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Abstract. Some of the most important results in prediction theory and time
series analysis when finitely many values are removed from or added to its
infinite past have been obtained using difficult and diverse techniques ranging
from duality in Hilbert spaces of analytic functions (Nakazi, 1984) to linear
regression in statistics (Box and Tiao, 1975). We unify these results via a finite-
dimensional duality lemma and elementary ideas from the linear algebra. The
approach reveals the inherent finite-dimensional character of many difficult
prediction problems, the role of duality and biorthogonality for a finite set
of random variables. The lemma is particularly useful when the number of
missing values is small, like one or two, as in the case of Kolmogorov and
Nakazi prediction problems. The stationarity of the underlying process is
not a requirement. It opens up the possibility of extending such results to
nonstationary processes.

1. Introduction

Irregular observations, missing values and outliers are common in time series
data (Box and Tiao (1975), Brubacher and Wilson (1976)). A framework for dealing
with such anomalies is that of X = {Xt}t∈Z being a C-valued, mean-zero, weakly
stationary stochastic process with the autocovariance function γ = {γk}k∈Z and the
spectral density function f : E[XkX̄l] = γk−l = (2π)−1

∫ π

−π
e−i(k−l)λf(λ)dλ. Then,

the problem can be formulated as that of predicting or approximating an unknown
value X0 based on the observed values {Xt; t ∈ S} for a given index set S ⊂ Z\{0}
and the knowledge of the autocovariance of the process. Such a problem is quite
important to applications in business, economics, engineering, physical and natural
sciences etc., and belongs to the area of prediction theory of stationary stochastic
processes developed by Wiener (1949) and Kolmogorov (1941) (see also Pourahmadi
(2001)). By restricting attention to linear predictors and using the least-squares
criterion to assess the goodness of predictors, a successful solution seeks to address
the following two goals:

(P1) Express the linear least-squares predictor of X0, denoted by X̂0(S), and
the prediction error X0 − X̂0(S) in terms of the observable {Xt; t ∈ S}.

(P2) Express the prediction error variance σ2(S) = σ2(f, S) := E|X0 − X̂0(S)|2
in terms of f .
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The link between solutions of finite and infinite past prediction problems serves
as a natural bridge between time series analysis and prediction theory. From the
dawn of modern time series analysis, the works of Slutsky and Yule in the 1920’s
and Wold in the 1930’s have been instrumental in achieving the goal (P1) in the
time-domain using the finite past. Subsequently, the classes of autoregressive (AR),
moving-average (MA) and mixed autoregressive and moving-average (ARMA) mod-
els have played major roles in the development of time-domain techniques using
the autocovariance function of the process (see Box et al. (1994)). Nowadays, these
techniques are implemented by solving the Yule–Walker equations via the celebrated
Durbin–Levinson algorithm and the innovation algorithm (see Brockwell and Davis
(1991)). On the other hand, the spectral-domain techniques in prediction of sta-
tionary processes, advocated by Kolmogorov and Wiener in the early 1940’s, rely on
the spectral representations of the process and its covariance (Kolmogorov (1941),
Wiener (1949), Pourahmadi (2001)).

The focus in prediction theory is more on the goal (P2). The celebrated Szegö–
Kolmogorov–Wiener theorem gives the variance of the one-step ahead prediction
error based on the infinite past indexed by the “half-line” S0 := {. . . ,−2,−1} by

(1.1) σ2(f, S0) = exp
(

1
2π

∫ π

−π

log f(λ)dλ

)
> 0

if log f is integrable, and otherwise σ2(S0) = 0. However, when the first n consecu-
tive integers are removed from S0 or for the index set S−n := {. . . ,−n−2,−n−1},
n ≥ 0, the formula for the (n + 1)-step prediction error variance (Wold (1938),
Kolmogorov (1941)) is

(1.2) σ2(f, S−n) = |b0|2 + |b1|2 + · · ·+ |bn|2, n = 0, 1, . . . ,

where {bj}, the MA coefficients of the process, is related to the Fourier coefficients
of log f and |b0|2 = σ2(S0) (see Nakazi and Takahashi (1980) and Pourahmadi
(1984); see also Section 3 below).

A result similar to (1.1) for the interpolation of a single missing value corre-
sponding to the index set S∞ := Z \ {0} was obtained by Kolmogorov (1941).
Specifically, the interpolation error variance is given by

(1.3) σ2(f, S∞) =
(

1
2π

∫ π

−π

f(λ)−1dλ

)−1

> 0

if f−1 ∈ L1 := L1([−π, π], dλ/(2π)), and otherwise σ2(S∞) = 0. The corresponding
prediction problem for the smaller index set Sn := {. . . , n− 1, n} \ {0}, n ≥ 0, was
stated as open in Rozanov (1967, p. 107) and is perhaps one of the most challenging
problems in prediction theory next to (1.1). The index set Sn is, indeed, of special
interest as it forms a bridge connecting S0 and S∞; it reduces to S0 when n = 0
and tends to S∞ as n →∞. In a remarkable paper in 1984, Nakazi using delicate,
but complicated analytical techniques (and assuming that f−1 ∈ L1) showed that

(1.4) σ2(f, Sn) =
(
|a0|2 + |a1|2 + · · ·+ |an|2

)−1
, n = 0, 1, . . . ,

where {aj} is related to the AR parameters of the process (see Section 3 below).
From (1.2) and (1.4), the question naturally arises as why there is such an

