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ABSTRACT 

These proceedings report the results of a workshop on identification and control of 
flexible space structures held in San Diego, CA, July 4-6, 1984. The workshop was 
co-sponsored by the Jet Propulsion Laboratory and the NASA Langley Research Center, 
and preceded the 1984 American Control Conference held at the same location. The 
main objectives of the workshop were to provide a forum to exchange ideas m exploring 
the most advanced modeling, estimation, identification and control methodologies to 
flexible space structures. The workshop responded to the rapidly growing interest 
Wlthin NASA in large space systems (space station, platforms, antennas, flight 
expenments) currently under design. The workshop consisted of surveys, tutorials, 
contnbuted papers, and discussion sessions m the following general areas: missions of 
current mterest - space platforms, antennas, and flight experiments; controVstructure 
interactions - modeling, integrated design and optimization, control and stabilizatl0n, 
and shape control; uncertainty management - parameter identification, model error 
estimation/compensation, and adaptive control; and experimental evaluatl0n - ground 
laboratory demonstrations and flight experiment designs. Papers and lectures on these 
topics were presented at a total of fourteen sessions, includmg three panel discussions. 
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A REDUCING TRANSFORMATION FOR DYNAMICS 
MODELING OF A CLUSTER OF CONTIGUOUS 
FLEXmLE STRUCTURES WITH CONSTRAINTS 

R. P. Singh 
Honeywell, Inc 

Clearwater, FL 33546 

P. W. Likins 
Lehigh UmversIty 

Bethlehem, PA 18015 

THEME 

Large Space Structures (LSS) and other dynamIcal systems of current Interest 
are often extremely complex assemblIes of rIgId and fleXIble bodIes subJected 
to kInematIcal constraInts. ThIS paper presents a formulatIon of the govern
Ing equatIons of constraIned multlbody systems VIa the applIcatIon of SIngular 
value decompOSItIon (SVD). The resultIng equatIons of motIon are shown to be 
of mInImum dImenSIon. 

The motIvatIon for thIS work was the development of a generIC computer program 
for SImulatIng space structures and SImIlar electromechanIcal systems amenable 
to mathematIcal representatIon as a set of fleXIble bodIes Interconnected In a 
topologIcal confIguratIon. ThIS representatIon may Include closed loops of 
bodIes, prescrIbed motIon, or other constraInts that may qualIfy as SImple 
monholonomic. The equatIons of motIon approprIate for a set of fleXIble bodIes 
In an open loop confIguratIon appear In Refs. 1, 2. A computer program 
(TREETOPS) developed to SImulate the dynamIC response of fleXIble structures 
In a topologIcal tree confIguratIon IS descrIbed In Ref. 3. The SVD technIque 
of the present paper IS beIng Incorporated In an extenSIon of the TREETOPS 
program that permIts applIcatIon to constraIned systems. ThIS extenSIon 
permIts dIrect use of the dynamIcal equatIons for the less constraIned system 
In Refs. 1, 2, WIth augmentatIon by kInematIcal constraInt equatIons and re
ductIon of dImenSIon by SVD. 

BasIcally, there are two conceptual approaches to solVIng the equatIons of 
motIon of such systems. (1) One can Introduce unknown forces and torques at 
the Interfaces between constraIned bodIes (often accomplIshIng thIS symbolIcal
ly WIth Lagrange multIplIers), and then solve the dynamIcal equatIons SImul
taneously WIth the constraInt equatIons to determIne the constraInt forces and 
torques as well as the kInematIcal varIables, Ref. 4. (2) AlternatIvely, one 
can use the constraInt equatIons to reduce the dImenSIon of the system of 
dynamIcal equatIons to be solved by partItIonIng generalIzed coordInates, Refs. 
5, 6. TechnIques presented In Refs. 4, 5, 6 may encounter numerIcal SIngular
ItIes. Also, systems undergoIng large motIon may present problems of 
InconSIstency In the constraInts such as three dImenSIonal loops durIng the 
system motIon becomIng two dImenSIonal or one dImenSIonal loops. In what 
follows, the SVD method WIll be shown to aVOId mathematIcal SIngularItIes. 
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CONTENTS 

Slngular Value Decomposltl0n: Orthogonal decomposltlon of an mxn matrIx L by 
slngular value decomposltl0n IS closely related to the eIgenvalue-eIgenvector 
decomposltl0n of the symmetrIc posltlve seml deflnlte matrIces LTL and LLT. 
Let r$m be the rank of L. Then there are orthogonal matrlces U and V of order 
mxm and nxn rexpectlvely such that 

( 1) 

S 

The dlagonal elements of the decomposltlon are called the slngular values of 
the matrlx L. The slngular values are unlque, although U and V are not. 

It IS easy to verlfy that 

T T 2 
V L LV = dlag (E , 0) ( 2) 

2 2 T Thus (Al' .... ,A
r 

) must be the nonzero elgenvalues of L L arranged In the 

descendlng order and the requlrement thatA be nonnegatlve completely 
1 

determlnes the A. The elgenvectors of LTL are the columns of V. If LTL 
I 2 

has a multlple elgenvalue A >0, the correspondlng columns of V may be chosen 
dS an orthonormal basls for the space spanned by the elgenvectors correspondIng 

2 
to A . 

From eq. (1) 

L = USv
T 

Now wlth proper partltl0nlng of U and V eq. (3) can be expressed as 

L [u l : U2] ~-+_OJ ~n U
1 

L v
T 

o , 0 1 

From the above one obtalns 

-1 
U

l 
= LV 

1 
L 

Thus once VI IS chosen U
1 

IS obtalned by eq. (5). The matrlces U
2 

be any matrlces wlth orthonormal columns spannlng the null spaces of 
respectlvely. It IS worthwhl1e to mentlon that the null space of L 
space of all vectors x such that 

2 

(3) 

(4) 

(5) 

and V may 
T 2 

Land L 
IS the 



Lx = 0 (6) 

W~th the orthogonal decompos~t~on g~ven by eq. 
the pseudo~nverse of L, ~s def~ned by 

+ (3), an nxm matr~x L , called 

( 7) 

+ L ~s un~quely def~ned by L; ~t does not depend on the part~cular orthogonal 
decompos~t~on of L. 

Appl~cat~on of SVD to Dynam~cal System w~th Constra~nts: Let q = ql' .... 'qn 

compr~se a set of general~zed coord~nates that fully def~nes the confIguratIon 
of dynam~cal system. The equat~ons of motIon of the system can be wrItten as 

. 
Mq = F (q,q, t) (8a) 

where the elements of nxn matr~x M are funct~ons of q's and the Inert~a pro
pert~es of the system; the elements of nxl column vector F are funct~ons of q's, 
the~r t~me der~vat~ves q's and appl~ed forces (moments) on the systems. If 
the general~zed coord~nates are related by constra~nt equat~ons then they are 
not ~ndependent und the r~ght hand s~de of eq. (8a) wIll also ~nclude the non
work~ng forces of constra~nts. Let the unknown constra~nt forces be denoted 

c F. Now for the general case of constra~ned dynamIcal system, eq. (Sa) takes 
the follow~ng form 

Mq = F + F
C 

(8) 

Suppose however that the constra~nt equat~ons can be wr~tten as 

(9) 

where A ~s of d~mens~on mxn (m<n) and B ~s an mxl column vector. 

Holonom~c constra~nt equat~ons can always be placed ~n the form of eq. (9) and 
nonholonom~c constra~nts ~n the class called Pfaff~an or s~mple have th~s 
structure also. 

If the rank of matr~x A ~s r~m then r of the k~nemat~cal var~ables ~n q are 
related by eq. (9) and there are only n-r ~ndependent general~zed coord~nates. 
In other words the dynam~cal system possesses n-r degrees of freedom. 

The SVD of the mxn matr~x A prov~des 

A = USv
T 

(10) 

The orthogonal matr~ces U and V (of d~mens~on mxm and nxn respectIvely) are 
part~t~oned as 

3 



u 

V 

[U1 :U~ 
[VI :V 2J 

(11) 

(12) 

where U
1 

and VI are respect~vely mxr and nxr matr~ces: U
2 

and V
2 

are respec

t~vely mx(m-r) and nx(n-r) matr~ces. Note that r ~s the rank of A. 

Because AV
2 

= 0, eq. (9) ~s sat~sf~ed by 

• + • 
q = A B + v

2
z (13) 

• + for any vector z, A ~s the pseudo~nverse of A. We shall refer to z as the 
reduced set of (n-r) coord~nates. 

D~fferent~at~on of eq. (9) w~th respect to t~me y~elds 

Aq = -Aq+B 

or, Aq = B' 
(14) 

Follow~ng eq. (13) express q ~n terms of z as 

.. + 
q = A B' + v

2
z (15) 

Note from eq. (13) or eq. (15) that V
2 

maps the n k~nemat~c var~ables q (or q) 
to n-r var~ables z (or z). Thus a cons~stent set of equat~ons of mot~on ~n z 
~s g~ven as 

(16) 

The coeff~c~ent of z ~s a symmetr~c pos~t~ve def~n~te matr~x w~th the charac
ter~st~c of an "~nert~a matr~x" for the reduced set of coord~nates z. 

c 
W~th the Lagrange mult~pl~er method, F ~s establ~shed v~a (see Ref. 4) 

where a ~s the column vector of Lagrange mult~pl~ers. 

T 
Premult~ply eq. (17) by V

2 
to obta~n the follow~ng 

(18) 

4 



Thus It IS seen that the nonworkIng constraInt forces make no contrIbutIon to 
the equatIons of motIon (eq. (16» and need not be recorded. 

EmploYIng the transformatIons gIven by eqs. (13) and (15), the mInImum 
dImensIon fovernlng dIfferentIal equatIons of motIon are gIven by 

and 

. 
q 

(19) 

(20) 

ThIS method elImInates the forces of constraInts WhIch when Included serve not 
only to enlarge the dImensIon of the dynamIcal system but also qUIte often 
Introduce computatIonal problems. 
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VffiRA TION/LmRATION INTERACTION DYNAMICS 
DURING THE ORBITER BASED DEPLOYMENT 

OF FLEXIBLE MEMBERS 
V. J. Modi* and A. M. Ibrahim** 
The Umverslty of Bntlsh Columbia 
Vancouver, B C , Canada V6T IW5 

ABSTRACT 

Essential features of a general formulation for studying librational dynamics 
of a large class of spacecraft during deployment of flexible members are reviewed. 
The formulation lS applicable to a varlety of misslons ranglng from deployment of 
antennas, booms and solar panels to manufacturing of trusses for space platforms 
using the Space Shuttle. The governing nonlinear, non-autonomous and coupled 
equations of motion are extremely difficult to solve even with the help of a 
computer, not to mention the cost involved. To get some appreciation as to the 
complex interactions between flexibllity, deployment and attitude dynamics as well 
as to help pursue stability and control analysis, the equations are linearized 
about their nominal deflected equilibrium configuration. The procedure is applied 
to the Space Shuttle based deployment of boom and plate-like members. Results 
suggest substantial influence of the inertia parameter, flexural rigidity of the 
appendages, orbit eccentricity, deployment velocity, initial conditions, etc. on 
the system response. The results should prove useful in planning of the Orbiter 
based experiments aimed at assessing effectiveness of procedures for studying 
dynamics and control of flexible orbiting members. 

c 
c 

o 
e 

S 

Fq 

h 

{H} 

* Professor 

instantaneous centre of mass of satellite 

centre of mass of satellite before deployment 

orbit eccentricity 

centre of mass of the Earth 

generalized force associated with the generalized coordinate q 

angular momentum per unit mass of satellite 

angular momentum due to deploying and vibrating appendages 

generallzed coordinate associated with ~m' ~n modes of free-free and 
fixed-free beams, respectively, to represent plate type appendage 

oscillations 

**Craduate Research Fellow 
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[I] satellite inertia diadic 

LP(t) , Lb(t) instantaneous length of a deploying plate and beam, respectively 

U'} :: [ : I 
Mt 

Nb,Np 

P~,Q~ 

RC 

t 

T 

U 

V 

x,y,z 

X,Y, Z 

a,8,y 

e 
J.l e 
{w} 

fully deployed length 

dlrection cosines of the unit vector along RC wlth respect to x,y,z 
axes, respectively 

total mass of satellite 

number of beam and plate type appendages, respectively 

generalized coordinates associated with ~th mode of a fixed-free 
beam vibration 

position vestor from the Earth centre to the instantaneous centre of 
mass C. 

time 

kinetic energy 

gravitational potential energy 

strain energy 

body coordinates with origln at C (Figure 3) 

inertial coordinate system with origin at Co; Yo along local vertical 
Zo along local horizontal and Xo aligned with orbit normal 

pitch, yaw and roll librational angles (Figure 4) 

true anomaly, e = n 
universal gravitational constant 

satelllte angular velocity vector 

Subscripts, Superscripts and Miscellaneous Symbols: 

('),d( )/dt time rate of change in inertial and reference coordinate systems for 
vectorial quantlty, respectively 

[ ] matrix 

{ } vector 

II. INTRODUCTION 

In the early stages of space exploration when spacecraft tended to be small, 
mechanically simple, and essentially inflexible, the elastic deformations were 
relatively insignificant. Numerous investigations involving active and passive 
stabilizatlon procedures and accounting for internal as well as external forces 
have been carried out assuming satellites to be rigid [1]. However, in a modern 
space vehicle carrying light-weight deployable members, which are inherently 
flexible, this is no longer true. Furthermore, preliminary configurations of the 
next generation of satellites suggest a trend towards spacecraft with large 
flexible members. In fact, space engineers are involved in assessing feasibility 
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of construction of gigant1c space stat10ns wh1ch cannot be launched in the1r 
entirety from the earth, but have to be constructed in space through integration 
of modular sub-assembies. Assembly of such ~ace Qperations fentres [SOC,2-5] 
suggests an increas1ng role of structural flexibility in their dynamical and con
trol considerations. 

This be1ng the case, flexibi11ty effects on satellite attitude motion and 1tS 
control has become a topic of considerable investigat1on. Over the years, a large 
body of literature pertaining to the various aspects of satellite system response, 
stability and control has evolved which has been rev1ewed quite effectively by 
Likins, Modi, Williams, Robertson, Lips, Markland and others [6-12]. 

It should be emphasized that prediction of satellite att1tude motion is by 
no means a simple proposition, even if the system is rigid. Flexible character 
of the appendages makes the problem enormously complex. It is, therefore, under
standable why transient behaviour associated with the critical phase of attitude 
acquisition and/or deployment related maneuvers has received relatively little 
attention. On the other hand, although the deployment effects are of a transient 
nature, they may be felt over a long period of time as a result of relatively 
small extension rates that are normally associated w1th large appendages. For 
example, the Space Shuttle based tethered system extending to 100 km, in which 
the NASA has shown considerable interest, may take 6-8 hours to deploy and much 
longer to retrieve. 

The complex character of the problem has led to analysis which often involves 
simplifying assumpt10ns. Lang and Honeycutt [13], as well as Cloutier [14], 
studied the problem of deployment dynamics representing an appendage by point 
masses. On the other hand, there are several efforts reported in the l1terature 
where authors have treated flexible members as rigid bodies [15-17]. Cherchas 
and his associates [18,19] as well as Dow et al [20] did analyze systems having 
flexible membrane or beam type appendages but with a specific configuration. 
Furthermore, the appendages were considered to be uniform with a fixed deployment 
velocity. More recently Jankovic [21] investigated dynamics of the CTS solar 
panels during deployment and correlated measured tip acceleration with the anal
ytical prediction. The librational dynamics of a body deploying two plate type 
flexible members normal to the orbital plane was studied by Ibrahim and Misra [22]. 
Effects of deployment velocities and plate properties on the librational response 
were investigated. A rather general formulation for the class of satellites with 
flexible deploying beam type appendages has been presented by L1ps and Modi [23]. 
Interaction between the libration dynamics, flexibility and deployment was studied 
and it was noted that instability may result under certain comb1nations of system 
parameters. Recently, Modi and Ibrahim [24] presented a general model for 
studying libratl0nal dynamics of a large class of spacecraft during deployment of 
arbitrarily oriented beam and/or plate type appendages. The formulation is 
ideally suited to help assess the effect of complex interactions between flexi
bility, deployment, attitude dynamics and stability of present as well as the next 
generation of spacecraft. 

Using the 11nearized form of the general formulation, this paper studies 
dynamics of the Orbiter based deployment of flexible members during two planned 
experiments: 

(i) Orbiter Mounted Large Platform Assembler Experiment 
Objective here is to establish capability for manufacturing beams, trusses, 
etc. in space for construction of the SOC. The assembler is fully 
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collapsible and automatlcally deployed (Flgure 1). 

(li) NASA/Lockheed Solar Array Fllght Experlment 
This experiment involves deployment and retrieval of a solar panel, 101 ft. 
in length, from the orbiter to generate about 13 kW of additional power. 
The obJectlve here lS to demonstrate ln orblt extension/retractlon of the 
lightweight solar array wing developed by Lockheed Mlsslle and Space Company 
for NASA's Marshall Space Fllght Center (Figure 2). 

Response of the two systems is obtalned over a range of system parameters 
and external disturbances. Both tranSlent as well as post deployment phases are 
considered. Results suggest that under critical combination of flexibillty, 
inertia, deployment and orbital parameters, the system can become unstable. The 
presence of free molecular environmental forces may further accentuate this 
tendency. 

III. OUTLINE OF THE FORMULATION PROCEDURE 

Figure 3 shows schematically a sateillte wlth an arbitrarily oriented flexible 
beam and plate type deployable appendages. The sateillte is free to negotlate any 
specifled trajectory around the centre of force. Let the position vector Rc and 
true anomaly 8 define the location of the instantaneous centre of mass C of the 
spacecraft wlth respect to the inertial coordlnate system X, Y, Z having its 
orlgin at the centre of the Earth. Co represents location of C wlthout any vlbra
tions or asymmetrlc deployment. An orthogonal orbitlng reference frame Xo ' Yo, 
Zo wlth ltS origin at Co is so orlented that Yo and Zo are along local vertical 
and horlzontal, respectlvely, while Xo is aligned with the orblt normal. The 
body coordinates x, y, z with origin at C coincide with the orbital coordinates 
Xo , Yo, Zo in absence of any librations and vibrations. 

The orientations of the body axes x, y, z at any instant t relatlve to the 
orbltal coordinate frame Xo , Yo, Zo can be described by a set of modified Eulerian 
rotations as follows: y (roll) about Zo giving x', y', z'; S (yaw) about y' 
resulting in x", y", z" and flnally a (pitch) about x" yielding x, y, z (Figure 4). 

General formulation of the nonlinear, nonautonomous and coupled equations of 
motlon for thlS system has been treated in detail earlier in reference 24. Here 
the attention is focussed on linearization of the equations and modular program
mlng procedure which help lsolate the effects of deployment, flexibility, lnertia 
orbital parameters, appendage orientation, deployment rate, etc. 

Flexible character of the appendages renders the system hybrid, i.e. the 
system is described in terms of discrete and distributed coordinates. The 
resultlng governing equations of motion, in general, do not admit to any closed 
form solution. They are normally transformed into a set of ordinary differential 
equations uSlng finite element, lumped parameter or assumed mode methods with 
generalized coordinates depending on time alone. Here, an assumed mode discreti
zation procedure lS favoured as the elastic appendage displacements can be 
represented adequately uSlng a relatively few equatlons. Displacements of the 
flexible members are described by linear combinatlons of space-dependent admis
sible functions and time-dependent generalized coordlnates. 

The basic system lS so complex that to check the validity of the governing 
equatlons and associated program for their integratlon presents a challenging 
task. Hence, the formulation can also serve as a comparative validating scheme 
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in association w~th other analytical/numerical models when they become available. 
The dynamical equations would also serve as a basis for assessing the effects of 
environmental forces and development of control strategies. The kinetic energy 
of the spacecraft with deploying flexible appendages was shown to be [24] 

T = Torb + TVib + {wIT {H} + ~ {w}T[Il {wI ( 1) 

where 

K.E. due to orbital motion 

Tvib K.E. component due to pure vibration 

1 T } 2" {w} [IHw = K.E. due to pure rotation 

{w}T{H} K.E. due to coupling between vibrational and rotational modes 

angular velocity vector 

angular momentum due to deploying and vibrating appendages 

[I] time dependent inertia matrix. 

The gravitational potential energy of the satellite was written as 

(2) 

Here the first term represents potential energy due to the satellite treated as a 
point mass while the rest of the expression is the contribution due to its 
rotation. 

The strain energy stored in the appendages during their vibration had the 
form 

v = {q}T [V] {q} , (3) 

where {q} represents generalized coordinates associated with the vibration degrees 
of freedom, 

{q} = 

H . mnl 

and [V] is a symmetric matrix of vibration modes used to represent flexural defor
mations of the appendages. 

Using the Lagrangian procedure the equations of motion can now be obtained 
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from, 

where: 

d (~T) 
crt • ~q 

q = 

m = 1, 2, 

; = 1 , 2, 

j = 1 , 2, 

~T + 
~q 

... , p 

••• N p 

... , Nb 

~(U+V ) 
oq 

n 

l 

= 

= 

= 

1, 

1 , 

( 4) 

2, ... , r 

2, . .. , s 

hence the satellite dynamics is simulated by a system of q ordinary differentlal 
equations of the 2nd order where 

q = 

The librational motion of the system and the vibrations of the appendages 
normally have very little effect on the orbital motion unless the system dimensions 
become comparable to the position vector Reo Hence, for most studies, the orbit 
can be computed using the classical Keplerian relatl0ns 

2 h / ~e{l + e cos e) 

h 

where h is the angular momentum per unit mass of the satellite and e the eccen
tricity of the orbit. The equations of motions in the librational degrees of 
freedom are 

The 
as 

d 
(It (

{ ~w } T {H } ) { ~w } T {H} + d 
~q oq at 

T 
(5a) 

{ OW } [I] {w} + o,L = Q 
_~q oq q q = ex, ~, y • 

equations of motions in the vibrational degrees of freedom 

~ C~V;b ) _ ::Vlb + ~ (I ~ IT lOll) I ~ IT lOll 

+ oW + V) 
oq = 

12 

q = 

can now be written 

(5b) 



The number of equations representing vibrational motion would depend on the number 
of modes used, 

N number of vibrational equations 

= (p x r x Np) + 2(s x Nb) • 

The governing nonlinear equations were linearized about a nominal equilibrium 
position to give 

Mq + (M + 2G) q + (G + C + K) q + E + F = 0' (6) 
where q is a generalized coordinate vector, in general of N dimensions, with 
elements a, S, y, Hmni , p~J and Q~ .. In Equation (6), M, C and K are (NxN) sym
metric matrices, while G is skew s~mmetric of order N. In general, vectors E and 
F are of N dimensions. It should be emphasized that the nonlinear Equation (5) 
and its linearized version as given in Equation (6) are rather general. They are 
valid for any spacecraft with central rigid body carrying arbitrary number and 
orientation of flexible appendages. Although the derivation used beam and plate 
type of appendages, the form of the equations remained the same for membrane and 
tether type of flexible members. Character of the members only affect elements 
of the coefficient matrices but not their symmetry properties or the general form 
of the governing equation. The equations are valid for deployment as well as 
retrieval of appendages. 

IV. COMPUTATIONAL CONSIDERATIONS 

Refined computational procedure is the key requirement in the numerical solu
tion of such a formidable problem. Hence, a brief statement on the computational 
considerations would be appropriate. The equations were integrated using an 
AMDAHL 470-VS dtgital computer. Depending upon the stiffness character of the 
system, two different integration routines were used from computational efficiency 
considerations. For stiff systems (i.e. those involving widely differing time 
scales as would be the case for spacecraft with flexible deploying appendages), 
the routine DGEAR-I.S.M.L. was used which is based on Gear's backward differentia
tion formulae [25,26]. For rigid spacecraft, the well-known Adam's method with 
functional iteration was employed. The programs proved to be extremely efficient. 
In a typical case of a spacecraft deploying one flexible plate-type appendage to 
50 m, the three axes 1ibrationa1 response of the central rigid body and flexural 
response of the appendages can be computed in less than lS.271 cpu seconds! 

The program is so formulated that it can readily be extended to the nonlinear 
case. Furthermore, it is written in a modular fashion to help isolate the effects 
of flexibility, deployment, character and orientation of the appendages, inertia 
and orbital parameters, number and type of admissible functions, etc. Environ
mental effects due to solar radiation pressure, aerodynamic forces, Earth's 
magnetic field interaction, etc. can be incorporated easily through generalized 
forces. The same is true with internal energy dissipation although in the present 
analysis the system is considered, purposely, conservative. The total energy of 
the system is monitored routinely and serves as a check. Furthermore, contribu
tions of its constituents (i.e. T, U, V) to individual degrees of freedom are also 
computed continuously to provlde physical insight into the character of the 
resulting dynamics and associated energy transfer. Finally, the program can be 
used to check positive and negative definite character of the Liapounov function, 
constructed using the stored matrices, thus providing information concerning 
necessary condition for stability. 
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V, RESULTS AND DISCUSSION 

One can generate an enormous amount of information through a systematic 
variation of geometric, inertia, orbital, flex~bility and deployment parameters 
together with a variety of in~tial cond~tions representing external disturbances. 
For conciseness only a few of the typical results useful in establishing trends 
are recorded here. 

Calculations were carried out for a plate type appendage deployed from the 
Orb~ter in a circular trajectory. Effects of aerodynamic and solar radiation 
pressure forces are purposely om~tted here to obtain some base ~nformation. It 
is intended to study the environmental effects once there is some appreciation as 
to the fundamental dynamics. The equat~ons were nondimensionalized using the 
central rigid body mass (M), radius of gyration corresponding to the maximum 
moment of inertia (I yy in case of the Orbiter), and angular velocity n. Hence, 
it is not necessary to specify system parameters ~nd~vidually. This ~s indeed 
advantageous as the obtained system response remains valid over a range of comb~n
ations of variables as long as the dimensionless parameters maintain constant 
values. 

For calculations geometry, inertia, flexibility and deployment rate param
eters were taken to be as follows: 

Orbiter: 

Mass 

Plate 

LP 

79,710 kg 

8,286,760 kg m2; 1yy = 8,646,050 kg m2; 1 zz = 1,091,430 kg m2 

27,116 kg m2 ; 1xz -8,135 kg m2 ; 1yz = 328,108 kg m2 

50 m, width 5 m, mass 260 kg 

Flexibility Parameter ~ Et3 /l2(1-v 2) n2 1yy 0.01. 

Deployment Parameter ~ Lp/n (I /M )1/2 yy r 0.1 • 

Plate Attachment Parameter Pr (distance of the appendage support point 
from the Orbiter c.m.)/(1yy/Mr )V2 0 

Here: E 
t 

V 

Beam 

modulus of elasticity of the plate material; 
plate thickness; 
Poisson's ratio. 

The Orbiter has been given an initial angular disturbance in p~tch, yaw and 
roll of 

a(O) S(O) yeO) 0.001 rad 

Note, the given responses are in absence of any control and damp~ng. 

Figure 5 shows librational response of the Orbiter in three different 
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orlentations. As can be expected the Orbiter is stable in the Lagrangian configu
ration correspondlng to the maXLmum moment of inertia axis aligned with the orblt 
normal and the minimum moment of inertla axis along the local vertical. 

Figure 6 studies the effects of flexibility and deployment for the stable 
case studied in Figure 5c. The 50 m plate type appendage is considered to be 
either rigid or flexible and deploying or completely deployed along the local 
vertical. The Orbiter inertia being extremely large compared to that of the 
appendage, its librational response in all the cases was found to be essentially 
the same. However, vibratory response of the flexible appendage shows consider
able variation. As expected the deploying appendage experiences high frequency 
amplitude modulations initially with a progressive increase in period with time. 
Instability of the generalized coordinate Hil associated with the first rigid body 
free-free and the first fixed-free beam modes is apparent although the response 
corresponding to the higher modes (HZZ) is stable. 

From the consideration of construction of a space platform using the orbiter 
it would be useful to assess ltS stability during deployment in various orlenta
tions. Figure 7 addresses this aspect of the problem. The flexible plate is 
deployed along the maximum moment of inertia aX1S durlng three different orienta
tions of the Orbiter. The plate is located in the plane of symmetry of the Orblter. 
As both the Orblter as well as the plate orientatlons govern the response and 
stability, the cases considered here represent only a small sample. It is 
intended to assess how far the Lagrangian stable conflguration concept continues 
to be effective ln the presence of flexibility and time dependent inertias. 
Obviously, a systematic varlation in orientations would be necessary to fully 
understand complex nonlinear lnteractions. Such studies would help in assessing 
the extra demand imposed on the Orbiter's control system, fuel used to achieve the 
control and its effect on the Orbiter's mlssion life. The results show that the 
Orbiter continues to be unstable for cases (a) and (b) both in librational and 
vibrational modes, however, case (c), corresponding to the Lagrangian config
uration, remains stable. This would suggest desired orientation for the Orbiter 
during in-orbit manufacture of structural components for construction of space
platforms. 

Figure 8 compares generalized coordinates associated wlth the first four 
modes for the three different attitudes of the Orbiter considered in Figure 7. 
Note, the vibrations continue to be relatively small for the Lagrangian configura
tion. 

Of course, the large amplitude motion data should be treated as qualitative 
because the general nonllnear, nonautonomous, and coupled equations are linearized 
here. However, they do suggest trends. Analysis using nonlinear equations is in 
progress. 

VI. CONCLUDING COMMENT 

Wlth a relatively general formulation in hand and the program operational, 
efforts are in progress to develop a comprehensive data bank for spacecraft with 
flexible appendages. Not only will it prove useful to design engineers involved 
in planning of future communications satellites but also help in assessing dynami
cal, stability and control considerations associated with the Orbiter based con
struction of space-platforms. 
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Figure 1 Artists view of the Space 
Shuttle based manufacture 
of structural components. 

Figure 2 Schematic diagram of the 
Orbiter based deployment 
of a solar array during 
the proposed NASA/Lockheed 
experiment. 
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Figure 3 Geometry of orbiting space
craft with flexible deploying 
beam and plate type appendages. 
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ABSTRAcr 

Dynamic analysis and controls design for flexible spacecraft involves 
high-order dynamic systems with multiple inputs and outputs. Computer 
tools are essential for such analysis. This paper describes the controls/
structures interaction analysis capability of an inter-disciplinary can
puter software system, called the Integrated Analysis Capability (IAC) , 
which is being developed by Boeing Aerospace Company for NASA/Goddard SFC. 
An overview of rAC components and procedures is presented, and an example 
of a preliminary space station controls design is shawn. 

I. INTROOOcrION 

Since 1979, the Boeing Aerospace Company has been under contract to 
NASA/Goddard Space Flight Center to develop the Integrated Analysis Cap
ability (lAC), a computer software system for conducting interdisciplinary 
design analysis and performance evaluation of large space systems. The IAC 
combines major computer programs used in diverse disciplines (e.g., struct
ural, thermal, and controls analysis) into a single package with a cammon 
executive routine and database. 

The lAC was developed in three phases. Phase I was a proof of concept 
code developed during a ten month study which established the lAC develop
ment plan. Phase II saw the first operational lAC (level ~) delivered to 
Goddard in 1981. Since that time, the IAC has been used by many indivi
dual analysts and on some inter-disciplinary projects within NASA and 
Boeing. The resulting user group has identified a number of desirable 
lmprovements and helped to establish priorities for continued system 
development. Phase III resulted in the completed version of the IAC (level 
1) which will be delivered to Goddard July 15 of this year. The lAC should 
be avallab1e for public use late this sumner through the COSMIC Software 
Distributlon Center. 

