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Abstract

Coverage Path Planning (CPP) is a problem of path computation with minimal length that
guarantees to scan the entire area of interest. CPP finds its application in diverse fields
like cartography, inspection, precision agriculture, milling, and demining. However, this
thesis is a prominent step to solve CPP for real-world problems where environment poses
multiple challenges. At first, four significant and pressing challenges for CPP in extreme
environment are identified. Each challenge is formulated as a problem and its solution has
been presented as a dedicated chapter in this thesis. The first problem, Goal-Oriented Sensor
based CPP, focuses on cumbersome tasks like Nuclear Decommissioning, where the robot
covers an abandoned site in tandem with the goal to reach a static target in minimal time.
To meet the grave speeding-up challenge, a novel offline-online strategy is proposed that
efficiently models the site using floor plans and grid maps as a priori information. The
proposed strategy outperforms the two baseline approaches with reduction in coverage time
by 45%−82%. The second problem explores CPP of distributed regions, applicable in post-
disaster scenarios like Fukushima Daiichi. Experiments are conducted at radiation laboratory
to identify the constraints robot would be subjected to. The thesis is successfully able to
diagnose transient damage in the robot’s sensor after 3 Gy of gamma radiation exposure.
Therefore, a region order travel constraint known as Precedence Provision is imposed for
successful coverage. The region order constraint allows the coverage length to be minimised
by 65% in comparison to state-of-the-art techniques. The third problem identifies the major
bottleneck of limited on-board energy that inhibits complete coverage of distributed regions.
The existing approaches allow robots to undertake multiple tours for complete coverage
which is impractical in many scenarios. To this end, a novel algorithm is proposed that solves
a variant of CPP where the robot aims to achieve near-optimal area coverage due to path
length limitation caused by the energy constraint. The proposed algorithm covers 23%−35%
more area in comparison to the state-of-the-art approaches. Finally, the last problem, an
extension of the second and third problems, deals with the problem of CPP over a set of
disjoint regions using a fleet of heterogeneous aerial robots. A heuristic is proposed to deliver
solutions within acceptable time limits. The experiments demonstrate that proposed heuristic
solution reduces the energy cost by 15−40% in comparison to the state-of-the art solutions.
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Chapter 1

Introduction

1.1 Introduction

The world is in the throes of technological revolution and robots have taken a center stage.
Since its inception, robotics has managed to emerge from a niche technology to a new
dominant socio-technical system. As predicted by a man way ahead of his time, Nikola Tesla,

“In the twenty-first century, the robot will take the place which slave labor occupied in ancient
civilization” [1], autonomous robots have became part and parcel of our current sophisticated
society. Autonomous robots are already playing a vital role in boosting of the economy
during current COVID-19 pandemic and are stated to be a game changer in post-COVID
transformation of industries like health care, commerce, manufacturing, transportation and
agriculture.

The idea of automatic system can be traced to the texts dating to 9th century in Greek
and Arab civilisations. However, Industrial Revolution marked a new era in the field of
automation by generating a global demand of fast paced production. This demand fuelled
the enormous success of autonomous robotics. The first few prototypes of Robotics and
Automation Systems (RAS) were constrained to development of robots for precision tasks
like welding [2]. Due to their high production cost, these robots were restricted to research
institutes like Stanford or large firms like Ford and Unimate [3].

The first large scale deployment of RAS was by a pioneering robotics firm, ABB, in
1978. Interestingly, ABB’s parent company ASEA had built successfully nuclear power plant
in 1972 and ABB’s main focus was deployment of robot’s in capital intensive projects like
Nuclear Power Plants [3]. Even the though research had focused on application of robots
in diverse sectors like fashion, health care, travel, space exploration. But, the commercial
deployment of robots was constrained to sectors related to industrial and manufacturing [4].
However, recent advances in digital and hardware technologies have ushered humans in
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fourth industrial revolution (INDUSTRY 4.0). INDUSTRY 4.0 has propelled robots to work
at the intersection of digital, physical, and biological spheres [5]. Nowadays, RAS is a
fusion of an array of technologies like artificial intelligence (AI), the Internet of Things
(IoT), genetic engineering, 3D printing, quantum computing. These technical capabilities
has seen emergence of new processes like lights out manufacturing [6]. Even the commercial
deployment has diversified with service robots like Pepper, Dyson360, Keenon becoming a
part of industries like domestic services, health care and catering [7].

Despite the enormous success which autonomous robotics has achieved in last few
decades, there is a plethora serious challenges like trust, safety compliance, carbon footprint
reduction, resilience, scalability that confront this inter-disciplinary field. However, this
thesis attempts to solve the most significant challenges in the sub-field of motion planning.

1.2 Motion Planning

Motion planning or path planning is a computational problem of finding a sequence of
way-points that a robot needs to traverse in order to accomplish the task of reaching its
goal from the current position. From its prototypical mapping as a piano mover’s problem,
path planning has advanced to address diverse range of variations on the problem, finding
applications in domains like surgical planning, drug design, animation cartoons, SLAM, and
assembly sequencing [8].

Every new real-world problem imposes a set of constraints and optimized objectives. For
instance, some problem may demand the decision maker to minimize the total distance robot
travels or the threat exposure during the robot’s journey, search for an evasive object during
the path traversal, map an unknown environment or update the existing map of the operating
environment. There are scenarios where the decision makers have a priori knowledge of the
start and goal location but in many cases, end goal is not known due to non-deterministic
nature of the environment. However, what attracts the interest of research community is
that the path traversal in real world is subjected to physical laws, uncertainty, and geometric
constraints.

This gives rise to an array of questions which trace their origin in diverse fields like
control theory, mechanics, computational and differential geometry, and computer science.
Therefore, the impact of path planning is not only restricted to its utility in application but
extends to the development of our science and math base by posing fundamental theoretical
questions which otherwise would not have been asked. The author’s research interest and
scope of this thesis is addressing the theory and practice around Coverage Path Planning
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(CPP) [9], which is a family of path planning problems, with an eye toward contemporary
applications.

To focus on the discussion, and to point out some of the important concepts in coverage
path planning, this chapter introduces CPP problem. The various challenges within CPP,
applications and theory behind CPP are presented here.

1.3 Coverage Path Planning (CPP)

Coverage Path Planning (CPP) problem can be defined as the computational task of de-
termining minimal length path which allows the robot to map/scan/cover the given area
or volume while avoiding obstacles. This computational task is integral to diverse robotic
applications, for instance floor cleaning [10–12], spray painting [13–15], underwater habitat
exploration [16–18], demining [19–21], lawn mowers [22, 23], precision agriculture [24–26]
and window cleaning [27, 12]. Fig. 1.1 visually represents common area coverage problems
for which robots are deployed.

The pioneering work [29] on CPP laid down the ground rules to that the robot must
adhere to while performing the task of area coverage. The aforementioned work assumes
that a mobile robot is operating in a 2D environment. This criteria can also be extended to an
aerial robot navigating at a fixed altitude. The rules are as follows:

1. After traversing all the waypoints, robot must cover the target area completely.

2. While covering the region, paths must not overlap.

3. The coverage operation must be continuous and sequential without any repetitive paths.

4. In case the target area contains obstacles, coverage path must avoid all the obstacles.

5. The robot must execute simple motion trajectories (e.g., straight lines or circles) to
ensure simplistic control design.

6. Coverage path planner should output an “optimal" path within the given constraints.

However, in the real-world coverage operations, due to complexity of environment, it is
not possible to satisfy all the rules stated above. Therefore, the decision makers are required
to design coverage path planner based on priorities and trade-offs.

CPP problem is mapped to the Covering Salesman Problem (CSP) [30], a variant of the
famous Traveling Salesman Problem (TSP) [31]. Unlike TSP, where the salesman visits each
city with minimal tour length, CSP computes minimal tour length, where salesman must visit
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Fig. 1.1 Inforgraphic illustrating common applications of CPP [28].
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the neighbourhood of each city. However, in CPP, the robot must visit a set of waypoints in
the target area. When traversing a waypoint, the area covered by robot’s sensor footprint is
mapped, thus by visiting all the waypoints sequentially the entire target area is mapped by
the agent. Both TSP and CSP are NP-hard and suffer from the curse of dimensionality, i.e.,
the time required to generate solution to the problem increases drastically as the dimension
of the problem increases.

One of the early applications of CPP, the “lawnmover problem”, where the path planner
computes the coverage path to cut all the grass in the target region (‘lawn’) has proven to be
NP-hard [32]. However, it is worth noting that the lawnmower problem does not consider
obstacles. Even the “piano mover’s problem”, which computes collision free path from
current position to the goal is proven to be NP-hard [33, 34]. Two additional computational
geometry NP-hard problems similar to CPP, are the art gallery problem and the watchman
route problem. The art gallery problem is a visibility problem that computes the minimum
number of guards required to guard and observe a polygonal gallery [35]. This problem
corresponds to multi-robot CPP problem. On the other hand, the watchman problem is an
optimization problem that computes the shortest route a watchman must take to guard a target
area with obstacles [36]. The NP-hard nature of the CPP, has made the proposed heuristic
solution highly dependent on the application. In the next subsection, the set of constraints and
challenges that the robot will face while covering challenging environments are discussed.

1.4 Problem Statement and Challenges

Real-word applications of CPP pose prolific research challenges. This subsection identifies
some of the crucial challenges, which have also been addressed in the later chapters of this
thesis.

1.4.1 Goal-Oriented Coverage Path Planning

The baseline requirement for a CPP algorithm is to successfully map the entire target space.
As discussed previously, CPP algorithms are often NP-hard in nature and the proposed
heuristics are guided by the considered constraints and optimized objectives imposed on the
path planner by the real-world applications. However, recent past has witnessed few peculiar
cases, where the coverage is uncertain and the number of times an area needs to be visited
varies [37, 38]. These cases intertwine the problem of CPP with search theory.

The first problem that is tackled, dives deep into area coverage in tandem with reaching
a goal. This problem is known as Goal-oriented Coverage Path Planning and has arisen
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recently, when robots have been deployed to perform daunting tasks like Nuclear Decommis-
sioning, Oil and Gas Pipeline Inspection. This problem expects the robot to autonomously
cover an abandoned environment with lurking dangers but at the same time achieve the goal
to reach a static target in minimal time.

What makes Goal-oriented CPP interesting is that it combines two different problems
of path planning: 1) CPP and 2) Optimal Search Path (OSP) problems which trace their
origin to two different domains, robotics and operation research, respectively, with different
formalisms. OSP at its roots aims to achieve the objective of maximizing the probability
of finding the goal in the target area. The defined goal in the application mainly dictates
the hypothesis of the decision maker. Some of recent goals in the OSP literature have
been survivor, lost vessel and crashed plane [39–41]. At an abstract level, the goals can be
classified based on following properties:

1. Mobility: static or mobile

2. Prior knowledge: a priori or unknown

3. Environment constraints on sensors and actuators

4. Cooperation nature of search object: adversarial or non-adversarial

The intended application of our Goal-oriented CPP allows us to limit the scope of our
problem by characterising our goal, discussed in detail in Chapter 2 of this thesis.

1.4.2 Multiple Distributed Regions

The advances in the field of technology have ushered the deployment of Unmanned Aerial
Vehicles (UAVs) for area coverage. UAV based CPP finds diverse applications, such as
search and rescue, 3D mapping and land monitoring. Few applications expect UAV to visit
multiple distributed regions introducing significant challenges in optimal path design. One
of the major challenge introduced is additional computation of minimal length inter-region
path covering a set of regions. Despite, the technological progress in the field of aerial
robotics, area coverage of distributed regions is subjected to multiple constraints, due to
limited resources and target area. The following subsections consider the constraints and
provisions that an aerial robot will encounter, when trying to devise an optimal path for area
coverage of distributed regions.
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1.4.3 Extreme Environmental Conditions

The groundbreaking scientific discovery of nuclear energy generation has had far reaching
consequences. At one end, it has permitted production of vast amount of energy using limited
nuclear fuel. But at the same time, this generates tonnes of extremely hazardous nuclear
waste. Recent accidents at such sites like the Fukushima Daiichi have resulted in a global
demand for periodic inspection of sites with extreme environment. Human inspection of
these sites is hazardous and requires a survey robot to perform this daunting task. One of
the architectural norms followed in design of a nuclear facility is to isolate nuclear reactor
cores from other service zones (control and service rooms, turbine building and cooling
towers). Thus, the robot has to perform area coverage of multiple distributed regions. Apart
from multiple distributed regions, prevailing environmental conditions, primarily presence of
radiation, add to the complexity of CPP task as access to such sites for experimentation is
difficult. Chapter 4 of thesis is dedicated to address this challenge of extreme environmental
conditions during area coverage.

1.4.4 Energy Constraint

As discussed in previous section 1.4.2, area coverage of multiple distributed regions is a
cumbersome task subjected to multiple constraints. One of the limitations which mobile
robot suffers while covering distributed multiple regions is energy constraints. This prob-
lem intensifies for UAV due to much more limited on-board energy. Apart from multiple
distributed coverage, even the extreme environmental conditions also reduce the lifetime of
the robot. Due to the energy constraint, complete area coverage is not possible. Nearly all
the prior works proposed in the literature have assumed that an aerial robot has sufficient
on-board energy to perform the task of area coverage of distributed regions [42, 43]. Given
the current energy models, aerial robots tend to have short battery life with an average of 20
minutes flight time, this consideration gains importance. Thus, one of the recent works has
proposed multiple tours with stop over at onsite recharging stations [44]. This approach is
not practical for many applications especially disaster management, where hard deadlines
and multiple charging stations are not feasible. Chapter 5 of this thesis is dedicated to address
the challenge of energy constraint during area coverage of multiple distributed regions.

1.4.5 Heterogeneous Fleet

Another set of important applications of distributed regions area coverage are post-disaster
relief, military surveillance, search and rescue missions. These operations may often be con-
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ducted over regions which are spatially separated with extreme terrains that are very difficult
or completely unmanoeuvrable by terrestrial robots. Hence, such scenarios necessitate the
deployment of UAVs for area coverage. Further many a time, these operations are carried out
in critical emergency situations with stringent constraints on the available time within which
the coverage must be accomplished. This generates a demand for deployment of all the
resources at hand. Thus, a fleet of UAVs which are heterogeneous in terms of their technical
specifications, like sensor footprint size and power rating to name a few, are entrusted to
perform such missions. However, their diverse technical specifications pose a challenge for
optimal coverage path design. Chapter 6 of thesis is dedicated to address this challenge of
optimal coverage path for heterogeneous fleet of UAVs.

1.5 Thesis Contributions

The main contributions of this thesis are fourfold and centre around addressing the research
challenges identified in section 1.4. These contributions are enlisted below.

1. The first contribution of this thesis is the proposal of a novel strategy to design an opti-
mal coverage path with a static goal search in tandem while minimising coverage time.
This framework, titled, ‘Offline-Online’, optimises the coverage time by equipping the
robot with geometrically-awareness during coverage task. The efficacy of this strategy
is evaluated by various experiments, against two baseline search approaches in three
simulated environments.

2. The second contribution of this work is the coverage path design for area coverage in
extreme environmental conditions. Extreme environmental conditions like presence
of radiation triggers degradation of sensors in robot. Experiments were conducted at
Rutherford Appleton Laboratory, UK to identify the provision needs that coverage
path design must follow in order to successfully cover entire target site.

3. The third contribution of this thesis is a novel near optimal coverage path design for
area coverage of multiple distributed regions given the energy constraint. The strategy
maximises the coverage area for two inter-dependent coverage task by imposing a
strict energy constraint. The performance of the coverage path strategy is evaluated by
analysing its properties over an exhaustive set of test case scenarios and comparing it
against two state-of-the-art area coverage approaches.

4. The fourth contribution of this work is a novel coverage strategy, which allows deci-
sion makers to deploy a fleet of heterogeneous aerial robots to perform area coverage
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of distributed regions in critical emergency situations. A Simulated Annealing in-
spired heuristic solution solves a two-tier coverage problem of mapping heterogeneous
resources to region and minimising energy cost. The results manifest a significant
reduction in cost incurred in terms of energy to cover the complete target area compared
to the state-of-the-art heuristic based on Genetic Algorithm.

1.6 Thesis Structure

The structural layout adopted in the remainder of this thesis is as follows:
Chapter 2: The general objective of this thesis is to consider contemporary research

challenges in CPP. With this goal in mind, important concepts from combinatorial optimiza-
tion are reviewed first. These concept are adopted later on as a solving tool in the thesis. To
stay as close as possible to the theme of CPP, TSP is taken up as an example to illustrate
optimization concepts on NP-hard problems. Finally, existing literature in the domain of
CPP is reviewed, exploring the various taxonomies proposed in literature along with their
positioning in regards to the contemporary research challenges.

Chapter 3: Chapter 3 explores the problem of goal-oriented CPP that traces its origin
from two different set of problems, 1) CPP and 2) OSP. Both the problems require the
deployed robot to perform area coverage. However, area coverage is a NP-hard problem
and the varied objectives of CPP and OSP play a crucial role in optimal path design. The
objective of CPP is to minimize the expense under the constraint of guaranteed complete area
coverage. OSP tends to aim at maximizing the effectiveness of reaching the goal under the
resource constraints. This chapter aims to study the combination of two problems through the
lens of a proposed strategy, where deployed robot searches for the static goal, while mapping
the environment along the path traversal.

Chapter 4: In this chapter, the focus is CPP problem in the context of deployment of
UAV for inspection of an extreme environment site. The application specifically consists
of designing optimal coverage path of a UAV for area coverage of a nuclear site. First, the
underlying limitations that a commercial robot will face in extreme environment are identified
through intensive experiments at radiation laboratories. In corroboration with underlying
theme across gamma radiation and fast neutrons, the coverage path planner is fitted with
a precedence provision to initiate an annealing process in robot’s sensor. The chapter first
formulates the problem mathematically and goes on to build the heuristic solution to this
problem.

Chapter 5: In continuum, another interesting problem of area coverage of distributed
regions is closely examined. An aerial robot while performing inspection of sites with
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spatially distributed regions is subjected to multiple constraints. One of the major bottlenecks
during aerial robot CPP is limited on-board energy. This problem intensifies, when an aerial
robot needs to perform area coverage of distributed regions. In this chapter, CPP algorithm
is designed where aerial robot is subjected to energy constraints, where complete area
coverage is not often possible. The proposed algorithm treads a different route from existing
approaches in literature by proposing a strategy of computing a near-optimal coverage path.

Chapter 6: This chapter investigates another challenge of area coverage of distributed
regions. The CPP of distributed regions has been actively used in scenarios that are character-
ized as critical. Such scenarios, envisage a requirement to deploy all the available resources
for the area coverage. Given, the diversity of resources in terms of heterogeneous fleet of
UAVs, a resource allocation problem also gets associated with the coverage path design. This
chapter aims to solve the problem of CPP over a set of disjoint regions using a fleet of UAVs
which are heterogeneous UAVs in terms of their sensor footprint sizes, power rating and
manoeuvring speeds.

Chapter 7: This chapter concludes by summarising the contributions detailed in the
thesis. Finally, the future of research in the field of CPP and the role which this thesis will
play is highlighted.
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Chapter 2

Background Theory

2.1 Introduction

This chapter aims to familiarise the readers with prerequisite background in optimisation,
specifically sub-field of combinatorial optimisation, that is effectively used as a solving
and formulation tool for area coverage problems. The readers are first introduced to the
fundamental concepts of optimisation in Section 2.2. Further, this chapter branches out
to the allied research topics like combinatorial optimisation in Section 2.3 and Constraint
Programming in Section 2.4. To elucidate a clear picture of the central theme of this thesis,
CPP, TSP is used as an example due to its close relationship with classical coverage problem
in Section 2.5.

After describing background theory of optimisation, a detailed overview of CPP literature
is provided in Section 2.6. The chapter first focuses on classic approaches and taxonomy
followed by CPP literature. Then, CPP problem in context of the aerial robots is introduced
in Section 2.7 narrowing down to the research work exploring CPP of multiple distributed
regions.

2.2 Optimisation

Optimisation is a family of mathematical development methods that have pervaded all walks
of human life. Generally speaking, optimisation can be described as a decision making
framework that allows identification of ‘best available’ solution for a problem constrained by
a defined input domain [45]. It finds extensive application in multiple quantitative disciplines,
such as computer science, operations research, engineering and economics. Despite its
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ubiquitous nature, optimisation is reviewed through the lens of CPP problems from the
robotics literature in this thesis.

Mathematically, an optimisation problem O(.) for a given objective function f : A −→ R
can be formulated in the following way for minimisation problem:

O( f (x)) = {x0 ∈ A | f (x0)≤ f (x) ∀x ∈ A} (2.1)

For the maximisation problem, the problem is formulated as:

O( f (x)) = {x0 ∈ A | f (x0)≥ f (x) ∀x ∈ A} (2.2)

The objective function f (.) can be considered as a goal that needs to be achieved. The
optimisation can either be a process of maximisation or minimisation of objective function.
The decision points and choices which have direct impact on the output of objective functions
are known as decision variables. For instance, the start position of robot in an OSP problem.
The set of values which the decision variable can take up is known as domain of the variable.
These variables are either mutually exclusive or dependent on other variables. The variables
which are dependent on other variables are known as implicit variables.

Optimisation problems can be categorised depending upon practical context of the
problem at hand. Fig. 2.1 presents four categories of optimisation problems enlisted below.

1. Unconstrained Optimisation: It is a problem of optimising an objective function that
depends on a single real-valued variable x. The domain of x is continuous, infinite
and uncountable [46]. Mathematically, the unconstrained optimisation for maximising
objective function f : Rn −→ R and variable x ∈ Rn can be formulated as:

maxx f (x) (2.3)

Fig. 2.1a represents an unconstrained problem with a variable x for maximising objec-
tive function f (.). In the given example, global maximum point (plotted as a red point
in Fig. 2.1a of the quadratic function ( f (.) =−x2 −100) is computed using a simple
derivative.

2. Constrained Optimisation: Moving forward from unconstrained optimisation de-
scribed above, constrained optimisation is introduced. In this set of problem, the input
variable x is subjected to constraints [47]. In case the imposed constraints are hard in
nature, generated solution is considered unfeasible, if constraints on the variables are
not satisfied. On the other hand, if the variables are subjected to soft constraints then
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(a) Unconstrained Optimisation (b) Constrained Optimisation

(c) Combinatorial Optimisation

Fig. 2.1 Different types of linear optimisation problems.

the variable values are penalised in the objective function, when the constraints are not
satisfied. Mathematically, a generic optimisation problem that minimises an objective
function f (.), can be formulated as:

min f (x)

subject to gi(x) = ci for i = 1, . . . ,n
(2.4)

The optimisation problems can further be categorised based on type of constraints on
the variables. For instance in Fig. 2.1b, the constraint x < c is introduced. This addi-
tional constraint translates the problem into a convex optimisation problem. Similarly,
if the objective function and all the constraints are linear in nature then the problem is
termed as a linear optimisation problem.
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3. Combinatorial optimisation: This is a set of optimisation problems where the domain
of decision variables is a discrete number, i.e. countable [48]. Fig. 2.1c illustrates
an example of combinatorial optimisation with a single variable. As the number of
variables increase, the complexity of the problem increases exponentially, such that
exhaustive search is not tractable. There are also scenarios where gradient descent
does not converge to global optimum, but to local optima.

4. Nonlinear optimisation: Nonlinear optimisation is the family of optimisation prob-
lems, where one or more constraints or the objective function are nonlinear [49]. A
nonlinear optimisation problem which aims to minimise an objective function f (.),
can be mathematically formulated as:

min f (x)

subject to gi(x)≤ 0 for each i ∈ {1, . . . ,n}
(2.5)

where n,m, and p are positive integers and gi(.) and f (.) are real-valued functions
with at least one of them being nonlinear. Fig. 2.2 depicts the following example of
nonlinear optimisation problem:

min 2× x1 − x2

st x1 × x2 ≥ 25

x2
1 + x2

2 = 40

1 ≤ x1,x2 ≤ 10

The subfield of combinatorial optimisation is described in detail in upcoming sections.
The readers are given flavour of mathematical tools like constraint programming and exact
and approximate algorithms using Travelling Salesman Problem.

2.3 Combinatorial Optimisation

As defined in previous Section 2.2, combinatorial optimisation is a type of optimisation
where discrete choices are of major essence, i.e., the domain of decision variables is discrete.
Thus, combinatorial optimisation can be stated as minimisation or maximisation of a ob-
jective function, that is subjected to constraints under discrete choices. The combinatorial
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Fig. 2.2 Example of nonlinear optimisation problem.

optimisation finds application in diverse fields varying from logistics and supply chain to
transportation, job allocation to network distribution.

The combinatorial optimisation problem suffers from the curse of dimensionality. As
the number of decision variables increases, the discrete search space increases making the
solution search intractable. Thus, the computational complexity class owing to large discrete
space for real-life combinatorial optimisation problems are either NP-hard or NP-complete.
In compliance with the central theme of this thesis, CPP, hard combinatorial optimisation
problems which lie in the domain of NP-hard complexity are considered. An intuitive
summary and definitions of fundamental terms and concepts are introduced using following
definitions.

Definition 2.3.1 (Problem Statement) Any given combinatorial optimisation problem can
be defined by an objective function representing a goal subjected to a collection of constraints
that is defined using a set of decision and implicit variables and constants.

Definition 2.3.2 (Assignment) A constant or a variable assignment is instantiated when
their value is fixed.

Definition 2.3.3 (Problem Instance) The instance of any combinatorial optimisation prob-
lem consists of instantiated parameters.

Definition 2.3.4 (Feasible Solution) The feasible solution of a combinatorial optimisation
problem is a set of values for decision variables that satisfies all the constraints in an
optimisation problem.
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Definition 2.3.5 (Optimal Solution) An optimal solution to a combinatorial optimisation
problem is an element of the set of feasible solutions where the objective function attains its
minimum or maximum value.

Definition 2.3.6 (Global Optimum) A global optimum solution to a combinatorial optimi-
sation problem is an element of the set of optimal solutions where the objective value is
atleast as good as any other feasible solution.

Definition 2.3.7 (Local Optimum) A local optimum solution to a combinatorial optimisa-
tion problem is an element of the set of optimal solutions where the objective value is best in
the neighbourhood.

It is often seen in case of highly complex combinatorial optimisation problems, that
solution design targets a specific subproblem for effective and efficient solutions. In the
context of area coverage problem, the objective focuses on determining an optimal solution
to an applied problem or a better solution to an existing practise, has a prolific impact on the
performance of the robot. Next section presents an introduction to Constraint Programming
(CP), a generic combinatorial optimisation framework where the focus is laid on finding
solutions to subproblems through specific algorithms and heuristics. This is part of the
larger scheme of finding efficient solutions to complex and large combinatorial optimisation
problems.

2.4 Constraint Programming

Constraint Programming (CP) is a mathematical paradigm used to formulate optimisation
problems using a specific programming language. In CP, the constraints are implicitly
stated [50]. Unlike imperative programming language, constraints are not specified as a
sequence of steps to be executed. The combinatorial optimsation problems formulated in CP
are referred to as models. Models comprise parameters, constraints and variables. There are
array of solvers available to read the CP models to find a global optimum solution.

CP models can be classified either as: 1) Constraint Satisfaction Problems (CSPs), and
2) Constraint Optimisation Problems (COPs). The aim of CSPs is to determine a feasible
solution, i.e., a solution which satisfies all the constraints. CSPs are devoid of objective
function optimisation. COPs on the other hand can be seen as CSPs with an addition of
constraints and variables to define the objective function.

Definition 2.4.1 (Domain) The domain of any variable X is the set of values which the
solver can assign to the variable.
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Definition 2.4.2 (CSPs) Any CSPs can be denoted as a triplet < χ,D,C > where χ =

{χ1, . . . ,χn} is a set of variables, D= {D1, . . . ,Dn} is the set of domains of the corresponding
variables and C is a set of constraints.

CPP applications tackled in this thesis have discretised the target area into a grid. Thus,
domain of a decision variable is a set of integers and solver used is IBM ILP CPLEX1.

Optimisation problems in CP are formulated as COPs. As mentioned before, COPs differs
from CSPs by addition of an objective function. The COPs is elucidated using instance of a
NP-hard problem, TSP, as it is closely related to CPP methodologies in next section.

2.5 Travelling Salesman Problem

Traveling Salesman Problem (TSP) is a classical mathematical problem which came to
surface in the 19th century [51]. It appeared as a mathematical puzzle which tried to find an
answer to a question: ‘Given a set of cities and inter-city distances, what will be the shortest
route that a salesman must take and return to the depot such that each city is visited only
once?’.

2.5.1 ILP Formulation

Mathematically, the TSP can be modelled as an undirected weighted graph G =< V,E >

where V = {V1, . . . ,Vn} is a set of vertices representing cities and E = {(vi,v j) | (vi,v j) ∈
V 2and i ̸= j} are set of edges representing inter-city path. For any given instance, TSP can be
represented as a graph in Fig. 2.3. In literature, TSP is often formulated as an Integer Linear
Program (ILP) [52, 53]. The two most notable ILP formulations are discussed in upcoming
sections.

Miller–Tucker–Zemlin

Miller–Tucker–Zemlin (MTZ) [54] is one of the earliest well known formulation. Even
though, it is not computationally efficient but serves as an easy introduction to the readers for
ILP formulation.

