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Abstract
Gene order analysis aims at extracting phylogenetic information from the comparison of the or-
der and orientation of the genes on the genomes of different species. This can be achieved by
computing parsimonious rearrangement scenarios, i.e. to determine a sequence of rearrangements
events that transforms one given gene order into another such that the sum of weights of the
included rearrangement events is minimal. In this sequence only certain types of rearrangements,
given by the rearrangement model, are admissible and weights are assigned with respect to the
rearrangement type. The choice of a suitable rearrangement model and corresponding weights
for the included rearrangement types is important for the meaningful reconstruction. So far the
analysis of weighting schemes for gene order analysis has not been considered sufficiently. In this
paper weighting schemes for gene order analysis are considered for two rearrangement models:
1) inversions, transpositions, and inverse transpositions; 2) inversions, block interchanges, and
inverse transpositions. For both rearrangement models we determined properties of the weight-
ing functions that exclude certain types of rearrangements from parsimonious rearrangement
scenarios.
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1 Introduction

The order of the genes on the chromosomes has changed during evolution by different types
of rearrangement operations. For unichromosomal genomes, like most bacterial and mito-
chondrial genomes, inversions, transpositions, inverse transpositions, and tandem duplication
random loss operations modified the order and/or orientation of the genes. In addition
deletions, duplications, and horizontal transfer changed the gene content. Multichromo-
somal genomes, e.g. nuclear genomes, have been subject to additional interchromosomal
rearrangement operations (e.g. fission, fusion, translocation, and chromosome duplication).

Gene order data has become an important source of phylogenetic information over the last
two decades [14, 22]. The phylogenetic information contained in gene orders can be extracted
with methods based on the maximum maximum parsimony principle, i.e. an explanation for
given gene order data is sought that uses a minimal number of rearrangement operations (but
see also [1]). For a pair of gene orders such an explanation is given by a shortest sequence of
rearrangements that transforms one of the given gene orders into the other. If more than
two gene orders are given a phylogenetic tree with the given gene orders at the leaves and a
minimum number of rearrangements along the edges of the tree, such that a gene order at
the root is transformed into the leaf gene orders, serves as an explanation of the data.

Algorithms for pairwise gene order analysis have been studied extensively for separate
rearrangement operations. Efficient algorithms for the case that only inversions are considered
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are known [15]. In contrast the problem is NP-hard if only transpositions are allowed [9].
But, in order to get reliable reconstructions all rearrangement operations that played a role
during evolution need to be considered. Ideally, different weights should be used for the
different types of rearrangements reflecting their importance in gene order evolution.

There are only a few algorithms for weighted gene order analysis considering more than
one type of rearrangement operation. DERANGE [8, 21] is one of the first algorithms for gene
order analysis. It is a 3-approximation algorithm that considers inversions, transpositions,
and inverse transpositions. The algorithm explores possible rearrangement scenarios greedily
by minimizing the number of breakpoints. Both, the possibility to weight the different
types of rearrangements and to weight the operations by the number of affected genes,
have been implemented. It was shown empirically that the reconstructions obtained with
DERANGE are strongly influenced by the choice of the weights [8], see also [12]. Several
improved approximation algorithms for this set of rearrangement operations have been
introduced [4, 13, 16, 17]. DERANGE and the other algorithms assume the same weight for the
two types of transpositions. The algorithm from [4] allows a weight of 1 for inversions and
a weight in ∈ [1 : 2] for transpositions. Other algorithms allow only fixed weights (1:2 [13]
or 1:1 [16, 17]). With CREx an efficient heuristic for unweighted rearrangement analysis is
available that incorporates tandem duplication random loss as a fourth type of rearrangement
operation [6]. Also for multiple genome rearrangement analysis a heuristic, that is based
on [4], is available that incorporates weights [3].

