo- 
peaky.

Data Enhancement (DE) Scheme

The DE scheme uses savings in power to increase the power of data symbols by distribut-
ing the power savings equally over all data symbols in a transmission block. When the 
number of unused dof is A4, the number of data symbols in the block would be Tp — M  
and the each data symbol would have the following average power

-  (■ ■-  •

and the pilot symbol power remains unaltered, i.e., £p = £s . As the peakiness of the 
signaling increases, this scheme concentrates more and more power in time. The DE 
scheme therefore can be considered as peaky in the usual sense.

Pilot and Data Enhancement (PDE) scheme

This scheme uses the power savings to enhance power of the pilot and data symbols by 
distributing the power savings equally over the non-zero symbols in the transmission 
block. The resulting data symbol power would be

M - l  \  
Tp -  M  +  1)

_  £ P D E f

£, (5.4)

The PDE scheme, like DE scheme, can be considered as peaky signaling in the true 

sense.

In this chapter, we shall extensively compare the performances of PE, DE and PDE 
schemes with non-peaky4 (NP) signaling scheme and appropriate subscripts (or super-

4Unless otherwise specified, wherever in the sequel we refer to the performance of non-peaky (NP) 
signaling, we would imply the work of [88],
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scripts) shall be used to identify a particular scheme.

5.2.3 Specification of Transmission Parameters

We assume the following (Fig. 5.3)

4  =  N  2 /d, (5.5)
•L S

where fa is the maximum Doppler frequency in the Doppler spectrum of the channel 
and N  is an integer. Equation 5.5 implies that symbol rate sampling results in channel 
being oversampled by the integer factor N > 1. Assuming that all pilot symbols are set 
equal to one, pilot symbols and zeros are time-multiplexed into data symbols at regular 
intervals and pilot symbols are obtained by 2-stage downsampling as shown in Fig. 5.3, 
following relationships hold:

M  = ^ - ,  (5.6)
-L vp

where Tvp is the spacing between a pilot symbol and the succeeding zero, and

^  =  K 2 f Di (5.7)
1p

where integer K  > 1 is the channel oversampling factor at pilot symbol rate and / d is 
the channel fading rate normalized by the symbol rate. Equations (5.5)-(5.7) imply that

N = Tp
K  Ts ’ 

> 1 ,

(5.8)

implying that N > K. Using (5.6) in (5.8) implies N  < K A4.

5.2.4 Process of Downsampling and Problem Statement

The received symbol stream downsampled by a factor5 Tvp is, in fact, an ‘upsampled’ 
pilot sequence with M  — 1 zeros between two consecutive pilot symbols. This pilot 
sequence is passed through an ideal low pass filter with cut-off frequency = / d ^  
to remove out-of-band white noise thus improving SNR at pilot symbol instants. After 
low pass filtering, the “upsampled” pilot symbol sequence is downsampled by a factor

5The subscript ‘up’ stands for virtual pilots with transmitted pilots-cum-zeros considered as virtual 
pilot sequence (because the zeros do not convey any data but facilitate channel estimation at the receiver). 
Tvp, therefore, stands for the pilots-cum-zeros insertion period.
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. Original channel spectrum

2. After Sampling at the receiver

3. After downsampling by factor Tvp

4. After lowpass filtering and 
downsampling by factor M

Figure 5.3: The spectra of the channel and the noise. We assume that the pilot symbols 
are all set to 1.

M. to get actual pilot symbol sequence without any zeros. If x[n] is the output during 
pilot symbol at nth pilot symbol instant, we have

x[n] = r[nTp] = yf£~p h[nTp\ + z[nTp], (5.9)

where Sp is the average energy per pilot symbol. Since we wish to obtain MMSE esti-
mate at data symbol locations which are shifted with respect to pilot symbol locations,
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we need to dehne the following shifted and sampled channel process

Cfc[n] =  h[nTp +  k], 0 <  k < Tp — 1 (5.10)

where [*] represents the channel gain at delay of k symbols from the pilot symbol at 
instant nTp. Obviously, when k — 0, the shifted channel process {c/J is identical to the 
original channel process {h}.

Remarks

1. Notice that the filtering has been proposed for the pilots-plus-zeros symbol stream. 
This filtering is in addition to the analog prefiltering of the received symbol stream 
before the sampler at the receiver. Since the symbol stream consists of data-plus- 
pilot symbols (along with zeros) at the input of the analog prefilter, the cut-off 
frequency of the analog prefilter has to be much larger than the channel spectrum 
because the cut-off frequency of the analog prefilter has to be ideally equal to (or 
greater than) the highest frequency in the convoluted spectrum6 of the spectra of 
data and channel so as not to lose any useful information of the data or the channel. 
Since the bandwidth of the mobile channel is not more than few hundred Hz in the 
worst case, from the channel estimation point of view, the unavoidable out-of- 
band noise allowed into the receiver by analog prefilter significantly reduces SNR 
at pilot symbol instants. The same SNR degradation would result if we opt to 
perform proposed (digital) filtering before downsampling by the factor Tvp. It may 
also be observed that the PSD of white noise after downsampling by Tvp remained 
unaltered which is due to the fact that previously white noise remains white (with 
identical variance) after downsampling [219].

2. The downsampling by factor M  in Fig. 5.3 does not improve SNR because the 
power of neither the noise nor the useful channel signal changes. However, this 
downsampling operation is required to get rid of the unused dof  in the symbol 

stream before pilot symbols are input to the Wiener filter. More importantly, this 
operation brings the factor M ,  which is a measure of peakiness of the signaling, 
into the final MMSE expression.

6It is well known that the multiplication of two functions in the time domain is equivalent to convolu-
tion in the frequency domain and vice versa [114].
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5.3 Derivation of Optimal Wiener Smoother and MMSE

W hile the analysis can be carried out for finite pilot sym bols in a finite transm ission 

block length, we assum e, in an inform ation theoretic context, that the transm ission block 

length is infinite and so are the pilot symbols. Fig. 5.3 shows the channel D oppler and 

noise spectra at different stages in the proposed schem e. Using (5.5), (5.6) and (5.8), we 

can see that

— -jy  — 2t t / d ,
=  2n fD M ’

u'u = 2 n f DT}p ?

and

T '  = TSZvp? T "  = Ta
T-L r>

M N

In order to explore the lim iting perform ance o f the proposed schem e, we input noisy 

pilot sequence x[n\ to the W iener filter (Fig. 5.2) which is optim al in the m ean-squared 

error sense. We know from classical W iener filter theory [220] that the transfer func-

tion o f optimal infinite impulse response (IIR) M M SE W iener filter W 0^  is given in 

frequency dom ain as

Sckx(u)
<5X X  (k°0

(5.11)

where S CkX(uj) is the cross-spectral density o f the pilot observation process and channel 

gain at data symbol shifted k  sym bols from the pilot symbol, and S xx(cu) is the spectral 

density of the pilot observation process. In the A ppendix D .l, we show that the opti-

mal W iener filter and the corresponding M M SE, o f  for the proposed schem e are given 

respectively as

W 0tk(u) =  exp ( iuk)
\ [ ^ v  {  t „

Tn T7 rect M 47r / D T p +  T p ^ h  ( Tp
(5.12)

a 2
e

1
27T S / iM

SpSh(u)
T1p

duo, (5.13)

where the factor exp (iujk) in (5.12) is due to the cross-spectral density, S CkX(uj). Equa-

tion (5.12) im plies that the spectral characteristics o f the W iener filter are the same for 

each k except a relative phase shift proportional to k. Notice the presence o f additional
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(downsampling) factor A4 in the magnitude of the optimal Wiener filter and MMSE 
which is absent in [221] where OLD processing scheme is not employed.

There are few important questions that could be asked here: Firstly, is it not possible 
to obtain the same MMSE as with the proposed scheme by simply low pass filtering the 
received pilot symbol sequence when no zeros are transmitted, i.e., the signaling is non- 
peaky? The answer to this question is ‘No’ which is, however, not quite obvious. Notice 
that the computation of MMSE (Eq. (5.13)) involves integration of the ratio of PSDs 

with respect to uj from — 27t / d  to 27t / d , i.e., over the support of the original sampled 
channel spectrum7. Now if there were no zeros transmitted, we would have obtained a 
noisy pilot symbol sequence at the receiver by downsampling the received pilot-plus-data 
symbol stream by factor Tp. If this (infinite) pilot symbol sequence were passed through 
an ideal low pass filter, out-of-band noise would have been removed reducing the noise 
power (and, thus, improving the SNR) at the output of the low pass filter (Fig. 5.3). 
However, the noise PSD would have remained unchanged in the interval of integration. 
Interestingly, however, this filtering operation has no impact on the MMSE of the optimal 
Wiener filter and MMSE in this case is identical to MMSE given in [ 136,221 ] (where no 
additional filtering prior to Wiener interpolator is assumed), i.e.,

where of NPwF and o \ NP respectively indicate MMSE for NP schemes with and without 
filtering. The comparison of (5.14) with (D.13) clearly shows the effect of filtering fol-
lowed by downsampling. As long as the overall downsampling factor is Tp, the interval 
of integration and the channel PSD would be identical for all schemes. It is, then, the 
noise PSD that carries the difference among different schemes.

Secondly, is it not possible to first upsample (or, equivalently, oversample) the re-
ceived pilot symbol sequence at the receiver by factor A4, low pass filter it and then 
downsample by factor A4 to obtain the same MMSE performance as with the proposed 
scheme, i.e., enhancement of pilot symbol SNR by A41 Though not established in the 
literature to the best of the authors’ knowledge, the answer to this question in view 
of foregoing explanation is ‘yes’. This is the same technique that has been employed 
in [82]. However, as mentioned in remarks before, the complexity of the receiver would 
be significantly increased due to the oversampling involved. We have utilized the unused 
degrees of freedom in the signaling to avoid the oversampling required otherwise at the 
receiver.

7The interval o f integration for NP schemes [136,221,222] and ours turns out to be the same.

(5.14)

2
a e,NP) (5.15)
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5.3.1 MMSE for uniform and Clarke’s Doppler Spectra

In this subsection, we specialize MMSE derived in the preceding section to two most 
widely used bandlimited (sampled) channel Doppler spectra. The uniform spectrum, 

Sfrh(uj), results when the mobile receiver is surrounded by isotropic 3D scattering

27̂ , M < 2?r/D;
0, otherwise.

(5.16)

and classical U-shaped Clarke’s spectrum, S%h(uj), which results when there is isotropic 
scattering in 2D around the mobile receiver

5&M
2/ j

0,

M  <  2tt/ d ;

otherwise.
(5.17)

In the Appendix D.2, we show that the MMSE for the uniform and Clarke’s Doppler 
spectra are given respectively as

2 _ 2/Drp
u'e ~  2 fDTp + M

(5.18)

^  - 1 -  ^ = 5“ h~ ' m  ’ ( 5 i 9 )

where x  ■= M  pp/ ( n f DTp).

5.3.2 MMSE Performance: Proposed Signaling versus Non-Peaky 
Signaling Scheme

In order to draw a comparison of the MMSE performance of the proposed scheme with 
NP scheme, we define the following:

MMSEgain = Q = cre2NP -  cr2PwF, (5.20)

> 0  (5.21)

where we have used of NP and o f PwF respectively to indicate MMSE for NP scheme and 

the proposed schemes (the subscript ‘PwF’ indicates peaky signaling with filtering), and 
the last inequality is true for M  > 2, 0 < p < oo which implies that, for the proposed 
schemes, it is always advantageous fo r  signaling to be more peaky from the point o f view 
o f channel estimation. In the Appendix D.3, we show that Qu is maximum when SNR is
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given as

U max 
r p

2fpTp 
\[M  ‘

(5.22)

In case of Clarke’s spectrum, however, we have to resort to numerical means in order to 
determine pp max. Fortunately, however, the numerical results suggest pp max does not 
differ from pp max by a large amount and, as a rule of thumb, we can write

_U max ^  C max
P p  ~  P p  > (5.23)

where the approximation is found to be more accurate for smaller A4.

5.3.3 Numerical Analysis of Q

With the analytical MMSE results outlined before, we perform numerical analysis of the 
gains in MMSE performance achievable with the proposed scheme. The performance of 
the proposed scheme depends on pp, normalized fading rate, the pilot-insertion period 
(Tp) and the number of zeros (A4 — 1) transmitted between two consecutive pilot sym-
bols. The behavior of Qu function against pp and fp  for A4 = 100 and Tp =  200 has 
been plotted in Fig. 5.4 with and without PE. It can be observed that there is no use of 
investing power savings in enhancing pilot symbol SNR if we are operating at, at least, 
around -20dB. However, if the operating SNR is very low, channeling more power to 
pilot symbols is highly feasible. Fig. 5.5 shows the difference plot of MMSE gains in 
uniform and Clarke’s Doppler spectra, i.e., Qc — Qu for A4 — {2,25, 50} for fixed block 
length of Tp = 200. No significant difference in MMSE gains can be observed as a 
function of either SNR or / D. However, more precisely, Clarke’s spectrum offers higher 
MMSE gains at low SNR for large A4. The uniform channel spectrum, on the other 
hand, may lead to higher MMSE gain if the operating SNR is roughly between -8dB 

and -30dB. These results imply that the two Doppler spectra can roughly be considered 
equivalent.

The impact of changing the oversampling factor K  (for fixed A4 = 10) on MMSE 
gain is shown in Fig. 5.7 as a function of SNR. Qualitatively speaking, the effect of 
increase in K  is to shift the MMSE gain curve to -SNR axis that results in better MMSE 

performance at low SNR. However, non-peaky schemes can fill the performance gain at 
moderate to high SNR when oversampling factor is high resulting in lower MMSE gain 

at moderate to high SNR for greater K.  The effect of PE is to raise MMSE peak along 
with a small shift towards -SNR axis, and peak shift is equal for all K  in Fig. 5.7.

The impact of normalized fading rate and pilot enhancement on MMSE performance
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Figure 5.4: Impact of SNR and / d  on Qu with and without pilot enhancement (PE) for 
uniform Doppler spectrum: M. =  100 and Tp = 200 . Observe that PE significantly 
improves MMSE gain at very low SNR. However, there is almost no gain in MMSE 
performance for SNR >  —20 dB.

in a scattering environment characterized by uniform Doppler spectrum has been plotted 
in Fig. 5.8 assuming M  = 10, Tp =  40 and SNR= { -4 0 ,-1 5 ,0 }  dB. It may be 
observed that the behavior of MMSE gain as a function of / D is strongly dependent on 
SNR. At SNR= —40 dB, MMSE gain is a decreasing function of / d  implying that the 
optimal / d  ~  0 and pilots sent more often than the Nyquist rate are desirable. The 
behavior does not seem to have changed with PE. The MMSE gain at SNR= —15 dB 
is maximum around / D «  0.0013 which shifts to / D ~  0.004 when pilot symbols are 
enhanced with power savings. The MMSE gain is an increasing function of / D for 
SNR= OdB (and, in fact, for all SNR > 0) which implies that pilots which are being sent 
more often than the Nyquist rate are infeasible. The gain function is almost unchanged 

after PE suggesting that power savings due to unused degrees of freedom in the peaky 
signaling should be invested elsewhere for operating SNR greater than about 0 dB. This 
behavior of MMSE gain can be explained in view of the fact that we have assumed 
low pass filtering of noisy pilot symbols such that the channel spectrum is unaltered
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M=25

^  - 0.02

-0.04

0.0005 -10
-20
Pilot Symbol SNR (dB)

Figure 5.5: The plot of QL — Qu as a function of SNR and / D where A4 = {2, 25, 50} 
and Tp =  200. It can be noticed that Qc and Qu are approximately equal. However, to 
be more precise, Clarke’s spectrum offers higher MMSE gain at very low SNR.

which implies that the filtering (and downsampling) operation does not alter power of 
the channel process. However, the noise power is altered in inverse proportion to / D 
(Fig. 5.3). In other words, a change in / D does not change the (useful) signal power 
but changes the noise power thus changing pp. Therefore, a change in / D is equivalent 
to changing pp and the impact of change in pp can be observed in Fig. 5.4 for uniform 
Doppler spectrum. The pilot insertion period (Tp) is an important design parameter in 
the design of systems based on pilot-aided channel estimation. It is, therefore, of some 
interest to look at the behavior of MMSE gain function, Q, against a change in Tp. Fig. 
5.9 shows the behavior of Q as a function of Tp for uniform and Clarke’s Doppler spectra 
assuming A4 = 2.\i  can be observed that the behavior of Q against Tp depends on pp. At 

pp = —20 dB, optimal Tp is the smallest possible value, i.e., the Nyquist period, whereas 
for pp = —10 dB the optimal insertion period is 14. The figure suggests that the optimal 
value of Tp for pp > 0 dB seems to be 100 which implies that sending pilot symbols 

less often would be optimal.
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Figure 5.6: MMSE gain for different A4 in low SNR regime with / d  =  0.005 and K  =  1 
for uniform and Clarke’s spectra.