Each city is labeled as an integer using an enumerated list 1, . . . ,n such that n is the total
number of cities and 1 denotes the city of origin and final return. This following decision

1IBM ILP CPLEX (also known as CPLEX) is an optimisation studio and software package.
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Fig. 2.3 A TSP Instance

variable can be described as:

xi j =

1 if there exists path between city i and j

0 otherwise
(2.6)

For each city j = 2, . . . ,n, an auxiliary variable u j ∈ R+ and a distance matrix cik repre-
sents distance between city i and k are introduced. The MTZ approach for ILP formulation
of TSP is presented below. The objective function Z can be stated as:

Z = min
n

∑
i=1

n

∑
j=1

ci jxi j (2.7)

Subjected to :
n

∑
j=1

xi j = 1 ∀i = 1, . . . ,n; (2.8)

n

∑
i=1

xi j = 1 ∀ j = 1, . . . ,n; (2.9)

ui −u j +nxi j ≤ n−1 2 ≤ i ̸= j ≤ n; (2.10)

1 ≤ ui ≤ n−1 2 ≤ i ≤ n; (2.11)

xi j = 0,1 i, j = 1, . . . ,n; (2.12)
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ui ∈ Z i = 2, . . . ,n. (2.13)

Constraints enlisted in Equations 2.8-2.9 ensure that the salesman departs and arrive in each
city only once. Equation 2.10 presents a constraint to eliminate subtour formation.

Dantzig–Fulkerson–Johnson

The major bottleneck in MTZ formulation is the high computational complexity due to
the subtour elimination. This was improved by Dantzig–Fulkerson–Johnson (DFJ) [55]
formulation that is presented below.

Z = min
n

∑
i=1

n

∑
j=1

ci jxi j (2.14)

Subjected to :
n

∑
j=1

xi j = 1 ∀i = 1, . . . ,n; (2.15)

n

∑
i=1

xi j = 1 ∀ j = 1, . . . ,n; (2.16)

∑
i∈Q

∑
j∈Q,i ̸= j

xi j ≤ |Q|−1 ∀Q ⊆ {1, . . . ,n}, |Q| ≥ 2 (2.17)

xi j = 0,1 i, j = 1, . . . ,n; (2.18)

The DFJ formulation eliminates the subtour formation by adding constraint Equation 2.18,
such that no proper subset Q is able to form a subtour. ILP formulations, no doubt, generate
optimal solutions for TSP problems. However, the exponential increase in computational
complexity as the number of decision variables increases, make them impractical for real
world application. In the upcoming sections, practical approaches adopted in context of TSP
that are also applicable to generic COPs are discussed.

2.5.2 Branch-and-Bound

Branch-and-Bound (B&B) [56] is a family of algorithms that apply bound on the domain
of the variable depicting the objective value of the optimisation function, i.e., value Z in
Equation 2.7. To achieve this, a search tree is constructed which is an exhaustive enumeration
of all the solutions for the given problem. B&B prunes branches of the search tree using
an implicit enumeration of all the solutions. The algorithm first estimates the attainable
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objective value (called as bound) for current partial solution. The decision of branch pruning
is taken by comparing incumbent bound and bound of the current solution. The major
trade-off decision which algorithm designers take is achievement of a tight bound and usage
of computational resources. B&B algorithm also inspires the popular A⋆ algorithm [57] used
in motion planning.

2.5.3 Dynamic Programming

As previously mentioned in Section 2.3, combinatorial optimisation problems exhibit optimal
substructures which are considered during solution search in methods like CP. However,
many COPs have properties which allow them to be divided into a set of recursively subprob-
lems. Dynamic programming exploits this property of overlapping subproblems to generate
computationally efficient solutions to COPs.

One of the prominent dynamic programming algorithm is Bellman–Held–Karp algo-
rithm [58] to solve TSP. For set of cities i = 1, . . . ,n, let S = 2, . . . ,n be a subset of cities. For
each city j ∈ S, cost is defined as cost( j,S) as the cost incurred when taking the shortest path
from 1 to j. The recursive subproblem structure can be stated as:

cost( j,S) = mink {cost(k,S\{ j}) + ck j} (2.19)

The time complexity of this dynamic programming algorithm is O(n2 ×2n).

2.5.4 Approximate Algorithms

In previous Section 2.5.2 and 2.5.3, exact algorithms were presented which determined the
optimal solution working reasonably fast in smaller solution space. However, it has been
noted that for large volume of scientific problems, the cost of optimal solution search is
exponentially high [52]. This has ushered the researchers to devise standalone heuristics
or approximation algorithms that yield into ‘good’ solutions. Proposed approximation
algorithms to TSP range from greedy algorithm to nature inspired algorithms [59]. The
following subsections present a brief description of known TSP heuristics.

Greedy Algorithm

The greedy algorithm is a heuristic that searches for local optimum solutions (refer Defi-
nition 2.3.7). However, for few TSP instances, greedy algorithm can even converge to a
global optimum. In greedy algorithm, starting from origin city, the salesman chooses nearest
unvisited city as next move. This process is repeated unless and until all the cities have been



2.6 Coverage Path Planning Problem 23

visited. This algorithm is also called as nearest neighbour algorithm [60]. On average for n
cities randomly distributed, this algorithm determines a path 25% longer than global optima
(shortest path) [61].

Perturbative Approaches

The greedy algorithm discussed in previous section starts from an empty solution and it-
eratively converges to a solution. On the other hand, there exist approaches which start
with already existing feasible solutions initially and iteratively search the solution space
to improve performance of an existing solution. These approaches are known as the per-
turbative approach [62]. One of the famous perturbative approach is local search. Local
search algorithm takes the initial solution as a point in search space and successfully finds

‘good’ solutions in neighbourhood space until a termination criterion is met. Ant colony
algorithm [63], Simulated Annealing [64] and Genetic Algorithms [65] are well-known
perturbative approaches used for finding optimal solution to a TSP instance. The algorithms
in such cases require extensive experiments and ablation studies so that sub-optimal solutions
are avoided. After providing the background of optimisation theory, the next section presents
a detailed literature review of the existing research in the domain of Coverage Path Planning.

2.6 Coverage Path Planning Problem

CPP has carved a separate niche in the family of motion planning problems. This is alluded
to by CPP’s ability to be at the core of diverse robotic applications such as floor cleaning [66],
minesweeping [67], precision agriculture [68], seabed survey [69] and painting [70] to name
a few. However, CPP by an autonomous robot, to date, poses a considerable challenge and
can be classified as NP-hard. An array of literature works [9, 71, 72, 11] has focused on
surveying the coverage algorithms, mainly due to wide industrial applications. Apart from
presenting a condensed overview, each survey has presented a taxonomy of CPP algorithms.
The factors used for classification of coverage algorithms are as follows:

1. Intrinsic parameters of robot: sensing and localisation capabilities, and hardware-on
board.

2. Extrinsic parameters: environmental conditions, and prior knowledge.

Fig. 2.4 illustrates the factors used for classification of the coverage algorithms. Each of
these factors are discussed in-depth in following sections to provide an overview of classical
CPP approaches.
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Fig. 2.4 Factors for classification of coverage algorithms.

2.6.1 Heuristic and Randomised Approaches

Early work in the CPP were classified into two categories: heuristics and randomised
approaches. The approaches in the first category equip mobile robot with a set of simplistic
behaviours (e.g., a wall follower) [73], but do not provide any guarantee of a complete
coverage. However, early applications indicated utility in multi-robot coverage [74, 75].
Heuristic approaches ensure that robots do not collide with each other and also obstacles.

The approaches in the second category employ randomisation. These approaches rely on
the fact that if a robot covers an area randomly for a long interval then a complete coverage
is guaranteed. The major advantage of these approaches is commercial viable cost/benefit
ratio. This is the reason that commercial vacuum cleaning robots like RC3000, Trilobite and
Roomba adopt randomisation approach [76]. Due to randomisation approach, no complex
or expensive sensors and computation resources are required for localisation and mapping.
However, in case of coverage of 3D space, and specifically underwater and aerial robot
coverage, randomised algorithms are not viable as the cost of operation in terms of energy
and time grows exponentially as the size and complexity of solution space increases.
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2.6.2 A Priori Information

If the robot has a priori information of the target site while planning the coverage path, the
algorithm is known as a priori or an off-line CPP problem. Otherwise, if the robot does
not have any prior algorithm, it is known as an on-line CPP problem or sensor-based CPP.
Sensor-based CPP deploys fast and simple heuristics algorithms in planning [9]. However,
off-line CPPs use combinatorial optimisation problems for path planning.

2.6.3 Mapping

Mapping the environment plays a major role in all path planning algorithms and CPP is no
exception. This is the reason that taxonomy proposed in prominent surveys [71, 9] have
emphasised on environment discretisation and mapping. The discretisation methods [77] can
further be categorised as: roadmaps and cellular decompositions.

The fundamental concept of a roadmap is to generate points in the (obstacle-)free space
and create connection between them on the basis of spatial occupancy and traversability.
Two points are connected if they are neighbours and there exists a path between both of
them which is traversable in nature. The description of neighbourhood of a point is problem
dependent. The popular approaches of roadmap generation used in off-line CPP algorithms
are voronoï diagrams [18], probabilistic roadmaps [77], and visibility graphs [78]. The sensor
based coverage requires adoption of sophisticated roadmap generation techiniques, like the
rapidly-exploring random trees [79].

However, due to the complexity and vast nature of target site, the discretisation of
target site into regions is frequently used. This technique of region based decomposition
of target site is called cellular decomposition. The approaches in the field of cellular
decomposition further branch-out as uniform decomposition (set of uniform cells) and non-
uniform decomposition (set of regions or subregions) [77]. Uniform cellular decomposition
mainly deals with discretisation of the continuous target site into a grid of cells of same size.
If the target site contains obstacles, the preferred approach is to build an occupancy grid [80].
These decomposition techniques are also known as approximate cellular decomposition due
to loss of information during the grid mapping.

The same cell size constraint is relaxed in a non-uniform cellular decomposition. The
popular exact non-uniform cellular techniques include trapezoidal decomposition [81] that
handle polygonal target site, triangulations decomposition, such as Delaunay [82], Boustro-
phedon decomposition. The decomposition of a continuous space using an exact cellular
decomposition is considered NP-hard [83]. A tractable cellular decomposition method
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was presented by Huang [84] that minimises the number of turns that a robot takes while
performing coverage operation.

Due to NP-hard nature of exact cellular decomposition, decompositions are performed
using some optimality criterion [9]. Moreover, non-uniform exact decompositions are
preferred over uniform decompositions in presence of obstacles [9]. Generally, the large
cells generated by exact decompositions, are covered using heuristics. Two other intrinsic
parameters of robot, shape and the orientation of the robot, play an important role in the
discretisation of continuous environments. The incorrect positioning of robot can lead to
collision with the obstacle [77]. However, the orientation of robot drives decision makers to
plan path in configuration spaces. The configuration space is the collection of all the possible
configuration of robot’s possible configurations depending upon the total number of degrees
of freedom of the robot [33, 77].

Finally, it is noted that the literature classifies algorithms into two classes, roadmaps
and cellular decompositions. However, algorithms in these two classes are not completely
independent. For instance, a grid decomposition is viewed as a roadmap [81] where the
points are distributed uniformly over the target site. Similarly, a voronoi diagram is generated
using the random points in a probabilistic map.

2.6.4 Sensing Capability

When CPP is executed by an autonomous robot equipped with a perfect sensor, a cell is
considered fully covered after a single visit to the centre of the cell and no further visits are
required. This problem of CPP with the perfect sensor is also called as an area covering
problem [85] and a region filling problem [86]. If the target space is larger than the range of
robot’s sensor and can be decomposed into a set of cells then CPP translates to computation
of ordering of the decomposed regions [9].

If the autonomous robot has an imperfect sensor then CPP algorithm can no longer pro-
vide a guarantee of complete coverage. The approach aims to add an additional constraint on
minimal coverage required to be achieved for each cell. The problem of coverage with imper-
fect sensors has been compared with goal- oriented search in the target area [87]. The minimal
required coverage constraint often requires robot to cover the target site multiple times lead-
ing to multiple overlapping passes. The applications of area coverage robots with“imperfect
sensor” have recently emerged mainly in the field of extreme environments [88, 89]. However,
these applications also assume that coverage with imperfect (uncertain) sensor is possible
but only adds additional computational constraints.

Another important factor for classification of CPP algorithms is the operating environment
(air, ground and underwater) of the robot (see Fig. 2.4). In this section, the focus was mainly
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on the ground-based robots. Since, the operating environment of the autonomous robot in
Chapter 4-6 is air, the next section describes the literature in the domain of aerial robot based
CPP.

2.7 Coverage Path Planning for Aerial Robots

Aerial robots find application in a wide range of domains, like surveillance [90], disaster
management [91], precision agriculture [92], security [93], structural health monitoring [94],
photogrammetry [95], wildfire tracking [96], and cloud inspection [97]. The aerial robots
or Unmanned Aerial Vehicles (UAVs) comprises aerial platforms devoid of on-board pilots.
These platforms are either operated by humans remotely or automated by pre-programmed
flights. Intelligent systems integrated with on-board sensors play a major role in execution of
autonomous flights.

The technological progress in the development of aerial platforms pertaining to au-
tonomous flight has seen rapid deployment of UAVs for area coverage [98]. The upcoming
section discusses type of UAVs and further branches to the area discretisation techniques and
recent CPP algorithms.

2.7.1 Types of Aerial Robots

The UAVs can be classified into two types depending upon the configurations, fixed-wing
and rotary-wing. Given the control and guidance system, both the types of UAVs have their
own set of advantages and challenges [99]. The fixed-wing UAV comprises rigid wings
with an airfoil that allows UAV to fly using the lift generated by the forward airspeed. The
control surfaces in the wing allows the navigation control. The aerodynamics of fixed-wing
UAV provides the advantages of longer endurance flights and high-speed motion. The other
advantage is ability to carry heavier payloads as compared to rotary-wing UAVs. However,
the challenges of fixed-wing UAVs are additional requirement of runways for flight take-off
and landing, and inability to hover [100]. On the other hand, the rotary-wing provides
advantage of maneuverability using rotary blades. The other advantages include ability to
perform vertical take-off and landing, low-altitude flights, and hovering [99]. The rotary-wing
UAVs can also be classified as a single-rotor UAV and a multi-rotor UAV.

The single-rotor UAV is actually equipped with two rotors. The main rotor is used for
navigation and the rotor in the tail is used for control. This type of UAVs have an ability
to vertically take-off and land. As compared to their counterpart multi-rotor UAV, they
have a longer endurance flight and can carry high payloads. The major disadvantages of
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such platforms are mechanical complexity and elevated cost [100]. The multi-rotor can be
classified based on the number of rotor blades. The most common type of multi-rotor UAVs
are the quadcopter and the hexacopter. Recently, tricopters and octocopters have also been
developed. Multi-rotors UAVs have the advantages of agile platforms and ability to maneuver
and hover. Nonetheless, multi-rotor UAVs have limited payload and shorter flight endurance.
These UAVs have simplistic mechanical and electrical design [100].

Another type of UAVs of interest is the hybrid UAV. The hybrid UAV is a specific aerial
platform with the advantages of both types of UAVs, fixed-wing and rotary-wing. These
UAVs have the capability of vertical take-off and landing, high-flight speed and longer flight
time [101]. Finally, other factors for UAV classification in the literature are altitude and
endurance. In such cases, the UAVs can be classified based on low, medium, and high
altitude, and short and long endurance [102].

2.7.2 Area Discretisation

Given the target area that comprises the free space and the boundaries, the CPP problem
translates to computation of path that can cover the entire area of interest considering the
motion restriction and sensor characterisation of the robot. In the context of aerial target
environment, the obstacles in the space represent the no-flight zones.

As mentioned in Section 2.6.3, the target site is decomposed into a set of non-intersecting
regions also known as cells. There are an array of decomposition techniques that are applied
to determine the set of cells. The resolution and size of the cells and decomposition techniques
are problem dependent. The path for coverage of the cell is highly dependent on the cell size.
For cells of large size, several passes are necessary for complete coverage of the area. While
in the smaller cells, a single pass is enough for complete coverage. Generally, the size of
cell is proportional to the footprint of the sensor. In the next section, the target area and the
cellular decomposition techniques are explored.

Target Area

The target area for area coverage in literature is represented as a set of n vertices V =

{v1, . . . ,vn}. Each vertex vi ∈ V ,is described as a coordinate pair (vx(i),vy(i)) and the
internal angle γi. If vi is the current vertex then the next vertex vnext(i) of the polygon target
area can be computed as next(i) = i(modn)+1. The edge connecting between two vertices
vi and vnext(i) is denoted by ei. The length of edge ei is li = ||vi − vnext(i)||. Furthermore,
the target areas can contain no fly zone within the region and are depicted as a sequence
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Fig. 2.5 Different areas of interest explored during CPP missions: (a) Rectangular; (b)
Convex Polygon; (c) Concave Polygon with No-Fly Zones [72].

of obstacle-points {u1, . . . ,un}. Fig. 2.5 shows examples of three target areas of different
polygons.

The shape of the target area also plays an important role in designing coverage path. A
majority of the CPP approaches [72] consider diverse polygon shapes including concave,
convex and irregular shapes. However, a few of the approaches have restricted the coverage
path design to polygons that are rectangular in shape [42]. Recent approaches [103, 104]
have also considered no-fly zones while designing coverage path. These no-fly zones usually
indicate the region where coverage is not allowed or unnecessary.

Cellular Decomposition

The major requirement for the success of the CPP algorithm is to provide feasible solu-
tion in acceptable time limit. The successful coverage is achieved by decomposing the
target site using cellular decomposition techniques. This is usually achieved by applying
cellular decomposition [9]. In context of UAVs, literature contains ample of cellular de-
composition techniques [72]. But, the most common used technique is approximate cellular
decomposition.

Exact cellular decomposition process decomposes the target site into subareas, also
called as cells. Usually, the coverage of the cells is performed by simple set of motions like
back-and-forth. This allows the CPP problem to be reduced to a path planning from one
cell to another [9]. The robot traverses between spatially adjacent cells. The global inter
cell path is designed using an adjacency graph where cells are the nodes and edges connect
neighbouring cells. An adjacency graph is depicted in Fig. 2.6. After computing the global
inter-cell coverage path, the final coverage path comprises intra-cell coverage and inter-cell
connection path [71].
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Fig. 2.6 Adjacency graph representing the workspace splitted into cells [72].

The two relevant exact cellular decomposition techniques commonly used for aerial sur-
veys are: 1) trapezoidal decomposition and 2) Boustrophedon decomposition (Boustrophedon
refers to “the way of the ox”), as shown in Fig. 2.7. The first decomposition technique divides
the target area into a set of convex trapezoidal cells, and performs intra-cell coverage using
back-and-forth motions. The second decomposition technique divides the target area into a
set of non-convex cells using vertices of the obstacles. The critical points are determined by
inserting a vertical sweeping line along the selected obstacles vertices. The Boustrophedon
decomposition in comparison to trapezoidal decomposition generates fewer cells in order to
minimise the coverage path length.

The approximate cellular decomposition technique decomposes the target area into a set
of regular cells [9]. The regular cells are usually of square shape, but they can also be of
triangular or hexagonal shape. Several grid-based methods are applied after approximate
cellular decomposition to compute coverage paths [71]. The size of cells is proportional to
the footprint of the UAVs, as the main aim of CPP is to map the target area. The resolution of
cell is obtained using sensor requirements, resolution and overlapping rates, and the sensor
characteristics, as illustrated in Fig. 2.8(a).

The computed coverage path is a set of m waypoints W = {w1, ...,wm}. Each waypoint
wi ∈ W denotes a navigation command to the UAV. The waypoints also contain all the
necessary localisation information. Since, the cells are proportional to the footprint, the
center of each cell is referred as a waypoint, as shown in Fig. 2.8(b).
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Fig. 2.7 Two types of exact cellular decomposition: (a) Trapezoidal decomposition; (b)
Boustrophedon decomposition [72].

No Decomposition

The area coverage of regular-shaped polygons and non-complex areas using a single UAV
generally does not require any type of decomposition. The area coverage is performed by
the UAVs through simple geometric patterns. The most common coverage patterns are the
back-and-forth and the spiral. The back-and-forth motion is used in the Mission Planner,
the popular flight-control software [105]. In the back-and-forth coverage pattern, the UAV
moves along the straight lines crossed in both directions with closed-angle maneuvers at
the end of each round. In the spiral coverage pattern, the UAV covers the area by passing
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Fig. 2.8 Approximate cellular decomposition: (a) Projected area; (b) Regular grid with
waypoints [72].

through the external vertices of the area while reducing the radius towards the central point
after every complete circle.

Andersen [106] has proposed different types of coverage patterns for a rectangular area
and compared them in detail. The author has classified back-and-forth pattern as parallel and
creeping line, as illustrated in Fig. 2.9(a)-(b) and the comparative study finds its utility in
application where target area is large. Another interesting pattern is the square flight pattern
which is similar to spiral pattern. Unlike spiral pattern, it contains straight lines and 90◦
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Fig. 2.9 Simple flight patterns in rectangular areas with no decomposition: (a) parallel; (b)
creeping line; (c) square; (d) sector; (e) barrier [72].

turning maneuvers towards the right side. Also, the pattern starts at the centre and moves
towards the circumference. It is usually used when the application requires a uniform area
coverage, as shown in Fig. 2.9(c).

The sector flight pattern, illustrated in Fig. 2.9(d), contains a straight line with 120◦

turning maneuvers towards the right. The UAV returns to its starting point after completing
first batch of three sectors. Then, the same batch of three sectors is repeated but with the
displacement of 30◦. The last pattern of coverage used for area coverage is barrier pattern. In
the barrier pattern, the UAV executes a motion by visiting 12 spatially distributed waypoints
in the search area, as illustrated in Fig. 2.9(e). The trajectory between two points is circular
in nature. After providing the overview of the target area and area decomposition, the next
section dives deep into research work exploring the aerial coverage of distributed regions.



34 Background Theory

2.7.3 Multiple Distributed Regions

A vast majority of prior works have focused on computation of coverage path for a single
region [107, 108]. However, there can exist scenarios such as post-disaster relief, environ-
mental monitoring, military surveillance, search and rescue missions, where the UAV is
required to cover multiple regions. There are several works which explore the problem
of computation of coverage path for multiple disjoint regions. In addition to the need of
coverage path computation for multiple regions, instead of a single one, the problem with
disjoint regions introduces the additional challenge of generating least cost tours covering a
set of regions, also known as the Travelling Salesman Problem (TSP). The combination of
CPP and TSP, both of which are classified as NP-hard, introduces significant challenges.

This problem was first introduced by Xie et al. [42] who proposed a dynamic program-
ming solution to compute coverage path for multiple disjoint rectangular regions. The authors
further extended this algorithm for multiple convex region by proposing a genetic algorithm
solution [43]. Vasquez-Gomez et al. [109] attempted to solve this problem by proposing a
two step path planning algorithm. All these works have assumed that the UAV had sufficient
energy to cover all the regions. But only recently, potential energy limitation and constraints
have been considered when computing coverage path over multiple disjoint regions [44].
This work allowed the UAV to return to the depot to change its battery. However, this might
not be a realistic scenario in many cases and limited energy may lead to partial area coverage.
Nevertheless, appropriate execution of partial coverage can provide useful information of the
site. Recently, few works have explored optimisation of coverage path for partial coverage of
a single region [110–112].

2.8 Summary

In this chapter, readers are introduced to the optimisation problem and subtopics pertaining
to area coverage problem. The subfields of combinatorial optimisation are explored in depth.
The mathematical modelling tools like constraint programming that have been used later
on are discussed in detail to illustrate the coverage path problem formulation. Since, these
tools generate computationally expensive solutions, the exact algorithms and approximate
algorithms are explored to find optimal and suboptimal solutions. Furthermore, this chapter
acquainted the readers with a detailed overview of CPP literature. The chapter first explained
the classic approaches and taxonomy followed by synopsis of CPP literature. Finally , CPP
in the context of aerial robots is described by narrowing down to the research work exploring
the problem of CPP with multiple distributed regions.
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The gaps identified in prior works can be clustered into four major challenges. The first
two major challenges that autonomous robots face stem from imperfect sensing capabilities.
These challenges are further intensified in an extreme environment. Due to the imperfect
sensing capabilities of the autonomous robot is imperfect, robot needs to explore an area
more than once for complete coverage. There arises an interesting challenge of designing
an algorithm where trade off between coverage area and time is critical for success for the
coverage task. This research challenge is explored in Chapter 3 and 4. Finally, the last two
challenges stem from the adverse impact of limited energy and varying footprint,speed, and
power on long term autonomy. Chapter 5 and 6 explore the possible solutions to overcome
these challenges.





Chapter 3

Goal-Oriented Coverage Path Planning

3.1 Introduction

One of the key challenges for CPP, as identified in Chapter 1, is to equip mobile robots with
the ability to autonomously plan a coverage path to reach the static target effectively and
efficiently. The current approaches to achieve such tasks, however, are often time-consuming.
Therefore, in this chapter, an offline-online strategy is proposed to meet the speeding-up
challenge by efficiently modelling the environment using a priori information. In the ‘offline’
stage of the strategy, environment layout is segmented into a set of regions. The corners and
dead-ends are identified based on spatial mobility of the regions. The global path is then
computed by deriving a graph-structured, road map, using segmented regions. In the ‘online’
stage, the global path is traversed by selecting frontiers which concurrently minimise the
covered area and time. In case the path is obstructed, a re-planning strategy is deployed. The
proposed strategy is evaluated by various experiments against two baseline search approaches
in three simulated environments. The results manifest a significant reduction in time to
reach the goal and coverage area which caters to the objective set by decision makers given
time criticality of the coverage task. This chapter presents all the details of the developed
framework and an extensive analysis of this framework.

The remainder of the chapter is organised as follows. The overview of the problem
is presented in Section 3.2. This is followed by mathematical formulation of problem in
Section 3.3 to present a clearer picture of GO-CPP as a problem to the readers. In Section 3.4,
the proposed offline-online strategy is discussed in detail. The experimental evaluation of the
proposed method is performed in Section 3.5. Finally, the conclusions are summarized in
Section 3.6.
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3.2 Problem Overview

Chapter 1 discussed two problems, CPP and OSP. Due to the different objectives, both these
problems have different formalism and application. Recently, applications have emerged
where a robot is required to reach a goal in tandem with sensor based area coverage. This has
given birth to challenging CPP problem known as Goal-Oriented Coverage Path Planning
(GO-CPP). A literature review in Chapter 2 revealed that intensive research has been carried
out in the field of CPP. However, a combination of both the problems, GO-CPP, remains
unexplored. This sets up the stage for GO-CPP framework to be presented in this chapter.

CPP is a canonical problem in the field of mobile robotics, finding applications in diverse
fields like search and rescue missions [113–115], surveillance and monitoring [116–118] and
habitat conservatory programs [119, 120]. However, recent times have witnessed an advent
of challenging coverage tasks like Nuclear Decommissioning and Oil and Gas power plant
Inspection where the target (such as reactor core, pressure vessels, turbine) is stationary and
their location can be estimated using a priori knowledge. However, the main challenge stems
from strictly minimising the coverage time associated with the task [121, 122, 88].

Traditionally, a frontier exploration strategy [123] is used to exhaustively cover the
environment. The goal is perceived as a part of the environment and the robot is expected
to locate target by referring to occupancy grid that is incrementally built during coverage
of the environment. To speed-up this exhaustive coverage, the static targets are spatially
modelled [124] as a subspace of the site. In order to do so, a priori information of indoor
environment in the form of an architectural layout of the site (metric map or floor plan) is
used. However, any architectural layout is regarded as a non-deterministic environment for
path planning, due to the inconsistencies in the form of scale (between online grid map and
floor plan) and presence of dynamic or unmapped obstacles like debris or radiation. This
has been the reason that heuristic based GO-CPP methods (like branch and bound [125] or
A* [126]) have failed to perform efficiently in practical scenarios [127].

To overcome the challenges posed by GO-CPP with strict time constraint, a novel offline-
online strategy is proposed (see Fig. 3.1) which performs a time-efficient geometrically-
aware coverage task. The coverage strategy exploits underlying structure of the search site,
spatially modelling the target using walls and openings which are typically not subject to any
major change over the years and thus still can be classified as a relevant source of a priori
knowledge [128].

The ‘offline’ stage decomposes the layout into a set of regions using ‘physical’ and
‘virtual’ representative lines aligned along the walls and perpendicular to the openings,
respectively. The segmented regions are clustered into three sets: ‘junction’, ‘dead-end’ and

‘corner’ according to their spatial mobility and connectivity with its neighbouring region.
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Fig. 3.1 Work flow of the proposed offline-online strategy.

After decomposing the layout as a set of regions, the goal is spatially modeled as a destination
region. To keep-up with the scale related inconsistencies, the path is planned as a set of
regions which the robot needs to traverse to locate the target. A graph structured road map
is built, with each node as a region which contains all the possible paths from source (start
location) to destination (target). Any node in the road map is either a ‘corner’ or a ‘dead-end’
only if it is the source or target region. Thus, planned path allows the robot to avoid getting
stuck in a corner or dead-end while searching for the goal.

The ‘online’ stage explores the site using frontier exploration [123]. The robot extracts a
set of frontiers from the occupancy grid which it incrementally builds during exploration.
From the detected set of frontiers, a frontier is selected for traversal based on the criteria which
allows the robot to follow planned path while minimizing coverage area and maximizing
information gain. However, if an obstacle is encountered at runtime, a re-planning strategy is
deployed using the road map which improves robustness by making the robot aware of close
alternatives. The re-planning strategy is tested by integrating random obstacles at runtime.

