26 research outputs found

    Matrix-based techniques for (flow-)transition studies

    Get PDF

    Matrix-based techniques for (flow-)transition studies

    Get PDF
    In this thesis, numerical techniques for the computation of flow transitions was introduced and studied. The numerical experiments on a variety of two- and three- dimensional multi-physics problems show that continuation approach is a practical and efficient way to solve series of steady states as a function of parameters and to do bifurcation analysis. Starting with a proper initial guess, Newton’s method converges in a few steps. Since solving the linear systems arising from the discretization takes most of the computational work, efficiency is determined by how fast the linear systems can be solved. Our home-made preconditioner Hybrid Multilevel Linear Solver(HYMLS) can compute three-dimensional solutions at higher Reynolds numbers and shows its robustness both in the computation of solutions as well as eigenpairs, due to the iteration in the divergence-free space. To test the efficiency of linear solvers for non-flow problems, we studied a well-known reaction-diffusion system, i.e., the BVAM model of the Turing problem. The application to the Turing system not only proved our program’s ability in doing nonlinear bifurcation analysis efficiently but also provided insightful information on two- and three- dimensional pattern formation

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Aeronautical engineering: A continuing bibliography with indexes (supplement 237)

    Get PDF
    This bibliography lists 572 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999

    Get PDF
    These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft

    Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2

    Get PDF
    The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed
    corecore