Block interchange is a generalization of the transposition operation. Since pairwise gene
order analysis for this operation can be solved efficiently [10] this operation has become
an interesting alternative for transpositions. It is an integral part (with inversions and
translocations) of the double cut and join frame work [23] that became a highly active
research area in the last years. The SPRING software [19] and the approach described
in [20] allow for reconstructing pairwise rearrangement scenarios based on inversions and
block interchanges using a corresponding weight ratio of 1:2. Approximation algorithms for
other weighting schemes have been devised in [18]. By allowing for the additional operations
tandem duplication and deletion the heuristic presented in [2] can also compute rearrangement
scenarios consisting of inversions and block interchanges for gene orders with unequal gene
content using a weight of 1 for inversions and 2 for each of the other operations.

All approaches mentioned above assign a (usually two times) larger weight to transpositions
or block interchanges than to inversions. This is justified by the larger number of inversions
than transpositions that can be observed for several biological data sets. But this is not the
case for all data sets, e.g. for metazoan mitogenomes inversions seem to account for only a
small proportion of the rearrangements [7].

Besides the possibility to weight rearrangements by the type of the rearrangement also
weighting by the length of the affected segments (e.g. [5, 8, 12]), the types of the affected
genes, or by other factors that determine the likelihood of a rearrangement (e.g. transcript
structures) might be incorporated. Certain constraints as an extreme case can be introduced
by allowing for infinite weights which excludes certain types of rearrangements. CREx for
instance forbids rearrangement that destroy conserved gene clusters [6].

Weighting schemes for genome rearrangement analysis have not been considered in suffi-
cient detail in the literature [14]. Here we analyze weighting schemes for two rearrangement
models: (1) Inversions, transpositions, and inverse transpositions (Section 3); (2) Inversions,
block interchanges, an inverse transpositions (Section 4). For both cases we derive properties
of weighting schemes that exclude one/more of the rearrangement operations from any
parsimonious reconstruction of genome rearrangement evolution.
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16 On Weighting Schemes for Gene Order Analysis

2 Basic Definitions

In the context of this work a gene order is regarded as a signed permutation π = (π(1), . . . , π(n)),
which is a permutation of the elements {1, . . . , n} where each element has an additional
orientation, denoted by a “+” or “−” sign. Each element of a gene order represents one
genetic marker, e.g. a gene, and the sign its strandedness. If not stated otherwise, we assume
a signed permutation to be directed, i.e. π 6= −π = (−π(n), . . . ,−π(1)). An interval X of
a permutation π is a non-empty subset of (unsigned) elements X ⊆ {1, . . . , n} which are
consecutive with respect to π, i.e. ∃i, j ∈ [1 : n] : X = {|π(k)| : i ≤ k ≤ j}. I(π) gives the
set of all possible intervals of a permutation π. A rearrangement ρ is an operation applied to
a signed permutation π that changes the position and/or orientation of some of the elements
resulting in a new signed permutation denoted as π ◦ ρ. For two rearrangements ρ and ρ′,
with ρ 6= ρ′, and a gene order π it holds that π ◦ ρ 6= π ◦ ρ′. Let R be the set of all n!2n
different rearrangement operations.

Let w : R→ R>0 be a weighting function for rearrangement operations. A classification
into rearrangement types T = {T1, . . . , Tk, Tε} is a partition of R into distinct sets of
rearrangements with all ρ ∈ Tj having the same weight w(ρ) = wTj . The set Tε refers to
rearrangements with a weight of wTε = ∞ and is used for rearrangement operations that
are not regarded. The set of valid rearrangement types is denoted as T|Tε = T \ Tε. A
rearrangement scenario for a permutation π is a sequence of rearrangements S = (ρ1, . . . , ρl)
such that π ◦ ρ1 ◦ . . . ◦ ρl = ι and ∀ : i ∈ [1 : l] : ρi /∈ Tε. The weight of a scenario S is given
by w(S) =

∑|S|
i=1 w(ρi). A scenario for π with minimal weight is called parsimonious. If not

stated otherwise, we consider normalized weights for the admissible rearrangement types, i.e.
the weight for one type of rearrangement operation is divided by the sum of the weights of
all allowed rearrangement types.