3.3 Problem Formulation

In the given problem, a robot stationed at a random location has to explore an indoor
environment to reach a static target. Starting from its current position cr, the robot explores
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the environment Γ ⊂ R2 while constructing the map as an occupancy grid until it finds the
static target tr. Taking the input from an architectural layout, static target location is modeled
as a region γtarget of environment Γ, due to non-deterministic environment and uncertainties
of layout. The aim of the robot is to reach target region by minimizing the exploration area.
The problem is illustrated in Fig. 3.2. If P is the path robot executes to reach from cr to γtarget

then γknown(P) is the region it explores while traversing the path. Let χ(w) be a function that
outputs the area under input region w and F(P) be proportion of entire site explored during
traversal of P.

F(P) =
χ(γknown(P))

χ(Γ)
(3.1)

The problem translates to finding optimal path P∗ such that

P∗ = arg minP F(P) (3.2)

subjected to,
γtarget ⊆ γknown(P)

Fig. 3.2 The robot at cr searches an extreme environment Γ to find a target region γtarget
exploring γknown region such that γtarget ⊆ γknown.

3.4 The Proposed Strategy

This section presents an offline-online strategy for planning a path for GO-CPP. The offline
stage exploits underlying structure of the site by constructing a road map of paths to static
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target. In the online stage, each region of the planned path is covered with the aim of
minimizing coverage area. Both the stages are discussed in detail below.

3.4.1 The Offline Stage

An architectural layout is a schematic projection of the site. Formally, layout X is a set of n
disjoint rectilinear polygons X1,X2, . . . ,Xn such that

X =
n⋃

i=1

Xi (3.3)

Each rectilinear polygon denotes an important planar landmark which is often referred to
as ‘room’. All the rooms are enclosed by wall segments, which are the edges of rectilinear
polygon in X denoted by bold lines. Rooms are interconnected using an ‘opening’, which
can be a door or any other outlet in a wall segment of the room. Let O = {o1,o2, . . . ,ow} be
a set of openings in X .

Map Segmentation

Often, the layout like floor plan and evacuation maps are images which contain symbols
and markings to represent emergency exit, room names, fire extinguishers, furniture, etc.
These input maps are pre-processed using template matching technique [129] to remove all
the symbols and clean the layout. The ‘clean’ representation of layout is referred as map
X ′. Extraction of the wall segment from a layout is a well researched problem [130], [131].
However, the technique proposed by [132] is selected due to its robust nature to work well
on a variety of layouts ranging from grid maps to floor plans.

The walls are represented as line segments in the layouts. The method detects line
segments S using Canny Edge detector [133] and processes it further by Hough line trans-
form [134] as shown in Fig. 3.3. The lines segments are then hierarchically clustered
according to the angular coefficients into set C. Each cluster Ci ∈C is clustered according to
the spatial proximity into Wi,k. The wall segment is considered as a ‘physical’ representation
line which segments a layout into ‘room’.

However, for a time-constrained GO-CPP, a robot does not need to cover all the rooms
completely. A part of room is covered if it contains target or brings the robot closer to target
location. Therefore, entity ‘room’ must be segmented into a set of regions using openings.
The spatial localization of openings define permitted movement in X ′. The openings O are
identified if there exists walls in the cluster Wi,k which are collinear. This intuition drives
Algorithm 1 to segment floor plan X into a set of closed convex regions, Q = {q1,q2, . . . ,qm}
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Algorithm 1: MAP SEGMENTATION
Input:
1. X ′ : Map
2. O = {o1,o2, . . . ,ow} : Set of openings
Output: Q = {q1,q2, . . . ,qm} : Set of Regions

1 begin
2 Initialization:
3 1) K,Q = NULL
4 2) X ′′ = X ′, Ô = O ◃ X ′′ denotes modified floor plan and Ô is a set of opening in X ′

5 for each ôi ∈ Ô do
6 Draw prependiculars to opening (ôi) between two wall segments in X ′ ◃

Prependiculars closes the existing gap of at least one opening
7 Removes closed openings from Ô

8 Determine, K = {ki | ki : closed polygon in X’ }
9 Q = Region_Label (K,Q) ◃ Q satisfies the condition stated in equation 3.4

10 Function Region_ Label:
11 for each rectilinear polygon ki ∈ K do
12 Assign label qi to ki

13 Q = Q∪{qi}
14 return Q

(a) (b) (c)

(d) (e) (f)

Fig. 3.3 Illustration of (a,d) layout map [135] (b,e) wall segments detection (c,f)
segmentation of the map.

where
Q = {qi | ∃ edge of qi ⊥ ot ; where 1 < t < w} (3.4)

The perpendicular drawn at opening junctions are ‘virtual’ representative lines. Fig. 3.4b
illustrates map segmentation for the floor plan depicted in Fig. 3.4a.
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(a)

(b)

(c)

Fig. 3.4 Site A represented as (a) a floor plan (b) a segmented map (c) with obstruction.
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q1 q2 q5 q7 q20

q9 q14

q8 q10 q19 q18 q15 q11 q12

Fig. 3.5 Road map of site represented in Fig. 3.4

Road Map

Due to non-deterministic nature of the environment and uncertainty of scales, spatial occur-
rence of the goal is modeled as a region, qd . For any given environment, while searching
for the destination region, there can exist a set of paths P = {p1, p2, . . . , pz} which the robot
can follow. The offline stage of the framework targets to define all paths in P as traversal
of regions in Q. A path pl ∈ P in T G(V,E) with qs as source region and qd as destination
region can be formulated as:

pl = ((qs,qk1),(qk1,qk2), . . . ,(qkm,qd)) (3.5)

All paths in P are represented as a directed graph, T G(V,E), consisting of vertices V =

{v1,v2, . . . ,vb}, connected using edges E ⊆ V ×V . The vertices V represent regions in Q
such that V ⊂ Q and edges E indicate connection between them. Algorithm 2 constructs
a graph given a set of regions Q. Two vertices vi and v j in T G(V,E) are connected if, and
only if, region corresponding to both the vertices are neighbours in modified map X ′′ and
there exists a common edge between the regions which is a ‘virtual’ representative line.
N(qi) denotes neighbours of regions qi which is determined using Manhattan distance. If
two regions in X ′ share a common edge which is a ‘virtual’ representative line, it implies
that robot can move from one region to another and vice versa. Considering time constraints,
it is judicious for a robot not to venture into corners and dead-end until they are modelled
as target regions. As the robot uses frontier exploration [123] to cover the environment in
online stage, to minimize coverage area, frontiers need to be selected in the regions which
robot needs to traverse based on mobility. Regions are identified as ‘corners’, ‘dead-end’
and ‘junctions’ based on spatial mobility.

The spatial mobility of any region qi is defined as a degree which is number of edges in
the region qi that are ‘virtual’ representative lines. Any region with degree = 1 represents
dead-end loops and is not added to T G(V,E) unless the region is source or destination. For



3.4 The Proposed Strategy 45

Algorithm 2: ROAD MAP
Input:
1. Q = {q1,q2, . . . ,qm}: Set of regions
2. qs,qd : Source and destination region
Output: T G(V,E) : Road Map

1 begin
2 Initialize: T G(V,E) = φ

3 T G(V,E) = Add_Node(qs,qd ,T G(V,E)) ◃ Robot starts traversing from source region qs

to destination region qd

4 Function Add_Node ( qi,qd ,T G(V,E) )
5 Add qi as a vertex to T G(V,E)
6 if qi == qd then
7 return T G(V,E) ◃ Robot reaches destination region qd

8 for each region q j ∈ N(qi) do
9 if ∃ (common edge between q j and qi ̸= virtual) then

10 if degree(q j)> 2 then
11 Add_Node( q j,qd ,T G(V,E) ) ◃ q j is a junction region

12 else
13 if degree(q j) == 2 AND q j is not a corner then
14 Add_Node( q j,qd ,T G(V,E) )
15 ◃ Robot avoids traversing corners

16 else
17 if degree(q j) == 1 AND q j == qd then
18 Add qd as a vertex to T G(V,E)
19 return T G(V,E)
20 ◃ Robot reaches destination region qd and searches for the goal

21 return T G(V,E)

instance, regions q24, q21, q22 in map illustrated in Fig. 3.4b are considered dead-end loops.
Similarly, corners are identified as regions with degree = 2 such that both the edges which
are ‘virtual’ are perpendicular to each other and have a common end point. Regions like q6,
q4, q17 and q16 in Fig. 3.4b are examples of corners. All the remaining regions are labelled
as ‘junctions’. The map of site A is used as a running example to elucidate Algorithm 2 as
illustrated in Fig. 3.5.

Path Selection

The generated road map T G(V,E) encompasses multiple paths, which the robot can follow
to reach destination region from source region. The next objective of offline stage is to find a
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path pi that minimizes time to reach target and coverage area of the site. A utility function
F(pi) is defined which tries to achieve the aforementioned objective:

F(pi) = Ps(pi)+ p̂i (3.6)

where, Ps(pi) is the probability that robot is successfully able to tread entire path pi and
p̂i is the number of the regions which lie in path pi. The probability (Ps(pi)) of robot to
reach the destination region qd traversing a path (pi) is highly dependent upon its ability to
successfully traverse all the regions individually that belong to path pi. It is assumed that
robot’s probability (ηqi) to traverse a region qi with obstruction is 0.5.

Ps(pi) = ∏
qk∈pi

(1−ηqi) (3.7)

Thus, a global path pk is selected using:

pk = min
pi∈P

F(pi) (3.8)

The selection of global path pk is oblivious to presence of obstacles like debris. This
information can be gathered by the robot using sensors at run time. This requires strategy to
replan the global path in case of an obstacle blockage.

3.4.2 The Online Stage

The first stage accounts for planning global path as a set of regions using the layout. The
second stage then targets to narrow down on local coverage of each region of selected
global path pk. The challenge of directing a robot in real-time can be formulated as iterative
identification of prospective uncovered regions, selection of one of them and path planning
for robot to reach the selected region. The identification of uncovered regions is conditioned
to representation of the traversal site by robot. In this case, it has been achieved by employing
frontier-based exploration, which relies on occupancy grid as a representation for navigation
to uncovered regions. The occupancy grid maps embody a region of traversal site within
a grid. Initially, all the cells are labelled as ‘unknown’. As the robot navigates, occupancy
likelihood for each cell is updated using real-time sensor data. Using occupancy likelihood,
the cells are labelled as free, occupied or unknown. A robot recursively seeks to reach an
uncovered region by navigating to the frontier cells that are adjoining to free and unknown
cells. The segments of frontier cells that are spatially adjacent are grouped into ‘frontier
regions’.
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Algorithm 3: SITE TRAVERSAL
Input:
1. cr: Start robot position
2. pk: Selected global path
3. T G(V,E) : Road Map
Output: Locate Target

1 begin
2 Initialization:
3 1) r = cr ◃ Current robot position, r as start location
4 2) fc: next frontier for coverage
5 %FRONTIER SELECTION:%
6 while r ̸= STATIC TARGET do
7 Obtain an occupancy grid map G for robot position r
8 Find t: entry point of next region in pk
9 Find F = { f1, f2, . . . , fy}, multiple frontiers in G

10 if F = NULL then
11 All the area covered, No target found
12 return FALSE

13 Ob j = [φ ]
14 ◃ Store the values of objective function of all the frontiers in F in an array Ob j
15 for each frontier f j ∈ F do
16 Calculate C( f j) and O( f j) using Equation 3.12 and 3.9, respectively.
17 Ob j[ j] = O( f j)

18 fc = max f j∈F Ob j
19 Find a path p̂c from r to reach fc using G
20 Move Robot from r to fc following path p̂c

21 R = fc ◃ Update current robot position

22 if r == STATIC TARGET then
23 Target found
24 return TRUE

Region Exploration

The robot builds occupancy grid map G of the environment using GMapping SLAM al-
gorithm [136]. At any given instance, there can exist multiple frontiers such that F =

{ f1, f2, . . . , fy} in an occupancy grid G. The approach selects best frontier among available
choices for robot using a Boltzmann-like objective function formulated as:

O( f j) = e(−βC( f j)) (3.9)
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where, f j is a frontier in F , C( f j) is the cost function estimating the cost incurred by the
robot when traversing from current position to frontier f j and β is a constant. After selecting
the frontier, robot navigates from current position to the selected frontier.
Calculation of Cost Function :
Let r, t ∈ R2 be the current position of robot and intermediary target point (which is the entry
point of next region q′i in path pk), respectively. The distance between two coordinates points
x1 and x2 is calculated using D(x1,x2). D(x1,x2) : R2 →R is an input operator that computes
the euclidean distance between x1 and x2. Now, the following parameters are introduced :

F1 =
D( f j, t)

Σ
y
j=1D( f j, t)

(3.10)

F2 =
D( f j, t)
D(r, t)

(3.11)

F1 and F2 explore the affinity between frontier f j and target t with respect to other frontiers
and current robot position, respectively. A robot at the location r calculates the cost of all
frontiers ∀ f j ∈ F using:

C( f j) =
w1.F̂1 +w2.F̂2 −w3. ˆI.G( f j)

1− e−member( f j)
(3.12)

where, w1,w2 and w3 are the user-defined weights that are used for tuning of normalized
parameters F1,F2 and I.G in cost function according to different layouts. The cost function
C( f j) ensures that the robot selects only those frontiers which lie in the regions of selected
path pk. This restriction has been imposed by employing a membership function member( f j)

as follows,

member( f j) =

{
∞, i f f j ∈ (qi OR q′i)
0, otherwise

(3.13)

where q′i is the next region to be traversed after qi. Due to scale inconsistency, the layout is
aligned with respect to grid map G manually1. From given set of frontiers, movement M is
calculated to which frontier will yield highest value of information gain. I.G( f j) estimates
amount of information the robot will gain on movement M to frontier f j from r such that:

I.G( f j) = H(G|M )−H(G) (3.14)

1This process requires human effort which is done only once and takes few minutes and has been adopted in
past by many approaches [137]. However, it can be automated as proposed in [138].
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(a)

(b)

(c)

Fig. 3.6 Simulated (a) Environment 1: Nuclear Site [139] (b) Environment 2: Debris prone
extreme environment [140] (c) Environment 3: Industrial Environment [141].
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The movement M comprises multiple steps spanning over the path ( p̂c) 2 between f j

and r. H(G) is the information entropy of probability distribution defined ∀ ci, j ∈ G

H(G) =− ∑
ci, j∈G

po(ci, j)log(po(ci, j)) (3.15)

3.4.3 Re-planning Strategy

The selection of a global path pk minimises coverage area and time. If the selected path pk is
non-traversable, there is a need for the robot to detour to a different global path selected via
following steps:

1. From pre-computed road map, trace path pk backwards using the regions already
covered till it reaches a region with its outdegree3 greator than 1. This region is
labelled as q′′i . Station the robot at entry point of q′′i .

2. From the current region q′′i , robot can follow a set of possible paths (P′) apart from
currently traversed pk to reach destination where:

p′j = ((q′′i ,qt1),(qt1,qt2), . . . ,(qtm ,qd)) | ∀p′j ∈ P′

3. Calculate F(p′j) using Equation 3.6 and choose a new global path pk using Equation 3.8,
from the region q′′i .

4. Now, the robot selects the next frontier using Algorithm 3 with the updated path pk.

If there exists no obstacle-free path, the robot returns back to entrance. For instance, if there
is an obstruction in state q5, q7 and q9, as illustrated in Fig. 3.4c. Then, the robot re-routes
and selects a different path via region q8.

3.5 Experimental Evaluation

Performance evaluation of the offline-online strategy has been carried out through a com-
prehensive set of simulation-based experiments. The main motivation behind offline-online
strategy is to minimise coverage area and time in online stage for robot operating with time

2 p̂c represents the path between two frontiers which the robot follows in runtime while moving along the
global path pk.

3In a directed graph, outdegree of a vertex is the number of outward directed edges from a given vertex.
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constraints. Thus, the strategy is evaluated using two metrics: coverage time (Ct) required to
reach goal and covered area (Ca) which is defined as:

Ca =
count(Fr ∪Or)

Celltot
(3.16)

where, Fr and Or are the set of free and occupied cells in the generated grid G, respectively.
Celltot is the total number of cells in the grid and count(X) is a function that outputs
cardinality of input set X.

3.5.1 Experimental Setup

To ensure that the results complement existing evaluations in literature, industrial inspection
robot, CARMA [139] is simulated in ROS Gazebo4. CARMA, a modified TurtleBot 2 robot,
has conducted radiological inspection of largest nuclear facility in Europe, Sellafield as
reported in [139]. CARMA is equipped with a sensor package containing floor monitoring
and detection dosimeters. It builds occupancy grid map of resolution 0.05 m/grid using
Kinect sensor mounted on the robot.

Three indoor environments with different characteristics are considered. The first environ-
ment [139] that was used to test radiological robotic inspection is illustrated in Fig. 3.6a. The
second environment [140] was used to test a debris clearing robot in extreme environment
shown in Fig. 3.6b. The third environment [141] was proposed for Agile Robotics for Indus-
trial Automation Competition 2017 as shown in Fig. 3.6c. However, for the experimentation
purpose, location of the goal is varied across the environment. This demonstrates the be-
haviour of the strategy across multiple scenarios with variation in dimensions of layout. There
are twenty GO-CPP operations carried for experimental evaluation. To evaluate robustness
of re-planning strategy, random obstacles in the global path are inserted.

3.5.2 Offline Stage

The proposed approach uses layout as background information to pre-plan area coverage. The
layouts of all three environments are segmented into a set of regions using map segmentation
algorithm. For the given layouts (refer Fig. 3.6), map is segmented to derive a set of regions
Q, illustrated in Fig. 3.7. The map segmentation details for all environments are tabulated in
Table 3.1. For all twenty scenarios, a road map is computed with Algorithm 2 using the set
of regions Q. Few of the computed road maps are illustrated in Fig. 3.8. From the derived
road map, a global path is selected using a utility function described in Equation 3.8.

4Gazebo is a 3D dynamic simulator
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(a)

(b)

(c)

Fig. 3.7 Region segmentation in layout of (a) Environment 1 (b) Environment 2 (c)
Environment 3.
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Fig. 3.8 Road map of static target search operation in Environment 1, robot stationed at
source region q1 and static target location in (a) region q3 , (b) region q25, and (c) region q24.

3.5.3 Evaluation of Coverage Time

The main aim of offline-online strategy is to minimize coverage time (Ct) and coverage
area (Ca) for the robot traversing the environments. The global path selected minimizes
coverage time using utility function F(.) in Equation 3.8. The utility function F(pi) for a
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Table 3.1 Details of all three environments.

Environment No. of Regions Area (m2)
#1 27 16×10
#2 6 50×12
#3 9 30×20

path pi depends upon p̂i, number of regions in path pi. Therefore, both the evaluation metrics
are evaluated with respect to p̂i. A total of twenty GO-CPP operations are performed for
given environments and for each experiment 20 instances of Ct are recorded. The results are
reported after taking average over these 20 distinct runs.
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Fig. 3.9 Analysis of coverage time with respect to number of regions.

Fig. 3.9 depicts the experimental observation of coverage time recorded, while executing
the proposed approach with respect to number of regions. From the illustrated figure, there
is an observed trend that with an increment in number of regions in the global path, the
coverage time Ct increases. However, it must be noted that all the regions in a global path
can have different areas. For instance, region q2 and region q16 in Fig. 3.7a, even though they
are neighbours, but their areas are different. Therefore, it was decided to further analyse Ct

in respect to another parameter, areapi .The parameter, areapi is the ratio of area of global
path pi with respect to the total area of the site.
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Fig. 3.10 illustrates Ct of the proposed approach with respect to area of all the regions in
global paths. The area of global paths increase as the goal moves farther away from the start
location of the robot. Therefore, coverage time to locate the target increases. The increase
in areapi also results in reduction of the number of frontiers penalised in Equation 3.12. To
further elucidate the efficacy of offline-online strategy, it was compared with two categories
of baseline techniques.
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Fig. 3.10 Analysis of coverage time with respect to global path area ratio.

Comparison with existing works:
The performance of the proposed approach was compared with following methods widely
used for GO-CPP.

1. Caley et al. [124]: This method spatially models the goal location (exit) and selects
frontier closest to the spatial location of the goal.

2. Bird et al. [139]: This method covers the environment in a random fashion, a similar
approach has also been implemented in [142].

The experiments are conducted in three different scenarios by varying goal location in the
environments. In the first scenario, the robot is required to traverse two regions to reach the
goal. As tabulated in Table 3.2, the proposed approach is able to perform significantly better
than other two methods. However, the performance of nearest frontier method is comparable
to ours. In the second and third scenario, to locate the target, the robot is required to traverse
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four and six regions, respectively. As the distance between initial robot position and static
target increases, the proposed methods outperforms both the baseline methods. This is due
to the fact that geometric layout awareness in GO-CPP operations allows the robot to avoid
traversing dead-end loops and corners in turn minimising the time.

Table 3.2 Performance of different methods for static GO-CPP.

Case Methods Coverage Time (s) Coverage Area
Proposed 12.307 0.082051

[124] 18.184 0.110

[142], [139] 71.769 0.278
Proposed 25.023 0.2792

[124] 54.595 0.596

[142], [139] 251.547 0.773
Proposed 45.429 0.6013

[124] 102.57 0.818

[142], [139] 341.709 0.923

To put things in perspective, the experiments elucidate that minimal coverage time Ct

is observed due to geometric-layout awareness in the form of a road map. As the distance
between the static goal and starting position of robot increases, the robot is required to cover
more area to reach the target location. The performance of proposed approach outperforms
the baseline approach in such scenarios. This can be leveraged to the ability of our approach
to identify regions as corners and dead-ends which equips the robot to avoid covering such
regions. This reduces coverage area which in turn minimizes search time. This versatility
of the proposed approach to minimize coverage area has been further emphasised with
evaluation of map built during the GO-CPP operation in the next subsection.

3.5.4 Evaluation of Coverage Map

As the robot traverses an environment, it builds an occupancy grid map which is also used
for frontier exploration. The objective of proposed approach is to minimize coverage area,
thus the experiment use the environment map which robot builds using its sensors during the
trip as one of the parameters to evaluate the performance of the proposed approach.

Fig. 3.11 depicts the experimental observations of Ca (refer Equation 3.16), recorded
in the proposed approach with respect to varying number of regions. From Fig. 3.11, it
is evident that as the number of regions in the global paths increases, the coverage area
increases. The increase in number of regions indicates that the distance between static goal
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Fig. 3.11 Analysis of Coverage Area for Global paths with different number of regions.

and start position of robot increases which then requires the robot to cover more area. Further
analysis of results in the light of ratio of area under global path with respect to total area,
(areapi) (refer Fig. 3.12), shows that the increment in offline computed path area also leads
to increase in coverage area.

However, if the map generated by the proposed approach is compared with the map gen-
erated by the other two methods, the proposed approach outperforms by covering minimum
area as evident in Table 3.2. This can be attributed to the fact that selection of frontiers for
coverage using the offline computed information allows the robot to traverse regions which
are well connected spatially with respect to the coverage path.

3.5.5 Dynamic Obstacle

In previous Section 3.4.3, the re-planning strategy for the robot was discussed when it
encounters obstacles in the pre-planned global path. There can exist a scenario where the
door is closed or path is blocked due to presence of debris. In this section, the behaviour of
the proposed approach in such a scenario was discussed.

An experimental study to evaluate the re-planning strategy is performed by comparing
the re-planning strategy with other GO-CPP works where the robot deploys a tedious path
re-planning from scratch [143], [138], [144]. The three cases of GO-CPP operations were
considered by varying the number of regions in pre-planned path: 1) Case 1: p̂i = 4, 2) Case
2: p̂i = 5, and 3) Case 3: p̂i = 6.
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Fig. 3.12 Analysis of ratio of coverage area with respect to total area of global path.

Fig. 3.13 Average coverage time with dynamic obstacles for three cases.

It is observed in Fig. 3.13 that after the robot encounters dynamic obstacles, there is
an increment in coverage time Ct . However, the road map built offline allows the robot
to traverse to the nearest region and re-plan a new optimal coverage path from a closed
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alternative, rather then re-planning tediously from the start location. The experimental
studies indicate the robustness of the proposed offline-online strategy for GO-CPP of a static
target.

3.6 Summary

In this chapter, a novel offline-online strategy is presented which allows a robot to reach
a static goal in any given indoor environment using the architectural layout as a priori
information. The proposed approach in offline stage segments the layout into a set of regions
and a global path is selected by generating a graph structured, road map, which prevents
the robot wasting time traversing irrelevant areas like corners and dead-ends. The robot in
online stage treads towards the target following the derived global path by selecting frontiers
which minimize the coverage time by covering minimum area. If the robot encounters an
obstruction, the re-planning strategy is deployed. The proposed approach was evaluated
using three simulated indoor environments in Gazebo. The results show that the robot is
able to reach the target in reduced time covering minimum area, which is in line with the
requirement of strict time constraints. The derivation of a graph structured road map from
layouts increases the geometric layout awareness and assists the robot to reach the target.

However, the proposed strategy’s reliance on the architectural layout is a major bottleneck.
If the static target is spatially displaced or a geometric error has crept in placement of walls
and openings, the roadmap generated by offline stage misguides the robot during area
coverage operation. Thus, there is a dire need to provide an updated map as an input to
offline stage. The next chapter of this thesis explores techniques to map the environment.





Chapter 4

Coverage Path Planning of Distributed
Regions with Precedence Provision

4.1 Introduction

As discussed in the previous chapter, an updated map of the site is a requirement for robot
based area coverage. However, the present decade has witnessed an increment in number
of sites hosting extreme environments that require immediate mapping. The conditions
prevalent in such sites vary significantly and may be characterized by extreme temperature
and radiation levels. Thus, the current approaches to compute coverage path in these hostile
conditions are not feasible. The area coverage of such sites requires robots to consider
the correlation of work providing precedence provision in visiting regions. In this chapter,
coverage path planning strategies are proposed which provide precedence provision. To meet
the challenges, the problem is divided into two phases: inter-region and intra-region path
planning.

In the ‘inter-region’ path planning of the approach, the site comprising of multiple disjoint
regions are modelled as a connectivity graph. Two novel approaches, a Mixed Integer Linear
Programming (MILP) and heuristic based techniques, are proposed to generate the ordered
sequence of regions to be traversed. In the ‘intra-region’ path planning of the approach, each
region is decomposed into a grid and Boustrophedon motion is planned over each region. The
ability of this combined approach to provide complete coverage is proved. An investigative
study has been conducted to elucidate the efficiency of the proposed approach in different
scenarios using simulation experiments. The proposed approach is evaluated against baseline
approaches.
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The remainder of the chapter is organised as follows. Section 4.2 provides a detailed
overview of problem motivation. The sensor characterisation in the presence of radiation is
presented in Section 4.3. This is followed by problem formulation in Section 4.4. Section 4.5
encapsulates a discussion on the proposed inter-region path planning technique. The intra-
region path traversal technique is presented in Section 4.6. The experimental evaluation of
the proposed method is given in Section 4.7. Finally, the research work is summarised in
Section 4.8.

4.2 Problem Motivation

The previous chapters have established that CPP is a well researched problem in literature [9,
11, 71]. However, the research has typically focused on coverage of single region or multiple
connected regions. Even though few research works have considered multiple distributed
regions but failed to consider sites that can be characterized by multiple disjoint regions and
require inclusion of precedence provision, due to the prevailing environmental conditions
like high pressure, extreme temperature and presence of radiation.

Recent accidents at such sites like Fukushima Daiichi nuclear meltdown, and Gulf of
Mexico oil spill etc. have resulted in environmental catastrophe. This has generated a global
demand of periodic coverage of sites with extreme environment. Human inspection of these
sites is hazardous and requires a robot to perform this daunting task. The inspection or
coverage of an extreme environment site has following salient characteristics which need to
be considered while computing coverage path:

1. Disjoint Regions: The precarious sites consist of regions which are spatially distributed
and a robot is entrusted to cover each region. Some applications of coverage of disjoint
regions are survey of post-disaster scenarios [145], and precision agriculture [109].

2. Correlated Nature of Work: Coverage of the site requires the robot to perform sensing
and actuating actions like corrosion check and radiation monitoring [121, 122, 146].
There exists a certain degree of correlation between these actions which impose
requirement of visiting regions with a precedence provision. An experimental study is
conducted at a radiation laboratory to model effect of radiation on the sensors. The
experimental studies revealed that the annealing process starts as soon as radiation
exposure is removed. Thus, it can be concluded that after covering regions which have
a presence of radiation, the next region must be a non-critical area.

The development of robots that can survey sites has revolutionized the field of surveillance
and inspection. The recent [147] robot based fixed altitude CPP problem mapped environment
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monitoring problem as a multiple target visiting problem. The multiple targets visiting
problem was then formulated as Travelling Salesman Problem (TSP) [148]. TSP generated
an optimal path where each target was visited once taking into consideration disjoint regions,
however ignoring the constraint of correlated nature of work. Recently, robot ‘CARMA’
(Continuous Autonomous Radiation Monitoring Assistance) [149] used sensor-based CPP
to inspect Sellafield nuclear facility. However, it failed to consider distributed nature of
regions. In other cases, where the robot was assigned to inspect any region [71], [150], CPP
problem was formulated as derivation of the optimal path, so that one region was covered
considering the precedence provision. Another recent aerial robot-based post-disaster survey
had proposed a variant of grid based TSP solution for systematic investigation of site with
distributed regions [42]. However, it failed to eliminate the sub tours [151] which is an
integral problem of TSP.

