320 research outputs found

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation

    Extending twin support vector machine classifier for multi-category classification problems

    Get PDF
    © 2013 – IOS Press and the authors. All rights reservedTwin support vector machine classifier (TWSVM) was proposed by Jayadeva et al., which was used for binary classification problems. TWSVM not only overcomes the difficulties in handling the problem of exemplar unbalance in binary classification problems, but also it is four times faster in training a classifier than classical support vector machines. This paper proposes one-versus-all twin support vector machine classifiers (OVA-TWSVM) for multi-category classification problems by utilizing the strengths of TWSVM. OVA-TWSVM extends TWSVM to solve k-category classification problems by developing k TWSVM where in the ith TWSVM, we only solve the Quadratic Programming Problems (QPPs) for the ith class, and get the ith nonparallel hyperplane corresponding to the ith class data. OVA-TWSVM uses the well known one-versus-all (OVA) approach to construct a corresponding twin support vector machine classifier. We analyze the efficiency of the OVA-TWSVM theoretically, and perform experiments to test its efficiency on both synthetic data sets and several benchmark data sets from the UCI machine learning repository. Both the theoretical analysis and experimental results demonstrate that OVA-TWSVM can outperform the traditional OVA-SVMs classifier. Further experimental comparisons with other multiclass classifiers demonstrated that comparable performance could be achieved.This work is supported in part by the grant of the Fundamental Research Funds for the Central Universities of GK201102007 in PR China, and is also supported by Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2010JM3004), and is at the same time supported by Chinese Academy of Sciences under the Innovative Group Overseas Partnership Grant as well as Natural Science Foundation of China Major International Joint Research Project (NO.71110107026)

    Pattern classification based multiuser detectors for CDMA communication systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Comparing the Performance of Random Forest, SVM and Their Variants for ECG Quality Assessment Combined with Nonlinear Features

    Get PDF
    For evaluating performance of nonlinear features and iterative and non-iterative classification algorithms (i.e. kernel support vector machine (KSVM), random forest (RaF), least squares SVM (LS-SVM) and multi-surface proximal SVM based oblique RaF (ORaF) for ECG quality assessment we compared the four algorithms on 7 feature schemes yielded from 27 linear and nonlinear features including four features derived from a new encoding Lempel–Ziv complexity (ELZC) and the other 26 features. Seven feature schemes include the first scheme consisting of 7 waveform features, the second consisting of 15 waveform and frequency features, the third consisting of 19 waveform, frequency and approximate entropy (ApEn) features, the fourth consisting of 19 waveform, frequency and permutation entropy (PE) features, the fifth consisting of 19 waveform, frequency and ELZC features, the sixth consisting of 23 waveform, frequency, PE and ELZC features, and the last consisting of all 27 features. Up to 1500 mobile ECG recordings from the Physionet/Computing in Cardiology Challenge 2011 were employed in this study. Three indices i.e., sensitivity (Se), specificity (Sp) and accuracy (Acc), were used for evaluating performances of the classifiers on the seven feature schemes, respectively. The experiment results indicated PE and ELZC can help to improve performance of the aforementioned four classifiers for assessing ECG quality. Using all features except ApEn features obtained the best performances for each classifier. For this sixth scheme, the LS-SVM yielded the highest Acc of 92.20% on hidden test data, as well as a relatively high Acc of 93.60% on training data. Compared with the other classifiers, the LS-SVM classifier also demonstrated the superior generalization ability
    corecore