141 research outputs found

    Multi-Criteria Decision Making in Complex Decision Environments

    Get PDF
    In the future, many decisions will either be fully automated or supported by autonomous system. Consequently, it is of high importance that we understand how to integrate human preferences correctly. This dissertation dives into the research field of multi-criteria decision making and investigates the satellite image acquisition scheduling problem and the unmanned aerial vehicle routing problem to further the research on a priori preference integration frameworks. The work will aid in the transition towards autonomous decision making in complex decision environments. A discussion on the future of pairwise and setwise preference articulation methods is also undertaken. "Simply put, a direct consequence of the improved decision-making methods is,that bad decisions more clearly will stand out as what they are - bad decisions.

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Deep Reinforcement Learning for Joint Cruise Control and Intelligent Data Acquisition in UAVs-Assisted Sensor Networks

    Full text link
    Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets), which play a crucial role in creating new opportunities, are experiencing significant growth in civil applications worldwide. UASNets improve disaster management through timely surveillance and advance precision agriculture with detailed crop monitoring, thereby significantly transforming the commercial economy. UASNets revolutionize the commercial sector by offering greater efficiency, safety, and cost-effectiveness, highlighting their transformative impact. A fundamental aspect of these new capabilities and changes is the collection of data from rugged and remote areas. Due to their excellent mobility and maneuverability, UAVs are employed to collect data from ground sensors in harsh environments, such as natural disaster monitoring, border surveillance, and emergency response monitoring. One major challenge in these scenarios is that the movements of UAVs affect channel conditions and result in packet loss. Fast movements of UAVs lead to poor channel conditions and rapid signal degradation, resulting in packet loss. On the other hand, slow mobility of a UAV can cause buffer overflows of the ground sensors, as newly arrived data is not promptly collected by the UAV. Our proposal to address this challenge is to minimize packet loss by jointly optimizing the velocity controls and data collection schedules of multiple UAVs.Furthermore, in UASNets, swift movements of UAVs result in poor channel conditions and fast signal attenuation, leading to an extended age of information (AoI). In contrast, slow movements of UAVs prolong flight time, thereby extending the AoI of ground sensors.To address this challenge, we propose a new mean-field flight resource allocation optimization to minimize the AoI of sensory data

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation

    Get PDF
    This research investigation addresses the problem of routing and simulating swarms of UAVs. Sorties are modeled as instantiations of the NP-Complete Vehicle Routing Problem, and this work uses genetic algorithms (GAs) to provide a fast and robust algorithm for a priori and dynamic routing applications. Swarms of UAVs are modeled based on extensions of Reynolds\u27 swarm research and are simulated on a Beowulf cluster as a parallel computing application using the Synchronous Environment for Emulation and Discrete Event Simulation (SPEEDES). In a test suite, standard measures such as benchmark problems, best published results, and parallel metrics are used as performance measures. The GA consistently provides efficient and effective results for a variety of VRP benchmarks. Analysis of the solution quality over time verifies that the GA exponentially improves solution quality and is robust to changing search landscapes - making it an ideal tool for employment in UAV routing applications. Parallel computing metrics calculated from the results of a PDES show that consistent speedup (almost linear in many cases) can be obtained using SPEEDES as the communication library for this UAV routing application. Results from the routing application and parallel simulation are synthesized to produce a more advanced model for routing UAVs

    K-Means and Alternative Clustering Methods in Modern Power Systems

    Get PDF
    As power systems evolve by integrating renewable energy sources, distributed generation, and electric vehicles, the complexity of managing these systems increases. With the increase in data accessibility and advancements in computational capabilities, clustering algorithms, including K-means, are becoming essential tools for researchers in analyzing, optimizing, and modernizing power systems. This paper presents a comprehensive review of over 440 articles published through 2022, emphasizing the application of K-means clustering, a widely recognized and frequently used algorithm, along with its alternative clustering methods within modern power systems. The main contributions of this study include a bibliometric analysis to understand the historical development and wide-ranging applications of K-means clustering in power systems. This research also thoroughly examines K-means, its various variants, potential limitations, and advantages. Furthermore, the study explores alternative clustering algorithms that can complete or substitute K-means. Some prominent examples include K-medoids, Time-series K-means, BIRCH, Bayesian clustering, HDBSCAN, CLIQUE, SPECTRAL, SOMs, TICC, and swarm-based methods, broadening the understanding and applications of clustering methodologies in modern power systems. The paper highlights the wide-ranging applications of these techniques, from load forecasting and fault detection to power quality analysis and system security assessment. Throughout the examination, it has been observed that the number of publications employing clustering algorithms within modern power systems is following an exponential upward trend. This emphasizes the necessity for professionals to understand various clustering methods, including their benefits and potential challenges, to incorporate the most suitable ones into their studies

    Coverage Path Planning for Autonomous Robots

    Get PDF
    Coverage Path Planning (CPP) is a problem of path computation with minimal length that guarantees to scan the entire area of interest. CPP finds its application in diverse fields like cartography, inspection, precision agriculture, milling, and demining. However, this thesis is a prominent step to solve CPP for real-world problems where environment poses multiple challenges. At first, four significant and pressing challenges for CPP in extreme environment are identified. Each challenge is formulated as a problem and its solution has been presented as a dedicated chapter in this thesis. The first problem, Goal-Oriented Sensor based CPP, focuses on cumbersome tasks like Nuclear Decommissioning, where the robot covers an abandoned site in tandem with the goal to reach a static target in minimal time. To meet the grave speeding-up challenge, a novel offline-online strategy is proposed that efficiently models the site using floor plans and grid maps as a priori information. The proposed strategy outperforms the two baseline approaches with reduction in coverage time by 45%- 82%. The second problem explores CPP of distributed regions, applicable in post-disaster scenarios like Fukushima Daiichi. Experiments are conducted at radiation laboratory to identify the constraints robot would be subjected to. The thesis is successfully able to diagnose transient damage in the robot’s sensor after 3 Gy of gamma radiation exposure. Therefore, a region order travel constraint known as Precedence Provision is imposed for successful coverage. The region order constraint allows the coverage length to be minimised by 65% in comparison to state-of-the-art techniques. The third problem identifies the major bottleneck of limited on-board energy that inhibits complete coverage of distributed regions. The existing approaches allow robots to undertake multiple tours for complete coverage which is impractical in many scenarios. To this end, a novel algorithm is proposed that solves a variant of CPP where the robot aims to achieve near-optimal area coverage due to path length limitation caused by the energy constraint. The proposed algorithm covers 23% - 35% more area in comparison to the state-of-the-art approaches. Finally, the last problem, an extension of the second and third problems, deals with the problem of CPP over a set of disjoint regions using a fleet of heterogeneous aerial robots. A heuristic is proposed to deliver solutions within acceptable time limits. The experiments demonstrate that the proposed heuristic solution reduces the energy cost by 15-40% in comparison to the state-of-the art solutions
    • …
    corecore