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Abstract

Cooperative communication is seen as a key concept to achieve ultra-reliable
communication in upcoming fifth-generation mobile networks (5G). A promis-
ing cooperative communication concept is multiterminal source-channel
coding, which attracted recent attention in the research community.

This thesis lays theoretical foundations for understanding the performance of
multiterminal source-channel codes in a vast variety of cooperative communi-
cation networks. To this end, we decouple the multiterminal source-channel
code into a multiterminal source code and multiple point-to-point channel
codes. This way, we are able to adjust the multiterminal source code to any
cooperative communication network without modification of the channel
codes. We analyse the performance in terms of the outage probability in
two steps: at first, we evaluate the instantaneous performance of the multi-
terminal source-channel codes for fixed channel realizations; and secondly,
we average the instantaneous performance over the fading process. Based
on the performance analysis, we evaluate the performance of multiterminal
source-channel codes in three cooperative communication networks, namely
relay, wireless sensor, and multi-connectivity networks. For all three net-
works, we identify the corresponding multiterminal source code and analyse
its performance by the rate region for binary memoryless sources. Based on
the rate region, we derive the outage probability for additive white Gaussian
noise channels with quasi-static Rayleigh fading. We find results for the
exact outage probability in integral form and closed-form solutions for the
asymptotic outage probability at high signal-to-noise ratio.

The importance of our results is fourfold: (i) we give the ultimate perfor-
mance limits of the cooperative communication networks under investigation;
(ii) the optimality of practical schemes can be evaluated with respect to our
results, (iii) our results are suitable for link-level abstraction which reduces
complexity in network-level simulation; and (iv) our results demonstrate
that all three cooperative communication networks are key technologies to
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enable 5G applications, such as device to device and machine to machine
communications, internet of things, and internet of vehicles.

In addition, we evaluate the performance improvement of multiterminal
source-channel codes over other (non-)cooperative communications concepts
in terms of the transmit power reduction given a certain outage probability
level. Moreover, we compare our theoretical results to simulated frame-error-
rates of practical coding schemes. Our results manifest the superiority of
multiterminal source-channel codes over other (non-)cooperative communi-
cations concepts.
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Kurzfassung

Kooperative Kommunikation gilt als Schlüsselkonzept der aufstrebenden
fünften Generation mobiler Netzwerke (5G), um sehr zuverlässige Kommu-
nikation zu ermöglichen. Multiterminal Source-Channel Codierung ist ein
vielversprechendes Konzept der kooperativen Kommunikation, welchem in
der Forschungsgemeinschaft momentan viel Aufmerksamkeit gewidmet wird.

Diese Dissertation beschäftigt sich mit den theoretischen Grundlagen des
Leistungsvermögens von Multiterminal Source-Channel Codierung in ver-
schiedenen Varianten kooperativer Kommunikationsnetzwerke. Zu diesem
Zweck trennen wir den Multiterminal Source-Channel Code in einen Mul-
titerminal Source Code und in mehrere Punkt-zu-Punkt Channel Codes.
Dadurch können wir den Multiterminal Source Code an verschiedene ko-
operative Kommunikationsnetzwerke adaptieren, ohne die Channel Codes
ändern zu müssen. Die Leistungsfähigkeit bezüglich der Ausfallwahrschein-
lichkeit analysieren wir in zwei Schritten: zunächst beurteilen wir die un-
mittelbare Leistungsfähigkeit der Multiterminal Source-Channel Codes für
feststehende Kanalrealisierung; weiterhin berechnen wir die mittlere unmit-
telbare Leistungsfähigkeit in Abhängigkeit des Schwundkanals. Aufbauend
auf diese Leistungsfähigkeitsanalyse beurteilen wir die Leistungsfähigkeit von
Multiterminal Source-Channel Codes in drei kooperativen Kommunikation-
snetzwerken: Relay, Wireless Sensoren und Multi-Connectivity Netzwerke.
Für alle drei Netzwerke identifizieren wir den korrespondierenden Mul-
titerminal Source Code und analysieren seine Leistungsfähigkeit anhand
der Ratenregionen für binäre gedächtnislose Quellen. Basierend auf dieser
Ratenregion, können wir die Ausfallwahrscheinlichkeit für additive weiße
gaußsche Rauschkanäle mit quasistatischem Rayleigh-Fading ableiten. Wir
stellen für die exakte Ausfallwahrscheinlichkeit Werte in Integralform fest,
für die asymptotische Ausfallwahrscheinlichkeit eine geschlossene Lösung
bei hohem Signal-Rausch-Verhältnis.

Unsere Ergebnisse sind in vierfacher Weise relevant: (i) Wir berichten die
ultimativen Leistungsgrenzen der untersuchten kooperativen Kommunika-
tionsnetzwerke. (ii) Mit Hilfe unserer Ergebnisse kann die Optimalität von
praktischen Codierungsschemata beurteilt werden. (iii) Unsere Ergebnisse
können der Link-level Abstraktion dienen, wodurch die Komplexität von
Simulationen auf Netzwerkebene reduziert wird. (iv) Unsere Ergebnisse
zeigen, dass alle drei untersuchten kooperativen Kommunikationsnetzwerke
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Schlüsseltechnologien darstellen, um 5G Applikationen zu ermöglichen, wie
sie in der D2D- und M2M-Kommunikation, dem Internet der Dinge und
Fahrzeugnetzwerken von Nöten sind.

Außerdem untersuchen wir die Leistungssteigerung durch Multiterminal
Source-Channel Codierungen im Vergleich zu anderen (nicht-)kooperativen
Kommunikationskonzepten im Hinblick auf die Reduktion der Übertragungs-
leistung bei bestimmten Ausfallwahrscheinlichkeiten. Darüber hinaus verglei-
chen wir unsere theoretischen Ergebnisse mit simulierten Paketfehlerhäu-
figkeiten von praktischen Codierungsschemata. Unsere Arbeit unterstreicht
die Überlegenheit von Multiterminal Source-Channel Codierungen im Vergle-
ich zu anderen (nicht-)kooperativen Kommunikationskonzepten.
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1Introduction

1.1 Motivation and Background
The evolution of fifth-generation mobile networks (5G) is driven by a wide
variety of new emerging application scenarios, like device to device (D2D)
and machine to machine (M2M) communications, internet of things (IoT),
internet of vehicles (IoV), etc. [ARS16]. The applications requirements range
from enhanced data rates and energy efficiency to high reliability and low
latency [Mal16].

As a first step, we discuss some applications and their requirements in de-
tail:

1. Scenarios with high reliability and challenging channel conditions: Pro-
viding connectivity everywhere, including highways and remote low-
populated areas, in order to enable IoV applications, is a challeng-
ing task. The high speed of the cars and the rich scattering environ-
ment lead to dispersive channels, which impair reliable communication.
Moreover, dynamic topology changes can compound the communica-
tion [Zho13].

2. Scenarios with high reliability and energy efficiency: For IoT applications,
such as environmental monitoring, sensor nodes are usually densely
deployed in a field, periodically collecting local data from a certain phys-
ical or environmental phenomenon of interest, and reliably reporting
those observations to a fusion center (FC). However, the operational
lifetime of wireless sensors is essentially determined by their battery
life, since they are equipped with small embedded batteries which in
the majority of scenarios are difficult to charge or replace [AY07]. Con-
sequently, energy efficiency is a critical requirement for environment
monitoring.

3. Scenarios with high reliability and low latency: An application example is
to wirelessly control a robot in a factory hall [Ehr+17], where the robot
receives motion control updates at a regular time interval. Depending
on the robot task, round-trip latency of less than 1 ms and applica-
tion error-rates down to 10−9 [Sch+17] are demanded. Again, the
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rich scattering environment of a factory hall impairs reliable wireless
communication.

Suitable wireless networks of all three applications face a common challenge:
ensure reliable communication at any time, while obeying additional con-
straint(s), e.g., low latency or energy efficiency. Subsequently, we introduce
suitable communication networks to cope with theses requirements.

Cooperative Communication Cooperative communication in wireless net-
works has proved to be an effective technique that enables single-antenna
users to share their antennas in order to create a virtual multiple-input
multiple-output (MIMO) system, and thus, providing some type of diversity
in wireless networks [Li09]. In general, diversity is a prevalent way to miti-
gate fading effects yielding reliable communication. Microdiversity [Mol12],
including time, spatial and frequency diversity, is well suited to combat small-
scale fading. However, microdiversity might not be suitable for combating
large-scale fading, which is created by shadowing effects. Shadowing is
almost independent of the frequency band, and therefore frequency diversity
proves then ineffective. Spatial diversity could be used, but the correlation
distances for large-scale fading can be greater than ten or even hundred me-
ters. Thus, macrodiversity [Mol12], where large distances between antennas
exist, proves more appropriate to combat large-scale fading.

For all three applications mentioned before, cooperative communication
networks are known to exploit some type of diversity yielding reliable com-
munications over fading channels.

Relay Network For application 1), IoV communications based on relaying
are a promising solution to ensure reliability at acceptable levels via macrodi-
versity. A prominent concept for relay networks is decode-and-forward (DF),
where the relay decodes the received message from the source and than re-
encodes it before transmitting the message to the destination. The decoded
message is discarded by the relay whenever an error is detected [BH06].
However, by allowing erroneous messages to be forwarded to the destination,
an improved error rate performance can be achieved, as shown in [AM12], a
concept referred to as lossy forwarding (LF) (the notion of allowable intra-
link errors between source and relay was first introduced in [GFZ05]). The
principle of LF is based on multiterminal source-channel codes (MSCCs). The
central idea is that an erroneous relay message is still somewhat correlated to
the source message, thus serving as valuable side information in the decoding
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Fig. 1.1. Cooperative communication networks provide some type of diversity to mitigate
fading effects yielding reliable communication. In this thesis, we consider three
cooperative communication networks, namely, (a) relay network, (b) wireless sensor
network, and (c) multi-connectivity network.

process at the destination. A schematic diagram of a relay network is shown
in Fig. 1.1a.

Wireless Sensor Network For application 2), the sensors are in general
densely concentrated, with each cluster presenting an elevated degree of spa-
tial correlation among the measured data [JP04]. The presence of mutually
correlated sensing data can be exploited by MSCCs, to improve the reliabil-
ity of wireless sensor networks (WSNs) via macrodiversity, which in turn
leads to a higher energy efficiency compared to non-cooperative concepts. A
schematic diagram of WSN is shown in Fig. 1.1b
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Multi-Connectivity Network For application 3), multi-connectivity (MCo) is
a promising tool for boosting the reliability and capacity of wireless net-
works [Öhm17]. At first, it provides a flexible communication framework
that can trade diversity for multiplexing via multiple routes to the destina-
tion (see Fig. 1.1c). Secondly, MCo networks can use spatial and frequency
macrodiversity, such that multiple copies of the same information can, in the
best case, be delivered within a single time slot. Concepts such as selection
combining (SC), maximal-ratio combining (MRC), and MSCC can be used to
exploit the diversity.

In all three cooperative communication networks MSCCs can be used to
exploit the diversity yielding an improved performance. This great range
of application make MSCCs a promising concept for 5G, and thus, MSCCs
attracted recent attention in the research community.

Ultimately, communication concepts are evaluated based on their fundamen-
tal performance limits. These limits are a prevalent way to understand the
communication concept itself, the interplay between system parameters, and
to evaluate practical coding schemes. To the best of our knowledge, the
fundamental performance limits of MSCCs for the referred networks have
been unknown so far.

1.2 Outline
This thesis contributes fundamental limits of the MSCC reliability perfor-
mance in the referred cooperative communication networks. We quantify the
reliability performance in terms of the outage probability of MSCCs based on
an approach proposed by Matsumoto et al [CAM13a; Zho+14].

To this end, we decouple the MSCC into one multiterminal source code and
multiple point-to-point channel codes, which is optimal for parallel channels
and infinite blocklength [XL07]. This source-channel separation is quite
appealing from a practical standpoint, since it implies that the multiterminal
source coding can be performed without channel knowledge and the point-
to-point channel coding without knowledge of the source correlation. The
multiterminal source code defines the minimum set of rates (a.k.a. the rate
region) at which the terminal encoders can communicate with the destination
decoder while still conveying enough information for lossless reconstruction
of the sources. The rate region differs for the referred cooperative commu-
nication networks. The first major contribution of this thesis is to identify
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and derive the exact rate region for the cooperative communication networks
under investigation.

In this work we consider parallel additive white Gaussian noise (AWGN)
channels with quasi-static Rayleigh fading. The outage probability is an im-
portant concept in fading channels, which provides a way to characterize the
performance of communication systems. For point-to-point communication,
an outage event occurs if the instantaneous channel capacity is less than
the desired rate. The same is true for multipoint-to-point communication,
i.e., an outage event occurs if the set of the instantaneous channel capaci-
ties is outside the rate region. The second major contribution of this thesis
is to derive the outage probability for parallel AWGN channels with quasi-
static Rayleigh fading for the cooperative communication networks under
investigation. We find results for the exact outage probability in integral
form and closed-form solutions for the asymptotic outage probability at high
signal-to-noise ratio (SNR).

Our results are a good performances indicator to evaluate the reliability of
MSCC in light of ultra-reliable applications. In fact, we derive simple and
insightful closed-form expressions depending on system parameters that can
be easily used to assess or optimize practical cooperative communication
deployments. To this end, a high SNR analysis turns out to be a strong
candidate, as it offers a simple yet in-depth characterization of the system
performance’s general trend. Furthermore, our results are well suited for
physical layer abstraction, which reduces computational complexity in higher
layer simulations.

The remainder of this thesis is structured as follows.

• In Chapter 2, we give an unified solution framework, which enables
the analysis of all three cooperative communication networks under
investigation in the subsequent chapters. At first, we review the rel-
evant network information theoretical concepts for the performance
analysis. Secondly, we define a general MSCC, which can be adapted
to the referred cooperative communication networks. Thirdly, we in-
troduce the channel model and define the outage probability. Fourthly,
we outline a practical distributed turbo code (DTC), which can be de-
ployed in all three cooperative communication networks. Finally, we
comprehensively outline our main contributions in this thesis.
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• Chapters 3-5 are the main part of this thesis. Each chapter corresponds
to one cooperative communication network:

– Chapter 3: Relay Network

– Chapter 4: Wireless Sensor Network

– Chapter 5: Multi-Connectivity Network

In each chapter, we review the related work including the MSCC under
investigation and baseline (non-)cooperative communication concepts.
We then define the system model and formulate the problem statement.
Subsequently, we adapt our unified solution framework to the corre-
sponding cooperative communication network and carry out the rate
region and outage probability analysis. We then compare the MSCC
results of each cooperative communication network to its baseline,
quantify the performance gain, and illustrate our result by some numer-
ical examples. In addition, we compare the theoretical results to the
practical simulation results of the DTC. At the end of each chapter the
key findings are summarized.

• During the research process, some new questions arose in regard to
underlying assumptions of the theoretical approach and practical imple-
mentations. In Chapter 6 we address the following questions for MCo:
How does correlation of the fading channels degrade the performance?
What is the impact of typical receiver imperfections such as channel
estimation and packet detection? How realistic are the theoretical
performance improvements in real cellular networks?

• Finally, the thesis is concluded in Chapter 7.

1.3 Notation
In this thesis, random variables (RVs) and their realizations are denoted
in capital (e.g., X) and lowercase (e.g., x) letters, respectively. All sets
(e.g., alphabets of RVs) are denoted in calligraphic letter (e.g., X ), and its
cardinality, by |X |. Moreover, Xn := (X(1), . . . , X(n)) denotes a random
vector of length n. The probability mass function (pmf) and probability
density function (pdf) of the discrete and continuous RV X are denoted by
pX(x) and fX(x), respectively. The pmf and pdf are simply denoted by p(x)
and f(x), respectively, whenever this notation is unambiguous.

6 Chapter 1 Introduction



We use R, R+ and N to denote the sets of real numbers, non-negative real
numbers, and natural numbers, respectively. Given any two integers a, b ∈ N,
we use [a : b] to denote the inclusive collection of all integers between a and
b, i.e., [a : b] := {c : c ∈ N , a ≤ c ≤ b}.

Finally, we denote the probability of an event E as Pr{E}, the mutual informa-
tion as I(·; ·), the entropy as H(·), the natural logarithm as ln(·), the binary
logarithm as ld(·), the binary entropy function as h(p) = −p ld(p) − (1 −
p) ld(1− p), the binary convolution as a1 ∗ a2 = a1(1− a2) + (1− a1)a2, and
the multivariate binary convolution as a1 ∗ ... ∗ aN = a1 ∗ (... ∗ (aN−1 ∗ aN)...),
which is a cascaded binary convolution. For two functions f(x) and g(x),
the notation f(x) = Θ(g(x)) means that k1g(x) ≤ f(x) ≤ k2g(x),∃k1 >

0, ∃k2 > 0,∃x0,∀x > x0, and f(x) = O(g(x)) means that f(x) ≤ kg(x),∃k >
0, ∃x0,∀x > x0.
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2General Problem and
Unified Solution
Framework

The performance analysis of wireless transmissions over fading channels is
often established in two steps:

• At first, given that the channel realization is constant over the trans-
mission of a frame, the performance of the wireless transmission is
expressed as a function of a random instantaneous SNR Γ, drawn from
pdf fΓ(γ).

• Secondly, if the instantaneous channel performance is less than the
transmission rate, an outage event occurs. The outage probability is
determined by integration over pdf fΓ(γ) on condition that an outage
event occurs.

In this chapter, the necessary background knowledge for the performance
analysis of cooperative communications systems which operate over fading
channels is reviewed.

Sections 2.1-2.3 are dedicated to review the key concepts that allow for an
analysis of the instantaneous performance. At first, we summarize some
classical results of distributed lossless compression, namely, the Slepian-Wolf
theorem and the many-help-one theorem by Gelfand and Pinsker. Shannon’s
channel coding theorem is briefly discussed in the context of parallel channels.
Secondly, we introduce the multiterminal source-channel coding setup and
review the corresponding source-channel separation theorem by Xiao and
Lue.

Sections 2.4-2.6 introduce relevant concepts to evaluate the average perfor-
mance. We introduce parallel AWGN channels with quasi-static Rayleigh
fading and then define the exact and asymptotic outage probability.

Subsequently, in Section 2.7, we present a practical coding scheme to evaluate
the frame-error-rates via Monte-Carlo simulations.

Finally, we outline the main contributions of this thesis in Section 2.8.
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Fig. 2.1. Distributed lossless compression system. We are interested in the optimal rate
region at which the distributed encoders can reliably communicate (i.e., lossless
compression of all sources) with the decoder.

2.1 Distributed Lossless Compression

Distributed lossless compression has a rich history. Slepian and Wolf [SW73]
were the first to characterise the problem of distributed encoding of multiple
correlated sources. In their seminal paper, the rate region for the lossless
distributed encoding of two correlated sources was derived. A simple proof
of the Slepian-Wolf result with extension to an arbitrary number of correlated
sources was presented by Cover [Cov75]. Wyner [Wyn75], and Ahlswede
and Körner [AK75] considered a different problem, in which an auxiliary
RV (i.e., side information) was introduced to expand the rate region of a
lossless single-source coding problem. In that setup, coded (or partial) side
information was available at the decoder.

Wyner and Ziv [WZ76] presented a generalization to lossy single-source
coding with uncoded side information. This was the first characterization of
a multiterminal rate-distortion function. Berger [Ber77] and Tung [Tun78]
extended the Slepian-Wolf problem to the lossy distributed encoding of an
arbitrary number of correlated sources. In those two works, inner and outer
bounds for the multiterminal rate-distortion region were presented, which
do not coincide in general.

The theorems of distributed lossless compression, which were established in
the referred previous work and are necessary in the analysis for our work,
are summarized in this section.

10 Chapter 2 General Problem and Unified Solution Framework



2.1.1 Slepian-Wolf Problem
Slepian and Wolf [SW73] considered a source coding problem where the
decoder aims at perfectly reproducing two correlated discrete memoryless
sources (DMSs) which are independently compressed at two terminals (see
Fig. 2.1). Let us formally define the code.

Definition 1. An (k,M1,M2)-code consists of

• two encoders

fl : Skl → [1 : Ml],∀l ∈ [1 : 2], and (2.1)

• a decoder

φ :
∏
l∈[1:2]

[1 : Ml]→
∏
l∈[1:2]

Skl . (2.2)

Given an (k,M1,M2)-code, the source estimates can be expressed as

(Ŝk1 , Ŝk2 ) = φ({fl(Skl )}l∈[1:2]) (2.3)

and the probability of error for a distributed lossless source code is defined
as

P (k)
e := Pr

{
{Skl }l∈[1:2] 6= {Ŝkl }l∈[1:2]

}
. (2.4)

The pair {Rl}l∈[1:2] will be called an admissible combination of coding rates for
{Sl}l∈[1:2] if there exists an (k,M1,M2)-code for which Ml ≤ 2kRl , l ∈ [1 : 2],
and lim

k→∞
P

(k)
e = 0. The optimal rate region, hereafter denoted as RSW, is the

set of all admissible combinations of rates {Rl}l∈[1:2], which was characterized
by Slepian and Wolf.

Theorem 1. (Slepian-Wolf theorem [SW73]) The optimal rate region for
distributed lossless source coding of two DMSs {Sl}l∈[1:2], drawn from a joint
pmf pS1S2(s1, s2), is the set of rate pairs {Rl}l∈[1:2] given by

RSW =
{

(R1, R2) :

R1 ≥ H(S1|S2),
R2 ≥ H(S2|S1),

R1+R2 ≥ H(S1, S2)
}
. (2.5)

2.1 Distributed Lossless Compression 11
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Fig. 2.2. Distributed lossless compression system with a helper. We are interested in the
optimal rate region at which the distributed encoders can reliably communicate (i.e.,
lossless compression of the primary source) with the decoder. The encoder of the
helper provides side information for decoding.

The Slepian-Wolf theorem is proved based on random binning [EGK11],
which is a key concept of distributed lossless compression for partitioning the
outcomes of the random sources. A simple proof of the Slepian-Wolf result
with extension to an arbitrary number of sources was presented by Cover in
[Cov75].

Theorem 2. (Generalized Slepian-Wolf theorem [Cov75]) The optimal rate
region for distributed lossless source coding of L DMSs {Sl}l∈[1:L], drawn from a
joint pmf pS1...SL(s1, ..., sL), is the set of rate pairs {Rl}l∈[1:L] given by

RSW =
{

(R1, ..., RL) :∑
l∈V

Rl ≥H ({Sl}l∈V |{Sl}l∈Vc) ,∀V ⊆ [1 : L]
}
, (2.6)

where Vc denotes the complement of V.

2.1.2 Many-Help-One Problem

Consider the distributed compression system depicted in Fig. 2.2, where only
one of the two sources is to be recovered losslessly and the encoder for the
other source (helper) provides coded side information to the decoder to help
the first encoder’s rate. In literature, this setup is referred to as source coding
with coded side information.
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The definitions of a code, proofs, and optimal rate region are the same as for
the distributed lossless source coding setup in Section 2.1.1, except that the
probability of error is defined as

P (k)
e := Pr

{
Sk0 6= Ŝk0

}
. (2.7)

The optimal rate region for the source coding problem with coded side
information, hereafter denoted as RWAK, was derived by Wyner [Wyn75],
amd Ahlswede and Körner [AK75].

Theorem 3. (Wyner-Ahlswede-Körner theorem [Wyn75; AK75]) Let {Sl}l∈[0:1]

be two DMSs. The optimal rate regionRWAK for distributed lossless source coding
of S0 with the helper observing S1, drawn from a joint pmf pS0S1(s0, s1), is given
by the convex closure of set of all {Rl}l∈[0:1] satisfying the following conditions:

• There exists a discrete auxiliary RV U1 taking values in U1 such that
(S0, S1, U1) satisfies the Markov chain S0 → S1 → U1.

• |U1| ≤ |S1|+ 1.

• R0 ≥ H(S0|U1) and R1 ≥ I(S1;U1).