“inverse-dual” relationship between them. In this regard, it is worth noting that
Nakazi’s technique, if interpreted properly, amounts to reducing computation of
σ2(f, Sn) to that of the (n+1)-step prediction error variance of another stationary

2



process {Yt} with the spectral density function f−1 which turns out to be the
dual of {Xt} (see Definition 2.1 and Section 3.5). His result and technique have
spawned considerable research in this area in the last two decades; see Miamee and
Pourahmadi (1988), Miamee (1993), Cheng et al. (1998), Frank and Klotz (2002),
Klotz and Riedel (2002) and Bondon (2002). A unifying feature of most of the
known results thus far seems to be a fundamental duality principle (Cheng et al.
(1998), Urbanik (2000)) of the form

(1.5) σ2(f, S) · σ2(f−1, Sc) = 1,

where Sc is the complement of S in Z \ {0} and f−1 ∈ L1. The first occurrence
of (1.5) seems to be in the 1949 Russian version of Yaglom (1963) for the case
of deleting finitely many points from S∞. Proof of (1.5), in general, like those of
the main results in Nakazi (1984), Miamee and Pourahmadi (1988), Cheng et al.
(1998), and Urbanik (2000), is long, unintuitive and relies on duality techniques
from functional and harmonic analysis and requires f−1 ∈ L1 which is not natural
for an index set like Sn. Surprisingly, a version of (1.5) in a rather disguised form
was developed in Grenander and Rosenblatt (1954, Theorem 1), as the limit of a
quadratic form involving Szegö’s orthogonal polynomials on the unit circle, see also
Simon (2005, p.165). Unfortunately, it had remained dormant and not used in the
context of prediction theory, except in Pourahmadi (1993).

In this paper, we establish a finite-dimensional duality principle (Lemma 2.4),
which encapsulates (1.5) in a transparent and useful manner. The concept of dual
of a random vector plays a central role as does the Cholesky decomposition of its
covariance matrix. We use this duality principle to unify and solve some prediction
problems related to removing a finite number of indices from Sn and S∞. The
outline of the paper is as follows. In Section 2, we present the main lemma, some
auxiliary facts about dual of a random vector and their consequences for computing
the prediction error variances and predictors. In Section 3, using the lemma we first
solve three finite prediction problems for X0 based on the knowledge of {Xt; t ∈ K}
with K = {−m, . . . , n}\(M ∪{0}), m,n ≥ 0, where M , the index set of the missing
values, is relatively small. Then we obtain the solutions of Kolmogorov, Nakazi,
and Yaglom’s prediction problems in a unified manner by studying the limit of the
solutions by letting m → ∞, followed by n → ∞. In particular, we find explicit
formula for the dual of the process {Xt; t ≤ n} for a fixed n, which does not seem
to be possible using the technique of Urbanik (2000), Klotz and Riedel (2002) and
Frank and Klotz (2002). This is useful in developing series representations for
predictors and interpolators, and sheds light on the approaches of Bondon (2002)
and Salehi (1979). In Section 4, we close the paper with some discussions.

Finally, we should point out that the two simple formulas (1.2) and (1.4) and
their extensions provide explicit and informative expressions for the prediction er-
ror variances. Like their predecessors (1.1) and (1.3), they serve as yardsticks to
assess the impact (worth) of observations in predicting X0 when they are added
to or deleted from the infinite past and highlight the role of the autoregressive
and moving-average parameters for this purpose; see Pourahmadi and Soofi (2000).
In fact, Bondon (2002, Theorem 3.3; 2005) shows that a finite number of missing
values do not affect the prediction of X0 if and only if the AR parameters corre-
sponding to the indices of those missing values are zero. Furthermore, the examples
in Section 3 indicate how the interpolators of the missing values can be computed
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rigorously without resorting to formal derivations (Box and Tiao (1975), Brubacher
and Wilson (1976) and Budinsky (1989)).

2. A Finite-Dimensional Duality Principle

In this section, an elementary result is stated as a finite-dimensional duality
lemma, which we use in Section 3 to solve and unify various challenging prediction
problems through the limit of the solutions of their finite past counterparts.

For a finite index set N , let HN be the class of vectors X = (Xj)j∈N of random
variables with zero-mean and finite variance on a probability space (Ω,F , P ):

HN := {X = (Xj)j∈N ; Xj ∈ L2(Ω,F , P ), E[Xj ] = 0, j ∈ N}.

As usual, we consider the inner product (Y, Z) := E[Y Z̄] and norm ‖Y ‖ :=
E[|Y |2]1/2 for random variables in L2(Ω,F , P ).

Definition 2.1. Let N be a finite index set and X ∈ HN . A random vector
Y ∈ HN is called the dual of X if it satisfies the following conditions:

(i) The components Yj , j ∈ N , belong to sp{Xk; k ∈ N}.
(ii) X and Y are biorthogonal : (Xi, Yj) = δij for i, j ∈ N, or Cov(X, Y ) = I.