5.4 Optimal Resource Allocation: Mathematical Prob-
lem Formulation

5.4.1 Expressions for Pilot and Data Symbol Powers

Consider the transmitted frame format as shown in Fig. 5.1 and assume that the channel 

Doppler spectrum is uniform (Eq. (5.16)). For the sake of simplicity in the subsequent 

analysis, we would confine our attention to PE and DE schemes in this section. We con-

sider a block of Tp symbols and make the assumption that the total power is constrained 

to be equal to Tv£s . Let 7  be the fraction of bandwidth allocated to pilot symbols plus 

A4 — 1 zeros so that

and let /1 be the fraction of power of Tp — A4 +  1 symbols in the block allocated to the 

pilot symbol for channel estimation. The average pilot symbol power for PE scheme,

A4
(5.24)
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-  K=1
K=1 (PE)

-  K=5
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Pilot Symbol SNR (dB)------- >

Figure 5.7: Impact of oversampling factor K  on MMSE gain for uniform Doppler spec-
trum with and without PE. Notice that increasing K  shifts the MMSE peak towards 
lower SNR implying that using larger K , better MMSE performance can be achieved at 
lower SNR. Also observe that PE raises the peak gain by the same amount for all K.

£pE , is then given as

fi(Tp — A4 +  l)Sa +  {A4 — \ ) £ s , 

f  M f i +  ( M -  1)7(1 -  p ) \
V M
uPE T £P e  -1 P'-'s

where îPE is given as

P E_ f  A4^i-\-[AA 1)7(1

e _ V M  )

(5.25)

(5.26)

(5.27)

is the so-called effective fi for PE scheme that represents the fraction of total available 
power Tp£s allocated to pilot symbols. The data symbol power, £ PE , would then be 
given by

r P E  _  1 L1 n c

where G =  A4 — (AA — 1)7.
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Figure 5.8: Impact of normalized fading rate, / d  on MMSE gain {Q) with and without 
PE for M  =  10 when pp= {—40, —15, 0} dB. The Doppler spectrum is assumed to be 
uniform.

- 1 0 d B- 2 0 d B

10dB

Figure 5.9: Impact of varying pilot insertion period Tp on MMSE gain with for different 
pp when / D =  0.005 and M  = 2 both for uniform and Clarke’s spectra.
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Similarly, the average pilot symbol power for DE scheme, £ EE , is given as

C  =  KT„ - M  + l)£,,

=  1 ) 7 ) £ s ,
7

-  ,,DE x  £r e  ± p^s t

(5.28)

where

^  ^  ( 1 -
(5.29)

is the effective /i for DE scheme. The data symbol power, £ EE , would then be

c D E  _  (1  ~  ß)(Tp -  M  +  1) +  (M -  1) 

d Tp — M

V M(  1 - 7 )  J  s (5.30)

With no loss of generality, we would suppress the time index in the sequel. The 
channel gain, h is normally modeled as the sum of the estimate, h, and the error in 
estimate, h [210] as

h =  h +  h, (5.31)

so that the received data symbol (Eq. (5.1)) would be given as

w ̂ r  N
r  =  \J~£S sh +  \/~£a she +  2,

=  y/Ss sh 4- re, (5.32)

where w is assumed to be the zero-mean AWGN [88,210]. The effective received SNR 

for the scheme8 x, pxe is given by

PX
e

£ d  (1 a U,e) 

£ Xd a U,e +  N 0 ’
(5.33)

o\jf is the MMSE given in (5.18). Using (5.18), (5.25)-(5.30) and (5.33), we can write 
after some straightforward manipulation

pXe = C p , (5.34)

8The superscript or subscript x  may be appropriately modified to indicate a particular scheme
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where we have defined p =  Es / N 0 as average symbol SNR and

- n
; xz'

where we have the following for PE and DE, respectively

(5.35)

Ype  — D E M p  ,

^d e  — F G A i p p ,

KNP = (l-MNV nV,

where the constants D =  Ad/i+7 (l —p ) (M  — 1), E  =  .M (l — /x)—7(1—p)(M. — 1), F  =  
Ad(l — /i) +  r)p (M  — 1). It can be verihed that when no zeros are transmitted, all 
are identical implying that the proposed schemes collapse to NP scheme.

5.4.2 Optimality Criterion

Our purpose is to determine the optimal allocation of resources — bandwidth and power 
— to pilot and data symbols. Before we can proceed we have to fix the criterion for 
optimality. There can be different criteria for the allocation of resources to pilot and data 
symbols. An allocation which is optimal against one criterion may not necessarily be 
optimal against other criteria.

We choose to follow the approach of [88,210] to obtain optimal resource allocation 
between pilot and data symbols and consider the Rayleigh capacity lower bound (Eq. 
(5.37)) (described below) so as to make it possible to compare the results of the proposed 
peaky signaling scheme with those of NP schemes. Therefore, an allocation of resources 
between pilot and data symbols shall be optimal if it maximizes the Rayleigh Capacity 
lower bound for Gaussian signaling. There are two possibilities to be considered: Firstly 
£p and Ed can be allowed to be unequal, and secondly, Ep and Ed can be constrained to 
be equal.

Rayleigh Fading Capacity Lower Bound for Gaussian Signaling

The capacity of time-selective Rayleigh fading channel is still an open problem. How-
ever, it is possible to derive a useful lower bound on the capacity by assuming Gaussian 
signaling [88,210]. In order to optimize the resource allocation to pilot and data symbols 
for the proposed PACE scheme and for subsequent comparison with the NP scheme, we 
follow the approach of [88,210] and consider the following Gaussian signaling Rayleigh
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capacity lower bound 188,129]

c  > C l  4  ^ ^ C , u yleigh(C* p ), (5.36)

=  (1 -  7)C Rayieigh(CI P ), (5.37)

where CRayieigh(?/) is the ergodic capacity per symbol of the Rayleigh fading with perfect 
CSI and average received SNR, y, and is given as [37,80,88]

C ttayleigh =  Ec {log(l +  yC)}, (5.38)

where C — \c\2 is an exponentially distributed random variable with mean 1. Equation 

(5.37) implies that the capacity of a system with PACE is equivalent to that of a system 
with perfect CSI but with a loss in bandwidth and power.

5.5 Optimal Resource Allocation: Unequal Pilot and 
Data Symbol Powers

We follow the approach of [88,1371 and determine the optimal 7 by first examining the 
first derivative of the capacity lower bound, Cfb, with respect to 7

3CX d
=  -^ R a y le ig h ( C  P ) +  (1  ~  7 ) ^ ^R ayleigh (C *  P )>

-  Ec | -  log(l +  Cx pC) +  t j 1 - 7 ) ( ^  +  ^ ) | ,  (5.39)

where, for PE

^1PE — 

( ‘2PE =

- M ( M  -  1)(1 -  n)Dp  +  M ( M  -  1)(1 -  ji)Ep
Ype

( —2/ d  + M ( 1 - 7 ) ) M ( M -  1)(1 -  p)p -  M 2(2fD +  D p )
X p k

(5.40)

and for DE

1̂DE —
G M ( M  -  l ) y2p -  M ( M  -  1 )pFp  

Yd e
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2 f p M ( M  -  1 )pp -  M 2{ M  -  1)(1 -  7 )np -  M 2(2fD +  pGp  )

^ D E

where

* p e  -  2f p E M p  + M 2( 1 -  7 )(2 /d  +  D p ), 

X de  — ^fr>FMp +  M 2(l — 7 )(2 /d  + pGp ),

Notice that in (5.39), it is the presence of the factor (1 — 7 )(^1x +  12x) < 1 (with 

M  = 1) in [88] which made it possible to analytically show that the derivative of Cfbv 
with respect to 7 NP was always nonpositive for p >  0, / D >  0 and 0 <  ^NP <  1. It 

was also shown that the capacity derivative was a decreasing function of 7 NP. Hence, 

irrespective of /iNP, the optimal 7 NP was equal to the minimum possible as required by 

the Nyquist criterion, i.e., 2 / D. This fact allowed the authors in [88] to optimize p NP 
independently of 7 NP. For the proposed scheme, in general, the factor (1 — +

£2x) it 1. However, there are certain scenarios depending on M ,  operating SNR and / D 

where (1 — 7 )(^iX +  £2x) < 1 for the proposed signaling and, therefore, ^ opt = 2Mfp>, 
i.e., the optimal pilot insertion rate equals Nyquist rate which is always the case when 

non-peaky signaling is employed. The above discussion implies that the optimal pilot 

insertion frequency may not always be equal to Nyquist rate. We therefore have two 

distinct possibilities, i.e., the optimal pilot insertion frequency is either equal to or greater 

than the minimum Nyquist rate.

5.5.1 Case 1: Optimal Pilot Insertion Rate Equals Nyquist Rate

For sufficiently large M (p  , / d ) and p (M , f p ), and sufficiently large f p ( M , p  ) the 

factor (1 — 7)(^i£ +  i 2x) < 1 for all 7 and p  in (5.39) implying that the optimal pilot 

insertion frequency is equal to the Nyquist rate. In such a scenario, we can write

< 0,

where the second inequality is a result of the fact that

l og ( l + t / )  >  — -

for all nonnegative y. This implies that the optimal 7 reduces to the minimum possible, 

i.e., 2 M f p  for all p,  and the optimal p  can be found independently of optimal 7  as 

in [88, 137]. It is of some interest to find the optimal p  in such scenarios where the
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optimal 7 =  2Mfr> is for all p.

Notice that the optimal p  must maximize ( x (Eq. (5.37)). We can rewrite (5.35) as

cx = 1 Yx
Q x  p  d- /x

(5.41)

where

Q pe  =  M \  1 -  7) -  2 /d G -  M ( M  -  1)7(1 -  7), 
2 /d -M (A4(l — 7) +  Gp ) +  J pe

£pE —

Q d E =  Q PE: 
J d e

Qp e P

£d e  =
P Q d e  ’

(5.42)

(5.43)

where J PE =  M \ M  -  1)7(1 -  7 )p and J DE =  2M 2f o P .

Notice that ( x must be nonnegative which requires that / D must be less than9 1 /8  in 
(5.41) and allowed maximum (see footnote 3) A4 is a decreasing function of / D so that 
M  must not be higher than 2 when / D < 1/8. With this constraint on / D, is positive 
and pxpt is given by

Plrt = £(£*)> (5.44)

where the function /C(fx) is respectively given for PE and DE cases as

£ ( £ p e ) — ~ £ p e  +  \J  CPE +  Q ( / p e ), (5.45)

£ ( £ d e ) — ~ £ d e  +  \J / d e  +  0 ( & e ), (5.46)

where the function Q (fx) has been defined in the Appendix D.4. It is easy to verify that 

when M  = 1, pxpt collapse to p^pt = /C(£NP) where

£ ( £ n p ) =  — £n p +  \J/ n p +  Q ( / n p ). (5.47)

Using (5.27) and (5.29) the effective pxpt is given respectively for PE and DE schemes

9In [88], the fading rate / d  was assumed to be less than 1/4. Our assumption of / d  <  1/8 still covers 
most channels that may be of practical interest.
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Figure 5.10: Effective optimal p and ( for PE and DE assuming 7opt =  2M fr>. The 
corresponding optimal p and £ for non-peaky signaling are also shown.

as

+ (M  -  1)(1 -  ^ ) 2 / d , (5.48)

(1 -  (M  -  1)2/d) , (5.49)

and the effective Qpt is obtained by substituting pxopt in (5.41). The following statements 
can be verified for p > 0, / D < 1/8, M  < M max(fr>):

1. For a fixed A4, £x is positive, an increasing function of / d  and a decreasing func-
tion of p . This implies that pxpt is an increasing function of / D and a decreasing 
function of p . Moreover, increases with increasing p and decreases with in-
creasing / d - In other words, for slower fading and high p, lesser fraction of power 
needs to be allocated to pilot symbols and vice versa. This implies that the use of 
pilots to estimate the channel becomes more efficient.

2. For a fixed p and / d , is an increasing function of A4 whereas p^pt is a de-
creasing function of A4.
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3. In the low SNR regime, the optimal fffpt and fffpte are given as

PE_ 1 — 2 (M  — 1)2/ d

™ 0 ^ opt 2 (1 — (M — 1)2/ d) ’

\ ™ ß o p t , e  =  2 ’

(5.50)

(5.51)

(5.52)

(5.53)

which are true for all A4 < M max(fr>) and / d  < 1/8. This implies that effectively 
it is optimal to use half of the available power for pilot symbols in the limit of zero 
SNR. This result is the same as in the non-peaky case [88].

4. For a fixed A4, Qpi is an increasing function of £x.

5. In the Appendix D.5 we show that ti*pt e > 2 /d  which implies that the optimal 
power allocated to pilot symbols is always greater than the average symbol power. 
This is the same result as obtained for non-peaky signaling [88]

Fig. 5.10 shows the effective fiopt and £opt for PE, DE and NP cases. Notice that, 
at high SNR, the PE scheme optimally uses more power than DE scheme but its corre-
sponding £ is less than that for DE10 which implies that priority should be given to DE 
scheme if the operating SNR is going to be greater than 0 dB. However, at low SNR 
both PE and DE have almost identical effective /iopt and corresponding £opt. It may be 
observed that, like NP scheme, the effective optimal f f  approaches 1/2 which verifies 
the low SNR asymptotic result for optimal /i (equations (5.51) and (5.53)). It can also 
be noticed that DE scheme optimally requires as much power as NP scheme, but results 
in higher corresponding £. This suggests that it is better to invest power savings in data 
symbols than in the pilot symbols at low SNR.

Evaluation of Gaussian Signaling Capacity Lower Bound

Using absolutely optimal /i and 7 at each SNR, the Gaussian signaling capacity lower 
bounds are plotted in Fig. 5.11 for PE and DE schemes along with perfect CSI Rayleigh 
capacity assuming. We assume that A4 = 20 and / D =  0.005. The channel oversam-
pling factor K  is assumed to be 1 implying that the pilot symbols are inserted at the 
Nyquist rate. While different schemes behave almost identically at low SNR, it can be

luThough results are given for a particular M  and / d , the authors have verified that this is true in 
general.
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Figure 5.11: A comparison of Gaussian signaling capacity lower bound for the proposed 
schemes and NP scheme for A4 = 20 and / d  =  0.005. The perfect CSI capacity of 
Rayleigh fading channels is also shown as a benchmark.

observed that NP scheme performs better than the proposed schemes for moderate to 
high SNR. Moreover, the gap is widening with an increase in SNR. However, this be-
havior at moderate to high SNR is not true in general. Figures 5.12 and 5.13, where 
C °E — C £p has been plotted respectively for different A4 and / D, verify this assertion 
as we can see that the capacity lower bound with DE scheme can be higher than NP 
scheme at SNR as high as 25 dB. While the gains offered by peaky signaling may be 
insignificant at high SNR, the authors have verified that for very slow fading channels, 
it may always be advantageous to have some level of “peakiness” in the signaling for 
any operating SNR. This can be explained if we consider (5.36) for very slow fading 
scenario. When normalized fading rate is very low, corresponding minimum Nyquist 

rate is also very low and, equivalently, Tp is very large, e.g., for / D =  1 x 10~7, Nyquist 
period, Tn  = Tp = 5 x 106. For such large Tp

Tp -  A4 
Tj - p

r-s»/
1 , (5.54)

where the accuracy of the approximation would depend on A4. On the other side, the 
peakiness results in better MMSE estimates of channel gains by enhancing pilot SNR 
by factor A4 for uniform Doppler spectrum (Eq. (5.18)). Therefore, just using A4 = 2 
will double the pilot SNR which, in turn, would result in better (  than NP scheme. This
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Figure 5.12: The plot of C^E — Cftjp for different AT

discussion implies that an overall “ peakiness”  gain is achievable even at high SNR < oo.