Although, aerial robot based coverage has been studied extensively, to the best of the
authors’ knowledge, none of the works focus on the robot based coverage path planning
techniques considering both the salient characteristics. The research in this chapter seeks to
bridge this gap, by proposing a coverage path planning technique which covers any site with
disjoint regions providing precedence provision.

In this chapter, a strategy is adopted that provides a solution to the problem of coverage
of multiple non-overlapping regions with given precedence (see Fig. 4.1). The CPP problem
for multiple disjoint regions is first presented as MILP formulation . As the problem is
very complex in nature, use of MILP formulation makes the solution approach highly
compute intensive, and restricts its scalability to problems containing only a small number
of regions. However, the intended application of area coverage requires the robot to cover
vast geographical areas, where both the number of regions and their average sizes may be
pretty large. This demands a heuristic solution that generates a set of feasible solutions for
the coverage path planning problem for disjoint regions.

A scenario is considered where the regions are far apart, therefore the distance between
two regions can be approximated as distance between their centroid. The proposed scheme
treads a route by initially dividing the problem into two phases: Inter-region path planning
and Intra-region path planning. In the first phase, an attempt is made to answer a pertinent
question: How can a robot cover the entire site by visiting each region while considering
the specified order due to correlated nature of regions. A MILP solution and a construction
heuristic, Inter-Region Path Planning (‘IRPP’) are proposed that generate the order of inter-
region traversal. This order serves as an input to the second phase of ‘Intra-region traversal’,
where the entry and exit point for each region are calculated on the basis of preceding and
succeeding region, in the order of generated inter-region traversal. Deriving this information,
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Fig. 4.1 Flowchart illustrating an overview of all the steps required to compute the coverage
path.

the second phase first decomposes target site into a grid and then calculates Boustrophedon
Motion between entry and exit grid cell for each region.

4.3 Sensor Characterisation

The area coverage of an extreme environmental site is daunting task. It is interlaced with the
time intensive challenges and have complex environmental issues. In this section, author tries
to address the environmental issue of degradation of sensors during the operation at target site.
In turn, leading to breakdown of robots at the site and increasing the radioactive wastes [139].
Therefore, there is a dire need to further model the degradation induced in the sensors. An
experimental study is conducted to characterize the radiation induced degradation in the depth
sensors as a function of exposure time. The depth sensor chosen for irradiation is Microsoft
Kinect which has been used previously by the aerial robots for area coverage [152, 153].

Firstly, the degradation of the Kinect sensor is observed as noise in acquired depth images
during radiation experiments. Then, induced degradation is classified as Displacement
Damage (DD) and Single Event Effect. The experimental evaluations have been illustrated
in Fig. 4.2.This work serves as a building block in assisting aerial robots to perform area
coverage in a nuclear sites with disturbed regions in a better fashion.
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Fig. 4.2 Experimental Evaluation.

4.3.1 Experimental setup

The exposure of the Kinect sensor to fast neutron was carried out by conducting experiments
at ChipIr facility in ISIS, Rutherford Appleton Laboratory, Didcot, UK [154]. This facility
provides a neutron spectrum which is suitable to emulate effects of terrestrial neutrons in
any given electronic sensor. The ChipIr neutron flux (with 10 MeV < En < 800 MeV ) has
been measured to be 5 × 106 cm−2s−1. The Kinect sensor was irradiated for about 20
hours at ChipIr, that amounts to 3.5 million years of natural exposure. Fig. 4.3a depicts the
experimental setup on the beam lines at ChipIr facility.

The Kinect sensor is capable of capturing RGB, Infra-Red (IR), depth, skeleton and audio
streams simultaneously at a given time instance. The IR emitter projects a speckle pattern
over the given scene. The reflected pattern is captured using IR camera. This allows the
depth of objects in scene to be gauged by correlation [155]. Thus, neutron beam is focussed
on IR emitter first for 10 hours. Then, an annealing process at room temperature for a time
period of 10 hours is performed. This is followed by exposure of neutron beam focussed at
IR camera for another 10 hours.

The main objective of this experimental study is to measure the degradation effect on
depth images acquired using Kinect due to neutron exposure. The degradation manifest
as noises in depth images which is characterized as a function of radiation exposure time.
In order to realize this ambition, the noise is estimated first and then classified into two
categories: 1) Displacement Damage (permanent degradation) and 2) Single Event Effect
(transient degradation). The prime requirement is to obtain a reference image that is explained
in the next section.

4.3.2 Reference Image

The reference image, Ire f , is depth image of static scene captured by the Kinect without the
radiation exposure. It is worth noting that there are many noises induced in Kinect depth
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(a) Experimental Setup

(b) Reference Image

(c) Radiation Noise

Fig. 4.3 Experimental setup and observed radiation noise after 10 hours of radiation
exposure.

images due to multiple factors [155]. The prominent noises in depth images of any static
scene are removed.

For a given static scene, the depth values are expected to be steady. However, it was
observed that the depth value for object points are unstable in multiple frames varying in
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time. This behaviour is temporal in nature and illustrated as salt and pepper noise in depth
images [155]. Thus, median filtering was used to remove these noises.

Let INR be the set of depth images of static scenes collected without radiation. The
reference image Ire f is obtained using:

INR = {I0
NR, I

1
NR, . . . , I

η−1
NR } (4.1)

where η is total number of images acquired after time interval t. Any given pixel (i, j) in Ire f

is obtained:
Ire f (i, j) = Median (I0

NR(i, j), . . . , Iη−1
NR (i, j)) (4.2)

where i∈ {1, . . . ,m}, j ∈ {1, . . . ,n} are spatial indices and m×n is the dimension of reference
image Ire f .

4.3.3 Radiation Induced Noise

After obtaining the reference image, Kinect sensor is irradiated with a neutron beam. Let
IR be a set of depth images captured after Kinect is exposed to the neutron radiation. Each
depth map in IR captures same static scene used in INR. Then IR can be formulated as:

IR = {I0
R, I

1
R, . . . , I

k−1
R } (4.3)

where k is total number of images acquired after time interval t. The radiation induced noise,
N, is calculated for any irradiated depth image Il

R as follows:

N(i, j) =

{
1 |Il

R(i, j)− Ire f (i, j)|> Th
0 otherwise

(4.4)

Ire f is the reference image calculated using Equation 4.21 with m×n as the resolution of
depth images. T h is the threshold sampling value selected empirically in the experiment.

4.3.4 Classification Technique

Past studies have demonstrated that neutron irradiation of semiconductor materials can
dislocate atoms from their normal lattice location. This allows creation of Frenkel pair and
divacancy [156]. Due to the disalignment of atoms in crystalline structure, there are two
effects observed in depth images which can be classified as:

• Displacement Damage (DD) are set of pixels which undergo permanent damage.
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• Single Event Effect (SEE) are set of pixels which undergo transient damage.

To classify both the effects, Algorithm 4 was proposed. The algorithm compares spatial
occurrence of noise pixels in depth images over a span of time.

Algorithm 4: Displacement Damage and Single Event Effect
Input:
1. Ire f : reference image.
2. IR : a set of irradiated images with time stamp.
Output: DD, SEE : dispalcement damage and single event effect

1 Begin:
2 L = NULL;
3 for each irradiated depth image Il

R ∈ IR do
4 Calculate radiation noise N for Il

R and Ire f using Equation 4.4;
5 Store the noise pixel positions in a list Lt created at t;
6 L = L ∪ Lt ;

7 for each Lt ∈ L do
8 Consider two consecutive lists Lt and Lt+1; ◃ where Lt+1 denotes the list created from

image with time stamp t +1
9 if a noise pixel appears in both the lists then

10 Noise is classified as Displacement Damage;
11 else
12 Noise is classified as Single Event Effect;

4.3.5 Observations

The evolution of DD and SEE in Kinect depth sensors over the exposure period is shown in
Fig. 4.4. The displacement damage rises from being negligible in the initial hours to account
for more than half of damaged pixels after four hours of irradiation. This saturates until there
is a shift in focus of radiation from IR emitter to IR camera. The annealing process of 10
hour allows Kinect sensor to recover from this displacement damage. After the focus shifts to
the IR camera, the progressive increment in displacement damage under neutrons exposure
is observed. In contrast, there is an upsurge in Single Event Effect (SEE) observed at initial
exposure of neutron irradiation which declines over span of time. This allows us to conclude
that when Kinect experiences an initial exposure to neutron there is a higher ratio of noise is
SEE in comparison to DD. However, with passage of time, SEE decreases and DD increases.

The conclusions that can be drawn from this study are that radiation induced degradation
saturates after few hours of exposure and annealing process at room temperature triggers
recovery of radiation induced degradation. Thus, annealing process is considered as a
precedence provision when designing coverage path in upcoming sections.
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Fig. 4.4 Displacement Damage (DD) v/s Single Event Effect (SEE) observed over time.

4.4 Problem Formulation

In this section, CPP of disjoint regions with precedence provision is described. The opti-
misation problem is formally stated as a Constraint Satisfaction Problem via Mixed Integer
Linear Programming formulation.

4.4.1 Problem Description and Assumption

An aerial robot is equipped with a depth sensor is initially stationed at depot v0. Then, the
robot is dispatched to cover a set of disjoint and spatially distributed rectangular regions,
M = {1, . . . ,m}. Each region i ∈ M is described by its four vertices (vi1,vi2,vi3,vi4) =Vi.
Generally, in the aerial space, all the regions are connected. However, due to the presence of
no-fly zones and exclusion, all the regions are not connected. After covering the entire site,
the robot is required to return back to the depot. An assumption that the robot operates at
fixed altitude and constant speed. If R+ = {a ∈ R : a ≥ 0}, the configuration space Ω for
the robot A can be formulated as Ω ⊆ R2. The sensing range of the sensor mounted on the
robot is r× r. It is assumed that the robot has sufficient power and energy to complete the
task. The geographical area of the site has been modelled using a discrete 2D grid structure
such that size of each grid cell is designed to be r× r, so that if the robot visits the centre of
grid cell, the entire grid cell can be covered. The objective of the problem is to find optimal
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tour for the robot that starts and ends at the depot, such that robot’s sensor footprint along
the traversed path covers each target region completely and the total travel cost is minimized.
Apart from covering each target location, the robot also has to achieve the goal of traversing
the target regions in an ordered sequence.

As described in Section 2.7.1, the type of robot used for coverage also places an additional
constraint on the path. For instance, if the robot is a fixed-wing UAV, its mechanical structure
determines minimum safe turn radius restricting the robot to make abrupt changes in their
direction. In this problem, the robot is a multirotor UAV that is allowed to make sharp turns
with arbitrary turn radius, allowing significant increase in the flexibility, while designing the
path to be a linear problem.

4.4.2 Notations

Addressing the area coverage problem more formally, the basic notations are introduced. The
problem of CPP of disjoint regions can be subdivided into: 1) inter-region path planning 2)
intra-region path planning. The intra-region coverage path for each region i ∈ M which can
be described as Pi. Pi = {pik} is a set of Cartesian coordinate of centre of each grid cells in
region i, such that by visiting all the locations in Pi entire region i has been covered, where
k ∈ [gi], gi is the set of grid cells located in the region i. The visiting order of the locations
in Pi are captured using a decision variable zi

kl . The decision variable zi
kl = 1, if the robot

traverses from location pik to pil , otherwise, zi
kl = 0.

The entrance location in region i is described by decision variable eni
k, such that eni

k = 1,
if the robot enters region from location pik, otherwise eni

k = 0. Furthermore, exi
k as decision

variable to describe the exit location in region i is introduced, such that exi
k = 1, if the robot

exits from region from location pik, otherwise exi
k = 0. Finally, to capture the order of visit

of the target regions, decision variable xi j is introduced, where i, j ∈ M , such that xi j = 1,
if the robot traverses from region i to region j, otherwise xi j = 0. The specified order in
which location must be traversed is given by Θ = {(i, j)|i, j ∈ M }. To capture this order, a
decision variable yi j is considered such that yi j = 1, if the robot traverses from region i to j
for specified order (i, j) ∈ Θ, otherwise yi j = 0.
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Table 4.1 Variables used in MILP Formulation

Variables Type of Variables Definition
M Auxiliary set of regions
Pi Auxiliary set of waypoints in region i
gi Auxiliary grid cells of region i
Θ Auxiliary Specified Region Order
zi

kl Decision Visiting order of intra-region waypoints
eni

k Decision Entrance point of region i
exi

k Decision Exit point of region i
xi j Decision inter-region Visiting order
yi j Decision Specified Visiting order

4.4.3 Mixed Integer Programming Formulation

With the notations described in above section, the coverage path that covers the entire target
site with precedence provision is described. The total travel cost C can be calculated as:

C =
m

∑
i=1

m

∑
j=1, j ̸=i

gi

∑
k=1

g j

∑
l=1

xi jexi
ken j

l D(pik, p jl)

+
m

∑
i=1

gi

∑
k=1

gi

∑
l=1,l ̸=k

zi
klD(pik, pil)+ ∑

(i, j)∈Θ

P̂(1− yi j)

(4.5)

where function D(x,y) calculates the travel cost from location x to y and P̂ is the penalty
imposed, if the robot does not traverse regions in the specified order Θ. To ensure the validity
of the tour, the following constraints are imposed:

m

∑
j=1, j ̸=i

xi j = 1, ∀i ∈ M (4.6)

m

∑
i=1,i ̸= j

xi j = 1, ∀ j ∈ M (4.7)

xi j ≥ yi j ∀(i, j) ∈ Θ (4.8)
gi

∑
l=1,l ̸=k

zi
kl = 1− exi

k, ∀i ∈ M ,k ∈ gi (4.9)

gi

∑
k=1,k ̸=l

zi
kl = 1− eni

l, ∀i ∈ M , l ∈ gi (4.10)
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gi

∑
k=1

eni
k = 1,

gi

∑
k=1

exi
k = 1, ∀i ∈ M (4.11)

xi j,yi j ∈ {0,1}, ∀i, j ∈ M (4.12)

zi
kl,eni

k,exi
k ∈ {0,1}, ∀i ∈ M ,k, l ∈ gi (4.13)

eni
k + exi

k ≤ 1, ∀i ∈ M ,k ∈ gi (4.14)

In the above mentioned constraints, Equation 4.6 - 4.7 ensure that each region is covered by
the robot exactly once. The constraint in Equation 4.8 ensures that the specified order edge
in Θ is visited. Equation 4.9 - 4.10 ensure that each location pik ∈ Pi in region i is traversed
only once. Equation 4.11 ensures that for each region there is only one entrance and exit.
Equation 4.12 - 4.14 ensure that the decision variables take valid values.

The coverage problem can thus be formulated as:

minimize C

sub ject to : Equation 4.6−4.14
(4.15)

4.4.4 Discussion

The problem of coverage of disjoint region with precedence provision can be modelled as
an optimization problem of integrated Chinese Postman Problem-Coverage Path Problem.
Analysis shows that both the problems are NP-hard in the strong sense [157, 71] and an
optimal solution strategy to it will be prohibitively expensive in terms of solution generation
times and required storage space. Further, it is also difficult to design a deterministic/greedy
heuristic strategy which avoids solution enumeration, but can still deliver satisfactory outputs
under all realistic scenarios. In past, such complex optimization problem were solved by
decomposing into co-related problems [158]. This problem is solved by decomposing into
two problems: 1) Inter-region path planning 2) Intra-region path planning.

1. Inter-region path planning: It aims to find the order of sequence S(M ) = {i, j, . . . ,k |
∀i, j,k ∈ M } in which the robot visits all the regions traversing all the specified edges
denoted by (i, j) ∈ Θ.

2. Intra-region path planning: It can be stated as path computation such that each and
every point in any given region i is covered by the robot A .

Note: If the size of each region i ≤ r× r (sensor’s range), the area coverage problem is
reduced to only inter-region path planning, where each region i ∈ M can be described by
its centre v̂i. If there is only one region i whose size is larger than sensor’s range r× r, the
problem is reduced to intra-region path planning.
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4.5 Inter-Region Path Planning

In this section, the problem of inter-region path planning is solved. To compute the inter-
region path, the site is represented as a connectivity graph G . The connectivity graph
G = {V ,E } is an Eulerian graph, where V ={i, j, ..k| ∀i, j,k ∈M } and E = {ei| ei is cost of
traversal between region i−1 and region i}. The graph is computed in following subsection.

4.5.1 Connectivity Graph

Any region i ∈ M is defined by four vertices {vi1,vi2,vi3,vi4}. Using these four vertices, the
coordinates of the centre of a region i, v̂i can be derived using:

v̂i
x = vx

i4 +
|vx

i4 − vx
i3|

2
(4.16)

v̂i
y = vy

i4 +
|vy

i4 − vy
i1|

2
(4.17)

The centre v̂i is used to describe the region i, such that V = {v̂i | v̂i is the centre o f the
region i ∈ M }. To address the problem of inter-region path traversal, the degenerated
edges of the graph are eliminated first, which connect a vertex to itself also known as a
self-loop. The judicious elimination of self-loops helps in realization of the goal trajectory
minimization. After the elimination of self-loops, the cost which the robot A will incur
in traversing between two regions is determined. The cost of traversal for the robot A for
traversing from region i to region j is defined as ci, j and is computed as follows:

ci, j = A∗ distance between v̂i and v̂ j (4.18)

The robot A can traverse the next region j from current region i iff region i is the neighbour
of region j. It is assumed that the generated graph G contains an Eulerian trail, i.e. there
exists a cycle where each edge can be traversed only once. This is illustrated in Algorithm 5,
where the cost of all the neighbours of region i is calculated. The calculated inter-region
traversal cost (c) and specified possible set of traversal (Θ′) will be used as the input to
MILP-based inter-region traversal strategy discussed in the next section.

4.5.2 MILP Based Inter-Region Traversal Strategy

In this section, a MILP solution for inter-region path traversal problem is proposed. To
address this problem, two binary decision variable xi j and yi j are considered. The decision
variables are defined as:
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Algorithm 5: CONNECTIVITY GRAPH
Input:
1. M = {1, ..,m} : set of m regions
2. Θ = {(i, j) | i, j ∈ M } : order of sites to be covered
3. N: a large positive number
Output: Θ′,c : Set of specified possible region traversal, cost of inter-region traversal

1 begin
2 INITIALIZATION:
3 1) Θ′ = Θ ◃ Θ′ denotes modified ordered site traversal set
4 %SELF-LOOP ELIMINATION%
5 for each region i ∈ M do
6 Calculate C( f j) and O( f j) using Equation 5.8 and 3.9, respectively.
7 Ob j[ j] = O( f j)
8 Centre of region i calculated using Equation 4.16, 4.17
9 ci,i = N /*Assign the cost of self-loop (i, i) as N to eliminate self loop traversal*/

10 if exists a self loop (i, i) ∈ Θ′ then
11 Θ′ = Θ′∩ (i, i) /*Remove the self loop (i, i) from Θ′.*/

12 COST MATRIX CALCULATION:
13 for each region i ∈ M do
14 for each neighbour region j of i do
15 Assign ci, j as A* distance between centre v̂i and v̂ j)
16 /* Determine the cost of traversal from region i to region j*/

1. xi j = 1 if the robot A traverses region i to region j, otherwise xi j = 0.

2. yi j = 1 if the robot A traverses region i to j for the specified edge (i, j)∈ Θ′, otherwise
yi j = 0.

Objective: The area coverage problem can be formulated as finding values of xi j and
yi j, ∀i, j ∈ M , such that the path starts and ends at the start region (also called depot)),
each region is covered exactly once by the robot, and the total cost, Cost, given below is
minimized.

Cost =
m

∑
i=1

m

∑
j=1

ci jxi j + ∑
(i, j)∈Θ′

ĉi j(1− yi j) (4.19)

where ci j is the travelling cost incurred by the robot A , if it travels from region i to j,
obtained using Algorithm 5 and ĉi j is the penalty imposed on the robot A if it does not
traverse region (i, j) ∈ Θ′. The objective of the formulation can be written as:

minimize Cost (4.20)
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The first term in Equation 4.19 calculates the total travel costs for inter-regional move-
ments. The last term calculates the penalty incurred if the order of sequence defined in Θ′

is not followed by the robot A . The validity of the required path traversal is ensured by
imposing following constraints:

1. Departure Constraint: The constraint in Equation 4.21 ensures that the robot A

leaves each region only once.

∑
i∈M \i̸= j

xi j = 1, ∀ j ∈ M (4.21)

2. Arrival Constraint: The constraint in Equation 4.22 ensures that the robot A arrives
only once in each region.

∑
j∈M \i ̸= j

xi j = 1, ∀i ∈ M (4.22)

3. Continuity Constraint: The constraint in Equation 4.23 ensures that the inter-region
path traversed by the robot A is continuous.

∑
j∈M ,i ̸= j

xi j = ∑
j∈M ,i ̸= j

x ji (4.23)

4. Direct Path Constraint: The constraint in Equation 4.24 ensures that the next region
j to be traversed from region i is connected.

xi j = 0, ∀i, j ∈ M | ∃!{direct path between i and j} (4.24)

5. Specified Order Constraint: The constraint in Equation 4.25 forces variable yi j to
take value 0, if not traversed by the robot, i.e. xi j = 0. Conversely, if the robot takes
the route (i, j), i.e, xi j > 0, the minimization of the objective function forces variable
yi j to take value 1.

xi j ≥ yi j (i, j) ∈ Θ (4.25)

6. SubTour Elimination: Another major issue which path planning problems suffer
from, is the ability of the robot A to get stuck in a subtour cycle in a graph G ,
which has not been considered in previous coverage works [42],[149]. An additional
decision variables ui is introduced in this constraint to order all regions excluding the
depot (starting region of robot) to prevent illegal cycle formations. This is ensured by



76 Coverage Path Planning of Distributed Regions with Precedence Provision

constraining u j ≥ ui+1 when xi j = 1

ui +1 ≤ u j +N ∗ (1− xi j) (4.26)

where, N is a large positive number.

4.5.3 Example 1: Illustrating MILP Strategy

This section elucidates the working of the proposed MILP strategy using an example site of
a spaceport. The given site resembles a site used in [159] comprising of 23 regions. Each
unit region is a vertex vi of the connectivity graph G = {V ,E }, shown in Fig. 4.5a.

Let us assume that robot A operates at a fixed altitude and each region is inter connected
by a unit distance such that ∀ j,k c j,k = 1. The traversal from one region to another generates
a cost which is shown on each edge (see Fig. 4.5b). This assumption will be relaxed in
Section 4.7. As per MILP formulation discussed in Section 4.5.2, the CPLEX [160] solver
generates the following optimal tour as illustrated in Fig. 4.5b. The specified order route
for coverage is Θ = {(3,6),(15,17)}. The generate path is: {1−> 2−> 3−> 6−> 5−>

8− > 9− > 10− > 14− > 13− > 12− > 15− > 17− > 18− > 19− > 23− > 22− >

21− > 20− > 16− > 11− > 7− > 4− > 1}. By traversing the generated path, the robot
incurs a cost of 27 units.

From Fig. 4.5b, it is evident that path generated for the robot A has following salient
features to ensure its validity:

1. Depot: The robot A starts and ends at the same region (depot, region = 1).

2. SubTour: Apart from the cycle which starts and ends at depot, there are no other cycle
present in the path.

3. Specified Route: The robot traverses all the edges in the specified route Θ= {(3,6),(15,17)}.

4. Trajectory Minimization: The constraint of time and energy is met, as no region is
traversed more than once in the generated path.

Therefore, it is evident from the given example that the MILP strategy is able to generate
a valid path which meets all the specified constraints of the area coverage problem in this
chapter.
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(a)

(b)

Fig. 4.5 Site depicted using (a) Inter-region connectivity graph G(V,E) where red edge
{(3,6),(15,17)} ∈ Θ denotes specified order (b) CPLEX generated inter-region path

denoted using dotted lines
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4.5.4 IRPP: Inter Region Path Planning Technique

The MILP-based inter-region path planning solution described in the previous section gener-
ates optimal solution. However, its exponential computational complexity makes it expensive,
as the number of regions increases. Therefore, in this section, an efficient heuristic algorithm,

‘IRPP’ is proposed, which generates acceptable solution to the problem even when the number
of regions are fairly large. The pseudocode of IRPP is presented in Algorithm 6.

The algorithm is a heuristic approach which attempts to cover the specified order route
(i, j) ∈ Θ′ first. This in turn minimizes the traversal cost, as the penalties for not traversing
arcs (i, j) ∈ Θ′ are not imposed. It also takes into consideration that self loop and subtours
are eliminated. An example at the end of this section is illustrated to elucidate the proposed
approach.

IRPP Strategy

The main motivation of the inter-region path planning heuristic is to determine the order of
region traversal such that:

1. Minimum cost of traversal is incurred.

2. All the regions are traversed once and robot A starts and ends at depot.

3. Specified order of traversal is the route under taken by the robot A .

The algorithm comprises of four blocks: 1) Initialization, 2) Order Generation, 3) Feasible
Solution, and 4) Cost Calculation. Each block is discussed in details as follows:

Initialization (Line 1-4): In this block, four variables: m, χ , n, Z are initialized. Variable
m and n denote number of regions and number of specified edges, respectively. χ and Z are
the arrays containing the order of region traversal which are initialized as NULL.

Order Generation (Line 5-7): To meet the three requirements, IRPP heuristic attempts
to start the route by traversing the arcs (i, j) ∈ Θ′ in parallel. As shown in line 5-7, in the
order generation block from Algorithm 6, an order of region traversal Zq for each arc q ∈ Θ′

is generated by using function NEXT_REGN (). Since, there is no correlation between paths
generated for each arc q ∈ Θ′, each order generation is computed in parallel.

Feasible Solution (Line 8-20): After obtaining a list of order of inter-region traversal
Z from last block, the algorithm searches for all feasible solutions among the generated
solutions of inter-region, Z. The solution is classified as feasible if, and only if, it meets the
second motivation, i.e. each region is traversed once and starting and ending region are same.
To determine the feasible solution, it is checked that the generated order contains all the m
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distinct regions and the starting and ending region are identical. Those solutions which are
unfeasible are discarded in line 18. This is helpful in saving the computation time in the next
block, the cost calculation block.

Cost Calculation (Line 21-25): In the cost calculation block, the cost of traversal which
the robot A will incur if it takes the feasible route, is determined. The cost of traversal is
calculated in line 22, Algorithm 6 by summing the individual cost of arcs in the feasible
order of traversal. In line 24, a feasible solution is selected from Z which has minimum cost.
In the selected minimum cost feasible solution, the order of traversal begins with the region i
for arc (i, j) ∈ Θ′. However, for the scenario, order of traversal must begin from the depot.
Thus, the computed order of traversal is re-ordered in a manner such that traversal of route
begins from the depot.

Next Region Function: NEXT_REGN ()

IRPP calls function NEXT_REGN () to generate the order of traversal for all the arc q =

(i, j) ∈ Θ′. NEXT_REGN () returns the feasible solution Zi. The function is composed of
three components: VSRF, NNV and TERMINATION. The pseudocode for NEXT_REGN () is
presented in Algorithm 7.

VSRF: Visit Specific Route First (Line 1-3): In the VSRF phase, the robot A visits
the specified route (i, j) ∈ Θ′ first. After reaching point j, it must take a decision to visit any
one of the neighbours of j which is taken in the next phase, NNV . However, a decision point
variable nextregion is initialized to j in this phase. Another variable list ρcost which assists
in taking the decision of which next region to traverse after j is initialized to NULL. ρcost

maintains the cost incurred for traversing each neighbour k after region j.
NNV: Next Neighbour Visit (Line 4-18): The phase next neighbour visit is responsible

for taking the decision of traversing which neighbour of the current region j. First, all those
neighbours of j, which have not been previously visited are computed. From the unvisited
neighbours, the heuristic can either execute the look ahead plan or the cost calculative plan.
The robot A finds out whether one of following two criteria is met:

1. CRITERION I: Neighbouring region k has an arc ( j,k) ∈ Θ′, i.e. by traversing route
( j,k) it meets the specific coverage order in Θ′.

2. CRITERION II: Neighbour l of neighbouring region k has an arc (k, l) ∈ Θ′, i.e. by
traversing route (k, l) it meets the specific coverage order in Θ′.