For X ∈ HN , l ∈ N and K ⊂ N , we write X̂l(K) for the linear least squares
predictor of Xl based on {Xk; k ∈ K}, i.e., the orthogonal projection of Xl onto
sp{Xk; k ∈ K}. For the sake of completeness and ease of reference, in the next
two propositions we summarize the characterization, interpretation and other basic
information about the dual of a random vector in terms of its covariance matrix
and certain prediction errors.

Proposition 2.2. Let N be a finite index set and X ∈ HN . Then, the following
conditions are equivalent:

(1) The components Xj, j ∈ N , of X are linearly independent.
(2) The covariance matrix Γ = (γi,j)i,j∈N of X with γi,j = (Xi, Xj) is nonsin-

gular.
(3) X is minimal: Xj /∈ sp{Xi; i ∈ N, i 6= j} for j ∈ N .
(4) X has a dual.

Proof. Clearly, (1)–(3) are equivalent. Assume (3) and define Y = (Yj)j∈N ∈ HN

by Yj = (Xj − X̂j(Nj))/‖Xj − X̂j(Nj)‖2, where Nj := N \ {j}. Then Yj belongs
to sp{Xk; k ∈ N}, and (Xi, Yj) = δij holds:

(Xj , Yj) =
(Xj , Xj − X̂j(Nj))
‖Xj − X̂j(Nj)‖2

=
(Xj − X̂j(Nj), Xj − X̂j(Nj))

‖Xj − X̂j(Nj)‖2
= 1,

and for i 6= j,

(Xi, Yj) =
(Xi, Xj − X̂j(Nj))
‖Xj − X̂j(Nj)‖2

= 0.

Thus Y is a dual of X, and hence (4). Conversely, assume (4) and let Y be a dual of
X. If X is not minimal, then there exists j ∈ N such that Xj ∈ sp{Xi; i ∈ N, i 6=
j}, that is, Xj =

∑
i 6=j ciXi for some ci ∈ C, and, since (Xi, Yj) = 0 for i 6= j,

we have (Xj , Yj) =
∑

i 6=j ci(Xi, Yj) = 0. However, this contradicts (Xj , Yj) = 1.
Thus, X is minimal, and (3) follows. �
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The proof reveals the importance of the “standardized” interpolation errors of
components of X in defining its dual. More explicit representations and other
properties of the dual are given next.

Proposition 2.3. For a finite index set N , let X ∈ HN with covariance matrix Γ.
Assume that X has a dual Y . Then the following assertions hold:

(1) The dual Y is unique.
(2) The dual Y is given by Yj = (Xj − X̂j(Nj))/‖Xj − X̂j(Nj)‖2 with Nj :=

N \ {j} for j ∈ N .
(3) The dual Y is also given by Y = Γ−1X or Yi =

∑
j∈N γi,jXj, i ∈ N , where

Γ−1 = (γi,j)i,j∈N .
(4) The covariance matrix of Y is equal to Γ−1.
(5) The dual of Y is X.
(6) sp{Xj ; j ∈ N} = sp{Yj ; j ∈ N}.

Proof. First, we prove (1). Let Z be another dual of X and j ∈ N be fixed. Then
(Xi, Yj −Zj) = 0 for all i ∈ N . However, since Yj −Zj ∈ sp{Xk; k ∈ N}, it follows
that Yj = Zj and hence (1). (2) follows from the proof of Proposition 2.2. To prove
(3) and (4), we put Y = Γ−1X. Then Yj ∈ sp{Xk; k ∈ N}. Since Γ−1 is Hermitian,
we have

Cov(X, Y ) = Cov(X, X) Γ−1 = ΓΓ−1 = I,

Cov(Y, Y ) = Γ−1Cov(X, X) Γ−1 = Γ−1Γ Γ−1 = Γ−1.

Thus (3) and (4) follow. Finally, we obtain (5) and (6) from (3) and (4). �

From the two representations in Proposition 2.3 (2), (3) for the dual Y , we find
the following representation for the standardized interpolation error:

Xi − X̂i(Ni)
‖Xi − X̂i(Ni)‖2

=
∑

j∈N
γi,jXj with Ni = N \ {i}.

In particular, γi,i = 1/‖Xi − X̂i(Ni)‖2. Notice that these equalities hold even if Γ
is not a Toeplitz matrix or X is not a segment of a stationary process. For some
statistical/physical interpretations of the entries of Γ−1, the inverse of a stationary
covariance matrix, see Bhansali (1990) and references therein.

Now, we are ready to state the main duality lemma.

Lemma 2.4. Let N be a finite index set. Assume that X ∈ HN has the dual
Y ∈ HN and that K, M and a singleton {l} partition N , i.e.,

N = K ∪ {l} ∪M (disjoint union).

Then the following equalities hold:

(a) Xl − X̂l(K) =
Yl − Ŷl(M)

‖Yl − Ŷl(M)‖2
.

(b) ‖Xl − X̂l(K)‖ =
1

‖Yl − Ŷl(M)‖
.

Proof. Since X and Y are minimal and biorthogonal, Xl − X̂l(K) and Yl − Ŷl(M)
are nonzero and belong to the same one-dimensional space, that is, the orthogonal
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complement of sp{Xj ; j ∈ K} ⊕ sp{Yj ; j ∈ M} in sp{Xj ; j ∈ N}. Therefore, one is
a multiple of the other; for some c ∈ C,

Xl − X̂l(K) = c
Yl − Ŷl(M)

‖Yl − Ŷl(M)‖2
.

