6,149 research outputs found

    Analysis of a Cooperative Strategy for a Large Decentralized Wireless Network

    Get PDF
    This paper investigates the benefits of cooperation and proposes a relay activation strategy for a large wireless network with multiple transmitters. In this framework, some nodes cooperate with a nearby node that acts as a relay, using the decode-and-forward protocol, and others use direct transmission. The network is modeled as an independently marked Poisson point process and the source nodes may choose their relays from the set of inactive nodes. Although cooperation can potentially lead to significant improvements in the performance of a communication pair, relaying causes additional interference in the network, increasing the average noise that other nodes see. We investigate how source nodes should balance cooperation vs. interference to obtain reliable transmissions, and for this purpose we study and optimize a relay activation strategy with respect to the outage probability. Surprisingly, in the high reliability regime, the optimized strategy consists on the activation of all the relays or none at all, depending on network parameters. We provide a simple closed-form expression that indicates when the relays should be active, and we introduce closed form expressions that quantify the performance gains of this scheme with respect to a network that only uses direct transmission.Comment: Updated version. To appear in IEEE Transactions on Networkin

    Uplink CoMP under a Constrained Backhaul and Imperfect Channel Knowledge

    Full text link
    Coordinated Multi-Point (CoMP) is known to be a key technology for next generation mobile communications systems, as it allows to overcome the burden of inter-cell interference. Especially in the uplink, it is likely that interference exploitation schemes will be used in the near future, as they can be used with legacy terminals and require no or little changes in standardization. Major drawbacks, however, are the extent of additional backhaul infrastructure needed, and the sensitivity to imperfect channel knowledge. This paper jointly addresses both issues in a new framework incorporating a multitude of proposed theoretical uplink CoMP concepts, which are then put into perspective with practical CoMP algorithms. This comprehensive analysis provides new insight into the potential usage of uplink CoMP in next generation wireless communications systems.Comment: Submitted to IEEE Transactions on Wireless Communications in February 201

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201

    POWER ALLOCATION ALGORITHM FOR MIMO BASED MULTI-HOP COOPERATIVE SENSOR NETWORK

    Get PDF
    Cooperative transmission is a new breed of wireless communication systems that enables the cooperating node in a wireless sensor network to share their radio resources by employing a distributed transmission and processing operation. This new technique offers substantial spatial diversity gains as the cooperating nodes help one another to send data over several independent paths to the destination node. In recent times, an extensive effort has been made to incorporate these systems in the future wireless networks like LTE (Long Term Evolution), IEEE 802.16j (Mobile Multi-hop Relay (MMR) Networks) and IEEE 802.16m (Mobile WiMAX Release 2 or WirelessMAN-Advanced). But, there are few technical issues which need to be addressed before this promising technique is integrated into future wireless networks. Among them, managing transmission power is a critical issue, which needs to be resolved to fully exploit the benefits of cooperative relaying. Optimal Power Allocation, is one such technique that optimally distributes the total transmission power between the source and relaying nodes thus saving a lot of power while maintaining the link quality. In the first part of the thesis, mathematical expressions of the received signals have been derived for different phases of cooperative transmission. Average-Bit-error-rate (ABER), has been taken as a performance metric to show the efficiency of cooperative relaying protocols. In the second part of this Chapter, a multi-hop framework has been presented for the power allocation algorithm with Amplify-and-Forward relaying protocol. The efficiency of the power allocation algorithm has been discussed with different scenarios i.e. First for a three node (2-Hop) wireless network configuration and then for a four node (3-Hop) wireless network configuration. The transmission scenarios (2-Hop and 3-Hop) have been further categorized into multiple cases on the basis of channel quality between source-to-destination, source-to-relay, relay-to-relay and relay-to-destination links.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore