
Citation: Zhang, Yatao, Wei, Shoushui, Zhang, Li and Liu, Chengyu (2019) Comparing the 
Performance  of  Random Forest,  SVM  and  Their  Variants  for  ECG  Quality  Assessment 
Combined with Nonlinear Features. Journal of Medical and Biological Engineering, 39 (3). 
pp. 381-392. ISSN 1609-0985 

Published by: Springer

URL: https://doi.org/10.1007/s40846-018-0411-0 <https://doi.org/10.1007/s40846-018-0411-
0>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/34371/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to 
access the University’s research output. Copyright ©  and moral rights for items on NRL are 
retained by the individual author(s) and/or other copyright owners.  Single copies of full items 
can be reproduced,  displayed or  performed,  and given to third parties in  any format  or 
medium for personal research or study, educational, or not-for-profit purposes without prior 
permission or charge, provided the authors, title and full bibliographic details are given, as 
well  as a hyperlink and/or URL to the original metadata page.  The content must  not  be 
changed in any way. Full  items must not be sold commercially in any format or medium 
without  formal  permission  of  the  copyright  holder.   The  full  policy  is  available  online: 
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been 
made available online in accordance with publisher policies. To read and/or cite from the 
published version of the research, please visit the publisher’s website (a subscription may be 
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/157854077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


1 
 

Comparing performance of Random Forest, 
SVM and Their Variants for ECG Quality 

Assessment Combined with Nonlinear 
Features 

 
Yatao Zhang1, 2*, Shoushui Wei1, Li Zhang3, Chengyu Liu4 

 
1 School of Control Science and Engineering, Shandong University, Jinan, China 

2 School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China 
3 Computational Intelligence Group, Northumbria University, Newcastle, UK 

4 School of Instrument Science and Engineering, Southeast University, Nanjing, China 
 
Abstract—For evaluating performance of nonlinear features and iterative and non-iterative classification 
algorithms (i.e. kernel support vector machine (KSVM), random forest (RaF), least squares SVM (LS-SVM) 
and multi-surface proximal SVM based oblique RaF (ORaF) for ECG quality assessment we compared the 
four algorithms on 7 feature schemes yielded from 27 linear and nonlinear features including four features 
derived from a new encoding Lempel-Ziv complexity (ELZC) and the other 26 features. The seven feature 
schemes include the first scheme consisting of 7 waveform features, the second consisting of 15 waveform 
and frequency features, the third consisting of 19 waveform, frequency and approximate entropy (ApEn) 
features, the fourth consisting of 19 waveform, frequency and permutation entropy (PE) features, the fifth 
consisting of 19 waveform, frequency and ELZC features, the sixth consisting of 23 waveform, frequency, 
PE and ELZC features, and the last consisting of all 27 features. Up to 1500 mobile ECG recordings from 
the Physionet/Computing in Cardiology Challenge 2011 were employed in this study. Three indices i.e. 
sensitivity (Se), specificity (Sp) and accuracy (Acc), were used for evaluating performances of the four 
classifiers on the seven feature schemes, respectively. The experiment results indicated PE and ELZC can 
help to improve performance of the aforementioned four classifiers for assessing ECG quality. Using all 
features besides ApEn features obtained the best performances for each classifier. For this sixth scheme, the 
LS-SVM yielded the highest Acc of 92.20% on hidden test data, as well as a relatively high Acc of 93.60% on 
training data. Compared with the other classifiers, the LS-SVM classifier also demonstrated the superior 
generalization ability. 

Keywords- ECG quality assessment; Nonlinear Features; Encoding Lempel-Ziv complexity; LS-SVM; 
Random forest 

1 INTRODUCTION 
Combination of several machine learning algorithms (i.e. ensemble decision tree, neural networks 

and support vector machine (SVM)) and time-frequency features has been used for assessing quality of 
physiological signals [1-3]. For these methods, two main factors affect their assessment results, and the 
first factor is effectiveness of features extracted by artificial experience and another factor is 
performance of several machine learning algorithms on these features. So far time-frequency features are 
popularly used for assessing physiological signals because calculation of these features are relatively 
simple as well as time features are more easy to be identified. Li et al. [4] utilize time features derived 
from the beat to assess quality of pulsatile signals. Orphanidou et al. [5] assessed quality of heart rate 
variability using signal quality index based on a simple rule, the heart rate calculated from the 30-s 
window must fall within a physiologically probable range of 40-180 beats per minute. Langley et al. [6] 
and Johannesen [7] determined poor quality of ECG signals when waveform features of signals did not 
satisfy with the preset thresholds. Several frequency features generated from power spectrum of different 
ECG frequency bands were employed to assess quality of ECG signals [8]. Clifford et al. [3] and Zhang 
et al. [2] combined time domain features with power spectrum features so as to achieve relatively 
satisfied results. Actually, in quality assessment, the ECG recordings are not preprocessed so that 
waveforms of the recordings are complicated and arbitrary, so it cause poor generalization ability of 
wave features, furthermore power spectrum features also contain ambiguous information since the 
frequency range of ECG and that of noise usually overlap. So the nonlinear analysis should be 
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considered to assess quality of physiological signal. 

Actually, in [9], the nonlinear analysis i.e. recurrence properties already was used in ECG quality 
classification, furthermore not only the nonlinear and nonstationary characteristics within 3-lead vector 
cardiogram yielded from the 12-lead ECG, but also the self-organizing neural network was employed 
to control the quality of ECG. Ensemble decision tree combined with frequency features derived from 
power spectrum was reported in [8]. In the works of Kužílek et al. [10] and Clifford et al. [3, 11], 
Kernel function based SVM (KSVM) was used. Clifford et al. [3] compared three classifiers: naive 
Bayes, SVM and multilayer perceptron artificial neural network classifiers and verified that SVM is the 
most valuable method for ECG quality assessment. However, in the actual applications, contaminated 
ECG segments due to noises and outliers usually result in the absolutely rejection for an “acceptable” 
recording. In our latest experiment, we proposed a fuzzy SVM method to restrict the effect of the 
outliers on ECG signal quality assessment [12]. However we further found the fuzzy function could 
restrain the effect of the essential support vectors on classification by penalizing their contribution 
weights, especially for the common vague separating hyper plane used in signal quality assessment. 
Previous study has showed that lease squares support vector machine (LS-SVM) classifier, using the 
quadratic loss function as the decision function, can reduce the effects of noises and outliers on the 
classification accuracy, significantly improve accuracy of classification, as well as obtain good 
generalization ability [13]. Although SVM and its variants exhibit relatively better performance, 
however a non-iterative method namely, random forest (RaF) has become popular research method in 
solving classification and regression problems [14-18], and it builds a classification ensemble with a set 
of decision trees and is comparable in performance to many other non-linear learning algorithms, and it 
was considered as a competitive classifier among 179 classifiers when tested with 121 datasets [14]. 
Zhang et al. [15] proposed a multi-surface proximal support vector machine based oblique random forest 
(ORaF) and verified its robust classification performance. It is necessary to compare performance of the 
iterative methods i.e. SVM and LS-SVM, with that of non-iterative methods i.e. RaF and ORaF on 
quality assessment field. 

At present, the nonlinear complexity methods are not yet reported in quality assessment of 
physiological signals. In fact a proper nonlinear complexity method can be utilized to classify quality of 
ECG since the unexpected randomness and the nonlinear chaotic within signals are different component 
within physiological signals. However the typical complexity methods approximate entropy (ApEn), 
permutation entropy (PE) and a new encoding Lempel-Ziv complexity (ELZC) have different 
performance for measuring complexity within signals, so it is necessary to evaluate their performance 
for reflecting the inherent nonlinear properties within ECG signals for quality assessment. In addition 
SVM and RaF are regarded as the potential machine learning methods on analysis of physiological 
signals, so it is necessary to explore efficiencies of the iterative methods i.e. SVM and LS-SVM, and that 
of the non-iterative methods i.e. RaF and ORaF on several feature schemes including linear and 
nonlinear features in ECG quality assessment. So in this study, for validating classification performance 
of the aforementioned four machine learning algorithms on ECG quality assessment and capability of 
waveform features, frequency features and several common nonlinear feature (i.e. ApEn, PE and ELZC) 
to reflect the inherent information within signals, we carried out the four algorithms on seven feature 
schemes respectively. Finally this study tried to find a satisfied classification algorithm and feature 
scheme for assessing ECG quality. 

2 METHOD AND MATERIAL 

2.1 Data 
All experiment data are derived from the Physionet/CinC Challenge 2011 in the MIT/BIH database 

and are standard 12-lead ECG recordings (leads I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6) 
with a sample of 500 Hz and duration of 10 s [19]. These data collected by smart phone were annotated 
by clinical experts and technicians as “acceptable” or “unacceptable” ECGs for clinical interpretation. 
ECG recordings are divided into two subsets: Set A and Set B, wherein Set A includes 1,000 labeled 
ECG recordings and is used as the training data, and Set B includes 500 ECG recordings where the 
labels are not publicly available and is used as the testing data. Table 1 details the data profile. 

TABEL 1. DATA PROFILE OF THE TRAINING AND TEST SET. 

Database 
# recordings 

Time length Sample rate 
# acceptable # unacceptable # total 

Training 775 225 1000 10 s 500 Hz 

Test unknown unknown 500 10 s 500 Hz 
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2.2 Multiple features calculation 
For time and frequency features, we improved the existed quality features based on our previous 

work [12].  
a) Waveform features 
The most prominent feature is one of waveform features, namely lead-fall feature. For real time 

ECG recordings collected by smart phone, poor electrode contact or lead movement could cause signal 
waveform that seems like a straight line, however, in practice, the waveforms have slight fluctuation. So 
in this study, lead fall was detected by calculating the difference between the maximum and the 
minimum amplitude in any lead, and the lead fall was found when the difference was less than 0.025 mV. 
Finally this study employed the number of leads containing lead-fall in a 12-leads ECG recording as the 
lead-fall feature FLf of the ECG recording. 

Baseline wander is also relatively more common distortion of waveform and cause poor quality 
signals for clinic application. In this study, we calculated four features (FBd1, FBd2, FBd3 and FBd4) based on 
baseline wander. FBd1 and FBd2 denoted the maximum and mean value of the maximum voltage of 
baseline curve of each lead within 12 leads, respectively.  

Additionally, the baseline drift is also considered to occur when amplitude of the baseline is higher 
than 1.5 mV for lasting more than (continuous) 1.5 s. The Atli denoted the accumulated time length of 
baseline signals of the ith lead lasting larger than 1.5 mV, and i=1, …, 12. Then the two features FBd3 
and FBd4 were defined as follows: 

3

4

max( )
( )

1,2,  ...,  12

Bd i

Bd i

F Atl
F mean Atl
i

=
=

=

                 .                                                (1) 

Actually, few huge impulses exist in some acceptable ECG recordings, however more number of 
huge impulses is found in poor quality ECG recordings. This study firstly computed the number of huge 
amplitudes that were greater than 5.0 mV within each lead of each 12-lead recording, then they were 
denoted as HAi (i=1, 2, …, 12). Finally the maximum and mean of the HAi were calculated and denoted 
as the quality features FHa1 and FHa2, respectively. 

b) Power spectrum features 
Normal ECG signals have a range of frequency band from 0.05 to 100 Hz. High frequency noise 

within ECG signals is mainly caused by muscle electricity during periods of contraction or due to a 
sudden body movement, and its frequency range is from 0 Hz to several kHz. It can be seen that 
frequency component of QRS complex overlaps with that of high frequency noise. Low frequency noise 
is mainly caused by baseline wander, and its frequency is usually below 1 Hz, even 0.5 Hz [20]. 
According to the aforementioned frequency ranges, this study employed the ratio of power spectral 
density (PSD) in different frequency ranges to that in the overall energy band as quality features to 
assessing ECG quality. Table 2 shows that several PSD features. In this study, the AR model spectrum 
estimation algorithm and Burg algorithm were performed to calculate PSD and estimate parameter. 

TABLE 2 DEFINITIONS OF THE PSD FEATURES IN EACH LEAD OF 12-LEAD ECG RECORDING. 

Features Description 

PSDn
i Power of the normal power in the band of 0.05-100 Hz in the ith lead 

PSDh
i Power of high frequence noise in 10-1000 Hz in the ith lead 

PSDl
i Power of low frequence noise in 0-1 Hz in the ith lead 

PSDh/n
i Power ratio of PSDh to PSDn in the ith lead 

PSDl/n
i Power ratio of PSDl to PSDn in the ith lead 

According to Table 2, the following features (FPsd1 to FPsd8) were derived: 

FPsd1, FPsd2, FPsd3 and FPsd4 represented the maximum, the minimum, the mean and the standard 
deviation of PSDh/n

i respectively. 