Phase III also produced several pre-programmed modules which permit a 
complete multivariable linear controller design, fran definition of the 
spacecraft structure (in a NASTRAN [2] format) to final compensator 

*Consu1tant, Boeing Aerospace Co. 
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configuration and simulation. The controller design tools incorporate 
linear-quadratic synthesis (LQS) theory by use of the ORACLS [3] subroutine 
package. This paper presents an overview of the IAC canponents and the 
procedures for controller design. An example of high-order, multi-input/
multi-output design is presented through an attitude control design for a 
space station model. A discussion of the tools and procedures used for 
non-linear multi flexible body control design and simulation is also 
included. 

II. ARCHITEClURE 

lAC developnent has emphasized canpat1bility with a modern super
minicomputer, and the system is currently resident on the nEC/VAX host 
machine using the VMS operating system. The system architecture (described 
in detail 1n [1]) provides two products: 

1) A specific inter-disciplinary analysis capability having a set of 
interfaced technical modules that deal with coupling of thermal, structures 
and controls disciplines. 

2) A general framework product which serves as an "integrated base" 
whereby user groups can add desired modules and disciplines. 

The lAC architecture is summarized by Figure 1. The three methods of 
data storage and access are: the lAC user workspace, the host file system, 
and lAC databases. The user may access this data concurrently with other 
users directly through the executive, shown at the top of the figure, using 
one of the many executive Query functions which allow the user to load, 
V1ew, or manipulate the data in the database. The user also may use the 
execut1ve to 1ssue Host commands which allows access to data on the host 
canputer. The execut1ve prov1des the capab11ity to run all the lAC modu
les. The right side of Figure 1 shows the interaction with the database 
through support modules, such as the interface modules, graph1cs packages 
or user-defined modules. On the left side of Figure 1, the f1nal method of 
database interaction is shown, namely the technical modules and a list of 
these modules is shown in Figure 2. 

F1gure 1 illustrates the framework which allows for data flow between 
disciplines. More specifically, this flow is defined as a "solutlOn path", 
a term which refers to a defined sequence of IAC- provided operations. 
Figure 3 illustrates five standard solution paths Wh1Ch have been def1ned 
w1thin the thermal/structures/controls specific capabilities. The stand
alone operation of each technological module 1S defined as Solution Path I. 
Paths II and V 1nvolve an increasing degree of inter-disc1plinary coupl1ng 
and correspondingly greater complexity. 

Solution Path III is the path discussed in this paper. Br1efly, Path 
III accomplishes a ControlS/Structures Interaction (CSI) analysis, 1n 
either the frequency or time domain, as described 1n the follow1ng 
sections. 

It should be noted that Solution Path V 1S to be canpleted at sane 
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future time and will provide a fully coupled analysis in the frequency 
danain, directed at probl611S such as thermal flutter of long spacecraft 
members. 

Each user-defined solution path is executed by a series of lAC 
commands. These may include direct interactlve commands or references to 
external host files containing commands. The user may stop along a path to 
inspect data and review options. This engineer-in-the-loop mode of oper
ation allows flexibility in the developnent and the use of lAC solution 
paths. 

III. CONTROLS DESIGN FOR FLEXIBLE SPACECRAFT USING IAC 

CSI analysis begins with a presumption of small deflections and linear 
dynamic models with modal damping. For Syst611S of interest, the problem is 
inherently multivariable, with strong coupling of inputs and outputs to 
many modes. In its initial form, modules in the lAC have been provided to 
construct such linear multi-input/ffiultioutput (MlMO) models. Also, driver 
programs have been developed to permit design of linear proportional 
controllers, using linear-quadratic synthesis (LOS) techniques, for 
attitude control and active vibration damping. More recently, modules have 
been added to provide for linear (and non-linear) simulation capability 
with closed-loop control. 

In this section, the steps involved in linear MIMO controller design 
will be described and illustrated by use of an example. The example is a 
Boeing version of an initial operational capability space station. 

Finite-Element Structural Madel 

A NASTRAN [2] case control and bulk data deck to describe the struc
ture of interest must be prepared as a host file (see Figure 1). This host 
file establishes the order of the desired model for the dynamic system. 
The LAC is then entered and commands are issued to execute a NASTRAN run in 
a batch mode. The output from this run is stored in another host file; an 
interface program (INDA) is then run to format and store the dynamic model 
data in the database. 

As an example of this process, Figure 4 presents a portion of the 
nodal configuration of a raft-type space station, shown in Figure 5, with 
solar panels mounted on a boon and gimballed at their centers. Table 1 
presents the modal frequencies for a 24-mode model of the structure as 
generated by NASTRAN. INDA provides this data plus mass propertles, node 
goemetry and the mode shapes to the database. 

State Space Model 

To construct the actuator and sensor modal distribution matrices, the 
designer must construct arrays in the database which define the nodal 
location, orientation, and units for the system inputs (e.g., actuators) 
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and outputs (e.g., sensors). This can be done manually through the exe
cutive Query function. Then an interface program (ABC) is run to fonn the 
matrices of a state space model. ABC is a driver program written using 
ORACLS matr1x routines and LAC-provided input/output ut1lities. The input 
data for ABC, which must be placed in a host file, can include a value for 
modal damping of the flexible modes. 

Table 2 presents the actuator and sensor data for the example; also 
1ncluded are outputs to be controlled and input disturbances (assumed to 
occur at the core). The resulting linear model has the standard form 

x = Ax + Bu + GN, z = Cx + v, y = Hx ( I ) 

where x is the st~te vector, u is the control, w is the disturbance, z 
is the measurement, v is the measurement noise and y is the controlled 
output. The A-matrix for this model is generated by ABC in block diagonal 
form with each 2x2 modal block in campanion fonn, i.e., for the ith-mode 

A11 = [fJ 2 

-w -2~J 
where w is the modal frequency and ~ 1S its damping ratio. Thus B, G, 

C, H are modal distribution matrices. 

Linear Model Modifications 

The model generated by ABC is stored as data structures (i.e., arrays) 
in the database, and 1S thus accessible to the des1gner through the exe
cutive Query function. For example, cascade elements such as actuator or 
sensor dynamic models can be added by extending the arrays; or model order 
reduction can be accomplished by simple truncation of the arrays or by 
removing specific rows or columns. These modifications can be accomplished 
either interactively or by constructing a user-module FORTRAN program which 
is executed by rAC command. 

At Boeing, we have built user-module programs to investigate model 
order reduction by a technique known as impulse energy analysis [4]. This 
is a form of modal cost analysis [5] in which unit impulses are appl1ed 
simultaneously to all inputs and the energy flow to the outputs through 
each flexible mode is assessed. The modes w1th largest values are retained 
in the model. Table 1 includes such an assessment for the example; of the 
18 flexible modes, the 6 with largest values were used in the reduced-order 
model, along with the 6 rigid body modes. The reduced-order C- and H
matrices for this model have been generated by a techn1que called partial 
realization [6] which attempts to match the time response of the full-order 
model in a particular frequency range (here, at low frequency). 

LQS Tools 
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Once a linear model in the form of equation (1), or a reduced order 
version, has been stored in the database, a state space controller can be 
designed. One of the controls modules provided with the lAC is a driver 
program (REGEST) WhlCh utlllzes the ORACLS subroutine package [3] to apply 
LQS techniques to the design of a constant-gain state feedback regulator 
and state est~ator. The designer must load into the database, utilizing 
lAC Query, a set of quadratic weighting matrices for the design, and then 
construct a host file which tells REGEST the location of the model arrays 
and design parameters. Various options in the calculations are selected by 
interactive input during program execution. 

The resulting gain matrices are canbined with the model to form a 
dynamic compensator, of the same order as the model, for feedback control. 
This compensator can be represented by 

A A 1\ A 
x' = A'x' + B'u + Ke(z - C'x'), u = Uc - KrX' 

A = (A' - B'Kr - KeC' )x' + B'Ue + Kez 
(3) 

where the pr~es refer to the reduced-order model. Kr and Ke are the 
gain matrices, and Uc is a command input. 

For the l2-mode model of the example, Table 3 presents results from 
REGEST for two selections of weighting of the inputs and outputs described 
previously. Table 3 lists the eigenvalues for the regulator A'-B'Kr , the 
estimator A'-KeC', and the compensator A'-B'Kr-KeCI • Note that the re
gulator design with faster low-frequency poles results in an unstable 
compensator. This is not uncarrron in I.,CJ3 design and is related to the 
robustness problems that have been recognized with this design technique. 

Stability and Performance 

When A', B', C' are not the same as A, B, C, the closed-loop system 
will not have the eigenvalues predicted by REGEST. Another controls module 
program (TIMFST) is available to assess the stability of the system that 
results from combining equation (3) with equation (1). The designer must 
construct a host file which identifies the appropriate arrays in the 
database for the system and compensator; the program then provides the 
eigenvalues of the closed loop systan. Initial conditions and system input 
time functions can also be provided to the program, which then produce'3 a 
time response by linear silnulation. 

For the two example designs, 
eigenvalues obtained from TIMFST. 
produces an unstable system. 

Table 4 presents the closed-loop 
Note that the unstable compensator 

IV. MULTI -FLEXIBLE BODY coornoL DESIGN FOR 
LINEAR AND NOOLINEAR SYSTEMS 

As the control design for CSI begins to mature, nonlinearlities must 
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be consIdered. The lAC contains desIgn modules for nonlInear structural 
and controls analysis. A significant nonlinearity in structures is 
exhibited by multlple inter- connected flexible structures. Construction 
of the space station utilizing the shuttle remote manipulator arm is an 
example of this type of structure. In this section, the available lAC 
tools for thIS task will be described. Example design procedures for 
interfacing these tools utilizing IAC intermodule data flow will also be 
discussed. 

A block dIagram of the design and analysis module interaction with the 
lAC for this task is shown in Figure 6. The typical control system design 
consists of three elements: 1) development of the vehicle model for analy
S1S, 2) synthesIs and analysis of the control system utilizing linear 
theory, and 3) performance analysis and verification using nonlinear 
simulation techniques. 

DISCOS (Dynamic Interaction of Controls and Structures) [7] models the 
dynam1cs of multi-flexible bodies connected at generalIzed six degree-of
freedom hinge points. SAMSAN [8] is a collection of state-of-the-art sub
rout1nes for classical control systen design or high-order systems. SAMSAN 
was developed primarily for Sampled System Analysis. EASY5 [9] is a con
trol system and plant model development program which contains general 
purpose time domain simUlation and frequency domain analysis tools for 
nonlinear and linear systems. All of the modules depicted in the figure, 
w1th the exception of EASY5 and the combined DISCOS/EASY5 modules developed 
at Boeing, are contained within the level I IAC archItecture. The lAC 
architecture is developed to facilitate inclusion of user selected design 
and analysis modules that could be used in place of the Boeing modules. 

To develop vehicle dynamIC models for multi -flexible bodies, the 
analysis modules NASTRAN, DISCOS, SAMSAN, EASY5 and the Interface module 
IN~ are used 1n a procedure as depIcted by the InformatIon flow of F1gure 
6. Thermal deformation data can be included in thIS development if the 
design warrants such consideration. The initial step in developing multi
flexible vehicle dynamIC models is to create a structural finite element 
model for each fleXIble body using NASTRAN. Model defInItIons in terms of 
geometry, mass properties, mode shapes and frequencies are entered into the 
lAC database through INDA. DISCOS can then read this data out of the data
base and combine it into a coupled flexible body model through ItS Lagrange 
multiplIer approach. At Boeing, the DISCOS interface to the LAC has been 
modified so that the user can select the modes to be retained after INDA 
has loaded the NASTRAN model parameters into the lAC database. The DISCOS 
model IS a complete, general nonlinear dynamic model including all couplIng 
effects and large angle body motions for a multi-flexible body. DISCOS can 
linearize th1s model at any userspecifled static or dynam1c 1nitial con
dltion and load into the database the 11near matrices A, B, and C sat1s
fying equation (1) above. Code has been developed in the lAC to store 
labels for the DISCOS states to aSSIst the user in Interpretation of the 
data. 

In order to utilize the DISCOS model in the most efflcient manner to 
address the question of controllability and observability, and to develop 
reduced-order models for control system deSIgn, the DISCOS lineanzed 
equations can be restructured Into block diagonal model fODTI. A powerful 
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tool for performing this task is a set of subroutines called BLKDRV [10]. 
These subroutines reside in the SAMSAN library. The most significant 
advantage of these routines is that they are designed to diagonalize 
systems with mUltiple roots while avoiding ill- conditioned results. This 
is particularly important for the zero frequency (rigid body) roots that 
are present in the DISCOS linearized model. The SAMSAN routines have been 
canbined together in a user-defined driver program (BLOCKIT), utilizing 
IACprovided utilities to carmunicate data to and fran the IAC database. 
ThIS program reads the A, B, C matrices fram DISCOS, forms the diagonalized 
model and returns it to the database for analysis. 

The ORACIS routines can be used to synthesize a multivanable con
troller for this model by an r..c;:s procedure as discussed above. In add
ition, the linearized vehicle model can be transferred to EASY5 utilizing 
IAC I/O utilities. The control system designer can canbine this plant 
model with either a linear or nonlinear model of the controller. EASY5 can 
then be used to perform standard classical frequency danain analysis of the 
system for either a continuous or discrete system. EASY5 can also be used 
to run a time danain simulation of the linear vehicle model and either a 
linearized model of the controller or the complete nonlinear model of the 
controller. Multivariable controller design parameters developed by a LOS 
approach using ORACIE can be passed to the EASY5 model through the IAC 
database to be canbined with nonlinear models of sensors and actuators for 
a more complete analysis of the system. 

Final evaluation of system perfonnance and adjustment of control 
parmeters is performed at Boeing using the DISCOS/EASY5 module. This 
module combines the nonlinear vehicle dynamic model of DISCOS with the 
nonlinear model of the controller which is easily defined using the 
standard components of EASYS for time domain simulation. The DISCOS 
vehicle dynamic model and the EASY5 continuous controller states are 
integrated by the DISCOS numerical integrators to compute the time 
response. Since DISCOS does not have the capability to compute time 
responses of digital models, EASY5 canplements the DISCOS multiflexible 
dynamics by providing this capability. Graphics IAC utilities can be used 
to plot the time history results of the nonlinear controlled multi
flexible body. 
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Table 1. Symmetric Space Station, Configuration I, 24-Mode Model 

Eigenvalues of Flexible Modes:+ 

Frequency 
r~ode Uo. (rad/sec) Type f10da 1 Cos ts 

7 .527 

) 
.313 x 10-14 

8 .531 Solar Array .233 x 10-17 

9 .531 flast Torsion .347 x 10- 21 

10 .533 .392 x 10-11 

11 .546 } Boom Torsion .684 x 10- 15 

12 .599 .294 x 10-9 
* 

13 .728 } Boom Bending .623 x 10- 11 

14 .771 .312 x 10- 11 

15 .930 .461 x 10-9 * 
16 .967 .364 x 10-8 * 
17 1.11 .125 x 10- 17 

18 1.12 .255 x 10- 12 

19 1. 53 Combined .243 x 10- 12 

20 1.57 Bending .731 x 10- 11 

21 1.83 .483 x 10-9 * 
22 2.75 .149 x 10- 7 * 
23 2.86 .398 x 10- 13 

24 2.87 .490 x 10-9 * 

+ Added Damping Ratio: .0001 
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Table 2. Input and Output Definitions for Space Station Model 

3 Actuators: 

3 Disturbances: 

9 Sensors: 

• Independent torque generation about roll, 
pitch, yaw, located on the core (at node 
100); units: N-m 

• Unknown torques about roll, pitch, yaw, 
located at node 100; units: N-m 

• Inertial rate about roll, pitch, yaw, 
located on the core (at node 100); units: 
rad/sec 

• Angles about roll and pitch, located at 
node 100; units: rad 

• Relative angles of solar array gimbal 
about roll and yaw, located at node 105 
(relative to node 100); units: rad 

• Relative angles of solar array panel 
corner about roll and yaw, located at 
node 310 (relative to node,lOO); units: 
rad 

3 Control Outputs: • Inertial angles of solar array giMbal 
about roll, pitch, yaw, located at node 
105; units: rad 
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Table 3. Eigenvalues of 12-Mode Regulator, Estimator, and Compensator 

Case 1: QR = 109 

Damping Frequency 
Ratio (rad/s) 

• Regul ator: 
6 Poles at Zero 

.711 

.716 

.708 

.013 

.0045 

.0039 

.0030 

.0072 

.0044 

• Estimator 

.112 

.146 

.149 

.600 

.930 

.967 
1.83 
2.75 
2.87 

7 Poles at Zero 
1.0 .00398 
.859 .00691 
.866 .00703 
.0011 .599 
.0209 .929 
.0091 .965 
.0175 1.83 
.302 1. 89 
.575 4.19 

• COlilpensator 
6 Poles at Zero 

1.0 .0849 
1.0 .101 
.730 .112 
1.0 .121 
1.0 .151 
.013 .598 
.041 .894 
.0068 .961 
.012 1. 81 
.127 2.51 
.820 3.29 
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Case 2: QR = 1010 

Damping 
Ratio 

Frequency 
(rad/s) 

6 Poles at Zero 
.721 
.735 
.710 
.0396 
.0141 
.0120 
.0093 
.0209 
.0121 

.199 

.257 

.266 

.605 

.929 

.967 
1.83 
2.75 
2.88 

(Same as Case 1) 

6 Poles at Zero 
1.0 .129 
1.0 .143 
.732 .199 
1.0 .257 
1.0 .319 
.032 .601 
.041 .841 
.011 .961 
.0097 1. 82 

-.208 2.88 
1.0 1.46 
1.0 5.89 



Table 4. Eigenvalues for 24-Mode System with 12-Mode Compensator 

Case 1: QR = 109 Case 2: QB = 1010 

Damping Frequency Damping Frequency 
Ratio (rad/s) Ratio (rad/s) 

13 Poles at Zero 13 Poles at Zero 
1.0 .00398 1.0 .00398 

.859 .00691 .859 .00691 

.866 .00703 .866 .00703 

.711 .112 .721 .199 

.716 .146 .734 .257 

.708 .149 .708 .267 

.0001 .527 .0001 .527 

.0001 .531 .0001 .531 

.0001 .531 .0001 .531 

.000095 .533 .00038 .534 

.0001 .546 .0001 .546 

.0011 .599 .0011 .599 

.013 .600 .0396 .605 

.00011 .728 .00019 .728 

.0001 .771 .00011 .771 

.0398 .897 .0417 .846 

.00022 .930 .00024 .930 

.0069 .961 .011 .961 

.00026 .967 .00031 .967 

.0001 1.11 .0001 1.11 

.0001 1.12 .0001 1.12 

.0001 1.53 .0001 1. 53 

.0001 1.57 .0001 1. 57 

.012 1.81 .0096 1. 82 

.0001 1.83 .00020 1. 83 

.126 2.51 .00011 2.75 

.000089 2.75 .0001 2.86 

.0001 2.86 .000098 2.87 

.0001 2.87 -.207 2.88 

.817 3.31 1.0 1. 56 
1.0 5.85 
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PROCESSOR MANAGER 
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STRlfCTURAl 
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Figure 1. lAC Architecture 
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A STRUCTURAL DYNAMICS APPROACH TO THE 
SIMULATION OF SPACECRAFT 

CONTROL/STRUCTURE INTERACTION 
J. w. Yonng* 

Structural DynamIcs Research CorporatIon 
San DIego, CA 92121 

ABSTRACT 

A relatively simple approach to the analysis of linear spacecraft 
control/structure interaction problems is presented. The approach uses a 
commercially available structural system dynamic analysis package for both 
controller and plant dynamics, thus obviating the need to transfer data be
tween separate programs. The unil ateral coupl i ng between components in the 
control system block diagram is simulated using sparse matrix stiffness and 
damping elements available in the structural dynamics code. The approach is 
illustrated with a series of simple tutorial examples of a rigid spacecraft 
core with flexible appendages. 

I. INTRODUCTION 

One of the challenges in the control of large flexible space structures 
is the dichotomy of analytical disciplines which are critical to the prob
lem: rigid body dynamics, structural dynamics and control. Differences in 
the formulation and domain of the applicable equations, notation, and jargon 
lead to problems in communication between analysts. The problem is further 
exacerbated by the use, typi cally, of different software programs to analyze 
the control system and structural dynamics. The purpose of the work reported 
here is to address this latter difficulty. Specifically, a few "tricks" are 
played which permit the use of a structural dynamics software program for the 
analysis of actively controlled structural systems. This alleviates the 
diffi culti es associ ated with the transfer of data between structural and 
control codes. It also provides a common forum for communication among 
control and structural analysts. 

*Director of Engineering 
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Following this brief introduction, a structural dynamics approach to the 
modeling of feedback control systems is presented. Included is a discussion 
of the fundamental difference between control and structural systems whi ch 
makes such an approach less than obvious. Next, the method is illustrated in 
a series of simple tutorial examples of the attitude control of a flexible 
spacecraft. These examples, incidentally, also clearly illustrate the type 
and cause of instabilities which can arise in such systems. The paper 
concludes with a summary. 

II. THE APPROACH: THE UNILATERAL STRUCTURAL ELEMENT 

The block diagram for a typical feedback control system is shown in 
F1gure 1, which also defines the notation used in this paper. Of course, 
infinite variations from this basic scheme are possible, but it is sufficient
ly general for our purposes. Ideally, a system analysis approach would enable 
the structural dynamicist and control system analyst to model the appropriate 
boxes 1n F1gure 1 and then assemble the system model using a "building block" 
[lJ technique. A common software package with integrated data base would 
el1minate many problems associated with different variable definitions, units, 
data transfer, etc. 

The fundamental difficulty in a structural dynamics approach to modeling 
a control system such as in Figure 1 is that the block diagrams of control 
engineering show flow of information or signals and not power. It is conven
ient to think in terms of the power variables, "effort" and "flow," which are 
often defined in control and system dynamics theory (see, for example, [2J). 
The product of an effort and flow variable (for example, force times velocity) 
represents the power exchange between components connected at the degrees of 
freedom (OaF) where the variables are defined. For a system consisting of 
interconnected structural components, thi s power is generally nonzero. In 
contrast, for a feedback control system, which is dominated by instruments 
(sensors or transducers) and isolating amplifiers, either the effort or flow 
variable may be suppressed to nearly zero at many connection points so that 
essentially no power flows between these components. In the "bond graph II 
approach to dynamic system analysis [2J, the effort and flow variables are 
treated explic1tly, and such a flow of information is represented by an 
"active bond II involving only one of the power variables. The d1fference 
between interacting structural systems (or "multiports") and control systems 
may also be described in terms of "bilateral" or "unilateral" coupling. 
Unilateral coupl ing refers to the flow of one of the two power variables as 
information without any "back effect II or loading, while bilateral coupling 
refers to the flow of both power variables, resulting in the transfer of 
energy. These ideas are summarized in Table 1. 
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If we temporanly think of the blocks of Flgure 1 as structural compo
nents, then a structural analyst might create a system structural model using 
the building block approach or the methods of component mode synthesis. One 
common way to do this is to represent the structural components by appropriate 
modal characteristics and couple these components using connectors or "scalar 
structural elements" (using MSC NASTRAN terminology) such as springs and 
viscous dampers. By definition such structural elements represent a bilateral 
coupllng between component OaF's. However, depending upon the flexibility of 
the structural analysis software, it may be quite simple to define a uni
lateral connection by defining a nonsymmetric matrix structural element. The 
concept is illustrated in Figure 2 by analogy to a spring connection between 
two translational OaF's. If we envision the physical spring of Figure 2(a) as 
grounded at point 2 and excited by a displacement input Yl at point 1, then it 
responds with a force f2 and an equal reacti on force fl. The constituti ve 
equation for this bilateral spring connector is shown in Figure 2(b). 

In contrast, a "unil ateral" connector may be defi ned as shown in Figure 
2(c), which represents proportional feedback control. A force f2 proportional 
to the input signal Yl is generated by the controller, and no reaction force 
fl is generated. An analogous argument can be made for the case of derivative 
feedback using a structural element representing viscous damping. An even 
simpler special case exists in which the control force or torque is applied at 
the same location and direction as the measurement. This strategy is guaran
teed not to drive an otherwise stable system unstable and is often referred to 
as thE!ILSM concept (Integrally Located Sensor and Manipulator) or simply as 
"coll ocated sensor and-actuator."- It maybe simul ated usi ng simpl e spri ng and 
dashpot elements between the sensor/actuator oaF and ground. The stiffness 
and viscous damping coefficients are defined to be equal to the controller's 
proportional and derivative gains. 

Similar "tricks" can be used to model various compensation filters (for 
instance, lead, lag, or lag-lead). A structural modeling technique simulating 
pure integral control has not been determined, but this is not of particular 
concern because it is also very difficult to physically realize a drift-free, 
pure integrator. Instead, the usual approach is to use a low pass filter 
which acts like an integrator for frequencies above the filter bandwidth. 
Thi s approach can be simul ated usi ng structural el ements as wi 11 be shown by 
example. 

The discussion thus far has focused upon single input, single output 
systems. However, the modern, state-variable control methods* usually used 

*1 have differentiated between classical and modern control in terms of 
the number of inputs and outputs. In fact the more fundamental differences 
relate to the design objectlves and approach and to the domain of the lndepen
dent variable (that is, frequency versus time). Both control approaches may 
be applied to any number of inputs and outputs. 
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for flexible spacecraft controller design involve multi-input, multi-output 
systems. Ideally, the complete system "state"-- consisting of the displace
ment and velocity associated with all structural OOF1s--is measured and fed 
back wlth a gain. This is equivalent to PO control of the component displace
ment OOFls and is easily simulated in a structural analysis code using uni
lateral matrix connectors. Thus, the primary additional complication for 
simulation of state-variable control systems is the probable need for multiple 
PO controllers. Other complications may arise if, for example, the state 
equations are based on nonphysical variables (for instance, phase or canonical 
varlables), but in most cases such problems appear to be solvable by defining 
constraint equations. 

II I • Examp 1 es 

In the examples presented here, a commercially available structural 
system analysis code** based upon the methods of component mode synthesis is 
used to simulate a variety of control strategies applied to a simple space
craft model. Many spacecraft can be accurately modeled as a rigid core with 
flexible appendages. In Example 1, PO and PID control is illustrated for a 
rigid spacecraft model. Appendage flexibility is added for Example 2, and it 
is shown that the controls of Example 1 result in an unstable system. Final
ly, the simplest possible stable control system, in which the sensors and 
actuators are collocated, is developed in Example 3. This strategy, sometimes 
referred to as ILSM (Integrally Located Sensors and Manipulators), is also 
trivially simple to simulate in a structural analysis code, requiring only 
scalar connectors. 

Example 1: PD Control of Rigid Spacecraft 

The planar rigld body spacecraft model is shown in Figure 3, WhlCh also 
shows the arbitrarily selected locations of the two sensors and two actu
ators. First the transfer functions for the plant and controller are derived 
and the parameter values defined. Next the closed-loop eigenvalues are calcu
lated by hand. Finally, the modeling procedure is described and the resultlng 
modes compared with the previously derived results. 

The equation of motion for the planar, rigid spacecraft is simply 

J0 = t (1) 

**SORC SYSTAN. 
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where J = Polar moment of inertia about the spacecraft center of gravity 
(c.g.) 

o = Spacecraft rotation about its c.g. 
t = Applied torque about c.g. 

Referring to Figure 3, the linearized vertical displacement of the appendage 
tip is 

y = 1 0 p s (2 ) 

The external torque from the two actuators is 

(3) 

where f = actuator force. 

Combining equations (1) - (3) 

(4) 

By taking the Laplace transform of equation (4), the plant transfer function 
in Figure 1 becomes 

(5) 

By definition of PO control, the controller transfer function of Figure 1 is 

!J. FA 
Gc (s) = VE = Kp (1 + Td s) (6) 

where Kp = proportional gain 
Td = derivative time 

Block diagram algebra yields the following two closed-loop transfer functions 

(7) 

and 

(8) 
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where l:!. J M 
2'A's 

2r:;w = n KpTd 

wn = / K (9) 
P 

M 

The controller parameters can be selected to provide any desired value of 
system natural frequency, wn' and dam~4ng ratio, 1;;. For our numerical 
simulation assume 

J = 9000 lb-s2-in 

1 s = 110 inches 

lA = 60 inches 

If we choose a natural frequency of 1 Hz and 20% damping, equation (9) can be 
solved for the controller parameters 

Kp = 26.92 lbjin 

Td = 0.06366 seconds 

Note that we have assumed an ideal measurement system so that sensor dynamics 
can be ignored. One approach to the simul ati on of thi s feedback control 
system using structural analysis software is to model the total closed loop 
system using direct matrix input. Thus, the mass, damping, and stiffness 
terms 1n the denominator of equations (7) or (8) can be entered directly. 
However, this approach requires that the analyst perform the block diagram 
algebra manually and obscures the effects of the individual components of the 
system; the controller is no longer distinct from the plant. Instead, we can 
define each of the parts of the block diagram in Figure 1 as distinct entities 
in the manner described below. 

(1) The spacecraft (or "plant" in Figure 1) is modeled as three separate 
rigid body components representing the core and two appendages. While 
only one component was required, it was convenient to "swap" the rigid 
appendages of this example for flexible ones in Example 2. 

(2) The two reference inputs are defined as rigid-body components with only 
one OOF each in the y direction. These OOF's are "grounded" at the 
system level in order to permit input of the desired position of the 
appendage tips. In fact, because the entire system has only one 1ndepen
dent OOF (0z), these two set-point OOF's cannot be deflned 
independently. 
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(3) The comparitors and error signals of Figure 1 are created by defining a 
constraint equation of the form 

YE = YO - YP • 

(4) Finally, the two PO controllers are defined as sparse, nonsymmetric 
matri x trans 1 at i ona 1 connectors. One poi nt of each connector is con
nected to the variable created for the error signal, and the second point 
is connected to the actuator location. 

Thus, to provide the unilateral coupling as shown in Figure 2(c), 
the nonzero elements of the stiffness and viscous damping matrices are 
defined to be 

Kp = -26.92 1b/in 
C = KpTd = -1.714 1b-s/in 

This connector thus generates a force on the spacecraft appendage propor
tional to the error signal plus its derivative and does not create a back 
effect or reaction force at the sensor location. 

Because the damping term (velocity feedback) results in a nonconservative 
eigenvalue problem, a complex eigenso1ution is required, yielding complex 
conjugate eigenvalues. The code used here lists a modal viscous damping ratio 
and natural frequency corresponding to each eigenvalue as shown in Figure 4. 
These values correspond to the hand-calculated ones. The response to a step 
change in the desired spacecraft attitude is shown in Figure 5. The input was 
defined as a unit step displacement associated with the two set-point vari
ables. The resulting steady-state appendage tip position is unity, as 
expected. 

Similarly, a ten-pound step disturbance was applied at the right actuator 
location. This might represent, for example, a bias in the actuator elec
tronics. The appendage response is shown in Figure 6. The predicted steady
state error labeled in the figure agrees with the theoretical value calculated 
from the equation found in any controls text: 

e s = lim s YE(s) 
s 5+0 

(10) 

For zero set point, using equation (8) 
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so that 
. Fd 

11m y = -e = K = .186 
t+m p ss p 

(ll ) 

A value of Fd = 5 was used in equation (11) because the ten-pound distur
bance was applied to the right actuator only and is equivalent to two 
five-pound disturbances applied simultaneously to each actuator. 