In contrast to high SNR regime, the proposed scheme offers significant rate gain 
in the low SNR regime as shown in Fig. 5.14 for / D =  0.01 and A4 =  {6,A4inax}. 
It can be observed that PE and DE schemes have almost identical lower bounds for 

SNR < 0 dB especially at low SNR and DE is better than NP scheme for all SNR < 0 dB 

when A4 =  6 which is, however, not true when A4 =  A4max =  48. The increased 

peakiness has, on one hand, improved lower bound at low SNR and, on the other hand, 

has deteriorated performance of the proposed scheme as compared to NP scheme for 

moderately low operating SNR. Though not shown, the simulation results suggest that, 

for / D approaching zero, the proposed scheme seems to achieve Rayleigh fading capacity 

in the lim it of zero SNR. However, with that level of peakiness, the rates achievable 

with the non-peaky signaling can be significantly higher than the proposed scheme for 

SNR > 0. The validity of this argument can be observed in Fig. 5.14 where more 

peakiness resulted in the better performance of proposed scheme at lower SNR at the 

cost of deteriorated performance at SNR> —13 dB. We argue that the proposed schemes 

achieve Rayleigh fading perfect CSI capacity when the peakiness tends to infinity which 

is possible only when / D tends to zero.

We make use of the following result to examine the limiting behavior of Cfb

y, 2/ < <  l ;
log(l +  y) -  Z , y »  1

^Rayleigh (?/) (5.55)
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Figure 5.13: The plot of C%E — C ^p for different / D

where Z  «  0.577 is the Eider’s constant. 
For sufficiently low SNR, we have

PE 1  
» opt, L  ~  2  \  Q

nc 1 / M

^opt,L ~  2  V G

where H = G — (Ad — 1)7. The corresponding optimal are1

Ad

_ /-DE 
S(opt,L '

Using (5.58) and (5.59) in (5.55), we get the following result

Im (CJ/CD ® M ,

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

where C £p is the capacity lower bound for non-peaky signaling. Equation (5.60) implies 
that PE and DE schemes offer, to good approximation, identical gains in the low SNR 

regime as compared to non-peaky transmission scheme and, therefore, it does not really

"We additionally assume that 4 ( M  — 1)/d  -C 1 which, in fact, allows higher peakiness for low / d  
and vice versa. This assumption also implies that H  «  G.
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Figure 5.14: A comparison of Gaussian signaling capacity lower bounds at low SNR.

matter if the power savings are utilized to enhance the pilot symbol SNR or the data 
symbol SNR. Thus, in the low SNR regime, the proposed scheme offers M  times the 
transmission rate achievable with the non-peaky Gaussian signaling of the same total 
available power. In order to emphasize rate gain in the low SNR regime offered by 
the proposed schemes over conventional non-peaky signaling scheme, we define the 
percentage rate gain, 1Zg, as:

TZg lim
p  —»0

r i x  /^<NP 
U lb ~  °/6 

C£tp x 100,

100(A4 -  1), (5.61)

where we have made use of (5.60). Fig. 5.15 shows the result of a Monte Carlo simula-
tion of 7Zg which, as we can see, exactly matches with the analytical result (Eq. (5.61)).

For sufficiently high SNR, the optimal f i  for PE scheme is

ßopt,H =  lim £ (£ pe ) (5.62)
p —>oo

{  — \ / G R p e  +  y/ R p e {G R pe  +  H Q p e ) + (G — A4)QpE 
\  R p e \ / G

(5.63)
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Figure 5.15: The impact of M  and SNR on the percentage rate gain 1Zg for NE, PE and 
DE cases. Note that absolutely optimal 7 and corresponding fi have been considered.

where we have defined

R p e  — ATJ(1 — 7) — Q p e

and for DE, the optimal n in the high SNR regime is given as

ßopt.H =  lim £ (£ d e ),
p —>00

-VG ZK PJd + 7 2 M 2/ d (2GA42/ d + X Q d e) 
Qd eVG

The corresponding values of ( x are

a D E
^>opt,H

/ _________ ^PE_________

P \  {p lp t,H Q P E  +  ^ P e )

( ________^DE_____
p V DE +  27W2/ d)

(5.64)

(5.65)

(5.66)

so that we have the following result for Rayleigh capacity lower bounds in the high SNR 

regime (Eq. (5.55))

c*„ »  (1 -  2 M f v ) (log(l +  p -  Z ) . (5.67)
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Figure 5.16: C[b for PE and DE cases. Observe that, in general, the optimal 7 is a vector 
where each element corresponds to a particular \i.

5.5.2 Case 2: Optimal Pilot Insertion Frequency is Greater than 
Nyquist Rate

The optimality of a particular 7 in the previous section allowed us to independently 
find optimal by maximizing the Rayleigh fading capacity lower bound. We, in this 
section, consider the possible scenario when the optimal pilot insertion frequency is 
not equal to the minimum Nyquist rate. In view of the complexity of the expressions 
involved when (1 — +  12x) ^ 1 in (5.39), arriving at a general analytical result
regarding optimal resource allocation seems quite difficult. We therefore have to resort 
to numerical methods to find optimal 7 and fi by investigating the behavior of C[b against 
7 and /i.

Fig. 5.16 shows the result of a simple Monte carlo simulation of (5.39) for PE and 

DE schemes. By looking at the figure, we can, at least, conclude that C'lb is not, in gen-
eral, nonpositive and, therefore, the optimal 7 is not, in general, equal to the minimum 
possible as was the case in the previous subsection and [88].

It may be observed in Fig 5.16 that the optimal 7 (the value of 7 where the derivative 
of Rayleigh capacity lower bound is zero), in general, is a vector instead of being just a 

scalar as in [88,137] and the previous section. Each element of the optimal 7 vector cor-
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responds to a particular optimal p  (Fig. 5.17), i.e., there is a one-to-one correspondence 
between optimal 7 and p. We shall use bold symbols 7 opt and p opt to indicate optimal 
7 and corresponding optimal p  vectors. We shall use yopt and p opt to respectively in-
dicate a particular element of j opt and corresponding element of f.iopt. The one-to-one 

correspondence between 7  and p  implies that we can either fix some value of 7 and 
then independently optimize p as was the case in [88], or we can fix p  first and deter-
mine optimal 7. However, both the choices may be suboptimal. In order to determine 

absolutely optimal yovt and p opt, we have to jointly optimize p  and 7. The jointly opti-
mized (7 — p) ( pair can be found by searching over {7, p ) opt. The jointly optimized 
(7 — /x) pairs have been plotted in Fig. 5.17 whereas Fig. 5.18 shows the corresponding 
Rayleigh fading capacity lower bounds for PE, DE and NE cases. It can be observed that 
the support of the maximum of Cfb lies on the curved portion of {7, p ) opt in Fig. 5.17 
an important implication of which is that the proposed transmission/channel estimation 
scheme offers a trade-off between the bandwidth and power resources to be allocated to 
the pilot symbols, i.e., we can reduce 7 at the cost of increased p (and vice versa) without 
compromising optimal performance. This trade-off, however, is not possible in [88] and 
related work where there is a unique optimal 7 and corresponding optimal p for a fixed 
SNR and fading rate. This curved portion of {7 — p } opt plot can be termed as trade-
off curve. Fig. 5.15 shows the comparison between the proposed peaky and non-peaky 
signaling schemes in terms of percentage rate gain, 7Zg, offered by the proposed scheme 
with respect to non-peaky signaling.

When / D and p are fixed, {7, p } opt depends on A4. Fig 5.19 shows the impact of 
varying A4 on {7, p } opt at very low SNR of —60 dB. Notice that with an increase in 
A4, the trade-off choice reduces. It may also be observed that PE and DE schemes are 
images of each other across the line of symmetry p = 0.5 at very low SNR (and, we 
argue, at sufficiently high SNR) as shown in Fig. 5.20 where this symmetry breaks with 
increasing SNR. We can also observe that the trade-off region decreases as we increase 
SNR for PE case. However, in case of DE, the trade-off curve first increases and then 
starts to decrease. When the SNR is sufficiently large, (though not shown) the trade-

off regions for both schemes disappear and the f f pt = 2AAfv  which is the minimum 
required bandwidth (according to the Nyquist criterion) for the proposed scheme with 

A4 — 1 zeros.

The normalized fading rate is an important design parameter. Fig. 5.21 depicts the 

behavior of percentage 7Zg as a function of f D for different SNR based on Monte carlo 
simulations. We can observe that at very low SNR, the rate gain is independent of f D 
which is a verification of the result obtained in (5.61). However, with an increase in 
SNR, the rate gain is reduced as compared to rate gain at very low SNR. Moreover,
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Figure 5.17: Optimal 7  as a function of p for PE and DE cases.

the rate gain is higher for low SNR and higher fading rates. However, this result is 
applicable only for A4 = 20 which may not be optimum at low SNR. Fig. 5.22 shows 
the Monte Carlo simulation for the impact of / D on optimal A4. Notice that the figure 
suggests large optimal A4 at low fading rate. The result of simulation for the impact of 
varying A4 on 7Zg for different SNR is shown in Fig. 5.23 where fading rate is fixed. The 
optimal A4 maximizing Rayleigh capacity lower bound is ^  110 when SNR is —15 dB. 
For p > 0 dB, the optimal A4 is «  2 and increasing A4 beyond this value will be 
counterproductive resulting in lower achievable information rates than those achievable 
with non-peaky signaling.

5.6 Optimal Resource Allocation: Equal Pilot and Data 
symbol Power

In certain scenarios, a communication system may not have the option to allow different 
pilot and data symbol power. It is, therefore, of some interest to determine the optimal 
resource allocation between pilot and data symbols and corresponding Rayleigh capacity 
lower bound when there is the constraint that £* = £s . In this section, we consider pilot 
and data enhancement (PDE) scheme for which it is easy to show that equal pilot and
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Figure 5.18: The percentage rate gain 7Zg as a function of optimal 7 and p for PE and 
DE schemes.

data symbol power requires

LL=  q ' (5-68)

which collapses to p =  7 for non-peaky signaling. Using (5.68) and (5.35), we arrive at 

the following equation

A/I2
^ P D E  _  1 __________________________________________ W _____________________________________________  ( Z

 ̂ ~  2 /d (1 /7*) (G *M  +  {G*2/ p )) +  G *M  ’ ;

where G* =  M. — {M. — 1)7*. Notice a change in notation of 7 which has been done 

simply to distinguish cases of equal and unequal pilot and data symbol power.

The optimal 7* must maximize the following Rayleigh capacity lower bound

C PDE =  (1 -  7*) CRayleigh(CPDEp ), (5.70)

where the maximization has to be performed over 2A4fr> < 7* < 1. It does not seem 

possible to arrive at some simple analytical result for optimal 7* due to the complexity of 

the expressions involved. We, therefore, have to resort to numerical means to determine 

optimal 7* and the corresponding capacity lower bound as a function of p . Some simple 

and useful analytical results can be derived for high and low SNR as was done in the
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Figure 5.19: The impact of A4 on optimal 7 and /i for PE and DE cases. The observed 
‘symmetry’ across /i =  0.5 is a result of very low SNR.

previous section for the case of unequal pilot/data symbol power.

Low SNR Regime

At sufficiently low SNR, ( PDE in (5.69) can be approximated as

The 7* that just maximizes ( PDE may not be optimal, i.e., the same 7* may not 
maximize the Gaussian signaling Rayleigh capacity lower bound, CPDE. Therefore, in 
order to find out optimal 7 that maximizes CPDE in the low SNR regime, we make use 

of the approximation (5.55) and equate the first derivative of CPDE with respect to 7* to 
zero, i.e.,

(5.71)
2 / d  [M2 -  2 M ( M  -  1 ) 7 *  +  {(M  -  1 ) 7 * } ] '
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Figure 5.20: The impact of p on optimal 7 and p for PE and DE cases when M. =  2 and 
/ d  — 0.01. Observe that with an increase in p , the optimal 7 for PE and DE tends to 
the minimum possible 7, i.e., 2A4 / d  (for all p) that satisfies the Nyquist criterion. The 
authors have verified that the value of p at which 7opt =  2Mfr>  is different for PE and 
DE cases, and is always greater for DE case.

which gives

“f ä ^  = ^ T I  • (5'72)

which equals 1/2 for non-peaky signaling. Using (5.72), (5.71) and (5.55), we get

c l DE = Wup2’ ( 5 ' 7 3 )

which is the same result as obtained for PE and DE cases in unequal pilot/data symbol 

power scenario and the non-peaky case [88]. We argue that PE and DE schemes would 

also have behaved identical to PDE in the low SNR regime for equal pilot/data symbol 

power. This implies that the choice of peaky or non-peaky signaling and constrained 

or unconstrained pilot/data symbol power does not really matter in the low SNR regime 

as far as quadratic dependence of the channel capacity on SNR is concerned. However, 

with peaky signaling combined with filtering as proposed in this chapter, the achievable 

rates are M  times the rates achievable with non-peaky signaling in the low SNR regime.
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High SNR Regime

At sufficiently high SNR, we can approximate £PDE as

/-PDE _  _____________ ^ _____________

^  A4 {2/ d (1/ 7*)G* H- G*} ’
(5.74)

and the optimal 7* in the high SNR regime can easily be determined by using (f{DE in 
the following ratio ( M m-m2 fD < 7* < 1)

£fPDE

=  lim
1 — 7* log p +  log A4 — log {2/ D( l / 7*)G* +  G*} — Z

p-+00 |_1 -  2 (2 /d ) log p +  log 2 -  log 3(1 -  2 /d ) -  Z  
1 — 7*

1 — 2(2/ d) ’
(5.75)

where the first equality is based on (5.55). Notice that the last equality is decreasing 
in 7* implying that, at high SNR, the optimal 7* equals the minimum possible (which 
corresponds to A4 — 2), i.e.,

lim 7^  =  2(2/ D), (5.76)
p  —>00

so that the optimal M  = 2 and the optimal ( PDE would be given as

lim =  , n  29 f ' Tp-^oo  ̂ 3(1 -  2/ d )
1

>  2

for / D < 1/8 which implies that the loss in effective SNR is less than 3-dB in the high 
SNR regime. Thus,

(5.77)

(5.78)

O  > C , « .  (5-19)

which is analytical verification of our discussion about DE in Section 5.5.1 regarding 
high SNR performance of the PE and DE schemes where we argued that no matter what 
the operating SNR is, some level of peakiness in the signaling may be desirable. Note 
that, even by definition, PDE is more similar to DE than to PE and, we argue, (5.79) 
might be true for DE but not for PE.
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Figure 5.21: The Monte Carlo simulation of the impact of normalized fading rate on 
percentage rate gain lZg for different p when M  =  20 (PE case). Notice that the gain 
offered by the proposed scheme is independent o f / D at very low SNR which verifies the 
analytical result obtained in (5.61).

5.7 Summary and Contributions

For time-selective Rayleigh fading channels, a PACE scheme was proposed which makes 

use of the unused dof in a peaky signaling to improve the performance of channel es-

timation by introducing additional filtering followed by downsampling at the receiver. 

Assuming that the the output of the additional downsampler was input to the optimal 

Wiener filter, the proposed scheme resulted in M  (the number of unused degrees of 

freedom plus one) times SNR enhancement of the pilot symbols that resulted in signif-

icant MMSE improvement over non-peaky signaling. The performance was enhanced 

even more when the power savings made possible due to unused degrees of freedom in 

the peaky signaling were also utilized to enhance pilot-data symbol power. The gains 

offered by the proposed scheme were non-trivially translated into gains of real-world 

parameters like bandwidth, power and achievable information rates. It turned out that 

in the lim it of low SNR, peaky and non-peaky signaling schemes behave identically as 

far as quadratic behavior of channel capacity is concerned. However, the use of the pro-

posed schemes in the low SNR regime resulted in M  times information transmission
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Figure 5.22: The impact of A4 on percentage rate gain 7Zg for different / D when p = 
— 15 dB. We can observe that the gains offered by the proposed scheme depend on A4 
and are different for different fading rates.

rates achievable with the non-peaky scheme. In the high SNR regime, on the other hand, 
the use of peaky signaling with A4 > 2 does not always warrant performance improve-
ment as compared to the non-peaky signaling. The simulation results confirmed also by 
analytical results suggest that the proposed scheme with A4 = 2 performs marginally 
better than non-peaky signaling implying that it is almost always feasible to have peaky 
signaling with some optimized peakiness, i.e., A4.

Some specific contributions of this chapter are emphasized below:

1. A new PACE scheme is proposed which uses idle dof inherent in the use of the 
peaky signaling to significantly improve the performance, particularly, at low SNR. 
In fact, this scheme offers A4 times the achievable rates over Rayleigh fading 
channels in the low SNR regime as compared to non-peaky signaling.