Even if one of the criteria is met, a look-ahead plan is executed, where the robot traverses
region k, irrespective of cost, to meet the stringent criteria of specified route travel. In case
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Algorithm 6: IRPP
Input:
1. M = {1, ..,m} : set of m regions
2. Θ′ = {(i, j) | i, j ∈ M } : order of sites to be covered
3. cm,m : cost of M inter-region traversal
Output: Cost,χ: cost and order of inter-region traversal

1 begin
2 INITIALIZATION
3 1)m = |M|
4 2) χ = NULL
5 3) n = |Θ′|
6 4) Z = NULL /*χ , Z denotes order of inter-region traversal and sequence starting

from coverage edge, respectively.*/
7 ORDER GENERATION
8 for each arc q ∈ Θ′ in parallel do
9 Zq = NEXT_REGN(q); /*Order of traversal Zq starting from arc q*/

10 FEASIBLE SOLUTION
11 for each solution Zq ∈ Z do
12 if Order of traversal in Zq contains all m distinct regions then
13 if Zq finishes at the start region then
14 Zq solution is Feasible
15 else
16 Zq is not feasible solution;
17 Discard Zq;

18 else
19 Zq is not feasible solution;
20 Discard Zq;

21 COST CALCULATION
22 for each feasible solution Zq ∈ Z do
23 costZq = ∑( j,k)∈Zq c j,k;
24 /*Calculate the cost costZq as sum of the cost of all the arcs j in the feasible solution

Zq*/

25 Cost = min{costZ1 ,costZ2 , . . . ,costZq};
26 /*Assign Cost with minimum cost solution in Z*/
27 χ = re-order the minimum cost traversal route such that inter-region tour begins from

depot;

none of criteria of route travel are met, cost calculative plan is executed where the next
neighbour to traverse is selected based on the cost of traversal from region j to k, c j,k. The
cost for each neighbour k of current region j is stored in the previously defined list ρcost as
follows:

ρcost = ρcost ∪ c j,k (4.27)
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The main challenge stems from the equal cost of traversal of all the neighbours. For
instance, if the robot traverses the edge (3,6). If the robot executes the policy of selecting
vertex based on its occurrence first which is generally employed in many heuristics like
next neighbour first [161], the path generated contains cycle or sub tours. To overcome this
challenge, ’Away From Sink’ strategy is deployed. Since, the robot needs to traverse the
entire tour and return to the starting region, the start region is labeled as the ‘sink’. The ‘Away
from the sink’ strategy allows the robot to traverse the neighbour which is farthest from the
sink, so that all the regions are traversed once, without the presence of any subtours.

TERMINATION (Line 19-26): In this phase, it is determined whether in the last phase
the robot A finds that all the neighbouring regions have been previously visited. This
is indicative of the fact that the tour is complete. However, if the robot visits unvisited
neighbouring regions and computes ρcost list, then the neighbour k is selected to be visited
which has minimum cost c j,k in the ρcost list. Based on the selected region k, a new arc ( j,k)
is added to the solution Zq. To further elucidate the working of the proposed heuristic, an
example in the following subsection is presented.

4.5.5 Example 2: Illustrating working of IRPP heuristic

The construction heuristic ‘IRPP’ is illustrated through a working example in this subsection.
Let us consider the same extreme environment site as previously discussed in Section 4.5.3,
i.e. number of regions m = 23 and specified order Θ = {(3,6),(15,17)}. As per the ‘VSRF:
Visit Specific Route First’ block of Algorithm 7, the robot will first traverse edges in the
specified order, i.e. (3,6) and (15,17).

The cost of traversal from one vertex to another is equal. For instance, if the robot
traverses the edge (3,6). As per Fig. 4.5a, by being stationed at vertex 6, the robot A has
an option to traverse either vertex 5 or 10. Since the cost of traversal between neighbouring
vertex is a unit cost, it takes the policy of ‘away from sink’. The path generated for robot A

is {1− > 2− > 3− > 6− > 10− > 14− > 13− > 12− > 15− > 17− > 18− > 19− >

23−> 22−> 21−> 20−> 16−> 11−> 7−> 8−> 9−> 5−> 4−> 1}, as shown in
Fig. 4.6.

The ‘away from sink’ is executed when the robot traverses the path (3− > 6− > 10)
and is stationed at vertex ‘10’. As illustrated in Fig. 4.5a, vertex ‘10’ has two equal cost
neighbour vertices ‘9’ and ‘14’. If the robot uses the traditional next neighbour methodology,
it would have selected region ‘9’, which will result in generation of a cycle in the path. Since,
the robot starts from the region ‘3’ and the tour will end by traversing all the regions once
and end at the region ‘3’. The region ‘3’ is classified as sink vertex.



82 Coverage Path Planning of Distributed Regions with Precedence Provision

Algorithm 7: NEXT_REGN
Input:
1. M = {1, ..,m} : set of m regions
2. Θ′ = {(i, j) | i, j ∈ M } : order of sites to be covered
3. cm,m : cost of M inter-region traversal
Output: Zq: order of inter-region traversal

1 Function NEXT_REGN:
2 VSRF: Visit Specific Route First
3 Visit the arc q using VISIT_ARC(q);
4 Initialize decision point nextregion as j;
5 /* nextregion denotes the next region to visited after j*/
6 Initialize the neighbour cost list ρcost as NULL;
7 NNV: Next Neighbour Visit
8 for each neighbor k of j which are unvisited do
9 l : neighbours of k;

10 if CRITERION I OR CRITERION II satisfied then
11 /*****LOOK-AHEAD PLAN****/
12 Assign k as nextregion;
13 else
14 /*****COST-CONSTRUCTIVE PLAN*****/
15 if (traversal of ( j,k) is the minimum cost among all the neighbours) then
16 Add c j,k to the ρcost list
17 /****AWAY FROM SINK***/
18 if k is farthest from sink vertex then
19 Add c j,k to the ρcost list

20 TERMINATION
21 if no new neighbour visited then
22 /**robot HAS COMPLETED THE TOUR**/
23 Zq;
24 /*Return generated solution Zq*/
25 STOP;
26 else
27 if ρcost ̸= NULL then
28 Assign nextregion = k such that k has minimum cost in ρcost ;

29 Visit the arc q = ( j,nextregion) using VISIT_ARC(q)
30 NEXT_REGN(qi+1;)
31 Function VISIT_ARC:
32 ADD arc q = (i, j) to Zq

The main aim of the inter-region path planning technique is to generate a path where
the robot A traverses all the regions at least once without getting stuck in any subtours. If
the robot moves from region ‘10’ to region ‘9’, it moves closer to sink signifying that it is
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Fig. 4.6 Inter-region path planning generated using the proposed heuristic ‘IRPP’ for the site
depicted in Fig. 4.5a.

cutting a path short, i.e. not traversing all regions. Therefore, the next region that is farthest
from the sink vertex ‘3’ is selected, i.e. vertex ‘14’. While being stationed at vertex ‘12’, the
robot executes the ‘look-ahead’ plan and move to region ‘15’, which allows it to travel the
specified edge (15−17) ∈ Θ.

Using the ‘IRPP’ heuristic, the generated inter-region path in Fig. 4.6 is illustrated. It
is evident from the figure that the generated path differs from the solution proposed by the
MILP Strategy, however, it is able to achieve the same, Cost = 27.

4.6 Intra-Region Path Planning

After computing the inter-regional path for robot A in previous Section 4.5, the problem
of computation of coverage path for each region i ∈ M in this section is tackled. The
order of the inter-region path χ plays a pivotal role in determining the intra-region paths.
The intra-regional path is computed first by decomposing the regions into grids and then
computing Boustrophedon Motion for each region as described in the following subsections.

4.6.1 Grid Decomposition

For computation of any path, the starting and ending locations are the necessary inputs.
Similarly, for computing a coverage path for any region i, the algorithm first and foremost
determines the entrance and exit for all the regions i. Thus, to find an optimal intra-region
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Fig. 4.7 An example site with four regions with their corner vertices.

path for any region i ∈ M , the preceding and succeeding regions are used to determine the
start and end location, respectively.

As known, a rectangular region i is characterized by four vertices: {vi1,vi2,vi3,vi4}.
If i − 1 is the preceding region for region i, the entrance for the region i is the vertex
connecting both the regions i and i− 1. For instance, there are four regions as shown in
Fig. 4.7 characterized by their four vertices. The optimal inter-region path generated is
{1−> 2−> 3−> 4−> 1}. For region 2, the preceding region is 1 so the entrance point
can either be v24 or v21. Similarly, if i+1 is the succeeding region, the exit for the region i
is the vertex connecting the regions i and i+1. Now, in Fig. 4.7, the succeeding region is
region 3. Therefore, the exit point from region 2 is either v24 or region v23.

After determining the entrance and exit, the region is decomposed into a collection of
grid cells. Let each region i be decomposed into a grid Ψi with a set of uniform grid cells
such that

Ψi = {ψ jk|1 ≤ j ≤ li
⌈ li

r ⌉
,1 ≤ k ≤ bi

⌈bi
r ⌉

} (4.28)

where, li = ||vi4 − vi3|| and bi = ||vi2 − vi3|| is the length and breadth of each region i,
respectively, ||.|| is a L2 norm operator and r × r is the sensing radius of robot A . The
number of grid cells, in region i is |Ψi| = ⌈ li

r ⌉⌈
bi
r ⌉. Since li

⌈ li
r ⌉

≤ r and bi

⌈ bi
r ⌉

≤ r, i.e., size

of each grid cell ψ jk ∈ Ψ is either smaller or equal to the sensing range of the robot. This
implies that if a robot visits a grid cell, it is able to successfully map or cover the entire
area of grid cell in a single visit. If each cell is considered as a region and the problem of
intra-region traversal to tackle translates to how can a robot cover all the cells once, with
different start and end locations.
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4.6.2 Boustrophedon Motion

After decomposing each region into a grid and determining the start and end point for
each region, the coverage path for the intra region traversal is computed. As described in
Section 2.7, two important categories of CPP techniques in aerial context are ‘Boustrphedon
CPP’ and ‘Grid based Travelling Salesman CPP’. Boustrophedon CPP technique is an exact
cellular decomposition technique which decomposes the site into smaller cells using a sweep
line. After each cell is obtained, the orientation of each cell is analysed and back-forth motion
(also known as ‘Boustrophedon Motion’) is setup.

In ‘Grid based TSP’, unlike ‘Boustrphedon Path Planning’, the site is decomposed into a
regularly spaced grid with a uniform grid cell size. The CPP problem now translates into
generating a TSP tour, i.e. traversing each cell once and starting and ending at same cell
location. In the present case, the starting and ending location for the intra-region traversal
are not same, therefore both the techniques are combined.

After decomposing each region into a grid and determining the start and end vertices as
described in last subsection, a Boustrophedon Motion is computed between the start and
end location based on the orientation using Algorithm 8. The orientation of start and end
vertices is analysed first. If the start and end vertices are located diagonally opposite, the
coverage path is a vertical Boustrophedon Motion as shown in Fig. 4.8a. The start and
ending vertices v11 and v13, respectively, are diagonally opposite, thus Algorithm 8 generates
a horizontal back and forth motion. Similarly, if the start and end vertices are located on
the same edge, the coverage path is a horizontal Boustrophedon Motion. As illustrated in
Fig. 4.8b, the start and end vertices v12 and v13, respectively, share a common edge, therefore
a horizontal back and forth coverage path is generated. Now, Theorem 1 is used to prove that
the grid-decomposition based Boustrophedon intra-regional path planning approach is able
to provide full coverage.

(a) (b)

Fig. 4.8 Boustrphedon Motion for (a) diagonally opposite vertices (b) vertices with same
edge.
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Algorithm 8: BOUSTROPHEDON MOTION
Input:
1. Ψi = {ψ jk} : Grid Ψi representing region i
2. vss′ : Starting vertex
3. vee′ : Ending vertex
Output: P: coverage path

1 ORIENTATION ANALYSIS if |s′− e′|> 1 then
2 /*Starting and Ending Vertices are Diagonally Opposite*/
3 P: Generate a Back and Forth Vertical Motion
4 else
5 /*Starting and Ending vertices lie on same edge*/
6 P: Generate a Back and Forth Horizontal Motion

Theorem 1 (Full Coverage of Grid based Decomposition with Inter-Region Path Plan-
ning:)
Consider the intra-regional path planning problem described above. The intra-region path
formulated by grid decomposition approach provides full coverage if li

⌈ li
r ⌉

= bi

⌈ bi
r ⌉

= r,∀i ∈ M

and each grid cell is regarded as a region.
Proof: If li

⌈ li
r ⌉

= bi

⌈ bi
r ⌉

= r, the size of each grid cell equals the sensing rage of the robot A , this

implies that the shortest paths to plan through the centres of all the cells in any region i ∈ M

is equivalent to the shortest path to cover the entire region i. Therefore, when applying grid
decomposition along with the inter-region path planning approach, the grid decomposition
based path planning allows full coverage of the target site.

4.7 Experimental Evaluation

In this section, a set of simulation studies is performed to evaluate the performance of the
proposed approach in terms of ‘full coverage’, ‘efficiency’ and ‘comparison with existing
work’. All the algorithms are implemented using MATLAB and IBM-CPLEX, and the
experiments are performed on a DELL XPS IDV8QVO with Intel Core i5, 8GB memory and
225GB storage1.

4.7.1 Experimental Setup

The input data for the experiments have been generated using the following framework.

1The code for all algorithms can be found at: https://github.com/ZebaKhanam91/CoveragePathPlanning
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Target site generation: The data corresponding to the regions for a site which needs
to be covered has been generated randomly. The number of regions in the sites is given by
the user with an upper bound of 50 regions. This assumption is based on the limit of an
aerial robot to perform coverage with given energy budget [42]. The regions in the site are
assumed to be distributed around an origin marked by the coordinates (0,0). A new region
is created by first tentatively selecting a centroid for it. The coordinates of this centroid are
obtained by selecting its distance from the origin through a random distribution U1 [0,200]
and also determining the angle that it subtends on the x axis, from another uniform random
distribution U2 [0,359].

A new region is created using function rectangle() [162]. This function takes as input
the coordinates of the centroid (obtained as above), width and height of each region to be
generated. rectangle() returns a rectangle based on the region parameters provided as input.
The width and height of a region are generated from normal distribution having standard
deviation as σside = 2.5 and the mean as µside = 7.5. The new region is actually accepted
if it does not overlap with any other region already generated; otherwise, it is discarded.
These steps are repeated unless and until desired number of regions are created. In case of a
rejection, the steps to create a new region are repeated. The above steps are continued until
the required number of regions have been generated. The size of a region is measured in
terms of number of grid cells that it contains. The size of each grid cell is assumed to be
1×1 m2.

Specific Order generation: As discussed above, the overall operation has an associated
order which provides precedence provision for coverage. The specified order Θ is obtained
where the number of specified edges are obtained which the robot must traverse using normal
distribution having standard deviation as σ = m

8 and the mean as µ = m
4 . The specified pair

of edge in Θ is selected by uniform distribution U3 [1,m]. If the edge pair already exists in
Θ, this edge pair is discarded.

Robot Characteristics: The robot is assumed to have square footprints whose areas are
expressed as an integral number of grid cells. The sensing range of robot r can take different
values ranging from {1,2,3,4}.

4.7.2 Full Coverage

Theorem 1 in Section 4.6.2 shows that the proposed technique can compute full coverage
path for each region, if grid-based decomposition is coupled with inter-region traversal. The
inter-region traversal generates a path under the minor assumption that the connectivity
graph generated in Section 4.5.1 contains at least one Eulerian trail, i.e. there exits a cycle
where each edge is traversed only once. The minor assumption for intra-region traversal is
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that li
⌈ li

r ⌉
= bi

⌈ bi
r ⌉

= r. The optimality of the proposed coverage approach is studied using the

following experiment designed to elucidate the ability of the proposed approach to find the
solution when the above mentioned assumption is either satisfied or violated.

Experiment I

The Experiment I is designed to investigate the assumption of the inter-region traversal, i.e.
‘there exists at least one Eulerian trail’. The first experiment is carried out under a two site
setting depicted using the connectivity graphs in Fig. 4.9. In the first and second setting,
the path is determined when the assumption is satisfied and relaxed, respectively. The first
experiment contains three regions (M = 1,2,3), which have equal length and width, such
that li = bi = 4, ∀i ∈M . The sensor range of the robot A is r = 2. Thus, li

⌈ li
r ⌉

= bi

⌈ bi
r ⌉

= r = 2,

holds for both cases.

(a) (b)

Fig. 4.9 Experiment I site (a) containing eulerian trail (b) without eulerian trail.

The order of coverage for the site is Θ = (1,2). The distance between each region is
unit cost. CPLEX and IRPP heuristic both generate the path {1−> 2−> 3−> 1} for the
first setting with Eulerian trail with cost = 3 units. The optimal coverage path is depicted in
Fig. 4.10a. To illustrate the performance of CPP algorithm when the underlying assumption
of inter-region traversal is violated, the region ‘2’ and ‘3’ are not connected. The remaining
settings like coverage order and cost traversal remain same. The path generated by the
CPLEX and IRPP heuristics {1−> 2−> 1}, which is a suboptimal solution as region ‘3’
is not traversed. The provision of correlation between work (precedence provision) forces
the robot to traverse edge 1−> 2. Since, the region ‘2’ is only connected to region ‘1’, the
robot traverses back to depot 1. Now, it can traverse to region 3, however it is unable to
minimise coverage trajectory. Thus, it can be concluded that if the underlying assumption of
inter-region path planning, connectivity graph G derived using Algorithm 5 contains Eulerian
trail, is violated then the computed coverage path does not cover the entire site.
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(a) (b)

Fig. 4.10 Full coverage path found when site (a) containing Eulerian trail (b) without
Eulerian trail.

Experiment II

The Experiment II is designed to investigate the assumption of the intra-region traversal,
i.e. li

⌈ li
r ⌉

= bi

⌈ bi
r ⌉

= r . The second experiment is carried out under two site settings depicted

using the connectivity graphs in Fig. 4.10 which was considered in Experiment I. However,
the sensor range is increased r = 3, thus violating the constraint li

⌈ li
r ⌉

̸= bi

⌈ bi
r ⌉

̸= r. Under

this setting, the optimal path generated is similar to the path generated in Experiment I
illustrated in Fig. 4.9. Thus, it can be concluded that even if the minor assumption is violated,
intra-region path traversal generates a full coverage path solution. This can be attributed to
the combination of grid decomposition with Boustrophedon Motion.

Experiment III

The experiment III is designed to investigate the performance of area coverage algorithm,
when unlike previous experiments, the regions of traversal are not similar. The connectivity
graph of the site is shown in Fig. 4.11a. The region ’1’ is the largest region of size 6×4 and
the other two regions are of size 2×2. The range of sensor is set to r = 2. The inter-region
path generated using CPLEX and IRPP is {1−> 2−> 3−> 1}. In intra-region traversal,
the region ‘2’ and region ‘3’ have a single grid cell and since li

⌈ li
r ⌉

= bi

⌈ bi
r ⌉

= r, the assumption

holds true, thus visiting the centre of the grid cell is sufficient to cover the entire grid cell.
Similarly, region ‘1’ is decomposed into 3×2 grid cells using Algorithm 8 , the robot A

executes a vertical Boustrophedon Motion.
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(a) (b)

Fig. 4.11 Full coverage path found when site (a) containing eulerian trail (b) without eulerian
trail.

4.7.3 Efficiency Study

In this subsection, the efficiency of the proposed approach is investigated. As the approach
consists of two phases: inter region and intra-region path planning. The following exper-
iments are designed to study the properties of each phase with respect to region size and
number of regions.

Table 4.2 Execution Time for IRPP and MILP with respect to varying number of regions and
specified edges.

Number of Regions
Number of Specified edges Execution Time (s)

(|Θ|) MILP IRPP

3
1 59.76 39.23
2 57.61 43.13

4
1 61.27 41.23
2 63.11 45.13
3 62.9 46.7

5
1 81.6 56.6
2 80.17 61.2
3 82.9 64.44

6
2 90.3 55.12
3 85.21 60.33
4 87.78 67.74
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Experiment IV

In Experiment IV, the properties of two proposed techniques for inter-region traversal:
the MILP based technique (proposed in Section 4.5.2) and IRPP heuristic (proposed in
Section 4.5.4) are studied under varying number of regions. A set of uniform regions of
size li = 2, bi = 4 are considered. The sensor range is set to r = 2. The order of execution
Θ = (2,1). As shown in Fig. 4.12, the execution time of both the MILP based technique
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Fig. 4.12 Analysis of execution time for Inter-region traversal with respect to number of
regions

and the ‘IRPP’ heuristic based approach increases with the increment in number of regions
indicating that both the proposed techniques suffer from the curse of dimensionality with
respect to number of regions. However, the performance of both the techniques are compared
in Fig. 4.13. It can be concluded that the MILP based technique yields a path with less
cost as compared to ‘IRPP’ based heuristic with increase in the number of regions. In order
to achieve this, more computation time is required as the number of regions increase (see
Fig. 4.13).

This experiment is expanded further to investigate the role precedence provision plays in
the inter-region path planning. To investigate this role, the execution time of both the inter-
region traversal techniques is recorded for a site with number of regions varying between 3
and 6. Further, for a fixed number of regions, cardinality of specified order (|Θ|) is varied and
computational time is tabulated in Table 4.2. It is noted that the number of specified edges
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Fig. 4.13 Analysis of cost for Inter-region traversal with respect to number of regions.

don’t have any effect on execution time for MILP based algorithm. But, the execution time
increases as |Θ| increases for IRPP. This can be attributed to the fact that MILP considers Θ

as hardlined constraints whereas IRPP takes Θ as a provision.

Experiment V

Experiment V is designed to investigate the efficiency of the proposed intra-region traversal
technique under varying region sizes. In this experiment, two regions are considered with
length of each region set to be li = 2, i ∈ {1,2}. The sensor range is set to r = 2. The breadth
of each region is then increased simultaneously. The inter-region path generated using both
the inter-region traversal techniques is {1−> 2−> 1} with cost = 2 units.

It is observed from Fig. 4.14 that the execution time varies linearly with the increment
in the breadth of region. This trend can be attributed to the fact that as the breadth of each
region increases, the number of grid cells increase. Therefore, this leads to overall increase
in execution time required to traverse each region indicating scalability to region size.
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Fig. 4.14 Analysis of execution time for Intra-region traversal with respect to breadth of
regions.

Experiment VI

Experiment VI is designed to show the capability of the proposed approach in carrying out
coverage of relatively large scale sites. It was suggested in [42] that robots moving at a fixed
altitude can traverse up to 17 regions in a single trip. In Fig. 4.14, the execution time for
intra-region traversal is directly proportional to number of grid cells. Fig. 4.15 observes a
trend that execution time for the inter-region traversal using IRPP heuristics increases with
the increment in the number of regions. Any large scale site can have large number of regions.
However, in a recent survey [11], it was stated that coverage problem is computed on a part
of a map rather than a complete map. The upper limit of number of regions in a partial map
for computation of coverage is assumed to be 50 such that M = {1,2, . . . ,50}. The execution
time for the MILP technique is calculated to be 889.58s. This illustrates that MILP is capable
of generating a feasible solution for even the large scale sites. The IRPP heuristic based
technique takes up to 140.7s to generate a feasible solution.

4.7.4 Comparison with Existing Works

In this section the performance of the proposed approach is evaluated with respect to following
approaches of CPP of disjoint regions:
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Fig. 4.15 Analysis of execution time for inter-region traversal with respect to number of
regions for large scale sites.

1. TSPP [109]: This method first derives inter-region path planning using genetic algo-
rithm [163] and then determines intra-regional path.

2. Dynamic Programming [42]: The coverage problem is solved using integrated ap-
proach of dynamic programming.

3. Extended Genetic Algorithm [43]: The coverage problem is used as an integrated
problem using genetic algorithm [163].

In this comparison study, genetic algorithm is implemented based on the code in [164] where
the parameter setting were tuned to be: 1) Number of iterations: 104, 2) Population size:
100, and 3) termination when fitness score does not change for 10 iterations. The dynamic
algorithm was implemented based on code in [165].

The performance of the proposed work is compared with the above mentioned works
in terms of coverage cost. Fig. 4.16 shows a trend that when the number of regions are
small (less than or equal to 3) the performance of all the approaches are similar. However,
as the number of regions increase, the coverage cost of existing works increases. The main
reason that they incur a large cost is because they fail to follow the order as observed in
Fig. 4.16. Keeping up with the trend in respect to coverage cost, it can be concluded that
the proposed approach with precedence provision outperforms all the above considered
works [42, 43, 109].
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Fig. 4.16 Cost incurred with respect to number of regions.

4.8 Summary

In this chapter, new CPP techniques for coverage of sites with disjoint regions and precedence
provision were mathematically formulated. The problem was first decoupled as inter-region
path planning and intra-region path planning. MILP and heuristic based technique are
proposed to solve the inter-region path planning. For intra-region path planning, each region
is decomposed into a grid and Boustrophedon Motion is planned over each region. The
combination of both the approaches generates a full coverage path which is proved under
minor assumption. The simulation studies are carried out to study the full coverage and
efficiency of the proposed approach in different scenarios. A comparison study with the
state-of-the-art techniques revealed that the proposed approach out-performed them in terms
of coverage cost incurred.





Chapter 5

Coverage Path Planning of Distributed
Regions with Energy Constraint

5.1 Introduction

Previously, in Chapter 4, coverage path planning for distributed regions using an aerial
robot was discussed. However, another challenge which an aerial robot or Unmanned Aerial
Vehicle (UAV) faces, while covering distributed multiple regions is an energy constraint
where complete area coverage is not possible. In this chapter, this research gap is addressed
by proposing a novel algorithm which solves a variant of area coverage problem where
the UAV aims to achieve near-optimal area coverage due to path length limitation caused
by the energy constraint. The problem is approached by first formulating the problem and
later on presenting a solution. The solution has been partitioned into two inter-dependent
subproblems : i) inter-region coverage, ii) intra-region coverage. The performance of the
algorithm is evaluated by analysing its properties over an exhaustive set of test case scenarios
and comparing it against two state-of-the-art area coverage approaches.

The remainder of the chapter is organised as follows. The overview of the problem is
presented in Section 5.2. This is followed by detailed description of proposed algorithm in
Section 5.3. The experimental evaluation of the proposed method is performed in Section 5.4.
Finally, the conclusions are summarized in Section 5.5.

5.2 Problem Overview

The existing research in CPP has been focused on use of Unmanned Aerial Vehicles (UAVs) in
many application domains for surveying and covering large areas. One of the key challenges
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for UAV based area coverage is limited on-board energy [166, 167]. This problem intensifies
when UAV is entrusted with coverage of multiple distributed regions.

Energy-efficient coverage path planning using an aerial robot for a single region or
multiple connected regions is well researched [168–170]. However, the research works
which explore the problem of computation of coverage path for multiple disjoint regions
assume that an aerial robot has sufficient on-board energy [42, 43, 109]. There exist only
one research work that considers energy limitation and constraint [44]. This work allowed
the UAV to return to the depot to change its battery. However, this might not be a realistic
scenario in many cases such as extreme environmental inspection and limited energy may
lead to partial area coverage. Nevertheless, appropriate execution of partial coverage can
provide useful information of the site. Recently, a few works have explored optimization of
coverage path for partial coverage of a single region [110–112]. To the best of the author’s
knowledge, there does not exist a single work addressing the problem of partial area coverage
over geographically distributed regions by energy constrained aerial robot.

The research presented in this chapter considers solving a variation of CPP problem
where an aerial robot cannot achieve full coverage of multiple distributed regions due to
the energy constraints on the UAV which impose limitation on the total path length. The
algorithm first computes the inter-region path which also decides the start and exit point
for each region. Using these points, the algorithm then distributes waypoints to achieve
near-optimal coverage taking into consideration energy constraints. The optimal path is
defined as a set of waypoints such that after traversing the path, entire area is covered by
robot’s sensor. In this context, the near-optimal path is defined as a set of waypoints, if visited
by the aerial robot, robot’s sensor is able to maximize the coverage area within the given
limitation [110]. Fig. 5.1 shows an example of a near optimal coverage path for a single
region. The robot maximizes the area coverage of gas power plant, coverage path is adrift
and unconventional due to environmental obstructions like uneven nitrogen gas distribution.

5.3 Proposed Algorithm

The algorithm for near optimal coverage of disjoint regions is described next which is appli-
cable to an energy constrained UAV. Considering the kinematics, the following assumptions
are made. The path is defined as a sequence of waypoints which the UAV traverses. The
velocity and acceleration when moving between waypoints is constant such that the UAV
requires same amount of energy to complete the travel between two pairs of waypoints which
are at same distance.
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Fig. 5.1 A near-optimal coverage path considering a path-length constraint. Start point is
denoted with a red circle [110]

5.3.1 Algorithm Overview

In this section, a higher level overview of the algorithm is illustrated. Fig. 5.2 illustrates a
flow chart of the path generation process.

1. Calculate the total path length and the number of waypoints for each region.

2. Calculate the inter-region path and first and last waypoint for each region.

3. Generate a random sequence of path waypoints for each region with desired spacing
ensuring that the path does not intersect each other.