Example lA: PIO Control of Rigid Spacecraft 

Integral control action is often used when steady-state error is to be 
minimized, and this approach can be applied to the system of Example 1. 

The transfer function of the PID controller thus becomes 

FA 1 
G = - = Kp (1 + T dS + T. s) c YE 1 

(12 ) 

where Ti = integral time. 

The closed loop system transfer functions then become 

(13) 

Y s 
~ = Ms 3 + K Tdsz + K s + KIT. 

d P P P 1 

(14) 

Using equations (10) and (ll) it is easy to show that the steady-state error 
in response to a step input is exactly zero. Unfortunately, as mentioned in 
Section 2, it is difficult to realize pure integral control. We can, however, 
approximate PID control using a low pass filter so that the controller 
transfer function becomes 

(15 ) 

and the closed loop transfer functions become 

Yn _ K Tds2 + K (1 + Td/T.) s + 2K IT . 
....L.. P P 1 p1 (16 ) 
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~ _ 1 + ;Js 
F d - -M-S 3-+---'( ~'T".-+ -K-p-T d-)-S 2-+~Kp-(-1-+--'rd) s + 2Kp/T i 

1 T. 
1 

(17) 

This controller will integrate signals with frequencies much higher than the 
"break frequency," 

Wb = i. (radians/second) 
1 

It can also be shown using equations (10) and (17) that 
in response to a step disturbance, Fd, is 

(18) 

the steady-state error 

(19) 

Thus, the first order filter approximation to integral control reduces the 
steady-state error by half. 

We will illustrate the modeling of approximate integral control action by 
addi ng a fi rst order fi 1 ter to Exampl e 1. As shown in Fi gure 7, the fi rst 
order filter can be realized using a series spring and damper. Ignoring the 
second spring element in the figure, it is easy to show that 

C 
where T. = -K • 

1 1 

(20) 

This transfer function is implemented using sparse, nonsymmetric matrix 
transl ati onal connectors in order to provi de the appropri ate unil ateral coup-
1 i ng. Gri d poi nt 1 of spri ng Kl is connected to the error si gna 1, and the 
filtered output is provided at grid point 2. Note that no reaction force is 
imposed on the error signal because of the sparse stiffness matrix defined in 
Figure 7 for this connector. 

Grid point 1 of spring K2 is connected to the plant, thus providing the 
appropriate control force (including gain Kp) without a reactlon force on K or 
C. In addition, a small mass must be included at grid point 2 of C 1n order 
that the system mass matrix not be rank deficient. The value of M may be 
selected so that 

W = I Kl!M > wmax = maximum frequency of interest 
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The control subsystem of Figure 7 is included with the other entities of 
Examp 1 e 1. The parameter values were chosen such that T i = 1 second. The 
eigensolution is listed in Figure 8. While the natural frequency (see modes 3 
and 4) is relatively unchanged compared to Example 1 with PO control, the 
dampi ng rat i 0 has been decreased from 0.2 to 0.12. Thi sis to be expected 
because of the destabilizing effects of integral control. Four additional 
modes have appeared. Two are real eigenvalues associated wlth the low pass 
filters for the two I-controllers, and two are artificial, over-damped modes 
associated with the small mass included to eliminate the rank deficiency of 
the model. The response to a step change in the desi red spacecraft attitude 
is shown in Figure 9, which may be compared to Figure 5 of Example 1. Final
ly, the step response to a ten-pound di sturbance at the ri ght actuator is 
shown in Figure 10, which may be compared to Figure 6 from Example 1. The 
steady-state error has been cut in half as predicted by Equation (19). 

Example 2. PD Control of Spacecraft with Flexible Appendages 

A more interesting example is obtained by replacing the rigid appendages 
of Example 1 with flexible ones represented by finite element beam compo
nents. The natural frequencies and damping ratios are listed in Table 2. In 
addition to the rigid-body mode at 1 Hz, we now have the modes associated with 
the flexible appendages. Note in Table 2 the suspicious negative values of 
damping for modes 5-9. The significance of negative damping is illustrated by 
the step response plotted in Figure 11; our spacecraft control system is 
unstable! A further indication of the problem is the frequency domain res
ponse to a white noise disturbance shown in Figure 12. The increase in phase 
at 22 Hz (modes 5 and 6) and 65 Hz (modes 9 and 10) is also indicative of the 
instability. 

The physical cause for the instability is apparent from Figure 13. The 
cantrall er was desi gned for ri gid body spacecraft attitude positi oning, and 
the flexibility of the appendages results in spurious feedback signals. Thus, 
the positive displacement of the right appendage tip in mode 5 (Figure 13) is 
interpreted by the controller as a rigid body counterclockwise rotation, and a 
"correction" force is applied which actually pumps more energy into this mode 
and drives it unstable. The effect is similar with regard to mode 7, also 
shown in Figure 13, as well as the other modes with negative damping. 

The following example illustrates a typical unconditionally stable con
trol for this flexible spacecraft. 
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Example 3. PO Control of Flexible Spacecraft using Collocated Sensors and 
Actuators. 

As discussed in Section 2, the simplest control strategy to simulate 
using a structural analysis code is PO control where the sensors and actuators 
are in the same location, sometimes referred to as the ILSM concept. Fig
ure 14 is a display of the flexible spacecraft control system with collocated 
sensors and actuators. It shoul d be apparent that thi s control strategy 
results in a stable system because we have effectively added only springs and 
dampers to ground. It may at first seem contradictory that we have simulated 
an acti ve feedback control system usi ng purely passi ve mechani cal el ements. 
However, we have employed the infamous IIskyhookll damper which arises in opti
mum suspension design studies. The problem with regard to the physical real
ization of this passive design is that IIground ll is not available in space! 

Table 3 is a listing of the natural frequencies and damping ratios, where 
it is noted that all damping values are now positive. The well-behaved step 
and white noise responses are also shown in Figures 15 and 16 for comparison 
with Examples 1 and 2. 

IV. SUMMARY AND CONCLUSIONS 

An approach to the analysis of linear spacecraft control/structural 
interact i on has been presented. The method enables the sepa rate dynami c 
analysis of the controller, the plant, and the closed loop system in a single 
structural analysis software package. Any structural analysis package with 
the following capabilities can be used: 

(1) System analysis: component mode synthesis, substructuring or the build
ing block approach; 

(2) User-definable nonsymmetric structural stiffness and viscous damping 
elements; 

(3) Nonconservative complex eigenvalue solutions; 

(4) Time and frequency domain forced response analysis with complex modal 
systems. 

The use of a common structural analysis software package for the analysis 
of controller, plant, and system dynamics provides a common focus for communi
cation between control and structural analysts and designers and reduces the 
chance of errors due to transfer of data between separate control and 
structural analysis codes. In addition, relatively small organizations 
without extensive control system analysis capabilities and software can begin 
to model such systems using structural analysis software which they may 
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already have in-house. Obviously, this approach appeals more to structural 
analysts because controller and closed-loop dynamics are treated as special 
cases of structural elements and systems. However, a control-oriented user 
interface could be developed to minimize this bias. Such an interface would 
be especially simple to develop for interactive software programs with macro 
capabilities. The approach has also been applied to control/structural 
interaction problems associated with non-aerospace systems including the 
analysis of a Winchester disk drive. No attempt has yet been made, however, 
to model nonlinear control/structural interaction problems or the controller 
design synthesis problem. 
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FIGURE 3. SCHEMATIC OF RIGID SPACECRAFT MODEL WITH PD CONTROL. 
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FIGURE 5. 
STEP INPUT RESPONSE OF THE APPENDAGE TIPS OF PD-CONTROLLED RIGID SPACECRAFT. 
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FIGURE 6, ApPENDAGE TIP RESPONSE OF PD-CONTROLLED RIGID SPACECRAFT TO 10 POUND 

STEP DISTURBANCE AT RIGHT ACTUATOR, 

Constitutive equations for structural elements 

(I) 'Spring,' KI 

[ :~] 
(2) Viscous damper, C 

-Ti 1 r '2 I 
T1 J L Y3 

(l) 'Spring,' K2 
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FIGURE 8. 

Low pass fllter (controller) modes 

Structural modes 

ArtlflClal modes of small mass on I-controller 

stlffness 

EIGENSOLUTION TO EXAMPLE lAo 

Table 2. Listing of natural frequencies and daMping ratios for flexible 
satellite with P.O. control (only the odd-numbered Modes are listed 
since the even modes have identical damping ratios and natural 
frequencles). 

DAMPING NATURAL 
MODE NO. RATIO FREQ (HZ DESCRIPTION 

2.01E-01 1.00E+00 Hz spacecraft pitch about CG 

3 2.84E-02 6.53E+00 Hz first symmetriC appendage bending 

5 -9.84E-03 2.21E+01 Hz first antlsynmetric appendage bendlng 

-9.63E-03 4.04E+01 Hz second symmetric appendage bending 

9 -3.65E-03 6.56E+01 Hz second antisymmetric appendage bending 

11 8.89E-05 1.13E+02 Hz third symmetric appendage bending 

13 9.16E-04 1.34E+-2 Hz third antisymmetrlc appendage bending 
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FJGII~l 9. STEP INPUT RESPONSE OF THE APPENDAGE TIPS OF PID-cONTROLLED RIGID SPACECRAFT. 
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f 1"lIllt. 10. ApPENDAGE TIP RESPONSE OF PID-CONTROLLED RIGID SPACECRAFT TO 10 POUND 

STEP DISTURBANCE AT THE RlvllT ACTUATOR. 

56 



S~qC I-DEAS 2 e· Response 
II ~xrnl F SATELLITE WITH PD CONTROLLER 

TIME DOMAIN 
3 0E +0 ~ESPONSE OF SATELLI TE APPENDAGE TIP 

2 3~+01 

r, 
11 
i' 0 2E+03 
L 
I 
T 
J 
~ -\ 2E+0 

-2 2E+O 

I 

I 

I 

• 

1 

14-SEP-83 08 07.34 

TO STEP INPUT lX= 3 55E+00 
lY= 1 09E+00 

/\/\ 
f\A 

V 
L 

~ 

-3.0E+0 
o 2E+00 2.0 +00 4.0 +00 6 0 +00 8.0 +00 1.0 

EtHITY= FSTI 
UNITS=IN 
+01 

LIN TIME (SEC) 
I/ID= 1 

APR2'11-2 
DISPLACEMENT 

FIGURE 11. STEP INPUT RESPONSE OF APPENDAGE TIP OF PD-CONTROLLED FLEXIBLE SPACECRAFT. 
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FIGURE 12. FREQUENCY DOMAIN RESPONSE OF APPENDAGE TIP OF FLEXIBLE SPACECRAFT 
TO A WHITE NOISE FORCE DISTURBANCE AT THE ACTUATOR LOCATION. 
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Htl .. l),SIS OF CONTROL SYSTEM ALTERNATIVES FOR A FLEXIBLE SPACECRAFT 
~I~,:IBLE SATELLITE WITH COLOCATED SENSOR AND ACTUATOR AND PD CONTROL 

• 

y 

!-x 

FI(,lIRE 14. SCHEMATIC OF FLEXIBLE SPACECRAFT WITH COLLOCATED SENSOR AND 
ACTUATOR AND PD-CONTROL, 

Table 3. Listing of da~ping ratios and natural frequencies for flexible 
satellite wlth collocated sensors and actuators and PO control. 

DAMPING NATURAL 
MODE NO. RATIO FREQ. (HZ) OESeR I PTI ON 

1. 99E-01 9.99E-01 spacecraft pitch about CG 

3 4.52E-02 6.57E+00 first symmetric appendage bendlng 

5 1.13E-02 2.21E+01 first antlsYmMetric appendage bendlng 

7.35E-03 4.04E+01 second symnetrlc appendage bending 

9 3.57E-03 6.56E+01 second antlsymmetrlc appendage bendlng 

11 2.62E-03 1.13E+02 thi rd symnetrlc appendage bendlng 

13 1.91E-03 1.34E+02 third antisymmetrlc appendage bending 
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FlE~IBLE SATELLITE: CoLOCATED SENSOR/ACTUATOR AND PD CONTROL 
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FIGURE 15. STEP INPUT RESPONSE OF THE ~PPENDAGE TIP OF PD-CONTROLLED 
FLEXIBLE SPACECRAFT (COLLOCATED SENSOR AND ACTUATOR). 
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ATTITUDE CONTROL TRADEOFF STUDY BETWEEN 
THE USE OF A FLEXffiLE BEAM AND A TETHER 

CONFIGURATION FOR THE CONNECTION OF 
TWO BODIES IN ORBIT 

s. H. Graff 
Jet PropulslOn Laboratory 

CalIfornia Institute of Technology 
Pasadena, CA 91109 

ABSTRACT 

Sometimes it is necessary to mount a payload remotely from the main body 

of a spacecraft or space station. The reasons for this vary from vibration 

isolation to avoidance of measurement contamination. For example the SP-IOO 

proj ect. which grew out of the increased interest in nuclear power in space 

for space stations and for deep space explorations. requires separation of the 

nuclear reactor from the user because of vibration. heat and radiatio~ 

This paper addresses the different attitude control problems for beam and 

tether configurations. The beam configuration uses a conservative design 

approach. The vibration. beam flexibility and deployment concerns are 

analyzed. The tether configuration offers some very attractive design 

features. but not without several thorny problems. These problems are 

analyzed in this paper. One configuration will be recommended for the main 

thrust of the SP-IOO design effort based on attitude control considerations. 

APPROVED FOR PUBLIC RELEASE BY DARPA 

DISTRmUTION UNLIMITED 

Please note that review of this material does not imply 

Department of Defense endorsement of factual accuracy or opinion. 
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I. IN1RODUCTION 

Abundant electrical power is a vital ingredient in our progress in space. 

This power is needed for large communication and navigation satellites, space 

stations. and exploration of the solar system. 

The SP-I00 nuclear space power system is nominally a 100 kW power source 
e 

for applications which require high power and long life. The preliminary set 

of requirements calls for continuous power delivery for a period of seven 

years. 

SP-I00 requires an attitude control development to insure proper 

utilization of the current and future technology. Total integration of all 

the system components by JPL requires a design concept for each subsystem 

which can be used to compare. critique, and assess various designs. The 

attitude control requirements include high reliability, tolerance of high 

radiation levels. tolerance of large temperature variations, long system and 

component lifetimes, the ability to withstand vibrations from rotating and 

reciprocating machinery. and unique user requirements. 

This paper assesses the technology available in the areas of 

articulation. deployment. dynamics and control of beams and tethers, attitude 

control constraints. and the hardware commonality. The final conclusions and 

recommendations provide ideas and rationale for the future efforts. 
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II. BEMI DYNAMICS AND CONlROL 

The SP-100 system may be 

visualized, as shown in Figure 1, as two 

bodies B1 and B2 connected by a flexible 

truss B , and in orbit around the earth. 
3 

Bl is the power generating unit and may 

or may not be more massive than B
2

• 

Depending on the precise type of power 

generation system adopted, B1 may carry 

rotating or reciprocating machinery as 

well as w orking fluids. 

Rigid Body Formulation 

General Configuration 
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Figure 1: The SP-100 System 

As a first step in the modeling of the SP-100, the system will be assumed 

to comprise two rigid bodies Bl and B2 connected by a rigid rod B3 ' as shown 

in Figure 1. The properities mi and Ii represent respectively the mass of 

body 8
1
., and the inertia dyadic of body B. for its center of mass C.· 

1 1 

The angular momentum of the system may be written as 

!! = <!1+~+I3) • !!! +:E miAi x (!!!XAi) (1) 

where!!! is the angular velocity of any of the bodies, and 1:.. is the position 
1 

vector of c. with respect to the center of mass C of the whole system. 
1 

If 

then 

and 

or 

1=1 +J.,,+!3 - -1 ,£ 
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(2) 

(3) 

(4) 



(5) 

If matrix formulation is desired, the unit vectors ~, ~, ~3' are written as 

a vector array 

(el = [::] 

. 
and matrices H, w, r i , and Ii are defined as follows: 

and 

!!= {~ e e} r::] = {~}TH 
x -y-z 

!!!,= {~ 
x ~ ~z} [::] = (~IT" 

[

IiX 
1

1
, = I. 

1Xy 
I ixz 

1. 1xy 
1. 1y 
1. 

1yZ 

T 
{e} r 
- i 

1. ] 
1XZ 

1. 
1YZ 

I zz 

The matrix equivalent of Equation (5) then becomes 

. .... 

H = 100 + WI'"' + ""m
i 

(-r r w-wr r w) 
\II LJ iii i 

where the tilde ( .... ) sign implies the cross operator; for example 
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(6) 

(7) 

(8) 

( 9) 

(10) 

(11) 



- [-:; 
-(&)z 

Wy 1 (&) = 0 -(&)x 

(&)x 0 

Defining 

I' Ii --i = - mirir i (12) 

and 

I' = I' + I' + I' 
1 2 3 (13) 

Equation (11) could be written in the more compact and familiar form 

H = I'(&) + wI'(&) = M (14) 

where M is a column vector whose elements are the components of the moment 

about the system mass center C of the resultant force on the system. Equation 

(14)' suppl emented with appropria te kinema tical equa tions and control 

equations. may be used for the simulation of the motion of the system. 

Symmetric Configuration 

Real engineering systems of this type usually possess some amount of 

symmetry. In the specific case of SP-I00. it is not unreasonable to assume. 

for example. that the axis of the rod B passes through all mass centers. and 
3 

that lines parallel to ~1' ~. and ~3 are centroidal principal axes for each 

of the bodies. The equations of motion in this case still have the form of 

Equation (14); however. the expression for I' is much simpler. For three axis 

stabllized systems. like the SP-I00. it is customary and reasonable to further 
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assume that ~ is small so that the ;;;1'11) term in Equation (14) drops out, 

leading to the simple decoupled equations 

· II) = M II x x x · II) = M II y y y 
(15) 

· M II II) = z z z 

Flexibility Considerations 

Model Description 

Once the rigidity assumption of the previous section is discarded. the 

difficulty becomes one of modeling a system which now includes a flexible beam 

between two rigid bodies. Several approaches to the analysis of flexible 

vehicles are treated in references [1] through [4]. When the ultimate aim is 

to arrive at equations of motion for computer simulation. the dynamical 

equations must be in a form which facilitates coordinate truncation. This 

truncation is necessary so that system deformation may be represented by a 

finite number of "modal" coordinates. 

The approach adopted in this study is the hybrid coordinate method of 

Likins [2]. This method is most useful when portions of an otherwise rigid 

vehlcle undergo deformations that may be reasonably assumed to remain "small." 

For an efficient use of this method, the SP-100 is modeled, as shown in Figure 

2. as a rigid body B 
1 

with a linearly elastic flexible appendage ~ 

taken to be the more massive of the two end masses of the real system. and the 

other end mass together with the flexible beam constitute the appendage A. 

Should B be the larger mass. then it would be regarded as rigid and the 
2 

remainder of the system considered as a flexible appendage. 
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Appendage Motions Equations 

Consider the system in some 

general configura tion depicted in 

Figure 2. The appendage A 

undergoes "small" deformations 

relative to the base B , while the 11 
I 

motion of BI is arbitrary. A is 

now idealized as a collection of n 

elastically interconnected discrete 

rigid sub-bodies, A being one such s 
sub-body. Damping is ignored at 

this point; it will be incorporated 

Figure 2: The Flexible Beam Model 

in the model at a later stage with the introduction of modal coordinates. The 

dotted lines in Figure 2 show the position of A before deformation; point 0 

is fixed in inertial space, S* is the system mass center, and 0' is the 

location of S* when the system was undeformed, and is therefore fixed in BI • 

For the sub-body A 
s' 

E = m_n (16) s s-s 
where Es is the resultant force on As' ms is its mass, and ~s is the position 

vector of the center of mass of As relative to O. On the other hand, it is 

clear from the figure that 

~ = s 
where 

! is 

~ is 

R is 

the 

the 

the 

vector from 0 to S* 

position vector of 0' relative to S* 

vector from 0' to a point Q fixed in B 
I 

r vector goes -s from Q to the location of the mass 

A in the undeformed configuration, and 
s 

center of 

u is the position vector of the mass center of A relative -s s 
to its location in the undeformed configuration. 

Hence 
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Column matrices X, C, R, r , and u are now defined as follows 

]I ~ [-\ iz -'3 l [~;] ~s W Tx 
S (19) 

(20) 

(21) 

(22) 

(23) 

It then becomes possible to write Equation 18 in matrix form as 

+2wu +u ] (24) 
s s 

where A is the transformation matrix between the ~ and h bases given by 

(25) 

The matrix C represents the motion of the system mass center in B1' and may be 

shown to be given by 
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c=-E Jlu 
s s 

where Jl s = ms/( ~ ms) 

(27) 
(28) 

Equation (27) and its time derivatives may be substituted into Equation (24) 

to give 

F = m [AX + U -"Jl ii. + 2;;(U -"Jl u) - (R+'; )w + w(u - " Jlkuk ) s s s L."kx s L."kk s s L." 

(29) 

The equations of rotational motion of As are obtained by equating the 

resultant external torque on A to the time rate of change of its inertial s 
angular momentum. Since the rotation of As relative to B1 is due only to 

"small" structural deformations, this rotation can be represented by the 

vector 

~s = ~s1h1 + ~s2~ + ~s3h3 (30) 

where ~sl' ~s2 ~s3 are three angles of rotation about the orthogonal axes ~, 

h2, h
3

• Hence, the angular velocity matrix w of A takes the form 
T • s s 

w = w + {h} P 
s s 

(31) 

Finally, the equations of attitude motion of A can be put in the form 

T = I (w+~ ) + [1 ;;+;;1 -(~)]~ +;;1 w 
s s s s s s s s 

-: s~ ~ ~ ,.,. -., 
+ [1 w-(1 w)-w(1 w)+wl w]P 

s s s s s 
where 

T is the resultant torque matrix s 
and 1 is the centroidal inertia matrix of A • s s 

(32) 

For a three-aX1S stabilized system, Equations (29) and (32) may be linearized 

in w. They then reduce respectively to 

ms(us - L Jlk~) = -msAX + (R+;s)w + Fs (33) 

and 

1 .• • 
~ = -1 w + T s s s s 

(34) 

Vehicle Motion Equations 

Equations (33) and (34) are not sufficient for the complete description 

of the motions of our system. They will now be supplemented with the 

dynamical equations of the whole vehicle. 

The vehicle translational equation is 
s* .E = m.l! 
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where F is the resultant external force on the whole vehicle, m is the total 
s* mass, and A is the acceleration of the system mass center. The matrix form 

of Equation (35) is .. 
F = mAX (36) 

and the rotational equations for small w can be written in the compact form 

T = 1*00 + ii "'" m u + "'" r m u + "'" I ~ (37) L..J ss L..J sss L..J ss 
where 1* is the inertia matrix of the undeformed vehicle for the point 0' of 

Figure 3. A comparison of Equations (15) and (37) indicates that the effects 

of beam flexibility are contained in the last three terms on the right hand 

side of Equation (37). Equations (33), (34), (36), and (37) form a set of 

6n+6 scalar equations with X, A, 00, Us and J3 s (6n+9 in number) as unknowns. 

And together with a set of kinematical equations relating A and w, and control 

equations, they are sufficient for the simulation of the motions of the 

system. 

TR(S) 

REFERENCE 
TORQUE 

Modal Truncation 

CONTROL DYNAMI CS 
TORQUE BLOCK 
T(s) 8(s) 8(s) ATTITUDE 

+ 

H(s)8(s) 

8(s) 

CONTROL BLOCK 

Figure 3: The Control Block Diagram 

The difficulty with the equations mentioned above is simply the1r 

dimension due mainly to the appendage equations whose number is directly 

proportional to ~ The objective in this subsection is to attempt a reduction 

70 



of the dimension of the equations of motion through some type of coordinate 

truncation. This naturally involves the introduction of a linear 

transformation for at least some of the variables, and this transformation 

must give rise to decoupled equations so as to permit valid truncation. Here, 

such a transformation is applied to the appendage deformation coordinates 

only. First, the appendage deformation coordinates are organized into a 

coordinate matrix q defined as 
q = [u1 1 1 1 1 1 2 2 2 2 2 2 n T ) 

1 u2 u3 131 132 133 u1 u2 u3 131 132 133 133] (3 8 

Because the appendage Equations (33) and (34) are linearized in the 

deformation coordinates u and 13, these equations can be written in matrix s s 
form as 

W Ii + D' q + K' q = L' (39) 

By inspection of Equations (33) and (34), it becomes evident that M' is a 

constant symmetric matrix. F and T in Equations (33) and (34) include 
s s 

structural interaction forces and torques between neighboring sub-bodies of ~ 

These interactions may be visualized as linearly elastic and viscous forces 

and torques that are proportional to the deformation and deformation rates. 

Hence D' and K' are also constant matrices; all the damping coefficients go .. 
into D' and all the stiffnesses go into K'. L' depends on 1\, X, and the 

external applied forces and torques that may appear in F and T • 
s s 

Classical modal analysis techniques can be applied to our system by first 

ignoring damping and considering 

M'1i + K' q = L' 

This leads to the choice of the normal-mode transformation 

q = tPtt 

which in turn transforms Equation (39) into 

ij + 2tO'1l + c?tt = tPTL ' 

(40) 

(41) 

(42) 

where tt is the column matrix of modal coordinates, a and t are diagonal 

matrices of natural frequencies and damping ratio, and tP is the modal matrix. 

Equations (42) are now decoupled and may be truncated to a convenient size. 

If ~ is the truncated form of tt, the appendage equations now take the form 
•• • 2 T 
~ + 2tTi" + a Ti" = tP L' (43) 

Depending on the number of "modes" retained, this truncated form of the 
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appendage equations. toge ther with the vehicle equa tions could constitute a 
I 

much smaller set of dynamical equations. and therefore much cheaper to 

integrate on a computer. 

Effects of Rotating and/or Reciprocating Machinery 

Rigid Formulation 

The addition of a rotating element to one of the main bodies of the 

system introduces a slight change in the equations of attitude motion. For 

example. let us examine the case of Figure 1 where the connecting rod between 

B1 and B2 is assumed to be rigid. and body B1 contains a rotor. If this added 

rotor is axisymmetric. then B1 is a gyrostat and the system angular momentum 

is augmented by a term h which represents the angular momentum of the rotor 

relative to the basebody B
1

• Equation (15) then has the matrix form 

T = 100 + h - hw (44) 

which now includes a "gyroscopic stiffness" term. Hence. the motion of an 

axisymmetric rotor in B1 does affect vehicle motion. The importance of this 

effect depends on the inertia of the rotor. and its spin rate relative to the 

basebody B1• If the rotor mass center is offset from the spin axis. the 

system's dynamics is further complicated by the appearance of new terms 

involving this offset. 

Flexible Body Formulation 

In the case of a flexible beam. the presence of a rotor on body B can 
1 

affect both the appendage equations and the vehicle equations. The appendage 

equations can only be affected through the column vector C (see Equation (24» 

which represents the motion of the system mass center in body B
I

• If the 

rotor is axisymmetric. then the location of the system mass center is not 

modified by the motion of the rotor. and hence. the appendage equations remain 

unchange~ This means that the procedure and results of the coordinate matr1x 

truncation are unaffected by the motion of a symmetric rotor in B1• However. 

the vehicle equations change slightly because the expression for the angular 
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momentum of the system is modified by the presence of the rotor. The vehicle 

equation of rotational motion becomes 

T = 1*00 + h - hW + R m U + "" I ~ + '" r m U (45) ss L...iss L.J sss 
The first term on the right hand side of Equation (45) is the rigid body term. 

It is the only term that would remain if the whole system were one rigid body. 

The second and third terms are due to the presence of the rotor, and the last 

three terms are contributions from the system's flexibility. 

If the rotor mass center is not located on the spin axis, the rotor's 

motion will affect the location of the system mass center. That is, the 

appendage equations will be impacted through the C matrix, and the modal 

analysis technique used above breaks down because D' and K' are no longer 

constant matrices. 

Control System 

Since our system is three-axis stabilized, the elements of the matrix w 

are small, and we can let . 
w = e 

where 

(46) 

(47) 

and 9
1

, 9
2

, 9
3 

are vehicle rotation angles. If our interest, from controls 

point of view, is limited to e, it will be necessary to display clearly the 

relationship between the control torque T and the rotation angle 9. As a 

simple example. we consider the case of negligible external force and torque 

on the appendage. System equations may then be reduced to 
.. ...T; 

T = 1*9 - u ". 

and ~ + 2~ail + a2'ij" = 09 

The Laplace transform of these equations yields 

T(s) = s2 I *e(s) - oTs2li"(s) 

and s2li"(s) + 2s~~(s) + a211(s) = s20e (s) 

Equations (50) and (51) can be combined to give 

e(s) = [sI* - s40TDo]-1T(s) 

where D is a diagonal matrix given by 
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(49) 

(50) 

(51) 

<52) 



1 

D = 

o 

1 
2 2 

s +2r C1 S+C1 
222 

o 

(53) 

1 

In the special case when the coordinate truncation is carried down to a single 

modal coordinate. Equation (52) becomes 

( 
2 1S+(12 )]-:(S) 

s +2r C1 
(54) 

A block diagram representation of this control system is shown in Figure 3. 

If 1t is further assumed that dynamic response in this single mode 

representation influences vehicle response about one axis only. and that the 

inertia matrix 1* is diagonal. then the dynamics block of Figure 3 can be 

expressed as 

G(s) = I*s 
a 

s4 (l)1) 2 
a -1 

2 2 
(s +2r1C11s+(11) 

(55) 

where a is the single axis considere~ This expression can eventually be put 

in the form 

6(s) = 

where 

E 

In the case 

2 2 
s +2r C1 S+C1 

111 

2 2 2 
I*s (s E+2r C1 S+C1 ) 
all 1 

(&1)2 
= 1 - a 

1* 
a 

of simple gain control, 

H(s) = K (constant) 

(56) 

(57) 

(58) 
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and the characteristic equation becomes 

s4(I*E) + s3(2I*~ a ) + s2(I*a2+K) + s(2K~ a ) + K 2 = 0 
a a 1 1 a 1 1 1 a1 

An examination of the Routhian array for this system indicates asymptotic 

stabili ty for positive K. 

Findings 

The formulation of equations of motion for the SP-100 system could be 

described as complete. If the connecting structure of the system is assumed 

to be rigid, the equations of motion are very simple and decoupled. When the 

flexibility of the structure is taken into account, the system is modeled as a 

main rigid body with an attached flexible appendage, the other rigid body 

being assimilated into the appendage. Furthermore, the appendage is modeled 

as a system of elastically interconnected rigid sub-bodies. The complete 

dynamical equations of the system are then composed of the appendage equations 

together with the complete vehicle equations. Truncation of these equations 

is achieved through modal analysis of the appendage equations. These reduced 

dynamical equations can then be completed with kinematical and control 

equations for the purposes of vehicle motion simulatio~ 

When the basebody contains a perfectly axisymmetric rotating or 

reciprocating sub-body, the effects of the motion of such a rotor are easily 

accommodated in the analyses presented because they are decoupled from 

flexibility effects. 

A preliminary analysis of the control system using the extreme example of 

single axis response of an appendage represented by a single modal coordinate, 

with simple gain control, reveals asymptotic stability in every case. 