2. The results suggest that the signal peakiness is always desirable from channel 
estimation point of view when the proposed PACE scheme is employed. However, 
better channel estimation may not translate into better overall performance of the 

communications systems.

3. The results of this chapter are, in fact, a generalization of the results previously re-
ported in literature regarding non-peaky signaling [88]. In other words, the results
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Figure 5.23: The impact of M  on percentage rate gain K g for different p when / D =  
0 . 001.

of the non-peaky signaling based PACE scheme are a special case of the results of 
this chapter.

4. The proposed scheme offers a trade-off between bandwidth and power allocation 
to pilot symbols without disturbing its optimal performance. This is in contrast to 
non-peaky case where there is a unique allocation of resources to pilot symbols at 
a particular SNR and fading rate.



Chapter 6

A Framework to Calculate 
Space-Frequency Correlation in 
MultiCarrier Systems

6.1 Introduction

One of the most versatile ways to mitigate channel fading is through diversity which 
relies on redundancy in the communication system [2231. There are three fundamental 
types of diversity, i.e., time, frequency and space, so that the channel fading can be mit-
igated by providing more than one independent copies of the transmitted signal to the 
intended receiver either in time and/or frequency and/or space. In this chapter, we con-
sider a SIMO system with multicarrier modulation and derive a space-frequency cross 
correlation (SFCC) function which forms the basis for the analysis of interplay between 
space and frequency diversity. The results can be extended to MIMO system as discussed 
later. The multipath channel is assumed to be Rayleigh fading with time-invariant statis-
tics characterized by a general joint angle-delay power distribution (/3, t ) (ß  is the 
AOA and r  denotes the delay spread) at the receiver. The motivation behind our work 
presented in this chapter is that the technical standards for most emerging wireless com-
munications systems [33,34,224] specify the use of multiple antennas at the transmit-
ter and the receiver utilizing multicarrier modulation to reduce intersymbol interference 
(ISI) resulting from very high data rate communications.

The MIMO digital communication that utilizes multiple antennas at the transmitter 
and receiver over a wireless link offers significant improvement in communications sys-
tem performance without requiring extra spectrum or transmit power. It has emerged as 
one of the most significant technical breakthroughs in modern communications prompt-
ing progress in areas as diverse as information theory and coding, channel modeling,

179
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signal processing, antenna design, cellular design and radar [225]. The future communi-
cations standards like, for example, mobileWiMax,WiBro (wireless broadband), Long- 
Term-Evolution (LTE) [33,34,224] and longer range extensions of WiMedia [45,226] 
based on ultra wideband (UWB) technology which promise very high data rates are 
based on MIMO technology. The first generation WiBro is in fact mobile WiMax in 
SISO mode. The second generation WiBro is expected to be integrated with the MIMO 
technology [224].

The coherence bandwidth of a channel is a frequency domain description of the mul-
tipath channel and is inversely proportional the delay spread of the channel [227]. The 
coherence bandwidth usually ranges from several kHz to several MHz depending on the 
environment [228]. In the Chapters 2, 3 and 4, we assumed a narrowband (flat) fading 

channel which implies that the bandwidth of the transmitted signal must be less than 
the channel coherence bandwidth. Consequently, no channel equalizer at the receiver 
was required due to the absence of 1ST In emerging wireless communications systems 
where the data rate is above several MHz, the transmitted signal experiences frequency 
selective fading because of signal bandwidth exceeding channel coherence bandwidth 
necessitating the use of channel equalizers at the receiver to mitigate the effects of ISI 
which is in fact proportional to the data rate. A large number of taps in the equalizer 
may be required if good performance is desired in high data rate system thus adding to 
the complexity of the equalizer [229] proportional to the number of taps in the equalizer. 
Moreover, in high mobility environments it is difficult to maintain the accuracy of tap 
weights when the umber of taps is large. That is why most emerging technologies use 
multicarrier modulation in which a stream of data at higher rate is first subdivided into 
many substreams of lower data rate which are then transmitted over parallel subchannels 
where parallel subchannels are created using multiple carriers. The low data rate of indi-
vidual substreams results in significantly reduced or eliminated 1ST If the carriers in the 
subchannels are orthogonal, the multicarrier modulation is called OFDM. Several state- 
of-the-art (cable and wireless) communications systems are OFDM based and it contin-
ues to be the modulation of choice for the future communication systems [230- 233].

As mentioned above the use of MIMO technology promises many orders of mag-
nitude performance enhancement for the communications system at no extra cost of 
spectrum and OFDM is a logical choice for very high data rate communications in view 
of its ability to eliminate ISI which limits the BER performance of the communications 

system and results in irreducible error floor. The technical standards for future commu-
nications systems like, for example, WiMax, WiBro, LTE and WiMedia promising very 
high data rates, therefore, specify MIMO-OFDM as the technology of choice. The anal-
ysis and design of MIMO-OFDM based systems require space-time cross correlation
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among the underlying subchannels and SFCC among different subcarriers. The authors 
formulated a space-time cross correlation function between two omnidirectional anten-
nas at the mobile receiver in a SIMO downlink channel with general scattering environ-
ment. The scattering was assumed to be rich enough to result in Rayleigh faded received 

signal envelope. This chapter is in fact concerned with the formulation of SFCC in a 
SIMO-OFDM system assuming that the underlying channel is time-invariant1, i.e., we 
seek to develop a function representing cross correlation between an OFDM subcarrier 

at one receive antenna and a subcarrier at the other receive antenna.

While space-time and SFCC actually reduce capacity of a MIMO-OFDM system 
as compared to uncorrelated MIMO with perfect CSI capacity, the correlations are all 
important when we do not have perfect CSI but do know the channel statistics2. More-
over, spatial and frequency correlations jointly offer a trade-off where spatial correlation 
(or, equivalently, spacing between antenna elements) and the frequency correlation can 
be sacrificed such that the received signal cross correlation remains fixed. The use of 
space diversity (or spatial correlation) to trade-off the requirement of spacing between 
two mobile-radio antennas was investigated in [234]. The effect of different parameters 
like the mean AOA, the beam width of the signal impinging on the antennae (angu-
lar spread), etc. on the cross-correlation between the signals received and the required 
spacing between the two antennas were first investigated in [235]. This work was gen-
eralized in [19] to wireless channels with delay spread, where the signals are received 
by two base-stations, separated in frequency as well as in space (space-frequency di-
versity). The space-frequency correlation model given in [19] assumes that APD at the 
receiver is uniform over a narrow range of angles. In addition, this model only considers 
very small angular spread values of the said APD to provide closed form expressions for 
space-frequency correlation. In [236], a closed-form expression for the space-frequency 
correlation is derived by taking in to account the power delay profile (or the angle-delay 
power distribution) of the channel and assuming the angular spread of the signals imping-
ing on the antenna array is small and the antennas are placed in an uniform linear array. 
This model has been employed in [237] to investigate the impact of antenna spacing and 
propagation parameters on the performance of space-frequency coded broadband OFDM 
systems. Authors in [238] derived a space-frequency correlation model in 3D scattering 
environments which can be applied to multi-band OFDM in ultrawideband communica-
tion systems. This model however assumes that the antennas in each aperture are placed

'To be more precise, the assumption of time-invariance here implies that the channel is stationary, i.e., 
it has time-invariant statistics. The channel itself can change over time. Under stationarity assumption, 
the SFCC is time-invariant and, therefore, the time parameter can be dropped.

2Recall that, throughout this thesis, our main assumption has been the absence of perfect CSI and 
knowledge of channel statistics at the mobile receiver.
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in an uniform linear array and it also assumes that the angle of arrival, angle of departure 
and the delay of the multipath components are independent of each other.

We, here in this chapter, employ the modal analysis approach introduced in [36] to 
derive a space-frequency correlation model at the receiver side in closed form appli-

cable in 2D and 3D scattering environments. In fact the derived model can be treated 
as a framework, which can be applied to calculate the space-frequency correlation in 
multicarrier communication systems in general multipath channel environments. The 
proposed framework is more general than previous frameworks [19,234-236,238] be-
cause

• it incorporates antenna locations instead of their spacing to capture the spatial 
information of the channel (i.e., the model is not specific to any particular antenna 
configuration)

• it captures the frequency selectivity of the multipath channel for arbitrary joint 
angle-delay power distribution which could either be experimentally validated or 
could be any distribution that may be theoretically convenient

• it is applicable in general 2D and 3D scattering environments

•  the angular spread in this model does not have to be either very small or very large 
to arrive at a closed form expression for SFCC function.

To demonstrate the strength of the proposed framework, we derive some special 
cases of the generalized space-time cross correlation function. Some detailed results are 
obtained for a receiver with two antennas symmetrically located across the origin. The 
scattering around the receiver is is not limited to uniform as in [19]. We also use the 
proposed framework for a SIMO-OFDM system to obtain the space-frequency corre-
lation between two antenna elements at the receiver for two analytically derived joint 

angle-delay power distributions found in the literature. In addition we discuss the pos-
sible extensions and applications of the proposed model to investigate the impacts of 
antenna spacing, antenna configuration and channel parameters on the performance of 
multi-antenna multi-carrier communication systems.

The chapter is organized in the following manner: In Section 6.2, a discrete-time 

space-frequency selective channel model applicable to an OFDM system is described 
and a continuous-time generalization of that model is considered to facilitate the sub-
sequent study. A general SFCC function is derived in Section 6.3 and is specialized to 
2D and 3D scattering environments. Some special cases of the generalized model are 
derived in Section 6.4. The numerical evaluation of correlation for a particular multi-
carrier SIMO-OFDM system is discussed in Section 6.5. Another special case of the
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generalized correlation function is obtained in Section 6.6 for a 2-Carrier SIMO system 
which, in fact, generalizes the previously reported results regarding SFCC 119]. Finally, 
the chapter summary and specific contributions are provided in Section 6.7.

6.2 Space-Frequency Selective Channel Model for Mul-
tiCarrier OFDM

We consider a stationary3 frequency-selective wireless fading channel in which data is 

transmitted from a single transmit antenna to n R receive antennas (i.e., a SIMO system) 
(Fig. 6.1). The standard way is to model the fading channel as a tapped-delay-line 
[227,229]. In this model, the complex channel impulse response between the transmit 
antenna and the pth receive antenna at time r  is written as

L

hp(r) =  aPW  exp H 2 t t / ct *) 5{t  -  re), (6.1)
t= l

where L is the number of non-zero taps (or the number of resolvable multipath com-
ponents between the transmitter and the receiver), r g is the delay of the £th multipath 
component with respect to LOS component (which does not actually exist in the channel 
under consideration but is taken as a reference as it corresponds to zero transmission de-
lay), a p{£) is the complex amplitude of the £th path between the transmit antenna and the 
pth receive antenna, f c is the carrier frequency and ö(-) is the Dirac delta function. We 
assume that the coefficients ap(£) are zero-mean circularly symmetric complex Gaussian 
random variables with variances E {\ap(£)\2} = Notice that the absence of l  =  0 in 
(6.1) implies that there is no line-of-sight (LOS) component in the received signal and, 
therefore, the taps are Rayleigh distributed.

We assume that the SIMO communications system uses OFDM multicarrier mod-
ulation with N s subcarriers. From (6.1), the frequency response at the nth subcarrier 
between the transmit antenna and the pth receive antenna is given by [239]

^ - N  N
Hp(n ) = exp ( ~ i2n(fc -  (n  +  0.5)A f ) n ) , n =  — • • • , - y  -  1,

t=l
( 6 .2)

where A /  =  l / T s is the subcarrier separation in the frequency domain and Ts is the 
OFDM symbol duration. Note that in this model only a finite number of multipath

3The assumption of a stationary channel makes the frequency selectivity of the channel to be inde-
pendent of time. We shall therefore freeze the time dimension throughout this chapter.
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Tra

Figure 6.1: A general scattering model for the frequency-selective SIMO system. 
^(/3, t ) is the random complex scattering gain for the waves arriving in direction (3 
with delay r  at the receiver aperture. x p is the location of the pth receive antenna rel-
ative to the receiver origin ‘O’ and p =  1, • • • , u r  and . t r  >  max ||ccp|| is the radius 
of the sphere which encloses the receiver antennas. Scatters are distributed outside of 
the sphere with radius t r s  > t r  and assumed they are in the farfield from the receiver 
antennas.

components are considered with each path having a discrete delay. A generalization that 
subsumes (6.2) is

The derivation of (6.2) is given in Appendix E. 1. Integration in (6.4) is over the unit 

sphere for a 3D scattering environment or the unit circle in the 2D case. Note that fading 
coefficient a p(r) given in (6.4) captures the statistical properties of the frequency selec-
tive channel via the random complex scattering gain r )  and physical configuration 
of the receiver antenna array, which is deterministic, via the location of the pth antenna 
x p. As a result, this framework can be applied to any receiver antenna configuration 
without constraining to a particular antenna configuration such as uniform linear array

Hp{n) = / a p(r) exp(-z27r(/c -  (n +  0.5) A / ) r ) d r , (6.3)
r

where the fading coefficient a p(r) is given by
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or uniform circular array, etc.. In equation (6.4), ß( ß ,  r) is the zero-mean random com-
plex scattering gain with respect to the array origin for the waves arriving in direction ß  
with delay r  , x p is the position of the pth receive antenna relative to the receiver origin 

‘O’ as shown in Fig. 6.1. Notice that the factor exp ( f c — (n +  0.5)A /)  x p. ß ^
is a deterministic angular-array constant due to the displacement of antenna p from the 
origin.

6.3 Space-Frequency Cross Correlation for MultiCar-
rier OFDM

We use (6.2) and (6.3) in the Appendix E.2 to derive SFCC between the nth subcarrier on 
the pth receive antenna located at position x p and the mth subcarrier on the qth receive 
antenna located at position x q is

$p,g(n ,m )

± E { H p(n)H*q(m)}

/  /  4/(/3, A /)  exp(—i2n(m
J  Q r  J  t

n ) A /r )  exp ( - i - ( u j nx p -  ujmx q).ß ) d ß d r ,

(6.5)

where uik — 27r ( /c — (k +  0.5)A /)  and

OF(/3, A /)  =  4^(/3, n, m) = J  4^(/3, t ) exp ( i2n(m — 1 )A / r)  dr, (6.6)

which represents angular-delay power spectrum. It may be mentioned here that the use 
of power spectra in channel modeling implicitly assume that the channel is WSS over 
basic space and frequency intervals of interest. The frequency interval of interest is the 
transmitted signal radio-frequency (RF) bandwidth and the spatial interval of interest is 
usually of the order of a wavelength called the local area [240]. The size of the local area 
is selected sufficiently small such that the channel parameters do not change due to large 
scale-fading (shadowing). If the power measurements are made by moving the receiver 

on the order of the wavelength, the obtained channel spectra are highly de-correlated 
resulting in improved average channel spectra over the local area [241].

As shown in Appendix E.2, the frequency cross correlation between the subcarriers 
of two antennas from a given direction is given by

x(/3,n, m) — / \I/(/3, r)  exp (—z27r(m — n) A / r )  dr.
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Therefore, m) in (6.5) can be rewritten as

$p,q{n, m) = J  x(ß, n, m) exp ^-i^(u )nx p - u jmx q).ß^j dß. (6.7)

Notice that we arrived at equation (6.7) assuming that the scattering is uncorrelated in 
the angle domain, i.e., the scattering from one direction is uncorrelated with scattering 
from another direction (Eq. (E.9)) and that the channel process is uncorrelated in the 
delay domain [5,242] (Eq. (E. 12)), which in turn implies that the complex scattering 
channel gain is wide sense stationary in the frequency domain [55], i.e.,

E { a (3 i ,T i ) a * ( 3 2,72)}
0, if T\ + r2 and ß x ^  ß 2‘
E ||a (/3 l5t i ) | 2 |  , otherwise.

We have already discussed in Chapter 2 that the assumption of uncorrelated scat-
tering (US) is widely used in channel modeling literature and is validated by practical 
measurements. One possible extension of the framework developed in this chapter is 
that takes into account the correlation among scatterers by following [113]. The sec-
ond assumption that the channel process is uncorrelated in the delay domain is a stan-
dard assumption used in the channel modeling literature and verified through measure-
ments [5,59,104,110,142].