The idea that a decoder wishes to reproduce a primary source with the help of
an auxiliary source, introduced by Wyner [Wyn75], and Ahlswede and Körner
[AK75], can intuitively extended to an arbitrary number of auxiliary sources
(S1, ..., SL), a.k.a. helpers. Finding the rate region of such a system defines
the so-called many-help-one problem. This problem has been recognized as a
highly challenging one and only a few particular solutions are known to date.
Gelfand and Pinsker [GP79] determined the rate region when the auxiliary
sources are discrete and conditionally independent if the primary source is
given1. Hereafter, this case is referred to as the conditionally independent (CI)
condition. The joint pmf of {Sl}l∈[0:L] satisfies

pS0S1...SL(s0, s1, ..., sL) = pS0(s0)
∏
l∈[1:L]

pSl|S0(sl|s0). (2.8)

1The system model for the many-help-one problem is a special case of the system model
for the lossless chief executive officer (CEO) problem investigated in [GP79] by Gelfand
and Pinsker. In the CEO problem, the primary source is not encoded but rather observed
from multiple helpers. Clearly, Gelfand and Pinsker’s rate region is non-empty if and
only if H(S0|S1, . . . , SL) = 0 (this condition was referred to therein as “completeness of
observations"). According to [GP79], the rate region can be given by taking into account
the “completeness of observations" for the encoding of the primary source [Ooh08].

2.1 Distributed Lossless Compression 13
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Fig. 2.3. System model for lossless many-help-one problem with two independently degraded
helpers (i.e., L = 2). We are interested in the optimal rate region at which the
distributed encoders can reliably communicate (i.e., lossless compression of the
primary source) with the decoder. The helpers are conditionally independent given
the primary source and their encoders provide side information for decoding.

Fig. 2.3 illustrates the lossless many-help-one system model with two helpers
(i.e., L = 2).

Theorem 4. (Gelfand-Pinsker theorem [GP79]) Let {Sl}l∈[0:L] be (L+ 1) DMSs.
The optimal rate region RGP for distributed lossless source coding of S0 with
helpers observing independently degraded sources {Sl}l∈[1:L], drawn from a joint
pmf pS0...SL(s0, ..., sL) satisfying the CI condition in (2.8), is given by the convex
closure of the set of all rates {Rl}l∈[0:L] satisfying the following conditions:

1. There exists an L-tuple {Ul}l∈[1:L] of discrete auxiliary RVs taking values
in U1 × ... × UL such that {S0, Sl, Ul}l∈[1:L] satisfies the Markov chains
U1...UL → S1...SL → S0 and Ul → Sl → Sl̄ → Ul̄,∀l ∈ [1 : L], l 6= l̄.

2. |Ul| ≤ |Sl|+ (L+ 1)2L−1 + 1,∀l ∈ [1 : L].

3. R0 ≥ H(S0|U1, ..., UL) and∑
l∈V Rl ≥ I ({Sl}l∈V ; {Ul}l∈V |{Ul}l∈Vc) , where

∀V ⊆ [1 : L] and V c = [1 : L]\V.
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2.2 Parallel Channel Coding

We now consider a dual setting that transmits the compressed messages (e.g.,
{ml ∈ [1 : Ml]}l∈[1:L] in Definition 1) over a noisy parallel channel with L

sub-channels. At first, let us consider a point-to-point communication system,
where the sender wishes to reliably communicate a message m ∈ [1 : M ]
in n channel uses to a receiver over a noisy channel. For doing so, the
sender encodes the message into a codeword Xn. At the receiver, the decoder
obtains the estimate m̂ of the message from the received codeword Y n. The
channel coding problem is to find the highest rate R = ld(M)/n at which
the encoder can reliably communicate, i.e., the probability of decoding error
can be made arbitrarily small with the decoder. The highest rate is referred
to as the channel capacity. In this section, we introduce the concept of
parallel channels and define the capacity region, based on the channel coding
theorem.

Let Xn
l and Y n

l be sequences of n complex channel input and output symbols,
respectively. The parallel channel is described by a pmf

pY1...YL|X1...XL(y1, ..., yL|x1...xL) =
∏
l∈[1:L]

pYl|Xl(yl|xl). (2.9)

We define cost functions associated with the channel inputs for all sub-
channels as

ρl : X → R+,∀l ∈ [1 : L]. (2.10)

The sequence of input channel symbols Xn
l needs to satisfy cost constraints

E [ρl(Xl)] ≤ Pl,∀l ∈ [1 : L], (2.11)

where

ρl(Xl) := 1
n

∑
i∈[1:n]

ρl(Xl(i)) (2.12)

for some {Pl}l∈[1:L] > 0. Let

Cl(Pl) = max
pXl (xl):E[ρl(Xl)]≤Pl

I(Xl;Yl) (2.13)

2.2 Parallel Channel Coding 15
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Fig. 2.4. Multiterminal source-channel setup. We are interested in the optimal cost constraints
tuple at which the distributed encoders can reliably communicate (i.e., lossless
compression of all sources) with the decoder over parallel channels.

be the lth channel capacity of a discrete memoryless channel (DMC) pYl|Xl(yl|xl).
The channel coding theorem states the condition on the rate Rl with respect
to Cl(Pl) as follows.

Theorem 5. (Channel coding theorem [Sha48]) For a DMC, all rates Rl below
capacity Cl(Pl) are achievable, i.e., the probability of error approaches zero for
n→∞. Conversely, in order to guarantee reliable communication, the rate Rl

must satisfy the condition Rl ≤ Cl(Pl).

The capacity region C
(
{Pl}l∈[1:L]

)
of the parallel channel under cost constraint

{Pl}l∈[1:L] is defined by

C
(
{Pl}l∈[1:L]

)
:=
{

(R1, ..., RL) : 0 ≤ Rl ≤ Cl(Pl), ∀l ∈ [1 : L]
}
. (2.14)

2.3 Multiterminal Source-Channel Coding
In this section, we consider a joint source-channel coding setup with dis-
tributed sources. Fig. 2.4 illustrates a multiterminal source-channel setup
where L transmitters wish to communicate k symbols of uncompressed cor-
related sources {Sl}l∈[1:L] over a parallel DMC

∏
l∈[1:L] pYl|Xl(yl|xl) in n trans-

missions so that the receivers can perfectly reconstruct the source symbols.
A prevalent way, in this setup, is to perform source and channel encod-
ing as well as channel and source decoding separately. For point-to-point
communication with memoryless source and memoryless channel, Shannon
proved that such strategy is asymptotically optimal, i.e., for k →∞, which
is called Shannon’s source-channel separation theorem. The theorem for a
multiterminal setup was proven by Xiao and Lue.

Let us formally define the multiterminal source-channel code.
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Definition 2. An (k, n, P1, ..., PL)-code consists of

• L encoders

fl : Skl → X n
l , ∀ l ∈ [1 : L], and (2.15)

• a decoder

φ :
∏
l∈[1:L]

Ynl →
∏
l∈[1:L]

Skl , (2.16)

such that

E [ρl(Xl)] ≤ Pl,∀l ∈ [1 : L]. (2.17)

Given an (k, n, P1, ..., PL)-code, the source estimates can be expressed as

{Ŝkl }l∈[1:L] = φ({Y n
l }l∈[1:L]) (2.18)

and the probability of error P (k)
e is defined as in (2.4) or (2.7).

The L-tuple {Pl}l∈[1:L] will be called an admissible combination for {Sl}l∈[1:L]

if, for fixed k/n and sufficiently large k, there exists an (k, n, P1, ..., PL)-code
which satisfies the cost constraints in (2.17) and lim

k→∞
P

(k)
e = 0.

Xiao and Lue [XL07] proved that separated source and channel coding,
i.e., multiterminal source coding and multiple point-to-point channel codes,
is asymptotically optimal (k → ∞) for the multiterminal source-channel
setup.

Theorem 6. (Multiterminal source-channel separation theorem [XL07]) Let
k/n be a fixed source-channel coding rate and k →∞. Then, the cost constraints
L-tuple {Pl}l∈[1:L] is admissible if and only if

C
(
{Pl}l∈[1:L]

)
∩ (k/n) · R 6= ∅. (2.19)

Remark 1: Note that Theorem 6 holds for any rate region R, including
the Slepian-Wolf and Many-Help-One rate regions in Theorem 2 and Theo-
rem 4.

Remark 2: Although Theorem 6 was proven for DMSs and DMCs, it also
holds for Gaussian sources with mean square error (MSE) criterion and

2.3 Multiterminal Source-Channel Coding 17
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Fig. 2.5. Separation of multiterminal source-channel setup into one multiterminal source
code and multiple point-to-point channel codes. This source-channel separation is
quite appealing, since it implies that the multiterminal source coding can be per-
formed without channel knowledge and the point-to-point channel coding without
knowledge of the source correlation.

AWGN channels [XL07]. The result was provided by Oohama [Ooh97],
where Berger-Tung’s achievable rate region [Ber77; Tun78] was extended to
Gaussian sources2.

Throughout this thesis, we denote Rc = k/n as the spectral efficiency, mea-
sured in source samples per channel symbol. The separation of the multiter-
minal source-channel code is depicted in Fig. 2.5. We use the subscript “s”
and “c” to indicate the source and channel code, respectively.

2.4 Channel Model
As motivated in the Introduction, we consider delay-constrained commu-
nication systems operating over a slowly-varying fading channel. In such
a scenario, it is plausible to assume that the duration of each transmitted
codeword (sequence of n channel symbols) is smaller than the coherence
time of the channel. Thus, that the random fading coefficients stay constant
over the duration of each codeword [BPS98]. We shall refer to this channel
model as quasi-static fading channel. Throughout this thesis, we consider L
parallel AWGN channels with independent quasi-static Rayleigh fading.

2The Slepian-Wolf problem and the Many-Help-One problem are special cases of the
Berger-Tung problem [EGK11].
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2.4.1 AWGN Channel

Let Xn
l and Y n

l be the input and output of a time-discrete channel. The
output is the sum of the input and the noise Nn

l , i.e.,

Y n
l = Xn

l +Nn
l . (2.20)

The Gaussian RVs in Nn
l are independent and identically distributed (i.i.d.)

with zero-mean and variance of σ2
N = N0/2 per dimension, i.e., Nl(i) ∼

N (0, σ2
N), for i ∈ [1 : n].

As stated in Theorem 5, the channel capacity defines the maximum number
of bits per dimension that could be reliably transmitted through a noisy
channel. The AWGN channel capacity for an one-dimensional channel with
input sequence Xn

l and cost constraint E
[
ρl(Xl) = 1

n

∑
i∈[1:n] |Xl(i)|2

]
≤ σ2

X

(referred to as average power constraint) and zero-mean Gaussian noise with
variance σ2

N is [Sha48; Sha59b]

Cψ = 1
2 ld

(
1 + σ2

X

σ2
N

)
. (2.21)

Let us define the function ψ(x) := ld(1 + x). In practical communication
systems, it is common to assume a circularly symmetric complex Gaussian
channel with independent real and imaginary part. Thus, the noise variance
is separated in real and imaginary component each, i.e., σ2

N = N0/2 per
dimension. For a complex Gaussian channel with average power constraint
σ2
X = Pl/2 for real and imaginary component each, the capacity is

Cψ = ψ

(
Pl
N0

)
. (2.22)

2.4.2 Quasi-Static Rayleigh Fading Channel

In a quasi-static Rayleigh fading channel, the change in the received signal
power over time due to multi-path fading and shadowing (a.k.a. channel
gain) is also considered. The received sequence at the receiver is defined
as

Y n
l = Al ·Xn

l +Nn
l , (2.23)
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where Al represents the channel gain, which remains constant over the
transmission of one sequence of n symbols, but varies sequence by sequence.
The channel gain can be modeled as a zero-mean, circularly symmetric
complex Gaussian RV with unit variance, i.e., Al ∼ CN (0, 1). The channel
state information (CSI) is assumed to be known at the receiver.

Let us define the instantaneous received SNR by

Γl :=|Al|2Γ̄l (2.24)

with the average received SNR Γ̄l being obtained as

Γ̄l = Pl
N0
· d−ηl , (2.25)

for l ∈ [1 : L], where dl is the distance between transmitter and receiver and
η is the path loss exponent.

The received SNR of the lth fading channel is exponentially and indepen-
dently distributed according to the pdf

fΓl(γl) = 1
Γ̄l

exp
(
−γl

Γ̄l

)
. (2.26)

Based on the assumption of independent fading, the joint pdf of the parallel
fading channel can be factorized to

fΓ1...ΓL(γ1, ..., γL) =
∏
l∈[1:L]

fΓl(γl). (2.27)

Given an L-tuple SNR realization {γl}l∈[1:L], drawn independently from
(2.27), the instantaneous capacity region for the parallel AWGN channel
with quasi-static Rayleigh fading can be specialized to

Cψ
(
{γl}l∈[1:L]

)
=
{

(R1, ..., RL) : 0 ≤ Rl ≤ ψ(γl),∀l ∈ [1 : L]
}
. (2.28)
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Fig. 2.6. Rate region R and capacity region Cψ(γ1, γ2): (a) outage event, and (b) non-outage
event. If the rate and capacity region do not intersect, an outage event occurs and
vice versa.

2.5 Outage Probability
The outage probability is an important concept for fading channels, which
provides a way to characterize the performance of communication systems
in non-ergodic fading scenarios. As L is finite, the parallel fading channel is
non-ergodic, i.e., L is not large enough to average over channel variations. In
this section, we combine the previous results to define the outage probability
of cooperative communication networks operating over fading channels, an
approach proposed by Matsumoto et al in [CAM13a; Zho+14].

Combining Theorem 6 and the assumption of L parallel AWGN channels with
independent quasi-static Rayleigh fading, the outage probability is given by
the integration over the joint pdf fΓ1...ΓL(γ1, ..., γL) under the condition that
Theorem 6 is not fulfilled, i.e.,

P out = Pr
[
Cψ
(
{Γl}l∈[1:L]

)
∩Rc · R = ∅

]
. (2.29)

Fig. 2.6 qualitatively illustrates the rate region R and capacity region
Cψ(γ1, γ2) for L = 2. Let us assume a received SNR realization, i.e., the
pairs (γ1, γ2). The maximal achievable rates over the parallel channel are
the pair (ψ(γ1), ψ(γ2)). In Fig. 2.6 we marked two different pairs at point
A and point B. Since the maximal achievable rate pair at point A is out-
side the rate region Rc · R, an outage event occurs, i.e., lim

k→∞
P

(k)
e > 0. The
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maximal achievable rate pair at point B is inside the rate region Rc · R, i.e.,
there exists a code such that lim

k→∞
P

(k)
e = 0. The outage probability is the

integration over the joint pdf fΓ1...ΓL(γ1, ..., γL) under the condition that the
maximal achievable rate pair of the capacity region Cψ(Γ1,Γ2) is outside the
rate region Rc · R.

2.6 Asymptotic Outage Probability
In this work, we evaluate the reliability performance by analyzing the exact
outage probability. Unfortunately, a closed-form solution of the exact outage
probability in (2.29) cannot be found for the cooperative communication
networks considered in this work. On the other hand, the asymptotic outage
probability at high SNR offers a simple characterization for the reliability
performance. Especially for ultra reliable communications, operating in
the medium- to high-SNR region, the asymptotic outage probability is a
well-suited performance indicator. In the literature, the asymptotic outage
probability is given depending on the so-called coding gain Gc and diversity
gain d (see, e.g., [WG03]), as

P̃ out =
(
Gc · Γ̄

)−Gd
, (2.30)

where Γ̄ is the average received SNR. The diversity gain Gd determines the
slope of the outage probability versus the average SNR curve in a log-log
scale, at high SNR. On the other hand, the coding gainGc (in dB), determines
the shift of the outage probability in relative SNR to a benchmark outage
probability (e.g., Γ̄−Gd). Fig. 2.7 illustrates the relationship between the exact
and asymptotic outage probability as well as the coding and the diversity
gains.

2.7 Distributed Turbo Code
In this thesis, we are also interested in real link-level evaluations. One way
to exploit the correlation of the sources in a practical communication system
is the concept of DTCs, initially published in [AM12]. Fig. 2.8 illustrates a
DTC for L = 2. The link-level performance can be quantified by frame-error-
rates (FERs) in Monte-Carlo simulations. For sufficiently large frame length
n, the outage probability is the lowest achievable FER known [NFR07]. We
now outline the DTC in [AM12].
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coding gain Gc is the shift of the outage probability in relative SNR to a benchmark
outage probability.

2.7.1 Convolutional Encoder

As proposed in [AM12] each binary source sequence Skl is encoded by a
twofold serially concatenated code. At first, a systematic non-recursive
convolutional code (SNRCC) is applied, and secondly, an accumulator with a
systematic recursive convolutional code (SRCC) and doping ratio PACC. The
introduction of the accumulator to the coding scheme prevents an error floor
of the decoder [PS06]. Finally the modulated sequence Xn

l generated by
some modulation scheme is transmitted via an AWGN channel with quasi-
static Rayleigh fading.

2.7.2 Joint Turbo Decoder

Each turbo decoder in Fig. 2.8b has two matching BCJR algorithms [Bah+74]
to decode the SNRCC and SRCC applied at the encoder. The basic idea of DTC
is to exchange information among all turbo decoders via a global iteration,
and thus exploit the correlation of the sources. The joint turbo decoder (JTD)
can be partitioned as follows:
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{Ŝk
l }l∈[1:2]

Global Iteration

Local Iteration

(b)

Fig. 2.8. Distributed turbo code: (a) a schematic diagram, and (b) joint turbo decoder. The
code consists of distributed convolutional encoders and a joint turbo decoder. The
joint turbo decoder alternately performs a local and global iteration. Local iteration:
each turbo decoder individually performs a decoding iteration. Global iteration:
all turbo decoders exchange LLRs via the update functions and variable node. The
update function evaluates the exchanged LLRs based on the source correlation.

1. Initialization | It is assumed that the JTD has perfect knowledge of
the CSI. Hence, the channel log likelihood ratios (LLRs) of Xn

l can be
calculated as

{Lch,Xl(i)}i∈[1:n] =
{

ln Pr{Xl(i) = 0|Yl(i) = yl(i),Γl = γl}
Pr{Xl(i) = 1|Yl(i) = yl(i),Γl = γl}

}
i∈[1:n]

.

(2.31)

For example, if we consider binary phase shift keying (BPSK) modu-
lation, where bit “0” is mapped to “+

√
Pl” and bit “1” is mapped to

“−
√
Pl”, the channel LLR for the ith symbol is calculated as follows

Lch,Xl(i) = ln
1√

2πσ2
N

exp
(
− |<(yl(i))−al

√
Pl|2

2σ2
N

)
1√

2πσ2
N

exp
(
− |<(yl(i))+al

√
Pl|2

2σ2
N

) (2.32)

= 4al
√
Pl

2σ2
N

<(yl(i)) = 4al
√
Pl

N0
<(yl(i)). (2.33)
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<(·) takes the real part of a complex value in its argument.

2. Local Iteration | Each turbo decoder then performs an update using the
channel information Lnch,Xl

and the extrinsic LLR Lke,Sl from the global
iteration. Due to non existing extrinsic LLRs in the first iteration only
the channel information is included. The decoder provides the a priori
LLR Lka,Sl to the global iteration.

3. Global Iteration | From a general perspective a source with a high
correlation (measured by the crossover probability εl) shares a greater
amount of mutual information with the other sources. Therefore, the
source sequence contains a more significant amount of valuable infor-
mation compared to a source sequence with a low correlation [RA12].
To account for this, the update function fc(·, ·) [AM12] performs an
evaluation of the source sequence reliability. If the crossover probability
εl is low, the LLR of source l will be promoted and vice versa. The
update of the extrinsic LLR is calculated as

{Le,Sl(i)}i∈[1:k] = {fc(La,Sl(i), εl)}i∈[1:k] (2.34)

=
{

ln (1− εl) · exp(La,Sl(i)) + εl
(1− εl) + εl · exp(La,Sl(i))

}
i∈[1:k]

. (2.35)

Information among the turbo decoders is exchanged at the variable
node, where the a priori LLR Lka,Sl is obtained by the sum of all other
source extrinsic LLRs, i.e.,

Lka,Sl =
∑

l̄∈[1:L]\{l}

Lke,Sl̄ . (2.36)

Lka,Sl is then fed back to the update function. The update function again
evaluates the extrinsic information from the other sources with the
crossover probability, as seen in (2.34). Each turbo decoder obtains an
updated extrinsic LLR Lke,Sl.

4. Hard Decision | The JTD estimates {Ŝkl }l∈[1:L] by interpreting the sign
of a posteriori LLR Lkp,Sl = Lka,Sl + Lke,Sl for l ∈ [1 : L].

Ŝl(i) =

1, Lp,Sl(i) < 0

0, Lp,Sl(i) ≥ 0
(2.37)
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The decoding process is performed in an iterative manner between step
2) and 3) and at the convergence point completed by 4). For a detailed
explanation of the DTC, the authors refer to [AM12].

2.8 Main Contributions of this Thesis
Our research investigates MSCCs from the perspective of exploiting correla-
tion among multiple sources in three cooperative networks:

(1) Relay network

(2) Wireless sensor network

(3) Multi-connectivity network

Our major contributions for all three networks are as follows:

A Rate region Although the corresponding rate regions for our co-
operative communication networks are known (see Theorem 2 and
Theorem 4), their specialization to binary sources remains surpris-
ingly challenging. In this work, we derive exact rate regions and tight
bounds for Theorem 2 and Theorem 4, when specialized to sources that
are binary, uniformly distributed, and interrelated through symmetric
channels.

B Exact outage probability Based on the derived rate regions, we es-
tablish the exact outage probability, defined in (2.29), for network
(2) and network (3). For network (1), we find an upper bound for
the exact outage probability, based on the rate region’s inner bound.
Unfortunately, a closed-from solution of the exact outage probability
remains unknown, but the integral form can be evaluated via numerical
simulations.

C Asymptotic outage probability For network (2) and network (3) we
are able to derive the asymptotic outage probability and, thus, can
give the exact coding and diversity gains (see (2.30)). We show by
numerical examples that the provided asymptotes approach the exact
solutions already at low-to-medium SNR. Unfortunately, the asymptotic
outage probability for network (1) could not be found.
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D SNR gain We quantify the performance gain of MSCCs compared to
other cooperative or non-cooperative communication concepts based
on the derived outage probability results. Eventually, we are interested
in the transmit power reduction of one system compared to another
system, which we refer to as SNR gain. Based on the SNR gain we
answer some fundamental questions, for instance,

(i) Given a target (fixed) spectral efficiency, how much transmit power
can be saved while achieving the same outage probability at high
SNR?

(ii) Given a target (fixed) outage probability, how much transmit
power can be saved while achieving the same throughput at high
SNR?

(iii) How those savings vary with the level of the target metric and
with the number of connections and topology?

E Outage probability vs. frame-error-rate We evaluate the error-rate
performance of the DTC, presented in Section 2.7, for all three networks
by Monte-Carlo simulation and compare its performance to the outage
probability.

F Further practical constraints During the process, some new ques-
tions arose in regard to underlying assumptions of our theoretical
approach and practical implementations. Accordingly, for network (3),
we addressed the following additional points:

(i) In Section 2.4.2, the received SNRs are independently distributed
(see (2.9)). However, it is often the case that the fading is cor-
related due to insufficient physical separation of the antennas or
frequency bands. To better understand the influence of correlated
fading, we extend the joint pdf in (2.26) by correlation parameters
and derive exact and asymptotic outage probabilities.

(ii) We also assume the SNR to be known at the receiver (see Sec-
tion 2.4.2). In practical receiver implementations, the SNR is
estimated from training data in the preamble. The estimation
accuracy depends on the preamble design, which in turn can in-
fluence the overall system performance. Likewise dependent on
preamble design, packet detection is a major concern for receiver
implementations. Therefore, the impact of SNR estimation and
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packet detection for cooperative communications should be evalu-
ated. To this end, we consider the error-rate performance of the
physical layer of the wireless local area network (WLAN) standard
(IEEE 802.11a), where SNR estimation and packet detection are
included.

(iii) We are interested in the actual gain of implementing cooperative
communications into cellular networks. Therefore, we apply our
analysis to real field channel measurements and thereby illustrate
the potential of cooperative communications in actual cellular
networks.
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3Relay Network

Although the rate region for the lossless many-help-one problem with inde-
pendently degraded helpers is already “solved", its solution is given in terms
of a convex closure over a set of auxiliary random variables. Thus, for any
such problem in particular, an optimization over the set of auxiliary random
variables is required to truly solve the rate region. Providing the solution
is surprisingly difficult even for an example as basic as binary sources. In
this chapter, we derive a simple and tight inner bound on the rate region’s
lower boundary for the lossless many-help-one problem with independently
degraded helpers when specialized to sources that are binary, uniformly
distributed, and interrelated through symmetric channels. Based on the rate
region we obtain an upper bound on the outage probability of a LF multirelay
system. The outage probability provides the ultimate performance limit of
the system reliability. In addition, for comparison, we derive the outage prob-
ability of a DF multirelay system, which discards any intra-link errors (IEs).
We show that, the more relays are employed, the more advantageous it is to
forward the IEs, as opposed to discarding them.

