15,658 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    T-Cell activation: a queuing theory analysis at low agonist density

    Get PDF
    We analyze a simple linear triggering model of the T-cell receptor (TCR) within the framework of queuing theory, in which TCRs enter the queue upon full activation and exit by downregulation. We fit our model to four experimentally characterized threshold activation criteria and analyze their specificity and sensitivity: the initial calcium spike, cytotoxicity, immunological synapse formation, and cytokine secretion. Specificity characteristics improve as the time window for detection increases, saturating for time periods on the timescale of downregulation; thus, the calcium spike (30 s) has low specificity but a sensitivity to single-peptide MHC ligands, while the cytokine threshold (1 h) can distinguish ligands with a 30% variation in the complex lifetime. However, a robustness analysis shows that these properties are degraded when the queue parameters are subject to variation—for example, under stochasticity in the ligand number in the cell-cell interface and population variation in the cellular threshold. A time integration of the queue over a period of hours is shown to be able to control parameter noise efficiently for realistic parameter values when integrated over sufficiently long time periods (hours), the discrimination characteristics being determined by the TCR signal cascade kinetics (a kinetic proofreading scheme). Therefore, through a combination of thresholds and signal integration, a T cell can be responsive to low ligand density and specific to agonist quality. We suggest that multiple threshold mechanisms are employed to establish the conditions for efficient signal integration, i.e., coordinate the formation of a stable contact interface

    Bioengineering models of cell signaling

    Get PDF
    Strategies for rationally manipulating cell behavior in cell-based technologies and molecular therapeutics and understanding effects of environmental agents on physiological systems may be derived from a mechanistic understanding of underlying signaling mechanisms that regulate cell functions. Three crucial attributes of signal transduction necessitate modeling approaches for analyzing these systems: an ever-expanding plethora of signaling molecules and interactions, a highly interconnected biochemical scheme, and concurrent biophysical regulation. Because signal flow is tightly regulated with positive and negative feedbacks and is bidirectional with commands traveling both from outside-in and inside-out, dynamic models that couple biophysical and biochemical elements are required to consider information processing both during transient and steady-state conditions. Unique mathematical frameworks will be needed to obtain an integrated perspective on these complex systems, which operate over wide length and time scales. These may involve a two-level hierarchical approach wherein the overall signaling network is modeled in terms of effective "circuit" or "algorithm" modules, and then each module is correspondingly modeled with more detailed incorporation of its actual underlying biochemical/biophysical molecular interactions

    Causal Order and Kinds of Robustness

    Get PDF
    This paper derives from a broader project dealing with the notion of causal order. I use this term to signify two kinds of parts-whole dependence: Orderly systems have rich, decomposable, internal structure; specifically, parts play differential roles, and interactions are primarily local. Disorderly systems, in contrast, have a homogeneous internal structure, such that differences among parts and organizational features are less important. Orderliness, I suggest, marks one key difference between individuals and collectives. My focus here will be the connection between order and robustness, i.e. functional resilience in the face of internal or environmental perturbations. I distinguish three varieties of robustness. Ordered robustness is grounded in the system’s specific organizational pattern. In contrast, disorderly robustness stems from the aggregate outcome of many similar parts. In between, we find semi-ordered robustness, wherein a messy ensemble of elements is subjected to a selection or stabilization mechanism. I give brief characterizations of each category, discuss examples and remark on the connection between the order/disorder axis and the notions of individual versus collective

    A model-free control strategy for an experimental greenhouse with an application to fault accommodation

    Full text link
    Writing down mathematical models of agricultural greenhouses and regulating them via advanced controllers are challenging tasks since strong perturbations, like meteorological variations, have to be taken into account. This is why we are developing here a new model-free control approach and the corresponding intelligent controllers, where the need of a good model disappears. This setting, which has been introduced quite recently and is easy to implement, is already successful in many engineering domains. Tests on a concrete greenhouse and comparisons with Boolean controllers are reported. They not only demonstrate an excellent climate control, where the reference may be modified in a straightforward way, but also an efficient fault accommodation with respect to the actuators
    corecore