Here we consider the rearrangement operations inversions (I), transpositions (T), inverse
transpositions (iT), and block interchanges (BI). In Section 3 the set of valid rearrangement
types T|Tε = {I, T, iT}, with weights wI , wT , and wiT , respectively, is considered. In
Section 4 block interchange with weight wBI is considered instead of transpositions. Each
rearrangement is specified by the intervals it affects. An inversion ρI on a signed permutation
π is defined by the interval A ∈ I(π), where in π ◦ ρI the order of the elements from A is
reversed and the orientation is switched. A transposition ρT is defined by two disjoint and
consecutive intervals A,B ∈ I(π), i.e. A ∪ B ∈ I(π), A ∩ B = ∅. By a transposition the
position of the two intervals is switched in π ◦ ρT . Analogous to a transposition an inverse
transposition ρiT is also defined by two disjoint and consecutive intervals A and B. It is a
combination of transposition and inversion, where after the transposition of A and B an
additional inversion of A is performed. A block interchange ρBI is a generalization of the
transposition in the way that the two intervals A and B do not have to be consecutive.
There might be an interval X in between A and B such that in π ◦ ρBI A and B switch
their positions with respect to X. In the following we denote the rearrangements ρI , ρT , ρiT ,
and ρBI together with the intervals they affect by I(A), T (A,B), iT (A,B), and BI(A,B),
respectively. It holds that T (A,B) = T (B,A) and BI(A,B) = BI(B,A).

3 Inversions, transpositions, and inverse transpositions

First we consider the rearrangement model consisting of the following three types of re-
arrangements: inversions, transpositions, and inverse transpositions. There are several
possibilities to mimic a single rearrangement, i.e. achieve the same effects, by combinations
of rearrangements of other types. In the following we derive the different possibilities for
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replacing one rearrangement of a certain type by a smallest number of rearrangements of the
other type(s).

I Lemma 1. For any rearrangement scenario the following replacements are possible within
the T|Tε = {I, T, iT} model:
1. A transposition T (A,B) can be replaced by each of the following sets of rearrangements

a. three inversions I(A), I(B), and I(A ∪B),
b. one inverse transposition iT (A,B) and one inversion I(A), or
c. two inverse transpositions when the genome has at least three genes. Then at least

one of the following cases holds:
Case i. There exists an interval X such that B ∪X is an interval and X ∩A = ∅ =
X ∩B: iT (A,B ∪X) and iT (A,X).

Case ii. There exists an interval X such that X ∪A is an interval and X ∩A = ∅ =
X ∩B: iT (B,X ∪A) and iT (B,X)

Case iii. There exists a bipartition of A into intervals A1 and A2 (i.e. |A| ≥ 2) such
that A2 ∪B is an interval: iT (B,A2) and iT (B,A1)

Case iv. There is a bipartition of B into intervals B1 and B2 (i.e. |B| ≥ 2) such that
B1 ∪A is an interval: iT (A,B1) and iT (A,B2).

4. An inverse transposition iT (A,B) can be replaced by each of the following sets of re-
arrangements:
a. one transposition T (A,B) and one inversion I(A) or
b. two inversions I(A ∪B) and I(B).

3. An inversion I(A) can be replaced by each of the following sets of rearrangements:
a. inverse transposition(s) and one transposition according to the following cases:

Case i. When at least one gene is not included in A, i.e. there exists an interval X
with X ∩A = ∅ and X ∪A is an interval: iT (A,X) and T (A,X).

Case ii. A includes the whole gene order and can be partitioned into two intervals A1
and A2 (i.e. |A| ≥ 2): iT (A2, A1), iT (A1, A2), T (A1, A2).

b. three inverse transpositions when the gene order has at least three genes. Then at least
one of the following cases holds:
Case i. There exists a partition of A into three intervals A1, A2, and A3 (i.e. |A| ≥ 3)

such that A1∪A2 and A2∪A3 are intervals: iT (A1, A2), iT (A3, A1), and iT (A2, A3).
Case ii. There exists a bipartition of A into two intervals A1 and A2 (i.e. |A| ≥ 2)

and there exists an interval X with A ∩ X = ∅ such that A2 ∪ X is an interval:
iT (A2 ∪X,A1), iT (X,A2), and iT (A1, X).