3.1 Related Work
In DF, the decoded message is discarded by the relay whenever an error is
detected [BH06]. On the other hand, by allowing IEs to be forwarded to
the destination, an improved end-to-end performance can be achieved, as
shown in [AM12] for a classic topology with one source, one relay, and one
destination (the notion of allowable intra-link errors was first introduced
in [GFZ05]). The central idea is that an erroneous relay message is still
somewhat correlated to the source message, thus serving as valuable side
information in the decoding process at the destination. Based on the theorems
of source coding with side information [Wyn75; AK75] and source-channel
separation [EGK11, Theorem 3.7], the outage probability of a LF relaying
system was derived in [Zho+14] for a classic three-node topology, assuming
that all the links undergo block Rayleigh fading. In that work, LF was shown
to outperform DF, analyzed in [BH06]. An excellent tutorial on LF can be
found in [He+18].

One may want to extend the outage analysis in [Zho+14] to two or more
relays. This is an important extension, because in the harsh environment
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of potential applications (e.g., fifth-generation vehicular networks) paral-
lel routes (i.e., multiple relays) may be required to keep connectivity at
an acceptable level. In principle, such an extended analysis could be at-
tained based on the rate region for the distributed encoding of one primary
source (S0) and multiple auxiliary ones (S1, ..., SL). This is the so-called
many-help-one problem, which is still open in its general form. Only a few
particular solutions are known to date. Körner and Marton [KM79] addressed
a two-help-one problem where the primary source is a modulo-two sum of
correlated binary auxiliary sources. Gelfand and Pinsker [GP79] determined
the rate region when the auxiliary sources are discrete and conditionally
independent, given the primary source. Motivated by the Gelfand-Pinsker
result, Oohama [Ooh05] determined the rate-distortion region for the same
setup but Gaussian sources. Tavildar [TVW10] derived the rate-distortion
region for Gaussian sources with a correlation model following a tree-like
structure. For other works on the many-help-one problem, see [Ooh08] and
the references therein.

While the characterization given by Gelfand and Pinsker [GP79] (see The-
orem 4) is elegant and quite general, it presents a practical disadvantage:
the solution relies on auxiliary RVs whose statistics are unknown in advance.
Thus, the numerical characterization of the region of achievable rates for any
particular joint distribution of (S0, S1, ..., SL) requires an optimization over all
admissible conditional distributions for the auxiliary RVs (U1, ..., UL). Gelfand
and Pinsker [GP79] showed that the rate region remains unchanged if the
alphabet size of the auxiliary RVs is bounded by |Ul| ≤ |Sl|+ (L+ 1)2L−1 + 1.
However, with an increasing number of helpers the bound on the alpha-
bet size increases, and so does the complexity of the optimization problem.
Jana [Jan09] showed that the cardinality of the auxiliary RVs can be tightly
bounded by |Ul| ≤ |Sl| for a broad class of multiterminal source coding
problems, including the many-help-one problem. But still, the optimization
problem remains surprisingly challenging, even for binary sources.

In [Gu+07], the one-help-one problem (a.k.a. source coding with coded side
information) was considered with binary sources which are related through
a binary symmetric channel (BSC). It was then shown that the rate region is
achieved if and only if the auxiliary RV and the helper are related through a
BSC as well.
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Fig. 3.1. Lossy forwarding multirelay system with two relays (i.e., L = 2). The source wishes
to reliably transmit information to the destination with the aid of multiple relays
over parallel fading channels. We are interested in the outage probability.

3.2 System Model
We consider a dual-hop relaying system in which one source cooperates with
L half-duplex relays to transmit information to one destination, as shown
in Fig. 3.1. We assume that all the channels undergo independent quasi-static
Rayleigh fading and additive white Gaussian noise with mean power N0 (see
Section 2.4.2). For convenience, we reproduce the pdf of the received SNRs
in (2.26) with slightly different notations. The pdf of the received SNR of all
the links is exponentially distributed, given by

fΓν (γ) = 1
Γ̄ν

exp
(
− γ

Γ̄ν

)
, (3.1)

where ν ∈ {S0, S1, . . . , SL,D1, . . . ,DL}, Γ̄D0 := (PS/N0)d−ηD0 is the average re-
ceived SNRs of the source-to-destination link, Γ̄Sl := (PS/N0)d−ηSl for l ∈ [1 : L]
are the average received SNRs of the source-to-relay links, Γ̄Dl := (PDl/N0)d−ηDl

for l ∈ [1 : L] are the average received SNRs of relay-to-destination links;
including the respected path loss d−ην , and PS and PDl stand for the transmit
powers at source and lth relay, respectively. The CSI is assumed to be known
at the receiver.

The system model has one binary memoryless source (BMS), denoted as
[S0(i)]∞i=1, with i denoting discrete time. The k-sample source sequence
shall be represented in vector form as Sk0 = [S0(1), S0(2), ..., S0(k)]. When
appropriate, for simplicity, we shall drop the temporal index, denoting the
source output simply as S0. The source S0 takes values from a binary set
{0, 1} with uniform probabilities, i.e., pS0(s0 = 0) = pS0(s0 = 1) = 0.5.

The relaying system operates on a time-division multiple access basis, with
the transmission process being accomplished in four steps, as follows. At

3.2 System Model 33



first, the source sequence Sk0 is encoded to the transmit source sequence
Xn

0 , i.e., the encoder maps Sk0 → X n
0 , and broadcasted to the destination

and all relays. Secondly, each relay decodes its received relay sequence Zn
l

to the binary relay sequence Skl , i.e., the lth decoder maps Znl → Skl . The
relay sequences Skl for l ∈ [1 : L], differ from the original source sequence
Sk0 according to certain first-hop crossover probabilities εl := Pr {S0 6= Sl},
which depend on the instantaneous received SNRs between the primary
source and the lth relay, ΓSl. Thirdly, the relay sequence Skl is decoded to
Xn
l , i.e., the lth encoder maps Skl → X n

l , and transmitted to the destination.
Lastly, all received sequences Y n

l for l ∈ [0 : L] are jointly decoded to retrieve
Sk0 , i.e., the decoder maps

∏
l∈[0:L] Ynl → Sk0 , we denote its estimate as Ŝk0 .

The probability of error P(k)
e = Pr

{
Sk0 6= Ŝk0

}
(see (2.7)) depends on the

instantaneous received SNRs between the primary source and destination
ΓS0, and relays and destination, ΓDl for l ∈ [1 : L].

3.3 Problem Statement and Approach
Eventually, we are interested in the outage probability of the LF multirelay
system, i.e.,

P out
LF,L = Pr

{
Cψ
(
{ΓDl}l∈[0:L]

)
∩Rc · RGP = ∅

}
. (3.2)

Note that the rate region RGP depends on the first-hop crossover probabilities
{εl}l∈[1:L], and thus on the received SNRs between the primary source and
the L relays, {ΓSl}l∈[1:L].

In order to derive the outage probability in (3.2), we first consider the
rate region RGP when specialized to source and helpers that are binary,
uniformly distributed, and interrelated through BSCs. Next, we determine
the crossover probability depending on the instantaneous received first-
hop crossover probability based on Shannon’s source-channel separation
theorem [EGK11, Theorem 3.7]. Finally, we then determine the outage
probability by averaging over all received SNRs.
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3.4 Rate Region
In this section, we investigate the many-help-one problem when specialized
to source and helpers that are binary, uniformly distributed, and interrelated
through BSCs. Motivated by the results in [Gu+07], we assume the helpers
and auxiliary RVs are also interrelated through BSCs, thereby deriving a
simple and tight inner bound on the rate region’s lower boundary for the
investigated problem. The more degraded the helpers, the tighter the inner
bound, as indicated from our numerical examples.

3.4.1 Background
Recall the many-help-one rate region RGP in Theorem 4 and the CI condition
in (2.8). In order to reduce its complexity, Jana showed in [Jan09, Lemma
2.2] that the computational complexity of Theorem 4 can be reduced, i.e.,
the cardinality of the auxiliary RVs can be tightly bounded by |Ul| ≤ |Sl|,∀l ∈
[1 : L], for a broad class of multiterminal source coding problems, including
the lossless many-help-one problem1.

Even after the above reduction of cardinality, the optimization problem at
hand remains highly complicated. Take, for instance, the case of L = 2.
To compute the lower convex boundary of RGP, we need to minimize the
Lagrangian function

H(S0|U1, U2)+µ1I(S1;U1|U2) + µ2I(S2;U2|U1)
+µ3I(S1, S2;U1, U2), (3.3)

over pU1|S1(u1|s1) and pU2|S2(u2|s2), with µ1, µ2, µ3 > 0. Yet, the function
in (3.3) is in general neither convex nor concave over pU1|S1(u1|s1) and
pU2|S2(u2|s2). For example, H(S0|U1, U2) is concave while I(S1;U1|U2) is con-
vex over pU1|S1(u1|s1). Therefore, the optimization is surprisingly difficult
even in the simplest case where all the sources are binary RVs.

1The framework provided by Jana includes the lossless many-help-one problem, when
(M,J,L) = (any, 1, 0) and S is deterministic. In [Jan09], M is the number of sources, J is
the number of sources which are reconstructed lossless, L is the number of sources which
are reconstructed within some distortion constraint, and S is some side information.
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3.4.2 Binary Symmetric Case

In this section, we consider the case where the source S0 is binary and
uniformly distributed, i.e., pS0(0) = pS0(1) = 1/2, and related to the helpers
Sl, l ∈ [1 : L], via BSCs, i.e., εl := pSl|S0(0|1) = pSl|S0(1|0). Let us define the
binary asymmetric channel (BAC) between the helpers and auxiliary RVs by
the crossover probabilities αl := pUl|Sl(1|0) and βl := pUl|Sl(0|1) for l ∈ [1 : L].
Fig. 3.2 shows a schematic diagram of all RVs and the respective crossover
probabilities for L = 2. The optimization problem can be formulated as
follows: for fixed εl, determine all sets of {αl, βl}l∈[1:L] which are on the lower
convex boundary of the optimal rate region in Theorem 4. This optimization
problem cannot be solved in closed form. Instead, a solution can be given
within a target precision by means of an exhaustive numerical search.

Alternatively, driven by the results in [Gu+07], we derive an inner bound on
the rate region’s lower boundary based on the assumption of BSCs between
the helpers and the auxiliary RVs, i.e., κl = αl = βl for l ∈ [1 : L]. Importantly,
later on we show by numerical examples that the proposed inner bound
can be tight, mainly as the helpers turn out to be more degraded. In the
following, we first examine the special case with two helpers and then extend
our results to an arbitrary number of helpers.

Two Helpers

Theorem 7. If (S0, S1, S2) is a 3-tuple of binary RVs and their joint pmf sat-
isfies (2.8), with pS0(0) = pS0(1) = 1/2, pSl|S0(0|1) = pSl|S0(1|0) = εl, and
pUl|Sl(0|1) = pUl|Sl(1|0) = κl for some 0 ≤ εl ≤ 1/2, l ∈ [1 : 2], then an inner
bound on the rate region’s lower boundary is given by

{(R0, R1, R2) :
R0 =h(ε1 ∗ κ1) + h(ε2 ∗ κ2)− h(ε1 ∗ κ1 ∗ ε2 ∗ κ2),
R1 =h(ε1 ∗ κ1 ∗ ε2 ∗ κ2)− h(κ1),
R2 =h(ε1 ∗ κ1 ∗ ε2 ∗ κ2)− h(κ2),

R1 +R2 =1 + h(ε1 ∗ κ1 ∗ ε2 ∗ κ2)− h(κ1)− h(κ2),
(κ1, κ2) ∈ [0, 0.5]2}. (3.4)
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Proof. Given symmetric channels and uniformly distributed source symbols,
the following holds:

H(S0) =H(Sl) = H(Ul) = 1, (3.5)

H(Ul|S0) =H(S0|Ul), (3.6)

H(U1|U2) =H(U2|U1), (3.7)

for l ∈ [1 : 2]. The information measures in (3.3) can be reformulated as

H(S0|U1, U2) = H(S0) +H(U1|S0) +H(U2|S0, U1)
−H(U1)−H(U2|U1) (3.8)

= H(U1|S0) +H(U2|S0)−H(U2|U1), (3.9)

I(Sl;Ul|Ul̄) = H(Ul|Ul̄)−H(Ul|Sl, Ul̄) (3.10)

= H(Ul|Ul̄)−H(Ul|Sl), (3.11)

I(S1, S2;U1, U2) = H(U1, U2)−H(U1, U2|S1, S2) (3.12)

= H(U1) +H(U2|U1)−H(U1|S1, S2, U2)
−H(U2|S1, S2) (3.13)

= H(U1) +H(U2|U1)−H(U1|S1)−H(U2|S2), (3.14)
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where l, l̄ ∈ [1 : 2], l 6= l̄. The steps can be justified as follows: in (3.8)
and (3.13) we used the chain rule of entropy; (3.9), (3.11), and (3.14)
follow from from the Markov chain, i.e., Ul → Sl → S0 → Sl̄ → Ul̄, and the
properties given in (3.5). As shown by Wyner in [Wyn73], the conditional
entropy of two binary RVsA andB related by a BSC with crossover probability
δ is given by H(A|B) = h(δ). For Ul → Sl → S0 and U1 → S1 → S0 → S2 →
U2, the end-to-end crossover probabilities are given by εl∗κl and ε1∗κ1∗ε2∗κ2,
respectively. Using this along with (3.6) and (3.7), the conditional entropies
in (3.9), (3.11), and (3.14) can be given by

H(U1|S0) +H(U2|S0)−H(U2|U1) = h(ε1 ∗ κ1) + h(ε2 ∗ κ2)
− h(ε1 ∗ κ1 ∗ ε2 ∗ κ2), (3.15)

H(Ul|Ul̄)−H(Ul|Sl) = h(ε1 ∗ κ1 ∗ ε2 ∗ κ2)− h(κl), (3.16)

H(U2|U1)−H(U1|S1)−H(U2|S2) = h(ε1 ∗ κ1 ∗ ε2 ∗ κ2)− h(κ1)− h(κ2).
(3.17)

The inner bound is then generated as the auxiliary parameters are ranged
over (κ1, κ2) ∈ [0, 0.5]2. This completes the proof.

Extension to an Arbitrary Number of Helpers

Theorem 8. If (S0, S1, ..., SL) is an (L+ 1)-tuple of binary RVs and their joint
pmf satisfies (2.8), with pS0(0) = pS0(1) = 1/2, pSl|S0(0|1) = pSl|S0(1|0) = εl,
and pUl|Sl(0|1) = pUl|Sl(1|0) = κl for some 0 ≤ εl ≤ 1/2, l ∈ [1 : L], then an
inner bound on the rate region’s lower boundary is given by

{(R0, R1, ..., RL) :

R0 =
∑
l∈[1:L]

h (εl ∗ κl)− η({εl ∗ κl}l∈[1:L]}),∑
l∈V

Rl =η({εl ∗ κl}l∈[1:L])− η({εl ∗ κl}l∈Vc)−
∑
l∈V

h(κl),

∀V ⊂ [1 : L] and V c = [1 : L]\V ,∑
l∈[1:L]

Rl =1 + η({εl ∗ κl}l∈[1:L])−
∑
l∈[1:L]

h(κl),

{κl}l∈[1:L] ∈ [0, 0.5]L}, (3.18)

where

η({εl ∗ κl}l∈[1:L]) := −
∑

{ul}l∈[2:L]∈{0,1}L−1
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×
( ∑
s0∈{0,1}

pU2...UL|S0(u2, ..., ul|s0)pS0|U1(s0|0)
)

× ld
( ∑
s0∈{0,1}

pU2...UL|S0(u2, ..., ul|s0)pS0|U1(s0|0)
)

(3.19)

for L ≥ 2, with

pU2...UL|S0(u2, ..., ul|s0) =
∏
l∈[2:L]

pUl|S0(ul|s0) (3.20)

=
∏
l∈[2:L]

{(1− εl ∗ κl)1(ul = s0) + (εl ∗ κl)1(ul 6= s0)} , (3.21)

and

pS0|U1(s0|0) =
[

(1− ε1 ∗ κ1)1(s0 = 0)
+ (ε1 ∗ κ1)1(s0 6= 0)

]
. (3.22)

For L < 2 we have η({εl ∗ κl}l∈[1:L]) = 0. In (3.21) and (3.22), 1(·) is the
indicator function. In particular, for L = 2, η({ε1 ∗ κ1, ε2 ∗ κ2}) = h(ε1 ∗ κ1 ∗
ε2 ∗ κ2).

Proof. See Appendix A.1.

Theorem 7 and Theorem 8 provide closed-form solutions to evaluate the
outage probability in the subsequent sections. We see that the inner bound
on the rate region’s lower boundary is given depending on the crossover
probabilities of the BSCs between the primary source and the helpers. An
increased crossover probability yields an increase in the rate constraints,
which we demonstrate by numerical examples in Section 3.8.

3.5 Source-Relay Link Crossover
Probability

Recall the quasi-static Rayleigh fading assumption (see Section 2.4), i.e., the
fading coefficient stays constant over one transmission interval. Given a fixed
fading coefficient, the source-relay transmission corresponds to a joint source-
channel setup where the transmitter wishes to communicate k symbols of
an uncompressed source Sl over a discrete memoryless channel pZl|Xl in n
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transmissions so that the receivers can reconstruct the source symbols within
a distortion constraint Dl. A prevalent way, in this case, is to perform source
and channel encoding as well as channel and source decoding separately.
For point-to-point communication with memoryless source and memoryless
channel, Shannon proved that such strategy is asymptotically optimal, i.e.,
for k →∞, which is called Shannon’s source-channel separation theorem.

Theorem 9. (Source-channel separation theorem [Sha59a]) Given a DMS Sl,
an average distortion measure d(sl, ŝl) with rate-distortion function Rl(Dl) and
a DMC with capacity Cl, the following statement holds.

If kRl(Dl) ≤ nCl, then there exists a sequence of joint source-channel codes such
that

lim sup
k→∞

E
{
d(Skl , Ŝkl )

}
≤ Dl, (3.23)

where k is the number of source samples and n is the number of channel input
symbols. Rl(Dl) is expressed in bits per source sample and the capacity Cl is in
bits per channel input symbol.

Thus, the maximum achievable value of the transmission rate Rl(Dl) for each
source-relay link is related to its respective received SNR ΓDl by [Sha48],
[EGK11, Theorem 3.7]

Rl(Dl) = 1
Rc
· ψ (ΓSl) , (3.24)

where ψ(ΓSl) := ld(1 + ΓSl) is the instantaneous complex AWGN channel
capacity (see (2.22)). Based on Theorem 9, the AWGN channel can be
modeled as a BSC, i.e., with the Hamming distortion measure and for a
given ΓSl value, the minimum distortion Dl,min is equivalent to the crossover
probability εl of a BSC [ZA06]. Thus, the crossover probability εl in Theorem 8
can be related to the corresponding received SNR by means of [Zho+14]

εl(ΓSl) =

h
−1
(

1− ψ(ΓSl)
Rc

)
for 0 ≤ ΓSl < A1,

0 for ΓSl ≥ A1,

(3.25)

for L ∈ [1 : L], A1 := 2Rc − 1, and h−1(·) is the inverse binary entropy
function. The achievability of εl depends on the existence of a code which
is capacity-achieving for the source-destination and -relay links at the same
time.
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3.6 Outage Probability
In this section, we derive an upper bound on the outage probability of
LF based on the derived inner bound of the Gelfand-Pinsker rate region
in Theorem 8. Furthermore, we derive the exact and asymptotic outage
probability of DF for comparison.

3.6.1 Lossy Forwarding
In Theorem 8, the auxiliary sources are assumed to be conditionally indepen-
dent given the primary source. Note that this assumption perfectly matches
the LF system depicted in Fig. 3.1, in which the decoded relay sequences are
independently degraded replicas of the source sequence.

Recall the discussion in Section 2.5. On the one hand, we have the capac-
ity region Cψ

(
{ΓDl}l∈[0:L]

)
depending on the received SNRs of the source-

and relay-destination links. On the other hand, we have the rate region
RGP

(
{ΓSl}l∈[1:L]

)
depending on the received SNRs of the source-relay links.

An outage event occurs, whenever the intersection of both regions is empty,
see Theorem 6. Thus, for (3.2) we have

P out
LF,L = Pr

{
Cψ
(
{ΓDl}l∈[0:L]

)
∩Rc · RGP

(
{ΓSl}l∈[1:L]

)
= ∅
}

(3.26)

= Pr
{{ 1

Rc
ψ(ΓDl)

}
l∈[0:L]

/∈ RGP
(
{ΓSl}l∈[1:L]

)}
(3.27)

< Pr
{(

1
Rc
ψ(ΓD0) ≤

∑
l∈[1:L]

h (εl(ΓSl) ∗ κl)− η({εl(ΓSl) ∗ κl}l∈[1:L]})
)
∪

⋃
∀V⊂[1:L]

(
1
Rc

∑
l∈V

ψ(ΓDl) ≤ η({εl(ΓSl) ∗ κl}l∈[1:L])

− η({εl(ΓSl) ∗ κl}l∈Vc)−
∑
l∈V

h(κl)
)
∪(

1
Rc

∑
l∈[1:L]

ψ(ΓDl) ≤ 1 + η({εl(ΓSl) ∗ κl}l∈[1:L])−
∑
l∈[1:L]

h(κl)
)
,

Vc = [1 : L]\V , 0 ≤ κl ≤ 0.5,∀l ∈ [1 : L]
}
. (3.28)

The above steps are justified as follows: (3.27) is a reformulation, where
we determine the probability that the maximum achievable rates of the
capacity region are outside the rate region (see Section 2.5); in (3.28) the
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rate constrains from Theorem 8 are substituted accordingly. Since Theorem 8
is an inner bound on the rate region’s lower boundary, the substitution yields
an upper bound on the outage probability. The expression in (3.28) cannot
be solved in closed form, thus requiring numerical evaluation.

3.6.2 Decode-and-Forward

In this section we derive the outage probability of a DF multirelay scheme.
Unlike [BH06], instead of MRC, we assume a MSCC (in this context also
known as joint decoding or parallel coding), which is optimal.

In DF, a relay forwards a sequence iff it is detected error free. The corre-
sponding outage probability can be assessed in three stages: (1) we calculate
the probability that the destination fails to recover the source sequence when
received by the source-destination link and forwarded by a given subset of
relays V ⊆ [1 : L]; (2) we calculate the probability that the source sequence
be forwarded by each such subset; and (3) we sum over the probabilities of
all outage events, i.e., ∀V ⊆ [1 : L]. Next we elaborate on these stages.

Stage (1): Slepian and Wolf [SW73] considered a source coding problem
where the decoder aims at perfectly reproducing correlated sources that are
separately encoded at different terminals (See Theorem 2). The Slepian-Wolf
rate region is suitable for DF. With the assumption that a given subset of the
relays V, have perfectly reconstructed the source sequence, the Slepian-Wolf
rate region for 1 + |V| identical “sources” S0, Sv1 , ..., Sv|V| simplifies to

RSW,V =
{

(R0, Rv1 , ..., Rv|V|) :
∑

l∈{0}∪V

Rl ≥ H(S0) = 1
}
. (3.29)

Note that RSW,V is not dependent on the received SNRs of the source-relay

links, given set V . The corresponding outage probability can be derived as

P out
DF,V = Pr

{
Cψ
(
{ΓDl}l∈{0}∪V

)
∩Rc · RSW,V = ∅

}
(3.30)

= Pr {0 ≤ ψ(ΓD0) < Rc, 0 ≤ ψ(ΓDv1) < Rc − ψ(ΓD0), ...,

0 ≤ ψ(ΓDv|V|) < Rc − ψ(ΓD0)− ψ(ΓDv1)− ...− ψ(ΓDv|V|−1)
}

(3.31)

= Pr
{

0 ≤ ΓD0 < 2Rc − 1, 0 ≤ ΓDv1 < 2Rc−ψ(ΓD0) − 1, . . . ,

0 ≤ ΓDv|V| < 2Rc−ψ(ΓD0)−...−ψ(ΓDv|V|−1 ) − 1
}

(3.32)
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=
∫ 2Rc−1

γD0=0

∫ 2Rc−ψ(γD0)−1

γDv1=0
. . .