Equation (6.7) gives the normalized cross covariance of the complex channel pro-
cesses at the two antennas located at x v and x q with respect to the origin. We are often 
more interested in the cross correlation of the envelopes of the complex channel pro-
cess at the two antennas in view of the fact that the envelope of the complex signal 
can be measured easily. The normalized cross covariance function (i.e., the correlation 
coefficient) of the channel envelopes at the two antennas is, to a good approximation, 
equal to the squared magnitude of the normalized covariance function of the complex 
channels [19]. Therefore, the envelope cross correlation m) is given as follows

$ pj f ( n , m ) =  /  x(3,™,ra)exp f  - i - ( u j nx p -  ujmx q).ß 
JnR \  c

(6 .8)

6.3.1 2D Scattering Environment

When the multipath is restricted to the azimuth plane only (2D scattering environment), 
having no field components arriving at significant elevations, the term exp i(ujnx p — cj, 
in (6.7) can be expanded using 2D Jacobi-Anger expansion of the plane wave (Chapter

Xq).ß/C
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2) as follows

exp ( - i - { u nx p - u mx q).ß j =  ^  iv Jv (~\\(jjnx p -  üjmx q\\] ew{ßp'q ß), (6.9) 
\  /  v = _OQ \  /

where Jv{-) is the integer order v Bessel function, uonx p — ujmx q = ßp̂q where we 
have defined

^ n , m  —  I \̂ n x p  ^ 7 7 7 , ^ 9 11 ? ( 6 . 10)

and ß  = 1, ß in the polar coordinates system. Substitution of (6.9) in (6.7) yields

00 ̂  /  / \ j p ,q  \
®p,q(n,rn)=  > y 7v(n, m)iv Jv f — j  exp {ivßp,q) , (6.11)

V  — — OC  ^  '

where

7^(71, m) =  / x(/5, exp {- ivß )  dß,
Jo

^(ßi  t ) exp {—i2n{m — n ) A / r )  exp {—ivß) drdß , (6.12)

are the scattering environment coefficients which characterize the 2D scattering environ-
ment surrounding the receiver antenna array and ^ ( ß , r )  is the joint azimuth angle-delay 
power distribution at the receiver aperture. Some examples for \D(/3,r) are: Elliptical 
and Circular scattering models in [5], Gaussian scatterer density model in [105] and 
inverted-parabolic spatial distribution model in [4].

6.3.2 3D Scattering Environment

We now generalize the space-frequency correlation function for a 3D scattering environ-
ment. The plane wave, exp ( —i{ujnx p — ujmx q) .ß / in (6.7) can be expanded using 
spherical harmonics as [89, page 32]
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where j#(r) = y /n/2r  Jn+1/2( )̂ are spherical Bessel functions, d and v are integers , 
x P,q — i^nXp — u mx q)/ A%qm and the spherical harmonics are defined as

Y *A b ) =  y oA 0 x ,V*) -  y '~ "4~  +  (CQS °x) exp (iv<Px) ,

where 0X and cpx are respectively the elevation and azimuth of the unit vector x  and 
Pß(-) are the associated Legendre functions of the first kind. Substitution of (6.13) in 
(6.7) gives

--) t
V —  — 1?

where

7^(n,m)ytf>1 ^nXp

A™m
(6.14)

■ p . 9

/

(n, 777.) =  4?r ^ 2  (
tf= 0  •

lv,v(ri ,m)= [  x ( ß , n , m ) Y l v{ß)dß, (6.15)
JnR

are the scattering environment coefficients which characterize the 3D scattering environ-
ment surrounding the receiver antenna array. Similar to the 2D case, the higher order 
spherical Bessel functions have small values for arguments near zero [243]. Therefore, 
only a few terms in the sum need to be evaluated in order to obtain a very good approxi-
mation for the space-frequency correlation of the channel.

6.3.3 Some Comments on Extension to MIMO-OFDM

It is important to mention here that the space-frequency correlation functions (equations 
(6.11) and (6.14)) can be extended from SIMO to MIMO following the approach in-
troduced in [244] which would make it possible to eventually apply these correlation 
functions for the performance evaluation of emerging wireless communications systems 

based on MIMO-OFDM in non-coherent or partially coherent communication. For a 
MIMO system the statistical properties of the underlying channel are governed by a 3D 
angular power delay profile \k(0, ß, r ) , where 6 is the angle-of-departure (AOD) at the 

transmitter aperture, ß  is AOA) at the receiver aperture and r  is the multipath delay. To 
the best knowledge of the authors, there does not exist a joint distribution to model the 
interdependency of the AOD, AOA and the multipath delay in the literature [245]. One 

possible option is to consider a Kronecker channel model and write the joint distribution 
4 /(0 ,ß :r) = ^'(0)^/ '(ß,T).  However, as shown in [30], Kronecker type channel has 

certain limitations and therefore is not a general model to use when there are multiple
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scattering clusters.

6.4 Special Cases of Space-Frequency Correlation for 
MultiCarrier OFDM

In order to demonstrate the generality of the SFCC 4>P)9 (n, ra) given in (6.7), we spe-
cialize ^ p q(n, m) to the following different cases.

1. If we assume 2D scattering and A/  =  0, i.e., ujn = = ujc (which corresponds
to a frequency non-selective channel), the space-frequency correlation in (6.7) re-
duces to the following spatial correlation

where 77 = 2ir/\c and 'l'(ß) is the angular power distribution of the received 
signal. Equation (6.16) represents the spatial correlation between two antennas 
in a general scattering environment as derived in [36]. The array geometry is 
arbitrary due to the actual locations of the antennas involved. Similarly, we can 
show that the space-frequency correlation in 3D collapses to the corresponding 
spatial correlation function derived in [36].

2. Equations (6.5) and (6.7) consider that the angle-delay power distribution \I>(/3, r) 
is a joint function of AOA and the multipath delay (or TOA). If the multipath 
delay is independent of the angle of arrival, which is the case considered in [238] 
for antennas placed in a uniform linear array, we can write ^(/3, t ) =  4/(/?)\I>(t ) 
or in the frequency domain as x{ß,n , m) = 'T(/3)4>A/(n, m) where the frequency 
cross correlation m) is given by

so that 4>P g(n, m) in (6.7), which is the SFCC in a SIMO-OFDM system in general 
rich scattering environment, simplifies to

(6.16)

(6.17)

(6.18)

3. Under the assumption of independent angle and time of arrival of waves in 2D scat-
tering, the scattering coefficients of joint angle-delay power distribution 7 „(n, m)
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in (6.12) become

7 v(n,m)  =  $ A /(n ,m )7 „(ß ), (6.19)

which implies that the scattering coefficients of joint angle-delay power distri-

bution are simply the product of frequency cross correlation and the scattering 

coefficients of the angular distribution 'l'(ß ) which are given as

7,060 =  [  * (ß )Y £ v(ß)dß. (6.20)
JnR

In simple words, equation (6.19) suggests that vth scattering coefficient of the joint 

angle-delay power distribution equals the frequency cross correlation between sub-

carriers at the two antennas weighted by the isth scattering coefficient of the APD. 

Using (6.19), we can rewrite the space-frequency channel cross correlation in 2D 

scattering as (Eq. (6.14))

Spatial Cross Correlation
Frequency Cross Correlation.

/ ------------ ---- s  /  A p 'q \
%,q( n , m ) =  <FA /(n ,m ) ^  lv{ß){n, m)iv Jv ( —^  J exp (ivßp,q)

(6.21)

In [36J, closed-form expressions for 7, ( / 3) are given for several well studied az-

imuth power distributions such as uniform limited, Gaussian, Laplacian, von- 

Mises, etc..

Similarly, when the scattering environment is 3D and the assumption of indepen-

dence of AOA and TOA is maintained, the scattering coefficients 7 n,m ) 

(equation (6.15)) can be decomposed into space and frequency dependent parts as

70,«/(ft n > m) =  4>a / ( n, m) I  ^ (ß )Y lu{ß)dß,
J Omega R

=  $ A /(n ,m ) 70,1/(/?)• (6.22)

Using (6.3.2) and (6.22), SFCC 4>P g(n, m) in 3D becomes separable in frequency 

and spatial cross correlation functions as follows

Frequency Cross Correlation

=  f { n , m )$p,q(n ,m )
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3D Spatial Cross Correlation

i v U
0=0

A p'qn,m ^  70,i/(n,m)y^
i> = — d

^ n ’Ep (6.23)

where

l v , v ( ß )  — /  #(/?) exp (-« //? ) d/3. 
J q r

(6.24)

4. For a SISO-OFDM system it is noted from (6.5) that the frequency correlation 
between subcarriers at the receiver from a particular angle is given by

4>(/3,n, m) = J  ^(/3, r )  exp (—i2n(m — n) A f  r )  d r (6.25)

and if we further assume that AOA and TOA of impingent waves are independent 
of each other, we get

4>(/3, n, m) =  ^(/3)4>A/(n , m) (6.26)

where <f>A/(n, m) is the Fourier transform of 'I'(t ) — the delay power spectrum or 
the power-delay profile. The normalized frequency correlation between ruth and 
nth subcarriers is then obtained by integrating <f>(/3, n, m)  over the whole azimuth, 
i.e.,

4>(n, m) = <f>A/(n,ra). (6.27)

As an example, when the angular power spectrum is uniform over azimuth and 
the multipath inter-arrival delay is exponentially distributed with delay spread T 
[19,239], the correlation between subcarriers at the receiver is given by

4>(n, m)
1

1 +  i2jc(m — n )A f  r
(6.28)

5. From (6.5), frequency correlation between m!th and n'th sub-carriers on the pth 
receive antenna is given by

$ Pip (n ',ra ,) =  f  (  \D(/3,r)exp ( -z27r(ra' -  n ' ) A f  
JnRJ t  \

(6.29)
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Uplink inverted-parabolic model

«= 0.9

n-th subcarrier on antenna-1 m-th subcarrier on antenna-2

Figure 6.2: Absolute value of the space-frequency correlation function (6.11) across 
subcarriers on two receive antennas placed d = 0.25A apart for the IP uplink model (Fig. 
3 in [4]).

6.5 Numerical Analysis of Space Frequency Correlation 
for MultiCarrier OFDM

We now demonstrate the strengths of the space-frequency correlation framework devel-
oped above by applying it on a SIMO-OFDM system with f c = 5.25GFIz, N s =  64 
sub-carriers and A f  = 250kHz. The joint angle-delay power distribution 4/(/3, r )  at the 
receiver aperture is modeled using two different distributions4: i) Elliptical scattering 
(ES) model derived in [5], ii) uplink and downlink inverted-parabolic (IP) spatial distri-
bution models derived in [4]. Figures 6.2, 6.3 and 6.4 depict the absolute value of the 
space-frequency correlation function (6.11)5 as a function of the subcarrier number for 
the IP uplink model (Fig. 3 in [4]), IP downlink model (Fig. 5 in [4]) and the ES model 

(Fig. 5 in [5]), respectively. We assume that two receive antennas are located on the x- 
axis symmetrically about the receiver origin and separated by a distance d = 0.25A. It is 
observed that for all scattering distributions high space-frequency correlation is observed 
at adjacent subcarriers (see Fig. 6.5 for the contour plots of |<f>li2(n, m) | for the IP uplink 

model shown in Fig. 6.2.) and space-frequency correlation decreases as the frequency

4Readers are referred to [5] and [4] for details of these distributions. The space-frequency correlation 
plots given in this paper use the parameter values used in [5] and [4].

^Corresponding scattering environment coefficients 7 ,,(n , m )  are calculated numerically.
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Downlink inverted-parabolic model

-10

n-th subcarrier on antenna-1
-30 -30

-20

m-th subcarrier on antenna-2

Figure 6.3: Absolute value of the space-frequency correlation function (6.11) across 
subcarriers on two receive antennas placed d = 0.25A apart for the IP downlink model 
(Fig. 5 in [4])

separation increases. With the IP uplink model, we observed higher space-frequency 
correlation compared to the other two models. This is due to the small angular spread at 
the receiver aperture for the IP uplink model. From all plots we observed that the abso-
lute value of the space-frequency correlation is non-symmetric about the same subcarrier 
on both antennas (/.<?., |<F12(m,m)|). However, when the multipath delay r  is indepen-
dent of the angle of arrival /3, i.e., ^ ( /3 ,r )  =  ^ ( /3 )^ (r ) , it can be shown using (6.11) 
and (6.19) that |<f>p>q(n, m)\ =  |<hPi(7(ra, n)\, which implies that in this case the absolute 
value of the space-frequency correlation is symmetric about the same subcarrier on both 

antennas.

6.6 Generalization of Space-Frequency Cross Correla-
tion for a 2-Carrier SIMO system

The space-frequency diversity trade-off in a SIMO uplink channel is explored in [19] 
assuming two signals at two different frequencies uji and u 2 transmitted by the mobile 
propagate by way of scattering and are received by a two-antenna base-station receiver 
where one antenna is tuned to receive the transmitted signal at c ji and the other at u 2. 
The carrier frequency is assumed to be ccc and uj\ and uj2 are separated by Acc assuming
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Elliptic model

-20 -10
-20

-3 0  -30
m-th subcarrier on antenna-2n-th subcarrier on antenna-1
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Figure 6.4: Absolute value of the space-frequency correlation function (6.11) across 
subcarriers on two receive antennas placed d =  0.25A apart for the elliptical scattering 
model (Fig. 5 in [5])

that the two frequencies are symmetrically located across l j c, i.e., u \ =  cvc +  A uj /2  
and u i =  ujc — A uj /2. The two antennas are assumed to be vertical dipole so that 

electrical field (in the vertical direction) is proportional to the signal input to the antenna. 

The two antennas are located symmetrically across the origin on \-axis separated by a 

distance d. The scatterers are assumed to be in the far-held which implies that the AOA 

at two antennas are approximately the same due to wave propagation distance being 

much larger than d. The AOA and TOA of waves impingent on the two antennas are 

independent of each other. The distribution of AOA for all waves is identical and uniform 

over a very narrow range of angles which implies that scattered power is uniformly 

distributed in that short range of angles. The 2D scattering is assumed to be rich with 

the phases of the impingent waves uniformly distributed over [—7r, i r] implying that the 

channel process is circularly symmetric complex Gaussian with independent imaginary 

and real parts of equal variance. Equivalently, the envelope of the received signal at each 

antenna is Rayleigh distributed.

In this section we seek to obtain a generalization of SFCC derived in [19] that as-

sumed uniform APD over a limited azimuth around the base-station receiver to any 

scattering environment characterized by uniform or non-uniform AOA of waves. We 

do not employ the assumption of very small angular spread to arrive at closed form 

space-frequency correlation. An immediate implication of the generalization of space-
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Figure 6.5: Contour plot of the space-frequency correlation function shown in Fig. 6.2 
for the uplink inverted-parabolic model.

frequency correlation function is that it is applicable to base-station as well as mobile 

reception characterized respectively by small and small to large angular spreads. The 
relaxation of the assumption of uniform AOA makes it possible to explore the impact of 

different APD on the space-frequency trade-off.