III. TETHER CONFIGURATION 

Extensive work has been done in the dynamics and control of space 

vehicles. The initial efforts by NASA in the early days of Gemini studied the 

dynamics and control of short tethers (order of 100 m) to provide gravity 
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gradient stabilization and spin induced gravity. These activities were 

accomplished both in orbit and in simulations. Recent efforts have surfaced 

with emphasis on the uses of long tethers primarily due to the better 

understanding of the dynamics pioneered by the late Professor Colombo of the 

Smithsonian Astrophysical Observatory. These efforts have initiated interest 

in many universities and laboratories to better understand the simulations. 

The recent emphasis has centered around the new missions that have become 

better understood since the new dynamical modeling has been discussed in the 

literature. 

Currently. NASA is investigating the concepts of tethers that relate to 

the Earth resources or Earth oriented activities. The new ideas of gravity 

gradient induced gravitational forces for manned activities (about 0.1 g). of 

"free" al ti tude additions from "spare" mas ses provided to the shuttle orbits. 

and of scientific measurements in the upper atmosphere from medium orbits of 

the orbiters have created much interest in the earth resources and space 

sciences community. 

Two joint U.S.-Italian missions scheduled for 1987 and 1988 will 

demonstrate the feasibility and benefits of tethered satellite systems 

deployed from the shuttle orbiter. The tether will be a flexible metallic or 

synthetic line. 1-2 mm in diameter and 100 Km or more in length. carrying a 

total payload mass of 500 Kg. Because of the differences in environmental 

parameters at the outer planets. (such as gravity and aerodrag) the 

requirements and characteristics of tethers will vary from the above Earth 

oriented missions. Furthermore. current work on tether dynamics and controls 

are relatively immature. It is timely to verify the tether concept for 

applications to future planetary. earth resources. and military missions. 

The SP-I00 program has two maj or areas for potential benefit and two 

areas of smaller potential for future utilization of tether technology. The 

major aspects of tether technology that apply to SP-I00 are 1) radiation 

attenuation and 2) disturbance isolation. The two ancillary aspects of the 

tether technology are 1) the ability to provide gravitational fields and 2) 
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the adjustment capability for attitude control without the use of propellants. 

These benefits will be discussed furthe~ The concept of tethers and their 

applications in space have recently identified potential applications to both 

Earth and interplanetary missions. Notably. tethers can provide unique 

techniques for scientific measurements. By using a constellation of tethered 

satellites. simultaneous sampling and multiple measurements of electromagnetic 

and atmospheric characteristics at stereographic observations. sample 

retrieval of low altitude atmospheric gases of a planet. such as Jupiter. or a 

fly-by comet can be easily accompl ished across mul tiple locations. Tethers 

also provide the option of using less fuel for maneuvers such as spacecraft 

insertion. orbit adjust. and science probe injection towards planets. 

Several representatives of the SP-lOO project attended the NASA sponsored 

Tether Workshop in Williamsburg. Virginia in June 1983 (see reference [6]). 

Their participation in the Tether Workshop resulted in a better understanding 

of the current technology and programmatic paths. The emphasis was related to 

Earth oriented activities and rarely investigated the possibilities of 

interplanetary activities. A major conclusion from this Tether Workshop was 

that the modeling of the dynamics and control of orbiting tethers must be 

invest1gated thoroughly. The current models vary in assumptions. in 

structure. and sometimes in conclusions. 

The initial assessment of the dynamics and control of tether satellite 

systems has shown that there are four potential benefits. 

(a) Radiation Attenuation: An increase in tether length (r) decreases the 

amount of shield area to protect a satellite safety zone by a rate of 

l/r2. A tether on the order of 10 km might render shielding totally 

unnecessary. See Table 1. 
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Table 1. Tether Length and Radiation Shield Requirements 

Tether Length (M) Angle for a Shield Radius(M) Shield AreaUf2) 

500 M diameter 

Safety Zone 

25 84.2 10.0 314.0 

50 78.8 5.0 78.5 

75 73.3 3.3 34.9 

100 68.2 2.5 19.6 

250 45.0 1.0 3.1 

500 26.6 0.5 0.8 

Note: The shield mass is proportional to the shield area. 

(b) Vibration Isolation: A tether system will provide the ability to 

attenuate vibrations through the use of a tether with very little or no 

transmission of shear forces. This provides a protection from vibration 

that must be studied to quantify the effect. 

(c) Gravity Field: The stable tether system will rotate once during each 

orbit. This slow rotation and long tether length (moment arm) will 

provide a small amount of artificial gravity through centrifugal force. 

This could have significant safety implications for the reactor. 

(d) Attitude Adjustment: By placing the center of mass around the attachment 

point. fine adjustments can be achieved of the attitude of the satellitL 

This can be accomplished with electromechanical devices instead of costly 

prope llant usage. 

IV. COMMONALITY 

When the reactor is operational the radiator temperature may be as high 

as 9000 K; when the reactor is shut down. the electronics will need heaters. 

The electronics temperature range which has been selected is the same as for 
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the Galileo Project, which is from 273 0 to 3280 K with qualification limits at 

253 0 to 348°K. 

The potential of propellant line freez ing combined with the propellant 

line deployment problems has led to the decision that each subsatellite, 

whether deployed by a beam or tether, should have its own set of propellant 

tanks, propellant lines and thrusters. However, the complete spacecraft will 

have only one attitude control subsystem. 

Since large amounts of electrical power are available, attitude control 

should emphasize reaction wheels, control moment gyros, magnetic torquers, 

rather than thrusters as primary devices. Table 2 shows the possible primary 

effectors and sensors for various mission orbits and trajectories. Magnetic 

torquers and gravity gradient are viable contenders for the primary system 

only in low planetary orbits. The exact choice of effectors and sensors 

depends on mission requirements and further investigation of the SP-IOO 

design. 

TABLE 2: Control Implementation 

HIGHLY 

LOW ORBIT HIGH ORBIT ELLIPTICAL ORBIT INTERPLANETARY 

llIRUSTERS X X X X 

GRAVITY GRADIENT X 

MAGNETIC TORQUERS X 

CONlROL MOMENT GYRO X X X X 

REACTION WHEEL X X X X 

MOMENllnl WHEEL X X X X 

SUN SENSOR X X X X 

STAR SENSOR X X X X 

EARTII SENSOR X X X X 
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v. CONCLUSION 

The deployable beam configuration uses an off-the-shelf item with a 20:1 

expansion ratio. Thus a 2S meter beam uses slightly more than one meter of 

shuttle cargo bay length. The dynamics are well understood, although the 

power and attitude control cable deployment with the beam is a concer~ This 

is a good conservative approach for today. 

Tethers offer a low radiation user environment and vibration isolatio~ 

There are many advantages for applications of tethers which are harder to 

achieve with the beam configuration: radiation isolation, artificial gravity, 

and vibration isolation are three. While tether materials and fabrication 

need further study, this is a good approach for future space power 

applications. Tethers are not included in the baseline system at the present 

time; however, the study effort should continue to insure that the benefits 

could be incorporated if they fulfill their potential. 

The following area are being developed futher: 

In the beam dynamics area, the dynamics model will be put into a computer 

simulation. Further, modeling and subsequent incorporation into the 

simulation program are required to quantify: 

1. the effects of fluid motion in the basebody on the dynamic behavior of 

the system; 

2. the effects of rotating or reciprocating machinery in the base body, 

particularly when the rotating body is non-axisymmetric. This may lead 

to a strong coupling between the motion of the rotor and appendage 

deforma tions. 

The controls work presented in this paper is very preliminary in the 

sense that the final results were restricted to a single mode representation 

and a single axis control. A generalization to several modes and three axes 
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control is needed. Furthermore, a decision on the exact location of sensors 

and effectors in the light of the existing constraints still has to be made; 

and this will have an impact on the final form of the control equations. 

Tether dynamics and controls will be investigated further with an 

emphasis on application to the next generation SP-100. 
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ABSTRACT 

We consider the optimal cont~ol of structures which consist 
of composite materials or of perforated materials. Asymptotic 
formula, derived from the so-called homogenization theory~ are 
presented which allow to "replace" very complicated problems 
by much simpler ones. 

I. INTRODUCTION 

Large space structures lead to very many new questions in the Optimal Control 
of Distributed Systems. 

In this paper, we wish to concentrate on some asymptotic problems, where, it 
could happen that new methods currently available or in the process of development, 
could be of some practical interest. 

More specifically, let us consider a state equation given by 

0.1) 

where AE is a partial differential operator which depends on a "small" parameter 
E ; we write (1.1.) in a formal fashion, i.e. without making precise the hypotheses 
on AE , neither the boundary conditions (nor the initial conditions if AE is an 
evolution operator). In (1.1) v denotes the control variable; v can be a bound
ary control, or a ~ointwise control. We assume that (1.1, admits a unique solution, 
denoted by YE(v)(). Let the cost jUnction be given, again formally, by 

(1.2) 

If U
ad 

denotes the set of admissible controls, we want to find 

(1.3) 

Let 
consists in 

inf JE(v) , v E Had' 

uE be the (or a) solution 
finding the behaviour of 

of (1.3). The problem we are interested in 
inf J

E 
(v) as E +0 .. and also the behaviour-' of 

• 
The general motivation for looking at problems of this sort is clear : 

want to find an approximated problem, say a first order approximated problem, 
we 
the 

(1) For various applications, in particular in the field of Biochemistry, there is a 
great interest in studying the control of systems where this hypothesis is not true 
(these are the so-called multi-state systems). We refer to E.J.DOF.DEL, M.C.DURAN, 
G. JOLY & J.P.KERNEVEZ [lJ , J.P.KERNEVF.Z & J.L.LIONS r2J , J.L.LIONS r31 . 
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Solutl0n of WhlCh is simpler (and, hopefully, much simpler !) than the solution of 
the problem in its original formulation. • 

In what follows we are going to present some new examples of such situations. 
We are going to cnnsider the control of structures which consist of composite 

materials (sections 2 and 3 below) 0',[' of perforated materials (sections 4 and 5). 
The general result will be of the follnwing type : we shall find, in a construc 

tive way, an operator a such that the state equation 

ay(v) = /3v 

"replaces" (In a much slmpler way) equation (1.1) 
function 

we shall also find a cost 

~(v), function of v and of y(v) the solution of (1,4) 

(1.4) 

(1.5) 

derived from Js(v) (in a fashion which may not be entirely trivial; cf, section 5), 
such that, as S ~ 0, one has 

inf 9 (v, , V E: U ad' (1,6) 

As we shall see the operator a (and the cost function 9) have to be computed 
(in the situations considered here) in a non trivial way (1). 

The plan is as follows : 

2. Composlte materials. Stationary situations. 
3. Composite materials. Problems of evolution. 
4. Perforated materials (I). 
5. Perforated materials (II), • 
The techniques used here are based on some general principles in the Asymptot

lC Calculus of Variations (cf. J.L, LIONS [41' and on the asymptotic expansions for 
composite materials and perforated materials which are given for periodic structures 
in A. BENSOUSSAN, J.L. LIONS and G. PAPANICOLAOU C5J E, SANCHEZ-PALENCIA t6J(and the 
blbliography therein) and in J,L. LIONS [7J. 

In this paper, we explaln, in a formal way, how the various formulas can be 
constructlvely computed. The complete proofs are not given here; they will be pres
ented in J.L. LIONS [8JMany open questions still remain; some are indicated in this 
paper. In the framework of perforated materials, it is extremely interesting to study 
situations where one has two parameters : in the notations of Section 4, Fig, 2, it 
would correspond to an obstacle (} ~ depending on a second small parameter ~ (2) ; one 
obtains then homogenized coefficients q'j(~) which are functions of ~,and one next 
looks for an asymptotic expansion of qi1(~)' This is not presented here, because for 
the control of such structures many open questions remain (3). • 

Of course this paper is not a survey of "all" asymptotie methods which can be 
used ln optimal control! This would be an hopeless task, since, in principle at least, 
"all" asymptotic methods used in the analysis of physical problems can be adapted (of 
course with some new difficulties), Let us only mention here the possiblilty of using 

(1) Remark 5.2., section 5 below, gives an example where we conjecture that U
ad 

has 
to be replaced by another (non trivial)set U

ad
, 

e) This is in order to simplify structures called "carcasses" in G. p, PANACENKO [9J. 

(3) For the analysis of such problems, without control, a book by N.C.BAHBALOV and 
G.P. PANACENKO [lQJ (not available to the A, at the tlme of writing) 1S to appear. 
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techniques of singular perturbations and of stiff problems.(Cf. J.L. LIONS r7]. 
Asymptotic expansions for some of the Riccati's systems corresponding to problems 
stud led here are given in J.L. LIONS rrlJ. 

2. COMPOSITE MATERIALS. STATIONARY SITUATION. 

Composite materials considered here are supposed to have a periodic struc
ture ; they are, for instance, reinforced materials with fib~rs arranged in a per
iodic way (in the so-called matrix). We suppose that the size of the period (which 
is supposed to be the same along all directions, but this is just a matter of conv
en1ence) 1S small compared with the size of the whole object we want to control. 
This period will be denoted by E. 

In mathematical terms, an example (actually, a very simple example) can be 
formulated as follows. 

3 Let ~ be a bounded open set of ~ , with smooth boundary r. 
3 Let Y = JO,l[ and let us consider functions aij(~) which are Y-periodic, 

i.e. which have period 1 in all variables ~1' ;2' ;. We suppose that these 
functions are smooth (this is by no means compulsory !1 and we assume that (1) 

Let a be another Y-periodic function, such that 
o 

a (;) ~ a > O. 
o 0 

For every E >0 we define the elliptic operator 

a x a x 
aX

i 
(aij(s) ax

j
) + ao(s) • 

(2.1) 

(2.2) 

(2.3) 

This operator models physical situations where one has a periodic composite 
material for instance a

ij 
(~) can be "large" on the fiber and "small" on .the 

matrix. 

For any given E > 0, the state of the system will be given by YE C YE(v), 
the solution of 

AEYE(V) = f in ~, (2.4) 

where f is glven in L2(~), subject to the Neumann boundary condition 

v on r. (2.5) 

(1) We use the summation convention of repeated indices. 

a x 
aV

A 
= a ij (£;) Vi 

a 
ax. 

V ={V
i

} = normal to r directed towards the exterior 

E J 

of ~. 
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where 

where 

To fix ideas, let us assume that the cost fUnction is given by 

JE(v) Sr (YE(v)-zd)2 dr + NS
r 

v
2 

dr 

2 
is given in L (r) and where N is given >0. 

The problem is then to find 

2 
Had = closed convex subset of L (r). 

(2.6) 

(2.7) 

• (2.8) 

The difficulty of the problem lies in the computational aspects of (2.7),i.e 
ln the computational difficulties of YE(v) when E is small compared to the size of 
~ . Indeed any approximation, should it be by difference or finite element methods, 
will have to take into account the complicated composite structure of the material 
and will lead to very large linear algebraic systems. 

This is a well known difficulty met in all composite structures, 
A method to turn this difficulty, at least in part, is to seek for an asymp

totic expansion of Y (v) and of j (v" as explained in the Introduction •• 
E E 

Let us explain the result one can obtain along these lines, making things 
more precise step by step. 

As we shall see below, there exists a so-called homogeneous operator a , 
which is a second order elliptic operator with constant coefficients : 

such that, for 

where 

a2 
a= -qlj d d + q xi x

J 
0 

qij , qo constants to be 

flxed v , one has, 

YE(v) -+ y(v) in 

ay E (v) dY(V) in -+ 
ax. ax. 

1 1 

ay(v) = f in ~, 

dY(V) '" 
d'J 

V on 

as E -+0 

L2 (m 

L 2 (m 

r. 

computed 

weakly 

There one considers the cost function 

(y(v)-Zd)2 dr + N f v
2 

dr 
r 

~(v) f 
r 

and the new problem 
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(2.9) 

below, 

(2.10) 

(2.11 ) 

(2.12) 



inf ~(v) (2.13) 

One can show that. as E-+ 0 , probZem (2.7) converges towards probZem (2.13). 
• 

Remark 2.1 

More precisely, if u£ (resp. u) is the optimal control for (2.7) (resp. 
(2.13» , then UE -+ u in L2 (n, and 

• 
Remark 2.2 

The coefficients q .. are the so-called effective coefficients of the compo-
site material. They are ifidependent of ~ • 

Remark 2.3 

Assuming that we can compute the 
much simpler one. 

q .. 's , the problem has been reduced to a 
~ . 

Remark 2.4 

The question of error estimates is, in general, open. • 
Computation of the 

We recall here the formula which are given in A, BENSOUSSAN, J.L. LIONS and 
G. PAPANICOLAOU [51 (consult also the Bibliography of this book, and references 
glven to I. BABUSKA, J. KELLER, E. SANCHEZ PALENCIA, L. TARTAR, and to E. DE GIORGI 
and h1S school; cf. also F. MURAT and L. TARTAR [13J). 

To obtain qo is trivial. One only takes the average of 

qo "" f ao (~)dS 
Y 

But the q .. 's are not at aU the averages of 

We 
of y (v). 

E 

where 

1J 

can suppose that v is fixed in (2.4)(2.5) 
We look for YE in the form (ansat'z) 

Yo (x, S) + EY1 (x,~) + 
2 

Y = EY2(x,~) E 

- Y (x~) is defined in ~ xY, Yj - j 's 

Y
j 

is Y-periodic in ~ 

and where in (2.15) ~ is to be replaced by X 

E 

a
ij 

(~, • 

and we can 

+ •• ., 

a 
0 

(2.14) 

write YE instead 

(2.15, 

(2,16) 

The ansatz (2.15) takes care of the "double structure" connected with comp
osite materials : the global structure of ~. and the periodic structure connec
ted with fibers. 
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Remark 2.5 

The ansatz (2.15) is of course reminiscent of the multi-scale expansions, 
with fast and slow variables, which have proven to be so useful in stiff problems 
of evolution. • 

The next step is to make a formal computation, by using (formally) the exp
anS10n (2.15) into (2.4). 

where 

We introduce 

A 
o 

-2 
E A 

o 

a a a a 
- a~i (aij (~) ax

j
) - aX

i 
(aij (~) at;j ) 

a a 
- ~(aij (~) ax.) + ao (t,;) 

i J 

we obtain 

A Y = 0 o 0 

We recall that 

Therefore (2.21)1 

o , 

implies that 

yo(x,t,;)= Yo(x) 

US1ng (2.22), (2.21)2 reduces to 

A Y = o 1 

aai/t,;) ay 0 (x) 

Clt,;. ax. 
1 J 

should be Y-periodic in 

y does not depend on ~ 
o 

so that Yl can be compiled by separation of variables. 
If we introduce 

then 

aa .. (t,;) 
1J 

xj 
periodic, 

in Y 

o 
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(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 



l.e. 

where 

, ay (x) 
xJ(~, ~x 

j 

'V 
+ , (x) 

1 

It remains to solve (2.22)3 in Y , i.e. 

Y2 periodic in Y • 

Problem (2.26) admits a solution iff 

o 

"Vx. 

This gives 

t1y 
o 

f in n 
is given by (2.14) and where 

qi' = f [ai,(l;) - aik(~) -~f-(~)J dl; 
J Y J o';>k 

Remark 2.6 

We already said that the q" 's are not the averages of the aij's 
(2.29) makes this remark precise ;~the term 

f ~ - a'k ae d~ 
Y 1 sk 

in (2.29) may be thought of as a corrector to the average of a
ij

• 

Remark 2.7 

(2.25, 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

formula 

• 

Of course the previous derivation is formal. For justification of this compu
tation (there are several methods to make this justification), we refer to the book 
of A. BENSOUSSAN, G. PAPANICOLAOU and the A. (loc. cit.), and to the bibliography 
therein. -

Remark 2.8 

Speclal care should be taken in order to obtain that 

v 

but this can be done. 
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The final result is 

the optimal control problem (2.7), for the composite structure, can be "replaced" 
by the analogous problem, for the homogeneous structure : the ne~ state equation 
is given by (2.11), the cost function by (2.12), and the homogeneous operator 
is given by (2.9) ~ith qij given by (2.29). 

Remark 2.9 

There are programs which compute the 
G. DUVAUT, A. HASSIM, F. PISTRE [141. 

a .. 'so Cf. D. REGIS, S. DINARI, 
1J 

3. COMPOSITE t1ATERIALS. PROBLEt1 OF EVOLUnON 

• 

Let us consider, with the same notations than in Section 1, the hyperboZic 
8 tate equation 

f in SG X]O,T[ :: Q (3.1) 

where f is given in L2(Q), T > 0 given, where ys(v) is subject to the 
initial and boundary conditions : 

elys(v) 

elvA 
s 

v on 2:: 

where v is given in L
2

(E). 

o for t = 0 , 

(3.2) 

r x JO,T[ 

For every v , problem (3.1)(3.2) admits a unique (weak) solution, denoted 
by y (v) = y (x,t;v). 

s The co§t function is given (to fix ideas) by 

J (v) = s 

and we are look1ng for 

where 

closed convex subset of L
2

(E). 
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(3.3) 

(3.4) 

II (3.5) 



The difficulties are, at least ~ormallr, o~ the same nature than ~n Section 
2. The very complicated structure of A makes it difficult any computation of 
the state y£(v) for v given - and ~ fortiori any algorithm connected with 
(3.4). 

An answer (at least a partial answer' is provided by the following result, 
the proof of WhlCh is technically a little bit complicated 

as £ -+ 0, inf J£ (v) --+inf {}(v) , 
VE Uad ,7 e U

ad 

(3.6) 

where 

{}(v) = (3.7) 

where the state y(v) is now given by the homogenized problem 

2 a y(v) 
+ ay(v) = f in Q 

at
2 

y(v) 
a 
~y(v) = a at t ::0 a , at 

ay(v) 
av := V on 

ln (3.8), a is the homogenized operator constructed in Section 2. 

Remark 3.1 

The proof of (3.6) uses the techniques of Section 2, the Laplace transform 
in time and some functional analysis. Details will be given in J.L LIONS r8J ~ 

Remark 3.2 e) 
In the one-dimensional case, formula (2.29) gives 

1 
q = 

Remark 3.3 

We do not have error estimates. 

Remark 3.4 

The homogenization process changes the speed of propagation. This may affect 
results connected with controllability. Many more efforts will be necessary in or-
der to clarify this point. • 

Remark 3.5 

What we have said extends to other boundary conditions and to other models 
systems of elliptic equations, higher order equations, etc.. • 

(1) vlhich is valid in any space dimension. 
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Summary 

In Sections 2 and 3 we have presented examples of the geneval situation given 
in the Introduction (Section 1) where the limit operator a (with the notations of 
(1.4)is not obvious. 

In the following sections we are going to present other examples where again 
a is not ObVl0US to find and where aZso 9 may not be obvious to find (sectionS). 

4. PERFORATED r~TERIALS (I). 

We consider the domain ~ which 
conslsts (cf. Fig. 1) of the h~lf space 
x > 0, minus the set of "holes" of size e: 
aRd arranged in a periodical manner. 

More precisely, in the ~-space 

(cf. Fig. 2) we consider 

-Y=Y\C) (4.1) 

Then each hole equals ~ and they 
are arranged in a periodical manner, with 
perlOd e: in all directions. 

If S = dO , we denote by Se: 
the union of the boundaries of the holes 
ln ~e: (cf. Fig. 1). Therefore 

(4.2, 

where 

r {x I x }= 0 
n 

We set 

x' 

In the applications, n will equal 
2 or 3. 

Pemark 4.1 

Of course, in possible applications, 
~e: will be a bounded domain. The method 
we are going to present applies to sueh 
situations. , 

Settlng of the problem. 

We assume that the state is given by 
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x n 

4
SE 

2e: 00 

0 0 
e: 

00 
0, e: 

Firl.ure 1 

~n 

1 

~ 
.,.......,.. s 

'IJ 

0 1 

Firl.ure 2 

Xl 
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dYs(v) 
d\) 

dYS(V) 
d\) 

v 

o 

on 

on 

f in 

f (4.3) 

(where d 
d\) stands for the normal derivative, directed towards the exterior of Os). 

( 1) 
The cost function is given by 

J"r(Y£(Vl-Zdl 2 dr + N J"
r
v
2 dr (4.4) 

and we are looking for 

(4.5) 

where 

Uad = closed convex subset of L
2 (f). • (4.6) 

One can prove a result which is along the same lines of previous sections, 
but wlth different technical details :, there exists an homogeneous operator a f1 
elliptic with constant coefficients, such that, as £ + 0, problem (4.5) tends to 
the following one : 

tl,p state equation is given by 

ay(v) = f in ° 
dY(V) 1 f, d\) = --v on 

1?l1 
the cost function is given by 

and one looks for 

inf 9 (v) , v E: Uad • 

Remark 4.2 

I~I = volume of 

+ N f v 2 
df 

f 

(4.7) 

~ 

(4.9) 

(4.10) 

Provided one knows how to compute a, the practical interest30f a result 
of this type is to replace the very complicated problem (4.3)(4.4)t , by a rather 
standard linear-quadratic problem. • 

(1) We take examples somewhat similar to the ones in Sections 2 and 3, but the 
Che method presented is general. 

(2) To be given explicttely below. 

(3) It is clear that any discretization of Os is complicated. 
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How to obtain a . 
We consider (4.3, with fixed v. Therefore, we wr~te y 

We define E 

where 

Then YE 

aE(cp,lj!) = f (~~ + CPlj!)dX 
~ ax. ax. ' 

1. 1. 
E 

a (CP) = 
E 

a
E 

(cp, cp) 

L (cp) = f~ f cP 
dx + f~ v cP dr E 

E 

is the solution of 

1 
inf [2 a

E 
(cp) -

cP E HI W ) , 
E 

H
1
W) 

E I l5L = {cp cP' ax ' 
1 

• ,t , 

Let us introduce the Y-periodic function m(~~ defined by 

in 'IJ , cOin () ; then, if 

mstead o~ 

(4,11) 

In order to solve (4.7) we now use ideas coming from the Asymptotic Calculus 
of Variations as g1ven in J.L. LIONS [4J [7J. 

where 

We take in (4.12) cP 

cP = CPo (x,o + ECPl (x,~, + 

cpo (x,~) is defined in ~ X 'IJ , 
J 

CPj(x,~) is Y-periodic in ~ 

x and where in (4.14) we replace ~ by . 
If we use (4.14) in (4.13), we obt~in 

aE(cp) = J~ mE(x) [(\7x CPo + \7~ CP1)2 + CP~ ] dx + ••• 

under the assumption that 

'V cP = oe) 
~ 0 ' 

(1) Compare to the ansatz (2.15) 

e) A necessary condition for aE(cp) to remain bounded as E -+ O. 
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(4.15) 

(4.16) 

(4.17) 



and 
LE: (CP) = i m~f cP dx + r v cP dr+. , t 

S"2 0 Jr 0 

where in (4.16) and (4,18) the ,., stand for terms in 
We observe next that, as E + ° 

I k(x,~)dx ~ IIRxy k(x,l;)dxdl; 

2 
E, E: , t., 

if k(x,~) is reasonably regular and is Y-periodic in ~, and that 

f lex' ,:5')dx4 r( £~"~')dx'd~' 
r E: 1JrxY' 

n-l n 
y' =]O,l[ ,,r,(x' ,~') being Y'-periodic in ~'. 

(4.19) 

(4.20) 

Therefore, the first term of the expansion (4.16) converges, as E + 0, towards 

a(CPo,CPl) =I1 m(O [(VxCPo+V~CPl)2 + CP~]dxd~ 
S"2xY 

and the flrst term in the expansion (4.18) convevges towards 

L(cpo) = rr m(~)fcpodXd~+ff vCPodx'd~'. 
JJS"2XY .1Jrxy ' 

(4,21) 

(4.22) 

Slnce m(~) = 1 in ~ and = ° in ~, and since according to (4.17) cP does 
o 

not depend on ~ , (4.21)(4.22) give 

a(CPo,CPl) = Ii [(VxCPO+V~CPl)2 + CP~ldxd~, 

L(p ) -I 'lIn~ fp dx + i v cp dx' 
o JS"2 0 r 0 

(4.23) 

where I~ I = J m(~)d~. 
Y 

Then 
[15-J) that 

one can prove (using techniques of D. CIORANESCU and J, SAINT JEAN PAULIN 
problem (4.12) gives in ,the limit 

inf [a ( % ,CP 1) - L (cp 0) J 

E: Hl(S"2) CPo 
CPl such that 2 ~J n 

V~ IE: L (~\r) , 

If in (4.24) one minimizes 
problem, one has of this 

firstly in cP 1 ' and if 
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(4.24) 

Yo' Yl denotes a solution 

(4.25) 



this variational equation can be rewritten 

~~ v~ Y1 V;~l dxd~= -

0,x 'IJ 

( dy 
J dX; (x)dx ~ \!j (~) 

0, S 

~1 dS (4.26) 

where \! = {\! } denotes the normal to S directed towards the exterior of 'IJ .In (4.21 r 
x plays theJrole of a parameter and one can separate variables. If we define Xj by 
( 1) 

- ~~ xJ = 0 in 'IJ 

Xj is periodic in ~ , 

S 

then 

Min1muing (4.24) in ~o gives 

i.e. 

where 

f qij dyo d~O dx + f yo~odx = i 
dX. dX. 

0, J 1 0, 0, 

f m dx + _1_ Iv rn dr 
TO 1'111 r TO 

We have obtained expZiciteZy the operator a £f (4.7) 

d2 

a = _ q .. 
1J dX. dX. ' 

1 J 
qij given by (4.30). 

Boundary condition (4.8) follows from (4.29). 

(4.27, 

(4.28) 

(4.29) 

(4.30) 

• 
Compare to (2.24) ; Xj 

J \!.dS = O. 
is def1ned up to an additive constant remember that 

S J 
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Remark 4.3 

One obtains similar results for evolution problems. , 
Surunary. 

In the example we have just given, the "limit" state equation is obtained 
through a non trivial operator a - with the functional ~ (in the notations of 
the Introduction) obtained in an obvious manner. 

We now give an example of a situation where ~ is not entirely obvious. 

5. PERFORATED t1ATERIALS (II). 

We consider the same geometrical situation than in Section 4, but we assume 
now that the state Ys(v) is given by 

(5.1) 

subj ect to 

v on r (5.2) 

and to 
(5.3) 

The main difference of the present situation and the one of Section 4 lies 
in the fact that we have now the Dirichlet's boundary condition on Ss instead of 
the Neumann boundary condition. 

Let the cost function be given, as in Section 4, by 

Js(v) = Ir [YS(v)-zd J2 dr + N fr v
2
dr, 

and we consider the problem 

U
ad 

= closed convex subset of L
2 (r). 

Again, we want to find a "simple" limit problem. 

(5.4) 

(5.5) 

(5.6) 

, 
The present question is solved, at the time of writing, only for the case 

2 U
ad 

= L (n. (5.7) 

We have to use here a more complicated ansatz. This is because boundary 
layers appear in the present situation. We consider 

where 

v = v (x' ~') + sV1(x',~') + ••• 
o ' 
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v.(x',~')' is defined in r x y' 
J ' 

v. is y' periodic in ~' 
J 

If in (5.1)(5.2)(5.3) we choose v by (5.8), we obtain an expansion 

(5.9) 

(5.10) 

where formula to compute y 'Y1' .•• are given below; y (v ) is a function of 
d t" / d dOl d . d' . h 0 0 t"' X an s = x £, efine as exp aine below, per~o ~c w~t respect to s. 
Then 

J (v +£v
1
+ ... ) 

Ir 

2 
N i v

2
dr + (5.11) = (y (v )-zd) dr + . £ 0 o 0 r 0 

Using (4.20), we see that it is reasonable (1) to replace the first term in 
the expansion (5.11) by 

+ N II v~dx·dl;·. 
rxY' 

• (5.12) 

We now show how to compute 
which consists of Y'x]o,+oof , 
minus (} u () 1 U (} 2 U ••• 

y (v)(2) We introduce (cf. Fig. 3) the set q 
o 0 

where (}1 (resp. (}2 ' .•• ) is 

obtalned by translating () in 

the ~ direction by +1 (resp.+2, .. ). 
n 

We then define y (v ) as the 
o 0 

solutlOn of 

-6t" Y +y = 0 in q 
s 0 0 

y = 0 on 
o 

Cly 
o 

-~ = Vo 

n 

In (5.13) 
x' and ~', x' 
parameter. 