∫ 2
Rc−ψ(γD0)−...−ψ(γDv|V|−1

)
−1

γDv|V|=0

fΓD0(γD0)fΓDv1
(γDv1) . . . fΓDv|V|

(γDv|V|)dγDv|V| . . .dγDv1dγD0. (3.33)

The above steps are justified as follows: (3.30) follows directly from (3.29)
and Theorem 6; in (3.31), after following similar reformulations as in (3.27)
and (3.28), the sum constraint is separated into individual constraints; in
(3.32) the bounds are transformed with ψ−1(y) = 2y − 1; in (3.33) the
probability of outage is established in integral form with the assumption
that the received SNRs Γν , are independent. The pdf f(γν) is given in (3.1).
Although the outage expression in (3.33) cannot be solved in closed form, a
simple asymptotic solution can be derived at high SNR as

P out
DF,V ≈

∫ 2Rc−1

γD0=0

∫ 2Rc−ψ(γD0)−1

γDv1=0
. . .

∫ 2
Rc−ψ(γD0)−...−ψ(γDv|V|−1

)
−1

γDv|V|=0

1
Γ̄D0Γ̄Dv1 ...Γ̄Dv|V|

dγDv|V| . . .dγDv1dγD0 (3.34)

=
A|V|+1

Γ̄D0Γ̄Dv1 ...Γ̄Dv|V|
(3.35)

where

A|V|+1(Rc) = (−1)|V|+1 (1− 2Rc · e|V|+1 (−Rc ln(2))
)
. (3.36)

Here, eL(x) =
∑

l∈[0:L−1]
xl

l! is the exponential sum function. For more details,
we refer to the derivations in Appendix A.2.

Stage (2): From the assumption that the link channels are mutually inde-
pendent, the probability that a given subset of the relays V ⊆ [1 : L], have
perfectly reconstructed the source sequence—whereas the remaining relays
T = [1 : L]\V have erroneously reconstructed it—can be formulated as

P out
R,V =

∫ ∞
γSv1=A1

...

∫ ∞
γSv|V|=A1

∫ A1

γSt1=0
...

∫ A1

γSt|T |=0

fΓS1(γS1)...fΓSL(γSL)dγSL...dγS1 (3.37)

=
∏
l∈V

exp
(
−A1

Γ̄Sl

)∏
l∈T

(
1− exp

(
−A1

Γ̄Sl

))
(3.38)

≈ (A1)|T |

Γ̄St1 ...Γ̄StT
. (3.39)
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The above steps are justified as follows: in (3.37), the probability that the
ith relay can perfectly reconstruct the source sequence is

∫∞
A1
fΓSl(γSl)dγSl

and the probability that the lth relay cannot perfectly reconstruct the source
sequence is

∫ A1
0 fΓSl(γSl)dγSl, with A1 being given as in (3.25); in (3.38), we

use (3.1) to solve the integrations; in (3.39), a high-SNR approximation is
obtained, based on the MacLaurin series of the exponential function, which
leads to exp(−xi) ≈ 1− xi and

∏
i(1− xi) ≈ 1 for xi → 0.

Stage (3): Finally, the outage probability of a DF multirelay scheme is assessed
∀V ⊆ [1 : L] as

P out
DF,L =

∑
∀V⊆[1:L]

P out
DF,V · P out

R,V (3.40)

≈
∑

∀V⊆[1:L]

A|V|+1

Γ̄D0Γ̄Ds1 ...Γ̄Ds|V|
· (A1)|T |

Γ̄St1 ...Γ̄StT
, (3.41)

where P out
DF,V and P out

F,V are given in (3.33) and (3.38), and their approxima-
tions, in (3.35) and (3.39), respectively.

3.7 Lossy Forwarding vs.
Decode-and-Forward

3.7.1 SNR Gain
Ultimately, we are interested in the transmit power reduction of LF over
DF, referred to as the SNR gain. Due to the lacking LF outage probability
closed-form solution we cannot draw conclusions on the SNR gain based on
an analytical formula. However, we numerically evaluate the SNR gain in
the following section.

3.7.2 Diversity Gain
Similar to the SNR gain, an analytical evaluation of the LF diversity gain is
not feasible, due to the lacking asymptotic outage probability closed-form
solution. However, from (3.41) we determine the diversity gain of DF. As
one can easily see, each denominator in (3.41) is a multiplication of L + 1
average SNR values, thus the diversity gain of DF is L+ 1 (see Section 2.6).
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3.7.3 Channel Usage
In LF the relays may forward erroneous sequences to the destination, whereas
in DF the relays discard such sequences. Thus, the LF scheme achieves a lower
outage probability at the expense of a higher channel usage, in comparison
to the DF scheme. In this section we quantify this extra channel usage. To
this end, we define a channel use ratio, Rcu,L, as the average channel use of
DF over the average channel use of LF, obtained as

Rcu,L = 1
L+ 1︸ ︷︷ ︸

LF

·
(

1︸︷︷︸
Pr[source transmits]

+
∑

∀V⊆[1:L]
|V| · P out

R,V︸︷︷︸
Pr[lth relay transmits, ∀l ∈ V]

)
︸ ︷︷ ︸

DF

. (3.42)

The above expression is justified as follows. For LF, the average channel
use is L+ 1, since in this scheme all relays constantly forward the received
source sequence to the destination. In contrast, for DF, any group of |V|
relays forwards messages to the destination with a certain probability P out

R,V

given as in (3.38), ∀V ⊆ [1 : L]. In particular, at high SNR, Rcu,L approaches
one, because so does the probability that all relays perfectly recover the
source sequence.

3.8 Numerical Examples

3.8.1 Rate Region
In this section we illustrate our inner bounds in Theorem 7 and Theorem 8 by
numerical examples. We show results for L ∈ {2, 3} with different values of
εl, l ∈ [1 : L]. We check these analytical bounds by performing an exhaustive
numerical search (under the assumption that the auxiliary RVs are connected
to the helpers through symmetric channels). Also, for comparison, we assess
the exact rate region’s lower boundary by performing an exhaustive search
without any restriction on the symmetry, i.e., the helpers and auxiliary RVs
being related via binary asymmetric channels (BACs) with {αl, βl}l∈[1:L] ∈
[0, 0.5]2L.

In Fig. 3.3a we show our results in Theorem 7 (green line), numerical-search
results for a symmetric channel between Sl and Ul (red dots), and the rate
region’s lower boundary (black dashed line). We show results for L = 2 with
(ε1, ε2) = {(0.01, 0.02), (0.01, 0.2), (0.1, 0.2)} and symmetric auxiliary rates
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Fig. 3.3. Rate region R: (a) symmetric rates R1 = R2 ∈ [0, 1] with (ε1, ε2) ∈
{(0.01, 0.02), (0.01, 0.2), (0.1, 0.2)}, and (b) (R1, R2) ∈ [0, 1]2 with (ε1, ε2) ∈
{(0.1, 0.2)}.

R1 = R2 = R, i.e., (R0, R,R). The following can be observed: i) Theorem 7
matches the simulation results for symmetric channels, and (ii) Theorem 7
gives a tight inner bound on the rate region’s lower boundary, especially
for large values of εl, i.e., as the helpers turn out to be more degraded
versions of the primary source. Fig. 3.3b shows the rate 3-tuples for L = 2
and (ε1, ε2) = {(0.1, 0.2)}. We show results of Theorem 7 (green plane) and
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Fig. 3.4. Rate region R: symmetric rates R1 = R2 = R3 ∈ [0, 1] with (ε1, ε2, ε3) ∈
{(0.01, 0.02, 0.03), (0.01, 0.02, 0.3), (0.01, 0.2, 0.3), (0.1, 0.2, 0.3)}.

the rate region’s lower boundary (black dots). The same conclusions as in
Fig. 3.3a can be made by careful evaluation of a variety of setups.

In Fig. 3.4 we show our results in Theorem 8 (green line), numerical-search
results for a symmetric channel between Sl and Ul (red dots), and the rate
region’s lower boundary (black dashed line). We show results for L = 3 with
(ε1, ε2, ε3) ∈ {(0.01, 0.02, 0.03), (0.01, 0.02, 0.3), (0.01, 0.2, 0.3), (0.1, 0.2, 0.3)}
and symmetric auxiliary rates R1 = R2 = R3 = R, i.e., (R0, R,R,R). The
same conclusions as for L = 2 can be drawn.

3.8.2 Outage Probability
In this section, we illustrate the derived outage probabilities and channel
use ratios. The outage probability’s upper bound of LF is assessed via Monte-
Carlo simulation—or, equivalently, via numerical integration, from (3.28);
the outage probability of DF is assessed in an asymptotic fashion, from (3.41),
as well as via Monte-Carlo simulation—or, equivalently, via numerical inte-
gration, from (3.33) and (3.38) into (3.40). The channel use ratio is assessed
analytically, from (3.42). We assume a binary phase-shift keying modulation
and a channel-code rate of 1/2, so that Rc = 0.5. Moreover, we assume the
average channel power gain of a given link equals d−η, with d denoting the
link distance and η being the path-loss exponent. For illustration purposes,
we consider η = 3.5 and that all relays are located halfway between source
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Fig. 3.5. Lossy forwarding vs. decode-and-forward: (a) outage probability, and (b) frame-
error-rate.

and destination. We define an average system transmit SNR as PT/N0, where
PT is a total amount of power equally allocated among the source and all
relays.

Fig. 3.5a depicts the outage probability of the LF (upper bound) and DF
(exact and asymptotic) schemes versus the average system transmit SNR.
Fig. 3.6 depicts the corresponding channel use ratio. In the examples, we
consider the use of no, one, two, and three relays, i.e., L ∈ {0, 1, 2, 3}. The
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Fig. 3.6. Lossy forwarding vs. decode-and-forward: channel use.

figures attest that LF outperforms DF in terms of outage probability, becoming
more advantageous as the number of relays increases. On the other hand,
such an improvement requires an extra cost in terms of channel usage, mainly
at low SNR. In addition, we conclude that both schemes achieve a diversity
gain of L+ 1.

Fig. 3.5b depicts the FER of the LF and DF schemes, versus the average
system transmit SNR, as achieved by the DTC in [AM12], see Section 2.7.
Note that we consider one, two, and three relays, i.e., L ∈ {1, 2, 3}. We used
the following simulation parameters:

• Frame length: n = 1000 channel symbols

• Generator polynomial of SNRCC: GSNRCC = ([3, 1])8

• Generator polynomial of SRCC: GSRCC = ([3, 1]3)8

• Doping ratio of ACC: PACC = 8 (source), PACC = 16 (relays)

• Local iterations: 15

• Global iterations: 3

• Path-loss exponent: η = 3.52

• Relays are located halfway between source and destination

We then compared the FER of LF to that of DF. In order to unambiguously
evaluate the effect of allowing intra-link errors, we adopted for DF the
same coding scheme we adopted for LF — except that only error-free relay
sequences are forwarded in the former. In addition, we compared the FER
simulation results with the outage probability expressions derived befor. The
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figures attest that the LF scheme outperforms the DF scheme in terms of both
outage probability and FER, becoming more advantageous as the number of
relays increases. From those figures we conclude that the coding structure
in [AM12] is clearly suboptimal, since the FER curves are loosely above the
outage ones. This suboptimality may be caused by the following: i) finite
frame length, ii) simple convolutional code, iii) decoding without iteration
at the relay, and iv) extrinsic information exchange between decoders at the
receiver might not be optimal. Nevertheless, we conclude that despite the
additional complexity of practical MSCC implementations, the concept is
well suited to achieve ultra-reliable communications in relay networks.

3.9 Summary
In this chapter, we evaluated the potential of MSCCs in relay networks. In
particular, we considered two different systems, namely, LF and DF. In DF,
the decoded message is discarded by the relay whenever an error is detected.
In contrast, in LF, the relay forwards even an erroneous message to the
destination. Ultimately, we were interested in fundamental limits of both
systems and their performance differences.

For LF, we faced two major challenges in order to derive fundamental limits.
At first, we had to specialize the rate region for the many-help-one problem
with independently degraded helpers to sources that are binary, uniformly dis-
tributed, and interrelated through symmetric channels. Providing the solution
was surprisingly difficult even for this basic scenario, since an optimization
over auxiliary RVs with unknown statistics was required. Nevertheless, we
derived a simple and tight inner bound of the rate region’s lower boundary
based on reasonable assumptions about the auxiliary RVs’ statistics. The
inner bound is given as a function of the BSC crossover probabilities between
source and helpers. Numerical results indicated that the derived inner bound
proves increasingly tight as the helpers become more degraded. Secondly, we
found an outage probability’s upper bound based on our derived inner bound
on the rate region’s lower boundary. The outage probability’s upper bound
could not be solved in closed form, thus requiring numerical evaluation.

Unlike existing work for DF, instead of MRC, we found fundamental limits
for MSCCs. To this end, we derived the exact outage probability in integral
form based on the corresponding rate region. The exact outage probability
could not be solved in closed form, but a simple asymptotic solution was
derived at high SNR.
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From our results we concluded the following in regard to the performance
of MSCCs in relay networks. With every additional relay, the diversity gain
increases, which in turn leads to an increased system reliability. Therefore,
MSCCs are a preeminent way to achieve reliably communication in relay
networks. Our results are analytically described depending on the number of
relays, the spectral efficiency, the topology, and the SNR, and thus, can be
used to assess or optimize practical cooperative communication deployments.
From the numerical examples, we concluded that LF outperforms DF in terms
of outage probability, becoming more advantageous as the number of relays
increases. On the other hand, such an improvement requires an extra cost in
terms of channel usage, mainly at low SNR. Furthermore, we compared our
theoretical results to a practical DTC. A gap between the outage probability
and FER curves revealed the limitations of the DTC. Nevertheless, at high
SNR, the curves exhibit the same slope, thus indicating the same diversity
gain.
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4Wireless Sensor Network

It is well known that MSCCs can improve the reliability and energy efficiency
of WSNs by exploiting the correlation among sensing data. In this chapter,
we quantify the communication performance of MSCCs in terms of outage
probability, which is the ultimate performance limit with regard to the system
reliability. We derive simple, yet accurate analytical outage probability results,
in which the number of connections, the spectral efficiency, the path loss, and
the SNR are incorporated, giving new insights into the potentials of MSCCs.
These are our main contributions: (1) derivation of the distributed lossless
compression (DLC) rate region for BMSs that are interrelated through BSCs;
(2), derivation of the exact and asymptotic outage probability for MSCC,
based on the corresponding rate region; and (3) quantifying the performance
improvement of MSCC over non-cooperative coding in terms of SNR gain.

4.1 Related Work
As shown in [AM12; XLC04; RG07], the presence of mutually correlated
sensing data can be exploited with MSCC to improve the reliability of WSNs,
which in turn leads to a higher energy efficiency. In [RG07], a suboptimal
power allocation scheme was proposed. In that scheme, the data are encoded
separately at each node and jointly decoded at the FC by pairs of nodes.
In [CAM13b], capitalizing on Slepian-Wolf’s correlated source coding theo-
rem [SW73], an asymptotically optimal power allocation was derived for a
classical three-node relaying system containing intra-link errors. A theoreti-
cal investigation on the outage probability of such a system was presented
in [Zho+14].

4.2 System Model
We consider a clustered network as shown in Fig. 4.1, consisting of L sensor
nodes, dispensing BMSs, denoted as [Sl(i)]∞i=1, for l ∈ [1 : L], with i denoting
discrete time. The k-sample source sequence shall be represented in vector
form as Skl = [Sl(1), Sl(2), ..., Sl(k)]. When appropriate, for simplicity, we
shall drop the temporal index, denoting the source output simply as Sl. The
source Sl takes values from a binary set {0, 1} with uniform probabilities,
i.e., pSl(sl = 0) = pSl(sl = 1) = 0.5. As argued before, these sequences are
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Ŝk
1 , Ŝ
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Fig. 4.1. System model of a clustered wireless sensor network with two sensors (i.e., L = 2).
Multiple sensors monitor a physical phenomenon and transmit their correlated data
to a common fusion center over parallel fading channels. The fusion center exploits
the correlated sensor data to improve the decoding performance. We are interested
in the outage probability, i.e., probability that at least one sensor data cannot reliably
decoded.

mutually correlated, with the correlation coefficient between Si and Sj being
expressed as

ρl,j = E[SiSj]− E[Si]E[Sj]√
Var[Si]Var[Sj]

. (4.1)

Since the source sequences are binary and uniformly distributed, it follows
that E[Sl] = 0.5 and Var[Sl] = 0.25,∀l ∈ [1 : L]. In order to calculate the cor-
relation term E[SiSj], we introduce an auxiliary binary uniformly distributed
source, S0, from which each source Sl is generated through an independent bi-
nary symmetric channel with crossover probability εl1. Consequently, E[SiSj]
can be computed in terms of the corresponding crossover probabilities as

E[SiSj] =pS0 [s0 = 0]pSiSj |S0 [si = 1, sj = 1|s0 = 0]
+ pS0 [s0 = 1]pSiSj |S0 [si = 1, sj = 1|s0 = 1]

=0.5εiεj + 0.5(1− εi)(1− εj), (4.2)

and using this in (4.1) the correlation coefficient can finally be obtained as

ρl,j = 4εiεj − 2(εi + εj) + 1. (4.3)

Each source sequence Skl is encoded to the transmit source sequence Xn
l , i.e.,

the lth encoder maps Skl → X n
l , and transmitted to the FC over parallel fading

channels. In this work, we consider quasi-static Rayleigh fading and AWGN
with mean power N0 (see Section 2.4.2). For convenience, we reproduce

1Although the auxiliary sequence may be regarded as a representation of the original
phenomenon being monitored, as well as the binary symmetric channels may be regarded
as a model for the imperfect sensing mechanism, these have been introduced here merely
as a mathematical artifice to yield mutually correlated binary sequences.
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the pdf of the received SNRs in (2.26). The pdf of the received SNR Γl is
given by

fΓl(γl) = 1
Γ̄l

exp
(
−γl

Γ̄l

)
, (4.4)

with the average SNR Γ̄l being obtained as

Γ̄l = Pl
N0
· d−ηl , (4.5)

where Pl is the transmit power at the lth sensor, dl is the distance be-
tween the lth sensor and the FC, and η is the path loss exponent. The
CSI is assumed to be known at the receiver. All received sequences Y n

l for
l ∈ [1 : L] are jointly decoded to retrieve {Skl }l∈[1:L], i.e., the decoder maps∏

l∈[1:L] Ynl →
∏

l∈[1:L] Skl , we denote the estimates as {Ŝkl }l∈[1:L]. The prob-

ability of error P(k)
e := Pr

{
{Skl }l∈[1:L] 6= {Ŝkl }l∈[1:L]

}
(see (2.4)) depends on

the instantaneous received SNRs Γl for l ∈ [1 : L].

4.3 Problem Statement and Approach
In this work, we want to quantify the communication performance by the
outage probability given by

P out
WSN,L = Pr

{
Cψ
(
{Γl}l∈[1:L]

)
∩Rc · RSW = ∅

}
. (4.6)

In order to derive the outage probability in (4.6), we first consider the rate
regionRSW when specialized to sources that are binary, uniformly distributed,
and interrelated via correlation coefficients. The multiple sensing information
sequences may be considered as correlated sources and, thus, Slepian-Wolf’s
theorem can reason the performance gain of a MSCC scheme, which we spe-
cialize to the referred case. We then determine the exact outage probability
by averaging over all received SNRs and find the exact coding gain via a
high-SNR analysis.
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4.4 Rate Region
Recall the Slepian-Wolf rate region RSW in Theorem 2. According to that
theorem, all sequences Skl can be recovered error-free iff the rates Rl, l ∈ [1 :
L], satisfy the following inequality constraints:∑

l∈V

Rl ≥H ({Sl}l∈V |{Sl}l∈Vc)

=H
(
{Sl}l∈[1:L]

)
−H ({Sl}l∈Vc) , (4.7)

with

H ({Sl}l∈V) = −
∑

{sl}l∈V∈{0,1}|V|
pSv1 ...Sv|V|

(
sv1 , ..., sv|V|

)
× ld pSv1 ...Sv|V|

(
sv1 , ..., sv|V|

)
(4.8)

for all subsets V ⊆ [1 : L] and complementary sets Vc = [1 : L]\V. The
probabilities required in (4.8) can be obtained as

pSv1 ...Sv|V|

(
sv1 , ..., sv|V|

)
= 1

2

[∏
l∈V

pEl(sl) +
∏
l∈V

(1− pEl(sl))
]
, (4.9)

where pEl(·) is an auxiliary pmf associated to the crossover model for the lth
sensor, defined by

pEl(sl) := (1− εl)δ(sl) + εlδ(sl − 1). (4.10)

4.5 Outage Probability
In this section, we derive the exact and asymptotic outage probability of
MSCC based on the derived rate region. Furthermore, we derive the exact and
asymptotic outage probability of a non-cooperative scheme for comparison.
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4.5.1 Multiterminal Source-Channel Code
For a reliable WSN, it is required that all sensing information sequences are
fully recovered. Therefore, a system outage occurs if at least one sequence Skl
cannot be decoded error-free. Recall the discussion in Section 2.5. On the one
hand, we have the capacity region Cψ

(
{Γl}l∈[1:L]

)
depending on the received

SNRs. On the other hand, we have the rate region RSW. An outage event
occurs, whenever the intersection of both regions is empty, see Theorem 6.
Thus, for (4.6) we have

P out
WSN,L = 1− Pr

 ⋂
∀V⊆[1:L]

(∑
l∈V

ψ(Γl) ≥ RcH ({Sl}l∈V |{Sl}l∈Vc)
) . (4.11)

The steps can be justified similarly as (3.26)-(3.28).

Next we derive the asymptotic outage probability in two steps: (i) we show
that a reduced set of constraints suffices for a high-SNR asymptotic analysis,
and (ii) we calculate the asymptotic outage probability based on the resulting
SNR constraints.

(i) Reduction of constraints at high SNR We begin by decomposing the
outage probability into two probability terms, for convenience, as shall
become apparent soon. The first term, P out

WSN,1, is the probability that at least
one of the L single-rate constraints in (4.7) is violated, i.e.,

P out
WSN,1 = 1− Pr

{
{ψ(Γl) ≥ RcHl}l∈[1:L]

}
, (4.12)

where Hl := H
(
Sl|{Sl̄}l̄∈[1:L]\{l}

)
is the entropy of the lth information se-

quence conditioned on all remaining sequences, being calculated as in (4.7)-
(4.10). Since a subset of the rate constraints in (4.7) have been ignored in
(4.12), the latter does not include all possible outage events, such that

P out
WSN,L = P out

WSN,1 + δ, (4.13)

where the term δ ≥ 0 accounts for those additional outage events. Interest-
ingly, it turns out that, as the SNR increases, δ converges faster to zero than
P out

WSN,1, and thus, playing no role at high-SNR. Indeed, as shown in [WG03]
under a different context, the asymptotic outage behavior of a transmission
link depends exclusively on the SNR distribution in the vicinity of the origin.
In our case, we have an L-variate rate (or SNR, equivalently) distribution,
so that it suffices to cover the probability masses in the vicinity of the L

4.5 Outage Probability 57



coordinate axes. Notice that this is fulfilled in (4.12). Therefore, the asymp-
totic outage probability, P̃ out

WSN,L, reduces to P out
WSN,1. Rearranging ψ(x) = y to

x = 2y − 1, which can be readily used to rewrite (4.12) as

P̃ out
WSN,L = 1− Pr[{Γl ≥ Al(Rc)}l∈[1:L]], (4.14)

where Al(Rc) := 2RcHl − 1 reflects the amount of correlation among the
sensors.