In [19], the assumption of independence of AOA and TOA of waves resulted in the 

following SFCC between the channel processes at two antennas

where (I>i j2(A /)  is the frequency cross correlation obtained by assuming that the dis-

tribution of multipath delays with respect to propagation delay of the LOS component 

('Tics) is exponential with delay spread T and is given by

The spatial cross correlation correlation <Fi )2(d) assuming equal probability of AOA of 

waves from a limited azimuth with mean AOA ß0 and deviation of A r across ß0 was 

given as

^ lt2(A /,d )  =  ^ li2( A / ) ^ 1,2(d), (6.30)

$ i ,2(A / )  =  exp (—z27t A / 7}os)
1

1 +  z27t A /T
(6.31)

(6.32)
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Since the frequency and spatial selectivity of the channel are independent as a result 
of independence between AOA and TOA of waves, a change in scattering distribution 
around the receiver changes the spatial selectivity of the channel only. Therefore, the 
generalization of space-frequency correlation derived in [19] requires us to consider the 

spatial correlation function only. For that purpose we recall the technique developed 
in Section 2.2 of Chapter 2 and represent the channel gain at antenna-1 tuned to the 
frequency u\  at time t as follows

h\(t) = exp (—iiJit) /  ^ (ß )  exp (—zcciCi), (6.33)
JnR

where the scattering has been assumed to be 2D and

Cl = •
xi  ■ ß

c
(6.34)

which takes into account the displacement of antenna-1 from the origin ‘O’. Using (6.33) 
and the assumption of US in the angle domain, the normalized cross correlation at time 
t between two antennas is given by

<d?)2 =  e  {h2(t)him,
=  / vF(/3) exp {—i{uj2x 2 — U\Xi ) )  dß,

JQr

= j  fy(ß) exp ^ i -^-dcosßj  dß, (6.35)

where we have arrived at the last equality using the geometry of the antenna array and the 
fact that uji = u c +  Aco/2 and uj2 — ujc — A uj/2. Equation (6.35) can be obtained from 

(6.21) by taking ujn = uji = ujc +  A l c/ 2 and =  uo2 =  a;c — Acc/2 which implies two 
subcarriers with frequencies symmetric about the carrier frequency. The superscript ‘p’ 
has been added to indicate that &i\2 al(d) is applicable in general scattering environments 

whereas ‘KaV stands for Kalkan (the author of [19]). Compare the spatial correlation 
derived in [19] (equation (6.32)) and the generalized correlation in (6.35). Now 'ff(ß) 
and exp ^z^d co s/^  are periodic functions of ß.  The Fourier series expansion of APD 
'l'(ß) is defined as the follwoing pair of equations (equations (2.13a) and (2.13b))
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where 7^ are the scattering coefficients and Jv(m) is the Bessel function of integer or-
der m. The plane wave exp (iy-dcosßj  is expanded using Jacobi-Anger expansion as 
follows (equation (2.14))

/  \  00
exp ( i — dcosß ) = iv J u { ^ K )  exp (ivß ) ,

'  c  V —  — OO

(6.37)

where K  is the antenna separation normalized by the carrier wavelength and fj, are the 
Fourier series coefficients of the Jacobi-Anger series expansion of the plane wave. As 

we discussed in Chapter 2, the multiplication of \P(/3) and exp ^z^d co sß j in (6.35) 
results in the convolution of their respective Fourier series coefficients (see footnote 5 
Chapter 2) so that (6.35) can be written as (equation (2.15))

sfcm = E
v = —oc

OO

(6.38)

where we used the relation «/_„() =  (—l ) v Jv(ß. The values of 7„ have been tabulated 
in Table-2.1 for some common APDs. Using (6.38) and (6.31) in (6.30), the space- 
frequency correlation which is a generalization of [19] is given as

2tj- 00
$1,2(A / ,  K ) =  exP ( - ^ 7 t A /T /os) 1 z27rA /T  X ]  (6.39)

J m—_

The generalized envelope cross correlation 2 |h|(A /, AT) is then obtained by taking 
square of the absolute space-frequency correlation as follows

2n
1 4- z27rA/r E ivU^K,

47r2
1 + 47T2(A /)2r 2 E

U — — 0 0

2

(6.40)

Given the envelope correlation, equation (6.40) suggests that a trade-off between fre-

quency and spatial correlations exists which can be exploited to decrease the antenna 
spacing at the cost of increased frequency separation between the two antennas and vice

versa.
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Antenna Spacing K (X )

Figure 6.6: The contour plot of the space-frequency envelope correlations for truncated- 
uniform and von-Mises (black lines) azimuth power distributions for broadside antenna 
orientation. The angular spread is assumed to be 5°.

Numerical Evaluation of SFCC for 2-Carrier OFDM System

The coefficients 7  ̂for the truncated-uniform (TU) and von-Mises (VM) power distribu-
tion given in Table-2.1 respectively are

=  exp {-ii/ßo)  sinc(^Ar),

7„ = exp (-ti/ßo) ,
loyK,r )

where sinc(-) has been defined in (1.11) and /„(•) is the modified Bessel function of the 
first kind and integer order v, and Kr is the non-isotropicity parameter [15].

The results of numerical evaluation of the SFCC (equation (6.40)) have been plot-
ted in Figs. 6.6-6.10. The contour plot of SFCC in broadside antenna orientation for 
truncated-uniform and/or von-Mises scattering environments is depicted in Fig. 6.6. It 
can be observed that the two scattering environments are equivalent from the point of 
view SFCC between two antennas when the antenna spacing is small. At sufficiently 
large antenna spacing, however, the two scattering distributions have different trade-off 
characteristics. Observe that if the envelope correlation is 0.1 which is to be kept con-
stant as we reduce the the antenna separation 2.38 to 1.5 wavelengths, the frequency 
separation has to be increased by 425% and 138% respectively for truncated-isotropic



6.6 Generalization of Space-Frequency Cross Correlation for a 2-Carrier SIMO systd§9

Antenna Spacing K (in wavelengths)------

Figure 6.7: The contour plot of the space-frequency envelope correlations for truncated- 
uniform and von-Mises azimuth power distributions for ß0 — 45° assuming angular 
spread as 5°.

and von-Mises scattering power distributions. The figure suggests that the truncateduni- 
form scattering results in noticeably faster (cross) decorrelation of the channels at the 
two antennas when the spacing between antennas is sufficiently large. An example of 
SFCC for a non-broadside antenna orientation is shown in Fig. 6.7 where the mean 
scattering angle is 50° The stretch of the correlation contours to the right on the antenna 
spacing axis for sufficiently small frequency separation suggests that the antenna spacing 
has to be larger than in broadside orientation to achieve the same level of decorrelation 
between the channels at the two antennas. In fact, a larger deviation from the broadside 
antenna orientation would result in worse antenna spacing requirement for achieving 
similar channel decorrelation for sufficiently large antenna separation.

A communications system may have to operate in different scattering environments 
where the angular spread varies over a range. One, therefore, might be interested in the 
impact on space-frequency trade-off characteristics of changing the angular spread of 
the scattering environment. Fig. 6.8 shows the behavior of a particular space-frequency 
correlation contour as a function of angular spread assuming ß0 = 45°. for von-Mises 
scattering environment. The almost flat contour corresponding to angular spread of 0.1° 
suggests that the cross correlation is only insignificantly affected by a change in antenna 
spacing (at least for the range of antenna spacing shown). In other words, a very large 
antenna separation results in only a very insignificant reduction in frequency separation
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Antenna Spacing K ( X  ) —

Figure 6.8: The impact o f angular spread of the scattering on the space-frequency cor-
relation function for truncated-uniform distribution. The correlation contour value is 
assumed to be fixed at 0.5 and the mean scattering angle is 45°.

required to maintain the envelope cross correlation. When the angular spread increases 

to 1°, the possibility of a viable space-frequency diversity trade-off is visible. Only a 

small change in required frequency separation is achieved by a large increase in the an-

tenna separation. When the angular spread of the scattering is 5°, a small change in 

antenna separation results in a large frequency separation requirement for maintaining 

a particular correlation value. Notice a significant change in space-frequency trade-off 

characteristics as the angular spread changes from 1° to 5°. An angular spread of 25° al-

lows a change in antenna separation only very slightly at the cost of a significant change 

in frequency separation. For example, the reduction of antenna separation by just Ac/3 

requires the frequency separation enhancement by «  191%. It can be inferred from 

the figure that for larger angular spreads, an equivalent reduction in the amount of the 

antenna separation would require higher frequency separations. In Fig. 6.9, the space- 

frequency trade-off characteristics for von-Mises scattering have been plotted where the 

angular spread of the scattering environment is fixed at 5°. but the location of scattering 

(ßo) changes with respect to the axis of the antenna array. The figure suggests a signif-

icant change in SFCC characteristics as the mean scattering angle changes from 5° to 

20°. For example, a reduction in antenna separation by 10AC would require frequency 

separation to be increased by «  7kHz for ß0 = 5°. When ß0 = 20°, a reduction in 

separation of two antennas by just a Ac requires frequency separation to be increased by
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Antenna Spacing K ( X  )

Figure 6.9: The effect of changing mean scattering angle on space-frequency envelope 
correlation of von-Mises distribution. The correlation contour value is assumed fixed 
at 0.7 and the angular spread is assumed to be 5° that corresponds to nr — 130 for 
von-Mises distribution.

«  12kHz. It is also noted that the change of ß0 beyond 40° does not have significant 
impact on space-frequency trade-off characteristics.

Finally, a comparison of SFCC characteristics of truncated-uniform, Gaussian, Lapla- 
cian and von-Mises distributions is given for A =  {2.25°, 5°, 45°} in Fig. 6.10. The 
mean scattering angle is assumed to be 20° and the correlation contour value is fixed 
at 0.2. Notice that, for sufficiently large antenna separation, the truncated-uniform and 

von-Mises distributions have almost identical space-frequency trade-off eharacteristics. 
The truncated-Gaussian distribution of scattered power around the receiver results in 
comparatively worse antenna spacing and antenna frequency separation requirements to 
maintain correlation value of 0.2. And the Laplacian distribution has worst spacefre- 
quency trade-off characteristics. However, for sufficiently small antenna separations, 
SFCC characteristics for different scattering environments are almost identical. This 

implies that the more accurate evaluation of space-frequency diversity trade-off at a cel-
lular base-station (where the antenna separation can be several wavelengths) requires 

more precise knowledge of the type of APD. And if one has to evaluate the spacefre- 
quency diversity trade-off on the mobile receiver (where the antenna spacing has to be 
much smaller) and the angular spread is known, one can assume any of the scattering 

power distributions without significant errors in the design and analysis. The compari-
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Figure 6.10: A comparison of space-frequency trade-off characteristics for truncated- 
uniform, Gaussian, Laplacian and von-Mises distributions for A =  {2.25°, 5°, 45°} as-
suming ß0 — 20°. The correlation contour value is assumed to be fixed at 0.2. Ob-
serve that von-Mises and truncated-uniform distributions have almost identical SFCC 
and Laplacian distribution requires more antenna separation for a given frequency sepa-
ration (and vice versa) to maintain a given cross correlation.

son of the effect of different scattering environments on the autocorrelation of the time- 

selective channel fading process (Chapter 2, Section 2.2.3) and cross correlation in a 

space-frequency selective channel under consideration suggests that different scattering 

distributions do not have identical impact in both cases. Therefore, the results of com-

parison between different APDs derived in Chapter 2 for time-selective channel do not 

apply in the present space-frequency setting. For example, different scattering distri-

butions in Chapter 2 resulted in almost identical autocorrelation of the channel fading 

process when the angular spread was very small. The impact of small angular spread on 

the cross correlation, however, depends on the antenna separation for a fixed ßo. I f  the 

antenna separation is sufficiently small, the choice of a particular APD does not really 

matter. But if  the antenna separation is sufficiently large, different scattering distribu-

tions might result in significantly different space-frequency trade-off characteristics as 

suggested by Fig. 6.10.
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6.7 Summary and Contributions

In this chapter, we proposed a framework which can be used to calculate the space- 
frequency correlation in multicarrier communication systems. The proposed framework 
incorporates: i) physical antenna positions relative to the receiver origin to capture the 
space dimensionality of the channel and ii) a general joint angle-delay power distribu-
tion 4/(/3, t ) to capture the random frequency-selective multipath field. We believe that 
this framework can be utilized to investigate the effects of antenna spacing, antenna 
configuration (e . g ., linear array, circular array, grid array, etc.), scattering environment 
parameters such as mean angle of arrival and angular spread at the receiver, and the delay 
spread of the channel on the design and the performance of multicarrier communication 
systems.

The framework proposed in this chapter can be extended to include the transmit aper-
ture by following [2441 and hence obtain a full frequency-selective MIMO model. In this 
model, the statistical properties of the underlying channel are governed by the joint an-
gular power delay profile 4/ ( 6 . ß,  r)  where 6  is the angle-of-departure at the transmitter 
aperture, ß  is the angle-of-arrival at the receiver aperture and t  is the multipath delay. 
Also, following [2461, the proposed framework can be extended to time-selective fading 
channels. These possible extensions are a subject of future research.

The contributions of this chapter can be summarized as follows:

• A generalized SFCC model for a SIMO-OFDM system is derived which can be 
used with any joint angle-delay power distribution, arbitrary antenna geometry 
and angular spread, and can be extended to MIMO-OFDM system. Therefore, the 
performance of emerging high data rate wireless communications systems (mostly 
based on MIMO-OFDM) can be analyzed.

•  The results in this contribution neither assume very small angular spread [19] 
which is typical for base-stations in cellular systems. The applicability of the 
generalized SFCC to arbitrary angular spread makes it possible to analyze down-
link channels at the receiver side surrounded by scattering with moderate to high 
angular spread.

•  A special case of the generalized space-frequency correlation model with some 
additional assumptions on the antenna geometry and the frequency separation be-

tween signals at two antennas is provided which happens to be a generalization 
of space-frequency correlation in [191 to general scattering environments. A brief 
comparison of different scattering APDs is also given with results not previously 

known.



Chapter 7

Conclusions and Future Research 
Directions

This chapter provides a summary of the research work presented in this thesis and high-
lights possible directions for future research. The contributions of each chapter have 
been described at the end of each chapter and are not repeated here.

7.1 Conclusions

The most of the work in this thesis has been based on the assumptions that channel state 
information (CSI) is unknown to the transmitter and the receiver but the channel statis-
tics are perfectly known to the receiver only, and the channel is statistically homogeneous 
WSSUS . We proposed a generalization of Clarke’s well known stationary Rayleigh fad-
ing channel model that assumes isotropic scattering environment to general scattering 
environments by assuming a perfect knowledge of the mobile dynamics. We showed 
through numerical evaluations that the perfect knowledge of the scattering and the mo-
bile dynamics can lead to substantial improvement in the performance of the commu-
nications system. The truncated-uniform, truncated-Gaussian, truncated-Laplacian and 
von Mises distributions can be considered equivalent if the angular spread around the 
mobile receiver is either sufficiently small or large. Specifically, the truncated-Gaussian 

and von Mises distributions are almost identical for all angular spreads and mobile dy-
namics.

By relaxing the assumption of constant mobile velocity in the Clarke’s model and 
allowing the mobile to have a constant acceleration, we developed a non-stationary 
Rayleigh fading model applicable in general scattering environments. The Wigner-Ville 
and instantaneous power spectra were derived for the non-stationary channel process. 

Specifically, the Wigner-Ville distribution was shown to be a natural generalization of

205
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the Clarke’s model from stationary to non-stationary scenario. We explored the impact 
of mobile acceleration on the performance of non-coherent systems in terms of frame 

overhead and payload as a function of initial mobile velocity and carrier frequency. The 
mobile acceleration seemed to have more impact if the initial mobile velocity or the 
carrier frequency is lower. The numerical results suggested that it is not feasible to use 
higher carrier frequencies for wireless communications if the mobile has constant accel-
eration.

We proposed a slight modification of the peaky signaling to significantly improve the 
the performance of pilot-aided channel estimation scheme (PACE) over Rayleigh fading 

channels. The modification of the peaky signaling in conjunction with some added sig-
nal processing at the receiver resulted in M. times SNR enhancement at pilot symbol 
instants as compared to non-peaky signalling where M  equals the number of unused 
degrees of freedom in the peaky signaling. Under the assumption of equal total power in 
both the peaky and non-peaky signaling, we analyzed the performance of the proposed 
PACE schemes against the non-peaky signaling. The results suggested significant gains 
in the overall performance of the communications system based on the proposed scheme 
particularly in the low SNR regime. In fact, the proposed schemes offered M. times gain 
in overall performance in the limit of zero SNR.

Finally, a framework for the calculation of space-frequency cross correlation (SFCC) 
for OFDM-based SIMO system in general scattering environments was derived. The 
strength of the proposed framework was exhibited by calculating SFCC for elliptical 
and inverted-parabolic scattering models proposed in literature. It turned out that the 
inverted-parabolic scattering model is more ‘optimistic’ (i.e., has higher correlation) as 
far as the cross correlation between OFDM subcarriers on two antenna in SIMO system 
is concerned. We also generalize the results available in literature regarding SFCC from 
truncated-uniform to general scattering environments. The results suggest that different 
non-isotropic scattering distributions are, to very good approximation, equivalent when 
the separation between the two antennas is sufficiently small. When the antenna sepa-
ration is sufficiently large, different scattering environments exhibit unidentical space- 
frequency trade-off characteristics depending on the angular spread and mean scattering 

angle with respect to the antenna array orientation.

To sum up, this thesis has shown that with perfect knowledge of the scattering envi-

ronment and mobile dynamics, we can significantly improve the overall performance of 
the communications systems in no-CSI circumstances. Equivalently, the perfect knowl-
edge of the channel statistics can result in a significant performance enhancement of 

non-coherent (or partially coherent) communications systems (Chapter 3).
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7.2 Future Research Directions

In this section we outline a number of future research directions to arise from the work 
presented in this thesis.