FPsd5, FPsd6, FPsd7 and FPsd8 represented the maximum, the minimum, the mean and the standard 
deviation of PSDl/n

i respectively. 

c) Non-linear features 
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The non-linear features are expected to address the inherent non-linear characteristic in ECG signal. 
Several non-linear approaches, such as approximate entropy (ApEn) [21], permutation entropy (PE) [22] 
and our recently developed ELZC method, were employed to analyze the ECG signal quality. 

The ELZC method can not only distinguish the chaotic and random characteristics in the ECG 
recording [23], but also can indicate the noise level contained in the ECG recording, especially for the 
signals contaminated by high frequence noise. The classical LZ complexity consists of two steps. 
Firstly, an original time series is transformed into a new binary symbolic sequence by comparing with 
the mean or median of the original series, and then the LZ value from the binary sequence is calculated. 
In this study, the original series was transformed into an 8-state symbolic (3-bit binary) sequence by an 
encoding way.  

Each xi within the original signal X=x1, x2, …, xn is transformed into a 3-bit binary symbol 
b1(i)b2(i)b3(i), and the detailed process consists of three steps and is described as follows [23]: 

Step 1, the b1(i) is determined by comparing xi with the mean of signal X, and b1(i) is set 0 when the 
xi is less than the mean, otherwise the b1(i) is 1. 

Step 2, the b2(i) is 0 when the difference between xi and xi-1 is less than 0, otherwise the b2(i) is set to 
1. Initially, b2(1) is set to 0. 

Step 3, the calculation process of the third digit b3(i) is relatively complex, where a variable Flag is 
first denoted as follows: 

1

1

0  
( ) , 2,3,...,

1  
i i

i i

if x x dm
Flag i i n

if x x dm
−

−

 − <= = − ≥
,     (2) 

where dm is the mean distance between adjacent points within signal X. Subsequently, b3(i) is calculated 
as follows: 

3 2( ) ( ( )  ( )),  2,3,...,b i NOT b i XOR Flag i i n= = ,    (3) 

where b3(1) is 0. 

After the symbolic process, the LZ value of the new symbolic sequence will be calculated, and the 
detailed calculation process is illustrated in detail in [23]. 

In this study, the ELZC was employed as the non-linear ECG signal quality feature. The value of 
ELZC from the 12 leads were calculated as ELZCi (i=1, 2, …, 12), and then four ELZC features 
derived from ELZCi were defined as follows: 

1

2

3

4

max( )
min( )

( )
( )

1,2,...,12

ELZC i

ELZC i

ELZC i

ELZC i

F ELZC
F ELZC
F mean ELZC
F std ELZC
i

=

=

=

=

=

,       (4) 

where FELZC4 is the standard deviation of ELZCi. 
Similarly, four PE and ApEn features were also derived from the generated PE and ApEn values 

from 12 leads as follows: 
1

2

3

4

1

2

3

4

max( )
min( )

( )
( )

max( )
min( )

( )
( )

1,2,...,12

ApEn i

ApEn i

ApEn i

ApEn i

PE i

PE i

PE i

PE i

F ApEn
F ApEn
F mean ApEn
F std ApEn
F PE
F PE
F mean PE
F std PE
i

=

=

=

=

=
=
=
=

=

                        (5) 

where FApEn4 and FPE4 is the standard deviation of ApEni and PEi, respectively. 
f) Features normalization: In the study, the feature vector X for each ECG recording was 

zero-mean normalized as: 
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X

X

µ
σ
−

=
Xx ,         (6) 

where µX and σX are the mean and standard deviation of feature vector X, respectively. After zero-mean 
normalization, each feature vector has a mean value of 0. 

2.3 Comparative classifiers 
2.3.1 Kernel support vector machine (KSVM) 

For the classical KSVM, eventually, a nonlinear classification problem can be transform into a dual 
optimization problem, and it is described as [12, 24]: 

1 1 1

1

1max ( , )
2

. . 0 ,  0

n n n

i i j i j i j
i i j

n

i i i
i

y y K

s t C y

α
α α α

α α

= = =

=

 
− 

 

≤ ≤ =

∑ ∑∑

∑

X X
，                       (7) 

where each Xi∈Rd, is a training sample (herein, a feature set of an ECG recording), αi is the Lagrange 
multiplier; yi is the known category of Xi; C is the penalty parameter, and K is the nonlinear kernel 
function. The training procedure of KSVM classifier is essentially a constrained quadratic optimization 
problem. The decision function is defined as: 

 ( ) ( ( , ) )
i

i i i
SV

f sign y K bα
∈

= +∑
X

X X X ,                       (8) 

where b is the bias parameter. 

2.3.2 Least squares vector machine (LS-SVM) 
According to [13], LS-SVM with Gaussian radial basis function (GRBF) function obtains a more 

competitive performance than that of the conventional SVM. Let Rd denote the feature space. Xi∈Rd 
(i=1,2, …, n) is a set of feature vectors and can be treated as the sequence of training points, and yi∈
{-1,1} is the corresponding class label of the Xi (yi=1 for positive class and yi=-1 for negative class) 

For binary classification problems, the LS-SVM classifier aims to obtain the parameters w and b 
within a decision function by solving the following optimization problem: 

2

1

1min ( , , )
2 2

N
T

i
i

CJ b e e
=

= + ∑w w w ,      (9) 

Subject to the equality constraints  

[ ( ) ] 1 ,  1,  ...,  T
i iy b e i Nϕ + = − =w X ,      (10) 

where w is the weight vector; C is a trade-off parameter indicating the relative importance of the model 
complexity when compared to the training error, namely the penalty parameter; ei is the training error 
associated with the i-th sample, and is used to realize soft margins; and φ(·) is a nonlinear function 
which maps the input space into a higher dimensional space. This formulation consists of equality 
instead of inequality constraints and takes into account a squared error with regularization term similar 
to ridge regression. 