(ii) Calculation of asymptotic outage probability Since the received SNRs at
the sensors are mutually independent, (4.14) can be evaluated as a product
of L one-dimensional integrals, which, with the use of (4.4), gives

P̃ out
WSN,L = 1−

∏
l∈[1:L]

∞∫
γl=Al(Rc)

1
Γ̄l

exp
(
−γl

Γ̄l

)
dγl,

= 1−
∏
l∈[1:L]

exp
(
−Al(Rc)

Γ̄l

)
. (4.15)

We further simplify the above formula due to the high-SNR assumption, by
using the MacLaurin series for exponential functions exp(−xi) ≈ 1− xi and
expanding the resulting product as

∏
i(1− xi) ≈ 1−

∑
i xi , for xi → 0. As a

result, the asymptotic outage probability is reduced to the strikingly compact
form

P̃ out
WSN,L =

∑
l∈[1:L]

Al(Rc)
Γ̄l

, (4.16)

where Gc,WSN = 1/Al(Rc) is the coding gain of MSCC. The diversity gain is
merely one, as we can easily see from the denominators (see Section 2.6).

4.5.2 Non-Cooperative Coding
In this section we derive the outage probability of a non-cooperative cod-
ing for comparison. The lth source can be decoded error-free iff ψ(Γl) ≥
H(Sl) [CT06]. The outage probability can be obtained as

P out
NC,L =1− Pr

 ⋂
l∈[1:L]

ψ(Γl) ≥ RcH (Sl)

 (4.17)

=1−
∏
l∈[1:L]

Pr {Γl ≥ B(Rc)} (4.18)
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=1−
∏
l∈[1:L]

∞∫
γl=B(Rc)

1
Γ̄l

exp
(
−γl

Γ̄l

)
dγl (4.19)

=1−
∏
l∈[1:L]

exp
(
−B(Rc)

Γ̄l

)
(4.20)

≈
∑
l∈[1:L]

B(Rc)
Γ̄l

, (4.21)

from which Gc,NS = 1/B(Rc), with B(Rc) := 2Rc − 1, is the coding gain
of non-cooperative coding. The steps can be justified in a similar fashion
as (4.15)-(4.16).

4.6 SNR Gain
The SNR gain of MSCC with respect to non-cooperative coding can be defined
as the corresponding asymptotic reduction in SNR while achieving the same
outage probability. To ensure a fair comparison between different setups,
we equally allocate the total transmit power PT to all sensors, such that
Pl = PT/L,∀l ∈ [1 : L]. However, this assumption is non-essential and
other system setups can be evaluated from our formulas with some effort.
We evaluate the required total average SNR Γ̄ = σ(·)(P̃ out) in the high-SNR
regime. Based on (4.16) and (4.21), the average transmit SNR of the two
schemes can asymptotically be written as

σNS(P̃ out) = PT

N0
=
L
∑

l∈[1:L]B(Rc) · dηl
P̃ out

(4.22)

and

σWSN(P̃ out) = PT

N0
=
L
∑

l∈[1:L]Al(Rc) · dηl
P̃ out

. (4.23)

Finally, using (4.22) in (4.23), we obtain the SNR gain as the ratio between
the required average SNRs for MSCC and non-cooperative coding as

GWSN =
∑

l∈[1:L]B(Rc) · dηl∑
l∈[1:L]Al(Rc) · dηl

. (4.24)

Once again, notice that the SNR gain in (4.24) is ultimately written in terms
of the conditional entropies of the various sensors, their distances to the FC,
and the path loss exponent.
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4.7 Numerical Examples
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Fig. 4.2. MSCC performance: (a) outage probability, and (b) FER, with L ∈ {2, 3, 4}, ρ ∈
{0.36, 0.81}, and Rc = 0.5.

In this Section, we illustrate and discuss the performance of the investigated
system through numerical examples. We consider binary phase-shift keying
and a channel code rate of Rc = 0.5. Moreover, we assume that the sensors
are identically correlated, i.e., ρl,j = ρ. We equally allocate the total transmit
power PT to all channels, such that Pl = PT/L,∀l ∈ [1 : L]. Furthermore,
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Fig. 4.3. MSCC performance: SNR gain over non-cooperative system with L ∈ {2, 3, 4},
ρ ∈ [0, 1], and Rc = 0.5.

we normalize all distances to one. We define the average system transmit
SNR as PT/N0. In what follows, we use HL := H({Sl}l∈[1:L]) to denote the
joint entropy of all information sequences. For simplicity, we call it system
entropy.

Fig. 4.2a depicts the outage probability of MSCC (Monte-Carlo simulation
of (4.11) and our asymptote in (4.16)) versus the average system transmit
SNR PT/N0. We show results for L ∈ {2, 3, 5} and ρ ∈ {0.36, 0.81}. We
can observe the following: (i) the asymptote is very tight at medium and
high SNR; (ii) for a fixed correlation coefficient, additional sensors manifests
itself as a horizontal shift of the outage probability; and (iii) an increase in
the correlation coefficient manifests itself as a vertical shift of the outage
probability.

Fig. 4.3 depicts the SNR gain of MSCC —GWSN given in (4.24)— over non-
cooperative sensing, versus the correlation coefficient ρ. We observe that
the SNR gain increases with the number of sensors and correlation coeffi-
cient. Interestingly, we see that the SNR gain increases significantly, if the
correlation coefficient approaches one.

Fig. 4.2b depicts the FER of the MSCC schemes, versus the average system
transmit SNR, as achieved by the DTC in [AM12], see Section 2.7. We used
the following simulation parameters:

• Frame length: n = 1000 channel symbols

• Generator polynomial of SNRCC: GSNRCC = ([3, 1])8

• Generator polynomial of SRCC: GSRCC = ([3, 1]3)8
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Fig. 4.4. System entropy vs. correlation coefficient for different numbers of sensors.

• Doping ratio of ACC: PACC = 1

• Local iterations: 15

• Vertical iterations: 3

We compare the FER of MSCC to that of a non-cooperative scheme. In order
to unambiguously evaluate the effect of exploiting correlation, we adopted
for the non-cooperative scheme the same coding scheme for MSCC — except
that no information exchange between turbo decoders is performed. In ad-
dition, we compare the FER simulation results with the outage probability
expressions derived before. The figures attest that the MSCC scheme outper-
forms the non-cooperative scheme in terms of both outage probability and
FER, becoming more advantageous as the correlation coefficient increases.
We see that an increased correlation coefficient manifests itself as a vertical
shift of the FER curves. The gains of the FERs are similar to our analytically
derived SNR gains. However, from those figures we conclude that the coding
structure in [AM12] is clearly suboptimal, since the FER curves are loosely
above the outage ones. This suboptimality may be caused by the following:
i) limited frame length, ii) simple convolutional code, and iii) extrinsic in-
formation exchange between decoders at the receiver might not be optimal.
Nevertheless, we conclude that practical MSCC implementations outperform
non-cooperative concepts and therefore are well suited to achieve reliable
communications in WSNs.
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Fig. 4.5. (a) Correlation coefficient vs. number of sensors for different system entropies,
and (b) outage probability vs. numbers of sensors for different system entropies at
PT/N0 = 35 dB.

As shown in Sections 4.2 and 4.4, the system entropy depends on the number
of sensors and on the correlation coefficient between them. These analytical
results are plotted in Fig. 4.4 and, under a rearranged perspective, also in
Fig. 4.5 (a). The lower the correlation coefficient or the higher the number
of sensors, the higher is the system entropy. In practice, the system entropy
is usually determined by the total amount of information inherent to the
physical phenomenon being monitored in a certain area, regardless of the
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amount of sensors being deployed within that area. Following this, we
now fix the system entropy for different numbers of sensors by adjusting
the correlation coefficient accordingly. The resulting asymptotic outage
probability in (4.16) is depicted in Fig. 4.5 (b) for PT/N0 = 35 dB. As
expected, the higher the system entropy, the higher is the outage probability,
since the SNR requirements intensify. More interestingly, for each value
of system entropy, an optimal number of sensors (asterisk markers) exists
that minimizes the outage probability. Such behaviour indicates a trade-off
between less correlation (L small) and more rate constraints (L large).

4.8 Summary
In WSN sensors are in general densely deployed to monitor a physical phe-
nomenon. Therefore, the monitored sensor data has some degree of correla-
tion. In this chapter, we were interested in the performance gain, if MSCCs
exploit this correlation to improve the system reliability. Ultimately, we were
interested in fundamental limits of MSCCs and their performance difference
to non-cooperative communication concepts.

The derivation of the MSCC’s fundamental limits were based on three key
steps. At first, we introduced an auxiliary RV yielding an unambiguous corre-
lation model between all BMSs. Secondly, we specialized the Slepian-Wolf
rate region to the referred BMSs which we then interrelated through BSCs.
Thirdly, based on the rate region, we derived the exact outage probability
in integral form. The exact outage probability could not be solved in closed
form, thus requiring numerical evaluation. Nevertheless, we found that a
reduced set of rate constrains is sufficient to derive a simple asymptotic
outage probability in closed form, at high SNR.

From our results we concluded the following in regard to the performance
of MSCCs in WSNs. With every additional sensor, the coding gain increases,
which in turn leads to an increased system reliability. However, the per-
formance improvement is heavily dependent on the correlation among the
sensor data. In contrast to relay networks, the diversity gain does not increase
with additional sensors. Furthermore, the asymptotic analysis turned out
to be well suited to assess or optimize practical cooperative communication
deployments, as it offers a simple yet in-depth characterization of the system
performance’s general trend. We illustrated this based on a comparison
between the analytical outage probability results and FERs of a practical
DTC.
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Finally, we quantified the performance improvement over non-cooperative
concepts in terms of the SNR gain. This comparison showed that the ad-
ditional complexity of MSCCs is an acceptable expense, considering the
reliability improvement.
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5Multi-Connectivity Network

MCo is considered to be a key strategy for enabling reliable transmissions
and enhanced data rates in fifth-generation mobile networks, as it provides
multiple links from source to destination. In this chapter, we quantify the
performance limits of MCo in terms of outage probability and throughput.
Outage probability and throughput provide, respectively, ultimate perfor-
mance limits of system reliability and data rate. For doing so, we establish a
simple, yet accurate analytical framework at high SNR, in which the number
of links, the spectral efficiency, the path loss, and the SNR are incorporated,
giving new insights into the potentials of MCo as compared with single-
connectivity (SCo). These are our main contributions: (1) finding the exact
coding gain of the outage probability for parallel AWGN channels with quasi-
static Rayleigh fading; (2) quantifying the performance improvement of MCo
over SCo in terms of SNR gain; and (3) comparing optimal and subopti-
mal combining schemes for MCo at the receiver side, namely multiterminal
source-channel coding, selection combining, and maximal-ratio combining,
also in terms of SNR gain. Multiterminal source-channel coding is also re-
ferred to as joint decoding in the context of MCo, which we use likewise in
this chapter.

5.1 Related Work
Recently, research on ultra-reliable low latency communications (URLLC) is
emerging considerably, focusing on the analysis of micro- and macrodiversity
and its impact on reliability. In [Poc+15], MCo solutions that utilize micro- as
well as macrodiversity were evaluated in system simulations to illustrate how
the signal-to-interference-plus-noise ratio and the outage probability can be
improved. In [Kir+15], the impairments of correlated fading were evaluated
and the trade-offs between power consumption, link usage, and outage
probability were given. In another work, multi-radio access-technology
architectures were compared regarding their latency, which is significantly
improved by MCo techniques [NP16]. For other works on MCo for URLLC, see
[Öhm17] and the references therein. The major underlying concepts of MCo
solutions, namely micro- and macrodiversity, have been extensively studied,
and their effects on the outage probability are well understood [Mol12].
However, in the aforementioned studies, only linear (suboptimal) combining
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Fig. 5.1. Multi-connectivity system model. The source wishes to reliably transmit information
to the destination over parallel fading channels. We are interested in the outage
probability.

schemes, namely SC and MRC, have been considered. In particular, joint
decoding (JD), which is optimum, remains open for investigation. Herein we
help fill this gap.

Deriving the outage probability of JD for parallel fading channels has been
recognized as a highly challenging problem. An important result is to evaluate
the diversity-multiplexing tradeoff (DMT) of fading channels. The DMT states
that by doubling the SNR, we get both a decrease in outage probability by
the factor of 2−Gd(Gr), yielding an increase in reliability, and an increase in
throughput of Gr bits per channel use, i.e., the DMT describes the slope and
the pre-log factor of the outage probability and throughput, respectively, at
infinite SNR. This concept was first proposed by Zheng and Tse for MIMO
channels [ZT03]. The corresponding results for parallel fading channels can
be found in [TV05]. For finite-SNR the DMT of MIMO channels was proposed
in [Nar06] under correlated fading. However, the DMT analysis does not
fully characterize the outage probability, and thus is not suitable to analyse
the transmit power reduction of MCo over SCo. In [Bai+13], a tight upper
and lower bound on the outage probability based on the outage exponent
analysis is given but it involves heavy computational efforts as the results
include the incomplete Gamma function and Meijer’s G-function. The exact
solution of the coding gain of JD remains unknown. In addition, neither the
DMT analysis in [ZT03; TV05] nor the outage exponent analysis in [Bai+13]
considers macrodiversity.

5.2 System Model
The system model, as illustrated in Fig. 5.1, has one BMS, denoted as
[S(t)]∞t=1, with the k-sample sequence being represented in vector form as
Sk = [S(1), S(2), ..., S(k)]. When appropriate, for simplicity, we shall drop
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the temporal index of the sequence, denoting the source merely as S. By
assumption S takes values in a binary set with uniform probabilities, i.e.,
pS[s = 0] = pS[s = 1] = 0.5. Therefore, the entropy of the sequence is

1
k
·H(Sk) = H(S) = 1. (5.1)

The source sequence Sk is encoded at L encoders, i.e., the lth encoder
maps Sk → X n

l . The lth transmit sequence, denoted as Xn
l , is sent to the

destination over parallel fading channels. The decoder at the destination
retrieves the source sequence Sk from the received sequences Y n

l , l ∈ [1 : L],
i.e., the decoder maps

∏
l∈[1:L] Ynl → Sk.

As discussed in Section 2.4, we assume that the sequences Xn
l , l ∈ [1 : L], are

transmitted over parallel AWGN channels with quasi-static Rayleigh fading
and mean power N0. The pdf of the received SNR Γl is given in (2.26), which
we reproduce here for convenience:

fΓl(γl) = 1
Γ̄l

exp
(
−γl

Γ̄l

)
, for γl ≥ 0, (5.2)

with the average SNR Γ̄l being obtained as

Γ̄l = (Pl/N0) · d−ηl , (5.3)

where Pl is the transmit power of the lth channel, dl is the distance between
transmitter and the receiver, and η is the path loss exponent. The channel
state information is assumed to be exclusively known at the receiver.

5.3 Problem Statement and Approach
In this work, we aim to quantify the communication performance using the
outage probability given by

P out
JD,L = Pr

{
Cψ
(
{Γl}l∈[1:L]

)
∩Rc · RSW = ∅

}
. (5.4)

In order to derive the outage probability in (5.4), we first consider the
rate region RSW when specialized to identical sources that are binary and
uniformly distributed. We then determine the exact outage probability by
averaging over all received SNRs and find the exact coding gain via high-SNR
analysis.
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5.4 Outage Probability

In this section, we establish the exact outage probability of JD in integral
form. More importantly, we derive in closed form a corresponding asymptotic
expression for the high-SNR regime. In addition, we reproduce known
bounds on the JD outage probability given in [TV05; Bai+13], as well as the
exact and asymptotic outage probabilities of SC and MRC [DG08; CYV05],
which we require later on for comparison.

5.4.1 Joint Decoding

If all sources are identical, the Slepian-Wolf setup corresponds to the MCo
system model, i.e., the Slepian-Wolf rate region in Theorem 2 simplifies to

RSW =
{

(R1, ..., RL) :
∑
l∈[1:L]

Rl ≥ H(S)
}
. (5.5)

The outage probability for JD is given by the probability that the intersection
between the capacity region Cψ

(
{Γl}l∈[1:L]

)
and the simplified Slepian-Wolf

region RSW in (5.5) is empty, i.e.,

P out
JD,L = Pr

[∑
l∈[1:L]

ψ(Γl) < Rc

]
(5.6)

= Pr [0 ≤ ψ(Γ1) < Rc, 0 ≤ ψ(Γ2) < Rc − ψ(Γ1), ...,
0 ≤ ψ(ΓL) < Rc − ψ(Γ1)− ψ(Γ2)− ...− ψ(ΓL−1)] (5.7)

= Pr
[
0 ≤ Γ1 < 2Rc − 1, 0 ≤ Γ2 < 2Rc−ψ(Γ1) − 1, ...,
0 ≤ ΓL < 2Rc−ψ(Γ1)−ψ(Γ2)−...−ψ(ΓL−1) − 1

]
(5.8)

=
∫ 2Rc−1

γ1=0

∫ 2Rc−ψ(γ1)−1

γ2=0
...

∫ 2Rc−ψ(γ1)−ψ(γ2)−...−ψ(γL−1)−1

γL=0

f(γ1)f(γ2)...f(γL)dγL...dγ2dγ1. (5.9)

The steps are justified as follows: (5.6) is a reformulation, where we deter-
mine the probability that the maximum achievable rates of the capacity region
are outside the rate region (see Section 2.5); in (5.7) the sum constraint is
separated into individual constraints; in (5.8) the bounds are transformed
with ψ−1(y) = 2y − 1; in (5.9) the probability of outage is established in
integral form with the assumption that the received SNRs Γl,∀l ∈ [1 : L], are
independent. The pdf f(γl) is given in (5.2). Although the outage expression
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in (5.9) cannot be solved in closed form, a simple asymptotic solution can be
derived at high SNR as

P out
JD,L ≈

∫ 2Rc−1

γ1=0

∫ 2Rc−ψ(γ1)−1

γ2=0
...

∫ 2Rc−ψ(γ1)−ψ(γ2)−...−ψ(γL−1)−1

γL=0
1∏

l∈[1:L] Γ̄l
dγL...dγ2dγ1 (5.10)

= AL(Rc)∏
l∈[1:L] Γ̄l

where (5.11)

AL(Rc) = (−1)L
(
1− 2Rc · eL (−Rc ln(2))

)
. (5.12)

Here, eL(x) =
∑

l∈[0:L−1]
xl

l! is the exponential sum function. For more details,
we refer to the derivations in Appendix A.2. The Lth root of the inverse
numerator Gc,JD = 1/L

√
AL(Rc) is commonly termed the coding gain [WG03].

The diversity gain is L, as we see from the denominator (see Section 2.6).

In contrast to the asymptotic solution in (5.11), a lower bound for (5.9) is
given by [TV05, Ch. 9.1.3]

P out
JD,L ≥ [Pr[0 ≤ ψ(Γ) < Rc/L]]L =

[
1− exp

(
−A1(Rc/L)

Γ̄

)]L
, (5.13)

for Γ̄1 = ... = Γ̄L = Γ̄ and A1(Rc/L) = 2Rc/L−1. Note that the lower bound is
based on the assumption that an outage event occurs if the channel capacity
of each fading channel cannot support the spectral efficiency Rc/L, i.e., each
fading channel is allocated an equal share of the information.

In [Bai+13], based on the outage exponent analysis, a lower and an upper
bound are given by

P out
JD,L



≥ P out,lower
JD,L = a exp

(
L
[ (
ψ
(
Γ̄
)
− Rc

L

)
E1,1

(
Γ̄
)

+ E1,0
(
Γ̄
)

+E0(Γ̄)
L

+ o(L)
])
,

≤ P out,upper
JD,L = b exp

(
L
[ (
ψ
(
Γ̄
)
− Rc

L

)
E1,1

(
Γ̄
)

+ E1,0
(
Γ̄
)

+E0(Γ̄)
L

+ o(L)
])

(5.14)

where a and b are constants, with a ≤ b. P out,lower
JD,L and P out,upper

JD,L are refer-
eed to as the lower and upper outage exponents, respectively. The exact
reliability functions E1,1

(
Γ̄
)
, E1,0

(
Γ̄
)
, and E0

(
Γ̄
)

are given in [Bai+13]. Ac-
cording to [Bai+13], the outage probability differs for Rc/L < Cergodic and
Rc/L ≥ Cergodic, where Cergodic = limL→∞CJD(Γ1, ...,ΓL)/L = E [ψ(1 + Γ)] is
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the ergodic capacity. The derivations of (5.14) are mainly based on large
deviations theory and Meijer’s G-function [GR14; DZ10]. For more details
on the outage exponent analysis, refer to [Bai+13].

In contrast to the bounds in (5.13) and (5.14), our asymptotic solution in
(5.11) offers a simple, yet accurate solution at high SNR. The outage expo-
nent analysis in (5.14) can achieve tight bounds on the outage probability,
but the calculations involve the incomplete Gamma function and Meijer’s
G-function, which makes any further analytical derivations on the SNR gain,
DMT, and throughput rather involved. As [Bai+13] did not explicitly con-
sider the properties of the asymptotic outage probability, the exact solution of
the coding gain remained unknown. The lower bound in (5.13) is a simple so-
lution, but not tight, as we show later on. On the other hand, our asymptotic
solution in (5.11) offers a remarkable simple asymptotical description of the
outage probability at high SNR. Especially for URLLC, high-SNR results are
well suited, as we are interested in frame error rates below 10−5. Note that,
more generally than (5.13) and (5.14), our solution also allows for different
average SNRs, which is of practical relevance, if the signals are transmitted
from or to different BSs. We detail this comparison via numerical examples
in Section 5.9.

5.4.2 Linear Combining
For SC [DG08], at each time instance only the channel with the maximum
rate ψ(Γmax) = ψ (max (Γ1, ...,ΓL)) is selected. If ψ(Γmax) does not satisfy the
rate constraint for lossless compression, see, e.g., [CT06, Theorem 10.3.1]
an outage occurs.

The outage probability for SC can be derived as follows [DG08, (2.42)]:

P out
SC,L = Pr [ψ(max (Γ1, ...,ΓL)) < Rc] (5.15)

=
∏L

i=1

∫ 2Rc−1

γl=0
f(γl)dγl (5.16)

=
∏
l∈[1:L]

(
1− exp

(
− A1(Rc)

Γ̄l

))
, (5.17)

with A1(Rc) = 2Rc − 1. The steps are justified as follows: (5.15) is given by
the rate constraint of lossless compression and source channel separation
theorem; (5.16) follows similar arguments as in (5.6), (5.8), and (5.9),
respectively, and the multiple integral can be rewritten as the product of single
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integrals, since the integral domain is normal and the SNRs are independent;
(5.17) is the closed-form solution of the integral in (5.16). An asymptotic
solution at high SNR can be derived by using the MacLaurin series of the
exponential function exp(−xl) ≈ 1− xl for xl → 0, giving [DG08, (2.43)]

P out
SC,L ≈

(A1(Rc))L∏
l∈[1:L] Γ̄l

, (5.18)

from which Gc,SC = 1/A1(Rc) is the coding gain of SC.

For MRC [DG08], all received symbols are coherently added. The sum of
all symbols is then decoded. To calculate the outage probability of MRC we
define an auxiliary RV, namely, the total received SNR, as

ΓMRC =
∑
l∈[1:L]

Γl. (5.19)

We have to distinguish between two cases:

Identical received average SNRs For Γ̄1 = ... = Γ̄L = Γ̄ the pdf of the total
received SNR is given by [DG08, (2.30)]

fΓMRC(γMRC) = γ
(L−1)
MRC

(L− 1)! · Γ̄L
exp

(
−γMRC

Γ̄

)
. (5.20)

The outage probability can be then calculated as [DG08, (2.31)-(2.33)]

P out
MRC,L = Pr [0 ≤ ψ(ΓMRC) < Rc] (5.21)

=
∫ 2Rc−1

γMRC=0
f(γMRC)dγMRC (5.22)

= 1− exp
(
− A1(Rc)

Γ̄

)( ∑
l∈[1:L]

(
A1(Rc)

Γ̄

)(l−1)

(l − 1)!