Cl(}uCl(}l U((}2 U •• (5.13) 

on Y'. 

v is a function of 
o 

playing the role of a 

~' 
o y' 

Figure 3. 

In the notations of the Introduction, the operator a is now given by (5.13) 
and the cost function 9 is now giVen by (5.12). 

(I) This can be rigorously Justified. 

(2) Technical details, which are a little bit heavy, will be given in J.L. LIONS 
rg] • 
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Remark 5.1 

One can give, in the present situation, a complete expansion of the optimal 
control Us' Cf. J.L. LIONS [8J. • 

Remark 5.2 

A 2 
If Uad C L (n , we conjecture that the infimum in the limit problem has to 

be taken on 

Uad = {v I V vex' ,i;') € L
2
(r xY'), i vex' ,i;')di;'€ U dL1(5.14) 

y' a 
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FINITE CONTROL IN UNDERDAMPED DISTRIBUTED 
PARAMETER SYSTEMS* 

D. J. Inman 
University at Buffalo 

State University of New York 
Buffalo, NY 14260 

1. 1NTR0DUCfION 

In the development of the theory of control for large flexible space 
structures. two important questions have been raised about the effect of 
using finite dimensional controls on inherently distributed parameter 
structures. The first question raised [1] has come to be known as control 
spillover [2]. Spillover can roughly be defined as the effect of energy 
added to unmodeled modes of a structure by the action of control laws 
derived from information about the modeled modes only. More recently. the 
question of whether or not a control law based on finite dimensional 
approximations of the distributed system will converge to a control law 
which is optimal for the full distributed parameter model has been raised. 
Gibson [3] has shown that the answer to this question is yes if enough 
damping is modeled. The resul t presented here. shows that both of these 
problems i.e. spillover and convergence. are manageable when the distri
buted parameter system under consideration is underdamped [4-5]. 

Specifically. a class of distributed parameter systems is defined 
using Hilbert space methods based on a partial differential equation model 
of a structure. In this space a simple. easy to check definition of 
underdamping is constructed based on the well known single degree of free
dom concept of critical damping. It is then shown that if a given distri
buted parameter system sa tisfies this definition. each mode of the modal 
expansion of the solution is in fact an underdamped function of time. It 
is noted that a distributed parameter system which is underdamped is also 
uniformly exponentially stable. By appealing to the work of Gibson [3]. a 
f ini te dimensional model of the system w ill yield sa tisfactory control 
1 aws. Furthermore. it is shown tha t the assumption of the underdamping 
also allows straightforward computation of rough bounds on the magnitude of 
the unmodeled or residual modes for a modal truncation scheme. Hence. 
underdamped systems are precisely that class of distributed parameter 
system s which are not 1 ikely to have spillover probl ems and which will 
yield convergence of finite dimensional control laws to control laws which 
are optimal for the full distributed parameter model of the system. 

2. PROBLEM DEFINITION 

We wish to consider systems governed by the following: 

Utt(x.t) + Ll[ut(x.t)] + Lz[u(x.t)] = f(x.t) in 0 (2.1) 

• This work supported in part by AFOSR grant number AFOSR 82 0242. 
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where 
B[u(x.t)] = 0 on an (2.2) 

a (.) t indica tes partial differentiation of (.) with respect to to. 

b {} is bounded. open region in Rn. n=I.2. or 3 with boundary an; 

c Ll'~ are linear spatial differential operators of order nl.n2' 
respectively. and are symmetric on the domain D(L)={u(·.t) e 
L3(n) such that all partial derivatives with respect to x of 
order up to and including k are in L3(n) where k=max(2nl.n2) and 
B[u(x.t)]=O for x G an. for all tlO.}; 

d ~ is further assumed to be self adjoint. M-accretive and to have 
a compact invers~. 

e B is a linear operator (and may be a differential operator of 
order up to max(nl.n2)-I) which reflects boundary conditions; 

f f(x.t) represents applied excitations and/or control forces. 

With additional assumptions equations (2.1) and (2.2) can adequately 
describe vibration problems related to damped beams. plates. shells. etc. 
In particular. we will be interested in the case where f(x.t) represents 
the action of discrete actuators as control forces. 

Here L3 (0) denotes the Hilbert space of all square integrable 
functions in the Lebesgue sense defined by inner product and norm 

<u.v> = S uvdx 

n 

Ilull 1/3 
= <u.u> 

(2.3) 

(2.4) 

3 • PREVIOUS WORK 

When the function f(x.t) is taken to be a control force of the form 

P P 

(3.1) 

equa tion (2.1) represents a reasonable formulation of the control problem 
usually stated for the control of flexible structures by using position and 
velocity feedback at P points on the structure. Here & indicates the Dirac 
delta function. The control problem is to choose the constants ci and ki 
so that the response of (2.1) has certain specified properties. 

The common approach to solving the problem. as first indicated by 
Berkman and Karnopp [1]. is to trunca te (2.1) into a fini te dimensional 
problem. The general philosophy here being that for the free structure. 
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the system can al ways be trunca ted a t a large enough val ue of N (say the 
number of modes kept in a modal expansion of the solution) so that the 
response can be modeled as accurately as desired. With control applied to 
the structure. the truncated model is then split into two parts. The first 
part consists of a certain number of modes which define the controlled 
system. This is the model of the structure used in solving for the values 
of the control gains~ ci and ki. The remaining portion of the truncated 
model. referred to as residual modes. are not considered in the control 
problem. However. since the action of the control also adds energy to the 
residual modes and hence the total response. the response may be effected 
in an undesirable way. This has been discussed by a number of authors (see 
[6] for instance). This action is referred to as control spillover into 
the residual modes. 

Another approach to examining the effects of using a finite 
dimensional control law on a distributed pa~ameter (flexible) system is to 
examine the convergence of the truncated control system and structure to a 
control law that is valid (optimal) for the full distributed systom. 
Gibson [3] has examined this problem and found that if enough damping is 
modeled in the system that one can expect the finite dimensional control 
law to be valid for the full distributed system and that the free response 
of the system will have a uniform decay rate. 

Both of these previously addressed problems. i.e. convergence and 
spillover. address the important question of the validity of a finite 
dimensional model of a distributed parameter system subject to finite 
dimensional control. In the following it will be shown that underdamped 
distributed parameter systems. as defined in the next section. are exactly 
that class of systems which are well behaved with respect to convergence 
and spillover. 

4. UNDERDAMPED SYSTEMS 

It is well known that for a single degree of freedom discrete mass 
system. consisting of a mass. viscous damper and linear spring. the 
response. x(t). will be underdamped if and only if the discrimanent of the 
associated characteristic equation is negative. This concept can be 
defined and used for distributed parameter systems (2.1) as well. This has 
been done for the special case of proportional damping [4] and generalized 
using heuristic arguments in [5]. In what follows the extension is made 
rigorous. 

Before proceeding with a formal definition and proof. an overview of 
the result is in order. First. since ~ is assumed to have a compact 
inverse and is self adjoint. it has associated with a complete set of 
eigenfunctions (~n(X)}~=1 [7]. These functions are used to expand the 
solution of (2.1) in a uniformly convergent infinite series. i.e •• 

a> 

u(x.t) = \ a (t)0 (x) i
l 

n n n= 
(4.0 

The system defined by (2.1) is then defined to be underdamped if each of 
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the temporal functions. an(t) are underdamped. That is. if each an(t) has 
the form 

-l,; w t 
a (t) = e n n sinew t9 ) • 

n n n 
(4.2) 

It is first shown that if the operator 

(4.3) 

is coercive then each an(t) will have the form of (4.2). Then it is shown 
that (4.2) yields the convergence of (4.1) to a solution of (2.1). 

With a further assumption on the smallest eigenvalue of Ll or~. i.e. 
that the smallest eigenvalue of at least one of the operators is greater 
than unity. it can be shown that the coercive condition on (4.3) yields 
Gibson's convergence criteria and allows a bound to be calculated for the 
residual modes of Balas [6] in the decoupled case. 

Definition 4.1 The system (2.1) is said to be underdam~ if each 
temporal coefficient in the series solution (4.1) is an underdamped 
function of time. 

Theorem 4.1 With the assumptions stated for (2.1) and the additional 
assumption that Ll is positive definite on D(L). the system described 
by (2.1) is underdamped if the operator 

is coercive. That is if there exists a real number p such that 
:& :& 

4<u.L2u> - <u.Llu> L pllull (4.4) 

f or all u in D (L) • 

Proof: Under the stated assumptions. ~ has a complete set of normal
ized eigenfunctions denoted (0n(x)}:=1. As a possible solution for (2.1). 
examine the terms an (t)0n (x). Substitution of this term into (2.1) yields 

a (t)/ (x) + i (t)LI 0 (x) + a (t)L20 (x) = 0 n n n n n n (4.5 ) 

Premultiplying (4.5) by 0n (x) and integrating over D(L) yields that the 
characteristic roots associated with the initial value problem for an(t) 
are determined by the discriminant (details can be found in [5]) given by 

:& 
d(0 ) = <0 .L10 > - 4<0 .L20 > n n n n n ( 4.6) 

By applying the Cauchy inequality to the term <0n .L10n >:& and comparing 
(4.6) and (4.4) we see that d(0n )<O for any choice of 0n• Hence. each of 
the functions an(t) must have the form given in (4.2) and are underdamped 
functions of time. 

Next consider the funotion u(x.t) given by 
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Q) 

u(x. t) = 2 
n=l 

a (t)0 (x) 
n n (4.7) 

and note that each term satisfies (2.1). Hence (4~) will be a solution of 
(2.1) if (4.7) converges. In fact. since 

Q) 2 lan(t)I
S 

< Q) for all t)O (4.8) 
n=l 

the Riesz-Fischer Theorem [81 yields the convergence of (4.7). In fact. by 
examining 18 I and la I 

n n 

Q) 

u = 2 8 (t)0 (x) 
t n=l n n 

(4.9) 

and 

Q) 

Utt = 2 8n(t)0n (x) 
n=l 

(4.10) 

also converge. In addition. since the operator ~ has a compact inverse. 
~u(x.t) can also be expanded (see page 261 of (71) as 

= ~ 
n=l 

11 a (t)0 (x) n n n 

Q) 

= 2 I1n <u.0n)0n(x) 
n=l 

which converges uniformly and where 11k are the eigenvalues of ~. 

Next consider the term L1Ut(x.t) and note that 

k j 

IILl ut - n~l 8n(t)L10n (x) I I = IIL1(ut - n~l 8n0n) I I 

and 

k 

IIL1 (ut - 2 8n0n ) II = 
n=l 

k 
S 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

where y=ut -2a 0n since L1 is symmetric. 
n=i 

However. since 4L2-L1 is coercive. 
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( 4.15) 

and 

(4.16) 

where Li/ 3 is the maximally accretive square root of ~ (see [7] page 283) 
which also has eigenfunctions 0n (x). Thus. 

k k 

IILlut - n~l linLl 0n li i21IL~/3Ut-n~llinL20nll • (4.17) 

But. Li/ 3 also has compact inverse so this last term converges uniformly. 
i.e. 

and hence 

1/3 
Ii J1 0 (x) n n n 

Llut = ~ Ii Ll 0 (x) 
n~l n n 

(4.18) 

(4.19) 

Thus (4.7) is the sol ution of (2.1) with each temporal coef fie ient 
underdamped. 

5. GmSON' S caNVERG~CE CRITERIA 

Gibson has shown [3] that for the linear modal regulation problem 
associated with (2.1). a control scheme based on fini te dimensional 
modeling of (2.1) will approach a control law which is optimal for the full 
system as the dimension of the model increases. if sufficient damping is 
modeled to provide a uniform decay rate for the free system. In this case 
the actual system is guaranteed to perform satisfactorily. Specifically. 
Gibson showed tha t if. in addi tion to the assumptions made for equa tion 
(2.1). Ll is positive definite and the operators Ll and L2 are such that 
there exists a real number rlO such that 

(5.1) 

for all uSD(L). then the free system has a uniform decay rate. In addition 
as the number of modeled modes increases the modal control approaches the 
optimal control of the full system. 

Gibson's assumptions are the same as the assumptions made for (2.1) 
with the addition of condition (5.1). The next theorem. however. shows 
that (5.U follows from assuming that the structure to be controlled is 
underdamped. 
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Theorem 5.1 If either IILlull>l or II~ull >1 and if 4~-Lt is coercive 
then there exists a real number. r. such that unequality (5.1) holds. 

Proof. 
that 

Since 4L2-Li is coercive. there exists a real number p>O such 

uGIXL) <5.2) 

Next consider the Cauchy inequality applied to <u.L
2
u>. This yields 

<u.L2u> i Ilull IIL2uli • <5.3) 

Combining (5.2) and (5.3) yields 

J 
IILI ull + p lIuli 

Ilull IIL2uli 2. <u.L2u> 2. 4 > 1 IILlul1 J • -4 

Since Ilull is less than some constant for all u (or we can consider all u 
such that Ilull=!) the above is of the form 

J 
r J IIL2uli 2. IILlull (5.4) 

J 
Now either IILI ulll! and IILI ull > IILI ull so that 

r J IIL2uli > IILlul1 for all uG D(L) (5.5) 

2 2 
or IIL2uli > 1 so that r411L2uli 2.r211L2u11>11Llull • and 

yJIIL2ull 2. IILlu11 for all uG D(L) • (5.6) 

Thus in a slightly restricted sense. the underdamping condition is 
that which is required to insure the convergence and stability problems 
delineated in [3]. 

6. SPILLOVFR BOUNDS 

To a lesser extent. the underdamping condition allows bounds to be 
calculated for the spillover terms defined in [6]. Specifically. if the 
operators Ll and L2 are further restricted to commute. i.e. Ll~=~Ll on 
D(L). then the assumption of underdamping allows a simple bound on the 
spillover terms to be calculated. 

Let ur(t) denote an uncontrolled or residual mode. Here r>N where N 
is the number of modes kept in the truncated version of (2.1). In this 
case the underdamping assumption allows the truncated version of (2.1) to 
be decoupled and solved analytically (details can be found in [10]). Each 
residual mode has a temporal coefficient of the form 
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where 

-p t a (o)+P a (0) 
a (t) = e r [r r r sinro t+u (o)cosro t] 

r ro r r r r 

4n t 

+ j~l J 
o 

-P (t-·d 
- r 

q.f.(~)e sinro (t~)d~ 
J J r 

(1) th Pr = A r 12. the r leigenvalue of Ll 

i(i) th 
ror = / Ar • the r 1 eigenvalue of L2 

a (0) = <u(x.o).& (x» = initial condition 
r r 

ar(o) = <ut (x.o).0r (x» = initial condition 

q. = gain constants of the controller 
J -a.t -a.t 

(6.1) 

Ij(~) = e J or e J sin(wjt-9j) 
where aj.wj and ej are positive 
the controller-observer system 

real numbers prescribed by 

n = number of modeled modes. 

A simple bound on ar(t) can be calculated from (6.1) by merely 
allowing the sine terms to be replaced by 1. This yields. as a first 
estimate 

where 

-13 t 
= Her 

r 

4n 

+ 2 q. J 
j=l J 

-(0'.-1h:-13 t 
J r e (6.2) 

While these bounds are not tight enough to insure performance 
specifications. they do indicate that no instability will occur due to 
control spillover. 

SUMMARY 

It has been shown that the nature of the coefficient operators 
corresponding to the stiffness and damping of a distributed system 
determine if a given system is underdamped. Underdamped structures are 
then shown to be that class of structures which are suitable for control by 
point actuators in the sense that they are not likely to cause difficulty 
when truncated models are used in control design. 
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The result enconrages further research in the area of computing more 
prec i se bounds on the trunca ted and re sidual mode s of underdamped 
structures. 
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Errata 

2nd page d under 2.2 should read " ••. 
instead of M-accretive 

3rd page 3rd line under part 4 should 
4th page equation (4.2), aregument of 

(w t + e ) 
n n 
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NEW DIRECTIONS IN ASYMPTOTICALLY STABLE 
FINITE·DIMENSIONAL ADAPTIVE CONTROL OF 
LINEAR DISTRIBUTED PARAMETER SYSTEMS 

M. J. Balas 
Rensselaer Polytechmc Institute 

Troy, NY 12181 

ABSTRACT 

Distributed Parameter Systems (DPS) , such as systems described by partial 
dlfferential equations, require infinite-dimensional state space descriptions to 
correctly model their dynamical behavior. However, any adaptive control algor
lthm must be finite-dimensional in order to be implemented via on-line digital 
computers. Finite-dimensional adaptive control of linear DPS requires stability 
analysis of nonlinear, time-varying, infinite-dimensional systems. 

The structure of nonadaptive finite-dimensional control of linear DPS is 
summarized as it relates to the existence of limiting systems for adaptive con
trol. Two candidate schemes for finite-dimensional adaptive control of DPS are 
described and critical issues in infinite-dimensional stability analysis are 
discussed, in particular, the invariance Principle, Center Hanifold Theory, and 
Relationships Between Input-Output and Internal Stability. 

1.0 INTRODUCTION 

By distributed parameter systems (DPS) we mean those dynamical systems 
,.hose description requires an infinite-dimensional state space, for example, 
systems described by partial differential equations. ¥any engineering applica
tions such as chemical processes, large flexible spacecraft, and plasma fusion 
reactors are DPS. 

form: 
The linear DPS of interest will be modeled by the following state space 

{ 
~v(t) = A v(t) + Bf(t); v(o) = at 

yet) = C vet) 

v 
o 

(1.1) 

where the state vet) is in an infinite-dimensional Hilbert space H with inner 
product (~~nd corresponding norm 11·1 I. The bounded operators Band C 
have finite ranks M and P, respectively, and f(t), yet) represent the inputs for 
M linear actuators and the outputs from P linear sensors, respectively. Thus, 
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and 

M 
Bf (t) I 

i=l 
b. f (t) 

1 1 

yet) = [Y1 (t), ... , yp(t)]T with 

y (t) = (c., v(t)): l<j <p 
J J - -

(1. 2) 

(1.3) 

where band c belong to H. In finite-dimensional theory, A would be a matrix, 
1 J 

but here the operator A is a closed, linear, unbounded differential operator 
with domain D(A) dense in H. Furthermore (1.1)-(1.3) represents some we11-pose~ 
physical system, which in mathematical terms is the weak formulation of (2.1): 

J 
1 

vet) U(t) v 
0 

y ( t ) = Cv ( t ) : 

+ 

t 

t 

J 
U(t-T) Bf (T)dT 

0 (1.4) 

> (I 

where v is any initial state in Hand U(t) is the C -semigroup of bounded 
o 0 

operators generated on H by A. This latter means: 

P(t+r) U(t) U(T) : t ~ 0, T > (\ 

D(o) = I 

lim [U(t)-I] v 0 v in H 

t+O+ 

Av = lim [U(t)-I]v v in D(A) 
+ t 

t-7() 

(1. Sa) 

(1.Sb) 

(1.Sc) 

(1. Sd) 

Note that the semigroup U(t) evolves the initial condition v forward in time. 
o 

~~en v is in D(A) and f(t) has continuous first derivative, vet) also is differ
o 

entiab1e, lies in D(A) for a t ~ 0, and satisfies (2.1). However, any v in P. 
o 

and any square-integrable f(t) will satisfy the weak formulation (2. 0 ) and yield 
states vet) in H for all t > O. Consequently, (2.4) is much easier to work with 
in inflnite-dimensions and is more likely to represent the actual physical 
system being modeled by (1.1). This form, (1.1) or (1.~), models most practical 
interior control problems for linear DPS where the actuator and sensor influence 
functions are given by b and c., respectively. 

1 J 
n For example, control of the damped wave equation on a region ~E R by a 

single actuator and sensor is described by (for E> 0): 
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{ 
2 

d u(x,t) + dU(X,t) _ A u(x,t) = b(x) f(t) 
at2 E: at 0 

y(t) = f c(x) u(x,t)dx 

(1.6) 

n 

where u(x,t) is the displacewent from equilibrium of n and the influence func
tions b anQ c can be taken as approximations of Dirac delta functions at the 
location of the actuator and sensor. The operator A is the Laplacian given by 

o 

A u(x, t) 
o 

n 

I 
Q,=l 

2 a u(x,t) 
2 

axQ, 
(1. 7) 

on D(A ) = {u(x,t) EH lu(x,t) is smooth and u(x,t) = 0 on the boundary of n}. 
o 0 

The domain D(A ) 1S dense 1n H = L2
(n) with the usual inner product (.,.) . 

o 0 0 

Th1S can be put into the form (1.1) by choosing the state v(t) = [u(x,t), 

~u(x,t)]T in H = D(A %) x H with the energy inner product: at 0 0 

(1.8) 

The operator A in (1.1) becomes 

A (1. 9) 

and the rest follows. 

Linear boundary control problems for DPS have a form somewhat different 
from (1.1); however, they can often be recast as equivalent interior control 
problems of the form (1.1) [1]. 

The H1lle-Yosida Theorem provides conditions under which an operator A 
generates a C -semigroup U(t) satisfying: 

o 

II U (t) II ~ Ke -at, t ~ 0 (1.10) 

where K > 1 and a real. The necessary and sufficient conditions are given for 
- -1 

the resolvent operator R(A,A) = (AI-A) : 

IIR(A,A)nll ~ K ; n 
(A+a)n 

1, 2, .•. (1.11) 

for all real A > - a in the resolvent set of A, p(A) = {A complex IR(A,A) is a 
bounded operator on H}. The spectrum of A, a(A) = p(A)c is much more compli
cated in infinite-dimensions, but, in finite-dimensions, it consists only of the 
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(finite number of) eigenvalues of A. We say that A lS exponentially stable when 
a > 0 in (1.10). i.e. the seml-group U(t) generated by A decays exponentlally 
at the rate a. There are many other types of stability in infinite-dimensions, 
but no others provide the safety of a stablilty margin a; therefore, this seems 
like the kind of stablilty of most practical interest for engineering applica
tions where there is always some uncertainty in the model of the DPS. 

No matter what the purpose of feedback control for a DPS, the controller 
must be finlte-dlmensional in order to be lmplemented by on-llne dlgital com
puters with limited memory and meory access. Of course, in many applications 
the controller is required to automatically adapt to a system with poorly known 
parameters; this adaptation should take place in a stable way in order to be 
effective. The maJority of results for stable adaptive control are for finite
dlmensional systems and require the controller dimension to be the same as that 
of the plant. For DPS, this is impossible to achieve and, hence model reduction 
and reduced-order adaptive control are involved; see e.g. [2]-[3]. This is also 
the case for very large-scale finite-dimensional systems WhlCh are to be con
trolled by very low-order controllers. Much of what we will say here applies to 
the large-scale system problems, but our focus will be on critical issues for 
lnflnlte-dimensional systems. 

In Section 2.0, we review our results on the mathematical structure of 
stable nonadaptive finite-dimensional control of DPS. This will indicate what 
lt lS posslble to accomplish in the limiting case and guide us toward reasonable 
expectations for adaptive control. 

In Section 3.0, we present two finite-dlmensional adaptive control schemes 
for DPS. These by no means exhaust the possibilities but will give us some 
pOlnts of reference. In Section 4.0, we consider possible ways to prove stabil
lty of adaptive control for DPS. Even for linear, time-invariant DPS, the 
closed-loop analysis for finite-dimensional adaptive control requires stability 
theory for nonlinear, time-varying, infinite-dimensional systems. We concentrate 
ln thlS section on tlme-domain rather than input-output methods. Finally, in 
Section 5.0 we summarize crltical issues for adaptive DPS control generated by 
Sec. 3.0 and 4.0. 

We do not wlsh to give the impression that this is the definitive work on 
stable adaptive control of infinite-dimensional systems. This is a new area of 
research and, although several applications of adaptive control for DPS have 
been successful in computer simulation, the corresponding stabillty analysis 
has not been done. We hope to indicate here where the difficulties of such 
analysls arise and to suggest some potential directions for solution. 

2.0 THE MATHEMATICAL STRUCTURE OF STABLE NONADAPTIVE DPS CONTROL 

Thls section summarizes results on nonadaptive DPS control presented in [1] 
and [41-[6]. 

Finite-dimensional, continuous-time controllers will have the form: 
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{ f(t) L11 yet) + L12 z(t) 
. 
z(t) L12 yet) + L22 z(t) Fz(t) + EF(t) • z(o) z 

0 

(2.1a) 

(2.lb) 

with 

{ L2l K + EL11 

L22 F + EL12 
(2.lc) 

where z(t) belongs to R
a 

for some non-negative integer a. We call the special 
case a = 0: statlc feedback; otherwise, when a > 0, we have dynamic feedback. 
Although the actual digital computer implementation of such controllers requires 
a discrete-tlme formulation of (2.1), we will consider the continuous-time form
ulatlon for simplicity; however, see [5] for the corresponding discrete-time 
results. 

We say that (A,B) in (1.1) has a pair of stabilizing subspaces (~, H
R

) if 
the followlng hold: 

(2.2a) 

dim ~ = N < ex> & ~ closed (2.2b) 

and A - A +BG generates an exponentially stable C -semigroup U (t), i.e. 
o 0 0 

-a t 

Iluo (t) II ~ Koe 0 t > 0 (2.2c) 

with K > 1 and a > 0, where 
o 0 

G = GP
N 

( or GPR = 0) (2.2d) 

with (PN' PR) the projections defined by (2.2a). Thus, stabilizing subspaces 

guarantee that the projection feedback law: 

f(t) = GP
N 

vet) (2.3) 

can produce an exponentially stable closed-loop system (1.1) and (2.3). Usually, 
we assume that ao is specified; hence, (1.1) may have stabilizing subspaces for 

some values a but not for others (clearly, if it has them for some cr > 0 then 
o 0 

it will have them for all smaller values 0 < a < a). Of course, lt should be 
- 0 

noted that (2.3) is an ldeal control law which cannot in general be generated 
from the sensor outputs (1.3). Our main result will show that, at best, every 
finite-dlmensional controller (2.1) asymptotically reproduces (2.3) for a 
special pair of stabilizing subspaces. 

Consider the linear operator Q:D(A)~a which satisfies the nonsymrnetric 
Riccati equatlon: 
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° = W = L21C + L22Q - O(A + BL
11

C) - QBL
12

Q 

Clearly, (2.4) is nonlinear in Q and 0 1S obviously bounded ( also, 
rank). The following is the main structural result: 

(2.4) 

finite-

Theorem 1: Assume v is in D(A). Given any controller of the form (2.1) satis
o 

fying the following: 
(a) a solution Q for (2.4) exists and 

-
(b) F = L22 - QBL12 is stable in the finite-dimensional sense, then the closed-

loop (1.1) and (2.1) is exponent1ally stable 1f and only if (~, H
R

) are 

stab1lizlng subspaces for (A, B) in (1.1), where ~ = N(Q)~ and HR = N(Q) 

and Q = [~J. The dim ~ = N < P + a < IX) • Furthermore, the control law 

(2.1a) converges 
1. e., lim [ f ( t) 

. t-r<x>d f' d ]ectlons e 1ne 

asvmptotica11y in time to the projection control law (2.3) 
GPN vet)] = 0, where (PN, PR) are the (orthogonal) pro-

by (~, \). 

This result says that, as long as (2.4) has a solution which produces a stable F, 
the fin1te-dlmens10nal controller will asymptotically reproduce a certain pro
]ect10n feedback law (2.3); thus, exponential closed-loop stability is only 
attainable by finite-dimensional control when it is attainable by orthogonal 
prO]ect10n feedback on the finite-dimensional subspace~. This is a time-domain 

character1stization of the a-dimensional stabil1zing controllers for (1.1). 

The proof 1S given in [1]. The special case 

E = Q B (2.5) 

in (2.lb) leads to a linear version of (2.4): 

° = KC + FQ - QA (2.6) 

wlth F = F. Such a controller contains a reduced-order observer for the DPS; 
however, 1n general (2.5) is not satisfied, e.g. for controllers based on 
reduced-order models of (1.1), and the more general result of Theo. 1 is needed. 

In the above analysis the subspaces (~, ~) are determined by the control

ler (2.1) and are not very accessible. A more practical approach is to specify 
a palr of subspaces (~, ~) and perform a model reduction of the DPS (1.1). 

The closed-loop stab1lity analysis of the corresponding finite-dimensional con
troller is performed afterward. Since there are many ways to perform model 
reduction, there are many possibilities for the finite-dimensional controller; 
however, not all of them will be stable. We define a pair of model reducing 
subspaces (~, ~) for (1.1) by the followlng: 

H (2.7a) 
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dim ~ = N < 00 , HR closed 

~ ~ D(A) , 

(2.7b) 

(2.7c) 

the reduced-order model (~,BN,CN) 1S stabilizable and detectable in the finite

dimensional sense, (2.7d) the C -semigroup UR(t) generated by AR is exponentially 
stable, i.e. 0 

-0 t 

I IUR(t)1 I ~ ~e R; t > 0 (2.7e) 

w1th KR ~ 1 and oR > O. 

where ~ = PNAPN, BN = PNB, CN = CPR' and ~ = PRAPR with (PN,PR) the projections 

defined by (2.7a). The model reduction of (1.1) produced by (~,~) yields the 

reduced-order model (ROM): (~,BN,CN)' and from this ROM the following ROM based 
fin1te-d1mensional controller is obtained: 

f(t) = GN vN(t) 

a;N(t) ~ 
at = ~ vN(t) + BNf(t) + ~(y(t) - yN(t» 

yN(t) = CN vN(t); vN(o) = 0 

Th1S is a special case of (2.1) with 

The gains GN and ~ can be chosen so that 

(2.8) 

(2.9) 

However, in general (2.8) does not asymptotically reconstruct the projection 
vN(t) = PNv(t). Let eN(t) = vN(t) - vN(t) and from (1.1) and (2.8) obtain (when 

v E D(A»: 
o 

{ 
av(t) _ 
at - (A+BGNPN) vet) + BGNeN(t):, yeo) = Vo 

aeN(t) 
at = ~NR vet) + (~-~CN) eN(t); eN(o) = ~PNvo 

(2.lla) 

(2.llb) 

where 6 NR = ~CR - ~R' CR = CPR' and ~R = PNAPR· The following result gives 

conditions under which the closed-loop is stable with the controller (2.8): 

Theorem 2: If (~,HR) are model reducing subspaces for (1.1) and both I I~NRI I 

and I I~RI I are sufficiently small, then the above are stabilizing subspaces for 

(1.1) also and the closed-loop (1.1) and (2.8) will be exponentially stable when 
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the gains G
N 

and ~ are chosen to satisfy (2.10). 

