35 research outputs found

    A Computational Method for the Rate Estimation of Evolutionary Transpositions

    Full text link
    Genome rearrangements are evolutionary events that shuffle genomic architectures. Most frequent genome rearrangements are reversals, translocations, fusions, and fissions. While there are some more complex genome rearrangements such as transpositions, they are rarely observed and believed to constitute only a small fraction of genome rearrangements happening in the course of evolution. The analysis of transpositions is further obfuscated by intractability of the underlying computational problems. We propose a computational method for estimating the rate of transpositions in evolutionary scenarios between genomes. We applied our method to a set of mammalian genomes and estimated the transpositions rate in mammalian evolution to be around 0.26.Comment: Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), 2015. (to appear

    Ordering Metro Lines by Block Crossings

    Full text link
    A problem that arises in drawings of transportation networks is to minimize the number of crossings between different transportation lines. While this can be done efficiently under specific constraints, not all solutions are visually equivalent. We suggest merging crossings into block crossings, that is, crossings of two neighboring groups of consecutive lines. Unfortunately, minimizing the total number of block crossings is NP-hard even for very simple graphs. We give approximation algorithms for special classes of graphs and an asymptotically worst-case optimal algorithm for block crossings on general graphs. That is, we bound the number of block crossings that our algorithm needs and construct worst-case instances on which the number of block crossings that is necessary in any solution is asymptotically the same as our bound

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results

    On Weighting Schemes for Gene Order Analysis

    Get PDF
    Gene order analysis aims at extracting phylogenetic information from the comparison of the order and orientation of the genes on the genomes of different species. This can be achieved by computing parsimonious rearrangement scenarios, i.e. to determine a sequence of rearrangements events that transforms one given gene order into another such that the sum of weights of the included rearrangement events is minimal. In this sequence only certain types of rearrangements, given by the rearrangement model, are admissible and weights are assigned with respect to the rearrangement type. The choice of a suitable rearrangement model and corresponding weights for the included rearrangement types is important for the meaningful reconstruction. So far the analysis of weighting schemes for gene order analysis has not been considered sufficiently. In this paper weighting schemes for gene order analysis are considered for two rearrangement models: 1) inversions, transpositions, and inverse transpositions; 2) inversions, block interchanges, and inverse transpositions. For both rearrangement models we determined properties of the weighting functions that exclude certain types of rearrangements from parsimonious rearrangement scenarios

    A barrier for further approximating Sorting By Transpositions

    Full text link
    The Transposition Distance Problem (TDP) is a classical problem in genome rearrangements which seeks to determine the minimum number of transpositions needed to transform a linear chromosome into another represented by the permutations π\pi and σ\sigma, respectively. This paper focuses on the equivalent problem of Sorting By Transpositions (SBT), where σ\sigma is the identity permutation ι\iota. Specifically, we investigate palisades, a family of permutations that are "hard" to sort, as they require numerous transpositions above the celebrated lower bound devised by Bafna and Pevzner. By determining the transposition distance of palisades, we were able to provide the exact transposition diameter for 33-permutations (TD3), a special subset of the Symmetric Group SnS_n, essential for the study of approximate solutions for SBT using the simplification technique. The exact value for TD3 has remained unknown since Elias and Hartman showed an upper bound for it. Another consequence of determining the transposition distance of palisades is that, using as lower bound the one by Bafna and Pevzner, it is impossible to guarantee approximation ratios lower than 1.3751.375 when approximating SBT. This finding has significant implications for the study of SBT, as this problem has been subject of intense research efforts for the past 25 years

    Permutation entropy of of weakly noise-affected

    Get PDF
    L.R. and A.P. contributed equally to this work. Funding: This research received no external funding.Peer reviewedPublisher PD
    corecore