)
. (5.23)

The steps can be justified similarly to (5.15)-(5.16). The closed form of the
integral in (5.22) is given in [DG08, (2.33)]. An asymptotic solution can be
derived at high SNR [CYV05, (16)] as

P out
MRC,L ≈

1
L!

(
A1(Rc)

Γ̄

)L
, (5.24)

from which Gc,MRC = L
√
L!/A1(Rc) is the coding gain of MRC.
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Different received average SNRs For Γ̄1 6= ... 6= Γ̄L the pdf of the total
received SNR is given by [Bib13, Proposition 3.1]

fΓMRC(γMRC) =
∑
l∈[1:L]

Γ̄L−2
l exp

(
−γMRC

Γ̄l

) ∏
m∈[1:L]
m6=l

1
Γ̄l − Γ̄m

. (5.25)

The outage probability can be then calculated as

P out
MRC,L = Pr [0 ≤ ψ(ΓMRC) < Rc] (5.26)

=
∫ 2Rc−1

γMRC=0

∑
l∈[1:L]

Γ̄L−2
l exp

(
−γMRC

Γ̄l

) ∏
m∈[1:L]
m6=l

1
Γ̄l − Γ̄m

dγMRC (5.27)

=
∑
l∈[1:L]

Γ̄L−1
l

(
1− exp

(
−A1(Rc)

Γ̄l

)) ∏
m∈[1:L]
m6=l

1
Γ̄l − Γ̄m

. (5.28)

The steps can be justified similarly to (5.15)-(5.17). No further simplification
based on high SNRs can be achieved for (5.28). However, the asymptotic
solution of identical received average SNRs in (5.24) gives a upper bound at
high SNR for (5.28) by replacing Γ̄L with

∏
l∈[1:L] Γ̄l yielding

P out
MRC,L .

1
L!

(A1(Rc))L∏
l∈[1:L] Γ̄l

. (5.29)

For more details on this upper bound, we refer to the derivations in Ap-
pendix A.3.

5.4.3 Single-Connectivity
In addition, the exact and asymptotic outage probability of SCo (e.g., L = 1
for (5.17) and (5.18)) are given as a baseline by

P out
SCo = 1− exp

(
−A1(Rc)

Γ̄

)
(5.30)

≈ A1(Rc)
Γ̄

, (5.31)

from which Gc,SCo = 1/A1(Rc) is the coding gain of SCo.
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5.5 Throughput

The throughput captures how much information is received at the destina-
tion on average per transmission, depending on the SNR. To capture this,
following the standard approach in the literature [Mol12], we define the
throughput T as the product of the bandwidth B, spectral efficiency Rc, and
the non-outage probability (1− P out), i.e.,

T = BRc(1− P out) in bit/s. (5.32)

To evaluate (5.32), we require the achieved spectral efficiency Rc for the
different combining schemes (j ∈ {JD,SC,MRC}) for a given number of links
L, outage probability P out, and average received SNRs {Γ̄l}l∈[1:L].

Now, by reformulating (5.11) to express the achieved spectral efficiency
in terms of a given outage probability, we obtain a high-SNR asymptotic
expression for the throughput of JD as

TJD,L ≈ BA−1
L

P out
∏
l∈[1:L]

Γ̄l

 (1− P out) in bit/s. (5.33)

Here, A−1
L (·) is the inverse function of AL(·). Unfortunately, the inverse

function A−1
L (·) does not have a closed-form solution. However, we give a

good approximation. At high SNR, the achieved spectral efficiency for a
given outage probability is Rc � 1. In this case, the inverse function can
be given by use of an approximation of the asymptotic Lambert W function
[HH07] by

A−1
L

P out
∏
l∈[1:L]

Γ̄l

 = Rc ≈
L− 1
ln(2) [ln(ζ)− ln(ln(ζ))] , (5.34)

where

ζ =
L−1
√

(L− 1)!P out
∏

l∈[1:L] Γ̄l
L− 1 . (5.35)
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For more details, we refer to the derivations in Appendix A.4. The asymptotic
throughputs for SC and MRC can be given based on (5.18) and (5.29) as

TSC,L ≈ B ld


L

√
P out

∏
l∈[1:L]

Γ̄l + 1

 (1− P out) in bit/s, (5.36)

TMRC,L ≈ B ld


L

√
L! · P out

∏
l∈[1:L]

Γ̄l + 1

 (1− P out) in bit/s, (5.37)

respectively. In addition, we give the asymptotic throughput of SCo (e.g.,
from L = 1 in (5.36)):

TSCo ≈ B ld
(
P outΓ̄ + 1

)
(1− P out) in bit/s. (5.38)

5.6 Multi-Connectivity Gain
In this section, we quantify the performance gain of MCo over SCo in terms
of transmit power reduction. For MCo we consider the optimal combining
scheme, i.e., JD. To ensure a fair comparison between different setups,
we equally allocate the total transmit power PT to all channels, such that
Pl = PT/L,∀l ∈ [1 : L]. However, this assumption is non-essential, and other
system setups can be evaluated from our formulas with some effort.

We assume a target (fixed) spectral efficiency Rc (i.e., a certain throughput
has to be guaranteed) and target (fixed) outage probability P out, and evaluate
the required total average SNR Γ̄ = σ(·)(P out) in the high-SNR regime. The
SNR gain is defined as the ratio of the required average SNR between SCo
and MCo.

A reformulation of (5.11) yields

σJD(P out) = PT

N0
= L

L

√
AL(Rc)
P out

1
L

√∏
l∈[1:L] d

−η
l

, (5.39)

where σJD(P out) is the required total average SNR for JD. The required total
average SNR for SCo based on the reformulation of (5.31) is

σSCo(P out) = PT

N0
= A1(Rc)

P out

1
d−η1

. (5.40)
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The SNR gain is then given as the ratio between the required average SNRs
for SCo and JD as

GMCo,SCo = σSCo(P out)
σJD(P out) = A1(Rc)

L L
√
AL(Rc)

1
L

√
(P out)L−1

L

√∏
l∈[1:L] d

−η
l

d−η1
. (5.41)

Based on (5.41), we answer fundamental questions, e.g., how much transmit
power can be saved by MCo as compared with SCo depending on the number
of links L, the spectral efficiency (corresponding to the throughput T ≈ BRc),
the path loss d−ηl for l ∈ [1 : L], and the outage probability P out.

5.7 Joint Decoding vs. Linear Combining
In this section, we evaluate the performance improvement of JD over SC and
MRC. All combining schemes for MCo are superior to SCo, since the multiple
diversity branches are exploited, i.e., the diversity gain is L. However, there
exists a difference of the outage probabilities governed by the coding gains
Gc,(·) of each combining scheme ((5.11), (5.18), and (5.24)). Based on these
equations, the performance improvement of JD over SC and MRC can be
quantified in terms of the SNR gain, which is the ratio of the coding gains,

GJD,SC =Gc,JD

Gc,SC
= A1(Rc)

L
√
AL(Rc)

>
L
√
L!, (5.42)

and

GJD,MRC = Gc,JD

Gc,MRC
= 1

L
√
L!
· A1(Rc)
L
√
AL(Rc)

> 1, (5.43)

respectively. In Lemma 12 (see Appendix A.5) we prove that the SNR gain of
JD over MRC is strictly larger than one, which implies that the SNR gain of
JD over SC is strictly larger than L

√
L!.

5.8 SNR gain vs. Diversity-Multiplexing
Tradeoff

In this section we relate the SNR gain to the DMT analysis. Note that the
SNR gain in (5.41) can be separated into two parts, one depending on the
spectral efficiency and the other depending on the outage probability. Both
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parts are influenced by the number of links. As we can see, with a decreasing
outage probability, the SNR gain increases, scaled by the power of (L− 1)/L,
i.e.,

∂10 log10 (GMCo,SCo) dB
∂P out = −4.3L− 1

L

1
P out dB. (5.44)

The dependency of the SNR gain in terms of the spectral efficiency cannot
be seen that easily. However, similarly as for the throughput (cf. (A.36)) we
simplify the SNR gain for sufficiently high spectral efficiencies, i.e., Rc � 1,
as

GMCo,SCo ≈ L

√
(L− 1)!

(ln(2))L−1 LL
2Rc

L−1
L

R
L−1
Lc

1
L

√
(P out)L−1

. (5.45)

Now, we see that with increasing spectral efficiency, the SNR gain increases,
scaled by the factor (L− 1)/L, i.e.,

∂10 log10 (GMCo,SCo) dB
∂Rc

≈ 3L− 1
L

dB. (5.46)

A similar analysis for the SNR gain of JD over SC and MRC in (5.42) and
(5.43), respectively, leads to the same result as in (5.46) with respect to the
spectral efficiency, while being insensitive to the target outage probability.

A factor of (L − 1)/L can be seen in (5.44) and (5.46). This factor can be
related to the DMT analysis, as we show in the following. In the context of
MIMO systems [ZT03], it is proven that for a multiplexing gain

Gr = lim
Γ̄→∞

Rc(Γ̄)
ld
(
LΓ̄
) , (5.47)

the diversity gain d will not exceed

Gd(Gr) =− lim
Γ̄→∞

ldP out
·,L (Gr, Γ̄)

ld
(
LΓ̄
) , (5.48)

for Γ̄1 = ... = Γ̄L = Γ̄, i.e., all distances are normalized to unit, and average
system SNR LΓ̄. By applying a singular value decomposition, the MIMO
fading channel can also be formulated into a parallel fading channel in the
space domain [TV05]. Thus, it is reasonable to relate the DMT with the SNR
gain.
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Fig. 5.2. Diversity-multiplexing tradeoff curves: JD outperforms SC and MRC, as it can flexibly
trade diversity and multiplexing.

For JD, the diversity gain is a function of the multiplexing gain given by

Gd,JD(Gr) =L−Gr, Gr ∈ [0, L]. (5.49)

The DMT for SC and MRC is given by

Gd,j(Gr) =L · (1−Gr), Gr ∈ [0, 1], (5.50)

for j ∈ {SC,MRC}. For more details, we refer to the derivations in Ap-
pendix A.6.

The DMT of JD based on the lower bound in (5.13) given in [TV05, Ch. 9.1.3]
is aligned with our results. It is not surprising that JD outperforms SC
and MRC in terms of the multiplexing gain. Both SC and MRC perform a
non-invertible linear transform on the received signal vector, collapsing the
dimension from L to one. It is obvious that diversity can be maintained
with SC and MRC, but both will suffer with respect to JD when the goal is
to achieve multiplexing gain. Fig.5.2 illustrates the DMT for all combining
schemes and SCo.

The SNR gain can be related to the corner cases of the DMT analysis, i.e., full
diversity and full multiplexing. Tab 5.1 gives the maximum diversity gain
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Tab. 5.1. Overview: full multiplexing and full diversity

Maximum diversity Maximum multiplexing
gain Gd,(·),max gain Gr,(·),max

Joint decoding L L

Maximal-ratio combining L 1

Selection combining L 1

Single-connectivity 1 1

Gd,(·),max and maximum multiplexing gainGr,(·),max for all considered schemes.
Furthermore, we define the relative maximum diversity/multiplexing gain of
JD to SCo, SC, and MRC as

Ḡd,max = Gd,JD,max −Gd,j,max

Gd,JD,max
and Ḡr,max = Gr,JD,max −Gr,j,max

Gr,JD,max
, (5.51)

for j ∈ {SCo,SC,MRC}, respectively.

At full diversity (i.e., fixed spectral efficiency, Gr = 0), the SNR gain increases
by a factor proportional to (L − 1)/L with a decreasing outage probability
(cf. (5.44)). The term (L − 1)/L is the relative maximum diversity gain of
MCo (with JD) and SCo.

At full multiplexing (i.e., fixed outage probability, Gd = 0), the SNR gain
increases by a factor proportional to (L− 1)/L with an increasing spectral
efficiency (cf. (5.46)). Similar to the full diversity, the term (L− 1)/L is the
relative maximum multiplexing gain of MCo (with JD) and SCo.

In summary, both performance improvements are governed by the relation of
the maximum diversity and maximum multiplexing gains of MCo (with JD)
and SCo. The same line of argument can be used to relate the SNR gain of
JD over SC and MRC to the DMT results.

In conclusion, one can give the slope of the SNR gain in the spectral efficiency
and outage probability, based on the DMT analysis, but not the SNR gain
itself. Furthermore, the slope in the spectral efficiency is merely valid for
sufficiently high values, as we discuss in the next section.
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5.9 Numerical Examples

−5 0 5 10 15 20 25
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SCo

L = 2

L = 3

L = 5

Average system transmit SNR, PT/N0, dB

O
u
ta
g
e
P
ro
b
ab

il
it
y,

P
o
u
t

J
D
,L

Asymptote

Monte-Carlo

Lower bound

(a)

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·109

SCo

L = 2

L = 3

L = 5

Average system transmit SNR, PT/N0, dB

T
h
ro
u
gh

p
u
t,
T
J
D
,L
,
b
it
/s

Approx. asymptote

Numerical solution

(b)

Fig. 5.3. (a) JD outage probability for Monte-Carlo simulation, asymptote, and lower bound,
with L ∈ {2, 3, 5} and, Rc = 0.5, and (b) JD throughput Monte-Carlo simulation,
approximated asymptote with L ∈ {2, 3, 5}, B = 20 MHz, and P out = 10−3. The
outage probability and throughput of SCo are depicted for comparison.

In this section, we illustrate and discuss the exact, asymptotic, and the
lower bound outage probabilities of JD as well as the exact and asymptotic
throughput of JD. Furthermore, we illustrate and discuss the corresponding
SNR gain. We equally allocate the total transmit power PT to all channels,
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such that Pl = PT/L,∀l ∈ [1 : L]. Furthermore, we normalize all distances to
one. We define the average system transmit SNR as PT/N0.

Fig. 5.3a depicts the outage probability of JD (Monte-Carlo simulation of
(5.9), our asymptote in (5.11), and the existing lower bound in (5.13))
versus the average system transmit SNR PT/N0. For comparison, we include
the SCo outage probability in (5.30). We show results for L ∈ {2, 3, 5}
and a constant spectral efficiency of Rc = 0.5. We observe the following:
(i) the asymptote is very tight at medium and high SNR; (ii) with every
additional link the diversity gain Gd,JD(r) increases by one with constant
spectral efficiency, i.e., the multiplexing gain is r = 0; and (iii) the SNR offset
of the lower bound increases with the number of links. At this point, we
would like to clarify our assumptions on the SNR range. It is noteworthy that,
even though our outage analysis is based on high SNR, it leads to accurate
results in the low-to-medium SNR region as well. In Fig. 5.3a, for instance,
the asymptotic outage probability with five links is already tight for an outage
probability of P out

JD,5 = 10−3. The corresponding average system transmit SNR
is then PT/N0 = 5 dB. That means that the average transmit SNR per link is
Pl/N0 = −2 dB, which falls in the low-to-medium SNR region.

Remark: The lower and upper bounds based on the outage exponent analysis
in (5.14) are tight, cf. [Bai+13, Fig. 3 - Fig. 7], but require heavy computation
to be evaluated over the entire SNR range. Especially for the class of URLLC
applications, the low-SNR range is not of interest, as the region of the
required outage probabilities is at medium to high SNR.

Fig. 5.3b depicts the throughput for JD (numerical solution of (5.32) and
our asymptote in (5.33) with the approximation of the asymptotic inverse
function in (5.34)) versus the average system transmit SNR PT/N0. For
comparison, we illustrate the SCo throughput in (5.38). We show results
for L ∈ {2, 3, 5}, B = 20 MHz, and an outage probability of P out = 10−3.
The following can be observed: (i) the approximated asymptote is very
tight at high SNR; and (ii) for increasing SNR, the JD throughput increases
asymptotically with L · 20 Mbit s−1 per 3 dB, whereas the SCo throughput
increases asymptotically with 1 · 20 Mbit s−1 per 3 dB.

In the following, we show numerical results for the SNR gain with P out ∈
{10−3, 10−5} and L ∈ {2, 3, 4}. As shown in Fig. 5.3a, the asymptotic outage
probability is very tight within this range, i.e., the following numerical results
based on the asymptotic outage probability barely differ from the numerical
results based on the exact outage probability.
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Fig. 5.4. (a) SNR gain of MCo (with JD) over SCo, with L ∈ {2, 3, 4} and P out ∈ {10−3, 10−5}
and (b) SNR gains of JD over SC and MRC, with L ∈ {2, 3, 4}.

Fig. 5.4a depicts the SNR gain of MCo over SCo —GMCo,SCo in (5.41)— versus
the spectral efficiency Rc (corresponding to the throughput T ≈ BRc). We
show results with L ∈ {2, 3, 4} number of links and an outage probability
of P out ∈ {10−3, 10−5}. The following can be observed: (i) the SNR gain
increases with the number of links, spectral efficiency, and decreasing outage
probability; (ii) a decrease in outage probability manifests itself as a vertical
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shift of the respective SNR gain, e.g., for an outage probability shift from
10−3 to 10−5, we calculate the corresponding SNR gain shift from (5.41) as

∆GMCo,SCo = GMCo,SCo(P out = 10−5)−GMCo,SCo(P out = 10−3)

= A1(Rc)
L L
√
AL(Rc)

((
10−5) L

L−1 −
(
10−3) L

L−1
)

which yields ∆GMCo,SCo = 2 · 10L−1
L

dB, corresponding to the results in (5.44);
and (iii) for sufficiently high spectral efficiencies, the SNR gain increases by
3(L− 1)/L dB per source sample/channel symbol (cf. (5.46)).

Fig. 5.4b depicts the SNR gain of JD —GJD,(·) given in (5.42) and (5.43)—
over SC and MRC, respectively, versus the spectral efficiency Rc. The follow-
ing can be observed: (i) the SNR gain of JD is greater than one, as proven
in Lemma 12; (ii) the SNR gain of JD increases with L and Rc; (iii) the
SNR gain of JD with respect to MRC differs from the SNR gain of JD with
respect to SC by 1

L√
L!

; (iv) for very low spectral efficiencies the SNR gain of
JD over MRC vanishes; and (iv) for sufficiently high spectral efficiencies, the
SNR gain increase by 3(L− 1)/L dB per source sample/channel symbol (cf.
(5.46)).

Note that the range of practical spectral efficiencies is within Rc ∈ [0.5, 4.6̄]
(e.g., 1/2 channel code rate and BPSK, or 2/3 channel code rate and 128-
QAM). However, we illustrate spectral efficiency up to Rc = 25, in order to
show the asymptotic slope of the SNR gain.

Finally, in Fig. 5.5, we evaluate the FERs of the combining schemes, versus
the average system transmit SNR, as achieved by the DTC in [AM12] (see
Section 2.7). For meaningful comparison of the combining schemes, we
use the turbo decoder also for SC and MRC, i.e., decoding of the already
combined LLRs of SC and MRC corresponds to executing the DTC for just
one link. We used the following simulation parameters:

• Frame length: n = 1000 channel symbols

• Generator polynomial of SNRCC: GSNRCC = ([3, 1])8

• Generator polynomial of SRCC: GSRCC = ([3, 1]3)8

• Doping ratio of ACC: PACC = 1

• Local iterations: 15

• Global iterations: 3
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We compare the simulated FERs to the analytical outage probabilities given
in (5.17), (5.23), and (5.9). The figures attest that JD scheme outperforms
MRC and SC in terms of both outage probability and FER, becoming more
advantageous as the number of increases. From Fig. 5.5a we conclude that
the coding structure in [AM12] is clearly suboptimal, since the FER curves
are loosely above the outage ones. Nevertheless, the gains of practical MCo
systems over practical SCo systems are significant, and therefore justify the
additional complexity of MCo networks.
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Fig. 5.5. (a) Outage probabilities vs. FERs for two links (L = 2), and (b) FERs with L ∈ {2, 3}.
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5.10 Summary
MCo is seen as a key concept to enable URLLC applications in 5G networks,
as it provides multiple links from source to destination yielding an increased
reliability at low latency. In this chapter, we answered fundamental questions
regarding the performance improvement of MCo over SCo. For doing so, we
derived fundamental limits for optimal and suboptimal receiver schemes,
namely, JD, SC, and MRC.

For JD, we showed that the Slepian-Wolf rate region simplifies to one rate
constraint. Based on this simplified Slepian-Wolf rate region we derived
results for the exact outage probability in integral form and closed-form
solutions for the asymptotic outage probability at high SNR. It turned out
that the simple asymptotic outage probability leads to accurate results in the
low-to-medium SNR region as well. Thus, we concluded that the asymptotic
analysis is well suited to characterize the performance limits of JD in light of
URLLC applications.

Based on these findings, we compared the performance improvement of JD
over SCo, SC, and MRC by the SNR gain. We found that the SNR gain of
JD over SCo increases at a rate of around 3(L − 1)/L dB with respect to
the target spectral efficiency (i.e., per source sample/channel symbol) and
decreases at a rate of 4.3(L − 1)/L · 1/P out dB with respect to the target
outage probability. The comparison between JD and SC/MRC revealed that
the SNR gain increases at a rate of around 3(L − 1)/L dB with respect to
the target spectral efficiency (i.e., per source sample/channel symbol), while
being insensitive to the target outage probability.

In a nutshell, JD proved to be an excellent concept to achieve URLLC in MCo
networks and it becomes more advantageous in terms of the SNR gain as
the spectral efficiency and the number of links increases. Furthermore, our
results do not only quantify the performance improvement of JD but also
are suitable for assessment or optimization of practical MCo deployments,
i.e., the system configurations, namely, the number of links, the modulation
scheme, the code rate, the bandwidth, and the SNR, can be instantly adjusted
according to the user requirements. Insights on practical transmission models
will be given in Section 6.2.

In addition to our outage probability results, we derived fundamental limits
for the throughput of MCo networks. The throughput captures how much in-
formation is received at the destination on average per transmission. We were
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able to find good approximations of the throughput at high SNR, offering an
accurate characterization of the MCo performance’s general trend.

Finally, we compared our analytical results to FERs of a practical DTC. The
numerical examples showed that practical DTCs can fully exploit the diversity
gain, but not the coding gain. In all numerical examples, the FER curves
were loosely above the outage probability ones.
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6Further Practical
Constraints

So far, our results were based on some fundamental assumptions, e.g.,

• Independent fading, i.e., the pdf of the fading coefficients can be fac-
torized,

• Perfect SNR estimation and packet detection at the receiver.

These assumptions were made to make mathematical derivations feasible.
However, in practical systems, these assumptions might not be accurate.
Therefore, it is of interest to evaluate the performance impairment if these
assumptions do not hold. In this chapter, we address these issues and present
results for MCo (see Chapter 5). This chapter is an important first step
towards an extension of the methodology presented in Chapter 2.

In addition, we illustrate the potential of MCo for established wireless stan-
dards and cellular networks. For doing so, we evaluate the error-rate per-
formance of an advanced WLAN physical layer with MCo and we apply our
outage analysis, given in Chapter 5, to real field channel measurements.

6.1 Correlated Fading
The performance analysis so far, has been based on the assumption, that the
quasi-static Rayleigh fading is independent for each channel. However, corre-
lation among channels can arise when the antennas are in close proximity
due to space limitations of arrays or insufficiently large guard bands between
adjacent frequency channels due to bandwidth limitations. In this section, we
are interested in the performance loss for MCo due to correlation. For doing
so, we derive the exact and asymptotic outage probability for JD, where we
model the correlated Rayleigh fading based on a simple mathematical form
generated from the Gaussian distribution. These are our main contributions:
(1) finding the exact coding gain of the outage probability for parallel AWGN
channels with quasi-static correlated Rayleigh fading; and (2) quantifying
the performance loss due to correlation in terms of SNR offset.
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6.1.1 Related Work
For correlated fading, the absolute value of the complex channel gain |Al| (see
Section 2.4.2) must be described by multivariate distributions. In [DRT07;
CT05], tri- and quadrivariate Rayleigh and Nakagami-m distributions are
given for arbitrary correlations. But the pdfs are expressed by multiple nested
infinite summations, which leads to significant complexity (computational
effort). On the other hand, Beaulieu and Hemachandra presented in [BH11]
a simple mathematical form for a vast class of multivariate distributions gen-
erated from the Gaussian distribution. The advantage of the new approach
in [BH11] is that only a single integral computation is needed.

Based on a large range of correlated fading distributions (Rayleigh, Rician,
Nakagami-m, etc.), the performance of linear diversity combining schemes,
such as SC and MRC, has been studied in numerously publications, e.g.,
[MW02; ZB06b; ZB06a; Zhu+15]. However, the JD scheme, which is opti-
mum, remains open for investigation.

6.1.2 Channel Model
Recall the system model from Chapter 5. We are interested in the lossless
transmission of a BMS S transmitted over parallel AWGN channels with
quasi-static fading. Distinct from the system model in Chapter 5, we assume
correlated fading, which we introduce in the following.

The channel model, introduced in Section 2.4.2, is defined as

Y n
l = Al ·Xn

l +Nn
l , (6.1)

where Xn
l is the transmit sequence, Y n

l is the received sequence, Nn
l the

random Gaussian noise sequence, and Al represents the complex channel
gain. So far, the channel gain was modelled as a zero-mean, circularly
symmetric complex Gaussian RV with unit variance, i.e., Al = Al,r + jAl,i,
where

√
j = −1 and Al,r, Al,i are independent and N (0, 1/2) for l ∈ [1 : L].