Th1S result was proved in [6] and uses semigroup perturbation theory to give 
bounds on the smallness required for 1 I~NRI 1 and 1 I~RI I· 

To compare th1S with Theo. 1, let eN(t) = eN(t) + QNv(t) 

(PN-QN) vet) 

where QN:D(A) + ~ is a 11near operator solution of the following: 

o = W = 
N ~NR - FNQN(A+BGNPN) - QNBGNQN 

where FN ~ - ~CN· From (2.11) - (2.13), the closed-loop becomes: 

{ 
av (t) A vet) + BGN ~N(t) at 0 

aeN(t) -
at FN eN(t) 

(2.12) 

(2.13) 

(2.14a) 

(2.14b) 

where Ao - A + BGN(PN-QN) and Pn = FN + QNBGN. Consequently, we can obtain: 

Theorem 3: Assume (~,HR) are model reducing subspaces for (1.1). If QN 
solves (2.13) then Q = P

N 
- Q

N 
solves (2.4). Furthermore, 1f FN = FN + 0NBGN 

1S stable, then F = FN is stable and the closed-loop (1.1) and (2.8) is exponen

t1a11y stable if and only if ~ = N(PN - QN)L and ~ = N(PN - ON) are stabilizing 

subspaces for (A,B) 1n (1.1), where (PN,P
R

) are the model reducing proJections. 

The proof is glven 1n [1]. Therefore, the relatlonship of the model reductlon 
approach to the structural results is through the triangu1ariz1ng transformation 
ON in (2.12) and the model reducing projection PN. Their difference forms Q in 

(2.4) and th1S generates the stabilizing subspaces (~, HR) produced by the Rmf

based controller (2.8). Only in the very special case where ~NR = 0 does 0 = PN 
(i.e. QN = 0) and (~, HR) become 

{ N(PN)~ = R(PR)~ = ~~ 

N(PN) = R(PR) = HR 
A A 

This Y1e1ds ~ = ~ and HR = HR when (~, HR) are orthogonal. 

Although the above only characterizes the stabilizing nonadaptive control
lers for DPS, it tells us what is possible in the limiting case. In other words, 
there must exist some finite-dimensional nonadaptive controller which stab11izes 
the DPS and th1S becomes the limit of the corresponding adaptive controller. If 
the 1im1ting case is a linear controller (h1gh1y likely), then the above results 
tell us what the structure of this limit must be. These 11mits are, in fact, 
the "equi11brium points" for the stabi11ty analysis. 
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3.0 SOME ADAPTIVE CONTROL SCHEMES FOR DPS 

There are lnfinitely many ways to generate adaptive controllers for DPS; a 
few of them might actually be stable. The most obvious procedure is to generate 
a reduced-order model (ROM) of the DPS and use any of the myriad finite-dimen
sional adaptive control schemes as though the ROM were the true DPS. Of course, 
even though the scheme may be stable wlth the ROM, it need not be stable with 
the actual DPS due to unmodeled residual dynamics. 

v~en (HN, HR) are a pair of model reducing subspaces as in (2.7) with 

corresponding projections (PN, PR), they produce a decomposition of the DPS (1.1): 

aVN 
~vN + ~RvR + BNf (3.la) --= 

at 

aVR 
~vN + ~vR + BRf (3.lb) --= 

at 

y CNvN + CRvR 
(3.lc) 

where vN = PNv, vR = PRv, ~ = PNAPN, BN = PNB, CN = CPN, ~R = PNAPR, etc. The 

correspondlng ROH is obtained by ignoring all residual terms (setting vR = 0): 

{ 
aVN at = ~vN + BNf 

YN CNvN 

Whenever an operator T:~ + HR exists satisfying: 

T~ - ~T + ~ - T~RT = 0 

It is possible to block-triangularize (3.1) with [~ 
[3]. Consequently, we will assume: 

~J so that ~ 

Suppose we want to control (1.1) to adaptively follow a reference model: 

av 
--.-!!:.. = A v + B ! 
at m m m 

(3.2a) 

(3.2b) 

(3.3) 

0; see 

(3.4) 

(3.5) 

where A has desired properties, e.g. stability. If dim v = dim v, i.e. the m m 
reference model is infinite-dimensional, then we try the following adaptiv~ 
control law: 

f(t) = Q(t) f(t) + Q(t) F(t) vet) 

Let e(t) _ v (t) - vet) and, from (1.1), (3.5), and (3.6), we obtain: 
m 
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de 
dt A e + (A - A - BQF)v + (B - BQ)f m m m (3.7) 

Suppose there exist constant exact model matching gains Q and F such that 
e e 

Let <I>( t) -

BQ 
e 

B 
m 

A + B F m e 

[F - F(t) e 

de A e at= m 

A m 
• O-l(t) Q -1] = [~l (t) e ~2(t)] and obtain: 

+ B 4>z m 

where z - [~J . Now, we try a Lyapunov function of the form: 

Vet) = 1/2[(e, Pe) + tr ~* r-l~] 

* 

(3.8a) 

(3.8b) 

(3.9) 

(3.10) 

where ~ 1S the adjoint operator for 4>, r = diag [r
l

r
2
], and P is a bounded 

symmetric positive definite operator satisfying: 

(A v, Pv) + (Pv, A v) = -II v 112 m m 

for all v 1n D(A ). 
m 

Formally calculating the derivative of V, we obtain: 

Ilv(t)11
2 

'::'0 
2 

~'t 1 
when tr ~ r- 4> = -(e, PB 4>z) 

m 

(3.11) 

(3.12) 

(3.l3) 

From (3.13) we can obtain the appropriate adaptation laws for Lyapunov stability. 
Further, use of La Salle's Invariance Principle [7] guarantees global asymptotic 
stab1lity for the case of finite-dimensional plants [8]. However, the extension 
of th1S principle to infinite-d1mensional plants, e.g. [9], Theo. 4.2, p. 168, 
does not Y1eld very useful results. Th1S is true because a continuous Lyapunov 
function generally yields bounded positive orbits but this does not give the 
necessary precompactness (a bounded set is precompact in a finite-dimensional 
space but not in an infinite-dimensional one). 

Even if the above stab1lity analysis were successful, the adaptive control 
lawE (3.6) and (3.13) could not be implemented. They require instantaneous 
knowledge of the infinite-dimensional plant and model states, and this is not 
available either from sensor outputs or on-line computation. This adaptive 
control algorithm is infinite-dimensional. Therefore, we must modify the 
adaptive controller so that we shall obtain a finite-dimensional adaptive con
trol algorithm. 

Assume: 

(a) dim v 
m 

dim v
N 

= N < 00 and A stable. 
m 

(b) eN = IN' 1.e. there are N linearly independent sensor outputs. 
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(c) the modified exact model matching conditions are satisfied: 

A_ + B F = A 
-""N m e m 

(BN + CRBR) Qe = Bm 

(3.14a) 

o .14b) 

The desired-performance will be that e(t) = v (t) - yet) + 0 as t + 00, since 
m 

yet) is the best estimate we have of vN(t) , this is the most we can expect from 

the reduced-order formulation. Note that 

e(t) = e(t) - CRvR(t) 

because yet) = vN(t) + CRvR(t) • 

The adaptive control law is given by 

f(t) = Q(t) f(t) + Q(t) F(t) yet) 

where the adaptation laws are 

0.15) 

(3.16) 

(3.17a) 

0.17b) 

The positive definite operator P satisfies: 
m 

* 0.18) A P + P A = - I m m m m 

because A is stable with rank N. 
m 

Note that this adaptive controller requires 

only available measured information yet) and is a finite-dimensional algorithm. 

The stability analysis proceeds as before. We try a Lyapunov function of 
the form: 

Vet) = 1/2[(e(t), Pe(t» + tr ~*(t) r-1~(t)] (3.19) 

From (3.1), we obtain 

~~ = Arne + Bm ~ ZN + WR v R (3.20) 

where WR .:: (Am - BNQF - M 2QF - Bm~l) CR - CR(~ + BRQFCR)· + ~ and zN = [iJ· 
Formal calculation of the derivative yields: 

where R(t) 
we have 
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(3.22) 

The following stabillty result holds: 

Theorem 4: If the parameter errors ~(t) and the adaptive gains Q(t), F(t) 
remain bounded and BR = 0, then e(t) is ultimately bounded, i.e. there is a 

neighborhood 5 of the origin such that ilm e(t)sS. 
t-7<X> 

The proof of this result follows from the facts: \ \WR(t)\ \ is bounded and AR 

is exponentially stable (see 2.7e). It uSes an argument similar to [10] Theo. 
16 with Lyapunov functions for infinite-dimensional systems which can be carried 
out rigorously; see [9] Chapt. IV. 

We should note that Thea. 4 requires too atrong a set of hypotheses to be 
very useful. Moreover, for all of that we still only get that e(t) is ultimately 
bounded. ThlS shows that even the simplest finite-dimensional adaptive control 
laws for DP5 require a much more complicated stability analysis. 

A somewhat different approach to finite-dimensional adaptive control of DP5 
is given in the following: 

* * Assume there exist v , f such that: 

f 
* v 5

11 
v + 5

12 
f 

m 

* t f =521 v + 522 f m 

where v and f come from (3.5) and m 

* 

{ 
av * * -- = A v + Bf 
at 

* * y - Cv y == C v m mm 

Furthermore, we assume dim v = N < 00 

follows that m 

{ 511 Am = A5n + B 521 

5n Bm = A 512 + B 522 

Also, from (3. 24b), we have 

{ C 
m 

o 

(3.23a) 

(3.23b) 

(3.24a) 

(3.24b) 

For step inputs, i.e. f(t) constant, it 

(3.25a) 

(3.25b) 

(3.26a) 

(3.26b) 

In more compact form, (3.25) and (3.26) become: 
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(3.27) 

When the operator equation (3.27) is solvable for S .. , there exist trajectories 
1J 

of the DPS (1.1) which are generated by a finite-dimensional model (3.5). These 
traj ectories will be the "equilibria" for the stability analysis of the adaptive 
control algorithm; we do not need to know these trajectories explicitly - only 
that they exist. See also [11] where a "tuned system" is required to exist for 
the input-output stability analysis. 

* Let e(t) = vet) - v (t) and we obtain 

{ 

ae at = (A + B G C)e 

e (0) = e 
o 

(3.28) 

when we apply the following nonadaptive control law: 

* -f(t) = f (t) + G(y(t) - Ym(t)) = S21vm(t) + S22 f(t) 

+ G(y(t) - y (t)) m (3.29) 

This control law requires knowledge of the output error, y - y , the finite-_ m 

dimensional model state v , and the step input command f(t). If the DPS (A,B, 
m C) can be output feedback stabilized, i.e. There exists a gain operator G such 

that A + BCG generates an exponentially stable C -semigroup, then lim e(t) = O. 
o t+oo 

The control law (3.29) requires knowledge of the gains S21' S22 and G which 

exist but may not be available in an explicit form. This leads us to an adaptive 
verSl0n of (3.29): 

From (3.30) and (1.1), we obtain 

{ 
ae(t) 
at 

e(o) 

where L(t) = [L1 (t) 

z(t) = [vm(t) ] 
f (t) 

(A + BG(t)C) e(t) + BL(t) z(t) 

= e o 

As before, we can try a Lyapunov function of the form: 
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* * vet) - 1/2[(e, Pe) + tr 6G r
l 

6G + tr L r
2
L] (3.32) 

where 

(A v, Pv) + (Pv, A v) = -llvl1
2 

c c 
(3.33) 

for all v in D(A) and A = A + BGC exponentially stable. ThlS will lead to the 
c 

approprlate adaptation laws so that e(t) is stable, but we must find some other 
way to show 11m e(t) = O. 

t-+oo 

The above approach for generating finite-dimensional adaptive control laws 
for DPS is presently under consideration in [25]. It seems 
possible to arrive at reasonable conditions on the DPS (1.1) which will permit 
stable flnite-dimensional adaptlve control. Note that the results of Sec. 2.0 
are useful for assessment of the output feedback stabilizability of (A,B,C). 

The two adaptive algorithms for DPS developed in this section illustrate 
the difficulties present for stability analysis of adaptive DPS. In the next 
section, we present some methods for DPS stability analysis. 

4.0 ADAPTIVE DPS STABILITY ANALYSIS 

We have already mentioned the popular use of La Salle's Invariance Principle 
for stabllity analysis of finite-dimensional systems. Its extension to infin
ite-dimenslons lS not nearly as valuable a tool due to the fact that bounded 
sets are not precompact in infinite-dimensional spaces. However, in [12]-[14], 
the ldea of imbedding the original dynamical system in an "extended system" is 
used. The original system on a Banach space H is embedded in a larger space H 

e 
where the ldentiflcation map i:H + H is a compact operator, i.e. it maps bounded 

e 
sets lnto precompact ones. This usually imvolves Sobolev norms and associated 
spaces. Then solutions of the original system have limit sets in H where the 
generalized invariance principle holds. Also, see [9] Chapt. IV. e 

Another approach that seems especially amenable to finite-dimensional 
adaptive control of DPS is the center manifold theory; see [15]. Consider DPS 
of the form: 

{ 

av = Av + N(v) 
at 

v(o) v 
o 

(4.1) 

where A generates a C -semigroup U(t) on a Banach space Hand N:H + H is smooth, 
o 

i.e. has a unlformly continuous second derivative with N(O) = 0 and N'(O) = O. 
We consider weak solutions of (4.1), i.e. continuous solutions vet) in H of the 
lntegral equation: 

vet) = U(t) 

t 

Vo + J U(t-T)N(v(T))dT 

o 
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for any v in H. The following assumptions are made: 
o 

(a) H = ~ $ HR where dim ~ = N < 00 and ~ is closed, 

(b) ~ is A-invariant, i.e. A(~) ~~, and ~ = P~N is stable, where (PN, PR) 

are the projections associated with (~, HR). 

(c) ~ = PRAPR generates the Co-semigroup UR(t) on HR with 

-0 t 

\I UR (t) II ~ ~e R, t ~ 0 

where ~ ~ 1 and oR > O. 

(4.3) 

Let XE~ and y£HR and define f(x,y) - PNN(x+y), g(x,y) - PRN(x+y). Thus, (4.1) 

may be written: 

dX -= 
dt { 

~x + f(x,y) (L . • 4a) 

ff = ~y + g(x,y) (4.4b) 

A center manifold is an invariant manifold for (4.4) which is tangent to ~ at 
the origin. 

Theorem 5: There exists a center manifold for (4.4), i.e. y = h(x) for I Ixl I < 0 
and h has a continuous second derivative. The equation on the center manifold 
is 

dW at = Aw + f(w,h(w)) (4.5) 

Theo~m 6: If the zero solution of (4.5) is stable, asymptotically stable, or 
unstable, then the zero solution of (4.4) is stable, asymptotically stable, or 
unstable respectively. 

The proofs of Theos. 5 and 6 are given in [15]. They allow us to conclude 
stability of a nonlinear DPS by determining the stability of the (finite
dimensional) nonlinear system (4.5) which is obtained via the center manifold 
and projection onto the finite-dimensional subspace~. This seems quite closely 

related to the results of Sec. 2.0 for linear DPS, i.e. we. would expect that 
our fin1te-dimensional adaptive controllers would stabilize the DPS (1.1) if a 
center manifold associated with some finite-dimens10nal subspace ~ would yield 
a stable finite-dimensional system (4.5) on~. This should follow from Theo. 

6, although it must be extended to time-varying nonlinearities for application to 
adaptive control. One difficulty with the center manifold theory is the need 
for ~ to be invariant under the linear operator A. Thus implies modal subspaces 

~ and ~ must be used as the theory now stands; perhaps, it can be modified so 
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_that "almost-invariant" subspaces, e.g. Galerkin subspaces, are acceptable. 

great 
Also, 
[18] . 

Finally, the use of input-output stability methods is presently having a 
deal of success in finite-dimensional, nonadaptive control, e.g. [16]-[17]. 
the general approach has begun to be used for adaptive control in [11] and 

An input-output mapping of the form: 

q(t) = (Tu) (t) (4.6) 

(4.7) 

<X) 

where 1 Iql 12 - ( J 1 Iq(t) 1 1
2
dt)1/2. Other types of input-output stability 

1nvolve the LP spgces for integers p = 1 or p ~ 3. For finite-dimensional 

systems, L2-stability 1mplies internal stability for any minimal state-space 
realizat10n of (4.6), i.e. the states are exponentially stable [19]; however, 
fOF 1nf1n1te-dimens1onal systems, this is not necessarily the case. Yet for DPS 
(1.1), 1t 1S the stability of the full state vet) which we want to ~uarantee. 
Conseauentlv. there 1S a need for some relationships between input-output and 
internal stabil1ty of DPS to be developed. 

One such result is the following: 

Theorem 7: 

{ 

Cons1der the DPS 

dV 
at(t) = A vet) + h(t,v(t)) 

v(o) v 
o 

(Lo .8) 

where A generates an exponent1ally stable C -semigroup U(t), i.e. 
o 

IIU(t)II2.Ke-ut, t~O (4.9) 

with K > 1 and a > 0 and h:R+xH ~ H is continuous. If the input-output mapp1ng 

(4.6) 1S L2-stable where 

{ q (t) 

wet) 

h(t,w(t)) 
t 

u(t) + J U(t-T)q(T)dT 
o 

then (4.8) is globally asymptot1cally stable, i.e. lim vet) 
t~ 

(4.10) 

o for any v in H. 
o 

The proof of this is given in the Appendix; see also [20] and [21] for similar 
relat1onsh1ps. 

A part1cular application of Theo. 7 would be to apply some nonl1near adaptive 
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control law: 

f(t) = yet, yet»~ (4.11) 

to a DPS of the form (1.1). We may think of (1.1) and (4.11) as an infinite
dimensional error model. Let h(t,v(t) = B(t,Cv(t» in Theo. 7 and consider 
(4.6) defined by 

1 
q(t) 

wet) 

u(t) 

y(t,w(t» 
t 

Cv(t) = u(t) + C J U(t-T)Bq(T)dT 
o 

C U(t) v 
o 

If the linear DPS (4.12) is exponentially stable and the input-output map 
deflned by (4.12) is L -stable, then 

lim y lim wet) 0 
t-+«> t-+«> 

for any v in H. In general, this does not say: 
0 

hm vet) = 0 
t-+«> 

(4.l2a) 

(4.l2b) 

(4.l2c) 

(4.13) 

(4.14) 

It only says vet) is attracted to the null space of the output operator C. Even 
though the linear system (A,C) is observable in the DPS sense [23], this does 
not guarantee (4.14) for the nonllnear system (1.11) and (4.11). 

Note that (4.12) has the block-diagram form of Figure 1. 

u (t) + wet) Nonlinearity q (t) . . 
+ 

Exp. Stable 
Linear DPS 

~ 

l(vo = 0 

5.0 CRITICAL ISSUES IN INFINITE-DIHENSIONAL STABILITY ANALYSIS 

As we have pointed out here, there are substantial differences in nonlinear 
stability analysis for finite and infinite dimensional systems. Some of the 
critical issues already presented are 
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(1) the DPS (1.1) 1S linear time-invariant, and infinite-dimensional but the 
adaptive controller must be a finite-dimensional algorithm, 

(2) the stability analysis must be done for a nonlinear, time-varying infinite
dimensional system, 

(3) limiting solutions should exist, i.e. non-adaptive f1nite-dimensional con
trollers of the DPS to which the adaptive laws can converge, 

(4) the La Salle Invar1ance Principle, which is so useful in finite-dimensional 
stability analysis, does not immediately extend to infinite-dimensions due 
to the fact that a bounded set is not necessarily precompact, 

(5) the Center Manifold Theory seems to extend nonlinear stability results from 
finite to infinite dimensions in a natural way but it implies that the 
cr1tical part of this analysis will occur on a finite-dimensional subspace 
(slmilar to the linear stability situation), 

(6) the use of input-output stability results is much more limited for DPS 
unless relationships can be found for internal stability (it is the internal 
state of a DPS which must be stabilized by adaptive control). 

Useful references for further consideration of these stability issues for DPS 
are [9], [15], and [21]. Also, see the survey [24]. Further results on question 
(6) for the nonadaptive case appear in [26]-[28]. 

Consider v 
o 

in Hand 

APPENDIX: PROOF OF THEO. 7 

t 

Thus vet) 

Ilu II; 

vet) = U(t) v + J U(t-T)h(T,v(T))dT 
o 0 

wet) for u(t) = U(t) v. Clear~y this particular u is in L2 because 

J
oo 12 2 Joo -~at K Ilu(t)1 dt ~ K e dt = Z-. Also lim u(t) c 0 due to (4.9). 

o 0 a t+oo 

Since T 1.n (4.6) 
t/2 

2 2 2 is L -stable, we have q in L ; hence, w is in L from (4.10). 

Let z(t) = f U(t-T)q(T)dT 
o 

and we assert that lim z(t) 
t+oo 

0: Consider z(t) = 

t/2 
J U(t-T)q(T)dT + 
o 

t t 
f U(t-T)q(T)dT = J U(T)q(t-T)dT 

t/2 t/2 

t 
+ f U(t-T)q(T)dT 
t/2 

t 
Ilz(t)11 ~K[ J e-atllq(t--r)lldT + 

t/2 

t 
f e~a(t-T)I Iq(T)1 IdT] 

t/2 

< 
t t 

K[( J e-2aTdT)1/2 ( f Ilq(t-T) 11 2dT)1/2 
t/2 t/2 

t t 
+ ( J e-2a (t-T)dT)1/2 ( J I Iq(T)1 12dT)1/2] 

t/2 t/2 
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< 

This follows from the Cauchy-Schwarz Inequa11ty and the fact that q is in L2. 
Now 

lim 
t-7<X> 

00 

lim (J \ \q(T)\ \2dT)1/2] 
t-7<X> t/2 

From [22], when q is in L2, we have 

result. 

00 

lim J \ \q(T)\ \2dT = O. Therefore, 
t-7<X> t 

11m z(t) 
11 t-7<X> 

O. But, because v = w 
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A FACTORIZATION APPROACH TO THE LINEAR 
REGULATOR QUADRATIC COST PROBLEM 

M. H. Milman 
Jet PropulSIOn Laboratory 

California InstItute of Technology 
Pasadena, CA 91109 

ABSTRACT 

A factorization approach to the linear regulator quadratic cost problem is 
developed. This approach makes some new connections between optimal control, 
factorization, Riccati equations and certain Wiener-Hopf operator equations. 
Applications of the theory to systems describable by evolution equations in HUbert 
space and differential delay equations in Buclidean space are presented. 
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1. Notation and problem statement. For any Banach space Y, Iyl will denote the 
norm of an element ycY; B(Y,Z) will denote the space of bounded linear maps from Y 
into Z and we will write B(Y) for B(Y,Y). Let [0,tf1 denote a bounded interval in Rand 
let E denote the class of Borel subsets of [0, tf1. Let U and X denote real separable 
Hilbert spaces with resolutions of the identity EU: E-+B(U) and EX: E-+B(X). We shall 

assume that both EU and EX are absolutely continuous, i.e. the measures IEu«(.»uI 2 and 

lEX «(.»xI
2 

are absolutely continuous with respect to Lebesgue measure ~ for each ucU 
and xcX. 

Our objective is to develop the optimal control law for the following regulator 
problem: 

min r Cu,x) = lul 2 + Ixl2 (1.1) 

U,x 

subject to the constraint 

0.2) 

where f, xc X, ucU and TcBCU,X) is causal CEXCO,t) TEUCO,t) = EXCO,t)T for all t). We 

shall also use the notations pt = ECO,t) and P t = I_pt. Typically U and X represent L2 -
spaces over Hubert spaces (finite or infinite dimensional), T is an integral operator, and 
EU and EX are the resolutions induced by multiplication by the characteristic function, 
i.e. for (.)£:E 

I uoCt) 
[E

U 
(c..> )u]Ct) = <1.3) 

We will henceforth refer to the resolution of the identity above as the truncation 
resolution. 

Although at this level of generality, we cannot meaningfully develop a feedback 
solution to the optimization problem 0.1) - 0.2), the causality of T together with 
another hypothesis that will be introduced shortly permits the synthesis of a control law 
that is intermediate between open and closed loop. Heuristically this can be described 
as a feedback on the space of possible trajectories of the system. In the examples it 
will be seen that this "mid_way" formulation of the control law leads to new derivations 
of the feedback gains for some ~stems described by evolution operators in Hilbert 
space and delay equations in R . These derivations illuminate some connections 
between optimal control, factorization of operators and Riccati equations. It is 
anticipated that these connections can be exploited to produce approximation schemes 
for the optimal control laws associated with large space structure applications. 
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Z. Main results. In this section we consider the control problem Cl.D - Cl.2) 
under the additional hypothesis on T: 

HI: There exists a constant a. and a probabllity measure lJ, such that lJ, is absolutely 
continuous with respect to Lebesgue measure and 

ITBCc.»1 ~ a. .r,m;;r for all c.>cE C2.1) 

Whenever a map K satisfies C2.1) we write K<lJ,. 

Bxample 2.1. Suppose U and X are L - spaces over the HUbert spaces Hand H 
212 

and the resolutions BU and BX are the truncation resolutions Ccf C1.3». Then it can be 
shown that any map K of the form 

1 
K u: t -+ f KCt,s)uCs)ds 

o 

with KCt,s)cBCH ,H ) and IK C·,· )lcL (CO,l) x CO,1) satisfies Hl. 
122 

More generally, any HUbert-Schmidt map satisfies the hypothesis above [11]. 

Assuming a map KcBCU,X) satisfies HI, the adjoint K*cBCX,U) induces a mapping 
FCK*) from the space of lJ,-square integrable functions with values in X, L (CO,1), Xjll), 

2 
into U in the following way: 

Let xtL
2 

(CO,D), XjlJ,) be simple, say xCt) = EXCc.>i)Ctlxr Define FCK*)x by 

FCK*)x = L EUCc.>i)K*xr 
Then for the simple function x, 

Thus FCK*) extends by continuity to B (L (CO,1), XjlJ,), U). Note also that if we _ 2 

introduce the truncation resolution E on L (CO,1),XjlJ,), then FCK*) has the property that 
.... 2 

EUCc.»FCK*) = FCK*) ECc.» for all 2cE. This mapping together with its commutativity 
property with respect to Eu and E plays an important role in what follows. For now we 
note the following result from [10]. 

Proposition 2.2. In the setting of Example 2.1 suppose further that 
esssup IKCt,s)1 < 00. Then K,K*<">.. CLebesgue measure) and 

t,s 
1 

FCK)x:t-+ f K (t,s,)xCt)Cs)ds. 
o 

Returning to the control problem Cl.1) -C1.2), standard arguments give the optimal 
solution as 
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1\ -1. 
U = -CI + T*T) T*f. (2.2) 

Now suppose for each tc[O,l] a new problem is defined by introducing a new forcing 
term f t and imposing the additional constraint that ucP tU, Then the optimal control 
for this problem has the form 

(2.3) 

Since P = I, the solutions u and u coincide when f = 
000 

f. More generally it can be 

shown that the selection 

(2.4) 

1\ 1\ 
results m ut = u for all t. Thus given any partition of [0,1], 0 = t , < t , < ... < t = 1, it o 1 n 
follows that 

li = -EEU(<'>.) [I + Pt T*TPtf1.pt T*ft , <.>. = [t.,t. ). 
1 1 1 1+1. 

(2.5) 

iii i 

As defined by (2.4), f t has the interpretation of being the response of the system after 

"time" t to a control input that terminates at t. Heuristically, f
t 

is the information 
derived from the knowledge of the system state at time t. In this context the solution 
(2.5) is no longer open loop since it can be updated with more current information. 

Our "intermediate" feedback solution results from taking the limit in (2.5). Before 
domg so 1t is necessary to introduce the following theorems from [l1J. 

Theorem 2.3. Let 1L be a probability measure absolutelycontinuouswith respect to 
Lebesgue measure and suppose KcB(U) with K<1L and I+K positive definite and 
invertible. Then there exists a uruque causal VcB(U) WIth V, V* <1L such that 

1+ K = n+V*) (I+V>. 

Theorem 2.4. If VcB(U) is causal (or anticausal) and V<1L, then V is quasinilpotent. 

Another useful result which can be deduced using the two theorems above is the 
following. 

Theorem 2.5. Suppose KcB(X) with K<1L and I+K positive definite and invertible. 
Let BcB(U,X) have the property that EX (<.»B = BEU (<.» for all <.>cE. Then there exists 
a unique causal ZcB(X) with Z,Z*<1L such that 

K = Z + Z* + Z*BB*Z. 

From the hypotheses on T it follows from Theorem 2.3 that n ... T*T) has the 
factorization 
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I + T*T=(I+ V*)(l+V). (2.6) 

Since V is causal and V<l1, from Theorem 2.4 and the resolvent expression, 

V + W + WV = 0, 

it is evident that T (I+V)-1 <11. Hence, F«I+V*)-1.T*)eB(L «0,1), Xjl1), U). Noting that 
.2 

the X-valued function 

is continuous (from the strong continuity of P;, we obtain 

Here we have used the fact 11 has finite measure so that C([O,I],X)~ L «0,1), Xjl1) . 
.2 

(2.7) 

With this background the expression for the limiting control law in (2.5) can now be 
given. 

Theorem 2.6. Let V and re·) be defined as in (2.6) and (2.7> respectively. Then the 
optimal control law for (2.1) - (2.2) has the representation 

A -1 
U = -F (CI + V*) T*)f ( .). 

In the examples of the next section we shall see that the transition from the 
solution above to the closed loop solutions is accomplished in a somewhat 
straightforward fashion once the proper identification of various operators is made. 

3. Examples. Our first example concerns systems governed by differential 
equations in Hilbert space (cf [1], [4], [7], [8]). Let Hand H denote real separable 

1 .2 
Hilbert spaces and let U = L (CO, 1), H } and X = L (CO,1), H ). The dynamics of the 

2 1 2 .2 
system are defined as 

1. 
x(t) = Set) Xo + I S(t-a}Bu(a)da, (3.1) 

o 

where x eH , x( • leX, u (. leU, BeB(H , H ) and set) is a strongly continuous semigroup 
o 2 1 .2 

on H . The cost functional is defined 
2 

t. 

J(u,x} = I Ix(t)1 2 + lu(t)l.2 dt. 
o 

(3.2) 

In this setting f = S( • )x
o

' T is the integral operator defined in (3.1), and EU and EX 
are the truncation resolutions. It is straightforward to verify that T is causal and that 
T<}.. Thus the representation of Theorem 2.6 holds. 
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We now proceed to develop the usual form of the solution. 
the map s:X-+L «0,1), X) by 

2 

[sx]Ct):<1-+ 1 0 
S (<1-t)x(t) 

<1 < t 

<1 i:: t. 

-

First let us introduce 

Using the truncation resolution E on L 2 (CO, 1), X) it is evident that Es = sEX' From 
Theorem 2.6 we have 

But, 

Thus 

"" -l. 
U = - F(CI+V*) T*) f (.). 

fCt):<1-+ 

= 

S(<1-s)Bu(s)ds 

t 
[S(t)x + I S(t-s)Bu(s)ds 

o 
o 

- (:C<1-tlXCtl 
<1 < t 

<1 c: t. 

<1 < t 

<1 ~ t 

<1 < t 

<1 ~ t 

Now let (,)£1:. It follows from the properties of F( 0) and s that 

(3.3) 

And since U and X are L - spaces, a result from [10] together with the commutativity 
2 

above implies the existence of a strongly measurable essentially bounded B(H ,H ) -
2 l. 

valued function R(t) such that 

[F(CI+V*)-l.T*)s x (0 )](t) = K(t)x(t) a. e. 

for every x (0 h:X. This result with (3.3) gives the feedback form 

u(t) = -K(t)x(t). 