But, since c is equal to

c
(Yl − Ŷl(M), Yl − Ŷl(M))

‖Yl − Ŷl(M)‖2
= c

(Yl − Ŷl(M), Yl)
‖Yl − Ŷl(M)‖2

= (Xl−X̂l(K), Yl) = (Xl, Yl) = 1,

we get (a) and (b) and hence the lemma. �

In the applications in Section 3, we use this duality in the form of the next
lemma which gives a way of computing the predictor coefficients and prediction
error variance using the inverse matrix Γ−1 = (γi,j).

Lemma 2.5. Let N , X = (Xj)j∈N , Y = (Yj)j∈N , K, M and {l} be as in Lemma
2.4 with Γ = (γi,j)i,j∈N the covariance matrix of X and Γ−1 = (γi,j)i,j∈N . Then

Xl − X̂l(K) =
∑

i∈M∪{l}
α′iYi,(2.1)

‖Xl − X̂l(K)‖2 = α′l,(2.2)

where (α′i)i∈M∪{l} is the solution to the following system of linear equations:

(2.3)
∑

i∈M∪{l}
α′iγ

i,j = δlj , j ∈ M ∪ {l}.

In particular, the prediction error variance σ2
l (K) = ‖Xl − X̂l(K)‖2 is given by

(2.4) σ2
l (K) = the (l, l)-entry of the inverse of (γi,j)i,j∈M∪{l},

and the predictor coefficients αk in X̂l(K) =
∑

k∈K αkXk are given by

(2.5) αk = −
∑

i∈M∪{l}
α′iγ

i,k, k ∈ K,

whence we have

(2.6) X̂l(K) = −
∑

k∈K

(∑
i∈M∪{l}

α′iγ
i,k

)
Xk.

Proof. Since Yj ’s are linearly independent, Lemma 2.4 (a) shows that Xl − X̂l(K)
is uniquely expressed in the form (2.1). Then α′l = ‖Yl − Ŷl(M)‖−2, which, in view
of Lemma 2.4 (b), is equal to ‖Xl − X̂l(K)‖2, and (2.2) holds. Since (Xi, Yj) = δij

and (Yi, Yj) = γi,j , the predictor coefficients αk in X̂l(K) =
∑

k∈K αkXk satisfy

αk = (X̂l(K), Yk) =
(

Xl −
∑

i∈M∪{0}
α′iYi, Yk

)
= −

∑
i∈M∪{0}

α′iγ
i,k.

Thus (2.5), whence (2.6). Similarly, for j ∈ M ∪ {l}, we have (X̂l(K), Yj) = 0 and∑
i∈M∪{l}

α′iγ
i,j =

∑
i∈M∪{l}

α′i(Yi, Yj) = (Xl − X̂l(K), Yj) = δlj .

Therefore, (2.3) follows. Finally, we obtain (2.4) from (2.2) and (2.3). �
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Recall that the predictor coefficients αk = αk,l(K) in X̂l(K) =
∑

k∈K αkXk

and the prediction error variance σ2 = σ2
l (K) = ‖Xl − X̂l(K)‖2 are traditionally

computed from (γi,j)i,j∈K∪{l} by solving the normal equations:

(2.7)


∑

k∈K
αkγk,j = γl,j , j ∈ K,

σ2 = γl,l −
∑

k∈K
αkγk,l.

Alternatively, one could write the above as an analogue of the Yule–Walker equa-
tions:

(2.8) γl,j −
∑

k∈K
αkγk,j = δljσ

2, j ∈ K ∪ {l}.

Then σ2 = σ2
l (K) can be identified as

(2.9) σ2
l (K) =

[
the (l, l)-entry of the inverse of (γi,j)i,j∈K∪{l}

]−1
.

In addition, using the Cramer’s rule, one may write σ2 in (2.9) as the ratio of the
two relevant determinants: σ2 = det(γi,j)i,j∈K∪{l}/ det(γi,j)i,j∈K .

In spite of the simplicity of (2.7)–(2.9), they are not convenient for the study of
the asymptotic behaviors of the predictor coefficients and predictor variance as K
gets large. The method of computation in Lemma 2.5 becomes particularly useful
when K is large but M is small (see Section 3.2 below).

3. Applications to Prediction Problems

In this section, we illustrate the role of the finite duality principle (Lemmas
2.4 and 2.5) in unifying some diverse prediction problems for a zero-mean, weakly
stationary process {Xj}j∈Z with the autocovariance function γ = {γj}j∈Z: γi−j =
(Xi, Xj).

For simplicity, we assume that {Xj}j∈Z is purely nondeterministic, so it admits
the MA representation (Wold decomposition)

(3.1) Xj =
∑j

k=−∞
bj−kεk, j ∈ Z,

where {εj}j∈Z is the normalized innovation of {Xj}j∈Z defined by

εj := {Xj − X̂j({. . . , j − 2, , j − 1})}/‖Xj − X̂j({. . . , j − 2, , j − 1})‖, j ∈ Z,

and {bk}∞k=0 is the MA coefficients given by bk := (X0, ε−k). We define a sequence
of complex numbers {ak}∞k=0 by the relation

(3.2)
∑j

k=0
bkaj−k = δ0j , j ≥ 0.