Case iii. There exists an interval X that can be partitioned into intervals X1 and
X2 (i.e. |X| ≥ 2) with A ∩ X = ∅ such that AX1 is an interval: iT (A,X1),
iT (X1, A ∪X2), and iT (X1, X2).

Case iv. There exist two disjoint intervals X1 and X2 with X1 ∩A = ∅ = X2 ∩A such
that X1 ∪A and A∪X2 are intervals: iT (A,X2), iT (X2, X1), and iT (X2, X1 ∪A).

I Lemma 2. Lemma 1 lists all possibilities (with respect to number and type of the rearrange-
ment operations) to replace a single rearrangement of a certain type ∈ {T, iT, I} by a smallest
number of rearrangements of one or two of the other types of rearrangements ∈ {T, iT, I}.

Proof. By definition of the rearrangement operations it is not possible to replace a single
operation of one type by any single operation of another type. Observe also that a transposi-
tion T (A,B) cannot be replaced by any number of inverse transpositions when the genome
has only two genes, i.e. A and B contain only a single gene and there exists no other gene
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Figure 1 Barycentric plot showing the weighting schemes where transpositions (left), inverse
transpositions (middle), and inversions (right) need to be considered; shaded areas indicate for
each of the inequalities the valid weighting schemes; darker shading indicates the area where all
inequalities hold; the limiting cases, i.e. equality, is annotated by the corresponding equation number
given in bold text; dashed lines give the demarcation line between each pair of the alternatives,
colored dashed or dotted areas indicate which of the alternatives needs to be considered: blue
horizontal lines 2iT, red vertical lines iT+ I, green dots 3I (left) red vertical lines I+T, green dots 2I
(middle) red vertical lines T+iT, green dots 3iT (right); the dotted line and red dots indicate the
weighting schemes considered in [8]; note that the borders of the plot, i.e. weights of 0, are excluded.

in the genome. Moreover, it is easy to see that a transposition cannot be replaced by two
inversions. Hence, the lemma follows with respect to the replacement of transpositions.

Now observe, that any combination of transpositions can neither replace one inversion
nor one inverse transposition. This is because both an inversion and an inverse transposition
change the sign of at least one gene but a transposition cannot change the sign of a gene. It
can also be seen that an inversion cannot be replaced by inverse transpositions when the
genome has only one or two genes. It is also not hard to see that an inversion cannot be
replaced by two or less inverse transpositions. An inversion of the whole genome cannot be
replaced by one inverse transposition plus any number of transpositions. Hence, it follows
that for this case at least two inverse transposition plus one transposition are necessary.
When the genome has only one gene it is not possible to replace an inversion by any number
of inverse transpositions plus transpositions. Thus, the lemma holds also with respect to the
replacement of inverse transpositions and inversions. J

In the following we will only consider gene orders consisting of at least three elements.
Furthermore we exclude the case of the inversion of the complete gene order, i.e. Case 3.b.ii.
The seven replacement possibilities that are listed in Lemma 1 imply certain properties that a
weighting function for the different types of rearrangement operations has to satisfy in order
to make the corresponding rearrangement operation possible for a parsimonious scenario.
These properties can be formulated in the form of inequalities between the different weights.
A graphical representation of the inequalities and their consequences is given in Fig. 1. The
seven inequalities implied by Lemma 1 are:

wT ≤ wI + wiT (1)
wT ≤ 3wI (2)
wT ≤ 2wiT (3)

wiT ≤ wI + wT (4)
wiT ≤ 2wI (5)

wI ≤ wT + wiT (6)

wI ≤ 3wiT (7)
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Each of these inequalities decides if a single rearrangement of a certain type or an altern-
ative more complex, i.e. longer, rearrangement scenario of the other types of rearrangements
is parsimonious. The respective single rearrangement operation can occur in a parsimo-
nious scenario only if all of the corresponding inequalities are satisfied, i.e. (1) to (3) for
transpositions, (4) and (5) for inverse transpositions, and (6) and (7) for inversions (unless
other restrictions exclude one of the corresponding replacement scenarios). If one of these
inequalities is violated the corresponding alternative is more parsimonious. For example,
when inequality (4) is not satisfied an inverse transposition cannot occur in any parsimonious
scenario (unless other restrictions exclude an inversion or a transposition).