4. Optimize the intra-region path to maximize the coverage area subjected to energy
constraints.

5.3.2 Calculating Total Path Length

The proposed algorithm requires the number of waypoints in each region to be pre-computed.
For each region, the waypoints are all spaced at an equal distance di away from the adjacent
waypoint. If there are n regions which the UAV has to traverse and for each region ri, there
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Fig. 5.2 Flowchart elucidating the proposed algorithm for partial area coverage.

are mi (Wi = {wi
1, . . . ,w

i
mi
}) total waypoints, the path length can be computed as:

ltotal =
n

∑
i=1

(mi −1)di +
n−1

∑
i=1

Dist(wi
mi
,wi+1

1 ) (5.1)
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where, Dist(a,b) is a function which calculates euclidean distance between two input way-
points a and b. The maximum path length is dependent on the energy consumption of the
UAV used for the mission. To compute the energy required to traverse the path length, two
functions Fm(d,v) and Fr(t) are required. Fm(d,v) outputs the energy required to travel dis-
tance d with a velocity v and Fr(t) outputs the energy consumed when resting at a waypoint
for sensing for an amount of time t. Two assumptions are that the UAV travels at a consistent
velocity vt and the waypoints in a particular region i are spaced equally with distance d. Thus,
the energy Em = Fm(d,vt) is constant for each region ri ∈ R. The aerial robot is assumed to
stop at each waypoint for sensing for a constant amount of time tr, so Er = Fr(tr). Another
assumption which is made is that, for each region, the first waypoint wi

1 and last waypoint
wi

mi
are the vertices of the region i. The energy E i, j

m = Fm(Dist(wi
mi
,w j

1),vt) is consumed
while traveling from region ri to region r j. If there are mi total waypoints in each region ri,
the energy Epath consumed by the UAV while covering all the regions is:

Epath =
n

∑
i=1

{miEr +(mi −1)Em}+
n−1

∑
i=1

E i,i+1
m (5.2)

As the total energy capacity Etotal for a particular UAV is already known, the number of
waypoints can be computed by imposing the following condition:

Epath ≤ Etotal (5.3)

In Equation 5.2, the first and second terms indicate the intra-region energy consump-
tion, Eiar, described in Section 5.3.4 and the last term indicates the inter-region energy
consumption, Eier, described in Section 5.3.3. Solving for mi, resulting in:

n

∑
i=1

mi(Er +Em)−Em ≤ Etotal −Eier (5.4)

Using Equation 5.4, the waypoints mi for a region ri are determined by:

n

∑
i=1

mi =
Eiar +n×Em

Er +Em
(5.5)

The number of waypoints mi for each region is assumed to be:

mi = ⌊ Ai

Amax
⌋× D̂ (5.6)
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Using Equation 5.5 and 5.6, D̂ can be formulated as:

D̂ =
Eiar +n×Em

Er +Em
× Amax

Atotal
(5.7)

where, Ai, Amax, Atotal denote area of region ri, area of region with maximum area and total
area of all the regions, respectively.

In the following subsections, the computation of inter-region energy Eier and intra-region
Eiar consumption are described.

5.3.3 Inter-Region Energy Consumption (Eier)

The first step in the proposed algorithm is to compute energy consumed by the aerial robot
while traveling between different regions. As mentioned in last subsection, it is assumed that
the first and the last waypoints wi

1 and wi
mi

, respectively are the vertices of the regions. To
determine the energy consumed inter-region traversal Eier, it is needed to compute:

1. First and last waypoints (wi
1 and wi

mi
) ∀i ∈ n.

2. Inter-region traversal order.

However, to minimize the energy consumption, the computation of waypoints should be
dependent on inter-region traversal orders. The full algorithm is described in Algorithm 9.

Putting together all the elements mathematically stated in Algorithm 9, the inter-region
energy Eier computation algorithm works as follows. To begin, a list V̂ listing number of
regions visited by aerial robot is initialized NULL. In addition, the start depot region rq is
initialized as the current region Cr of traversal by the aerial robot and inter-region energy Eier

is initialized as zero. The algorithm then loops through several actions. First, it determines
the nearest region to the current region which has not been visited by the aerial robot. The
nearest region (ri) is determined by the distance between the vertices of different regions
(DCr,ri). Next, the vertex of the current region is designated as the last waypoint of current
region (wCr

mi
) and the vertex of the nearest region is designated as the start waypoint of next

region (wri
1 ). Finally, the current region Cr is added to the visited list V̂ and the nearest

region ri is selected as the current region. Using the distance between two waypoints, energy
consumption is computed and added to the total inter-region energy Eier. This process iterates
until all the regions are visited.
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Algorithm 9: INTER-REGION ENERGY CALCULATION
Input:
1. R = {r1, . . . ,rn} : Set of regions;
2. <Centre,Vertices,Side >CV S = {< c1,{v1

1, . . . ,v
1
m},S1 >,. . . ,< cn,{vn

1, . . . ,v
n
m},Sn >}

3. rq : Starting depot region;
4. Srq : Starting waypoint of depot region rq;
5. vt : Constant velocity;
Output: Energy Consumption Eier

1 begin
2 INITIALIZATION
3 1) V̂ = NULL : List of regions visited;
4 2) Cr = rq : Current region;
5 3) wri

1 : Starting waypoint of region ri;
6 4) wri

mi
: Ending waypoint of region ri;

7 5) D = {D1,2, . . . ,D1,n,D2,3, . . . ,D2,n, . . . ,Dn−1,n} : Set of distance matrices where
Di, j

k,l represents distance between vertex k of region ri and vertex l of region r j;
8 6) Eier = 0; ◃ Initializing Inter-Region Energy
9 while |V̂ | ̸= |R|−1 do

10 for each region ri ∈ R ∋ (ri /∈ V̂ and ri ̸=Cr) do
11 mindist = minimum of DCr,ri ;
12 row,col = indices of minimum of DCr,ri ;
13 wCr

mi
= row;

14 wri
1 = col;

15 V̂ = V̂ ∪ Cr;
16 Cr = ri;
17 Eier = Eier + Fm(mindist ,vt);

5.3.4 Intra-Region Energy Consumption (Eiar)

After calculating the number of waypoints ( mi ), desired spacing ( di ) and inter-region order
of traversal with entrance and exit points for each region, intra-region energy consumption
Eiar can be calculated. The first step is to calculate the intra-region path, randomly. The
random intra-region path needs to be optimized to reduce the overall cost which is described
in detail in the next section.

Optimality

Due to the energy-constraint, the aerial robot can only achieve partial coverage. Thus, the
proposed algorithm aims to generate a sequence of waypoints to cover the regions in best
possible manner, attempting to maximize the coverage area. When generating a random path,
it is ensured that the coverage path between waypoints do not overlap. However, there is a
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possibility that there can exist two coverage paths which don’t overlap and achieve same
amount of area coverage but provide different qualities of information. For instance, in
Fig. 5.3, the aerial robot is able to cover same amount of area in both the cases. However, in
the first case in Fig. 5.3a, the robot is able to provide detailed coverage information about
the upper portion of region without spending time acquiring information about the bottom
region. In the second case as elucidated in Fig. 5.3b, the area coverage by the aerial robot
provides information which presents an overall picture of the region. However, it is assumed
that having moderate quality information of the entire region is better than having detailed
information of a part of the region and no information about the remaining region. To ensure
that the aerial robot takes a coverage path similar to Fig. 5.3b, following cost function J(.) is
imposed on coverage path Pi.

(a)

(b)

Fig. 5.3 Example of coverage path with same path length where robot is able to collect (a)
detailed information and (b) moderate information
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J(Pi) =
∫∫

ri

min
wi

j

||x−wi
j||dA (5.8)

For region ri, Wi = {wi
1, . . . ,w

i
mi
} is a set of mi waypoints, x is a point lying inside the region

ri represented by a vector [xy]T ∈ ri and dA is the differential area dydx. It is assumed that
the region is a set of grid cells where the resolution of each grid cell is of the size of the
footprint of the robot’s sensor. When the robot is stationed at the center of the grid cell it
can cover the entire grid cell using its sensor. In connection with the previous assumption,
another assumption is made that the possible set of waypoints which robot can traverse while
covering any region is the centre of the grid cell. If gni is the total number of grid cells in the
region ri, this assumption allows the reformulation of the cost function in Equation 5.8 as:

J(Pi) =

gni

∑
x=1

min
wi

j

||x−wi
j|| (5.9)

Applying the above formulated cost function J(Pi), the problem of finding location of
waypoints for inter-region coverage path P∗

i for region ri translates to:

P∗
i = argmin

Pi

J(Pi) (5.10)

subject to constraints,

||wi
j −wi

j−1||= d, ∀i = 1, . . . ,n , ∀ j = 2, . . . ,mi (5.11)

||wi
j+1 −wi

j||= d, ∀i = 1, . . . ,n, ∀ j = 1, . . . ,mi −1 (5.12)

wi
1,w

i
mi

∈ vertex of region ri (5.13)

5.4 Simulations and Results

In this section, simulations are presented to assess the performance of the proposed algorithm,
beginning with several examples of inter-region and intra-region path. A series of experiments
are performed to characterize the algorithm with respect to various parameters and compare
the algorithm to other path generation algorithms. During the simulation, an arbitrary energy
model is used to determine the total path length, which is further utilised to determine number
of waypoints for each region. The number of waypoints for each region are input parameters
for intra-region path generation. All the algorithms are implemented using MATLAB R2020a,
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and the experiments are performed on a DELL XPS IDV8QVO with Intel Core i5, 8GB
memory and 225GB storage. The built-in MATLAB function f mincon is used for direct
optimization.

Fig. 5.4 Example of inter-region path generated to cover 10 regions. Depot is denoted by
region 1

5.4.1 Target Site Generation

The parameters corresponding to the target site which needs to be covered are generated
randomly. The number of regions in the site is given by the user with an upper bound of 100
regions. The above-mentioned assumption is based on the energy budget an aerial robot needs
to perform area coverage [42]. The regions in any given site are distributed around an origin
denoted by the coordinates (0,0). Any new region is created by generating the coordinates of
its centroid. These coordinates are generated by first selecting the distance from the origin
through a uniform random distribution U1 [0,200] and then by determining the angle that it
subtends on the x axis, using another uniform random distribution U2 [0,360].
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(a)

(b)

Fig. 5.5 Example of coverage path generated by proposed algorithm for intra-region
coverage of a 200 m x 200 m square region with starting waypoint (vertex of region) marked

as red asterisk and ending waypoint (vertex of region) marked as blue asterisk (a) initial
random path for (b) optimized final path.
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The new region is created using built-in MATLAB function nsided poly() [162]. This
function takes as input the number of vertices, the coordinates of the centroid, and length
of each side of the region. nsided poly() generates a regular polygon based on the input
parameters. The number of vertices is generated through a uniform random distribution U3
[3,10]. The length of the side of a region is generated using normal distribution with standard
deviation as σside = 2.5 and the mean as µside = 7.5m. The new region is accepted if and
only if it does not overlap with already created region; otherwise, the region is discarded.
These steps are repeated until the desired number of regions are generated. The size of each
grid cell is assumed to be 1×1 m2.

5.4.2 Path Generation Examples

In the first example, the inter-region algorithm is run in a target site with 10 regions. The
region 1 is selected as the starting region (depot). The generated inter-region path is shown
in Fig. 5.4. In the second example, an intra-region path is illustrated for a square region with
dimension 200 m x 200 m, which is discretized into a 200 × 200 cell grid. The initial random
path is depicted in Fig. 5.5a. The algorithm optimizes to the path shown in Fig. 5.5b.

5.4.3 Algorithm Characterization

In order to characterize the proposed algorithm, several experiments were run in simulation.
First experiment is conducted to determine the runtime of the algorithm with respect to the
number of regions in the target site. The second set of experiments is conducted to compare
the algorithm optimality and runtime of the proposed algorithm against two other algorithms
focusing on area coverage of distributed regions. The first state-of-the-art algorithm is the
method described by Xie et al [44]. This algorithm is chosen because it is the only work in
literature which determines the path for area coverage of multiple distributed regions by the
energy constrained UAV. However, due to the fact that the Xie’s method performs multiple
tours to provide complete area coverage, the proposed work computes coverage path which
performs partial coverage in a single tour. Therefore, a slight modification is made to Xie
method where the area covered in a single tour is only considered to do sensible comparison.
The second state-of-the-art algorithm is a path generation method proposed in Chapter 4
which covers the area by Boustrophedon path for intra-region and uses nearest neighbour
algorithm for inter-region traversal. This algorithm is chosen because of its ability to generate
computationally inexpensive area coverage solutions.
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Average Runtime

To determine the time complexity of the proposed algorithm, an experimental setup is
designed by fixing the waypoint spacing d to be 1 grid cell. The number of regions are varied
across the range of 25 to 100. For each different number of regions, 100 trials of experiment
are performed and average runtime per iteration is computed. The results are illustrated in
Fig. 5.6, depicting that as the number of regions increase, the average run time increases.
This increment can be attributed to the fact that as the number of regions would increase, the
algorithm would require more time to compute inter-region path and optimise the intra-region
path to achieve near-optimal area coverage.
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Fig. 5.6 Average runtime for different number of regions

Normalized Area Coverage Comparison

The optimality of the proposed algorithm is assessed by measuring normalized area coverage.
Further, this parameter is used to compare the proposed algorithm with the two previously
described state-of-the-art algorithms. Five different target sites are generated for the ex-
periments by varying the number of regions from the range of {10,20,30,40,50}. All the
algorithms are executed 10 times for each number of regions.

The normalized area coverage is computed as the ratio of the partial area covered by
the UAV and total area of the target site. The results are shown in Fig. 5.7 . The proposed
algorithm generated path is able to achieve normalized area coverage between 55% to 73%,
on the other hand, the method [44] achieves partial area coverage between 34% to 47%. The
method proposed in Chapter 4 is able to cover 26% to 39% area.
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Fig. 5.7 Comparison of Normalized Area Coverage for different number of regions

5.5 Summary

This chapter has presented a partial coverage method for planning near-optimal area coverage
paths for multiple distributed regions using an aerial robot given energy limitations. The
coverage path generation algorithm first computes an inter-region order traversal and then
distributes path waypoints for intra-region coverage. A handful of works have been done
previously exploring generation of area coverage path for multiple disconnected regions due
to energy constraints, and the path-planning algorithm proposed in this chapter is a novel
approach to solving that problem by generating path which aims to achieve near-optimal
partial area coverage with given energy budget.

Simulations are conducted to compare the proposed method with other methods that can
generate coverage paths for distributed multiple regions. The algorithm presented in this
chapter provides paths much closer coverage to the full coverage than the state-of-the-art
area coverage methods. The reason behind better performance in terms of area coverage
is due to the algorithm design which focuses on optimizing intra-region area coverage by
traversing a set of waypoints.

The proposed algorithm has two limitations. The first limitation is that the intra-region
path is devised by optimizing the cost function using a built-in MATLAB function. This
optimal solution strategy will be prohibitively expensive in terms of solution generation times
and required storage space. Further, it will also be difficult to deliver satisfactory outputs as
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the number of regions will increase. Hence, probabilistic mission planning can be used as a
decision making module [171]. The path planning for any UAV is generally modelled as par-
tially observable Markov decision process (POMDP) [172]. In the case of energy constrained
coverage path planning, the problem is mapped as constrained POMDP(CPOMDP) [173].
Recent linear programming solution for approximation of CPOMDP can be considered to
generate optimal solution within reasonable time. The second limitation is that this algorithm
requires an accurate energy model, assuming that the UAV is able to rotate in place.





Chapter 6

Coverage Path Planning of Distributed
Regions using a Heterogeneous Fleet

6.1 Introduction

The previous chapters have indicated that generation of solutions for automated coverage
path planning over disjoint regions within constrained time bounds is an important problem
especially in domains requiring emergency coverage operations over possibly extreme
terrains. In this chapter, the proposed work focusses towards the coverage of disjoint regions
in real time, using a fleet of Unmanned Aerial Vehicles (UAVs) having heterogeneous
capabilities in terms of sensor footprint sizes, speed and power rating. In this chapter, a
lower overhead simulated annealing based statistical solution approach is proposed that is
able to deliver good solutions within acceptable time limits. To manage the complexity of
the overall problem, while producing fast but satisfactory solutions, the problem has been
partitioned into two inter-dependent subproblems : i) Inter-region coverage, ii) Intra-region
coverage. The performance of the algorithm has been evaluated by analysing its properties
over an exhaustive set of test case scenarios and comparing it against a state-of-the-art genetic
algorithm approach.

The remainder of the chapter is organised as follows. Section 6.2 describes the problem
overview. This is followed by stating the problem statement in Section 6.3. Section 6.4
proposes a simulated annealing based heuristic approach. The experimental evaluation of
the proposed method is shown in Section 6.5. Finally, the conclusions are presented in
Section 6.6.
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6.2 Problem Overview

Coverage Path Planning (CPP) problem over disjoint regions is relevant in practical scenario
including environmental mapping, and extreme environmental inspection [174]. The area
coverage operation in such scenario are carried out in critical emergency situations with
stringent constraints on the available time within which the coverage must be accomplished.
This work deals with the problem of real time CPP over a set of disjoint regions using a fleet
of UAVs which are heterogeneous UAVs in terms of their sensor footprint sizes, power rating
and manoeuvring speeds.

There exist only few works that have explored the problem of CPP for multiple disjoint
regions. In these works, both terrestrial robots [175] and UAVs [72] have alternatively been
used as coverage robots. However in this chapter, only mutually isolated regions separated by
extreme terrain/environment are considered, where use of terrestrial robots are not possible
and UAVs must be deployed to serve the purpose. Exploring the literature in Chapter 2, it
was observed that the works dealing with the problem of CPP using UAVs may be broadly
classified into two major categories based on: a) whether the solution addresses the problem
of covering a single region, multiple connected regions, or a set of disjoint isolated regions,
b) whether single or multiple UAVs have been used in the solution approach.

However, only a handful of works explore the CPP problem dealing with multiple disjoint
regions. In addition to the need to systematically cover the internal area of multiple regions,
instead of a single one, the problem with disjoint regions introduces the additional challenge
of generating least cost tours covering a set of regions. Each such tour is intended for a
particular robot so that it may start from its depot, conduct the tour through the regions
under its purview and come back to its depot while incurring minimal overhead. While
the intra-region traversal requires a solution to CPP, inter-region traversals are typically
mapped to a variant of the Travelling Salesman Problem (TSP). It may be noted that both
CPP and TSP are NP-hard in the strong sense and hence optimal solutions become extremely
expensive in terms of both time and space even with moderately sized problems. Thus,
researches have primarily focused towards design of heuristic solutions to this problem.

In a recent work, Xie et al. [42] proposed a dynamic programming based framework to
solve the integrated TSP-CPP problem for rectangular distributed regions to be covered using
a single UAV. A further extension of this work considered polygonal regions with arbitrarily
many vertices and solved using a genetic algorithm approach [43]. To best of the author’s
knowledge, there exists only a single work addressing the problem of area coverage over
disjoint geographically distributed regions by multiple UAVs [145]. An optimal solution
was deduced using a Mixed Integer Linear Programming (MILP) framework. The problem
being very complex, use of MILP formulation makes the solution approach highly compute
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intensive, and restricts its scalability to problems containing only small number of regions.
However, as discussed before, important applications of disjoint region coverage often
include emergency coverage mission over vast geographical areas where both the number
of regions and their average sizes may be pretty large. This demands the design of efficient
and scalable heuristic strategies. In addition, the solution strategy proposed in [145] does
not consider real time constraints and restricts the set of UAVs to be homogeneous in nature.
In practice though, such mission critical operations may be marked by strict time bounds
with the utility provider deploying a set of possibly heterogeneous UAVs at its disposal in an
attempt to successfully accomplish the mission within the stipulated deadline.

In this chapter, the problem of CPP computation for area coverage of disjoint regions
using a heterogeneous fleet of UAVs is considered. The deployed fleet of UAVs have different
footprint sizes, speed, power rating and predefined time frames within which to complete
a mission. Given the structure that the problem consists of, it is difficult to design efficient
heuristic solution which performs well under all scenarios which may occur in practice.
Hence, it was resorted to a statistical solution strategy based on simulated annealing. With
its ability to progressively move towards local optima, while intermittently perturbing the
search in an attempt to obtain better solutions, simulated annealing has allowed us to design a
flexible scheme which can deliver good solutions if given reasonable time. Our experimental
evaluations show that the proposed scheme is able to outperform a state-of-the-art genetic
algorithm approach in all scenarios.

6.3 Problem Statement

The research presented in this chapter aims to solve the real time area coverage problem
corresponding to a target site consisting of multiple disjoint regions using a fleet of het-
erogeneous UAVs. Each aerial robot or UAV in the fleet is referred to as an agent in this
chapter. Let us consider a scenario where a set of agents A = {A1, . . . ,An} need to inspect
M = {M1, . . . ,Mm} spatially distributed and non-overlapping convex polygonal regions.
Each agent in A contains a sensor which inspects the surface beneath with a square footprint
whose length can take any alternative value from the set Range= {r1×r1,r2×r2, . . . ,rk×rk},
where ri ∈ Range is a positive non-zero integer and k is a constant. Each agent, Ai, is also
categorized by a possibly distinct power rating Pi and manoeuvring speed Si. The power
rating Pi and speed Si can take an integer value from a uniform range. All the agents in the
fleet operate at a fixed altitude. The geographical area of the site has been modelled using
a discrete 2D grid structure so that all distances in both x and y directions assume integer
values, with the origin being at left bottom corner of the site. Each region will be covered by
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unique designated agent such that each agent will start from the depot covering all regions
under its purview and return back to its depot after finishing its tour. A region is completely
defined by the grid cells which lie fully or partially within its area. A region Mi is completely
defined by the set of grid cells Gi = {gi j}ni

j=1, where gi j denotes any grid cell lying fully or
partially within the area of Mi, and ni denotes the cardinality of Gi. Entire mission must be
accomplished within an end to end deadline τ .
Problem Definition: Given a set of disjoint regions and a set of agents, the objective is to
construct a tour for each agent which starts from the depot, covers a set of disjoint regions
and comes back to the depot such that the total energy dissipated by all the aerial agents is
minimized. Also, the time elapsed in completing the mission which is given by maximum
time consumed by any touring agent, is upper bounded by the end to end deadline τ .

6.4 Heuristic Approach

In this section, a heuristic framework is proposed for solving the coverage problem over
geographically distributed regions. The structure of the given problem immediately reveals
that it can be considered as a composition of two constituent mutually dependent subproblems:
1) Inter-region path planning 2) Intra-region path planning. Inter-region path planning assigns
regions to the agents, computes the traversal order for each agent and determines the entry
and exit cell for each region. On the other hand, intra-region path planning determines the
coverage path for each region.

Analysis shows that the problem is NP-hard in the strong sense and an optimal solution
strategy to it will be prohibitively expensive in terms of solution generation times and required
storage space. Further, it is also difficult to design a deterministic/greedy heuristic strategy
which avoids solution enumeration, but can deliver satisfactory outputs under all realistic
scenarios. Hence, it was resorted to a simulated annealing based statistical solution approach,
which can generate considerably good solutions within reasonable time. Additionally,
simulated annealing allows the flexibility of generating the best solution within a given upper
bound on solution generation times as may be needed in possibly emergency situations where
the proposed solution is applied.

Simulated annealing is a meta-heuristic search strategy which takes inspiration from the
annealing process in the field of metallurgy. In the annealing process, the material is heated
to a certain temperature and cooled in a controlled fashion to increase the size of crystals
and reduce their defects. Similarly, simulated annealing is used to approximate the global
minimum of a given function whose search space is discrete. It takes an initial solution and
temperature as input. With each iteration, a random neighbouring solution is generated. The
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algorithm accepts not only new solutions that lower the objective, but also the solutions
which raise the objective, with a certain probability. By accepting the solutions which raise
the objective, the algorithm is able to avoid getting trapped in local minima, so that it is
able to explore globally a more exhaustive set of possible solutions. The temperature is
systematically decreased according to a cooling schedule over the iterations of the algorithm.
With the decrease in temperature, simulated annealing lowers the probability of accepting
solutions which raise the objective. As a consequence, the extent of search gets reduced and
the algorithm ultimately converges to a minimum.

To solve the coverage problem of disjoint regions using heterogeneous agents, a simulated
annealing framework is deployed to find a global minimum which meets the objective of
minimizing inter-region traversal and maximize intra-region coverage area. The proposed
strategy is quite sensitive to the quality of the initial solution, and hence it becomes important
to design an efficient initial solution generation scheme. We now discuss in detail the
different components of our simulated annealing framework starting with the initial solution
generation mechanism. The notations used in the approach are tabulated in Table 6.1

Table 6.1 Notations across Heuristic Approach

Variables Definition
A set of n agents
M set of m regions
Gi set of grid cells in region i
ri footprint of agent i
Pi Power Rating of agent i
Si Speed of agent i
τ Time Deadline

Ag_Cl Tensor mapping agents to regions and cluster
E_C : ⟨Cluster c,Agent a,Energy_Cost e⟩; Properties of Region Cluster

6.4.1 Initial Solution Generation

The initial solution strategy attempts to minimize the total energy cost of coverage and is
designed as a composite solution to two subproblems, inter-region and intra-region path
planning.

The total energy cost (Z) can be mathematically stated as:

Z = ∑
Ai∈A

( ∑
j∈Region(Ai)

CAi( j, j+1)+ ∑
j∈Region(Ai)

ĈAi( j)) (6.1)
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Algorithm 10: INITIAL SOLUTION GENERATION
Input:
1. A = {A1, . . . ,An}: set of agents
2. M = {M1, . . . ,Mm}: set of regions
3. <Footprint, Power Rating, Speed> FPS ={< r1,P1,S1 >,. . . ,< rn,Pn,Sn >}
4. Time Deadline : τ

Output: Initial Solution Sol, Ag_Cl, TimeInitial , ZInitial , E_C
1 Function Initial_Solution:
2 Generate a set C = {C1, ...Cn} of n clusters;
3 Create an empty list E_C
4 l = 0; ◃ Index for list E_C
5 for each cluster Ci ∈C do
6 T SPi = NN(Ci); ◃ Generate ordered list of regions T SPi, the tour over all regions in Ci.
7 DIER = Dist(T SPi); ◃ Calculate the total tour distance for T SPi

8 DIAR = ∑Mk∈Ci GMk ; ◃ GMk is the number of grid cells in region Mk
9 for each agent A j ∈ A do

10 IARD = DIAR
r j

; ◃ Estimated intra-region distance for each agent A j

11 Time j = IARD+DIER
S j

; ◃ Time required by agent A j to cover cluster Ci

12 if Time j ≤ τ then
13 %Feasible Solution %
14 Energy_Cost = Time j ×Pj;
15 else
16 %Infeasible Solution %
17 Energy_Cost = ∞;

18 E_C(l) = ⟨Ci,A j,Energy_Cost⟩;
19 l = l +1;

where, Region(Ai) is the set of regions allocated to the agent Ai for coverage, CAi( j, j+1)
is the cost incurred by agent Ai when traversing from region j to region j+1 and ĈAi( j)) is
the cost incurred by agent Ai when covering region j. Equation 6.1 contains two parameters
where the first parameter considers the cost due to inter-region traversal and the second
parameter considers the cost due to intra-region coverage.

Algorithm 10 presents the pseudo code for the initial solution generation scheme.
Line (2) Generating Clusters : Given a set of n heterogeneous aerial agents, the first

step is to generate n disjoint clusters, each of which will be dedicated to a distinct agent. For
a given set of spatially distributed regions, geographical proximities between them may be
considered to be an important feature towards deciding the subset of regions which should
be grouped together under the purview of a single agent. For the initial solution, n region
clusters are generated using the K-means algorithm, which uses the separation between
region centroids as a measure of distance in the clustering algorithm.
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Algorithm 11: INITIAL SOLUTION GENERATION (CONTD.)
22345678910111213141516171819 Function Initial_Solution:

20 Sort list E_C in ascending order based on E_C.e;
21 num_assign = 0; ◃ List of cluster assigned to agent
22 Create empty boolean lists Agent_Assigned, Cluster_Assigned (Initialize to False)

and another list Ag_Cl, each of size n;
23 i = 1; ◃ Index to read nodes in list E_C
24 TimeInitial = ZIntial = 0 ◃ Initialize total energy cost and coverage time to zero
25 while num_assign ̸= n do
26 if agent_Assigned(E_C(i).a) == FALSE AND

Cluster_Assigned(E_C(i).c) == FALSE then
27 Cluster_Assigned(E_C(i).c) = T RUE;
28 Agent_Assigned(E_C(i).a) = T RUE;
29 num_assign = num_assign+1;
30 Ag_Cl(A j) =Ci;
31 ZInitial = ZInitial +E_C(i).e;
32 if TimeE_C(i).a > TimeInitial then
33 TimeInitial = TimeE_C(i).a;

34 i = i+1;

Lines (3-4) E_C list creation: After clustering the regions, the next important step is to
assign to each cluster, the agent which will perform coverage of the cluster. It may be noted
that the agents are heterogeneous being characterized by distinct speed, footprint and power
rating values, and hence each agent may possibly incur distinct energy costs for covering
any given cluster. Since, the objective is to minimize the total energy cost Z as calculated in
Equation 6.1, the estimated energy cost corresponding to all agent cluster pairs needs to be
computed in order to decide which mapping among them should actually be chosen. Energy
cost information for each agent cluster pair is stored in a list E_C, each element of which is a
three tuple <Cluster c,Agent a,Energy_Cost e >.

Lines (6-8) Inter-region Distance Computation: Although the agents are heterogeneous,
the total inter-region distance within a cluster remains the same irrespective of which agent
the cluster is allocated to. This is because distance that must be traversed by an aerial agent
to move from one region to another region is independent of its footprint size. The distance
between a pair of regions is calculated by first determining the grid cells through which a line
connecting two region centroids, pass. Then, the grid cells on this line are determined which
intersect with the two region boundaries. Finally, eucledian distance between these two
grid cells is used as a measure of the distance between two regions. Given the inter-region
distances of a cluster, a TSP tour for the cluster, is generated using Nearest Neighbour (NN)
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function. Algorithm 12 presents the pseudo code of nearest neighbour function. Initializing
the depot as the first region in the tour, this algorithm progress in an iterative fashion including
one more region in the tour in each iteration. In any given iteration, the region (say Mk)
having the shortest distance from the region last added in the tour is selected and included
into the current partial tour. The tour is completed when all the regions have been covered
and the agent returns back to the depot. For each cluster, enumeration of the generated tour
is returned back to the main function in the ordered list T SPi (Lines 5-6). Line 7 calculates
the total inter-region distance (DIER) and Line 8 determines the total number of grid cells
over all regions associated with the current cluster Ci (DIAR). After calculating these cluster
parameters, energy costs are determined with respect to all agents for this cluster.