To model correlated fading, Beaulieu and Hemachandra introduce correlated
Gaussian RVs as [BH11, (1)]

Al =
(√

1− λ2
lAl,r + λlA0,r

)
+ j

(√
1− λ2

lAl,i + λlA0,i

)
(6.2)

where A0,r, A0,i are independent andN (0, 1/2) auxiliary RVs, and λk ∈ (−1, 1)
is the correlation coefficient. Note that Al remains a zero-mean, circularly
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symmetric complex Gaussian RV with unit variance. It can be shown, that
the correlation coefficient between any Al and Ak, for l 6= k, is given by

ρl,k = E[AlA∗k]− E[Al]E[A∗k]√
Var[Al]Var[Ak]

= λlλk. (6.3)

Note that |Al| follows a Rayleigh distribution with unit variance, where the
pdf of |Al| conditioned on the auxiliary RVs {A0,r, A0,i} can be given by [BH11,
(33a)]

f|Al||A0,rA0,i(rl|a0,r, a0,i) = rl
Ω2
l

exp
(
−r

2
l + µ2

l

2Ω2
l

)
I0

(
rlµl
Ω2
l

)
, (6.4)

with

µl,r = λla0,r, µl,i = λla0,i, µ2
l = µ2

l,r + µ2
l,i, Ω2

l = (1− λ2
l )/2, (6.5)

and I0(·) denotes the modified Bessel function of the first kind and order
zero. As defined in Section 2.4.2, the received SNR is given by Γl := |Al|2Γ̄l
with the average SNR Γ̄l being obtained as Γ̄l = (Pl/N0) · d−ηl . By use of

rl =
√
γl/Γ̄l, drl/dγl = 1/(2

√
γlΓ̄l), and some reformulations, the pdf of the

received SNR conditioned on the auxiliary RVs {A0,r, A0,i} can be given by

fΓl|A0,rA0,i(γl|a0,r, a0,i) = 1
2Ω2

l Γ̄l
exp

(
−γl/Γ̄l + µ2

l

2Ω2
l

)
I0


√
γl/Γ̄lµl
Ω2
l

 . (6.6)

Next, we give the joint pdf of the received SNRs conditioned on the auxiliary
RVs {A0,r, A0,i} as

fΓ1...ΓL|A0,rA0,i(γ1, ..., γL|a0,r, a0,i) =
∏
l∈[1:L]

fΓl|A0,rA0,i(γl|a0,r, a0,i). (6.7)

The joint pdf of the received SNRs is then given by integration over {A0,r, A0,i}
as

fΓ1...ΓL(γ1, ..., γL) =
∫
a0,r

∫
a0,i

∏
l∈[1:L]

fΓl|A0,rA0,i(γl|a0,r, a0,i)

× 1
π

exp
(
−(a2

0,r + a2
0,i)
)

da0,rda0,r (6.8)

=
∫ ∞
t=0

exp(−t)
∏
l∈[1:L]

1
2Ω2

l Γ̄l
exp

(
−γl/Γ̄l + λ2

l t

2Ω2
l

)
I0


√
γlλ2

l t/Γ̄l
Ω2
l

dt,

(6.9)
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where a0,r =
√
t cos(θ) and a0,i =

√
t sin(θ). The steps in (6.7)-(6.9) can be

similarly justified as in [BH11, (14)].

6.1.3 Outage Probability
Following the same approach as in Section 5.4, (5.6), the outage probability
of JD is given by

P out
JD,L =Pr

[∑
l∈[1:L]

ψ(Γl) < Rc

]
(6.10)

=
∫ ∞
t=0

exp(−t)
∫ 2Rc−1

γ1=0

∫ 2Rc−ψ(γ1)−1

γ2=0
...

∫ 2Rc−ψ(γ1)−...−ψ(γL−1)−1

γL=0

×
∏
l∈[1:L]

1
2Ω2

l Γ̄l
exp

(
−γl/Γ̄l + λ2

l t

2Ω2
l

)
I0


√
γlλ2

l t/Γ̄l
Ω2
l

dγL...dγ2dγ1dt.

(6.11)

The steps can by similarly justified as (5.6)-(5.9). Note that in difference to
(5.9) an additional integration over t is required to model the correlation.
Although the outage expression in (6.11) cannot be solved in closed form,
an asymptotic solution can be derived at high SNR, equal correlation λ = λl,
and equal average SNR Γ̄ = Γ̄l for l ∈ [1 : L] as

P out
JD,L ≈

1(
2Ω2Γ̄

)L ∫ ∞
t=0

exp
(
−t
(

1 + Lλ2

2Ω2

))
CL(Rc, t)dt (6.12)

=
(

1 + Θ
Γ̄

)L
(1 + LΘ)−1AL(Rc)

+ Θ
(

1 + Θ
Γ̄

)L+1

(1 + LΘ)−2BL(Rc), (6.13)

where

Θ = λ2

1− λ2 , CL(Rc) = AL(Rc) + 1
4
λ2t

ΓΩ4BL(Rc), (6.14)

with AL(Rc) given in (5.12), and

BL(Rc) =


(
22Rc + (−1)L+1) L

2 − 2RcL
∑
k=[1:l]

(Rc ln(2))L−2k+1

(L− 2k + 1)! for L = 2l,

(
22Rc + (−1)L+1) L

2 − 2RcL
∑

k=[1:(l+1)]

(Rc ln(2))L−2k+1

(L− 2k + 1)! for L = 2l + 1.

(6.15)
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For more details, we refer to the derivations in [Che19]. Note that for λ = 0,
the asymptotic solution for correlated fading in (6.13) collapses to the one
for independent fading in (5.11).

6.1.4 Correlation Loss
Similar to the SNR gain, we are interested in the SNR offset caused by
correlation. The loss due to correlation can be defined as the corresponding
asymptotic reduction in SNR while achieving the same outage probability.
Thus, we equate the outage probabilities with and without correlation in
(6.13) and reformulate the equation to the ratio between the required average
SNRs, Γ̄λ=0 and Γ̄λ, respectively, i.e.,

AL(Rc)(
Γ̄λ=0

)L =
(

1 + Θ
Γ̄λ

)L
(1 + LΘ)−1AL(Rc)

+ Θ
(

1 + Θ
Γ̄λ

)L+1

(1 + LΘ)−2BL(Rc) (6.16)

⇔ LJD(λ) = Γ̄λ
Γ̄λ=0

= L

√
(1 + Θ)L
1 + LΘ

(
1 + Θ 1 + Θ

1 + LΘ
BL(Rc)
AL(Rc)

1
Γ̄λ

)
(6.17)

= L

√
(1 + Θ)L
1 + LΘ . (6.18)

The reformulation in (6.18) is based on the asymptotic assumption, i.e.,
limΓ̄→∞ 1/Γ̄ = 0.

6.1.5 Numerical Examples
In this section, we illustrate and discuss the exact and asymptotic outage
probabilities of JD with and without correlated fading. Furthermore, we
illustrate and discuss the corresponding correlation loss. We equally allocate
the total transmit power PT to all channels, such that Pl = PT/L,∀l ∈
[1 : L], and assume identical correlation coefficients λl = λ for l ∈ [1 : L].
Furthermore, we normalize all distances to one and define the average system
transmit SNR as PT/N0.

Fig. 6.1a depicts the outage probability of JD (Monte-Carlo simulation of
(6.11) and our asymptote in (6.13)) versus the average system transmit
SNR PT/N0. We show results for L ∈ {2, 3}, correlation coefficient λ ∈
{0.0, 0.8, 0.9} and a constant spectral efficiency of Rc = 0.5. We observe the
following: (i) the asymptote is very tight at medium and high SNR; (ii) the
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Fig. 6.1. (a) Exact and asymptotic outage probability with λ ∈ {0, 0.8, 0.9}, and (b) correlation
loss with λ ∈ [0, 1].

correlation loss increases with λ and the number of links L, and (iii) the
diversity gain can be maintained even for larger correlation coefficients.

Fig. 6.1b depicts the correlation loss of JD —LJD given in (6.18) — versus
the correlation coefficient λ. We observe that the correlation loss increases
significantly if the correlation coefficient approaches one.
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6.2 Channel Estimation and Packet
Detection in WLAN

In this section, we are interested to assess the impact of channel estima-
tion and packet detection as examples of imperfections in typical receiver
implementations, in addition to the coding performance. For doing so, we
simulate FERs via a link-level Monte-Carlo framework built on the “MATLAB
WLAN System Toolbox”. The “MATLAB WLAN System Toolbox” implements
functions and models to simulate the physical layer of WLAN as defined in
the standards IEEE 802.11{a,ac,ad,ah,b,g,n,j,p} [Mat17].

6.2.1 Related Work
In [AT06], FERs were analyzed for a single link orthogonal frequency-division
multiplexing (OFDM) system such as in WLAN for frequency selective fading
channels. The gain of SC in terms of achievable data rates was evaluated in
[PD16] for a stochastic MIMO channel system modelling frequency selective
fading. In [Ehr+17], a link-level simulation of WLAN for up to four frequency
selective channels was conducted. At the receiver side, SC was considered
as combining algorithm. However, the aforementioned studies did not take
imperfections of a complete physical layer implementation into account.
Furthermore, since the authors did not present results for a well-known
reference channel model such as Rayleigh fading, it is difficult to determine
the impact of the WLAN implementation and channel conditions on the FER
separately.

6.2.2 Transmission Model
Fig. 6.2 highlights the relevant WLAN processing blocks of the sender and
the receiver, and the wireless channel for a single link. Next, we outline each
block of the transmission chain.
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Fig. 6.2. Transmission chain of a single link, depicting the considered processing blocks in
transmitter (top), channel (right), and receiver (bottom).

Transmitter The binary source sequence Skl is processed as follows:

• Encod: Convolutional channel encoding (see Section 2.7.1);

• Map: Mapping to complex-valued symbols, collected in Xn
l ;

• Mod: OFDM modulation to (time-continuous) baseband signal XTx,l,
including inverse fast Fourier transform (IFFT), cyclic prefix, and pream-
ble.

The modulation block was configured with the “High Throughput” profile
of IEEE 802.11a and 20 MHz channel bandwidth. The “High Throughput”
profile comprises 52 OFDM subcarriers of which 48 carry data and 4 are
used as pilots. Each OFDM symbol is 3.2 µs long, plus a 0.8 µs cyclic prefix.
The preamble includes signalling information and multiple training fields,
including 2 symbols of 12 subcarriers for packet detection and coarse carrier
frequency offset (CFO) correction (short training field (STF)) and 2 symbols
using all 52 subcarriers for fine time synchronization, channel estimation and
fine CFO correction (long training field (LTF)).

Channel The channel models available in the “MATLAB WLAN System
Toolbox” reach from quasi-static, non-frequency selective Rayleigh fading
to realistic frequency selective fading. The channel models are defined
in [ESK04] as part of the IEEE 802.11a WLAN standard.

Receiver The received baseband signal YRx,l is processed as follows:

• Sync: Packet detection, coarse and fine CFO correction, and fine time
synchronization is performed using the STF and the LTF;

• Estim: Channel estimation for sampling frequency offset (SFO) correc-
tion, channel equalization, and coherent SNR weighting of the links
(required for combining schemes);
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• Demod: Demodulation, including cyclic prefix removal, fast Fourier
transform (FFT), SFO correction and channel equalization, to complex-
valued symbols, collected in Y n

l ;

• Demap: Symbol demapping to LLR values with coherent SNR weighting
of the links;

• Decod: (Joint) turbo decoding to binary source sequence estimate Ŝkl
(see Section 2.7.2).

The decoding block differs depending on the combing scheme. For SC and
MRC the already combined LLR values are decoded by the JTD for just one
link. For JD the individual LLR values of each link are correspondingly
forwarded to the JTD.

For a detailed review of the simulation framework, the author refers to [Sch17].

6.2.3 Numerical Examples
Based on the following questions, we evaluate the performance improvement
of MCo over SCo in WLAN and the impact of receiver imperfections:

1. What is the performance degradation caused by realistic WLAN base-
band processing (Sync except for packet detection, Demod, and Demap)?

2. How sensitive are the combining schemes to unavailable SNR esti-
mates?

3. What is the impact of packet detection?

For doing so, we simulate FERs for quasi-static, non-frequency selective
Rayleigh fading and BPSK (for a meaningful comparison to the results pre-
sented in Section 5.9). Note that regardless of the channel model, the
“MATLAB WLAN System Toolbox” executes all transmitter and receiver blocks
introduced above.

At first, we address question 1. by comparison of FER curves from the DTC
(presented in Section 5.9) and FER curves when the DTC is embedded into
the WLAN simulation framework, see Fig. 6.3a. We assume that the accurate
SNR knowledge is available to the combining schemes and that all packets
are detected. We see a degradation of the performance, which increases with
the number of links. This degradation is caused by the imperfect CFO and
SFO correction, and channel equalization.
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Fig. 6.3. (a) Impact of WLAN implementation, and (b) penalty of unavailable SNR estimation
while combining.

Secondly, we evaluate the impact of SNR estimation, which is not necessarily
perfect. In Fig. 6.3b, we consider the worst case, i.e., no SNR estimate
is available for the combining schemes. Without SNR knowledge, SC can
not maintain the diversity gain, since the algorithm randomly selects a link,
thereby falling back to the performance of SCo. If the links are combined at
the symbol level, without SNR weighting before averaging, MRC becomes
equal gain combining [Gol05], causing a slight SNR degradation of less than
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Fig. 6.4. Performance difference between ideal and real packet detection.

1 dB but retaining its diversity gain. On the other hand, JD is almost not
affected by missing SNR weighting, which can be reasoned based on the DTC
scheme. Each turbo decoder maintains separate LLR vectors for each link
evaluating the reliability of the received codeword. Thus, if the received
codewords seems unreliable, its LLR values are decreased and visa versa.
Thus, the DTC inherently contains an SNR estimator.

Thirdly, likewise dependent on preamble design, packet detection is a ma-
jor concern for WLAN receivers, especially in frequency selective channels
[HET97]. Fig. 6.4 shows FER results for the impact of packet detection,
where we compare the FERs with ideal and real packet detection1. We see an
increasing performance degradation with the number of links. This result is
reasonable, since the probability that all links are detected decreases with
the number of links. Furthermore, the performance differences between the
combining schemes diminishes, since the probability of detection error is
dominant.

For additional simulation results with frequency selective fading channels,
the reader is referred to [Sch17; Sch+18].

Even though the WLAN standard (we consider IEEE 802.11a to be a repre-
sentative example for an OFDM system) does not exploit the entire potential

1Ideal packet detection: all packets are detected; real packet detection: some packets
cannot be detected due to the limited preamble size (STF and LTF).
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Fig. 6.5. (a) Testbed deployment, and (b) measured average SNR Γ̄mi achieved at all base
station (BS)s of the testbed during the complete field trial. (Source: [Wol+19]
© 2019 IEEE).

of MCo, due to suboptimal synchronization, estimation and demodulation,
the findings above demonstrate the potential of MCo in wireless systems.

6.3 Cellular Field Trial
In this section, we investigate the potential of MCo in a real cellular network.
Fortunately, we have access to field trial measurement data from downtown
Dresden (Germany). The measurements were carried out by Michael Grieger
et al [Gri14] to evaluate the potential of uplink joint detection in a real
cellular network. We reuse the measurement data to generate empirical
cumulative distribution functions (cdfs) of the outage probability and the
throughput, using the analytical framework from Chapter 5. Our results elab-
orate on the following points: (i) the achievable performance improvement
of MCo over SCo in a real cellular network and (ii) the performance gain of
JD in comparison to SC and MRC. Next we shortly introduce the field trial
setup and measurement data from Michael Grieger et al and then present
the approach to generate the empirical cdfs of the outage probability and the
throughput with our analytical framework.
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Fig. 6.6. Empirical cdf of the outage probability (L ∈ {2, 3}, Rc = 1), and (d) empirical cdf
of the throughput (L ∈ {2, 3}, P out = 10−5) for JD, SC, and MRC.

6.3.1 Field Trial Setup
The field trial testbed, deployed in Dresden downtown, is depicted in Fig. 6.5a.
In total, 16 BS located on five sites with up to six-fold sectorization were
used for the measurements. During the field trial, two UEs were moved
on a measurement bus in 5 m distance while transmitting on the same time
and frequency resources employing one dipole antenna each. The super-
imposed signal is jointly received by all BS, which took snapshots of 80
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ms (corresponding to 80 transmit time intervals) every 10 s. In total, about
1900 such measurements were taken in order to observe a large number of
different transmission scenarios. In Fig. 6.5b the measured average SNR
Γ̄mi values for around 1000 measurements observed at all BS and locations
are shown, where m denotes the measurement number and i the BS index,
i ∈ {Hbf 0°,Hbf 60°, ...}. The two largest average SNRs measured at any
BS for each measurement are depicted in the upper part of the figure. An
interesting result is that multiple relatively high average SNR values of two
different BS are observed at each location of the UEs. Since combining
algorithms are particularly beneficial in scenarios with multiple relatively
high average SNR values, this result indicates that cooperation among BS
can provide a much more reliable data transmission, as confirmed next. For
more details on this field trial setup, please refer to [Gri14].

6.3.2 Empirical CDFs for Outage Probability and
Throughput

With the measured average SNR Γ̄mi in Fig. 6.5b we generate an empirical
cdfs of the outage probability and the throughput based on the analysis
presented in Chapter 5. For each measurement we consider the L strongest
links, i.e., the largest measured average SNRs Γ̄mi . The outage probability can
be assessed with (5.11), (5.17) and (5.28) for JD , SC, and MRC, respectively,
for each measurement. Similarly, the throughput is given by (5.33), (5.36),
and (5.37) for JD, SC, and MRC, respectively.

Fig. 6.6a and Fig. 6.6b depict the empirical cdf of the outage probability the
throughput, respectively. We show results for L ∈ {2, 3} number of links,
a spectral efficiency of Rc = 1 (Fig. 6.6a), and an outage probability of
P out = 10−5 (Fig. 6.6b). The following can be observed: (i) MCo is much
superior to SCo and (ii) JD outperforms SC and MRC, the performance gain
increasing with the number of links from source to destination.

6.3.3 Discussion
Based on the field trial setup, we conclude that MCo can achieve a substan-
tial performance improvement in real cellular networks. The measurement
data at hand documents that multiple relatively high average SNR values
frequently occur, for which combining algorithms are particularly benefi-
cial. From the uplink measurement data we also draw conclusions for the
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downlink. Under the assumption that the statistical properties of the link
model are identical for the up- and downlinks, it is reasonable to assume that
multiple relatively high average SNR values frequently occur in the downlink
as well. Based on this, MCo can also achieve low outage probabilities and
high throughput in the downlink of real cellular networks.

6.4 Summary
In this chapter, we questioned some fundamental assumptions from the
preceding chapters. In a nutshell, we gave answers to the following questions
for the MCo network:

• How does correlation of the fading channels degrade the performance?

We derived the correlation loss, i.e., the SNR offset between the outage
probability curves depending on the correlation coefficient between the
complex channel gains. From our analytical results, we concluded the
following: i) an increased correlation coefficient yields an increased
correlation loss; ii) for moderate correlation, the correlation loss is
marginal, and iii) even though the diversity gain can be maintained
whatever the correlation, the performance improvement of MCo in
regard to SCo vanishes if the correlation coefficient approaches one.

• What is the impact of typical receiver imperfections such as SNR esti-
mation and packet detection?

We implemented optimal and suboptimal combining schemes into the
WLAN standard and simulated error-rates of the physical layer. We
found that DTC is tolerant of unavailable SNR estimation as opposed
to the other combining schemes. An advantage not known from theo-
retical work before. We identified packet detection as a major concern
as its performance degradation increased with the number of links.
Nevertheless, we concluded that MCo is a suitable technology to enable
ultra-reliable communications in WLAN.

• How realistic are the theoretical performance improvements in real
cellular networks?

We applied our analytical framework from Chapter 5 to real cellular
networks. Based on the measurement data recorded in a field trial,
we evaluated the achievable performance improvement by the use
of MCo. The measurement data documented that multiple relatively
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high average SNR values frequently occur, in which case MCo proves
particularly beneficial.
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7Conclusions and Outlook

7.1 Conclusions
This thesis laid theoretical foundations for understanding the performance of
MSCCs in three cooperative communication networks in light of ultra-reliable
communications. The ultimate performance limit for wirelesses communica-
tions over fading channels can be assessed by the outage analysis. Ultimately,
we derived results on the exact outage probability and the asymptotic outage
probability at high SNR. It turned out that the simple asymptotic outage
probability leads to accurate results in the low-to-medium SNR region. Thus,
we concluded that the asymptotic analysis is well suited to characterize the
performance limits of cooperative communication networks for ultra-reliable
communications. For the cooperative communication networks under investi-
gation, we found that MSCCs significantly improved the reliability in regard
to other (non-)communication concepts. Therefore, this thesis sees practical
schemes based on MSCCs as a strong candidate to achieve the stringent
ultra-reliable communication requirements in upcoming wireless networks.
Furthermore, the practical relevance of our results is threefold: i) optimality
of practical schemes can be evaluated in regard to our results; ii) practi-
cal deployments of communication networks can be assessed or optimized,
i.e., the system configurations, namely, the number of links, the modulation
scheme, the code rate, the bandwidth, and the SNR, can be instantly adjusted
according to the user requirements; and iii) the complexity of network-level
simulations can be reduced by using our results for link-level abstraction.

The MSCC outage analysis over quasi-static fading channels in this thesis was
based on two steps:

1. We evaluated the communication performance of the MSCC for a set
of fixed channel realizations. For doing so, we decoupled the MSCC
into a multiterminal source code and multiple point-to-point channel
codes, an approach which is known to be optimum for infinite block-
length. The advantage is that we can easily adjust the multiterminal
source code to the desired cooperative communication network. The
multiterminal source code defines the minimum set of rates for reliable
communication (i.e., perfect reconstruction of the sources). The deriva-
tion of the corresponding rate regions was our first major contribution

105



Tab. 7.1. Overview: key findings

Relay network Wireless sensor Multi-connectivity
network network

Rate region Inner bound on
RGP given in (3.18) RSW given in (4.7) RSW given in (5.5)

Exact outage Upper bound for
probability P out

LF,L given in (3.28) P out
WSN,L given in (4.11) P out

JD,L given in (5.9)

Asymptotic P out
WSN,L P out

JD,L

outage remains unknown ≈
∑

l∈[1:L]
Al(Rc)

Γ̄i
≈ AL(Rc)∏

l∈[1:L] Γ̄l
probability

Coding gain remains unknown GC,WSN = 1/Al(Rc) GC,JD = 1/L
√
AL(Rc)

Diversity L+ 1 (One source 1 L
gain and L helpers)

SNR gain Quantified by GWSN GMCo,SCo = A1(Rc)
LL
√

AL(Rc)

numerical example =
∑
l∈[1:L] B(Rc)·dηl∑
l∈[1:L] Al(Rc)·dηl

×
L
√∏

l∈[1:L] d−ηl
L
√

(P out)L−1·d−η1

(see Tab. 7.1). If the set of fixed channel capacity realizations is not
inside the rate region, an outage event occurs and vice versa.

2. By integration over all channel realizations we obtained the average
performance, i.e., the exact outage probability. This constitutes our
second major contribution (see Tab. 7.1).

At high SNR, the exact outage probability can be described by its asymptote,
which consists of the coding and diversity gain. For WSN and MCo we found
the asymptotic outage probability, which is another major contribution of
this thesis (see Tab. 7.1). Unfortunately, the asymptotic outage probability
of LF remains unknown. Based on the asymptotic outage probability, we
were able to quantify the SNR gain of the MSCC under investigation over
other (non-)cooperative communication concepts. Finally, by evaluation
of FERs, we demonstrated that similar gains can be obtained for practical
implementations based on DTCs.