The solution is obtained after constructing the Lagrangian: 

1
( , , ; ) ( , , ) { [ ( ) ] 1 }

N
T

i i i i
i

L b e J b e y b eα α ϕ
=

= − + − +∑w w w X ,  (11) 

where αi are the Lagrange multipliers that can be positive or negative in the LS-SVM formulation, and 
the αi obeys the equality constraints as follows from the Karush-Kuhn-Tucker (KKT) conditions: 
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1

1

0 ( )                               

0                                                

0 ,  1,  ...,                           
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N
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T
i i i

i

L y
w
L y
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L e i N
e
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α ϕ

α

α γ

ϕ
α

=

=

∂
= → =

∂
∂

= →
∂
∂

= → = =
∂
∂
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∂

∑

∑

w X

w X ,  ...,  N













.  (12) 

The linear KKT system can also be written as the following set of linear equations: 

1

00
=

1

T

v

bY
Y C I α−

 −   
    Ω +     

,      (13) 

where Y=[y1,…,yN], 1v=[1,…,1], e=[e1,…,eN], α=[α1, …, αN], and the matrix Ω(Xi, Xj)=yi, yjK(Xi, Xj). The 
Mercer’s condition is used for the Ω, and so the kernel function responsible for the nonlinear mapping is 
provided by K(Xi, Xj)= φ(Xi)Tφ(Xj), i, j=1, …, N. 

The decision function of LS-SVM model for classification is provided in the following equations: 

 ( ) ( ( , ) )
i

i i i
SV

f sign y K bα
∈

= +∑
X

X X X ,    (14) 

where SV denotes the support vector set; Xi is the ith support vector; yi is the known category of Xi, αi is 
the Lagrange multiplier with 0<αi<C; and X is the data to be classified. Parameters αi

* and b are obtained 
during the training process. 

The kernel function could affect the classification performance of the SVM classifier [25, 26]. The 
Gaussian radial basis function (GRBF) is a popular kernel function and is employed in this study: 

 
2

2( , ) exp( )i
iK

σ
− −

=
X X

X X ,                                                      (15) 

where σ is the parameter of Gaussian kernel function. 

The selection of GRBF parameter σ in Eq. (15) and error penalty factor C in Eq. (13) affects the 
precision of the LS-SVM classifier significantly. In fact, there is not a unified theory for the selection of 
parameter σ and C. The parameters (σ, C) can be set by searching a parameter space for the best  
evaluating estimator performance score. 

In this study, we tested each pair of parameters (σ, C) in the KSVM and LS-SVM classifier and its 
corresponding classification accuracy using the grid search (GS) method. 

2.3.3 RaF 
RaF is an ensemble machine learning technique widely used in classification. The basic principle is 

that a group of “weak learners” is combined to form a “strong learner”. It consists of a collection of 
decision tree classifiers defined as {h(x, θk), k=1, …} where θk represents identically distributed random 
vectors. Each tree is grown using training set and random vector θk, and casts a unit vote for the most 
popular class at input vector x. 

An ensemble of classifiers h1(x), h2(x), …, hk(x) was given, and the training set was generated by 
random sampling from the distribution of the random vector X and Y. The margin function is defined as  

( , ) ( ( ) ) max ( ( ) )k k k kj Y
mg av I h av I h j

≠
= = − =X Y X Y X                    (16) 

where I(·) is the indicator function [27, 28]. 

In RaF algorithm, the generalization error is given by: 

,* ( ( , ) 0)PE P mg= <X Y X Y                             (17) 

http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation
http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation


7 
 

where X and Y are random vectors that indicate the probability is over the X, Y space and mg represents 
the margin function measure, the extent to which the average number of votes at random vectors for the 
right output exceeds the average vote for any other output. 

2.3.4 ORaF 
Zhang and Suganthan [29] proposed an ORaF method using a set of oblique decisions tree based on 

multi-surface proximal support vector machine (MPSVM) wherein MPSVM was employed to split. The 
MPSVM is proposed for binary classification problem and seeks two planes in Rn [29, 30] 

1 1

2 2

* 0
* 0

λ
λ

− =
− =

X W
X W

                                (18) 

where the first plane (W1, λ1) is closest to the samples of class1 and furthest form the samples in class 2, 
while the second plane (W2, λ2) is closest to the samples in class 2 and furthest from the samples in class 
1. Eventually this leads to the following optimization problem: 

0

'min ,
'z

z Gz
z Hz≠

                                  (19) 

where G and H are symmetric matrices in R(n+1)×(n+1). Finally the two clustering hyperplanes can be found 
by the eigenvectors corresponding to the smallest eigenvalues of the following two generalized 
eigenvalue problems: 

,  0,
,  0.

Gz Hz z
Lz Mz z

λ
λ

= ≠
= ≠

                               (20) 

The ORaF is based on oblique decision tree ensemble where the decision tree is growing using 
heterogeneous test functions. Actually for the oblique decision tree, each decision hyperplane in the 
internal node of tree classifier is not always orthogonal to a feature axis. According to geometric 
properties of a randomly selected feature subset from the training set, each internal node is divided into 
two hyper-classes. Then MPSVM is used for obtaining two clustering hyperplanes, and each hyperplane 
is closest to one group of the data, and in the meanwhile remains as far as possible from the other group. 
Finally the test hyperplane for this internal node uses one of the bisectors of the two hyperplanes. 
Regularization methods, i.e. Tikhonov, axis-parallel and null space approaches, are used for handling the 
small sample size problem as the tree grows. In this study, the RaF based on MPSVM with Tikhonov 
approach was employed. 

2.4 Evaluation procedure 
In this study, three statistics indices i.e. sensitivity (Se), specificity (Sp) and assessment accuracy 

(Acc) were utilized to evaluate performance of the aforementioned four machine learning classifiers i.e. 
KSVM, RaF, ORaF and the new LS-SVM. The Acc is the ratio of the number of correctly identified 
recordings (including acceptable and unacceptable) to all training recordings. The Se denotes the 
percentage of unacceptable recordings that are correctly recognized as unacceptable in training data, and 
it represents the capability of a classifier to correctly identify unacceptable recordings. The Sp denotes 
the percentage of acceptable recordings that are correctly identified as acceptable recordings in training 
data, and it exhibits the capability of a classifier to correctly identify acceptable recordings. 