Lines (9-19) Energy Cost Computation of all Agent-Cluster pair: Footprint r j denotes
the number of grid cells that a UAV can cover in parallel. If DIAR denotes the total number of
grid cells over all regions in cluster Ci, then IARD(IARD = DIAR/r j) denotes the minimum
intra-region distance that the agent A j must traverse to cover the entire cluster (Line 10).
Subsequently, the time required by A j for traversing cluster Ci is obtained as a ratio of total
intra-region and inter-region distance and its speed S j. In line 12, Algorithm 10 verifies
whether the required traversal time for agent is lower than the given deadline (τ). If the
required time is less than the deadline, Algorithm 10 considers it as a feasible solution and
computes the energy cost for that particular agent. Given the power rating (Pj), the energy
cost is calculated in line 14. For each agent, the computed energy cost is appended in list
(E_C) with cluster id and agent id and corresponding energy cost value.

Line (20-34) Assigning agents to clusters: After computing the list E_C, Algorithm 11
sorts the list in ascending order of energy cost. The agent to cluster assignment occurs
by sequentially exploring the E_C from the beginning. The agent id associated with the
ith element of E_C is assigned to the corresponding cluster id, if neither the agent nor the
cluster id corresponding to E_C(i) has not already been allocated. Here, the boolean lists
Agent_Assigned and Cluster_Assigned are used to determine whether an aerial robot/ cluster
has already been assigned and is used to determine in O(1) time. To complete the assignment
process in minimum time, two boolean lists Agent_Assigned and Cluster_Assigned are used.
They are initially assigned to False. When each node in sorted list E_C is visited and based
on the value of tuple Energy_Cost e, the agents are assigned to clusters. The complexity of
assignment of agents to clusters is O(n) where n is the number of clusters/ agents.

Intra-region path planning:

In this section, the CPP methodology is introduced that computes the coverage path for a
single polygonal region, a pertinent step towards CPP computation for the entire target site
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Algorithm 12: FUNCTION NN ( )
Input:
1. Ci = {M1, . . . ,Ml}: a set region
Output: T SPi: TSP Tour of all region in cluster Ci

1 Function NN:
2 for each region M j in cluster Ci do
3 Calculate centroid centroidi j for region M j

4 j = 1;
5 T SPi = { j}; ◃ Tour starts at depot
6 W = Ci\ j; ◃ Unvisited regions in Cluster Ci

7 while W ̸= NULL do
8 for all regions Mk ∈W do
9 Dist(k) = Distance between centroidik and centroidi j.

10 Determine region Mk for which Dist is minimum. ◃ Select region Mk which is
nearest to region j

11 T SPi = Append (T SPi,Mk)
12 j = k ◃ The region k becomes the current region j
13 W =W\M j

14 Return T SPi

composed of disjoint regions. Any region i is modelled as a polygon which can be described
by an ordered set of pi vertices {v1, . . . ,vpi} with γh denoting the inner angle associated with
the vertex h.

The spatial resolution of each grid cell is equivalent to the minimum sensing range among
the fleet of agents A . This implies that there exist agents, which, if placed at the centre of
a grid cell, can sense more than one grid cell. Let us consider three UAVs hovering over a
single grid cell as elucidated in Fig. 6.1. UAV1 with the smallest sensing range has a footprint
of a single green cell. UAV2 can cover 9 grid cells (yellow grid cells along with green cell).
UAV3 can cover 25 grid cells (red, yellow and green grid cells). The Boustrophedon motion
simplifies the path design and has been adopted widely by many CPP methodologies [43].
For a given convex polygon region, Boustrophedon motion that covers the region can be
computed using a set of parallel lines called as support lines (SL) drawn horizontally through
the vertices defining the span of the region as shown in Fig. 6.2. An intra-region coverage
path for a given region is computed using function IRP illustrated in Algorithm 13. An
intra-region coverage path for a given region is impacted by many parameters like region
visiting order, entrance and exit locations. To address this issue, all the parameters are
considered while computing the CPP for a single region. Let us suppose an aerial agent is
traversing from region j−1 to region j and coverage path for region j needs to be computed.
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Fig. 6.1 Sensing Range of three UAVs are hovering at the top of the green cell.

Fig. 6.2 A Boustrophedon motion (green lines) that covers a rectangular region with support
lines represented as dashed grey lines.
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Algorithm 13: FUNCTION IRP ( )
Input:
1. Region j for intra-region visit
2. Previous region j−1 and next region to be visited
3. Footprint size r j for agent A j

Output: Coverage Path for region j
1 Function IRP:
2 %Entrance point%
3 Line_V : a set of vertices on support line for each vertices vi ∈V do
4 if vertices vi lies on support line then
5 Line_V = Line_V ∪ vi;

6 Entrance Point : Select vertex from Line_V which is closest to region j−1;
7 %Back Forth Motion%
8 while Entire region j is covered do
9 while r j rows are not covered do

10 Path j =< G1, . . . ,Gk >: Move horizontally with r j cells;

11 Path j =< Gk+1, . . . ,Gl >: Move r j cells vertically after covering entire rows under
purview r j;

12 Return Path j;

The entrance of region j as the nearest vertex to region j− 1 lying on SL is determined.
After computing the entrance, the Boustrophedon motion is computed, which is a back and
forth motion from one level grid cell to another level moving towards the vertex lying on the
opposite SL.

For the coverage by the agents having a footprint size larger than the spatial resolution
of a single grid cell, instead of moving to a neighbouring cell using usual Boustrophedon
motion, rk cells in the horizontal direction is determined, where rk × rk is the sensing range
of the agent k. Once a row is covered horizontally, the agent jump rk cells vertically. Thus,
the usual Boustrophedon motion with a step size of rk × rk is employed. This approach will
work for cases where the regions do not have a rectangular boundary. For instance, let us
consider a pentagon where V4 is the entrance point as shown in the Fig. 6.3.

In this case, given grid based region sampling, the aerial agent ensures the complete
coverage of entire second row first and then move rk cells downwards.

Lemma 1: Given a convex polygon region and footprint size of an aerial agent k as
rk × rk, the Boustrophedon motion generated by our proposed intra-region path computation
technique guarantees full coverage of the region.

Proof: Any given region can be decomposed as a collection of grid cells. If a UAV with
its footprint size rk ≥ w, covers the region by employing Boustrophedon motion with a step
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Fig. 6.3 Coverage path planning of a pentagon by an aerial agent with r2 × r2 coverage area.

size rk, it ensures that each grid cell within this convex polygon region is covered at least
once, that is full coverage of the region.

6.4.2 Simulated Annealing

After discussing the initial solution generation procedure and inter-region and intra-region
coverage mechanisms, a step-wise description of the overall simulated annealing scheme
presented in Algorithm 14.

Lines (2-6) Initialization: The procedure starts by assigning the initial solution as
the current solution, while η (η = 500) and Temp (Temp = 104) store maximum number
of allowed iterations and initial temperature, respectively. The best energy cost ZBest is
initialized as the current energy cost ZCur.

Lines (8-10) New Solution Generation: Each iteration of the while loop in lines 7-32
generates a new solution. The configuration of a solution is given by ordered set of regions
and the path traversed by each agent within its assigned cluster. Before generating the
next solution, the current solution SolCur and its energy cost ZCur is stored in SolPrev and
ZPrev. Now, a new solution using Function NEW_SOL is determined which generates a
new neighbouring solution using current solution SolCur as discussed in Algorithm 15. For
generating a new solution, the algorithm randomly selects two distinct clusters Ci and Ck

in current solution SolCur and then randomly selects a region M j in the selected cluster in
Line 2-4. The selected region M j is moved from cluster Ci to Ck in the new solution. Finally,
new energy cost ZCur and coverage time TimeCur is calculated.

Lines (12-24) Accepting the Solution: The new solution is directly accepted, if it meets
deadline (TCur < τ) and its energy cost is better than that of the previous solution. Further,
in this case, if the energy cost of the current solution is better than the energy cost of the
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Algorithm 14: FUNCTION S_ANNEALING ( )
Input: 1. A ,M : set of agents and regions
3. < Foot print,PowerRating,Speed > FPS = {< r1,P1,S1, . . . ,< rn,Pn,Sn >}
4. τ: Deadline within which the site must be covered.
5. Initial_Sol,ZInitial ,TimeInitial: Initial solution, Initial energy and time and Energy list.
Output: SolCur, ZCur and TimeCur

1 Function S_Annealing:
2 1) SolCur = Initial_Sol; ◃ Initialize current solution SolCur as Initial Solution
3 2) η = i = 500; ◃ η is maximum number of iterations and i is the iteration index
4 3) Temp = 104; ◃ Initially temperature is set to a high value.
5 4) ZBest = ZCur = ZInitial;
6 5) SolBest = SolCur ◃ Initialize initial solution along with its energy cost as best solution

and its energy.
7 while i > 0 do
8 SolPrev = SolCur;
9 SolCur,ZCur,TimeCur = NEW_SOL (SolCur, Ag_Cl, FPS, E_C, ZCur, TimeCur ) ◃

Generate new solution along with its associated energy cost and coverage time.
10 di f f = ZCur - ZPrev; ◃ Difference in energy cost between current and previous solutions.
11 if diff < 0 then
12 if TimeCur ≤ τ then
13 % Accept current Solution SolCur %;
14 if ZCur < ZBest then
15 ZBest = ZCur;
16 SolBest = SolCur; ◃ Accept current solution as best solution.

17 else
18 δ = TimeCur − τ; ◃ Difference by which time deadline is exceeded.
19 λ = rand(0.5,1); ◃ Generate a random number between 0.5 and 1.

20 Metropolis = e
−δ

Temp ;
21 if Metropolis > λ then
22 % Accept current solution SolCur %

23 else
24 %Discard current solution SolCur %

25 else
26 Metropolis = e−di f f/Temp;
27 if Metropolis > λ then
28 %Accept current solution SolCur%

29 else
30 % Discard current solution SolCur%

31 i = i−1;
32 Temp = i

η
×Temp;
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best solution obtained so far, then the current solution is updated as the current best solution.
Otherwise, if the new solution violates deadline then it is probabilistically accepted only
if the value of metropolis (Metroplois = e−(TimeCur−τ)/Temp) is greater than λ , a random
number between 0.5 and 1. It may be noted that the metropolis is a variable whose value
is bounded between 0 and 1 and it reduces as the temperature cools over time. Hence, the
probability of accepting a deadline violating solution also reduces over time.

Lines (26-32) Accepting Solution with higher energy cost: If the energy cost of the
current solution is worse than that of the previous solution, the current solution is proba-
bilistically accepted if the value of metropolis variable (Metroplois = e−(ZCur−ZPrev)/Temp)
is greater than λ , similar to the mechanism for accepting a deadline violating solution as
discussed above. Finally, the current iteration ends by updating the iteration count and the
value of temperature temp.

Algorithm 15: FUNCTION NEW_SOL ( )
Input: 1. SolCur: Input solution
2. Ag_Cl,E_C: Agent cluster pair, Energy cost list
3. < Foot print,PowerRating,Speed > FPS = {< r1,P1,S1, . . . ,< rn,Pn,Sn >}
4. ZCur,TimeCur: Energy cost and coverage time for input solution.
5. w : width of grid cell
Output: New Solution SolCur, Energy Cost ZCur and Coverage Time TimeCur

1 Function NEW_SOL:
2 Select a cluster Ci randomly in SolCur;
3 Select a region M j randomly in cluster Ci;
4 Select another cluster Ck randomly in SolCur such that Ck ̸=Ci;
5 Remove region M j from cluster Ci and add to cluster Ck;
6 for each H ∈ {i,k} do
7 T SPH = NN(CH) ◃ Generate inter-region path
8 IER = Dist(T SPH); ◃ Calculate total inter-region distance
9 v = Ag_Cl(H) ◃ Agent-id assigned to cluster-id H

10 for each region Mk ∈CH do
11 Pathk: intra-region path using IRP(Mk,rv);

12 IAR = ∑M j∈CH Path j ×w; ◃ Total intra-region distance
13 total_dist = IER+ IAR;
14 Timev = total_dist

Sv
; ◃ Time required by agent Av to cover site

15 Zv = Timev ×Pv; ◃ Energy cost incurred by agent AV

16 ZCur = ZCur −E_C(v).e+Zv ◃ Update energy cost ZCur

17 if Timev > TimeCur then
18 TimeCur = Timev ◃ Update coverage time TCur

19 Return SolCur,ZCur,TimeCur;
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6.5 Experimentation and Results

In this section, a simulation study is performed to evaluate the performance of our proposed
simulated annealing approach and compare the same against an existing genetic algorithm
scheme [43]. The common parameters, number of iterations and population size, are set
500 and 100, respectively. These values were selected from [43]. All the algorithms
are implemented using MATLAB, and the experiments are performed on a DELL XPS
IDV8QVO with Intel Core i5, 8GB memory and 225GB storage.

6.5.1 Experimental Setup

The input data for the experiments have been generated using the following framework:

1. Region Characteristics: The data corresponding to the regions for a site which needs
to be covered has been generated randomly. Sites with four different values for the
number of regions viz. {25,50,75,100}, are generated. The regions in the site are
assumed to be distributed around an origin marked by the coordinates (0,0). A new
region is created by first tentatively selecting a centroid for it. The coordinates of
this centroid are obtained by selecting its distance from the origin through a random
distribution U1 [0,200] and also determining the angle that it subtends on the x axis,
from another uniform random distribution U2 [0,359].

A new region is created using function nsided poly() [162]. This function takes as
input the coordinates of the centroid (obtained as discussed above), the number of
vertices and length of each sides of the region to be generated. nsided poly() returns
a regular polygon based on the region parameters provided as input. The number of
vertices is generated from a uniform random distribution U3 [3,10]. The length of
the side of a region is generated from normal distribution having standard deviation
as σside = 2.5 and with four different values for the mean µside = {5,10,15,20}. The
new region is actually accepted if it does not overlap with any other region already
generated; otherwise, it is discarded. These steps are repeated unless and until desired
number of regions are created. In case of a rejection, the steps to create a new region
are repeated. The above steps are continued until the required number of regions have
been generated. The size of a region is measured in terms of number of grid cells that
it contains. The size of each grid cell is assumed to be 1×1 m2.

As discussed before, the overall operation has an associated deadline by which coverage
of the target site must be completed. For each dataset, the time (TInitial) required for
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the coverage in the initial solution generated by Algorithm 10 is used as a deadline
(τ = TInitial).

2. Agent Characteristics: The data corresponding to the agents or agents which are
deployed to cover a site is generated in the following fashion. Four different values
for the number of agents has been considered {4,6,8,10}. All the agents(or aerial
agent) are assumed to have square footprints whose areas are expressed as an integral
number of grid cells. Agents can have different footprint sizes. This size, in terms of
grid cells, can assume anyone of three values {1,4,9}. The speed of each type of agent
is generated from a normal distribution with mean µspeed = 5 and standard deviation
σspeed = 1. The power consumption for each UAV has also been generated using a
normal distribution with mean µpower = 100 and standard deviation σpower = 25.

3. Evaluation Metrics: The principal metrics used for evaluation of the proposed sim-
ulated annealing framework are ‘Normalized Energy Cost’ and ‘Energy Efficiency’.
Normalized Energy Cost (Znorm) can be mathematically formulated as:

Znorm =
ZCur

Zmax
(6.2)

where, ZCur denotes the total actual cost incurred by a solution derived using the
simulated annealing framework. On the other hand, Zmax is a measure of the maximum
energy that will be consumed in the traversal for the target site by the agent with highest
energy consumption. Energy Efficiency (EE) can be mathematically formulated as:

EE = 1− ZCur

ZInitial
(6.3)

where, ZCur and ZInitial denote the total cost incurred by a solution derived using
simulated annealing and total cost incurred by the initial solution, respectively.

6.5.2 Results

Varying the number of regions

In the first experiment, a target site is considered with varying number of regions as M =

{25,50,75,100}. The number of agents and mean length of each side has been fixed to 6
agents and 7.5. To illustrate the role of heterogeneity in the fleet of agents, following two
cases are considered:

1. Case 1: A homogeneous fleet of agents such that all the UAVs are of similar type.
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2. Case 2: A heterogeneous fleet of agents consisting of all three types of UAVs.

Fig. 6.4 Analysis of normalized energy cost with respect to number of regions.

Fig. 6.4 shows the normalized energy cost with respect to different number of regions. As
the number of regions increases, the normalized energy cost increases. Since, the maximum
energy cost is fixed, the increase in normalized energy cost indicates increase in total energy
cost ZCur. The total energy cost ZCur is the summation of inter-region traversal cost and
intra-region traversal cost as illustrated in Algorithm 14. With increase in the number of
regions, the total intra-region and inter-region energy cost also increases for each agent. The
results also show that solutions derived using the simulated annealing framework is able to
reduce normalized energy cost Znorm by 20-40%, with respect to energy cost associated with
genetic algorithm.

Fig. 6.5 shows the variation of ‘Energy Efficiency (EE)’ with respect to number of regions.
The trends reveal that the simulated annealing framework is able to find a solution with
50−60% lower total energy cost with respect to the initial solution. The performance of
our proposed approach using simulated annealing is better than genetic algorithm both in
terms of Znorm and EE. The better performance of simulated annealing can be attributed
to its ability to search for better solutions in the search space by judiciously accepting bad
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Fig. 6.5 Analysis of energy efficiency with respect to number of regions.

solutions at the initial stages which is not the case for genetic algorithm that always attempts
to satisfy a certain fitness function.

Varying the number of agents

In the second experiment, a target site of 100 disjoint regions is considered. The number of
agents are varied from 4 to 10. Fig. 6.6 shows the variation of normalized energy cost with
respect to change in the number of agents. As the number of agents increases, the average
Znorm decreases.

This may be attributed to the fact that with the increase in the number of agents, the
cluster became more compact reducing the total tour length that must be covered by the set
of agents. A lower tour length in turn, brings down the energy cost. It is also observed that a
20-50% reduction is achieved by SA against GA.

Fig. 6.7 analyses the energy efficiency with respect to number of agents. The trends reveal
that the total energy cost ZCur decreases by 40-60% with respect to the initial solutions. As
for the previous cases, SA is seen to perform better than GA, primarily due to its capability
to more comprehensively explore the solution space by judiciously accepting bad solutions.
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Fig. 6.6 Analysis of normalised energy cost with respect to number of agents.

Fig. 6.7 Analysis of energy efficiency with respect to number of agents.
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Varying the area of regions

In the third experiment, a target site of 100 disjoint regions is considered. The number of
agents are fixed at 6. The main aim of this experiment is to analyze the normalized energy
cost (Znorm) with respect to varying average area of regions. Regular polygonal regions with
specific average area is generated for any dataset in our experiments by fixing the average
number of vertices (All vertices are generated from a single uniform distribution U3) and
the mean length corresponding to the region sides (region sides are generated from normal
distributions). For instance, a regular pentagon with sides of length 7.5 m will have an area
of 96.78 m2. In this experiment, the average area of regions is varied over different datasets
by varying the mean length of sides (µside = {5,10,15,20}) while keeping the standard
deviation fixed (σside = 2.5) for the normal distributions from which the sides are generated.
The average number of vertices remain unaltered for all datasets.

Fig. 6.8 Analysis of normalized energy cost with varying the length of regions.

Fig. 6.8 shows the variation of normalized energy cost with varying sizes of regions.
The results reveal that as the average length of sides increase (effecting a corresponding
increase in region area), the normalized energy cost increases. The reason behind this trend
can be attributed to the fact that total energy cost ZCur is dependent upon inter-region and
intra-region traversal costs. As the lengths of the sides increase, intra-region traversal costs
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also increase. However, the normalized energy cost for solutions derived using simulated
annealing reduces by 15-40% in comparison to the solutions derived using genetic algorithm.

As illustrated in previous experiments, the performance of the simulated annealing
framework is better in comparison to the genetic algorithm, as it is able to often find close to
optimal minima in terms of total energy costs ZCur, incurred in the traversal of the target site.

6.6 Summary

In this chapter, a heuristic approach for CPP of multiple disjoint regions using a heterogeneous
fleet of aerial agents is presented. An initial solution is first generated where clusters of
regions are constructed using the K-Means clustering algorithm. For each cluster, an aerial
agent is assigned for coverage of regions within the clusters. The initial solution is an
approximation solution which is improved using a simulated annealing framework. The
properties of the heuristic approach is investigated using simulation studies. The experiments
conducted reveal the efficacy of the algorithm in comparison to genetic algorithm.





Chapter 7

Conclusion

Coverage Path Planning (CPP) is a well-established, challenging and multi-dimensional
research problem in the domain of motion planning. It is the process of determining a path
that allows the robot to map/scan/cover the given area or volume while avoiding obstacles.
The intrinsic parameters of robot like on-board energy, localisation and sensing capabilities,
and extrinsic parameters like environmental conditions pose significant challenges making
CPP a NP-hard problem.

CPP originated in 1994 from the application of autonomous floor cleaning [176]. Al-
though the time-span of three decades has passed, this problem is still relevant. This can
be attributed to the fact that CPP is a dynamic and an application-oriented problem. The
application of CPP is wide-spread across multiple domains like agriculture [177–179], en-
vironmental inspection [180, 181], floor cleaning [12], terrain reconstruction [107, 182],
demining [183] and lawn mowing [23]. This wide-spread application of CPP allows re-
searchers from diverse fields like control theory, mechanics, computational and differential
geometry, and computer science to collaborate. To be part of this research community and
observe it grow by leaps and bounds in the past four years, the author can conclude that CPP
will become more exigent in the near future. The technological developments in hardware,
newly proposed optimisation techniques, and inter-disciplinary research, will pose a new set
of challenges for all the communities like research, business and engineering associated with
the domain of CPP.

This thesis is a fusion of identified research challenges within CPP. The research can be
categorized in two classes: (a) Mobile Robots based CPP (Chapter 3), and (b) Aerial Robot
based CPP (Chapter 4-6). In the latter category, the upcoming problem of area coverage
of multiple distributed regions is tackled. Three research tracks that originate from this
category are : (a) Precedence Provision (Chapter 4), (b) Energy Constraint (Chapter 5), and
(c) Heterogeneous Fleet (Chapter 6). These chapters are mutually-independent and can serve
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as a building block for future research related to CPP. This chapter aims to summarize the
research contribution in this thesis and at the same time provide the readers with the direction
of future research.

7.1 Contribution Summary

This thesis encapsulates the author’s research that was performed during the doctoral studies.
The major contributions of this thesis can be enlisted as follows:

1. Firstly, the thesis traces the origin of RAS and its evolution after industrial revolution.
The current state of autonomous robots are discussed and challenges going forward
in INDUSTRY 4.0 are highlighted. The major challenges in long term autonomy
of autonomous robots specifically Coverage Path Planning (CPP) are explored. The
fundamental concept of CPP and its positioning with respect to long term autonomy re-
search are described.The literature review in this thesis not only covers CPP techniques,
but also presents a mathematical background of optimisation framework and classical
NP-hard problems. The gap in literature is clustered into four research challenges
pertaining to CPP.

2. Chapter 3 proposes a novel offline-online strategy that equips mobile robots with the
ability to autonomously plan a coverage path and reach the static target effectively and
efficiently. The extreme environment in which autonomous robots operates imposes
a strict time constraint. The offline stage of the strategy geometrically identifies
information enriched regions to build a road map. This road map is effectively used to
minimise time in online stage where sensor-based coverage is performed.

3. In Chapter 4, the author explores the problem of area coverage of extreme environments
using an aerial robot. Extreme environment poses two main challenges for aerial robots.
The first challenge is that target site comprises of distributed regions. Thus, apart from
computing coverage path of each region, the decision makers have to also compute
inter-region path as well. The second challenge encompasses sensor degradation
due to presence of radioactive elements. The sensor characterisation conducted at
Rutherford Appleton Laboratory reveals that annealing is a prime requirement for the
covering robot. Therefore, the aerial robot is equipped with precedence provision
while traversing the extreme environment site.

4. In Chapter 5, another interesting challenge of limited on-broad energy of aerial robot
during area coverage operations is addressed. This chapter brings to the table a
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strategical and practical framework where aerial robot aims to achieve near-optimal
area coverage due to path length limitation caused by the energy constraint. This
framework differs from existing strategies where multiple trips to battery stations are
preferred over critical factors like time and practical application.

5. Chapter 6 moves a step forward by solving area coverage over disjoint regions within
constrained time bounds, an important problem especially for emergency coverage
tasks such as post-disaster relief, military surveillance, search and rescue missions. The
proposed technique takes into consideration that the critical mission forces decision
makers to deploy all the resources which results in area coverage by a heterogeneous
fleet.

7.2 Where Do We Go Next?

After carrying out intensive research spanning 4 years, a poignant question that comes to the
mind of the author, ‘Where do we go next?’. The prime objective of asking this question is to
point out the research gaps and ideas. So that, a dialogue in the research community of CPP
can be initiated.

1. The offline-online strategy is a novel attempt at combining two problems like CPP and
OSP with diverse objectives. The trade off between search time and area coverage is
task dependent. Thus, a major challenge exists as a novel strategy needs to designed
each time a new application combining CPP and OSP comes up. It will be worth
exploring development of a generic framework where optimisation parameters and
degree of trade-off can be learned given any coverage tasks.

2. As a follow up to the above listed point, an offline-online strategy provides a hypothesis
where offline stage and online coverage share a symbiotic relationship. However, there
is significant room for improvement in identification of information which needs to be
shared among both the stages for improving overall performance.

3. Moreover, the offline stage is dependent on the architectural layout. The focus of
research community on information extraction using floor plan has led to development
of datasets for indoor environments like universities and offices [135]. However, the
extreme environmental sites such as nuclear plants have different construction and
architectural norms. Therefore, the feature extraction from existing datasets cannot be
used in the offline stage of GO-CPP in extreme environment.
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4. Chapter 4 conducted sensor characterisation of Kinect in the presence of fast neutrons.
This allowed for identification of precedence provision for area coverage. Extensive
experiments need to be performed for characterisation of different types of sensors.
This is a challenging task as access to such facility is limited and irritation process is
hazardous in nature. However, these experiments will allow additional requirements to
be identified for robots operating in extreme environmental conditions.

5. Furthermore, repeated experiments of sensor characterisation will also allow the
researchers to propose a generic sensor degradation model that can later be simulated
in frameworks like Gazebo for accurate representation of extreme environment.

6. The proposed strategy of the near optimal area coverage in Chapter 5 suffers from the
curse of dimensionality. This proves to be a major research gap. Thus, a key extension
to the work would be to propose a computationally inexpensive solution.

7. Recently, deep learning techniques have been used to solve TSP and CPP individually
and also research works focusing on TSP-CPP as an area coverage problem explore
it through heuristic methods. However, the research community can use deep learn-
ing techniques, more specifically deep reinforcement learning, for solving TSP-CPP
problem.

8. The author would also like to recommend the future direction that this research can
possibly take. Associated fields have seen advancements such as Conventional Neural
Networks which serves as a generic framework for computer vision applications.
CPP research needs to converge towards a generic framework and approach that
encompasses major constraints and provisions.

9. Economically, deployment of robots in extreme environment has proven to be an
expensive solution. Therefore, the research strategy needs to focus on developing an
intelligent environment which will allow collaboration between conventional robot
and humans. The upcoming technological development in the area of mixed reality
can be extreme useful in training the robot.

10. Another important finding of this research is unreliable nature of visual sensor data
specifically for the purpose of robot localisation. In order to utilise this sensor data, a
Cyber Physical System (CPS) can be a plausible solution. The CPS based approach
has demonstrated considerably good results for long term autonomy due to the ability
of effective collaboration.
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11. Lastly, the need of the hour is to bring all the stakeholders of various CPP applications
on the same page. Even though, the research community has published ample work on
CPP, the commercial viability of CPP applications still raises a lot of questions in the
business world. The failure of some of the past companies to make profits is the main
reason that venture capitalists are hesitant in backing robotics startups when compared
to other AI powered technological applications [184]. The author is of strong opinion
that the lack of emphasis on user research while designing autonomous operations of
robots is one of the reason behind the demise of many robotic startups.
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[60] G. Kizilateş and F. Nuriyeva, “On the nearest neighbor algorithms for the travel-
ing salesman problem,” in Advances in Computational Science, Engineering and
Information Technology. Springer, 2013, pp. 111–118.

[61] D. S. Johnson and L. A. McGeoch, “8. the traveling salesman problem: a case study,”
in Local search in combinatorial optimization. Princeton University Press, 2018, pp.
215–310.

[62] H. H. Hoos and T. Stützle, Stochastic local search: Foundations and applications.
Elsevier, 2004.

[63] J. Yang, X. Shi, M. Marchese, and Y. Liang, “An ant colony optimization method for
generalized tsp problem,” Progress in Natural Science, vol. 18, no. 11, pp. 1417–1422,
2008.

[64] H. H. Mukhairez and A. Y. Maghari, “Performance comparison of simulated annealing,
ga and aco applied to tsp,” International Journal of Intelligent Computing Research
(IJICR), vol. 6, no. 4, 2015.

[65] Y. Deng, Y. Liu, and D. Zhou, “An improved genetic algorithm with initial population
strategy for symmetric tsp,” Mathematical Problems in Engineering, vol. 2015, 2015.