Space-time-frequency Model: In this thesis, we have studied time-selective SISO and 
space-frequency selective (OFDM-based) SIMO models under the assumptions of sta-
tistically homogeneous WSS uncorrelated scattering (WSSUS). Therefore, we plan to 

extend our work to space-time-frequency selective channels on the basis of relaxed as-
sumptions, e.g., we may allow correlated scattering which would imply non-WSSUS 
channels.

OFDM-based space-time-frequency selective MIMO Model: The specification of 
MIMO-OFDM as the technology of choice for most of the future wireless communi-
cations standards necessitates the development of an OFDM-based MIMO model that 
includes space-time-frequency selectivity. The extension of the work presented in this 
thesis regarding space-frequency selective SIMO system to space-time-frequency selec-
tive MIMO-OFDM systems based on modal approach seems to be of some interest. The 
relaxation of classical assumption of WSSUS would also make such model more practi-
cally relevant.

Achievable information rates over non-coherent MIMO-OFDM channels: In Chap-
ter 3 we have explored achievable rates over SISO time-selective channels. It is of infor-
mation theoretic interest to explore the achievable information rates for other communi-
cations systems (like MISO, SIMO and MIMO) and environments like space-frequency 
and space-time-frequency channels. The extension of the approach followed in Chapter 
3 to such systems and environments would be very useful.

The degree of non-isotropicity and channel fading rate: In Chapters 2 and 3 we wit-
nessed a ‘slowing’ down of the channel process in non-isotropic scattering environments 
suggesting that the degree of non-isotropicity and the channel time variation are related. 
While in this thesis we present this relationship in the form of numerical simulations, it 
may be useful to have some sort of analytical relationship between the degree of non- 
isotropicity and the effective channel fading rate.

Non-uniform pdf of mobile direction of travel: The simplistic assumption of i.i.d. 
uniform distribution of the mobile direction of travel over [—7r, t t] in non-isotropic scat-

tering scenarios results in average channel statistics identical to the isotropic scattering
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environment. The relaxation of this assumption to incorporate non-uniform pdf of mo-
bile direction of travel in non-isotropic scattering scenarios and evaluation of its impact 

on the average channel statistics is a possible direction for future research.

More practical pilot-aided channel estimation: The pilot-aided channel estimation 
based on peaky signaling proposed in Chapter 5 theoretically promises significant im-
provement in MMSE and, in turn, system performance. The main assumption has been 

the availability of infinite number of pilot symbols. Practically, only a finite number 
of pilot symbols can b made available to the receiver. The design and analysis of such 

channel estimation scheme when only a finite number of pilot symbols are available is 
needed to be done so as to make the channel estimation more practically relevant.

Pilot-aided channel estimation in MIMO systems: The pilot-aided channel estimation 
scheme based on peaky signaling proposed in Chapter 5 is related to SISO systems. The 
extension of the proposed scheme to MIMO systems is expected to offer offer signif-
icant advantage over existing non-peaky signaling based channel estimation schemes. 
This problem seems to be a possible direction of future research.

Velocity estimators and equalizers based on second order channel statistics: There 
are some results in literature related to mobile velocity estimation and channel equaliza-
tion based on second order channel statistics. These results, however, are not applicable 
to general scattering environments. The problem of mobile velocity estimation and chan-
nel equalization in general scattering environments, in SISO and MIMO systems, seems 
to be a good problem for future research.



Appendix A

A .l Proof of Equation (2.18)

The following identity exists for continuous time Fourier transform (CTFT) of the Bessel 
function of the first kind and integer order fi [28,194]

where

roo
/ Jß(udAt)

J —oo
exp (—iujAt) dAt

Fp(x) =  2
cos (//cos l (x)) 

y/l  — x2

(A .l)

(A.2)

We know from the basic Fourier theory that the DTFT of a sampled process is essen-
tially a magnitude and frequency scaled version of CTFT of the continuous-time process 
with 2n periodicity [114]. Making use of (A .l) and (A.2), the DTFT of the sampled 

Bessel function of the first kind and integer order /i is given by

oo

^ 2  J^ d p T s) exp (~iupTs)
P —  —  00

(A3)

where uj d  =  udTs is the Doppler spread normalized by the symbol rate.

Since we are working at the baseband level, only the low pass term (£ =  0) in (A.3)
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is of interest to us, i.e.,

JßfadPTs) exp {-iujpTs) =
F„

p= —oo i^üÜD
(A.4)

Using (A.2) and (A.4), we can rewrite (2.17) to get the following desired expression 
for PSD

1 /  u \
=  —  > 7m exp (im(j)v) Fm —  . (A.5)U D ^  \ U D  J



Appendix B

B.l Extrema of Information Rate Cost function

Equation (3.8b) is a function of the spectrum of the channel fading process through 
eigenvalues {A*}. Since the channel covariance matrix C has been assumed to be positive 
semidefinite, all eigenvalues are non-negative i.e.,

Also we know from the elementary linear algebra [247J that the sum of eigenvalues of a 
matrix must be equal to its trace. Since C is a covariance matrix, trace of N  x N  matrix 
C is equal to N, i.e.,

The maximum or minimum of no-CSI cost function P™rm must obey constraints 
(B .l) and (B.2) to be a valid stationary point. We use N  slack variables s* G M (z =  
1, 2, 3• • • N) to convert inequality constraints A* >  0 to equality constraints so that we can 
use Lagrange multiplier technique to find stationary points of p™orm. The Lagrangian, 

£(•), and the constraint set are

for i = 1, 2, 3 • • • N. (B.l)

N

(B.2)

Az -  s- =  0, (B.3)
Ny> = ;v,

>  0 ,
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where fi and {f?r } respectively are the Lagrange multipliers for equality constraint (equa-
tion (B.2)) and rth inequality constraint (equation (B.l)). Notice a negative sign in (B.3) 

which is due to *>* type inequality. This sign would be positive if we have *<’ type 
inequality. If an inequality constraint is inactive at the optimum, its associated Lagrange 

multiplier is zero. Furthermore, if the constraint is active, the associated multiplier must 
be nonnegative [247].

The necessary conditions of the Lagrange Theorem give (with A*, fi, and s* as 
unknowns) the following set of equations

! | - ^ e J ^ ios (i + ^a*)+^+ ^ - 0' (b-4)
i=l

BC N
y ^ - 7 V  =  0, (B.5)

^  u
dC
7T7T = Aj T- sf = 0, (B.6)
ddi

O  n

—  =  2 st f i  = 0. (B.7)

One solution can be obtained by setting {$*} to zero to satisfy (B.7) and solving 
(B.4), (B.5) and (B.6) simultaneously. The solution is

Ai — A2 • •• — Aw — 1, (B.8)

which implies that C =  I, i.e., the channel fading process is uncorrelated. This solution 
is the stationary point of the objective function, p ^ orm, and is candidate for being an 
extrema. It can be verified that this solution represents a maximum of p™rm which is in 
fact a global maximum (with respect to the constraints) because in our case the objective 
function is a concave function and the set of linear equality and inequality constraints is 

a convex set [248].

As we have seen that no-CSI cost function is a maximum for an uncorrelated fading 
process, one can reasonably suspect a perfectly correlated process to define a minimum 
of p™rm' if channel process is perfectly correlated, all entries of C are equal to 1 (for all 

N)  and , therefore, rank(C)—»1 which implies that C has only one non-zero eigenvalue 

equal to its trace and all other eigenvalues equal to 0, i.e.,

A", if i = 7 where 7 =  1 or 2 • • • or N  
A i = {  (B.9)

I 0, otherwise,

which has N  possibilities, each of which corresponds to a particular solution.
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Notice that the solutions (B.9) do satisfy the set of constraints formulated above. 
Therefore, this solution is a valid stationary point of the objective function (no-CSI cost 
function). We can verify that these points correspond to global minimum because any 
move away from these points either violates the constraints or increases no-CSI cost 
function. Since our objective function is concave and the constraints define a convex 
region, any minimum has to be a global minimum. However, as we have observed, this 
global minimum occurs at more than one (in our case N) points [248]. Thus we have 
shown that the information rate cost function is maximum for an uncorrelated Rayleigh 
fading process and is minimum for a perfectly correlated process.
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B.2 Information Rate Penalty for a Single Point Scat- 
terer Case

If the angular spread of the scattering distribution approaches zero, i.e., A-» 0°, the 

scattering approaches a single point scatterer which scatters the electromagnetic wave 
equal in all directions. At any point on the trajectory of the mobile receiver, there is only 
one wave with no other interfering wave. Since there is no interference, there will be 
no fading. In other words, all entries of C would be equal to one implying a perfectly 
correlated process irrespective of the transmission block length N. In such scenario, the 

rank(C)—>-1 which implies that C has only one non-zero eigenvalue equal to its trace 
with all other eigenvalues identically equal to zero. Applying these arguments to (3.8b), 
penalty in case of a single point scatterer, P$QO, for transmission block length N  is given 

as

Notice that P^o°m ls nonzero for finite block length N  despite the fact that the chan-
nel fading process is perfectly correlated. Also observe that unlike isotropic case [37], 
equation (B.10) no more represents a Toeplitz system and, therefore, Szegö’s limit theo-
rem can not be applied to evaluate penalty for N  —> oo. In fact, Szegö’s limit theorem 
is not needed and asymptotic penalty as N —>oo is obtained using elementary calculus. 
Insertion of the limit N ^ o o  in (B.10) results in ^  indeterminate form. We therefore 
apply L’Hospital rule to get

Pimorm ^ l o g ( l  +  p N ) . (B.10)

P
liniTv^oo log (1 -f p N ) '

for p< oo. (B. l l )

Notice that the assumption of finite SNR is necessary as the limit does not exist other-
wise.
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C.l Discrete-Time Fourier Transform of Bessel Func-
tion With Quadratic Argument

We first derive the Fourier transform of the Bessel function with quadratic argument and 
continuous lag r ,  and then we shall obtain equivalent transform in discrete-time domain. 
We consider the following standard representation for the Bessel function of the first 
kind and integer order p [249]

i rJp{x) =  —  / exp [ndp — x  sin<̂ >) d<̂>,
27r J-n

so that we have the following relationship for Bessel function with quadratic argument 
Jp(a r 1 2) with a > 0 and continuous lag r

1
Jp(aT2) = —~ / exp (ncf) — a r 2 s in </>) d(f). (C .l)

.1 — XT

The Fourier transform of Jp(a t2 * *) is given as

J7 {Jp(a r 2)} — j  J  exp (i [ncf) — a r 2 sin<^)) d(j)j e x p (—i u j t )  dr ,

27r 

1
2n

(C.2)

(C.3)— J  exp (i ncf)) |  J  exp (i a r 2 sin 0) exp (—iuor) d t \  d(f),

exp (i ncf)) |  J  exp (i a r 2 sin 0) exp (—iuor) d r |  d<j)

r ' iv /2  [  [ ° °  1 \
+  / exp (z n(p) < / exp (z a r 2 sin</>) exp (—iu j t ) dr> d<f> I (C.4) 

J n / 2  I J - o c  J )

— 7t /2  

*3t t/2
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We make the following substitution

a sin (j) = p (C.5)

which implies that —a < p < a  and

(p = arcsin ( — ) ,

so that we get

d(f) =
\ / a2 ~  p 2

dp. (C.6)

For notational convenience, in the sequel we shall use the following Fourier trans-
form of the linear Chirp signal (or the one-dimensional Fresnel Kernel1 in optics) [251]

Linear Chirp Signal

chirp (l j ) =  f  exp (i £t 2) exp (—iuor) dr, 
J  oe

£
1/2 (exp , (C.7)

where £ > 0 is some constant.

Using (C.5), (C.6) and (C.7), we can rewrite (C.4) as

u j >( a r 2 ) } =  i ( / a
1 (  f a exp ( ip  arcsin (/i/a))

1
27r

\ / a 2 -  p 2

a exp ( ip  arcsin (/i/a))

■a y / a2 — / i 2

a exp ( ip  arcsin (///a))

•^cWrpM ^

d ß )  , (C.8)

\ / a 2 — P2 

exp ( ip  arcsin (/i/a))

1
2tt

J-c^   ̂ y /a2 -  p 2

ra exp ( ip  arcsin (/i/a))

^ c h i r p H  d p

F c h irp H (C.9)

+
JJ  —a

\ J  a2 — p 2 

a exp (i p (tt — arcsin (p/a)))

yj a? —  p 2 F c h ir p i“ ) d r (C.IO)

'This kernel is essentially found in light diffraction related problems in optics. The fractional Fourier 
transform which is well-known to the signal processing community is another particular form of the Chirp 
transform [250],
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Notice that the Fourier transform of Jp(a t2) is essentially the sum of two terms each 
involving the Chirp spectrum modulated by the Bessel function. Let us rewrite (C. 10) as 
follows

F { J p (c l t 2) }  =  (1  + ex p ( ip 7 r) )  f
J —a

exp(zp  arcsin (/z/a)) 

\Ja? -  p 2 ''chirp (cj)  dp,

=  (1 +  exp ( i p  7r)) BMFC (uj),

(C.l 1) 

(C.12)

where we have defined Bessel-Modulated Fourier Chirp (BMFC) transform as follows

BMFC (w) =  —
27T

1 f a exp (i p arcsin (p/a))
chirp (cj) dp. (C.l 3)

Let us recall that the normalized acceleration is given as (equation (4.79))

h > l ( i / r . ) ’

T
K l

and instantaneous normalized Doppler spread is given as (equation (4.78))

Ud, o

(C. 14)

u d , o
'  1 IT , '

^ d ,0 - ^ s j  i (C.15)

where we have just separated the normalization of acceleration and Doppler spread by 
the symbol rate. Let us define

_ 0.5o;d)oa
^d,a  I I ’ (C.l 6)

which obviously is acceleration-dependent Doppler spread normalized by the initial 
speed. Equations (C.14), (C.15) and (C .l6) are required to find the DTFT of the the 

sampled Bessel function Jp(<jJd,a (kTs)2) given mathematically as

K mivs{u) exP , (C.17)
s k

which is an equivalent form of (4.117). When Jp(ujd,a (kTs)2) is identified with the 
continuous Bessel function given in (C.l), we have a = ujd.a and r  =  kTs. Using this 
correspondence, we can use the same technique as employed in the Appendix A.l to
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arrive at the following DTFT from its continuous lag counterpart (equation (C.12))

D TFT {Jp(u>d,a (kTs)2)}

= (1 +  exp ( ipi t ) )  BMFCdt/(, (C.18)

where \u j \ < n and BM FC^/t is effectively a Bessel-Modulated discrete-time Fourier 
Chirp transform to be defined later. As a first step towards deriving DTFT for the sam-

pled Bessel function with quadratic argument, let us first see what happens to the spec-
trum of the sampled chirp. We saw in the Appendix A. 1 that DTFT is in fact a magnitude 
and frequency scaled version of the CTFT. Therefore, the discrete-time Fourier Chirp 
transform (DTFTj^.rp(a;)) for |u;| < n is given as

D T F T ^ rpM =  — ^  exp (z n(kTs)2) exp (- i u k T s) ,
s ,k=—oo

=  -^c h i rp i^  /  T s ) ,
-L s

(C. 19)

where /zjv =  /iT 2. We know that /z is related to through the following relation 
(equation (C.5))

ß  ^d ,o n

liT 2 =  T 2u>d,a ,

fJ'N = UD,cn (C.20)

where uJo,a (in radians) is acceleration-dependent normalized Doppler spread given in 
(4.115) that includes acceleration and initial Doppler spread. Notice that we had earlier 
deliberately removed the normalization by the symbol rate in order to match the conven-
tional DTFT representation in (C.17). Finally, we are in a position to define BMFCdtft 
as follows

1 f
BMFCdt/t 4  — I

UJD'a exp (ip arcsin ! ^ d ,o ))
UD,a

U D ,a ~ t*N

DTFTS5,(u))

which is (4.120).
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D.l Optimal Wiener Filter and MMSE

The autocorrelation of the channel process is given as

$Ckck(s) = E {hCk(n +  s)hlk(n)} =  $ h(sTP), (D .l)

so that the corresponding PSD will be

oo oo

Sckck(u) = ®ckck{s)exp(- iu js )  = ^ 2  ^ckck{sTp) e x p ( - i u j s ) . (D.2)
s = —oo s = —oo

Notice that (D .l) and (D.2) do not depend on k implying that

^ ckck ( s ) =  Ckck ( w )  =  S cc(u j ) .