Fig 1 shows that the flowchart of evaluation procedure, which consists of three steps. In step 1, the 
multiple features were extracted by analyzing the lead-fall, baseline drift, extreme amplitude, power 
spectrum and non-linear characteristics of the ECG signals. Feature selection methods can affect results 
of data analysis [31]. For comparing performance of the ELZC and selecting optimal features, 7 feature 
schemes were designed (as shown in Table 3) to compare the classification performances of the four 
classifiers when using different number of signal quality features. In step 2, the zero-mean normalization 
was employed for the data preprocessing procedure. Then the parameters of the KSVM and LS-SVM 
classifiers were optimized by the GS method using the 1,000 training ECG recordings, for each of the 7 
feature schemes. Thus, the optimized parameters were determined. In step 3, we compared the 
performances of the KSVM, LS-SVM, RaF and ORaF classifiers, for classifying the ECG recordings as 
one of two types, i.e., acceptable or unacceptable, by using K-fold cross validation (K-CV) method. 
K-CV was a relatively effective method to avoid over-fitting because the training sample is independent 
of the validation sample. For the 1,000 training ECG recordings, a K-fold partition of the dataset was 
created. For each of the K experiments, K-1 folds were used for training and the remaining one was used 
for testing. For the evaluation of each feature scheme, the average results from the K-fold results were 
reported, and the results on test dataset were used as the final classifier performance evaluation. In this 
study, K was set to 6. 
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Loading ECG data

Defining the different features schemes for algorithm evaluation

Step 1
Extracting the multiple features

Calculating evaluation indices for four classifiers 

Step 2
Data preprocessing for the features

Step 3

Comparing four classifiers under different feature schemes 

Conlcusions

Optimizing parameters of the KSVM and LS-SVM classifiers for 
each feature scheme

 
Figure 1.  The flowchart of evaluation scheme 

TABLE 3 DEFINITION OF THE SEVEN FEATURE SCHEMES. 

Scheme 
number Features in scheme Number of 

features Description 

1 Waveform features: lead-fall, baseline 
drift and amplitude 7 Time-domain features 

2 Waveform features and PSD features 15 Time-domain+ frequency-domain features 

3 Waveform features, PSD features and 
ApEn 19 Time-domain+ frequency-domain + ApEn 

features 

4 Waveform features, PSD features and 
PE 19 Time-domain+ frequency-domain + PE features 

5 Waveform features, PSD features and 
ELZC 19 Time-domain+ frequency-domain + ELZC 

features 

6 All features except ApEn 23 Time-domain+ frequency-domain + PE + 
ELZC features 

7 All features 27 Time-domain+ frequency-domain + ApEn + PE 
+ ELZC features 

3 EXPERIMENT RESULTS 

3.1 Parameter optimization for the aformentioned four classifiers 
In this section, the GS method was used to search the optimal parameters (C, σ) for the KSVM and 

LS-SVM classifiers for each of the seven feature schemes. The search ranges were set as 1×10−6~1×105 
for both parameters C and σ. Table 4 shows seven feature schemes and the corresponding optimal 
parameter combinations (C, σ) for the KSVM and LS-SVM classifiers on each scheme, respectively. In 
addition, in this study, both RaF and ORaF classifiers consisted of 300 trees, each constructed by 
random feature selected from features, and the number of random features is the square root of the 
number of all features. 

Table 4 shows that the KSVM classifier obtains the highest mean Acc of 0.9300, tested upon the 
training data set using 6-fold cross validation when the parameters C and σ are set as 28526.2000 and 
0.0010, respectively. Similarly, for the LS-SVM, the highest mean Acc, 0.9390, of cross validation is 
yielded when the parameters C and σ are 24.5553 and 3.7322, respectively. 

TABEL 4 THE RESULTS OF OPTIMIZED PARAMETER COMBINATIONS FOR THE KSVM AND LS-SVM CLASSIFIERS FOR EACH OF THE 
SEVEN FEATURE SCHEMES USING GS METHOD ON THE TRAIN DATA SET. 
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Feature schemes LS-SVM  KSVM 
C σ  C σ 

1 1265.4840 1.7361  16384.0000 0.2500 

2 362.3092 1.4292  16384.0000 0.2500 

3 3.9855 1.2855  4.0000 0.1436 

4 0.1769 0.8153  0.2500 2.2974 

5 0.7064 1.8205  36.7583 0.0090 

6 24.5554 3.7322  28526.2000 0.0010 

7 41.5410 11.9837  111.4300 0.0017 

3.2 ECG signal quality assessment results using the training data set 
This section reports the results of ECG signal quality assessment for the aforementioned seven 

feature schemes defined in Section 2.4, using the four classifiers, i.e. the KSVM, LS-SVM, RaF and 
ORaF. The parameter settings for KSVM and LS-SVM classifiers are provide in Table 4 for each of the 
seven feature schemes. The parameters of the RaF and ORaF classifiers are described in Section 3.1. 
Table 5 details the classification results for the training data set (i.e. set A) using 6-fold cross 
validation. 

Table 5 shows that the KSVM classifier yields the lowest classification accuracies of 90.00%, 
89.80%, 92.30%, 92.80%, 92.40% and 92.60% for feature schemes 1-5 and 7, respectively, using the 
training set under the 6-fold cross validation, except that it outperforms ORaF for the 6th scheme. The 
LS-SVM classifier shows steady performance and yields the second highest accuracies of 93.60%, 
93.66%, 93.90%, 93.89%, 93.60%, 93.70% for schemes 2, 3, 4, 5, 6 and 7 respectively, and obtains the 
highest accuracy on scheme 1. The RaF classifier achieves the best performance for nearly all the 
schemes. It not only yields the highest accuracies on feature schemes 2, 3, 4, 5, 6 and 7, respectively, 
but also it yields the highest accuracy of 95.41% among all seven feature schemes. The classification 
accuracies from the ORaF on each single scheme except for the 6th scheme are higher than those from 
KSVM but lower than those of LS-SVM. 

TALBLE 5 CLASSIFICATION RESULTS OF CROSS VALIDATION USING FOUR CLISSIFIERS ON FEATURE SCHEMES 1-7. 