[66] R. Parween, M. V. Heredia, M. M. Rayguru, R. E. Abdulkader, and M. R. Elara, “Au-
tonomous self-reconfigurable floor cleaning robot,” IEEE Access, vol. 8, pp. 114 433–
114 442, 2020.

[67] R. Abbaspour, “Design and implementation of multi-sensor based autonomous
minesweeping robot,” in International Congress on Ultra Modern Telecommunications
and Control Systems, 2010, pp. 443–449.



146 References

[68] S. Kalaivanan and R. Kalpana, “Coverage path planning for an autonomous robot
specific to agricultural operations,” in 2017 International Conference on Intelligent
Computing and Control (I2C2), 2017, pp. 1–5.

[69] L. Zacchini, A. Ridolfi, and B. Allotta, “Receding-horizon sampling-based sensor-
driven coverage planning strategy for auv seabed inspections,” in 2020 IEEE/OES
Autonomous Underwater Vehicles Symposium (AUV)(50043), pp. 1–6.

[70] W. Lin, A. Anwar, Z. Li, M. Tong, J. Qiu, and H. Gao, “Recognition and pose
estimation of auto parts for an autonomous spray painting robot,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 3, pp. 1709–1719, 2018.

[71] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[72] T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr, “Survey on coverage path
planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, p. 4, 2019.

[73] R. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal on
Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[74] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic systems,”
Autonomous Robots, vol. 1, no. 1, pp. 27–52, 1994.

[75] D. Mackenzie, T. Balch, et al., “Making a clean sweep: Behavior based vacuuming,”
in Aaai Fall Symposium, Instationating Real-World Agents, 1996, pp. 1–6.

[76] J. Fink, V. Bauwens, F. Kaplan, and P. Dillenbourg, “Living with a vacuum cleaning
robot,” International Journal of Social Robotics, vol. 5, no. 3, pp. 389–408, 2013.

[77] R. Stuart and N. Peter, Artificial intelligence-a modern approach 3rd ed. Berkeley,
2016, vol. 3.

[78] L. Blasi, E. D’Amato, M. Mattei, and I. Notaro, “Path planning and real-time collision
avoidance based on the essential visibility graph,” Applied Sciences, vol. 10, no. 16, p.
5613, 2020.

[79] S. M. LaValle, J. J. Kuffner, B. Donald, et al., “Rapidly-exploring random trees:
Progress and prospects,” Algorithmic and Computational Robotics: New Directions,
vol. 5, pp. 293–308, 2001.

[80] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Com-
puter, vol. 22, no. 6, pp. 46–57, 1989.

[81] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular
decomposition,” in Field and Service Robotics, 1998, pp. 203–209.

[82] V. An, Z. Qu, F. Crosby, R. Roberts, and V. An, “A triangulation-based coverage path
planning,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50,
no. 6, pp. 2157–2169, 2018.

[83] H. Bast and S. Hert, “The area partitioning problem,” 12th Canadian Conference on
Computational Geometry, vol. 2, 2000.



References 147

[84] W. H. Huang, “The minimal sum of altitudes decomposition for coverage algorithms,”
Rensselaer Polytechnic Institute Computer Science Technical Report 00-3, 2000.

[85] P. A. Jimenez, B. Shirinzadeh, A. Nicholson, and G. Alici, “Optimal area covering
using genetic algorithms,” in 2007 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, 2007, pp. 1–5.

[86] L. C. Santos, F. N. Santos, E. S. Pires, A. Valente, P. Costa, and S. Magalhães, “Path
planning for ground robots in agriculture: A short review,” in 2020 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC), 2020, pp.
61–66.

[87] A. L. Alfeo, M. G. Cimino, N. De Francesco, A. Lazzeri, M. Lega, and G. Vaglini,
“Swarm coordination of mini-uavs for target search using imperfect sensors,” Intelligent
Decision Technologies, vol. 12, no. 2, pp. 149–162, 2018.

[88] Z. Khanam, B. Aslam, S. Saha, X. Zhai, S. Ehsan, R. Stolkin, and K. McDonald-Maier,
“Gamma-induced image degradation analysis of robot vision sensor for autonomous
inspection of nuclear sites,” IEEE Sensors Journal, pp. 1–1, 2021.

[89] M. Laraia, Nuclear decommissioning: Planning, execution and international experi-
ence. Elsevier, 2012.

[90] N. Basilico and S. Carpin, “Deploying teams of heterogeneous uavs in cooperative
two-level surveillance missions,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 610–615.

[91] A. Saif, K. Dimyati, K. A. Noordin, S. H. Alsamhi, and A. Hawbani, “Multi-uav
and sar collaboration model for disaster management in b5g networks,” Internet
Technology Letters, p. e310, 2021.

[92] P. Lottes, R. Khanna, J. Pfeifer, R. Siegwart, and C. Stachniss, “Uav-based crop and
weed classification for smart farming,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 3024–3031.

[93] J.-L. Roch, “Uav classification and associated mission planning,” in Multi-Rotor
Platform-based UAV Systems. Elsevier, 2020, pp. 27–44.

[94] S. Rathinam, Z. W. Kim, and R. Sengupta, “Vision-based monitoring of locally
linear structures using an unmanned aerial vehicle,” Journal of Infrastructure Systems,
vol. 14, no. 1, pp. 52–63, 2008.

[95] E. Ferrer-González, F. Agüera-Vega, F. Carvajal-Ramírez, and P. Martínez-Carricondo,
“Uav photogrammetry accuracy assessment for corridor mapping based on the number
and distribution of ground control points,” Remote Sensing, vol. 12, no. 15, p. 2447,
2020.

[96] P. Fust and J. Loos, “Development perspectives for the application of autonomous,
unmanned aerial systems (uass) in wildlife conservation,” Biological Conservation,
vol. 241, p. 108380, 2020.



148 References

[97] M. Niculit,a, M. C. Margarint, and P. Tarolli, “Using uav and lidar data for gully geo-
morphic changes monitoring,” in Developments in Earth Surface Processes. Elsevier,
2020, vol. 23, pp. 271–315.

[98] A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz, and J. Valente,
“Aerial remote sensing in agriculture: A practical approach to area coverage and path
planning for fleets of mini aerial robots,” Journal of Field Robotics, vol. 28, no. 5, pp.
667–689, 2011.

[99] J. Alvarenga, N. I. Vitzilaios, K. P. Valavanis, and M. J. Rutherford, “Survey of
unmanned helicopter model-based navigation and control techniques,” Journal of
Intelligent & Robotic Systems, vol. 80, no. 1, pp. 87–138, 2015.

[100] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision for uavs: Current
developments and trends,” Journal of Intelligent & Robotic Systems, vol. 87, no. 1, pp.
141–168, 2017.

[101] A. S. Saeed, A. B. Younes, S. Islam, J. Dias, L. Seneviratne, and G. Cai, “A review
on the platform design, dynamic modeling and control of hybrid uavs,” in 2015
International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 806–815.

[102] A. C. Watts, V. G. Ambrosia, and E. A. Hinkley, “Unmanned aircraft systems in remote
sensing and scientific research: Classification and considerations of use,” Remote
Sensing, vol. 4, no. 6, pp. 1671–1692, 2012.

[103] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “Uav coverage path
planning under varying power constraints using deep reinforcement learning,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 1444–1449.

[104] D. C. Guastella, L. Cantelli, G. Giammello, C. D. Melita, G. Spatino, and G. Mus-
cato, “Complete coverage path planning for aerial vehicle flocks deployed in outdoor
environments,” Computers & Electrical Engineering, vol. 75, pp. 189–201, 2019.

[105] M. Oborne, “Mission planner (version 1.3.70),” 2017, [Accessed 27-August-2019].
[Online]. Available: http://planner.ardupilot.com

[106] H. L. Andersen, “Path planning for search and rescue mission using multicopters,”
Master’s thesis, Institutt for Teknisk Kybernetikk, 2014.

[107] M. Torres, D. A. Pelta, J. L. Verdegay, and J. C. Torres, “Coverage path planning
with unmanned aerial vehicles for 3d terrain reconstruction,” Expert Systems with
Applications, vol. 55, pp. 441–451, 2016.

[108] A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and
R. Siegwart, “Three-dimensional coverage path planning via viewpoint resampling and
tour optimization for aerial robots,” Autonomous Robots, vol. 40, no. 6, pp. 1059–1078,
2016.

[109] J. I. Vasquez-Gomez, J.-C. Herrera-Lozada, and M. Olguin-Carbajal, “Coverage path
planning for surveying disjoint areas,” in 2018 International Conference on Unmanned
Aircraft Systems (ICUAS), 2018, pp. 899–904.

http: //planner.ardupilot.com


References 149

[110] K. R. Jensen-Nau, T. Hermans, and K. K. Leang, “Near-optimal area-coverage path
planning of energy-constrained aerial robots with application in autonomous envi-
ronmental monitoring,” IEEE Transactions on Automation Science and Engineering,
vol. 18, no. 3, pp. 1453–1468, 2021.

[111] K. O. Ellefsen, H. A. Lepikson, and J. C. Albiez, “Multiobjective coverage path
planning: Enabling automated inspection of complex, real-world structures,” Applied
Soft Computing, vol. 61, pp. 264–282, 2017.

[112] C. Papachristos, K. Alexis, L. R. G. Carrillo, and A. Tzes, “Distributed infrastructure
inspection path planning for aerial robotics subject to time constraints,” in 2016
International Conference on Unmanned Aircraft Systems (ICUAS), 2016, pp. 406–412.

[113] J. M. Santos, T. Krajník, and T. Duckett, “Spatio-temporal exploration strategies for
long-term autonomy of mobile robots,” Robotics and Autonomous Systems, vol. 88,
pp. 116–126, 2017.

[114] Z. Kashino, G. Nejat, and B. Benhabib, “A hybrid strategy for target search using static
and mobile sensors,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp. 856–868,
2018.

[115] J. W. Bae, K. Shin, H.-R. Lee, H. J. Lee, T. Lee, C. H. Kim, W.-C. Cha, G. W. Kim,
and I.-C. Moon, “Evaluation of disaster response system using agent-based model with
geospatial and medical details,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 48, no. 9, pp. 1454–1469, 2017.

[116] X. Yu, J. Ma, N. Ding, and A. Zhang, “Cooperative target enclosing control of multiple
mobile robots subject to input disturbances,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 51, no. 6, pp. 3440–3449, 2021.

[117] Z. Beck, W. L. Teacy, A. Rogers, and N. R. Jennings, “Collaborative online planning
for automated victim search in disaster response,” Robotics and Autonomous Systems,
vol. 100, pp. 251–266, 2018.

[118] K. Sjöö, A. Aydemir, and P. Jensfelt, “Topological spatial relations for active visual
search,” Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1093–1107, 2012.

[119] P. A. Plonski, J. Vander Hook, C. Peng, N. Noori, and V. Isler, “Environment explo-
ration in sensing automation for habitat monitoring,” IEEE Transactions on Automation
Science and Engineering, vol. 14, no. 1, pp. 25–38, 2016.

[120] Y. Liu, Q. Wang, H. Hu, and Y. He, “A novel real-time moving target tracking and
path planning system for a quadrotor uav in unknown unstructured outdoor scenes,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 11, pp.
2362–2372, 2018.

[121] Z. Khanam, S. Saha, B. Aslam, X. Zhai, S. Ehsan, C. Cazzaniga, C. Frost, R. Stolkin,
and K. McDonald-Maier, “Degradation measurement of kinect sensor under fast
neutron beamline,” in 2019 IEEE Radiation Effects Data Workshop, 2019, pp. 1–5.



150 References

[122] B. Aslam, S. Saha, Z. Khanam, X. Zhai, S. Ehsan, R. Stolkin, and K. McDonald-Maier,
“Gamma-induced degradation analysis of commercial off-the-shelf camera sensors,” in
2019 IEEE Sensors, 2019, pp. 1–4.

[123] B. Yamauchi, “A frontier-based approach for autonomous exploration.” in Cira, vol. 97,
1997, p. 146.

[124] J. A. Caley, N. R. Lawrance, and G. A. Hollinger, “Deep learning of structured
environments for robot search,” Autonomous Robots, vol. 43, no. 7, pp. 1695–1714,
2019.

[125] H. Lau, S. Huang, and G. Dissanayake, “Optimal search for multiple targets in a built
environment,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2005, pp. 3740–3745.

[126] T. H. Chung, “On probabilistic search decisions under searcher motion constraints,”
in Algorithmic Foundation of Robotics VIII. Springer, 2009, pp. 501–516.

[127] J. Berger and N. Lo, “An innovative multi-agent search-and-rescue path planning
approach,” Computers & Operations Research, vol. 53, pp. 24–31, 2015.

[128] M. Farahat, “Analytical architectural study on nuclear power plants,” Journal of
Environmental Science and Engineering B, p. 189, 2016.

[129] S. Ahmed, M. Weber, M. Liwicki, C. Langenhan, A. Dengel, and F. Petzold, “Auto-
matic analysis and sketch-based retrieval of architectural floor plans,” Pattern Recog-
nition Letters, vol. 35, pp. 91–100, 2014.

[130] S. Dodge, J. Xu, and B. Stenger, “Parsing floor plan images,” in 2017 Fifteenth IAPR
International Conference on Machine Vision Applications (MVA), 2017, pp. 358–361.

[131] Z. Zeng, X. Li, Y. K. Yu, and C.-W. Fu, “Deep floor plan recognition using a multi-
task network with room-boundary-guided attention,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 9096–9104.

[132] M. Luperto, V. Arcerito, and F. Amigoni, “Predicting the layout of partially observed
rooms from grid maps,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 6898–6904.

[133] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, no. 6, pp. 679–698, 1986.

[134] N. Kiryati, Y. Eldar, and A. M. Bruckstein, “A probabilistic hough transform,” Pattern
Recognition, vol. 24, no. 4, pp. 303–316, 1991.

[135] R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hägele, “Room segmentation: Survey,
implementation, and analysis,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1019–1026.

[136] G. Grisetti, C. Stachniss, W. Burgard, et al., “Improved techniques for grid mapping
with rao-blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1,
p. 34, 2007.



References 151

[137] M. Luperto, D. Fusi, N. A. Borghese, and F. Amigoni, “Robot exploration using
knowledge of inaccurate floor plans,” in 2019 European Conference on Mobile Robots
(ECMR), 2019, pp. 1–7.

[138] F. Boniardi, B. Behzadian, W. Burgard, and G. D. Tipaldi, “Robot navigation in
hand-drawn sketched maps,” in 2015 European conference on mobile robots (ECMR),
2015, pp. 1–6.

[139] B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B. Lennox, S. Watson,
and X. Poteau, “Radiological monitoring of nuclear facilities: Using the continuous
autonomous radiation monitoring assistance robot,” IEEE Robotics & Automation
Magazine, vol. 26, no. 1, pp. 35–43, 2019.

[140] C. West, F. Arvin, W. Cheah, A. West, S. Watson, M. Giuliani, and B. Lennox, “A
debris clearance robot for extreme environments,” in Annual Conference Towards
Autonomous Robotic Systems, 2019, pp. 148–159.

[141] W. Harrison, A. Downs, and C. Schlenoff, “The agile robotics for industrial automation
competition,” AI Magazine, vol. 39, no. 4, p. 77, 2018.

[142] J. R. Solberg, K. M. Lynch, and M. A. Maciver, “Active electrolocation for underwater
target localization,” The International Journal of Robotics Research, vol. 27, no. 5, pp.
529–548, May 2008.

[143] N. Ganganath, C.-T. Cheng, and K. T. Chi, “Rapidly replanning a,” in 2016 In-
ternational Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2016, pp. 386–389.

[144] K. Jeddisaravi, R. J. Alitappeh, L. C. Pimenta, and F. G. Guimarães, “Multi-objective
approach for robot motion planning in search tasks,” Applied Intelligence, vol. 45,
no. 2, pp. 305–321, 2016.

[145] Y. Choi, Y. Choi, S. Briceno, and D. N. Mavris, “Multi-uas path-planning for a large-
scale disjoint disaster management,” in 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), 2019, pp. 799–807.

[146] C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann, M. Potz, L. Gersten-
berg, and M. Hutter, “Anymal in the field: Solving industrial inspection of an offshore
hvdc platform with a quadrupedal robot,” in 12th Conference on Field and Service
Robotics (FSR 2019), 2019.

[147] N. Pinkam, A. A. R. Newaz, S. Jeong, and N. Y. Chong, “Rapid coverage of regions
of interest for environmental monitoring,” Intelligent Service Robotics, vol. 12, no. 4,
pp. 393–406, 2019.

[148] C. Pan, M. Zhou, Y. Qiao, and N. Wu, “Scheduling cluster tools in semiconductor
manufacturing: Recent advances and challenges,” IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 2, pp. 586–601, 2017.



152 References

[149] B. Bird, A. Griffiths, H. Martin, E. Codres, J. Jones, A. Stancu, B. Lennox, S. Watson,
and X. Poteau, “A robot to monitor nuclear facilities: Using autonomous radiation-
monitoring assistance to reduce risk and cost,” IEEE Robotics & Automation Magazine,
vol. 26, no. 1, pp. 35–43, 2018.

[150] S. Papaioannou, P. Kolios, T. Theocharides, C. G. Panayiotou, and M. Polycarpou,
“Jointly-optimized searching and tracking with random finite sets,” IEEE Transactions
on Mobile Computing, vol. 19, no. 10, pp. 2374–2391, 2019.

[151] Y. Yuan, D. Cattaruzza, M. Ogier, and F. Semet, “A note on the lifted miller–tucker–
zemlin subtour elimination constraints for routing problems with time windows,”
Operations Research Letters, vol. 48, no. 2, pp. 167–169, 2020.

[152] A. Ellenberg, L. Branco, A. Krick, I. Bartoli, and A. Kontsos, “Use of unmanned aerial
vehicle for quantitative infrastructure evaluation,” Journal of Infrastructure Systems,
vol. 21, no. 3, p. 04014054, 2015.

[153] S. Lange, N. Sünderhauf, P. Neubert, S. Drews, and P. Protzel, “Autonomous corridor
flight of a uav using a low-cost and light-weight rgb-d camera,” in Advances in
Autonomous Mini Robots. Springer, 2012, pp. 183–192.

[154] C. Cazzaniga and C. D. Frost, “Progress of the scientific commissioning of a fast
neutron beamline for chip irradiation,” in Journal of Physics: Conference Series, vol.
1021, no. 1, 2018, p. 012037.

[155] T. Mallick et al., “Characterizations of noise in kinect depth images: A review,” IEEE
Sensors journal, vol. 14, no. 6, pp. 1731–1740, 2014.

[156] J. Srour and J. Palko, “Displacement damage effects in irradiated semiconductor
devices,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1740–1766, 2013.

[157] Y. Nobert and J.-C. Picard, “An optimal algorithm for the mixed chinese postman
problem,” Networks: An International Journal, vol. 27, no. 2, pp. 95–108, 1996.

[158] A. Soares, R. Râbelo, and A. Delbem, “Optimization based on phylogram analysis,”
Expert Systems with Applications, vol. 78, pp. 32–50, 2017.

[159] J. He, Y. Geng, F. Liu, and C. Xu, “Cc-kf: Enhanced toa performance in multipath
and nlos indoor extreme environment,” IEEE Sensors Journal, vol. 14, no. 11, pp.
3766–3774, 2014.

[160] C. Bliek1ú, P. Bonami, and A. Lodi, “Solving mixed-integer quadratic programming
problems with ibm-cplex: a progress report,” in Proceedings of the Twenty-Sixth
RAMP Symposium, 2014, pp. 16–17.

[161] Z.-W. Lin, S.-Y. Fang, Y.-W. Chang, W.-C. Rao, and C.-H. Kuan, “Provably good
max–min-m-neighbor-tsp-based subfield scheduling for electron-beam photomask
fabrication,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 2, pp. 378–391, 2017.

[162] “Regular polygon-matlab,” 2020. [Online]. Available: https://uk.mathworks.com/help/
matlab/ref/nsidedpoly.html

https://uk.mathworks.com/help/matlab/ref/nsidedpoly.html
https://uk.mathworks.com/help/matlab/ref/nsidedpoly.html


References 153

[163] C. Moon, J. Kim, G. Choi, and Y. Seo, “An efficient genetic algorithm for the traveling
salesman problem with precedence constraints,” European Journal of Operational
Research, vol. 140, no. 3, pp. 606–617, 2002.

[164] J. Kirk, “Traveling salesman problem-genetic algorithm,” Retrieved from the MATLAB
File Exchange website: www. mathworks. com/matlabcentral/fileexchange/13680-
travelingsalesman-problem-genetic-algorithm, 2007.

[165] O. Sundstrom and L. Guzzella, “A generic dynamic programming matlab function,”
in 2009 IEEE Control Applications,(CCA) & Intelligent Control,(ISIC), 2009, pp.
1625–1630.

[166] L. Ruan, J. Wang, J. Chen, Y. Xu, Y. Yang, H. Jiang, Y. Zhang, and Y. Xu, “Energy-
efficient multi-uav coverage deployment in uav networks: A game-theoretic frame-
work,” China Communications, vol. 15, no. 10, pp. 194–209, 2018.

[167] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient uav control for
effective and fair communication coverage: A deep reinforcement learning approach,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 2059–2070,
2018.

[168] C. Di Franco and G. Buttazzo, “Energy-aware coverage path planning of uavs,” in
2015 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), 2015, pp. 111–117.

[169] C. Di Franco and G. Buttazzo, “Coverage path planning for uavs photogrammetry
with energy and resolution constraints,” Journal of Intelligent & Robotic Systems,
vol. 83, no. 3-4, pp. 445–462, 2016.

[170] Y. Bouzid, Y. Bestaoui, and H. Siguerdidjane, “Quadrotor-uav optimal coverage path
planning in cluttered environment with a limited onboard energy,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 979–
984.

[171] D. Ognibene, L. Mirante, and L. Marchegiani, “Proactive intention recognition for
joint human-robot search and rescue missions through monte-carlo planning in pomdp
environments,” in International Conference on Social Robotics. Springer, 2019, pp.
332–343.

[172] J. Sandino, F. Maire, P. Caccetta, C. Sanderson, and F. Gonzalez, “Drone-based
autonomous motion planning system for outdoor environments under object detection
uncertainty,” Remote Sensing, vol. 13, no. 21, p. 4481, 2021.

[173] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Online partial conditional plan synthesis
for pomdps with safe-reachability objectives,” in International Workshop on the
Algorithmic Foundations of Robotics. Springer, 2018, pp. 127–143.

[174] D.-I. Kim, Y.-S. Song, G. Kim, and C.-W. Kim, “A study on the application of uav
for korean land monitoring,” Journal of the Korean Society of Surveying, Geodesy,
Photogrammetry and Cartography, vol. 32, no. 1, pp. 29–38, 2014.



154 References

[175] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular
decomposition,” in Field and Service Robotics, 1998, pp. 203–209.

[176] J. Colegrave and A. Branch, “A case study of autonomous household vacuum cleaner,”
AIAA/NASA CIRFFSS, vol. 107, 1994.

[177] I. A. Hameed, D. Bochtis, and C. A. Sørensen, “An optimized field coverage planning
approach for navigation of agricultural robots in fields involving obstacle areas,”
International Journal of Advanced Robotic Systems, vol. 10, no. 5, p. 231, 2013.

[178] A. Villa-Henriksen, G. T. Edwards, L. A. Pesonen, O. Green, and C. A. G. Sørensen,
“Internet of things in arable farming: Implementation, applications, challenges and
potential,” Biosystems Engineering, vol. 191, pp. 60–84, 2020.

[179] K. Zhou, A. L. Jensen, C. Sørensen, P. Busato, and D. Bothtis, “Agricultural opera-
tions planning in fields with multiple obstacle areas,” Computers and Electronics in
Agriculture, vol. 109, pp. 12–22, 2014.

[180] Z. Khanam, S. Saha, S. Ehsan, R. Stolkin, and K. McDonald-Maier, “Coverage path
planning techniques for inspection of disjoint regions with precedence provision,”
IEEE Access, vol. 9, pp. 5412–5427, 2020.

[181] S. S. Mansouri, C. Kanellakis, E. Fresk, D. Kominiak, and G. Nikolakopoulos, “Coop-
erative coverage path planning for visual inspection,” Control Engineering Practice,
vol. 74, pp. 118–131, 2018.

[182] I. A. Hameed, “Intelligent coverage path planning for agricultural robots and au-
tonomous machines on three-dimensional terrain,” Journal of Intelligent & Robotic
Systems, vol. 74, no. 3, pp. 965–983, 2014.

[183] S. Dogru and L. Marques, “Improved coverage path planning using a virtual sensor
footprint: a case study on demining,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 4410–4415.

[184] B. Casse, “Council post: The demise of robotics companies: Learning from past mis-
takes,” 2021. [Online]. Available: https://www.forbes.com/sites/forbesbusinesscouncil/
2021/07/09/the-demise-of-robotics-companies-learning-from-past-mistakes/?sh=
1062b8382b1d

https://www.forbes.com/sites/forbesbusinesscouncil/2021/07/09/the-demise-of-robotics-companies-learning-from-past-mistakes/?sh=1062b8382b1d
https://www.forbes.com/sites/forbesbusinesscouncil/2021/07/09/the-demise-of-robotics-companies-learning-from-past-mistakes/?sh=1062b8382b1d
https://www.forbes.com/sites/forbesbusinesscouncil/2021/07/09/the-demise-of-robotics-companies-learning-from-past-mistakes/?sh=1062b8382b1d

	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Motion Planning
	1.3 Coverage Path Planning (CPP)
	1.4 Problem Statement and Challenges
	1.4.1 Goal-Oriented Coverage Path Planning
	1.4.2 Multiple Distributed Regions
	1.4.3 Extreme Environmental Conditions
	1.4.4 Energy Constraint
	1.4.5 Heterogeneous Fleet

	1.5 Thesis Contributions
	1.6 Thesis Structure
	1.7 List of Publications

	2 Background Theory
	2.1 Introduction
	2.2 Optimisation
	2.3 Combinatorial Optimisation
	2.4 Constraint Programming
	2.5 Travelling Salesman Problem
	2.5.1 ILP Formulation
	2.5.2 Branch-and-Bound
	2.5.3 Dynamic Programming
	2.5.4 Approximate Algorithms

	2.6 Coverage Path Planning Problem
	2.6.1 Heuristic and Randomised Approaches
	2.6.2 A Priori Information
	2.6.3 Mapping
	2.6.4 Sensing Capability

	2.7 Coverage Path Planning for Aerial Robots
	2.7.1 Types of Aerial Robots
	2.7.2 Area Discretisation
	2.7.3 Multiple Distributed Regions

	2.8 Summary

	3 Goal-Oriented Coverage Path Planning
	3.1 Introduction
	3.2 Problem Overview 
	3.3 Problem Formulation
	3.4 The Proposed Strategy
	3.4.1 The Offline Stage
	3.4.2 The Online Stage
	3.4.3 Re-planning Strategy

	3.5 Experimental Evaluation
	3.5.1 Experimental Setup
	3.5.2 Offline Stage
	3.5.3 Evaluation of Coverage Time
	3.5.4 Evaluation of Coverage Map
	3.5.5 Dynamic Obstacle

	3.6 Summary

	4 Coverage Path Planning of Distributed Regions with Precedence Provision
	4.1 Introduction
	4.2 Problem Motivation
	4.3 Sensor Characterisation
	4.3.1 Experimental setup
	4.3.2 Reference Image
	4.3.3 Radiation Induced Noise
	4.3.4 Classification Technique
	4.3.5 Observations

	4.4 Problem Formulation
	4.4.1 Problem Description and Assumption
	4.4.2 Notations
	4.4.3 Mixed Integer Programming Formulation
	4.4.4 Discussion

	4.5 Inter-Region Path Planning
	4.5.1 Connectivity Graph
	4.5.2 MILP Based Inter-Region Traversal Strategy
	4.5.3 Example 1: Illustrating MILP Strategy
	4.5.4 IRPP: Inter Region Path Planning Technique
	4.5.5 Example 2: Illustrating working of IRPP heuristic

	4.6 Intra-Region Path Planning
	4.6.1 Grid Decomposition
	4.6.2 Boustrophedon Motion

	4.7 Experimental Evaluation
	4.7.1 Experimental Setup
	4.7.2 Full Coverage
	4.7.3 Efficiency Study
	4.7.4 Comparison with Existing Works

	4.8 Summary

	5 Coverage Path Planning of Distributed Regions with Energy Constraint
	5.1 Introduction
	5.2 Problem Overview
	5.3 Proposed Algorithm
	5.3.1 Algorithm Overview
	5.3.2 Calculating Total Path Length
	5.3.3 Inter-Region Energy Consumption (Eier)
	5.3.4 Intra-Region Energy Consumption (Eiar)

	5.4 Simulations and Results
	5.4.1 Target Site Generation
	5.4.2 Path Generation Examples
	5.4.3 Algorithm Characterization

	5.5 Summary

	6 Coverage Path Planning of Distributed Regions using a Heterogeneous Fleet
	6.1 Introduction
	6.2 Problem Overview
	6.3 Problem Statement
	6.4 Heuristic Approach
	6.4.1 Initial Solution Generation
	6.4.2 Simulated Annealing

	6.5 Experimentation and Results
	6.5.1 Experimental Setup
	6.5.2 Results

	6.6 Summary

	7 Conclusion
	7.1 Contribution Summary
	7.2 Where Do We Go Next?

	References