(3.5) 

(3.6) 

We will now show that K(t) = B*P(t) where pet) is the unique solution to the Riccati 
equation 
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1 

P(t)X = I S*(a-t) U - P*(a)BB*P(a)} S(a-t)x dO', x£ H (3.7) 
:2 

t 

Probably the quickest way of demonstrating this (and existence and uniqueness of 
solutions to (3.7» makes use of the generalized factorization of Theorem 2.5. 

Let S denote the mapping in B(X), 

t 
Sx:t-+ I S(t-a)x(a)da. 

o 

An application of Theorem 2.5 yields the factorization 

S*S = Z + z* + Z*BB*Z, Z,Z* <)... 

Since T*T = BS*SB, from uniqueness it is evident that V = B*ZB. Thus it follows 

B*Z = CI + B*Z*B)-1(B*S*S - B*Z*) 

(3.8) 

where the notation [ • 1 is used to denote the causal part of an operator. From here it 
+ 

is not difficult to argue (see [10» that 

Thus B*Z is an integral operator with kernel KCt)SCt-a). A similar argument yields 

(3.9) 

Hence, Z has kernel of the form PCt)SCt-a) (cf (3.5». And standard arguments Csee for 
example Zaanen [12)) show that B*P(t) SCt-a) = KCt) S Ct-a) for a.e. t,a. And since SCtHI 
strongly as t-+O, we have K(t) = B*PCt) a.e. It remains to verify C3.7). Using the notation 
Z = PS (where [Px)(t) = PCt)x(t», C3.8) implies 

PS = S* [I-P*BB*P1S - S*p* 

In terms of the kernels of these maps it follows that for a.e. t,a with t ~ a, 

1 

P(t)S(t-O') = I S*(s-t) n - P*(s)BB*P(s)}S (s-O') ds. 
t 
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Again using the fact that 8(t)-+1 strongly as t-+O, it is evident that the equation above 
implies (3.7>. Uniqueness follows because the argument here is essentially reversible, 
i.e. two distinct solutions of (3.7> will result in distinct factorizations of (3.8); which is 
impossible by Theorem 2.5. 

We also note that embedded in the argument above is the result that the Volterra 
factor V is an integral operator with kernel V(t,a) = K(t)S(t-a). 

Our next example concerns the hereditary system ([2J, [5J, [9]) 

t ~ 0 (3.10) 
(3.10) 

x(t) = 4>(t) -r S t SO, 

and 

o 
L(t,x

t
) = I daTI (t,8) x (t+8) 

-r 

The standard hypotheses are imposed on TI (., .) so that (3.10) has a unique absolutely 
contmuous solution given by the following variation of constants formula (see [6]): 

o t 
x(t) = Y(t,O) 4> (0) + I da {I Y(t,a) TI (a,a-a) da} 4> «(3) 

-r 0 

t 
+ I (Y(t,a) Bu (a)da 

o 

(3.11) 

The only property of Y (., .) we call attention to here is that it is bounded on bounded 
subsets of the plane. The cost functional we attach to (3.10) is once again 

1 

Hu,x) = I Ix (t)1 2 + lu(t)1 2 dt. 
o 

(3.12) 

We will basically use the same setup as in the previous example: That is, we take 
U=L

2 
(CO,l),RM), X=L

2
(CO,l), RN), and EU and EX as the truncation resolutions. For the 

forcing term we take f(· h: X, 

o t 
f(t) = Y(t,O) 4>CO) + I da {I Y (t,a) TI(a,(3-a) da} 4>(a). 

-r 0 

And T is the operator 
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Tu:t-+ 
o 

t 
.f Y (t,a) Bu (a)da. 
o 

t<O 

t ii: O. 

Since Y (. , .) is bounded, once again we have T < A.. Thus Theorem 2.6 applies, i.e. 

1\ -1 
U = -F «I+V*) T*) z (.). 

In this case, for s ~ t 

o s 
z(t):s-+ Y(s,O) <1>(0) +.f d

a 
{I Y(s,a.) TI (a.,a-a.) da.} <I> (a) 

-r 0 

t 
+ I Y (s,a.) Bu (a.)da.. 

o 

But this is recognized as the solution to 

xes) = LCs,xs) 

1\ 
xes) = xes) 

s~t 

t-r S sSt. 

Hence, the variation of constants formula implies 

1\ t s 1\ 
z(t):s-+ Yes, t) x (t) + I d

a 
{I Y(s,a.) TI (a.,a-a.) da. } x (a>. 

t-r t 

(3.13) 

Now since T has bounded kernel, T*T necessarily has bounded kernel. It can then be 
shown that V also is an integral operator with bounded kernel. Thus since V is 
quasinilpotent, consideration of the Neumann series for U+V*)-1 leads to the conclusion 
that (1+V*)-1T* is an integral operator with bounded kernel, say R(t,s). Proposition 2.2 
and (3.13) then imply 

1\ 1 1\ t s 1\ 
u(t) = - I R(t,s) {Y(s,t)x(t) + Ida { .f Y(s,a.) TI(a.,a-a.)da.} xcan ds 

t t-r t 

1 1\ S t 1\ 

= -I RCt,s) {Y(s,t)x(t) + I Y(s,a.) Ida TI (a.,a-a.) x (a)da.} ds. 
t t t-r 
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Defining the kernel P(t,a), 
1 

P(t,a) = I K(t,s)Y(s,a) ds, 
a 

it follows that the optimal control has the feedback representation 

min (t-r,1) t 
~ ~ u(t) = -P(t,t) x (t) - I P(t,a) { Ida 11 (0.,/3-0.) x (/3) Ida. 

t t-r 

If we introduce the operator S c B(X), 

t 
Sx:t-+ I Y(t,O') x (0') dO', 

-r 

(3.14) 

it can be shown that the operator P with kernel P(t,a) satisfies the Wiener-Hopf 
equation 

P = {T*S} _ - { PBT*SL 

= { [I-PB] T*S L 

This equation is equivalent to 

where 

1 

pet,s) = H(t,s) - I P(t,O')BH (O',s) dO', 
t 

1 

H(t,s) = I B'Y' (O',t) Y (O',s) dO'. 
max(t,s) 

(3.15) 

The equation above was derived earlier by Manitius [9] using a different approach. 
This equation can also be viewed as a parametrized family of Fredholm equations (in 

the parameter t). We note however that its solution is given in (3.14), and in our 
approach (3.15) is a consequence of the connection between factorization and 
Wiener-Hopf equations. 

4. Concluding remarks. The basic problem formulation could have been made 
shghtly more general by allowing X to be a Banach space and replacing the norm term, 
I . Ii, in the cost with a non-negative definite bilinear functional on XxX. A slightly 
different interpretation of EX becomes necessary as well as some minor technical 
modifications in many of the arguments. We also note that the B-operators in each of 
the examples could have been generalized considerably to accommodate problem 
formulations which encompass a variety of control delays. 
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Although we have not focused on any of the numerical aspects of the examples we 
have considered, the approach here may have some applications in this area. For 
example, in practical applications the control space U is most often of the form U = L 

2 

(CO, 1), RM). And since the factorization involves the operator T*TcB(U), the equation 
which defines the factor V is an integral equation of the form 

1 

KCt,s) = Vet,s) + I V'(O',t) V (a,s) dO', s ~ t 
S 

where vet,s), K(t,s) c RMxM. (Here K(t,s) is the kernel defining T*T.l Thus, regardless 
of the dimensionality of the state space, the basic nonlinear aspect of the control 
problem can be reduced to the integral equation (with finite dimensional kernels) 
above. A similar situation develops in the infinite-time problem. In this case, the 
analogous factorization problem is the classical Wiener-Hopf factorization (see [3]). 

In developing practical approximation schemes for control laws, properties of the 
factorization together with the generalizations discussed above can be used to obtain 
convergence estimates for the approximate control laws and gains. We very briefly 
outhne how such an approach can work in the setting of the example involving the 
hereditary system. 

Here we let X denote the Banach space C([O,I],RN) and let < ••• > denote a 
n 

sequence of bilinear functionals corresponding to quadratures. The family of 
projections P~ on X are defined 

I yes) 

p~y:s~ 
yet) 

s~t 

s ~ t . 

Replacing the cost on the state in (3.12) by the functional < ••• > leads to a control 
n 

problem with solution kernel P (t,a). It can be shown that the kernel P (t,a) is 
n n 

"semi-separable", i.e. is of the form p Ct)a Co.) x[t,I]Ca). It can also be shown that p n ~ n 
and ~ can be generated by solutions of finite-dimensional differential equations Cgiven 
the fundamental matrix YCt,s». Furthermore, by using continuous dependence 
properties of the associated factorization problems, L convergence estimates can be 

2 
established for the approximating kernels on both the square and the diagonal. 
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ABSTRACT 

We discuss approximation ideas that can be used in parameter estimation 
and feedback control for Euler-Bernoulli IOOdels of elastic systems. Focusing 
on parameter estimation problems, we outline how one can obtain convergence 
results for cubic spline-based schemes for hybrid IOOdels involving an elastic 
cantilevered beam with tip mass and base acceleration. Sample numerical 
findings are also presented. 

I. INTRODUCTION 

In this lecture we discuss some approximation techniques that may be used 
in algorithms for parameter estimation and/or feedback control in distributed 
models such as those arising in models typical of large flexible space 
structures. The focus of our recent efforts has been the development and 
analysis of computational algorithms, e.g., convergence analysis, numerical 
implementation (software development) and testing. While the ideas involved 
are also applicable to the computation of feedback controls, we restrict our 
discussions here to some of our efforts on techniques in the context of 
parameter estimation or "inverse" problems: given observations of a system, 
determine parameters in models which best describe structural/material 
properties manifested by the system in response to perturbations (loading, 
etc.) • 

The importance of such problems is twofold: (i) parameter estimation can 
be viewed as a primary tool in on-orbit model development and analysis where 
one seeks to understand elastic/viscoelastic material properties such as 
damping, stiffness, etc. and to detect changes in these due to aging, prolonged 
stress, etc.; (ii) parameter estimation is a precursor to and integral part of 
development of sophisticated feedback control laws (via feedback operators 
satisfying infinite dimensional Riccati equations involving functional 
parameters of the system). 

Many of the structures of interest to aerospace engineers entail systems 
composed of composite materials in rather complex geometric/structural 
configurations. The need for methods to investigate such variable structure 
distributed models has, in our opinion, been clearly established in a number of 
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recent efforts including [1], [2], [3], [4]. A number of investigations of 
parameter estimation in models for elastic beams have involved approximation 
results (the Trotter-Kato theorem) from linear semigroup theory. In 
particular, problems for simple beams have been treated in this manner in [5], 
[6], [7], [8]. In [9] the Trotter-Kato ideas are employed to establish results 
for hybrid models similar to those introduced later in this presentation and 
which are important in the study of shuttle-deployed payloads. However, in 
some instances it is advantageous to use an alternate approach involving a 
variational (weak) formulation of the system equations along with estimates in 
the spirit of those found in numerous papers on finite element techniques in 
structural problems. In [10] such a treatment was given for damped 
cantilevered Euler-Bernoulli beams. In this presentation we outline this 
approach in the context of models for beams with tip masses and base 
acceleration. Full details of our results in this direction will be given in a 
more lengthy manuscript currently in preparation. 

Fundamental to our discussions is a conceptual framework in which one has 
a dynamical model with "states" u(t,x), 0 <: t <: T, x E 0, and "parameters" 
q(t,x), q E Q, where Q is ar. admissible class of parameter functions. The 
state system is an initial-boundary value problem involving a hybrid model 
(parameter dependent and coupled partial differential equations/ordinary 
differential equations). One is given observations (data) u i 1 for_ u(t i ,x~1) 
and seeks to solve the optimization problem of finding paramet'ers q in tne 
feasible parameter set Q which give a best (in the least squares sense) fit 
of the model to the data. 

We formulate this problem in an abstract setting with Hilbert state space 
V and parameter space Q. For compulttional JUlrposes we then approximate V 
and Q by finite dimensional spaces V and ~4 respectively. We illustrate 
these ideas with a specific model and particular classes of approximations in 
our subsequent discussions here. 

II. THE IDENTIFICATION PROBLEM 

We consider a flexible beam of length l, spatially varying stiffness EI 
and linear mass density p which is clamped at one end and free at the other 
with an attached tip mass of magnitude m (see Figure 2.1). 

u(t,x) 

x 

Figure 2.1 
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Using the Euler-Bernoulli theory to describe the transverse vibrations of the 
beam we obtain the partial differential equation (see [11], [12]) 

2 2 2 
p(x)Dtu(t,x) + D EI(x)D u(t,x) - D a(t,x)D u(t,x) + f(t,x), 

x x x x 

x E (0,1), t E (O,T), (2.1) 

for the transverse displacement u where a denotes the internal tension, f 
is the net externally applied transverse or lateral load, and D - a/at, 
D a a/ax. Use of principles of elementary Newtonian mechaniJs (i.e., force x 
and moment balance equations) yields the boundary conditions at the free end. 
From translational equilibrium we obtain 

2 2 
mD

t
u(t,1) - D EI(1)D u(t,1) - -a(t,1)D u(t,1) + get), t E (O,T), (2.2) x x x 

where g is the net external force on the tip mass. In a similar manner, 
requiring rotational equilibrium, we have 

2 
D u(t,1) .. 0, 

x 
t E (O,T). (2.3) 

The geometric boundary conditions (zero displacement and zero slope) at the 
clamped end are given by 

and 

u(t,O) ... 0, 

D u(t,O) .. 0, 
x 

t e (O,T), (2.4) 

t e (O,T), (2.5) 

respectively. The initial conditions are in the form of initial displacement 

u(O,x) ... <!lex), x E [0,1], (2.6) 

and initial velocity 

x e [0,1]. (2.7) 

In order to characterize solutions to the hybrid system (2.1) - (2.7) of 
ordinary and partial differential equations, boundary and initial conditions, 
we formally represent it as an abstract second-order system. Consider 
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t E (O,T), 

Y1u(t) = 0 

at x == 0, at x :: 0, at x =- .R., 

'" '" u(O) = cP, 

'" where u(t) = (u(t,.R.), u(t,e»), and the operators MO' AO' BO(t) and 

Yi , i = 0,1,2 are defined by (for ; = (v(.R.),v) E R x HO(O,.R.» 

'" 
MOv =- (mv(.R.), pv), 

'" 
BO(t)v :: (-O(t,.R.)Dxv(.R.), DxODxV) 

and 

'" i 
Yiv :: D v x ' 

F(t) :: (g(t),f(t,e»), 

Define the Hilbert space H by 

with innerproduct 

i = 0,1,2, 

o H = R x H (O,.R.) 

(2.8) 

(2.9) 

(2.10) 

where denote the usual Sobolev spaces together with the usual 
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Sobolev inner products. Let V be the Hilbert space defined by 

V - {(~,~) E H : ~ E H
2

(0,1), ~(O) - D~(O) :'0, n = ~(t)} 

together with the innerproduct 

,. ,. 
where ~ = (~(1),~), <\I = (<\1(1) ,<\I) E V. It is easily shown that V is dense 
in H and choosing H as our pivot space we have the continuous embeddings 
V C He'" where V' is the space of continuous linear functionals on V. 

Of particular interest to us here will be the notion of a weak solution to 
(2.8) - (2.10). Interpreting the derivatives in the definitions of the 
operators AO' BO(t) and Y

i 
in the distributional sense, we rewrite (2.8) -

(2.10) in variational form as 

2""''' A It. It. #It. tit. A 

< MO Dtu(t),e>H + a(u(t),D) .. b(t)(u(t),9) + <F(t),e>H' 

e E V, t E (O,T) 

,. ,. ,. 
u(O) - ~, 

where the sesquilinear forms a and b(t) on V x V are defined by 

and 

b(t)(~,<\I) - -<aD ~,D <\1>0 x x 

(2.11) 

(2.12) 

respectively, and the H innerproduct is interpreted as the duality pairing 
between V' and V (see [13], [14]» whefever appropriate. Under the 
assumption that EI, e E Lm (O,l), a E L2([0,T],H (0,1»), 
f E L2([0,T], HO(O,l») and g EL (O,T), it is not difficult,. to show (see 
[15]) that the system (2.111, (2.1~) admits a,. unique solution u with values 
i~,. V and which satisfies u E C([O,T],V), Dtu E C([O,T],H) and 
Dtu E L2([0,T],V'). The existence of strong solutions can be demonstrated by 
rewriting (2.8) - (2.10) as an equivalent first-order system and using linear 
semigroup theory [16], [17] and evolution operators. The details involve 
standard ideas for evolution systems such as those found in [17] and under 

2 1( 1) additional regularity assumptions (e.g., EI E H (0,1), a E C [O,T], H (0,1) , 
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A 4 2 A 

~ E V n ((v(l),v) Iv E H (0,1), D v(l) = oJ, <\I E V), one can argue existence of 
A A 2A 

strong solutions (i.e., u E C([O,T],V), Dtu E C([O,T],H), Dtu E L2([0,T],H) 

with ~ satisfying (2.8), (2.9) almost everywhere on [O,T]) with sufficient 
smoothness to carry out the convergence arguments underlying the results 
presented in the next section. 

In formulating the identification problem, for ease of exposition we 
assume that we wish to identify the parameters m, EI, p and a only. We do 
note, however, that our general approach is in fact applicable to a wider class 
of problems involving the estimation of the forcing terms and initial 
conditions (see [18], [19]). Let Q Be a compact subset of 
Q = R x L..,(O,l) x LO)(O,l) x L2([0,T],H (0,1»). We assume that we have been 
provided with displacement observations {u(ti,x): i=l,---,IJ., j=l,---,v} at 
times ti E [O,T] and positions xi E [0,1] and formulate the identification 
problem as a least squares fit to data: 

(rn) : Find q = (m, EI, p, a) E Q which minimizes 

J(qju) = 

subject to u(t) = (u(t,l),u(t,-») 
corresponding to q E Q. 

being the solution to (2.11), (2.12) 

III. mE APPROXIMATION SCHEME 

Our approximation scheme is based upon the use of a standard (finite 
element) Galerkin approach to construct a sequence of finite d~ensional 

approximating identification problems. For §ach N = 1,2,---, let V C V be 
a finite dimen~ional subspace of H. Let P denote the orthogonal projection 
of H onto V with respect to the H innerproduct. The Galerkin equations 
for the system (2.11), (2.12) are 

2AN N AN N AN NAN 
<MODt u (t),e >H + a(u (t),e ) "" b(t)(u (t),e ) + <F(t),e >H' (3.1) 

eN E vN, t E (O,T), 

(3.2) 

where ~N(t) = (uN(t,l), uN(t,_») E VN• 
problems then take the form 

Th~ approximating identification 
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(ION) : Find N 
q - ( N N N N) AN m ,EI ,p ,0 E Q which minimizes J(qju) subject to 

... N 
u being the solution to (3.1), (3.2) corresponding to q e Q. 

Of particular interest to us here is a scheme involving the use of cubic spline 

functions. Let {B~}~t denote the (modified) cubic B-splines on the 
.1 2.1 

{O, N ' ~ , ••• ,.1} interval [0,.1] corresponding to the uniform partition 
N N 

~lhich satisfy Bj(O)" DBj(O) 1:1 0, j ... 1,2,···,N+1. Let 

N N N }N+1 _-N 
V = span{(B j (.1), Bj ) j=l' Then Y-'CV and (3.1), (3.2) take the form 

,,,here 

and 

NoON NN N N N 
M w (t) + A w (t) 1:1 B (t)w (t) + ~(t), 

NN -1 N 
w (0) 1:1 [W] w

O
' 

.1 
[FN(t)]i 1:1 g(t)B~(.1) + f f(t,.)B~, 

o 

t e (O,T) 

i,j - 1,2,···,N+1. 
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Our convergence results for the cubic spline approximation schemes are 
summarized in the following two theorems. 

Theorem 1. Suppose with N 
q -+- q as N -+- co. Suppose further 

that u(q), the solution to (2.11), (2.12) corresponding to q E Q is a strong 

solution. Then if ~N(qN) is the solution to (3.1), (3.2) corresponding to 

qN we have 

.... N N .... 
lu (q ) - u(q)I V -+- 0 and 

as N -+- co for each t E [O,T]. 

Theorem 2. Let -N be a solution to problem (ION). Then the q sequence 

{qN} admits a conver~e.nt subseguence {qNk} with 
_Nk 

-+- q as k -+- co. q 

Moreover, q is a solution to ~roblem (10). 

Theorem 1 can be established using approximation properties of cubic 
splines (see [20)) and variational arguments which are similar in spirit to 
those found in [21] for second-order hyperbolic systems and in [10] for .... gamped 
cantilevered beams without tip mass. Continuous dependence of J and u and 
compactness of Q allow us to conclude that problem (IDN) admits a solution. 
The existence of a convergent subsequence also follows from the compactness 
of Q. Finally an application of Theorem 1 yields 

for all q E Q and Theorem 2 is thus proven. 

Although the state equation in problem (IDN) is finite dimensional, the 
admissible parameter space Q is a function space and hence the minimization 
of J is over an infinite dimensional space. We briefly indicate a means of 
overcoming this difficulty which involves the introduction of a second level of 
approximation into our scheme. A detailed discussion of these ideas along with 
several numerical examples for problems with parabolic, hyperbolic, and simple 
Euler-Bernoulli equations can be found in [22], [23], and [7] respectively. 

For each M = 1,2, ••• , define the set QM c: Q by QM = rM(Q) where rM 
is a mapping which satisfies 
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Q + Q is continuous 

Q2. as M + m uniformly in q for all q E Q. 

The approximating identification problems now take the form 

N N N N N M AN 
(IONM): Find qM = (~,EIM,PM,aM) E Q which minimizes J(qju) subject to 
AN 
u being the solution to (3.1), (3.2) corresponding to q. 

Typically, the spaces QM and the mappings 1M 
dimensional spaces of interpolating linear or cubic 
case under sufficient regularity assumptions on 
conditions Q1 and Q2 above are satisfied. 

are realized using fini te 
spline functions. In this 
Q, it can be shown that 

Using conditions Q1, Q2, and the compactness of Q, 
establish a convergence result analogous to that given 

Specifically, if {~} is any sequence of solutions to the 
_N N 

there exists a convergent subsequence {qMk} with q k +q as 
j Mj 

Mj ~ 00, where q is a solution to (10). 

IV. A HOHERICAL EXAHPLE 

one can readily 
in Theorem 2. 

problems (IDNM) , 

We present a representative example to illustrate some of the numerical 
results we have obtained using the methods outlined above. Further details and 
other numerical findings will be presented elsewhere. 

We consider the problem of estimating the spatially invariant stiffness EI 
and linear mass density p of a cantilevered beam of length .t - 1 with an 
attached tip mass at the free end of unknown magnitude m which is also to be 
identified. We also assume that the entire system is subjected to a time 
varying base acceleration aO(t). The internal tension a is then given by 
(see [9], [12]) 

a(t,x) ". - ao(t)(p(.t-x) + m). 

The system was assumed to be initially at rest (~". <\I ". 0) and then acted 
upon by the distributed transverse load 

and point load at the tip 

x 
f(t,x) - e sin2nt 
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get) 
-t 

= 2e • 

The base acceleration a O was taken to be 

·o(t) = {: 
o ( t ( 1.5 

t > 1.5 

"Observations" (i.e., displacement values to be used as data in the inverse 
algorithm) at positions xi = .75, .875, 1.0 at times ti = .5, 1.0,···,5.0 
were generated using the "frue" values of the parameters m = 1.5, EI = 1.0, 
and P = 3.0, the first two natural modes of the unforced, unaccelerated system 
and a standard Galerkin scheme. The approximating optimization problems were 
solved using a Levenberg-Marquardt iterative steepest descent method. "Start 
up" values for the parameters to be estimated were chosen as IDa = 1.7, EIO = .7 
and Po = 2.7. The initial value problem (3.3), (3.4) was solved at each 
iteration using a variable step size Adams predictor corrector method. The 
system did not appear to be stiff. Our results are summarized in Table 4.1 
below. 

N ErN --N --N jN CPU (min/sec) p m 

2 1.0016 3.0997 1.4793 .17 x 10-4 
0/18.01 

3 1.0012 3.0636 1.4873 .18 x 10-4 
0/35.93 

4 1.0009 3.0414 1.4921 .19 x 10-4 
1/26.19 

5 1.0006 3.0306 1.4944 .19 x 10-4 
4/15.87 

6 1.0012 3.0319 1.4944 .35 x 10-4 
5/21.34 
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ABSlRACT 

One of the most complex large space structural systems is a space 

station. An initial operation center station consisting of four sun-

pointing solar array panels, four radiator panels, a main supporting 

structure. and several pressurized modules, referred to here as the four-

panel planar configuration, is mcdeled mathematically in detail. Two 

models are developed: a distributed parameter model and a finite-element 

one. The former is derived using the Lagrangian approach with partial 

differential equations and subsequently discretized to a finite dimensional 

model. The latter is generated with a standard finite-element technique. 

The distributed parameter model is intended for performance evaluation, 

whereas the finite-element model. due to its simplicity and shorter turn-

around time, is ideal for first order analysis. 

The results of this work confirm the findings of an earlier study of a 

two-panel station configuration - that the solar panels dominate the 

flexible dynamics and that the payload control bandwidth is well within the 

dynamic range of the station. Consequently, significant interactions 

between the payloads and the station are expected. 
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I. 1N11t0nuCIION 

The space station is a complex large space deployable system. Many of 

its structural components are large in size and low in mass density. In 

contrast to the more traditional spacecraft, the characteristics of these 

large space systems are determined not only by the rigid body dynamics but 

also by the flexible body motion. Two approaches are generally used for 

developing mathematical models of large flexible structures: the 

distributed parameter method and the finite-element method. In this paper, 

the two methods are used to develop two different dynamic models for a 

four-panel station configuration. 

The four-panel planar configuration as shown in Figure 1 consists of 

four solar panels with split resource modules, each resource module is 

associated with two 100 ft by SO ft solar panels and two 70 ft by 20 ft 

radiators. The main structure of the station measures 280 feet in length 

and supports the two resource modules, several pressurized modules, a 30-

foot service truss, and payloads. The pressurized modules are sized 22 ft 

by 14 ft diameter as determined by the space shuttle payload bay size. The 

station has a ground weight of 223,000 Ibs, and the moments of inertia Ixx 

= 1.49107, I = 3.37x106 , and I = 1.63x107 slug-ft2• The center of mass yy zz 

is nearly at the center of the structure, or X = -1.235 ft, Y = Z = O. 

The solar panels are hinged to rotate about the roll (X) and pitch (Y) 

axes for solar inertial pointing, the radiators are also hinged for 

articulation, and the core or the bus of the station is pointed to the 

nadir direction. 

Due to their large size and flexibility, the solar panels are the 

dominant factor for the flexible body dynamics. 
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Figure 1. Four-panel planar configuration 

TWo dynamic models for this configuration have been developed, the 

distributed parameter model and the finite-element model. The distributed 

parameter model is developed for the purpose of in-depth analysis and 

performance evaluation. Dynamics in the full three dimensional space 

including the elastic body motions, interbody coupling, and orbital effects 

are derived, discretized, and truncated to a finite dimensional model. The 

derivation of this model constitutes the major effort of this paper. 

While the high order distributed parameter model is for performance 

evalua tion and analysis of higher order effects, the lower order fini te-

element model is developed for first order analysis with simplicity and 

fast turn-around time. The details of this model development are discussed 
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in Ref. 1. The results are included here for the sake of completeness. 

II. DISTRIBUTED PARAMETER MODEL 

The following assumptions were made for the modeling: 

- The main structure and the various modules are rigid and rigidly 

attached. 

- The radiators and the solar panels are hinge attached to the main 

structure and can be approximated by homogeneous plates. clamped on one 

side. free on the other three. 

Tho assumption regarding tho rigidity of tho main structure is a first 

approximation to simplify the modeling procedure. It is justified by the 

fact that the main structure is at least one order of magnitude stiffer 

than the solar panels and their supporting trusses. The homogeneous plate 

approximation to the radiators and solar panels is merely made for the 

purpose of obtaining their modal shapes and frequencies. Any other ap

proxima tion leading to the same quanti ties. e.g •• a finite element model. 

can be used equally well in the space station modeling procedure. 

The dynamics of the space station are obtained using the Lagrangian 

formalism. First. the potential and kinetic energies of the system are 

computed as quadratic forms of some adequately defined state space vector 

and its time derivative. The dynamics are subsequently derived by 

performing the classical differentiations. 

ENERGY COMPUTATIONS 

Let XYZ be an inertial frame of reference. The motion of the space 

station will be determined by the displacement of a body frame xyz attached 

at the point o. the center of the main structure. with respect to XYZ. The 
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axes ox. oy. oz are depicted on Figure 2: oz is parallel to the trusses 

supporting the radiators - nadir pointing in the normal mode of opera-

tion. oy lies along the main structure and ox forms a right-hand coordinate 

frame with oy and oz. 

Body Frame 

Figure 2. Reference frames 

Inertial 
Frame 

y 

The main structure and the modules form a rigid body. The kinetic 

energy associated with their motion is given by: 

where MRB and IRB are the mass and moment of inertia of the rigid body in 

the xyz frame, respectively. D is the vector from the origin of the 

inertial frame XYZ to the origin of the body frame xyz. and 0 the rotation 

angle of the frame xyz with respect to the inertial frame. The dots 

designate differentiation with respect to time. 
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POTENTIAL AND KINETIC ENERGY OF llIE RADIATORS 

In order to avoid the sun, the radiators are hinged and can rotate 

about the y and z directions. They are attached to the main structure by 

short trusses which we consider to be rigid. We will study the deformation 

of each radiator in a frame ~YRzR parallel to the frame xyz, and placed at 

the point OR' the center of the radiator at rest (Fig. 3). In the first 

H , • 
.1R 

Q 

Surface 

Figure 3. Radiator deformation 

order of approximation the radiator plate is supposed to have out-of-plane 

deformations only. Thus the vector uR from OR to a running point of the 

radiator can be decomposed as: 

~ = r + ur 

where r = (0 y z)T is the vector position of the point at rest and 

u = (u 0 o)T is the distortion of the plate at the given point. In the 
r 

sequel the notation u will be used to designate both the vector u and the 
r 

deformation u. It will be clear by the context which one is meant. 
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Potential energy 

The potential energy stored in the distortion of each radiator is 

linn by[21: 

where v R is the radiator's Poisson ratio and Fa its flexural rigidity. 

Note that: 

with Aa designating the radiator's thickness and Ea its Young modulus. 

Kinetic energy 

The kinetic energy associated with the radiator's motion is given by: 

where Pa is the mass density of the radiator and Va the vector position of 

a running point of the radiator in the inertial frame. 

Figure 3 schematizes a decomposition of the vector Va: 

Va = D + a + ua = D + a + r + u. 

D. rand u are already defined; a is the vector oOa' 

Let P = (0 Py pz)T be the rotation of the radiator with respect to the 

main structure. To evaluate dVa/dt. it should be noted that the frame 

xRYRzR undergoes a rotation of P + 0 and the frame xyz a rotation of O. 

Thus: 

dVR/dt = D + u + Ox(a + r + u) + px(r + u) 

which leads to 
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(dVR/dt).(dVR/dt) = [D + u + Ox(R + r + u) + ~x(r + u)].[D + u 

• • + Ox(R + r + u) + px(r + u)] 

.. .. , . = D.D + u.u + [Ox(R + r + u)].[Ox(R + r + u)] 

+ [px(r + u)].[px(r + u)] + 2D.n + 2D.Ox(R + r + u) 

+ 2D.px(r + u) + 2u.Ox(R + r + u) + 2u.px(r + u) 

+ 2[Ox(R + r + u)].[px(r + u)] 

Note that 

[Ox(R + r + u)].[Ox(R + r + u)] = n.O[(R + r + u).(R + r + u)] 

- [O.(R + r + u)][O.(R + r + u)] 

= OT[(R + r + u)T(R + r + u)E - (R + r + u)(R + r + u)T]O 

where E is the identity matrix of order 3. Similarly. 