Scheme Method 
Results on training set  Results on test set 

Se (%)  Sp (%)  Acc (%)  Acc (%) 

1 

KSVM 57.89±4.85  99.09±1.07  90.00±2.26  89.00 

LS-SVM 79.90±6.23  97.55±0.69  93.60±0.68  91.40 

RaF 80.64±4.92  95.86±1.17  92.50±1.21  89.80 

ORaF 80.35±6.99  97.02±0.58  93.22±2.24  90.80 

2 

KSVM 57.29±6.08  99.36±1.34  89.80±2.23  89.20 

LS-SVM 80.08±3.55  97.28±1.23  93.60±1.02  91.40 

RaF 90.51±7.56  96.80±2.29  95.41±1.89  89.40 

ORaF 68.17±7.66  98.73±1.44  91.90±1.78  91.00 

3 

KSVM 72.75±11.51  98.07±1.18  92.30±1.42  91.20 

LS-SVM 79.77±5.79  97.54±0.85  93.66±1.73  91.60 

RaF 89.40±3.74  96.63±1.29  95.10±1.06  90.20 

ORaF 79.02±5.34  97.53±1.42  93.29±2.64  91.00 

4 

KSVM 72.98±5.48  98.57±1.30  92.80±2.09  91.60 

LS-SVM 80.66±7.95  97.67±1.10  93.90±1.58  91.80 

RaF 87.13±4.74  97.26±1.98  94.99±1.60  91.20 

ORaF 78.22±5.61  98.21±0.69  93.60±1.36  91.60 
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TALBLE 5 (CONTINUED) CLASSIFICATION RESULTS OF CROSS VALIDATION USING FOUR CLISSIFIERS ON FEATURE SCHEMES 1-7. 

Scheme Method 
Results on training set  Results on test set 

Se (%)  Sp (%)  Acc (%)  Acc (%) 

5 

KSVM 75.18±3.05  98.11±1.19  92.40±2.17  91.80 

LS-SVM 81.47±6.88  97.64±1.46  93.89±2.64  92.00 

RaF 88.38±5.93  96.35±2.06  94.59±1.53  91.40 

ORaF 78.55±11.19  98.03±1.15  93.70±1.78  91.40 

6 

KSVM 73.84±8.31  98.29±1.49  93.00±2.18  92.00 

LS-SVM 77.94±6.46  98.09±2.00  93.60±1.69  92.20 

RaF 86.54±4.62  97.04±1.26  94.70±1.22  91.00 

ORaF 76.76±5.24  97.43±1.33  92.90±1.25  92.00 

7 

KSVM 71.46±4.95  98.44±0.94  92.60±2.80  90.20 

LS-SVM 76.35±6.47  98.59±1.22  93.70±1.66  91.60 

RaF 87.08±7.60  96.86±1.06  94.90±1.70  91.60 

ORaF 75.84±6.62  97.66±0.82  93.00±1.21  92.00 

 

Fig. 2 shows that comparision of classfication accuracies of the four classifiers on training and test 
data sets, respectively. For each feature scheme on test data, the LS-SVM can yield the optimal 
accuracy rates except for scheme 7, and the highest accuracy of 92.20% among those of all feature 
schemes is obtained on scheme 6. Althought the RaF classifier has a good performance on training set, 
the accuracies from RaF on unseen test data set are relatively lower than those of the other three 
classifiers, especially for the schemes 3, 4 and 6. Conversely, the KSVM classifier has a poor 
performance on the training set in comparison with those of other classifers, however it obtains better 
classification performance, i.e., 91.20%, 91.60%, 91.80% and 92.00%, on schemes 3, 4, 5 and 6, 
respectively. Classification performance of the ORaF classifier is realtively stable when tested with 
unseen test data set, and it yields the second highest accuracies of 90.80%, 91.00%, 91.60%, 92.00% 
and 92.00% on the corresponding schemes 1, 2, 4, 6 and 7. 
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Figure 2.  Classification accuracy of the four classifiers. (a) Acc obtained for the training data set(i.e., set A), (b) Acc obtained 
for the test data set (i.e., set B), respectively. 
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Fig. 3 shows the difference of classification accuracies between the training and test data sets, aiming 
to compare generation capabilities of the four classifiers on different feature schemes. Fig. 3 indicates 
the KSVM algorithm has the least performance differences than those of other classifiers on all feature 
schemes, except for schemes 6 and 7, and the RaF yields the highest differences on all schemes. In 
contrast, the corresponding differences of the ORaF on schemes 2, 4, 6 and 7 are comparatively smaller 
than those of LS-SVM, especially on the schemes 6 and 7. 
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Figure 3.  The Acc difference between the training and test data sets on each scheme for each classifier 

4 DISCUSSIONS 
In this study, we performed the aforementioned four classifiers on 7 feature schemes aiming to not 

only compare performance of the classifiers but also evaluate the effectiveness of nonlinear features, 
especially ELZC feature, on ECG quality assessment.  

The results indicate that two types of nonlinear feature, i.e., PE and ELZC, can help to improve 
classification performance of the aforementioned four classifiers because classification accuracies of 
nearly all the four classifiers on schemes 4 and 5 are comparatively higher than those of schemes 1, 2 
and 3 on both training and test data sets. Feature scheme 1 purely relies on the waveform feature 
therefore it usually leads to vague and inaccurate conclusions. This is due to the fact that the waveform 
of considerable amount poor quality ECG signals is difficult to be distinguished from that of high 
quality ECG signals that can be used for clinical purpose. Similarly, frequency bandwidths of ECG 
signals and noise tend to overlap, thus the frequency features cannot reflect the inherent properties of 
ECG signals. This in turn results in comparatively lower classification accuracies or poor 
generalization ability of the second feature scheme. The nonlinear features can reflect inherent 
properties within ECG signals since ECG is also nonlinear time series. In contrast, PE and ELZC can 
discern randomness and nonlinear complexity within ECG signals more explicitly than ApEn, so the 
classification accuracies from schemes 4 and 5 are relatively higher than those generated by scheme 3. 
The results also indicate that the ELZC and PE have similar abilities to reflect the nonlinear properties 
within ECG signals, owing to the fact that accuracies on scheme 4 and 5 exhibit different trends for 
different classifiers. 