In case that a rearrangement operation of a certain type cannot occur in a parsimonious
scenario not all of the replacements that are listed in Lemma 1 might be possible in a
parsimonious scenario. In the following this aspect is discussed in more detail.

There are three alternatives for a transposition: iT + I, 3I, and 2iT with associated
weights: wiT + wI , 3wI , and 2wiT . Thus, one can decide between the three alternatives by
comparing their weights.

iT+I needs to be considered only if wiT +wI ≤ 3wI (⇔ wiT ≤ 2wI) and wiT +wI ≤ 2wiT
(⇔ wI ≤ wiT ).
3I is a feasible alternative only if 3wI ≤ wiT + wI (⇔ wiT ≥ 2wI) and 3wI ≤ 2wiT .
2iT needs to be considered as alternative only if 2wiT ≤ wiT + wI (⇔ wiT ≤ wI) and
2wiT ≤ 3wI .

This set of inequalities “partitions” the set of all weighting schemes where transpositions are
not parsimonious between the three alternatives (in case of equal weights two or three of the
alternatives might be possible). The different sets of the partition are shown as differently
patterned areas in Fig. 1.

For the weighting schemes where inverse transpositions are not parsimonious there are the
two replacements 2I and I + T . The former is possible only if 2wI ≤ wI + wT (⇔ wI ≤ wT )
holds. Similarly the alternatives for the case that an inversion is not parsimonious, i.e. T + iT
and 3iT , can be chosen on the basis of the comparison wT +wiT ≤ 3wiT (⇔ wT ≤ 2wiT ). As
presented in Fig. 1 the remaining weighting schemes are partitioned between the alternatives.
It can be readily verified that for each alternative scenario the corresponding necessary
rearrangement operations are itself not excluded by any of the other inequalities.

Weighting schemes for the rearrangement model with transpositions, inverse transpositions
and inversions as rearrangement operations and the implications of the choice of the weights
on the reconstructions that can be obtained with a greedy heuristic that was called DERANGE
have been discussed in [8]. The weights that have been analyzed in greater detail assumed a
fixed weight for inversions and equal weights for transpositions and inverse transpositions that
are at least as large as the weight for inversions. In particular, the following (unnormalized)
weights have been considered: wI = 1 and weights for transpositions and inverse transpositions
that are “somewhat less to somewhat more than” 2, or more exactly wT = wiT ∈ [1 : 3]. In
terms of normalized weights the corresponding set of weights corresponds to a (half open)
line in the barycentric plot between the center point of the plot at wI = wT = wiT = 1/3

and the middle point of the bottom line (i.e. wI = 0) but excluding the middle point itself.
This line and five selected points (corresponding to unnormalized inversion weight of 1 and
(inverse) transposition weights 1, 1.5, 2, 2.5, and 3) of it are shown in Fig. 1.

For the considered weighting schemes a “phase transition” for the length of the recon-
structions, i.e. the number of rearrangements, made with heuristic DERANGE was observed at
approximately wT = wiT = 2 [8]. The corresponding strong increase of the reconstruction
lengths was observed for random data as well as real, i.e. mitochondrial and bacterial, gene
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20 On Weighting Schemes for Gene Order Analysis

orders. This effect was attributed to the greedy nature of the algorithm that tries to find a
move x, with weight wx removing Bx breakpoints, minimizing wx −Bx and the observation
that Bx is nearly always 1 : 2 for inversions vs. (inverse) transpositions (and not the optimal
case 2 : 3). This leads to the preference of (inverse) transpositions for wiT = wT < 2
and of inversions for wT > 2 inversions. Since more inversions are necessary to remove all
breakpoints the rearrangement scenarios are longer in the latter case.