Similarly, the cross-correlation between channel gain at pilot symbol instant and 
channel gain at data symbol location shifted by k symbols from the preceding pilot 
symbol which is given as

<f>CfcC(s) =  E {hCk(n +  s)/4 (n )}  =  $ cc(sTp +  k), (D.3)

so that the corresponding cross spectral density is

oo oo

S CkC(u) =  ^ 2  $ckc(s)exp(- iu js )  = ^ 2  $cc(sTp + k ) e x p ( - i u j s ) . (D.4)
s = —oo s = —oo

Using (D.3), the autocorrelation and the PSD of the pilot observation process {x[n]} 
would respectively be

<f>xx(s) =  E {hx(n +  s )/4 (n )}  ,

219
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Nn
=  8P $ cc(s) +  ( / d Tp) sine (2tt/ d Tp5) , (D.5)

S x x (cj) = ^  $ xx(s)exp ( - iejs ) ,
s = —oo

= SpS ccH  + ^ r e c t  (P-6)

where sinc(2 ) =  sin(z) /z  and rect(u /W)  is a rectangular function located symmetri-
cally about u — 0 and width u. Notice that the noise is colored (or bandlimited white) 
unlike white noise assumed in previous work [88,2211. The filtering of the stream of 
pilot-plus-unused symbols has two effects: Firstly, the out-of-band noise has been re-
moved improving signal-to-noise ratio at pilot symbol instants. Secondly, filtering has 
changed white noise to colored noise. Since we have assumed perfect knowledge of the 
PSD (and autocorrelation) of the noise process, the knowledge of noise correlations can 
be exploited to improve the performance.

We would also require the following cross correlation

<$>CkX(s) = E {hCk(n +  s)hl{n)}  ,

=  \ / ^ ^ c fcc(s), (D.7)

and the corresponding PSD

oo

S Ckx(u) =  $ CkX(s) exp ( - j u s )  = y / 8^S CkC0(u). (D.8)
S  —  —  0 0

We know from classical estimation theory [132] that MMSE and Linear MMSE are 
equivalent when the observation process and the channel process are jointly Gaussian 
[136] which is true in our case. In other words, MMSE estimate has the following form

oo

Ck(n)= w0A s) x ( s - n ) ,  (D.9)
s——oo

and the transfer function of the optimal Wiener smoother is given as (5.11). Using 

equations (D. 1 )-(D.8) and (5.11), we get the following

W0tk =  exp (iuk) yf&p ^ c c ( ^ )

T^rectM 4n fr>Tp T Sp <Scc(cu

=  exp (iouk) W0(l j ) (D. 10)
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which implies that the optimal Wiener filter has the same frequency domain character-
istics for any k except for a phase shift exp (iuk) that is linear in k. The corresponding 
MMSE is [252J

[£cfcs M l 2

Sx(u)

(Scc(u) -  yf£v Wo{u

du,

I duo, (D.l 1)

where (equation (D.10))

WoM =
M  reCt (  47t / d  Tp )  +  ^ c c ( ^ ) )

Equations (D.10) and (D.l 1) respectively give optimal Winer filter transfer function 
and the corresponding MMSE in terms of statistics of sampled channel process, Ck[n\. 
It is of interest to find optimal Wiener filter and MMSE in terms of the original channel 
process, i.e., h[m]. Since Ck[n\ is a downsampled version of the original process h[m], 
we have the following relationships1 for |tu| < i t

1 „ /( ÜJ
— Sh (Tv M\ T P
1 „ (  u—~Sh —

Tp h]\Tp
(D.l 2)

which give the following optimal wiener filter transfer function, W0̂ (u), (equation 
(5.12))

W0,k(u) = J r  exp (iuk)
-L r>

M  reC t I 4tr /DTp )  Tp C>h \ T P

=  exp (iuk) W0 ( — ] ,

and the corresponding MMSE o\ , after a change of variable (jr — u) and manipulation,

'We firstly assume that the channel Doppler spectrum S h { w )  is a lowpass spectrum such that

Sh.(uj) —  0  COn  <  I tu  I <  7T

and, secondly, there is no aliasing in the downsampled process Cfc[n] which requires that



is given by (equation (5.13))

S/iM

1 /*27r/ D /  X

—  /  <ShM  ( l  -  J e v W0(cu)) duj.
J — 2 y t / d
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D.2 MMSE for Uniform and Clarke’s Doppler Spectra

The MMSE for a general bandlimited channel spectrum is given by (5.13). We first con-
sider the uniform Doppler spectrum (equation (5.16)) for which MMSE can be written 
as (equation (5.13))

au,e ~~
1

2n

2t t / d

- 2 t t / d 2 /d
1 - /2 /r

(  Nq-T  +  — 
p ^  2 / d

du, (D.13)

which, after straightforward integration and simplification, gives (5.18). Notice the pres-
ence of factor A4 due to filtering and downsampling.

Using (5.13) and (5.17), MMSE for Clarke’s U-shaped spectrum is given as

2 V ^ D  “  U 2 +
Pp

TP
duo. (D.14)

If we make the change of variable such that l j = c jd  sin(x), (D. 14) can be written as

2 _
C,e

i r' 2 l ^

n J—7r/2  1 +  n f v T p  SeC ( X )
(D.15)

Observe the presence of sec(x) in the denominator instead of cos(x) as in [222J. Let 

X — £ fjr ~• Using the following formula [116]

2x arctanh ? x ta n ( f )
f -------  1- - d x  = x----------2 ,

J  1 +  X sec(x) -  x 2

equation (D.14) becomes

4x arctanh
4 , £ =  1 ------------. VU +X ;. (D.16)

Equation (D.16) gives the MMSE for the proposed scheme when channel doppler 
spectrum is characterized by U-shaped Clarke’s spectrum. When A4 =  1, (D.16) col-

lapses to MMSE for NP schemes. Somewhat similar expression for MMSE has been 
derived for Clarke’s spectrum in [222] for M  =  1. Observe that (D.16) is true for any 

X-
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D.3 Maximum of MMSE Gain Function

It is of some interest to determine at what SNR occurs the maximum of Q function 
(equation (5.20)). For uniform Doppler spectrum, we have

_____ ZfpTppp (A4 — 1)_____
(2 /d Tp +  pp) (2 /d Tp +  Mpp)

(D.17)

We take partial derivative of Qv with respect to pp and set it equal to zero, i.e.,

0 -  ((2 /DTp +  pp) (2 /DTp +  M  pp)) 2 f DTp( M  — 1)

- 2  hTpPp ( M  -  1) ((2 f DTp + pp) M  + (2fDTp +  M Pp))

which, after some straightforward simplification, gives (5.22), i.e.,

Umax
r p

2/ d Tp
Vm  '

or we can write

(D.18)

Umax
Pp (X

T1p
Vm '

Note that the equation (D. 18) assumes that the power savings due to the transmission of 
zeros are not used for pv enhancement so that this result is applicable for NE and DE 
cases. When the power savings are used to enhance pilot symbol power, we can proceed 
as above to determine optimal pp.

Similarly, using (5.13), (5.17) and (D.16), we obtain the following expression for 
MMSE gain for Clarke’s Doppler spectrum

Qc 4x
7 T \/l -  X2

arctanh 4xr 
-  x'2

arctanh (D.19)

where x =  {M. pp)/ (n/ DTP) and Pp!(t t / d T/) respectively for the proposed and
NP schemes. For notational simplicity, let p  = n f DTp. Taking partial derivative of QL 
with respect to pp using the following identity [253]

£  (arctanh(z)) = ^
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MMSEgain for Clarke Spectrum (M=2) 

RHS of Eq A. 32 (M=2)

MMSEgain for Clarke Spectrum (M=6) 

RHS of Eq A. 32 (M=6)

-7.1 -4.65
SNR (dB)

Figure D. 1: RHS of Eq. (D.20) as a function of pv highlighting maximum of Qc (MMSE 
gain with Clarke’s isotropic scattering model). It may be observed that pp =  —4.65 dB 
and —7.1 dB result in maximum MMSE gains respectively for M. =  2 and 6.

and setting it equal to zero, we get

n =  i arctanh y2M  

2 ( v - M P p ) V v 2 - ( X p P)2 +  I

_ arctanh (v^) (D 20>
2(V - Pp) ^ p ^ p ’

for which we have to resort to hit-and-trial method to obtain solution(s). First we can 

easily verify from (D.19) that two of the extrema lie at pv — 0, oo which correspond to 

the minimum of QL function. The right hand side (RHS) of (D.20) is plotted in Fig. D .l 

as a function of pv keeping Tp and / d  fixed for two different values of M .  We have also 

plotted Qc to verify that the zero(s) of the right hand side of (D.20) are valid extrema of 

Qc function.

Notice that one of the solutions (highlighted for each value of M )  actually corre-

sponds to the maximum of Qc function. The solution obtained in (D .l8) for uniform
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spectrum is also highlighted with thick vertical line segments. It can be observed that, 
for the same parameters, the difference between maximum of MMSE gain function for 
Clarke’s spectrum and that of uniform spectrum is not significant. Although there is 
some dependence of extremum on the value of M. that can be observed in Fig. D. 1, the 
following rule of thumb is more accurate for smaller values of M

_Cmax ^  „Umax / o i \
Pp ^  Pp ■ (U  ^ 1)
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D.4 Some Auxiliary Constants Used in Chapter 5

A pe  — — G2,

B p e  =  — 2 G 2£p e ,

CpE = G(tf{pE + G-M),
Q(Cp e ) =  ~ ~ r ^ i  

A pe

A d e  — ~ G ,

B de  — —2G ^d e ,

C d e  =  -M /d e ,

C'd e
Q (£d e ) — A DE

Y,p = ( 1 - D vNPP,
2^np  — 2 /d (1 — p NP)p +  (1 — 7 NP)(2 /d  +  P̂ PP ), 

Q n p  =  1 -  4 /d ,
2 / d (1 — 2 / d  +  p )

Cn p

Q U n p ) =  ^NP •

P Q n p
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D.5 Proof: Optimally €j, E > £s (Unequal Pilot and Data 
Powers)

In order to prove that £ pE > £s , it suffices to show that (equation (5.26))

uPE
2 / d

> 1.

We assume 7 — 7opt = 2M /D in the following.

We consider the left-hand-side of (D.22) and proceed as follows.

ZiPEr'oe 1
2 / d  2 / d

PE , (A<- 1)7(1 - ^ PE) 
^  + M

>
2 / d ’

2 ^  ( ~ £ p e  +  y j CpE +  Q (£p e ) )  , 

1
/PE +  A/ ^pE +

^ £ pe  + 6j — M
G

£pE
2 1 Cp e - ( - A/1 - 1 )2 /d (2Cp e +1)
PE ' G

^PE

>

2 / d  y /p E  +  v Cp e  +  Cp e  

1 (  Cp e

2 / d  y /p E  +  \J / p e ( / p e  +  1) 
1 1 

2 /d 2’

> 1,

(D.22)

where the first inequality is the result of the facts that 0 < /iPE < 1, 7o > 0 and 
1 < M  < -Mmax- The factor Q(/PE), in second equality, is given in the Appendix 
D.4 and H = G — (M — 1)7 in the third equality. The fact that fPE > 0 was utilized 
in arriving at the second inequality. The factor G > 0 by definition and is behind the 
third inequality. The fourth inequality came about by ignoring 1 in the denominator of 
the second factor of third inequality. The last inequality is true as long as / D < 1/8
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which is what we have assumed throughout the chapter. Thus, optimally, the average 
pilot symbol power is always greater than the average symbol power if the pilot and data 
symbol powers are allowed to differ. We state without proof that the same is true for 
other peaky schemes discussed in this chapter.
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Appendix E

E.l Derivation of Frequency-Selective Channel Model

Consider a SIMO broadband transmission system consisting of Ur  receive antennas lo-
cated at positions x p,p = 1, • • • , h r , relative to the receiver array origin ‘O’ as shown in 
Fig. 6.1. t r  > max ||ajp|| denotes the radius that contains all the receive antennas. We 
assume that scatterers are distributed in the far-field from the receiver antennas. Consider 
the broadband transmission of a signal s(t) through the general scattering environment 
shown in Fig. 6.1. Then the received signal at time t at the receiver origin ‘O’ from 
direction ß  is given by

y0( t , ß)  = J rj)(ß, T ) s ( t - r ) d T ,  (E.l)

where ip(ß, r )  is the random complex scattering gain for the waves arriving in direction 
ß  with delay r .  Using (E.l), the received signal at the pth receive antenna located at 
position x p, from direction ß  can be written as

Vpiß'i  ß i  •Ep) J  il>(ß, r)s(t  — tp — r)dr , (E.2)

where tp = x p • ß / c  is the factor that takes into account the position of p-th antenna with 
respect to the origin; c represents the speed of wave propagation. Therefore the received 
signal at the p-th receive antenna at time t is given by

Up{t, •Ep) yP{ti ßi x p)dß =
Qr

r)s{t — tp — r)drdß. (E.3)

Outer integration in (E.3) is over the unit sphere for a 3D scattering environment or the 
unit circle in the 2D scattering environment. We also assume that the angles of arrival 
at both receiving antennas are approximately the same since the propagation distance is 
large, compared to the antenna separation.
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Taking the Fourier transform of (E.3) with respect to t yields

Yp(uj , x p) =  /  /  ^(/3,T)S(o;)exp(— +  T)uj)drdß, (E.4)
J Q r  J t

where S(u) =  ^ { s ^ )}  is the Fourier transform of the transmitted signal s(t). From 
(E.4), the channel frequency response1 between the transmit antenna and the pth receive 
antenna can be obtained as

Hp(u) = J  J  ß(ß,  t ) exp(—zcut ) exp zujXp drdß. (E.5)

Now let f c be the carrier frequency and suppose there are Ns subcarriers with spacing 
A / .  The channel frequency response at the nth subcarrier between the transmit antenna 
and the pth receive antenna located at x p is then can be written as

HP{n) =  [  [  ß ( ß ,  r)  exp(—z2t t ( / c -  (n +  0.5) A /) r )
J JT

x exp ( —i — (fc — (n +  0.5)A f ) x p • ß ^ dr dß , (E.6)

which can be written as (6.3). Notice that, for notational simplicity, we have dropped uj 
in the notation for frequency response.

'by letting s(t) = 5(t)
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E.2 Derivation of the Space-Frequency Correlation Func-
tion

Let

Ap(ß,n)  = J v>(3,r )  exp (—z27t ( / c — (n +  0.5) A /) r )  dr, (E.7)

then, using (6.3) and (6.4), the space-frequency correlation between the nth subcarrier on 
the pth receive antenna located at position x p and the rath subcarrier on the qth receive 
antenna located at position x q can be written as

$ p,q(n,m)= I  [  E j Ap(ßl,n)A*(ß2, r a ) |  exp — (n +  0.5)A /)ajp • 3 i
JnRJnR 1 J \  c

x exp ( z— ( fc — (ra +  0.5)A f ) x q • ß 2 ) dß\dß2. (E.8)

First we assume that complex scattering channel gain from different directions are inde-
pendent of each other [36,103], i.e.,

E {Ap(ßu n)A*q(ß2,m)} 0, if f t  ^  A ;
E {Ap(ß\, n)A*(ß2, ra)} , otherwise.

(E.9)

This assumption yields

%,q{n,m) rj(ß, n, ra) exp (n +  0.5)A f ) x p ■ 3

x exp ( z ^ ( / c ~ {m + 0.5)A f ) x q • ß  ) dß, (E. 10)

where we have defined

* (f t  n, ra) Ae  { j4p( f t ,  n)A*(ß2, ra )} ,

= J  J E {^(/3, Ti)ip*(ß, t 2)} exp ^ - z ^ ( / c -  (n +  0 .5 )A /)ri^

x exp ^z— ( f c — (ra +  0 .5)A /)r2^ dT\dr2. (E. 11)

is the frequency cross correlation between subcarriers at two antennas from a given di-
rection ß. We now assume that complex scattering channel gains for two different delays 
are uncorrelated, i.e., the channel process is uncorrelated in the delay domain [5,242]
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implying

E { ^ ( ß , T i ) ^ * ( ß , T 2)}
o, if T\ 7  ̂ r 2;
E {|-0(/5, T i ) | 2 } , otherwise.

(E.12)

Under this assumption, (E.l 1) simplifies to

X{ ß , n , m 4/(ß , r )  exp (—z27r(m n ) A / r ) d r , (E.l 3)

where \£(/3,t ) =  E {|?/>(/3, t )|2} is the joint angular power-delay profile at the receiver 
aperture. Substitution of (E .l3) in (E.8) gives <hpg(n, m) defined in (6.5).
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