The combinations of nonlinear features also do not always guarantee the performance improvement 
of signal quality assessment, thus the accuracies on schemes 6 and 7 exhibit fluctuation instead of 
increase. In fact, PE features of some ECG recordings and their ELZC features yield information 
redundancy or overlap, which in turn causes a decrease in classification performance. 
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The results indicate that the classical KSVM yields the worst classification results on training data 
set using 6-fold cross validation, and the results from LS-SVM are better than those of KSVM. In the 
KSVM method, the constraints are inequality, and support vectors near a separating hyperplane can 
dramatically impact the calculation of the hyperplane, whereas the vectors that are far away from the 
hyperplane have little influence to determination of the hyperplane. So classification performance of 
the classical KSVM method is easy to be weakened when the classifying boundary between two classes 
is not obviously, or even vague. Therefore, the support vectors are hard to be determined. In fact, the 
data of ECG quality assessment are usually the raw ECG signals that have not been processed and 
contain a lot of random components and noises, and so the boundary between acceptable and 
unacceptable ECG recordings is not obvious. This could be the reason why classification performance 
of the classical KSVM is relatively weak than that of the LS-SVM method. For the LS-SVM, its 
constraints are equality, and whether near or far from the separating hyperplane. As mentioned above, 
the vectors impact the calculation of the hyperplane. So performance of the LS-SVM method could be 
weakened when the boundary of two classes is clear, whereas its performance is improved when the 
boundary is vague. This is owing to the fact that the vectors that are the more far away from the 
hyperplane have more obvious class labels so that they can more accurately calculate the separating 
hyperplane. It is why the performance of the LS-SVM method is higher than that of the classical 
KSVM.  

The RaF method yields the highest accuracy in each feature scheme for the training data set using 
cross validation except for scheme 1, but the accuracies are relatively lower for the unseen test set. The 
results indicate that generalization ability of the RaF is limited. In fact, Fig. 3 exhibits that the RaF 
method has the worst generalization performance. A possible cause of such poor generalization ability 
is that each tree is constructed by randomly selected features in the RaF method, and the random 
selection cannot ensure the construction of an effective RaF. Moreover, Fig. 3 indicates the 
generalization ability of SVM, i.e., KSVM and LS_SVM is higher than that of RaF. In fact the KSVM 
has the best generalization performance among the four classifiers.  

Furthermore, in comparison to RaF, the ORaF uses SVM to optimize decisions for constructing 
trees instead of random selection, so the ORaF method improves the classification performance for the 
test set and exhibits a better generalization ability than that of RaF. However, the accuracy rates of 
ORaF for the evaluation of the test set are comparatively lower than those of LS-SVM, which further 
strengthens the robustness of LS-SVM. 

5 CONCLUSIONS 
The aforementioned four classifiers are not able to yield the satisfied classification results when they 

are performed on waveform and frequency features. However the proposed nonlinear complexity feature 
ELZC exhibits the same better capability as PE than waveform and frequency features to enhance the 
performance of assessing the quality of mobile ECG recordings of the four classifiers because 
classification accuracies of nearly all the four classifiers on schemes 4 and 5 are comparatively higher 
than those of schemes 1, 2, 3 on both training and test data sets. Similarly, the feature ELZC also 
exhibits a satisfied performance on enhancing generation capacities of most of the four classifiers except 
the ORaF classifier than the features PE because the difference of classification accuracies between the 
training and test data sets on scheme 5 is lower than that on scheme 4. So the proposed nonlinear 
complexity feature ELZC is more help to improving classification accuracies of the classifiers especially 
the LS-SVM classifier than the feature PE. Actually the feature ELZC and the LS-SVM classifier can 
yield the highest classification accuracy 92.00% on test data set among the features schemes 1, 2, 3, 4, 
and 5 with keeping a relatively lower difference of classification accuracies between the training and test 
data sets.  

A total of 27 features are derived from waveform, power spectrum and non-linear characters of ECG 
signals, providing comprehensive information for signal quality. For the evaluation of the test data set 
containing 500 10 s mobile ECG recordings, results showed that LS-SVM classifier achieves the best 
classification accuracy rate of 92.20% and outperforms other classifiers, i.e. KSVM, RaF and ORaF, 
consistently. 

ACKNOWLEDGMENT 
We thank the MIT-BIH database for providing the invaluable data used in this study. We also thank 

Dr. Le Zhang and Prof. Ponnuthurai N. Suganthan, because they provide the public code of the ORaF 
based on multi-surface proximal support vector machine. 

CONFLICT OF INTEREST STATEMENT 
The authors declare that there are no conflicts of interest. 



13 
 

REFERENCES 
[1] Q. Li and G. D. Clifford, Signal quality and data fusion for false alarm reduction in the intensive care unit, Journal of 

Electrocardiology. 45(2012) 596-603. 
[2] Y. T. Zhang, C. Y. Liu, S. S. Wei, C. Z. Wei and F. F. Liu, ECG quality assessment based on a kernel support vector 

machine and genetic algorithm with a feature matrix, Journal of Zhejiang University SCIENCE C. 15(2014) 564-57. 
[3] G. D. Clifford, J. Behar, Q. Li and I. Rezek, Signal quality indices and data fusion for determining clinical acceptability of 

electrocardiograms, Physiological Measurement. 33 (2012) 1419-1433. 
[4] Q. Li and G. D. Clifford, Dynamic time warping and machine learning for signal quality assessment of pulsatile signals, 

Physiological measurement, 33(2012) 1491-1501. 
[5] C. Orphanidou and I. Drobnjak, Quality assessment of ambulatory ECG using wavelet entropy of the HRV signal, IEEE 

journal of biomedical and health informatics, 21(2017) 1216-1223. 
[6] P. Langley, L. Y. Di Marco, S. King, D. Duncan, C. Di Maria, W. Duan, M. Bojarnejad, D. Zheng, J. Allen and A. Murray, 

An algorithm for assessment of quality of ECGs acquired via mobile telephones, Computing in Cardiology, IEEE. 
Hangzhou, 38(2011) 281-284. 

[7] L. Johannesen, assessment of ECG quality on an Android platform, Computing in Cardiology, IEEE. Hangzhou, 38(2011) 
433-436. 

[8] S. Zaunseder, R. Huhle and H. Malberg, “Assessing the usability of ECG by ensemble decision trees,” Computing in 
Cardiology, IEEE. Hangzhou, vol 38,  pp. 277-280, 2011. 

[9] Y. Chen, H. Yang, Self-organized neural network for the quality control of 12-lead ECG signals, Physiological 
Measurement. 33(2012) 1399-1418. 