In the light of the analysis presented here we can add a further explanation for the
observed “phase transition”. Exactly for the unnormalized (inverse) transposition weight of 2
an inverse transposition has equal weight as the alternative consisting of two inversions. For
a weight larger than two inverse transpositions cannot be in a parsimonious rearrangement
scenario but they must be replaced by two inversions, i.e. twice the number of rearrangements.
The other way round inverse transpositions cannot be replaced by this alternative for weights
smaller than two. Based on the empirical results Blanchette et al. [8] suggested to that an
(inverse) transposition weight of “slightly greater than 2 may be an appropriate value”. Our
analysis shows that this is not maintainable for any (optimal/suboptimal) solution, since in
such a weighting inverse transpositions are excluded as they need to be replaced by the more
parsimonious alternative consisting of two inversions. Another “phase transition” should
occur for the reconstructions made with DERANGE (and must occur for optimal reconstruction)
for unweighted (inverse) transposition weights > 3 which makes inversions the only type of
rearrangements that can occur in parsimonious rearrangement scenarios.

4 Inversion, inverse transposition, and block interchange

In this section we study the rearrangement model consisting of inversions, inverse transposi-
tions, and block interchanges, i.e. T|Tε = {I,BI, iT}. It is assumed here that transpositions
are a special case of block interchanges. A block interchange BI(A,B) is called proper when
there exists an interval X 6= ∅ such that X ∩ A = ∅ = X ∩ B and A ∪X and X ∪ B form
intervals. X is called the intermediate interval.

It is clear that for any rearrangement scenario all the replacements that are listed in
Lemma 1 also hold for the rearrangement model T|Tε = {I,BI, iT} when a transposition
T (A,B) is exchanged by a (non-proper) block interchange BI(A,B). In addition the
replacements listed in Lemma 3 are relevant for the T|Tε = {I,BI, iT} model.

I Lemma 3. For any rearrangement scenario the following replacements are possible within
the T|Tε = {I,BI, iT} model:
1. A proper block interchange BI(A,B) with intermediate interval X can be replaced by each

of the following sets of rearrangements
a. three inversions: I(A ∪X), I(A ∪B), I(B ∪X),
b. three inverse transpositions: iT (A ∪X,B), iT (X,A), iT (A,X)
c. one inverse transposition and two inversions: iT (A ∪X,B), I(X), I(A), or
d. two inverse transpositions and one inversion: iT (X,B), iT (A,B), I(A ∪X).

I Lemma 4. Lemmas 1 and 3 list all possibilities (wrt. number and type of rearrangement
operations) to replace a single rearrangement of a certain type ∈ {BI, iT, I} by a smallest
number of rearrangements of one or two of the other types of rearrangements ∈ {BI, iT, I}.

Proof. It is clear that for all replacements listed in Lemma 1 the use of a proper block
interchange instead of transpositions can not lead to a shorter replacement. Hence, by
Lemma 2 it follows that the result holds for all replacements listed in Lemma 1. It remains
to consider replacements for a proper block interchange BI(A,B) as considered in Lemma 3.
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Since inversions and inverse transpositions change the sign of at least one gene it is clear that
BI(A,B) can neither be replaced by a single inversion nor by a single inverse transposition.
Assume that it is possible to replace BI(A,B) by two rearrangements from {I, iT}. Then the
sign changes that are made by the first of the two operations has to be reversed by the second
operation (and no other sign changes can be made by the second operation). Hence, the
interval with the sign changes has to be the same for both operations. Then it is not possible
that both operations are inversions (since then one inversion simply reverses the effect of the
other inversion). It can also not be the case that one or both rearrangements are inverse
transpositions. This is due to the fact that the interval which is inverted is the same for both
operations which implies that their effect is equal to the effect of one transposition. J

Interestingly block interchanges and transpositions can be replaced with the same number
of inversions, i.e. three, but a larger number of rearrangements is necessary if inverse
transpositions or mixed rearrangement types are involved. Another difference of block
interchanges to transpositions, as discussed in Section 3, is that there are two alternatives
consisting of inversions and inverse transpositions.