If the series
∑∞

j=0 ajX−j is mean-convergent, then (3.1) can inverted as

(3.3) εj =
∑j

k=−∞
aj−kXk, j ∈ Z.

This is essentially the same as the AR representation (see Pourahmadi (2001)), and
we call {ak} the AR coefficients of {Xj}j∈Z. As suggested in (1.2) and (1.4), these
{bk} and {ak} play an important role in prediction problems.
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3.1. Finite Prediction Problems with Missing Values. Let M be a finite
set of integers that does not contain zero. Throughout this section, it represents
the index set of missing (unknown) values when predicting X0. For given M ,
we take the integers m,n ≥ 0 so large that M ⊂ N := {−m, . . . , n}, and put
K = N \ (M ∪ {0}), which represents the index set of the observed values, so that
we have the partition N = K ∪ {0} ∪ M as in Lemma 2.4. We start with the
prediction problem for a finite index set K. Once the problem is solved for such a
K, the solutions for infinite index sets Sn \M and S∞ \M are obtained by taking
the limit of the solutions, first as m →∞, and then n →∞.

Traditionally, the coefficients of the finite linear predictor X̂0(K) and its predic-
tion error variance σ2(K) = ‖X0−X̂0(K)‖2 are expressed in terms of the covariance
function γ, using the normal equations (2.7). However, the results so obtained are
not convenient for studying the asymptotic behaviors of the predictor coefficients
as m → ∞ and/or n → ∞. The problem can be made much simpler by the fi-
nite duality principle and some fundamental facts about the finite MA and AR
representations, as we explain now (see also Pourahmadi (2001)).

For the future segment {Xj}∞j=0 of the process, we define its normalized innova-
tion {εj,0}∞j=0 by the Gram–Schmidt method: ε0,0 := X0/‖X0‖ and

εj,0 := {Xj − X̂j({0, . . . , j − 1})/‖Xj − X̂j({0, . . . , j − 1})‖, j ≥ 1.

Then {Xj} and {εj,0} admit the following finite MA and AR representations:

Xj =
∑j

k=0
bj−k,jεk,0, εj,0 =

∑j

k=0
aj−k,jXk, j ≥ 0.

Here {bk,j}j
k=0 is defined by bk,j := (Xj , εj−k,0) and {ak,j}j

k=0 by∑j

k=i
bj−k,jak−i,k = δij or

∑j

k=i
aj−k,jbk−i,k = δij , i ≤ j.

These finite MA and AR coefficients converge to their infinite counterparts:

(3.4) lim
j→∞

bk,j = bk, lim
j→∞

ak,j = ak.

If we consider {Xj}∞j=−m instead of {Xj}∞j=0, then by stationarity, it follows that

(3.5) Xj =
∑j

k=−m
bj−k,m+jεk,−m, εj,−m =

∑j

k=−m
aj−k,m+jXk, j ≥ −m,

where {εj,−m}∞j=−m is the normalized innovation of {Xj}∞j=−m defined in the same
way. We notice that

(3.6) εj = lim
m→∞

εj,−m, j ∈ Z.

Thus, the representations in (3.5) reduce to (3.1) and (3.3) as m →∞.
Recall that N = {−m, . . . , n} and let X be the vector (Xj)j∈N with covariance

matrix Γ = (γi−j)i,j∈N . From Proposition 2.3 (3), its dual Y is given by Y = Γ−1X.
Let ε be the normalized innovation vector of X, i.e., ε := (εj,−m)j∈N . Then it
follows from (3.5) that

X = Bε, ε = AX,

where A and B are the lower triangular matrices with (i, j)-entries ai−j,m+i and
bi−j,m+i for −m ≤ j ≤ i ≤ n, respectively. Since A = B−1 and Γ = BB∗, we have

Γ−1 = A∗A, Y = A∗ε.
8



Thus, the (i, j)-entry γi,j of Γ−1 and the j-th entry Yj of Y have the representations

(3.7) γi,j =
∑n

k=i∨j
āk−i,m+kak−j,m+k, Yj =

∑n

k=j
āk−j,m+kεk,−m,

which are certainly more conducive to studying their limits as first m → ∞ and
then n →∞, see (3.4) and (3.6).

Now, we are ready to express the predictor X̂0(K), the prediction error X0 −
X̂0(K) and its variance σ2(K) as prescribed by Lemma 2.5. In particular, it follows
from (2.1), (2.4) and (3.7) that
(3.8)
σ2(K) = the (0, 0)-entry of the inverse of

(∑n

k=i∨j
āk−i,m+kak−j,m+k

)
i,j∈M∪{0}

and

(3.9) X0 − X̂0(K) =
∑

i∈M∪{0}
α′i

(∑n

k=i
āk−i,m+kεk,−m

)
,

where α′i’s are as in Lemma 2.5 with l = 0.
To highlight some far-reaching consequences of (3.8) and (3.9), a few special cases

corresponding to the classical prediction problems of Kolmogorov (1941), Yaglom
(1963) and Nakazi (1984) are singled out and listed as examples in the next section
according to the cardinality of the index set M of the missing values.

3.2. Examples. In this section, we discuss three distinct examples of the use of
the finite duality principle and illustrate the process of obtaining results for the two
infinite index sets S = Sn \M and S = S∞ \M .