[10] J. Kužílek, M. Huptych, V. Chudáček, J. Spilka1, L. Lhotská, Data driven approach to ECG signal quality assessment using 
multistep SVM classification, Computing in Cardiology, IEEE. Hangzhou, vol 38(2011) 453-455. 

[11] Q. Li, C. Rajagopalan, G. D. Clifford, A machine learning approach to multi-level ECG signal quality classification, 
Computer methods and programs in biomedicine. 117(2014) 435-447. 

[12] Y. Zhang, S. Wei, L. Zhang and C. Liu, A signal quality assessment method for mobile ECG using multiple features and 
fuzzy support vector machine, In Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 12th 
International Conference on. IEEE. 2016, 966-971. 

[13] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least Squares Support Vector Machines, 
World Scientific, Singapore, 2002. 

[14] L. Zhang and P. N. Suganthan, Random forests with ensemble of feature spaces, Pattern Recognition. 47(2014) 3429-3437. 
[15] L. Zhang and P. N. Suganthan, Oblique decision tree ensemble via multisurface proximal support vector machine, IEEE 

transactions on cybernetics. 45(2015) 2165-2176. 
[16] L. Zhang and P. N. Suganthan, A Survey of Randomized Algorithms for Training Neural Networks, Information Sciences. 

364(2016) 146-155. 
[17] L. Zhang and P. N. Suganthan, A comprehensive evaluation of random vector functional link networks, Information 

Sciences. 367(2015) 1094-1105. 
[18] P. Mohapatra, S. Chakravarty, P. K. Dash, Microarray medical data classification using kernel ridge regression and 

modified cat swarm optimization based gene selection system, Swarm and Evolutionary Computation. 28(2016) 144-160. 
[19] G. B. Moody, Physionet/computing in cardiology challenge 2011, July 2011. URL: http://physionet.org/challenge/2011. 
[20] P. Shetty and S. Bhat, Analysis of various filter configurations on noise reduction in ECG waveform, International Journal 

of Computing, Communications & Instrumentation Engg, 1(2014) 88-91. 
[21] J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, American 

Journal of Physiology-Heart and Circulatory Physiology. 278(2000) H2039-H2049. 
[22] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series. Physical review letters. 88(2002) 

174102. 
[23] Y. T. Zhang, S. S. Wei, H. Liu, L. N. Zhao, C. Y. Liu, A novel encoding Lempel–Ziv complexity algorithm for quantifying 

the irregularity of physiological time series, computer methods and programs in biomedicine. 133(2016) 7-15. 
[24] C. S. Zhang, Optimization of Kernel function parameters SVM based on the GA, Advanced Materials Research. 433(2000) 

4124-4128. 
[25] C. S. Zhang, Optimization of Kernel function parameters SVM based on the GA, Advanced Materials Research. 433(2000) 

4124-4128. 
[26] X. Wang, C. Yang, B. Qin and W. Gui, Parameter selection of support vector regression based on hybrid optimization 

algorithm and its application, Journal of Control Theory and Applications, 3(2005) 371-376. 
[27] Z. Masetic, A. Subasi, Congestive heart failure detection using random forest classifier, Computer methods and programs 

in biomedicine. 130(2016) 54-64.  
[28] L. Breiman, Random forests, Machine learning. 45(2001) 5-32. 
[29] A. Khazaee and A. Ebrahimzadeh, Classification of electrocardiogram signals with support vector machines and genetic 

algorithms using power spectral features, Biomedical Signal Processing and Control. 5(2010) 252-263. 
[30] O. L. Mangasarian, E. W. Wild, Multisurface proximal support vector machine classification via generalized eigenvalues, 

IEEE Transactions on Pattern Analysis and Machine Intelligence. 28(2006) 69-74. 
[31] L. Wang, Y. Wang, Q. Chang, Feature selection methods for big data bioinformatics: A survey from the search perspective, 

Methods. 111(2016) 21-31. 
 

http://iopscience.iop.org/journal/0967-3334
http://iopscience.iop.org/0967-3334
http://iopscience.iop.org/0967-3334
http://www.worldscibooks.com/compsci/5089.html
http://physionet.org/challenge/2011

	1 Introduction
	2 Method and material
	2.1 Data
	2.2 Multiple features calculation
	For time and frequency features, we improved the existed quality features based on our previous work [12].
	a) Waveform features
	The most prominent feature is one of waveform features, namely lead-fall feature. For real time ECG recordings collected by smart phone, poor electrode contact or lead movement could cause signal waveform that seems like a straight line, however, in p...
	Baseline wander is also relatively more common distortion of waveform and cause poor quality signals for clinic application. In this study, we calculated four features (FBd1, FBd2, FBd3 and FBd4) based on baseline wander. FBd1 and FBd2 denoted the max...
	Actually, few huge impulses exist in some acceptable ECG recordings, however more number of huge impulses is found in poor quality ECG recordings. This study firstly computed the number of huge amplitudes that were greater than 5.0 mV within each lead...
	b) Power spectrum features
	Normal ECG signals have a range of frequency band from 0.05 to 100 Hz. High frequency noise within ECG signals is mainly caused by muscle electricity during periods of contraction or due to a sudden body movement, and its frequency range is from 0 Hz ...
	c) Non-linear features
	The non-linear features are expected to address the inherent non-linear characteristic in ECG signal. Several non-linear approaches, such as approximate entropy (ApEn) [21], permutation entropy (PE) [22] and our recently developed ELZC method, were em...
	The ELZC method can not only distinguish the chaotic and random characteristics in the ECG recording [23], but also can indicate the noise level contained in the ECG recording, especially for the signals contaminated by high frequence noise. The class...
	In this study, the ELZC was employed as the non-linear ECG signal quality feature. The value of ELZC from the 12 leads were calculated as ELZCi (i=1, 2, …, 12), and then four ELZC features derived from ELZCi were defined as follows:

	2.3 Comparative classifiers
	2.3.1 Kernel support vector machine (KSVM)
	2.3.2 Least squares vector machine (LS-SVM)
	2.3.3 RaF
	2.3.4 ORaF

	2.4 Evaluation procedure

	3 Experiment results
	3.1 Parameter optimization for the aformentioned four classifiers
	3.2 ECG signal quality assessment results using the training data set

	4 Discussions
	5 Conclusions
	Acknowledgment
	Conflict of interest statement
	References


