52,505 research outputs found

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change

    Quantum Branching Programs and Space-Bounded Nonuniform Quantum Complexity

    Get PDF
    In this paper, the space complexity of nonuniform quantum computations is investigated. The model chosen for this are quantum branching programs, which provide a graphic description of sequential quantum algorithms. In the first part of the paper, simulations between quantum branching programs and nonuniform quantum Turing machines are presented which allow to transfer lower and upper bound results between the two models. In the second part of the paper, different variants of quantum OBDDs are compared with their deterministic and randomized counterparts. In the third part, quantum branching programs are considered where the performed unitary operation may depend on the result of a previous measurement. For this model a simulation of randomized OBDDs and exponential lower bounds are presented.Comment: 45 pages, 3 Postscript figures. Proofs rearranged, typos correcte

    Span Programs and Quantum Space Complexity

    Get PDF
    While quantum computers hold the promise of significant computational speedups, the limited size of early quantum machines motivates the study of space-bounded quantum computation. We relate the quantum space complexity of computing a function f with one-sided error to the logarithm of its span program size, a classical quantity that is well-studied in attempts to prove formula size lower bounds. In the more natural bounded error model, we show that the amount of space needed for a unitary quantum algorithm to compute f with bounded (two-sided) error is lower bounded by the logarithm of its approximate span program size. Approximate span programs were introduced in the field of quantum algorithms but not studied classically. However, the approximate span program size of a function is a natural generalization of its span program size. While no non-trivial lower bound is known on the span program size (or approximate span program size) of any concrete function, a number of lower bounds are known on the monotone span program size. We show that the approximate monotone span program size of f is a lower bound on the space needed by quantum algorithms of a particular form, called monotone phase estimation algorithms, to compute f. We then give the first non-trivial lower bound on the approximate span program size of an explicit function

    Quantum Logarithmic Space and Post-Selection

    Get PDF
    Post-selection, the power of discarding all runs of a computation in which an undesirable event occurs, is an influential concept introduced to the field of quantum complexity theory by Aaronson (Proceedings of the Royal Society A, 2005). In the present paper, we initiate the study of post-selection for space-bounded quantum complexity classes. Our main result shows the identity PostBQL = PL, i.e., the class of problems that can be solved by a bounded-error (polynomial-time) logarithmic-space quantum algorithm with post-selection (PostBQL) is equal to the class of problems that can be solved by unbounded-error logarithmic-space classical algorithms (PL). This result gives a space-bounded version of the well-known result PostBQP = PP proved by Aaronson for polynomial-time quantum computation. As a by-product, we also show that PL coincides with the class of problems that can be solved by bounded-error logarithmic-space quantum algorithms that have no time bound

    The physical Church-Turing thesis and the principles of quantum theory

    Full text link
    Notoriously, quantum computation shatters complexity theory, but is innocuous to computability theory. Yet several works have shown how quantum theory as it stands could breach the physical Church-Turing thesis. We draw a clear line as to when this is the case, in a way that is inspired by Gandy. Gandy formulates postulates about physics, such as homogeneity of space and time, bounded density and velocity of information --- and proves that the physical Church-Turing thesis is a consequence of these postulates. We provide a quantum version of the theorem. Thus this approach exhibits a formal non-trivial interplay between theoretical physics symmetries and computability assumptions.Comment: 14 pages, LaTe

    Unbounded violation of tripartite Bell inequalities

    Get PDF
    We prove that there are tripartite quantum states (constructed from random unitaries) that can lead to arbitrarily large violations of Bell inequalities for dichotomic observables. As a consequence these states can withstand an arbitrary amount of white noise before they admit a description within a local hidden variable model. This is in sharp contrast with the bipartite case, where all violations are bounded by Grothendieck's constant. We will discuss the possibility of determining the Hilbert space dimension from the obtained violation and comment on implications for communication complexity theory. Moreover, we show that the violation obtained from generalized GHZ states is always bounded so that, in contrast to many other contexts, GHZ states do in this case not lead to extremal quantum correlations. The results are based on tools from the theories of operator spaces and tensor norms which we exploit to prove the existence of bounded but not completely bounded trilinear forms from commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more accessible for a non-specialized reade

    Space-Efficient Error Reduction for Unitary Quantum Computations

    Get PDF
    This paper presents a general space-efficient method for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness c and soundness s, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most 2^{-p}, the most space-efficient method known requires extra workspace of O(p*log(1/(c-s))) qubits. This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper shows an errorreduction method for unitary quantum computations (i.e., computations without intermediate measurements) that requires extra workspace of just O(log(p/(c-s))) qubits. This in particular gives the first method of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness gap, and strong amplification for matchgate computations

    Quantum Query Algorithms are Completely Bounded Forms

    Get PDF
    We prove a characterization of tt-query quantum algorithms in terms of the unit ball of a space of degree-2t2t polynomials. Based on this, we obtain a refined notion of approximate polynomial degree that equals the quantum query complexity, answering a question of Aaronson et al. (CCC'16). Our proof is based on a fundamental result of Christensen and Sinclair (J. Funct. Anal., 1987) that generalizes the well-known Stinespring representation for quantum channels to multilinear forms. Using our characterization, we show that many polynomials of degree four are far from those coming from two-query quantum algorithms. We also give a simple and short proof of one of the results of Aaronson et al. showing an equivalence between one-query quantum algorithms and bounded quadratic polynomials.Comment: 24 pages, 3 figures. v2: 27 pages, minor changes in response to referee comment
    • …
    corecore