93,733 research outputs found

    Source-Channel Communication in Sensor Networks

    Get PDF
    Sensors acquire data, and communicate this to an interested party. The arising coding problem is often split into two parts: First, the sensors compress their respective acquired signals, potentially applying the concepts of distributed source coding. Then, they communicate the compressed version to the interested party, the goal being not to make any errors. This coding paradigm is inspired by Shannon’s separation theorem for point-to-point communication, but it leads to suboptimal performance in general network topologies. The optimal performance for the general case is not known. In this paper, we propose an alternative coding paradigm based on joint source-channel coding. This coding paradigm permits to determine the optimal performance for a class of sensor networks, and shows how to achieve it. For sensor networks outside this class, we argue that the goal of the coding system could be to approach our condition for op- timal performance as closely as possible. This is supported by examples for which our coding paradigm significantly outperforms the traditional separation-based coding paradigm. In particular, for a Gaussian exam- ple considered in this paper, the distortion of the best coding scheme according to the separation paradigm decreases like 1/logM, while for our coding paradigm, it decreases like 1/M, where M is the total number of sensors

    Magneto-inductive Passive Relaying in Arbitrarily Arranged Networks

    Full text link
    We consider a wireless sensor network that uses inductive near-field coupling for wireless powering or communication, or for both. The severely limited range of an inductively coupled source-destination pair can be improved using resonant relay devices, which are purely passive in nature. Utilization of such magneto-inductive relays has only been studied for regular network topologies, allowing simplified assumptions on the mutual antenna couplings. In this work we present an analysis of magneto-inductive passive relaying in arbitrarily arranged networks. We find that the resulting channel has characteristics similar to multipath fading: the channel power gain is governed by a non-coherent sum of phasors, resulting in increased frequency selectivity. We propose and study two strategies to increase the channel power gain of random relay networks: i) deactivation of individual relays by open-circuit switching and ii) frequency tuning. The presented results show that both methods improve the utilization of available passive relays, leading to reliable and significant performance gains.Comment: 6 pages, 9 figures. To be presented at the IEEE International Conference on Communications (ICC), Paris, France, May 201

    Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    Get PDF
    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band

    Multi-channel distributed coordinated function over single radio in wireless sensor networks

    Get PDF
    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band

    Multiterminal Source-Channel Coding

    Get PDF
    Cooperative communication is seen as a key concept to achieve ultra-reliable communication in upcoming fifth-generation mobile networks (5G). A promising cooperative communication concept is multiterminal source-channel coding, which attracted recent attention in the research community. This thesis lays theoretical foundations for understanding the performance of multiterminal source-channel codes in a vast variety of cooperative communication networks. To this end, we decouple the multiterminal source-channel code into a multiterminal source code and multiple point-to-point channel codes. This way, we are able to adjust the multiterminal source code to any cooperative communication network without modification of the channel codes. We analyse the performance in terms of the outage probability in two steps: at first, we evaluate the instantaneous performance of the multiterminal source-channel codes for fixed channel realizations; and secondly, we average the instantaneous performance over the fading process. Based on the performance analysis, we evaluate the performance of multiterminal source-channel codes in three cooperative communication networks, namely relay, wireless sensor, and multi-connectivity networks. For all three networks, we identify the corresponding multiterminal source code and analyse its performance by the rate region for binary memoryless sources. Based on the rate region, we derive the outage probability for additive white Gaussian noise channels with quasi-static Rayleigh fading. We find results for the exact outage probability in integral form and closed-form solutions for the asymptotic outage probability at high signal-to-noise ratio. The importance of our results is fourfold: (i) we give the ultimate performance limits of the cooperative communication networks under investigation; (ii) the optimality of practical schemes can be evaluated with respect to our results, (iii) our results are suitable for link-level abstraction which reduces complexity in network-level simulation; and (iv) our results demonstrate that all three cooperative communication networks are key technologies to enable 5G applications, such as device to device and machine to machine communications, internet of things, and internet of vehicles. In addition, we evaluate the performance improvement of multiterminal source-channel codes over other (non-)cooperative communications concepts in terms of the transmit power reduction given a certain outage probability level. Moreover, we compare our theoretical results to simulated frame-error-rates of practical coding schemes. Our results manifest the superiority of multiterminal source-channel codes over other (non-)cooperative communications concepts

    A Packet Scheduling Strategy in Sensor Networks with SGMH Protocol

    Full text link
    Data communication in sensor networks can have timing constraints like end to end deadlines. If the deadlines are not met either a catastrophe can happen in hard real time systems or performance deterioration can occur in soft real time systems. In real time sensor networks, the recovery of data through retransmission should be minimized due to the stringent requirements on the worst case time delays. This paper presents the application of Stop and Go Multihop protocol (SGMH) at node level in wireless sensor networks for scheduling and hence to meet the hard real time routing requirements. SGMH is a distributed multihop packet delivery algorithm. The fractions of the total available bandwidth on each channel is assigned to several traffic classes by which the time it takes to traverse each of the hops from the source to the destination is bounded. It is based on the notion of time frames (Tfr). In sensor networks packets can have different delay guarantees. Multiple frame sizes can be assigned for different traffic classes.Comment: 4 pages, 5 figures, IEEE , International Conference ICCCNT 2010, India, IEEE Explore- 2010, ISBN 978-1-4211-6591, pp 1-4, 30th September 201
    • …
    corecore