Moreover, for MCo networks, we presented results including further practical
constraints. In particular, we analyzed the performance impairment of corre-
lated fading and practical receiver imperfections in terms of the correlation
loss and error-rates in physical layer simulations of WLAN (as defined in
IEEE 802.11a), respectively. Our results revealed that the loss is marginal for
moderate correlation, that the DTC is tolerant of unavailable SNR estimation,
and that performance degradation caused by packet detection increased with
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the number of links. However, our findings provide a strong argument for
using MCo in wireless systems exposed to adverse channel conditions. Lastly,
we applied our analytical framework to real cellular networks. We analyzed
the potential performance improvement of MCo over SCo based on measure-
ment data recorded in a field trial. The measurement data documented that
multiple relatively high average SNR values frequently occur, in which case
MCo proves particularly beneficial.

7.2 Outlook
Finally, we like to discuss several topics that were not addressed so far but
could be of interest for future work.

Finite Blocklength Performance Note that the fundamental limits in Sec-
tions 2.1-2.3 are derived based on the assumption of infinite blocklength
(k, n → ∞). However, for low-latency communications, the length of the
data packet is rather short, and thus, the outage analysis based on infinite
blocklength is not necessarily a valid criterion [Yan+14].

During the last few years, significant progress has been made in the field
of finite blocklength analysis. For the AWGN channel, the finite blocklength
performance was characterized by Hayashi [Hay09] and Polyanskiy, Poor, and
Verdú [PPV10]. In addition to channel coding, new fundamental limits for
the problem of lossy source coding [Sha59a] have been derived by Kostina
and Verdú [KV12] in the finite blocklength regime. Subsequently, Kostina
and Verdú [KV13] also derived the finite blocklength performance for the
lossy joint source-channel coding problem [Sha59a]. In [KV13], Kostina and
Verdú showed that the source-channel separation is suboptimal in the finite
blocklength regime.

Therefore, in future work a finite blocklength analysis of MSCCs is of interest
to assess their suitability for short-packet communication.

In [ZWM19], we made a first important step towards the finite blocklength
analysis of MSCCs. Based on the latest advances in information theory, we
derived fundamental limits for the finite blocklength performance of MSCCs
in MCo networks. Our results demonstrate that the outage analysis (based
on infinite blocklength) is still a valid criterion even in the finite blocklength
scenario with negligible loss of performance. Furthermore, we showed that
MSCCs are suitable for URLLC and short-packet communication, and their
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performance limit can be well approximated by the simple outage analyses
in Chapter 5.

Extended Analysis of Correlated Fading In Sections 6.1, we considered the
topics of correlated fading for MCo. The presented results are the basis to
extend the methodology in Chapter 2 and derive similar results for relay
networks and WSNs.

Imperfection of Packet Detection and Channel Estimation In Section 6.2,
the influence of packet detection and channel estimation are evaluated for
WLAN. However, the results are simulation based and thus the fundamental
relationship between performance and packet detection/channel estimation
remains open. It would be of interest to analyze the impairment of the outage
probability due to imperfect channel estimation. Furthermore, the probability
of the packet detection error has to be embedded into an overall outage
probability.

Code Optimization From the numerical results in Chapters 3-5 we conclude
that the DTC [AM12] (see Section 2.7) is clearly suboptimal, since the FER
curves are loosely above the outage probability ones. The performance might
be improved by modification of some decoding parameters, such as coding
rate, frame length, generate polynomial, doping ratio, and iterations rounds.
On the other hand, the suboptimal performance could also be caused by the
coding family and coding structure itself.

Two other prominent coding families are low-density parity-check (LDPC)
codes [Gal62] and Polar codes [Ari09]. Both coding families are known to
be (almost) capacity-achieving. Distributed coding schemes exploiting both
coding concepts have been proposed in [Bou+10; JYY18]. The investigation
of these coding concepts in the context of cooperative communications could
be of interest for future works.

We made first trials to improve the DTCs performance by modifying the
decoding parameters, which showed an improved performance. However,
the gains ahighly depend on the channel model and the network topology.
So far, we could not identify an optimum set of DTC decoding parameters
that outperformed other sets for any possible channel model and network
topology. Furthermore, we substituted the turbo codes with LDPC codes
in the distributed coding scheme (see Section 2.7). Our results showed no
significant performance improvement. Therefore, we concluded that the

108 Chapter 7 Conclusions and Outlook



decoding structure (i.e., separate channel decoders exchanging LLRs via a
variable node) is suboptimal.

Correlation in Time, Frequency, and Information In this thesis, we mainly
exploit the correlation of sources to increase the spectral efficiency of the
wireless communication system. On the other hand, wireless fading channels
are impaired by correlation in the frequency and the time domain. We
presented and evaluated some result for the correlation in the frequency
domain for MCo. In future work a general system model which combines all
three dimensions of correlation in time, frequency, and information, would
be of interest.
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AAppendix

A.1 Proof of Theorem 8
The conditional entropy in Theorem 4 can be given by

H
(
S0|{Ul}l∈[1:L]

)
= H

(
S0, {Ul}l∈[1:L]

)
−H

(
{Ul}l∈[1:L]

)
(A.1)

=
∑
l∈[1:L]

H(Ul|S0)−H
(
{Ul}l∈[2:L]|U1

)
(A.2)

=
∑
l∈[1:L]

h (εl ∗ κl)− η({εl ∗ κl}l∈[1:L]) (A.3)

for L ≥ 2. The steps are justified as follows: (A.1) is the chain rule of entropy;
for (A.2), the entropy of the primary source and the auxiliary RVs can be
partitioned by the chain rule and simplified by the fact that (U1, ..., UL) are
conditionally independent given S0, i.e., H(Ul|S0, U1, ..., Ul−1) = H(Ul|S0),
and the entropy of the auxiliary RVs can be reformulated by the chain
rule; and (A.3) follows from the properties H(S0) = H(Sl) = H(Ul) = 1,
H(Ul|S0) = H(S0|Ul), and H(Ul|Ul̄) = H(Ul̄|Ul) for l ∈ [1 : L], l 6= l̄, the
Markov chain, i.e., H(Ul|S0) = h(εl ∗ κl), and

H
(
{Ul}l∈[2:L]|U1

)
= −

∑
u1∈{0,1}

pU1(u1)
∑

{ul}l∈[2:L]∈{0,1}L−1

pU2...UL|U1(u2, ..., ul|u1)

× ld pU2...UL|U1(u2, ..., ul|u1) (A.4)

= −
∑

{ul}l∈[2:L]∈{0,1}L−1

×
( ∑
s0∈{0,1}

pU2...UL|S0(u2, ..., ul|s0)pS0|U1(s0|0)
)

× ld
( ∑
s0∈{0,1}

pU2...UL|S0(u2, ..., ul|s0)pS0|U1(s0|0)
)

(A.5)

, η({εl ∗ κl}l∈[1:L]) (A.6)

for L ≥ 2, with

pU2...UL|S0(u2, ..., ul|s0) =
∏
l∈[2:L]

pUl|S0(ul|s0) (A.7)

=
∏
l∈[2:L]

[(1− εl ∗ κl)1(ul = s0) + (εl ∗ κl)1(ul 6= s0)] , (A.8)
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and

pS0|U1(s0|0) =
[

(1− ε1 ∗ κ1)1(s0 = 0) + (ε1 ∗ κ1)1(s0 6= 0)
]
. (A.9)

For L < 2 we have η({εl ∗ κl}l∈[1:L]) = 0. In (A.8) and (A.9), 1(·) is the
indicator function. The steps are justified as follows: (A.5) follows from
the law of total probability, the Markov chain U1 → S0 → U2...UL, and the
symmetric properties of the primary source and channels; and (A.7) follows
from the Markov chain Ul → S0 → Ul̄, for l, l̄ ∈ [1 : L] and l 6= l̄. The
conditional mutual information in Theorem 4 can be given by

I ({Sl}l∈V ; {Ul}l∈V |{Ul}l∈Vc)
= H ({Ul}l∈V |{Ul}l∈Vc)−H ({Ul}l∈V |{Sl}l∈V) (A.10)

= H
(
{Ul}l∈[1:L]

)
−H ({Ul}l∈Vc)−

∑
l∈V

H(Ul|Sl) (A.11)

= η({εl ∗ κl}l∈[1:L])− η({εl ∗ κl}l∈Vc)−
∑
l∈V

h(κl), (A.12)

∀V ⊂ [1 : L] and Vc = [1 : L]\V. The steps can be justified similarly as
(A.1)-(A.3). In particular, for V = [1 : L], we have

I
(
{Sl}l∈[1:L]; {Ul}l∈[1:L]

)
= H

(
{Ul}l∈[1:L]

)
−H

(
{Ul}l∈[1:L]|{Sl}l∈[1:L]

)
(A.13)

= 1 + η({εl ∗ κl}l∈[1:L])−
∑
l∈[1:L]

h(κl). (A.14)

The inner bound is then generated by ranging the auxiliary parameters over
{κl}l∈[1:L] ∈ [0, 0.5]L. This completes the proof.

A.2 Asymptotic Outage Probability
The asymptotic outage probability can be obtained as

P out
·,L =

∫ 2Rc−1

γ1=0

∫ 2Rc−ψ(γ1)−1

γ2=0
...

∫ 2Rc−ψ(γ1)−ψ(γ2)−...−ψ(γL−1)−1

γL=0
1
Γ̄1

exp
(
− γ1

Γ̄1

) 1
Γ̄2

exp
(
− γ2

Γ̄2

)
...

1
Γ̄L

exp
(
− γL

Γ̄L

)
dγL...dγ2dγ1

(A.15)

≈
∫ 2Rc−1

γ1=0

∫ 2Rc−ψ(γ1)−1

γ2=0
...

∫ 2Rc−ψ(γ1)−ψ(γ2)−...−ψ(γL−1)−1

γL=0
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1
Γ̄1

(
1− γ1

Γ̄1

) 1
Γ̄2

(
1− γ2

Γ̄2

)
...

1
Γ̄L

(
1− γL

Γ̄L

)
dγL...dγ2dγ1 (A.16)

≈ 1
Γ̄1Γ̄2...Γ̄L

∫ 2Rc−1

γ1=0

∫ 2Rc−ψ(γ1)−1

γ2=0
...

∫ 2Rc−ψ(γ1)−ψ(γ2)−...−ψ(γL−1)−1

γL=0
dγL...dγ2dγ1

(A.17)

= AL(Rc)
Γ̄1Γ̄2...Γ̄L

. (A.18)

The steps are justified as follows: (A.16) MacLaurin series for exponential
function exp(−xl) ≈ 1 − xl for xl → 0, (A.17) expanding the resulting
product as

∏
l(1− xl) ≈ 1 for xl → 0; (A.18) is proven in Lemma 10 and the

assumption that the received SNRs are independently distributed, thus we
can interchange the integral bounds.

Lemma 10. For any L ∈ N\{1},

AL(x) =
∫ 2x−1

γL=0

∫ 2x−ψ(γL)−1

γL−1=0
...

∫ 2x−ψ(γL)−...−ψ(γ2)−1

γ1=0
dγ1...dγL−1dγL (A.19)

=(−1)L (1− 2x · eL (−x ln(2))) . (A.20)

Here, eL(y) =
∑

l∈[0:L−1]
yl

l! is the exponential sum function.

Proof. Base case: If L = 2, then (A.19) is

A2(x) =
∫ 2x−1

γ2=0

∫ 2x−ψ(γ2)−1

γ1=0
dγ1dγ2 =

∫ 2x−1

γ2=0

[
2x

1 + γ2
− 1
]

dγ2

= 2x (x · ln(2)− 1) + 1, (A.21)

which is (A.20) for L = 2. So, the theorem holds for L = 2.
Inductive hypothesis: Suppose the theorem holds for all values of L up to
some K ≥ 2.
Inductive step: Let L = K + 1, then (A.19) is

AK+1(x) =
∫ 2x−1

γK+1=0

∫ 2x−ψ(γK+1)−1

γK=0
...

∫ 2x−ψ(γK+1)−...−ψ(γ2)−1

γ1=0
dγ1...dγK︸ ︷︷ ︸

AK(x−ψ(γK+1))

dγK+1

(A.22)

=
∫ 2x−1

γK+1=0

[
(−1)K + 2x

1 + γK+1
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×
∑

l∈[0:K−1]

(−1)K+l+1 1
l! (x− ψ(γK+1))l (ln(2))l

]
dγK+1 (A.23)

=
∫ 2x−1

γK+1=0

[
(−1)K + 2x

1 + γK+1

∑
l∈[0:K−1]

(−1)K+l+1 1
l! (ln(2))l

×
∑
k∈[0:l]

(−1)k
(
l

k

)
xl−kψ(γK+1)k

]
dγK+1 (A.24)

= (−1)KγK+1 + 2x
∑

l∈[0:K−1]

(−1)K+l+1 1
l! (ln(2))l

×
∑
k∈[0:l]

(−1)k
(
l

k

)
xl−k

(ln(1 + γK+1))k+1

(k + 1) (ln(2))k

∣∣∣∣2x−1

γK+1=0
(A.25)

= (−1)K
(

2x − 1− 2x
∑

l∈[0:K−1]

(−1)l 1
l!x

l+1 (ln(2))l+1
∑
k∈[0:l]

(−1)k
(
l

k

)
1

k + 1︸ ︷︷ ︸
1

(l+1)

)

(A.26)

= (−1)K+1 (1− 2x · eK+1 (−x ln(2))) . (A.27)

The steps are justified as follows: (A.23) is our inductive hypothesis; for
(A.24) we have used the binomial formula; (A.27) we have used the following

∑
k∈[0:l]

(−1)k
(
l

k

)
1

k + 1 = 1
l + 1

∑
k∈[0:l]

(−1)k
(
l + 1
k + 1

)
(A.28)

= −1
l + 1

[ ∑
k∈[l+1]

(−1)k
(
l + 1
k

)
+
(
l + 1

0

)
︸ ︷︷ ︸∑

k∈[0:l+1](−1)k(l+1
k )=(1−1)l+1=0

−
(
l + 1

0

)]
= 1
l + 1

(A.29)

and carried out some algebraic manipulations. Equation (A.27) corresponds
to (A.20) for L = K + 1. So, the theorem holds for L = K + 1. Hence, by the
principle of mathematical induction, the theorem holds for all L ∈ N\{1}.

A.3 Lemma 11
Lemma 11. For any L ∈ N, Rc > 0, and RVs Γl ∈ R+,∀l ∈ [1 : L],

Pr

0 ≤
∑
l∈[1:L]

Γl ≤ A1(Rc)

 ≤ 1
L!

(A1(Rc))L∏
l∈[1:L] Γ̄l

, (A.30)
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where A1(Rc) = 2Rc − 1 and pdf fΓl(γl) = 1
Γ̄l

exp
(
− γl

Γ̄l

)
,∀i ∈ [1 : L].

Proof. Let us define a L-fold simplex as

SL :=

(x1, ..., xL) ∈ RL : xl ≥ 0,
∑
l∈[1:L]

Γ̄lxl ≤ A1(Rc)

 . (A.31)

The geometric simplex volume is [Ell76]

Vol (SL) :=
∫
· · ·
∫

SL

dxL...dx1 = 1
L!

(A1(Rc))L∏
l∈[1:L] Γ̄l

. (A.32)

Now, the left hand side of Lemma 11 can be rewritten as

Pr

0 ≤
∑
l∈[1:L]

Γl ≤ A1(Rc)

 = Pr

0 ≤
∑
l∈[1:L]

Γ̄lXl ≤ A1(Rc)

 (A.33)

=
∫
· · ·
∫

SL

∏
l∈[1:L]

exp(−xl)dxL...dx1 (A.34)

≤
∫
· · ·
∫

SL

dxL...dx1. (A.35)

The steps can be justified as follows: in (A.33) and (A.34) we introduce
the RV Xl = Γl

Γ̄l
, with pdf fXl(xl) = exp (−xl) ,∀i ∈ [1 : L]; in (A.35) the

exponential function can be upper-bounded by exp(−x) ≤ 1 for x ≥ 0; (A.35)
is the geometric simplex volume in (A.32).

A.4 Inverse Function

For Rc � 1, the term of the exponential sum function with the highest order
in (5.12) is dominant. Thus, we approximate AL(Rc = x) ≈ y = f(x) to

y = 2xx(L−1) (ln(2))L−1

(L− 1)! = 2xxab. (A.36)
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We reformulate (A.36) as follows

2xxa = y

b
⇔ x

a
2x
a = 1

a
a

√
y

b
⇔ x ln(2)

a
exp

(
x ln(2)
a

)
= ln(2)

a
a

√
y

b

(A.37)

⇔ z exp(z) = ln(2)
a

a

√
y

b
⇔ x = az

ln(2) = a

ln(2)W
(

ln(2)
a

a

√
y

b

)
,

(A.38)

where W (·) is the Lambert W function, i.e., z = g−1(z exp(z)) = W (z exp(z))
is the inverse function of g(z) = z exp(z), for z ≥ −1. For z ≥ e, the Lambert
W function is bounded by [HH07, Theorem 2.7]

W (z) = ln(z)− ln(ln(z)) + Θ
(

ln(ln(z))
ln(z)

)
. (A.39)

Finally, with (A.38) and (A.39) we give an approximation of the inverse
function as

A−1
L (AL) = Rc ≈

L− 1
ln(2) [ln(ζ)− ln(ln(ζ))] , where ζ =

L−1
√

(L− 1)!AL
L− 1 .

(A.40)

A.5 Lemma 12
Lemma 12. For any L ∈ N\{1} and x > 0,

XL(x) = (A1(x))L > L! · AL(x) = YL(x), (A.41)

where AL(x) is given in Lemma 10.

Proof. For x = 0 we have XL(0) = 0 and YL(0) = 0 in (A.41). Next, show
that the slope of XL(x) is larger than the slope of YL(x) for x > 0 and thus
XL(x) > YL(x), x ≥ 0,∀L.

d
dx
XL(x) = d

dx

[
(2x − 1)L

]
= L2x ln(2) (2x − 1)L−1 , (A.42)

d
dx
YL(x) = d

dx

[
L!(−1)L

(
1− 2x

∑
l∈[0:L−1]

1
l! (−x ln(2))l

)]
(A.43)

= L! ln(2)2x(−1)L+1
( ∑
l∈[0:L−1]

(−1)l 1
l! (x ln(2))l
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+
∑

l∈[L−1]

(−1)l 1
(l − 1)! (x ln(2))l−1

︸ ︷︷ ︸
−

∑
l∈[0:L−2](−1)l 1

l! (x ln(2))l

)
(A.44)

= L! ln(2)2x(−1)2L 1
(L− 1)! (x ln(2))L−1 = L2x ln(2) (x ln(2))L−1 . (A.45)

We have to show that

(2x − 1)L−1 > (x ln(2))L−1 for x > 0. (A.46)

Since both sides in (A.46) are equal for x = 0 and have the same exponent,
it is sufficient to show

d
dx

(2x − 1) > d
dx

(x ln(2)) (A.47)

ln(2)2x > ln(2). (A.48)

(A.48) holds for x > 0.

A.6 Derivation of Diversity-Multiplexing
Tradeoff

Based on the outage probability analysis considered before the diversity gains
for JD, SC, and MRC are given by

Gd,JD(Gr) = − lim
Γ̄→∞

ld
(
AL(Gr, Γ̄)

)
− L ld

(
Γ̄
)

ld
(
LΓ̄
) (A.49)

= − lim
Γ̄→∞

(
Gr

ld
(
LΓ̄
)

ld
(
LΓ̄
) +

ld
( 1

(L−1)!

(
r ld(LΓ̄)

)(L−1) (ln(2))(L−1))
ld
(
LΓ̄
) −

L ld
(
Γ̄
)

ld
(
LΓ̄
) )

(A.50)

= L−Gr, (A.51)

Gd,SC(Gr) = − lim
Γ̄→∞

L ld
(
A1(Gr, Γ̄)

)
− L ld

(
Γ̄
)

ld
(
LΓ̄
) (A.52)

= −L lim
Γ̄→∞

(
Gr

ld
(
Γ̄
)

ld
(
LΓ̄
) − ld

(
Γ̄
)

ld
(
LΓ̄
)) (A.53)

= L · (1−Gr), and (A.54)

Gd,MRC(Gr) = − lim
Γ̄→∞

L ld
(
A1(Gr, Γ̄)

)
− ld (L!)− L ld

(
Γ̄
)

ld
(
LΓ̄
) (A.55)
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= −L lim
Γ̄→∞

(
Gr

ld
(
Γ̄
)

ld
(
LΓ̄
) − ld (L!)

L ld
(
LΓ̄
) − ld

(
Γ̄
)

ld
(
LΓ̄
)) (A.56)

= L · (1−Gr), (A.57)

respectively. The steps can be justified as follows: (A.49), (A.52), and (A.55)
are given by substituting (5.11), (5.18), (5.24) into (5.48); in (A.50) we
use the infinite SNR properties of AL

(
Gr, Γ̄

)
in (A.60) and some algebraic

manipulations; for infinite SNR the properties (A.61) hold which yields
(A.51); in (A.53) and (A.56) we use the infinite SNR property of A1

(
Gr, Γ̄

)
in (A.58) and some algebraic manipulations; for infinite SNR the properties
in (A.61) hold which yields (A.54) and (A.57).
Substituting (5.47) into (5.12) the constants AL(Gr, Γ̄) and its special case
A1(Gr, Γ̄) can be given depending on the multiplexing gain r by

lim
Γ̄→∞

A1(Gr, Γ̄) = lim
Γ̄→∞

(
2Gr ld(Γ̄) − 1

)
= lim

Γ̄→∞
2Gr ld(Γ̄), (A.58)

lim
Γ̄→∞

AL(Gr, Γ̄) = lim
Γ̄→∞

(
(−1)L + 2Gr ld(LΓ̄)

×
∑

l∈[0:L−1]

(−1)L+l+1 1
l!
(
r ld(LΓ̄)

)l (ln(2))l
)

(A.59)

= lim
Γ̄→∞

2Gr ld(LΓ̄) 1
(L− 1)!

(
r ld(LΓ̄)

)(L−1) (ln(2))(L−1), (A.60)

where (A.60) can be justified with the infinite SNR properties in (A.62).
Further properties for infinite SNR are:

lim
Γ̄→∞

ld
(
Γ̄
)

ld
(
LΓ̄
) = 1, lim

Γ̄→∞

(L− 1) ld
(
ld
(
LΓ̄
))

ld
(
LΓ̄
) = 0, lim

Γ̄→∞

ld(L!)
L ld

(
LΓ̄
) = 0,

(A.61)

lim
Γ̄→∞

(
ld(LΓ̄)

)(L−1) � lim
Γ̄→∞

(
ld(LΓ̄)

)(L−l)
for l = [2 : L]. (A.62)
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BS base station
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BSC binary symmetric channel
CFO carrier frequency offset
cdf cumulative distribution function
CEO chief executive officer
CI conditionally independent
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DF decode-and-forward
DLC distributed lossless compression
DMS discrete memoryless source
DMC discrete memoryless channel
DMT diversity-multiplexing tradeoff
DTC distributed turbo code
FFT fast Fourier transform
FER frame-error-rate
IFFT inverse fast Fourier transform
IE intra-link error
FC fusion center
i.i.d. independent and identically distributed
IoT internet of things
IoV internet of vehicles
JD joint decoding
JTD joint turbo decoder
LDPC low-density parity-check
LF lossy forwarding
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LLR log likelihood ratio
LTF long training field
M2M machine to machine
MCo multi-connectivity
MIMO multiple-input multiple-output
MRC maximal-ratio combining
MSCC multiterminal source-channel code
MSE mean square error
OFDM orthogonal frequency-division multiplexing
pdf probability density function
pmf probability mass function
RV random variable
SFO sampling frequency offset
SC selection combining
SCo single-connectivity
SNR signal-to-noise ratio
STF short training field
SNRCC systematic non-recursive convolutional code
SRCC systematic recursive convolutional code
URLLC ultra-reliable low latency communications
WLAN wireless local area network
WSN wireless sensor network
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d Distance
G SNR gain
Gc Coding gain
Gd Diversity gain
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H Entropy
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Rc Spectral efficiency
Rcu Channel usage
S Source
Ŝ Source estimate
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X Transmitted channel codeword
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RSW Slepian-Wolf rate region
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η Path-loss exponent
κ Auxiliary variable
ρ Correlation coefficient
σ Variance

Functions
d(·, ·) Distortion measure
f(·) Encoder
fc(·) Update function
ld(·) Binary logarithm
h(·) Binary entropy function
h−1(·) Inverse binary entropy function
ln(·) Natural logarithm
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Q−1(·) Inverse Gaussian complementary cdf
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