Since {Xj}j∈Z is purely nondeterministic, it has the spectral density function f
with log f ∈ L1: γj = (2π)−1

∫ π

−π
e−ijλf(λ)dλ. Also, there exists an outer function

h in the Hardy class H2 such that f = |h|2 and h(0) > 0, and we have

(3.10) h(z) =
∑∞

k=0
bkzk,

1
h(z)

=
∑∞

k=0
akzk

in the unit disc. This shows that f−1 ∈ L1 if and only if {ak} is square summable.
Using (3.10), which should be compared with (3.1)–(3.3), we can define the MA
and AR coefficients in an analytical way.

Example 3.1 (The Finite Kolmogorov–Nakazi Problem). This is a finite interpo-
lation problem corresponding to K = {−m, . . . , n} \ {0} and M = φ (empty set),
and the solution of (2.3) is α′0 = 1/γ0,0. Consequently, from (3.7)–(3.9), we have

(3.11) σ2(K) =
(∑n

k=0
|ak,m+k|2

)−1

and

(3.12) X0 − X̂0(K) =
(∑n

k=0
|ak,m+k|2

)−1 ∑n

k=0
āk,m+kεk,−m.

Next, we show that (3.11) and (3.12) are precursors of important results in
prediction theory due to Kolmogorov (1941), Masani (1960), and Nakazi (1984).

The result (1.4) of Nakazi (1984) for Sn = {. . . , n − 1, n} \ {0} is obtained by
taking the limit of (3.11) as m → ∞ (without assuming f−1 ∈ L1). Indeed, by
(3.4), we see that (3.11) gives

(3.13) σ2(Sn) =
(∑n

k=0
|ak|2

)−1

.
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Also, in view of (3.6), it follows from (3.12) that

(3.14) X0 − X̂0(Sn) =
(∑n

k=0
|ak|2

)−1 ∑n

k=0
ākεk.

The solution (1.3) of the Kolmogorov (1941) interpolation problem with S∞ =
Z \ {0} follows from (3.13) by taking the limit as n → ∞, provided that {ak} is
square summable. Thus, as in Kolmogorov (1941), assuming that {Xt} is minimal
or f−1 ∈ L1, we obtain

σ2 (S∞) =
(∑∞

k=0
|ak|2

)−1

=
(

1
2π

∫ π

−π

f(λ)−1dλ

)−1

.

Under the same minimality condition, the limit of (3.14) as n →∞, leads to

X0 − X̂0(S∞) =
(∑∞

k=0
|ak|2

)−1 ∑∞

k=0
ākεk,

which is Masani’s (1960) representation of the two-sided innovation of {Xj} at
time 0. It is instructive to note that this is a moving average in terms of the future
innovations. In fact, the source of such moving average representation can be traced
to (3.7) and (3.14). A version of (3.14) seems to have appeared first in Box and
Tiao (1975) in the context of intervention analysis; see Pourahmadi (1989), and
Pourahmadi (2001, Section 8.4) for a more rigorous derivation, detailed discussion
and connection with outlier detection.

Our second example corresponds to M having cardinality one and hence involves
inversion of 2× 2 matrices, no matter how large K is.

Example 3.2 (The Finite Past with a Single Missing Value). This problem cor-
responds to m > 0, n = 0, K = {−m, . . . ,−1} \ {−u} and M = {−u}, where
1 ≤ u ≤ m, so that X−u from the finite past of length m is missing. By (3.7), the
2× 2 matrix for solving (2.3) is(

γ−u,−u γ−u,0

γ0,−u γ0,0

)
=

( ∑u
k=0 |au−k,m−k|2 a0,m āu,m

ā0,m au,m |a0,m|2
)

.

Hence, using the subscript m to emphasize the dependence on m, we have

α′0,m =
1

∆m

∑u

k=0
|au−k,m−k|2, α′−u,m = − ā0,mau,m

∆m
,

with the determinant ∆m = |a0,m|2
∑u

k=1 |au−k,m−k|2. Thus, by (3.8) and (3.9),

(3.15)


σ2(K) =

∑u
k=0 |au−k,m−k|2

|a0,m|2
∑u

k=1 |au−k,m−k|2
,

X0 − X̂0(K) = α′0,mā0,mε0,−m + α′−u,m

∑u

k=0
āu−k,m−kε−k,−m,

and, taking the limit as m →∞,

(3.16)


σ2(S0 \ {−u}) = |b0|2

∑u
k=0 |ak|2∑u−1
k=0 |ak|2

,

X0 − X̂0(S0 \ {−u}) = α′0ā0ε0 + α′−u

∑u

k=0
āu−kε−k,

where α′0 and α′−u are the limits of α′0,m and α′−u,m, as m →∞, respectively.
The expressions in (3.16) were obtained first in Pourahmadi (1992); see also

Pourahmadi and Soofi (2000) and Pourahmadi (2001, Section 8.3). However, those
10



in (3.15) have not appeared before. For n > 0, slightly more general calculations
leading to analogues of (3.15) and (3.16) can be used to show that the inverse
autocorrelation function of {Xt} at lag u is the negative of the partial correlation
between X0 and Xu after elimination of the effects of Xt, t 6= 0, u, as shown in
Kanto (1984) for processes with strictly positive spectral density functions.

