9,337 research outputs found

    Big Data and Reliability Applications: The Complexity Dimension

    Full text link
    Big data features not only large volumes of data but also data with complicated structures. Complexity imposes unique challenges in big data analytics. Meeker and Hong (2014, Quality Engineering, pp. 102-116) provided an extensive discussion of the opportunities and challenges in big data and reliability, and described engineering systems that can generate big data that can be used in reliability analysis. Meeker and Hong (2014) focused on large scale system operating and environment data (i.e., high-frequency multivariate time series data), and provided examples on how to link such data as covariates to traditional reliability responses such as time to failure, time to recurrence of events, and degradation measurements. This paper intends to extend that discussion by focusing on how to use data with complicated structures to do reliability analysis. Such data types include high-dimensional sensor data, functional curve data, and image streams. We first provide a review of recent development in those directions, and then we provide a discussion on how analytical methods can be developed to tackle the challenging aspects that arise from the complexity feature of big data in reliability applications. The use of modern statistical methods such as variable selection, functional data analysis, scalar-on-image regression, spatio-temporal data models, and machine learning techniques will also be discussed.Comment: 28 pages, 7 figure

    Applications of a finite-dimensional duality principle to some prediction problems

    Get PDF
    Some of the most important results in prediction theory and time series analysis when finitely many values are removed from or added to its infinite past have been obtained using difficult and diverse techniques ranging from duality in Hilbert spaces of analytic functions (Nakazi, 1984) to linear regression in statistics (Box and Tiao, 1975). We unify these results via a finite-dimensional duality lemma and elementary ideas from the linear algebra. The approach reveals the inherent finite-dimensional character of many difficult prediction problems, the role of duality and biorthogonality for a finite set of random variables. The lemma is particularly useful when the number of missing values is small, like one or two, as in the case of Kolmogorov and Nakazi prediction problems. The stationarity of the underlying process is not a requirement. It opens up the possibility of extending such results to nonstationary processes.Comment: 15 page

    Selfdecomposability and selfsimilarity: a concise primer

    Get PDF
    We summarize the relations among three classes of laws: infinitely divisible, selfdecomposable and stable. First we look at them as the solutions of the Central Limit Problem; then their role is scrutinized in relation to the Levy and the additive processes with an emphasis on stationarity and selfsimilarity. Finally we analyze the Ornstein-Uhlenbeck processes driven by Levy noises and their selfdecomposable stationary distributions, and we end with a few particular examples.Comment: 24 pages, 3 figures; corrected misprint in the title; redactional modifications required by the referee; added references from [16] to [28];. Accepted and in press on Physica

    Range descriptions for the spherical mean Radon transform

    Get PDF
    The transform considered in the paper averages a function supported in a ball in \RR^n over all spheres centered at the boundary of the ball. This Radon type transform arises in several contemporary applications, e.g. in thermoacoustic tomography and sonar and radar imaging. Range descriptions for such transforms are important in all these areas, for instance when dealing with incomplete data, error correction, and other issues. Four different types of complete range descriptions are provided, some of which also suggest inversion procedures. Necessity of three of these (appropriately formulated) conditions holds also in general domains, while the complete discussion of the case of general domains would require another publication.Comment: LATEX file, 55 pages, two EPS figure
    corecore