The replacements given above are captured by a set of inequalities that need to be
satisfied if a certain type of rearrangements can be part of a parsimonious rearrangement
scenario. Since the replacements for inverse transpositions and inversions are the same as for
T|Tε = {I, T, iT} also the corresponding inequalities and properties of the weighting schemes
are the same when replacing T by BI. Thus, in the following only the case of the block
interchange is discussed. Equations (8) to (11) describe the relations of the weights that
render block interchanges impossible if one of them is violated. A visual representation is
shown in Fig. 2. Note that, a transposition (as a special block interchange) can be replaced
by two (instead of three) inverse transpositions and one inversion and inverse transposition
(instead of two for one of the rearrangement types). These replacements would induce tighter
bounds on the weights for block interchanges. But since these replacements are not possible
for proper block interchanges these tighter bounds cannot be applied in general.

wBI ≤ wI + 2wiT (8)
wBI ≤ 2wI + wiT (9)

wBI ≤ 3wI (10)
wBI ≤ 3wiT (11)

For weighting schemes where block interchanges are not possible one or more of the
replacement scenarios must be employed. For each of the six pairs of replacements the
parsimonious replacement is determined by comparing wI and wiT . Weighing schemes where
these two weights are equal are indicated by a dashed line in Fig. 2. Weighing schemes on
this line are a “no man’s land” where all four replacements have equal weight. Above this
line the replacement by three inverse transpositions and below this line the replacement by
three inversions is parsimonious. Interestingly the replacement consisting of inversions and
inverse transpositions is not parsimonious in these areas but only on the “no man’s land”.
For wI = 0.2, wBI = 0.6, wiT = 0.2 where all lines in the plot intersect, block interchanges
and all of its replacements that are listed in Lemma 3 have equal weights.

5 Conclusion and Discussion

In this paper weighting schemes for two rearrangement models have been analyzed formally:
1) inversions, transpositions, and inverse transpositions; 2) inversions, block interchanges,
and inverse transpositions. These rearrangement models are important for the analysis of
unichromosomal genomes with equal gene content. For both models inequalities have been
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Figure 2 Barycentric plot showing the weighting schemes where block interchanges need to be
considered; shaded areas indicate for each of the inequalities the valid weighting schemes; darker
shading indicates the area where all inequalities hold; the limiting cases, i.e. equality, is annotated
by the corresponding equation number given in bold text; the dashed line gives the demarcation line
between the alternative 3I (green dots) and 3iT (blue horizontal lines).

derived that describe weighting schemes for which certain rearrangement types are excluded
from parsimonious scenarios. This has been done by analyzing the possibilities to achieve
the effects of one rearrangement type by rearrangements of one or more other type(s).

The choice of appropriate weights is an open problem. But, if estimates for the frequency
of the different rearrangement operation are available, e.g. from large scale pairwise com-
parisons [7], it seems to be intuitive to use weights that are inversely (e.g. reciprocal or
antiproportional) related to the frequencies. In fact, this is often done to justify chosen
weights, e.g. [8]. But then, our results imply hard bounds for the reconstructibility of
genome rearrangements by parsimony. If, for instance, inversions are more than three times
as frequent as (inverse) transpositions the corresponding reciprocal (unnormalized) weighting
scheme (wI = 1 and wT , wiT > 3) forbids an exact reconstruction by parsimony since
transpositions and inverse transpositions can not be included in any optimal solution for
weighted genome rearrangement problems. These hard bounds might be loosened by using
other inverse functional relations of frequency and weight, e.g. by adjusting the factor in
case of antiproportionality. Introducing constraints enforcing certain proportions of the
frequencies of rearrangement types are another option.

Considering rearrangement models for the case of undirected gene orders (i.e. π = −π),
distinguishing between transpositions and proper block interchanges, or incorporating multi-
chromosomal rearrangements (e.g. [11, 23]) is future work.
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