Example 3.3 (The Finite Yaglom Problem). There are many situations where
the cardinality of M is two or more; see Pourahmadi et al. (2007), Box and Tiao
(1975), Brubacher and Wilson (1976), Damsleth (1980), Abraham (1981). In the
literature of time series analysis, there are several ad hoc methods for interpolating
the missing values. For example, Brubacher and Wilson (1976) minimize∑n

−m
ε2

j =
∑n

−m

(∑j

k=−∞
aj−kXk

)2

with respect to the unknown Xj , j ∈ M ∪ {0}, and then study the solution of the
normal equations as m,n → ∞. Budinsky (1989) has shown that this approach
under some conditions gives the same result as the more rigorous approach of
Yaglom (1963). In applying Lemma 2.5 to this problem, we first note that, due to
the large cardinality of M , handling (3.8) and (3.9) via (2.3) does not lead to simple
explicit formulas as in (3.15) and (3.16). Nevertheless, the limits of the expressions
in (3.8) and (3.9) as first m → ∞, and then as n → ∞ (assuming f−1 ∈ L1) have
simple forms in terms of the AR parameters:
(3.17)

X0 − X̂0(S) =
∑

i∈M∪{0}
α′i

(∑∞

k=i
āk−i εk

)
,

σ2(S) = the (0, 0)-entry of the inverse of
(∑∞

k=i∨j
āk−i ak−j

)
i,j∈M∪{0}

.

Now, using (3.10) and writing the entries of the above matrix, in terms of the
Fourier coefficients of f−1, it follows that (3.17) reduces to the results in Yaglom
(1963); see also Salehi (1979).

3.3. The Infinite Past and the Wold Decomposition. A more direct method
of solving prediction problems for S = Sn \M is to reduce them to a different class
of finite prediction problems than those in Section 3.2. This is done by using the
Wold decomposition of a purely nondeterministic stationary process.

As in Section 3.1, write N = {−m, . . . , n} and N = K ∪ {0} ∪M (disjoint), so
that S = Sn \M = {. . . ,−m− 2,−m− 1} ∪K (disjoint). For j ≥ −m, let X̂j be
the linear least-squares predictor of Xj based on the infinite past {Xk; k < −m}.
Then, by (3.1),

Xj − X̂j =
∑j

k=−m
bj−kεk, j ≥ −m,

which are orthogonal to sp{Xj ; j < −m}, and it follows that

sp{Xj ; j ∈ S} = sp{Xj − X̂j ; j ∈ K} ⊕ sp{Xj ; j < −m}.
This equality plays the key role in finding the predictor of X0 and its prediction
error variance, based on {Xj ; j ∈ S}. In fact, by using it, we only have to solve
the problem of predicting X0 − X̂0 based on {Xj − X̂j ; j ∈ K}. More precisely, we
consider X ′ := (Xj − X̂j)j∈N which has the covariance matrix G = (gi,j)i,j∈N with

gi,j :=
∑i∧j

k=−m
bi−k b̄j−k

11



(see Pourahmadi (2001, p. 273)). Then, writing X0 = X̂0 + (X0 − X̂0), we get

X̂0(S) = X̂0 +
∑

k∈K
αk(Xk − X̂k),

σ2(S) =
∥∥∥(X0 − X̂0)−

∑
k∈K

αk(Xk − X̂k)
∥∥∥2

,
(3.18)

where
∑

k∈K αk(Xk − X̂k) is the predictor of X0− X̂0 based on {Xk − X̂k; k ∈ K},
and the predictor coefficients αk and prediction error variance σ2(S) are obtained
from the normal equations (2.7) with γi,j replaced by gi,j ; in particular, by (2.9),

σ2(S) =

[
the (0, 0)-entry of the inverse of

(∑i∧j

k=−m
bi−k b̄j−k

)
i,j∈K∪{0}

]−1

.

We can also apply Lemma 2.5 to the above finite prediction problem for X ′. In
so doing, the following representations for the (i, j)-entry gi,j of G−1 and the j-th
entry Yj of the dual Y of X ′ are available:

(3.19) gi,j =
∑n

k=i∨j
āk−iak−j , Yj =

∑n

k=j
āk−jεk.

In fact, these are obtained by using (3.2) and Proposition 2.3 (3) or by letting
m → ∞ in (3.7). The explicit representations in (3.19) are also important in
finding series representations for predictors and interpolators discussed in the next
two subsections.

3.4. Series Representation of the Predictors. The Wold decomposition (3.1)
is often used to express predictors and prediction errors in terms of the innovation
process {εt}. This strategy works well for achieving the goal (P2) in Section 1, but
since the innovation εt is not directly observable the resulting predictor formulas
are not suitable for computation. To get around this difficulty, one must express
the innovations or the predictors in terms of the past observations. In this section,
we obtain series representations for the infinite past predictors in terms of the
observed values. A novelty of our approach is its reliance on the representation
of the prediction error in terms of the dual Y in (3.19), hence the solution of the
problem (P1) for S = Sn \ M is more direct and simpler than the procedures of
Bondon (2002, Theorem 3.1) and Nikfar (2006).

Assuming that {Xj}j∈Z has the mean-convergent AR representation (3.3), it
follows from (3.18) with S = {. . . ,−m− 2,−m− 1} ∪K that

X̂0(S) =
∑

k∈K
αkXk +

∑∞

j=1

(
fj,m −

∑
k∈K

αkfj,m+k

)
X−m−j ,

where fj,k := −
∑k

i=0 bk−iaj+i is the coefficient of the (k + 1)-step ahead predictor
based on the infinite past S0 = {. . . ,−2,−1}, i.e., X̂k(S0) =

∑∞
j=1 fj,kX−j for

k = 0, 1, . . . . On the other hand, from the finite duality principle or, more precisely,
(2.1) with (3.19), we have

X̂0(S) = X0 −
∑

i∈M∪{0}
α′i

(∑n

k=i
āk−iεk

)
.

From this, replacing εk from (3.3) and after some algebra, we get the following
alternative series representation for the predictor of X0 based on the incomplete
past:

(3.20) X̂0(S) = −
∑

j∈S

(∑
i∈M∪{0}

α′i
∑n

k=i∨j
āk−iak−j

)
Xj .
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We note that the prediction error here has the representation

(3.21) X0 − X̂0(S) =
∑

i∈M∪{0}
α′i

(∑n

k=i
āk−iεk

)
in terms of the dual Y in (3.19). Furthermore, the sequence {

∑n
k=j āk−jεk}n

j=−∞
spans sp{Xj ; j ≤ n}, the infinite past up to n of the process {Xt}. The formulas
(3.20) and (3.21) were obtained initially by Bondon (2002, Theorem 3.2) without
using the notion of duality.

3.5. Series Representation of the Interpolators. Series representation for the
interpolator of X0 based on the observed values from the index set S = S∞ \M =
Z\(M ∪ {0}) was obtained by Salehi (1979). Here we obtain such representation
using the idea of the dual process. Assuming f−1 ∈ L1 or

∑∞
j=0|aj |2 < ∞, the

process
ξj :=

∑∞

k=j
āk−jεk, j ∈ Z,

is well-defined in the sense of mean-square convergence. From (3.1), (3.2), and the
above results, we have the following:

(i) (Xi, ξj) = δij for i, j ∈ Z.
(ii) ξj = {Xj − X̂j(Z \ {j})}/‖Xj − X̂j(Z \ {j})‖2 for j ∈ Z.
(iii) {ξj ; j ∈ Z} spans the space sp{Xj ; j ∈ Z}.
(iv) {ξj ; j ∈ Z} is a stationary process with the autocovariance function

γj :=
1
2π

∫ π

−π

e−ijλf(λ)−1dλ, j ∈ Z,

i.e., (ξi, ξj) = γi−j =
∑∞

k=i∨j āk−iak−j for i, j ∈ Z.

The process {ξj} has already appeared in prediction theory and time series analysis,
and is called the standardized two-sided innovation (Masani (1960)) or the inverse
process (Cleveland (1972)) of {Xt}t∈Z.

Now, for solving the interpolation problem with S = Z \ (M ∪ {0}), we need to
show that {ξj ; j ∈ M ∪ {0}} spans the orthogonal complement of sp{Xj ; j ∈ S} in
sp{Xj ; j ∈ Z}. Then, it turns out that there is unique (α′j)j∈M∪{0} satisfying

X0 − X̂0(S) =
∑

i∈M∪{0}
α′iξi =

∑
i∈M∪{0}

α′i

(∑∞

k=i
āk−iεk

)
(see (3.9) and (3.21)), and that σ2(S) = α′0. Since

(X0, ξj)−
∑

i∈M∪{0}
α′i(ξi, ξj) = (X̂0(S), ξj) = 0, j ∈ M ∪ {0},

we can compute (α′i)i∈M∪{0} by solving the following system of linear equations:∑
i∈M∪{0}

α′iγ
i−j = δj0, j ∈ M ∪ {0}.

As for the predictor, if
∑∞

j=−∞ γjX−j is mean-convergent, then (ξj)j∈Z admits the
representation

ξi =
∑∞

j=−∞
γi−jXj , i ∈ Z,

and we have

X̂0(S) = −
∑

j∈S

(∑
i∈M∪{0}

αiγ
i−j

)
Xj ,

which is the two-sided version of the formula (3.20).
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4. Discussion and Future Work

We have reviewed and unified some important results from prediction theory
of stationary processes using a finite-dimensional duality principle whose proof is
based on elementary ideas from the linear algebra. Our time-domain, geometric
and finite-dimensional approach brings considerable clarity and simplicity to this
area of prediction theory as compared to the classical spectral-domain approach
based on analytic function theory and duality in the infinite-dimensional spaces.
Since our duality lemma is not confined to stationary processes or Toeplitz matri-
ces, it has the potential of being useful in solving similar prediction problems for
nonstationary processes, particularly those with low displacement ranks (Kailath
and Sayed (1995)). However, the present form of the lemma does not seem to be
useful for prediction problems of infinite-variance or Lp-processes (Cambanis and
Soltani (1984), Cheng et al. (1998)).
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problems of Szegö, Kolmogorov, Yaglom and Nakazi. J. London Math. Soc. 38, 133–145.

[23] Nakazi, T. (1984). Two problems in prediction theory. Studia Math. 78, 7–14.
[24] Nakazi, T. and Takahashi, K. (1980). Prediction n units of time ahead. Proc. Amer. Math.

Soc. 80, 658–659.
[25] Nikfar, M. (2006). The generalization of Szegö’s theorem. To appear.
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