[~x(r + u)].[~x(r + u)] = pT[(r + u)T(r + u)E - (r + u)(r + u)T]p 

Also: 

D. [nx(R + r + u)] = nT[ (R + r + u)xD] 

n.[px(r + u)] = pT[(r + u)xD) 

u.[Dx(R + r + u)] = OT[(R + r)xn] 

u.[~x(r + u)] = pT(r x u) 
since u x ~ = O. u and u being colinear. 

Finally: 
. . 

[Ox(R + r + u»).[px(r + u)] = (O.P)[(R + r + u).(r + u)] 

- [~.(R + r + u)]Ui.(r + u)] 

= nT[(r + u)T(R + r + u)E - (r + u)(R + r + u)T)p 

= ~T[(R + r + u)T(r + u)E - (R + r + u)(r + u)T)Q 

Substituting these expressions in the expression for TR leads to: 
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+ fRPR(uTuE - uuT)ds + fRPR(2RTrE - arT - rRT)ds 

+ /RPR(2RTuE - RuT - uRT)ds - iRPR(2rTu - ruT - urT)dsHi 

+ pT[ fRPR(rTrE - rrT)ds + fRPR(uTuE - uuT)ds + /RPR(2rTuE - ruT - urT)dslP 

°T r °T ° r ° f . + 2D JRPRuds + 20 [MaRx!) + (JRPRrds)x!) + ( RPRuds) x!) 1 

° T r " r . "T r + 2P [( JRPRrds)x!) + (JRPRuds)xDl + 20 [ax JRPRuds 

+ /RPRrxudsl + 2pT /RPa(rxu)ds + 20T[( faPards)'IaE - ( /aPprds)RT 

+ (faPRuds)TRE - (/RPRuds)aT + /RPR(rTrE - rrT)ds + /RPR(uTuE - uuT)ds 

T T T o} + /RPa(2r uE - ru - u r)dslp 

where MR = J, PRds is the mass of the radiator. 
a 

The expression for Ta can be simplified by noting that since u is 

infinitesimal, all the expressions containing u can be neglected in first 

approximatio~ Moreover. assuming that the center of mass of the radiator 

is at its geometrical center, JfRPards = O. 

The expression for the kinetic energy is therefore reduced to 

• T::' • "T~- 1 . 0)' T f. . . T OJ + 2Ha0 RD + 20 a Pauds + 1 Parxuds + 2P Parxuds + 20 laP 
a a a 

where: 
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and R is a matrix such that RD = R % n. 
POTENTIAL AND KINETIC ENERGY OF THE BOOMS SUPPORTING mE SOLAR PANELS 

The motion of each boom is tracked in a frame xbYbzb placed at the 

hinge attaching the boom to the main structure, and parallel to the frame 

xyz initially when the hinge angles are zero. Thus xb is along the length 

Figure 4. Boom's Reference 

of the boom at rest. The hinge allows rotations about the axes xb and Yb 

but not zb. Thus the rotation of the frame xbYbzb with respect to the 

inertial frame is: a + 0 where a = (ax ay o)T is the rotation with respect 

to the frame xyz and 0 is the rigid body rotation of the space station. 

i.e. the rotation of xyz with respect to the inertial frame. The boom is 

supposed to have deflections YB(x,t) and ZB(x,t) along the axes Yb and zb 

and torsion 0B(x, t) about the axis xb· 

Potential energy: 

The potential energy stored in tho boom is livon by: 

2 
+ EIz (a 2Zslax2) ]dx 

Note: 1 is tho length of tho boom. 

Kinetic energy: 

The kinetic energy associated with the motion of the boom is given by: 
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where VB is the vector position of a running point of the boom in the 

inertial frame. Designating by B the vector from the origin of the xyz 

frame to the origin of ~Ybzb' we can write: 

Thus 

and 

VB g 0 + B +(~) 

(dVB/dt).(dVB/dt) = D.D + YB2 + ZB2 + OT(BTBE - BBT)n + 

(0 + ul T [(.2 + y2 B + Z2 BlE -(~) (. YB ZBl] (Ii + ul 

+ 20.(!:) + 20.0sB + 20. (Ii + ci,. G:) + 

+ 2 (~) .[osB + (0 + cil. (~)] + 2(D.nl. [(0 + Ul{i:)] 

In first approximation, YB and ZB can be neglected in comparison to x. 

Remark. that: 
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since B having the form (0 By o)T leads to B'(~) = o. 

TB is expressed as: 

1 Ji { ·2 '2 '2 'T T T . TB =2 PB J8 B + D.D + Y B + Z B + 0 (B BE - BB )0 
o 

+ (0 + ~)T[x2E ~~)(x 0 0) ] (0 + a) + 2DTG:) + 20TBxD 

+ 2(0 + a)T (:)xn + 20T8x (k) + 2(0 + ~)T (:) x (1:) 
- 20T (~) BTUi + ~)} dx 

where: 

ME is the mass of the boom, 

if the boom is homogeneous. 
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POTENTIAL AND KINETIC ENERGY OF SOLAR PANELS 

B 

R 

L 

F1gure S. Solar Panel Distortions 

Let us choose the reference frame xpypzp parallel to xbYbzb when hinge 

angles are zero and placed at the tip of the boom. For the same 

considerations as in the case of the radiators, the solar panels are 

supposed to have out of plane distortions only. 

Potential energy: 

The potential energy stored in a solar panel is given by: 

+ 2(1-11 p) (a2v/axay)2 J dydx 

where Land Ware the length and width of the solar panel, respectively. 

and the other terms are defined as for the radiators. 

K1netic energy: 

The k1netic energy due to the solar panel's distortion is given by: 

Tp = f p (dV Idt). (dV Idt) ds 
paRel p p 

where panel V is the vector posi tion of a running point of the panel 1n p 
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the 1nertlal reference frame. As can be seen in Figure 5: 

Vp = D + B + P + vp 

D and B have been prey iously def ined. p =(~ 
pOSl tion of the tip of the boom, i.e. the or igin of the frame xPy pZp' in 

the frame xbYbzb. vp is the vector from the origin of the frame xpypzp to 

the point on the solar panel. Note that as in the case of the radiator vp 

can be decomposed in two components: 

v = s + v 
p 

where s = (x y o)T represents the position of the point at rest and 

v = (0 0 v)T its deformat1on. Also as for the radiator's case we will use 

the same symbol for the vector v, and its non-zero component; the context 

wlll 1ndicate which one is meant. Hence V = D + B + P + S + v. 
P 

To compute the time derivative of V , let us observe that the frame 
p 

XpypZp 1S rotated not only by 0 and a but also by the rotation Op produced 

at the tip of the boom, due to its deformations, namely: 

Thus: 

dV /dt 
P 

8B lx=9.. 

aZB/axlx=~ 

aYB/axlx=~ 

.. . 
D + P + v + Ox(B + P + s + v) + ax(P + s + v) 

+ox(s+v) 
p 

To evaluate T , we have to compute the following terms: 
p 

[nX(B + P + S + V)] .[nX(B + P + s + V)] = 

;',T [(B + P + S + v) T (B + P + s + v)E - (B + P + S + v) (B + P + s + v) T ] il 

= nTGBTn + pTp + sTs + vTv + 2BTp + 2BTs + 2BTv + 2PTs + 2PTv + 2sTv)E 

- (nnT + ppT + ssT + vvT + BpT + PBT + BsT + sBT + BvT + vBT 
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+ PsT + SpT + PvT + VpT + SVT + VST)] 0 

In first approximation. we w ill neglect infinitesimal terms. i.e. all the 

terms with v will be neglected. and P will be reduced to (R, 0 o)T. which 

leads to B.P = 0 since B = (0 B O)T. Thus: 

[OX(B + P + S + V)]. [aX(B + P + s + V)] = OT[(B2 + R,2 + sTs + 2BTs 

+ 2pTs)E - (BBT + ppT + ssT + BpT + PBT + BsT + sBT + PsT + SPT)]O 

[ax(p + s 

(P + 

+ v)J.[cix(P + s + V)] = aT[(p + s + v)T(p + s + v)E-

s + v)(P + s + v)T]a == ciT [(R,2 + sTs + 2pTs)E _ (ppT+ ssT 

+ PsT + spT)] ci 

V)] • [npx(s + v)]:= OTp(sTSE - ssT)Op 

[OX(B + p + S + v)].[ax(p + s + V)] = (O.ci)[(B + P + S + v).(P + s + V)] 

-[(B + P + S + v).ci][n.(p + s + V)] = oT[(p + s + v)T(B + P + S + v)E 

- (P + s + v)(B + P + s + V)T] ci ~ oT[(R,2 + sTs + 2PTs + sTB)E 

_ (ppT + ssT + PBT + PsT + spT + SBT~ci 

[OX(B + P + S + V)]. [OpX(S + V)] 

- [(B + P + s + V).Op][O.(S 

- (ssT + sBT + SpT)] Op 

(O.Op) [(B + P + s + v).(s + V)] 

+ V)]: aT [(STs + BTs + pTs)E 

[ax<p + s + V)]. [OpX(S + V)] = (ci.op ) [(P + s + v). (s + V)] 

- [<p + S + v) .Op] [<s + v).ci] :: ciT[(STS + pTs)E - (ssT + SPT)]Op 

Thus T can be written as: 
p 

T = ~fp (dV /dt).(dV /dt)ds 
p pinelP p 

= ~ {".D.D + "'p.i> + I.:R.t. v ds + oT{M. [(n2 + t
2

lE - (DDT + ppTl] 

+ Ip + 2(BT + pT)CE - C(BT + pT) - (B + P)CT - Mp(BpT + PBT)}n 
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+ 20 fpp vds + 2M nTiB + P)D + 2nTeD + 2M cilPD + 2ci1CDr 20 TeD p p p 
panel 

+ 2MpnT{B + P)P + 2P fppVdS + 2nTCp + 2ciT (MpP + C)P + 2npTCp 

panel 

+ 20T(B + P) fppvds + 2nT fppsvds + 2a.Tp fppvdS + 2ci
T 

fppsvdS 

panel panel panel panel 

+ 20Tp f ppsvds + 2nT~lp (R.2E - ppT) + Ip + 2PTCE - PCT - CpT _ MpP8
T 

panel 

+ CT8E - CBTJci. + 20T[Ip + BTCE - CBT + pTCE - cpTJnp + 2ci.T [Ip+ pTCE 

CPTJD.} 
where Mp is the mass of the solar panel. 

Ip ~ Ipp(S
T

S E - SST)ds 

panel 

Defining: 

its inertia with respect to x y z • and 
p p p 

+ 2PTCE _ PCT _ CpT 

+ 2BTCE - BCT _ CBT 

the expression for T can be rearranged as: 

Tp = ~ {M.[nTJi + YB2
: t ) + ZB2

(t)] + fppvoVdS 

panel 

- Mp (8pT + PBT )] n + ciT (Ip + lOp) a. + Op TlpOp + 2MpOo P + 2DTlpp vds 

panel 

+ 2nT{~lp(B + P) + c]o + [Mp(8 + p) + cJp + (B + i>lppvds + 

panel 

172 



+ lppsvds + (Ip + lOp - MpPBT + CTBE - CBT)u + (Ip + BTCE - CB
T 

panel 

+ pTCE - cpTHlp} + 2 ciT [(MpP + C)O + (MpP + C)P + plppVds 

panel 

+ lppS~ds + (Ip + pTCE - CpT)Op] + 20pT(CO + 

panel 

+ 2pT (PpVdS} 
Jpanel 

EQUATIONS OF MOTION 

The Lagrangian formalism is used to derive the equations of motion. 

It is therefore desirable to define a state space vector W such that the c 

kinetic energy of the system can be written as 12 W TM Wand its potential 
e c c 

1 energy as 2" W cKcW c for some opera tor Me and Kc· 

Kinetic energy 

The k1netic energy of the system is evidently the sum of the kinetic 

energy of 1ts different parts. It is given by: 

T = T + RB 

where the index i refers to the four different radiators, booms and panels 

attached to the main structure 

T = i {[MRB + ~ (MRi + ~i + MPi )] OTO + ilT{IRB + ~ [lOR! + IRi 

+ lsi - 2~tipBi(~)d.)BiT + IPi + IOPi + lOBi 
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· -. 
+ J,{PIPi - Ci()Pi 

~o - 4 

-[~ IPB1(:O)dX + Mpo'Po + 'C1oJU10 + r Pp VodS} + 20T:E{R.o r PR nods 1 1 J pi 1 1 1=1 IJRi 1 1 

+ (B + Po) rpp vods + 1 1 J~ 1 1 f, 4 
~. • T -. 

Pposv ds + :E{2IL lPRoruds 
1 1 i=1 1 Ri 1 

Using the state vector Wc: 

W c ~ (D () ul PI OBI YBI ZBl ()PI al vI u2 P2 

°B2 YB2 ZB2 UP2 a2 v2 u3 P3 °B3 YB3 ZB3 Up3 
T 

a3 v3 u4 P4 8B4 YB4 ZB4 ()P4 a4 v4) 
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the kinetic energy T can be expressed as 

T = .!. W TM W 
2 c c c 

where M is a matrix of operators. c 

Potential energy: 

The total potential energy of the system is given by: 

2 2 2 + E.I .(a YB./ax ) 
1 yl 1 fLifWil2 

2 22 2 22 + E. I . (a ZB' / ax ) ] dx + Fp. ~ a v./ a x ) 
1Z1 1 10 -W./2~ 1 

1 

We are going to show that with suitable boundary conditions on u., 
1 

8Bi , YBi' ZBi and vi' and a suitable matrix operator Kc' the potential 

energy can also be put in the form 

Consider the first set of integrals in the sum, giving the potential 

energy of the radiators. Successive integration by parts will yield: 
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J

B/2 JQ/2 JB/2 z = Q/2 
<B 2u/By Bz)2dz dy = {[(Bu/By) (B 2u/By Bz)] 

-B/2 -Q/2 -B/2 z = -Q/2 

J
Q/2 

3 2} - (1Ju/1Jy) (1J u/1Jy 1Jz )dz dy 
Q/2 

[ ] 

z = Q/2 ! y = B/2 f B/2 z = Q/2 
= { u(1J 2u/ay (Jz) - [(a3/ay2az}u] dy 

z = -Q/2 Y = -B/2 -B/2 z = -Q/2 

nence with the following boundary conditions which correspond to the 

radiator being clamped at z = -Q/2 and free on other boundaries, namely: 

u(y, -Q/2) = <au/az}1 z 
= -Q/2 

= 0 
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(a 2u/az 2 ) + VR(a2U/ay2) = (a 3u/az3 ) + (2 - VR)(a3U/az ay2) = 0 

for z = 0/2 

(a 2u/ay2) + vR(a 2u/az2 ) = (a3u/ ay3) + (2 - vR)(a3u/ay az2 ) = 0 

for x = + B/2 -
and 

o 

y = ±. B/2 

z = 0/2 

The expression for KR, the potential energy of the radiator, reduces to: 

KR = ~ FR f u ~4u ds 
R 

S1milarly, for the solar panels, with the boundary conditions: 

v(o,y) (av/ax)lx=o = 0 

for x = L 

<a 2v/ay2) + vp (a2v/ax2 ) = (a3v/ay3) + (2 - Vp )(a3v/ay ax2 ) = 0 

for y = ~ W/2 

= 0 

x = L 

y = .:!:. W/2 

which correspond to a plate clamped at x = O. free at the other edges. the 

expression for the potential energy stored in the solar panel reduces to: 

As for the boom: 
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R. 
[CaYB/ax)Ca2YB/ax2) - YBCa3YB/ax3)] 

o 

R. 
= [CaZB/ax)Ca2ZB/aX2) - zBca3Zb/ax3)] 

o 

Thus. with the boundary conditions 

=0, clamped at 0; 

the potential energy for the boom is given by: 

With these considerations. the total potential energy can be 

expressed as: 

with the obvious definition for KC. 

We have thus obtained a simple expression for the Lagrangian ~of the 

system. 
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m-T-v_1W'TMW' lWTKW 
,;L- -2" e ee--'; e ee 

The equations of motion are obtained by employing the fact that for any 

virtual displacement compat1ble with the system's constraints, and for any 

(1n other words, the integral of 9? between two arbitrary times t1 and t2 is 

stationary), which yields: 

III. DISCRETIZATION AND IMPLEMENTATION 

Discretizat10n 

The equations of motion with the matrix operators Me and Ke are not easy to 

use. The following procedure describes an approach to obtain a finite-

dimensional approximation of Me and KC' 

Let a2
n and ~n be the eigenvalues and eigenfunctions of the operator 

~4 with the boundary conditions described for u; and let W be the 
n 

eigenfunctions of ~4 corresponding to the boundary conditions described for 

v. These eigenvalues and eigenfunctions are described in reference 3. 

Note furthermore that the eigenvalue problem 

has the e1genfunctions 

corresponding to the eigenvalues 

cn = [(2n-1)rr/2!12 

and that the problem 

f(O) = 0 , 

f(O) = f'(O) = 0 f' , (R. ) 
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has the eigenfunctions 

rn = cosh dnx - cos dnx - an(sinh dnx - sin dnx) 

where an = (Sinh dnt - sin dnt)/(cosh dnt + cos dnt) 

and dn is such that 

cos dnt cosh dnt + 1 = 0 

The corresponding eigenvalues are A Moreover: 

.9.. f 0 llm(x) lln(X) dx = t/2&mn 

and 

We will express u, v, 0B' YB, ZB in the basis of these eigenfunctions: 

where 

0:> 

u(r, t) = LUn(t) <pn(r) 
n=l 

v( s, t) 

8n (x, t) 

0:> 

= LVn(t) 
n=l 

Wn(s) 

0:> 

= LOnn(t) 
n=l 

lln(X) 

en 

= LYBn(t) rn(x) 
n=l 

(I) 

Zn ( x, t) = L zBn ( t ) r n (x) 
n=l 
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The approximations to the variables u, v, 0B' YB, ZB are obtained by 

trunca ting the infini te series to fini te summa tions. Using these 

approximations for the radiator: 

N 
u 

f PR U ds = JPR L 
n=l 

R R 

it (t)f =SToti 
n n 

where 

•• fNu)T and fn = JPR~n(r)dS 

where I{} 
y (gyl 8y2· •• gYNu)T and gyn = IPRY ~n(r)ds 

R 

it ds = ffj TaU 
z 

where 

T 
~z = (gzl' Sz2 • • • gzNu) and g = (PRz ~ (r)ds 

zn JR n 
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where F is the matrix with elements F 
mn 

Similarly, for the panels, 

//p 
~ ds =:YJT ,// 

//p 

. 
ds =f!lTp-x v x 

with: 

• T '1/ ::. (vI v2 . vNv) , 

:YJ= (PI T 
P2 . PNv) , 

22 x 

For the boom: 

· f~p. 
o 

assuming that the boom is uniform 

where: 

~- = hp y ~ (s)ds -yn P n 
P 

m, n = 1, ••• NO 

EN is the identity matrix of order NO and 
o 
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EN is the identity matrix of order Ny and 
y 

'{Y= (YBl YB2' • • YBNy) T 

(o'\B YB<x, t)dx = t YBn(t) ripB ~n(x)dx = J c n=l J 0 

where 

where 

Similarly: 

m. n = 1 •... NY 

f
i . 

o PB zl<x, t)dx = :lTV;1= ~7 T~zj-if the boom is uniform 

I
i . 

o PBxZB(x, t)dx = rzT~ 

where V = V = f~PB~ (x)~ (x)dx mn m n 
o 

m. n = 1, ••• , Nz 
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~? is the identity matrix of order Nz ' 

Also: 

a2 q, (r») dr n n 

_l1uT.Y(Olf _-u U 

where~U is the self-adjoint. positive definite matrix whose elements are: 

tw'U)mn = [(a! + a;)/~fRq,n(r) q,m(r)dr 

Note that if q,n(r), n=1, ••• , Nu are orthonormal: 

2 2 
~U ; diag [a1 a2 • 

Analogously: 

f v V
4 

vds = i/~vi/ 
p 

where ~v 1S the Nv x Nv self-adjoint positive definite matrix whose 

elements are: 

If "'n(r), n=l, 

:/{ = diag [a2 
v 1 

••• , Nv are orthonormal: 

a; . a~ ] 
v 
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NO 

= 2: BBm(t) BBn(t)[ (2n-l) 211'2/4t
2

] (t/2)Onm 
m,n=1 

where 

where 

and similarly: 

where 
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Implementation 

Before proceeding to substitute the various discretized variables in 

the expressions for the kinetic and potential energies. consider the 

discretization of P and Gpo 

o o o 

Ny 

LYBn(tHn(t) ~ ~Tty(t) 
n=l 

Nz 

2:ZBn (t) t n (t) 
n=l 

where 

ty (R.) A n 1 (R.) t2 (t) 

t z (t) A nl (t) t2(t) 

Thus: 

o . 
WTt (tH T(t)~ P.P = 

Y Y 

°B(t.t) 

o 

Op = d/dt aZB/axlx=t 

0 0 0 0 tN (t»)T and 
y 

0 0 o 0 t N (t») T 
z 

. 
t z (t ) t z T (t ) :7 +~ 

NO 

:L:8Bn (t)l1n (t) 
n=l 

Nz 

LZBn(t)dtn(x)/dxlx=R. A j'Tdtz(t)/dx 
n=l 

Ny 

LYBn(t)dtn(X,/dxlx=t 
n=l 
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where 

Kine hc energy: 

'12(51.) '1N (1» T 
8 

Let us now proceed with the substitutions. We will obtain: 

T = 21 {MDTD + nTH} + t{ukiTFttii + ~iTIRiili + Ji~TNi~ + ~iTU1~i 
i=l 
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+ 2(0 

~rp, + 

where: 
4 

M ~ MRB + ~(MR1 + MB1 + Mpi) and 
= i=l 

4 

I ~ IRB + ~~ORi + IRi + MBi(BiTBiE - BiBiT) + lsi 
1=1 

US1ng the state vector Wn: 
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WD A (D n al a2 a3 
= 

a4 PI P2 P3 P4 tJll1 ~l/2 

Q'3 cil!4 ~ '7If. (V 

1'~ ~ -:?l2 
(V Yz ·93 0'3 • 1 <71 c72 

(V 

1'''3 $.i 'W4 
(V ~)T c13 <:14 

the kinetic energy can be put in the form: 

T = 1WDTMD~D 
The matrix ?lIn is easily obtained from the discretization procedure. 

Potential energy: 

The expression for the discretized system's potential energy is much 

simpler to write: 

4 

K = -iI:(FRfU~fl4 + Gil i·o/i'f1teiB'i + Eilyi~?li'f1ryi~i 
1=1 

This can easily be put in the form: 

with the matrix ~ properly defined. 

IV. FINITE-ELEMENT MODEL 

Referring to Fig. 6. the main structure is modeled as two flexible 

beams which are rigidly attached to the core body. The solar panels are 

treated as flexible beams attached to the ends of the main structure. Two 

payloads. assumed rigid for simplicity. are hinge connected to the core 

body. To keep the model to a tractable size. the beams are assumed 

torsionally stiff. and hence. only bending angles and the associated 

deflections are modeled. 

Let Zl' ••.• Z7 be the out-of-plane linear deformations at the various 
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location~ of the beams; 81 , ••. ,8 7 be the correspond1ng bending angles in 

the pitch or Y-axis direction; ~2' ~4' and ~6 be the bending angles in the 

roll or X-aX1s direction; and 1Sx' 1Sy' 19x' 19y be the payload inertial 

att1tude angles and 18x' 1ay' 19x and 19y be the corresponding hinge 

angles. Since the beams are assumed torsionally stiff, the following 

constraints apply: 

MODEL PARAMETERS 

• SOLAR ARRAYS 

(ElISA • 9.48 x 106 LB-Fr 

lSA • 115 FT 

PSA • 0.541 SLUG/FT 

• MAIN STRUCTURE 

(EIIES • 9.48 x 107 lB-Fr 

lES • 140 FT 

PES • 1.048 SLUG 1FT 

• COOE STATION 

M4 • 4165.35 SLUGS 

14XX • 3.869 x 106 SLUG-Fr 

14yy • 1.343 x 106 SLUG-FT2 

• PAYLOADS 

M8 • M9 • 994.7Z SLUGS 

19 • ~ • 18 fI 

laxs • 19X5 • 2.437 x 104 SLUG-HZ 

layS' 19ys • 5.637 x 104 SlUG-Fr 

Figure 6. 19-DOF finite-element model for the four-panel 
planar configurations 

Employing finite-element techniques [4,1], the mass and stiffness 

matrices for the following equation of motion are obtained: 
.. 

MZ+KZ=F 

where the force vector F and the system displacement vector Z are 
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wlth 

where the subscripts Sand P refer to the station and payloads, 

respectively. 

The mass and stiffness matrices are partitioned accordingly. Let Me 

and loin be the consistent, and discrete mass matrices, respectively. The 

system's matrix is 

with 

and 
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where 

MSC= 

wlth 

and 

M' .. 
SD 

1100 nt,. ~ 

lZl,' ~. Ul s' 

1100 ZZl,' ~ 

nt,' ~. Ul S' 

~ 13lS' ~ UlS' 312'. t 150tl nt" I4C 

Z24' .. ~ U~b 

S4t Ul.' llZl> 

U'st Jl~' Ill,. ll~' 

U4b l~b 

~ 

13~b 

a=--- and b=---
420 

°6x6 I 
-1- - - - -

I 
I 
I 
I 

°3x6 Im9L9-mSLS 
I 
I 
I - - -1-

°6x6 I 

° 

420 

Ul~' 

l';' 

Ul~' 

l~' 

U4b 

ll/' 

I4C 

Ibl~' 

~ U4I> 

U4b 156,.3121 

Q Z24b 

Ill,. ~ 

3l~. lJl,' 

13l .. S* 

-~. -1J4O 

° 
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U 

q 

U4' 

Ul,' ll~' U',a lL;' 
ll~ 

224b ~ 13l,. ~ Bl,. 

~ 

1\61 ZZl,' 

22l,' ~. 

1\61 22l,. 

-m.' .~. 

I °6x6 
-I-

° I 
I 
I 

° 
I 
I °3x6 
I 

lSYS+19YS I -1- --
I °6x6 

l 



laxs 0 0 0 

0 19X5 0 0 

~D = 
0 0 I SYS+maL~b 0 

0 0 0 2 
19Y5+m9L9b 

0 0 ISXS 

0 0 19X5 
~SD = °4x6 

2 
°4x6 

-maLSb ISYS+mSLSaLSb+mSLSb 0 

m9L9b 
2 

19Y5+m9L9aL9b+m9L9b 0 

The system's stiffness matrix is given by 
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with 

.0 31,a 

H,a 2~0 

.a JL1. Q 

Ks= 3l,a ~a 

0 

2CP.!)s 
where a = --

L3 
s 

.a )L,a 

)L,a n1a 

.a 3l,a 

l4a l~a 

1a 

)L, .. 

.a 

3L~Q 

lZa.oll 31,Il 

lL,/3 

.Il 

It,1l 

Z~/3 

3t,0 

~Il 

2(E!) 
e 

oil 

341l 

120 

-60 

H,Il 

and e=--
L3 

e 

34a 

lla 

H,a 

110 

34/3 

~p 

-<>/3 3',/3 

8l1a 1L,a 11a ll,a 

4~/3 3413 ~Il 

'413 12a.6/l 3t,1l -6a )l,a ... 
~/3 3t,/3 2l~/3 

lI,a -60 60 H,a 

l~a H,o H,a 2'~0 

340 60 60 

~a )40 11,0 

V. MODAL PROPERTIES FOR TIlE FINITE-ELEMENT MODEL 

"a 

ll,a 

3l,a 

z~a 

Let ll(t), A. and <fJ be the modal amplitude vector. eigeuvalue matrix. 

and eigenvector matrix. respectively. Let Z(t) = <fJll(t). Substitute thlS 

into the equa tion of motion and premul tiply it by <fJT. Since (pTM<fJ = I and 

<{lTK<fJ = A. one obtains the following dynamical equation in modal form, 
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where A Adding damping terms, 

... , ... , 
The corresponding damped dynamical equation in physical coordinates can be 

obtained through the inverse transformation. Let D be the damping factor 

matrix, one has 

and the equation of motion becomes, 

MZ+DZ+KZ=F 

To obtain the modal properties, i.e. to determine the eigenvalues and 

eigenvectors, for the open loop system, one can either free the hinges for 

the payloads, or clamp them. For the latter case, the result is a 15-

coordinate system with 12 flexible modes and 3 rigid body modes. For the 

former case, however, a 19-coordinate system results since the payloads are 

considered rigid bodles and the hinges are freed, it ends up with 4 

additional rigid or zero frequency modes. Since this does not yield 

additional information, only the clamped-hinge case is considered in this 

paper. 

The modal frequencies and mode shapes for the four-panel planar 

configuration wlth clamped-hinge case are shown in Fig. 7. These modes are 

divided into three groups. The first bending group consists of 6 modes 

with frequencies ranging from 0.115 Hz to 0.302 Hz. These modes are formed 

with the first symmetric or antisymmetric bending of the three major 

structures, i.e., the two solar panel pairs and the main structure. The 

second bending group is caused by the second symmetrlc or the antisymmetric 

bending of the three major structures. The frequencies for thlS group are 
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much higher than those of the first group and range from 1.67 Hz to 2.34 

Hz. The third group consists of three rigid body modes with zero 

frequencies. 

The structural and mass parameters used for generating these modes are 

shown in Flg. 6. The flexural rigidity (EI) = 9.48x106 Ib-ft2 has been s 

used for the solar panels and a value of an order of magnitude higher has 

been used for the main structure. 

VI. SUMMARY AND CONCLUSIONS 

The development of two parametric models for a four-panel planar 

lnl Hal space station is described. The derivations of the distr ibuted 

parameter model are presented in detail with the hope that the same method 

and procedures can be employed for stations with different configurations 

or for changes within the same configuration class. The 19-DOF finite-

element model is also described here but with much less detail as its more 

complete treatment is discussed in Ref 1. 

With the availability of the 19-DOF and a lower-DOF[1] space station 

models. the frequency characteristics of the various dynamical systems in 

the space station environment are identified as shown in Fig. 8. 

For a nominal orbital altitude of 400 km. the orbital period is 92.61 

minutes or a rate of 1.8x10-4 Hz. For altitudes close to 400 km. the 

rate will be inside the shaded narrow region in Fig. 8. The solar panel 

libration frequency for quasi-solar-inertial pointing [5] will be twice the 

orbital rate as shown in Fig. 8. A low bandwidth attitude control system 

for the space station will have a bandwidth ln the range of 0.001 Hz to 

0.005 Hz. The two-panel low DOF model and the four-panel fini te-element 
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I 
I ________ L _____ _ 

MODE 4 
W 4 0 0.11526 Hz 

MooE 7 
w 7 00.21767 Hz 

------r------

MODE 10 
W 10 0 1.6663 Hz 

MODEll 
wn 0 1.7638 Hz 

MOOE 1 
WI 00 

MooE S 
W S 0 0.16961 Hz 

MODE 8 
Ws 0 0.28001 Hz 

(a) F1rSt bending group 

MOOEll 
w

ll 
0 1.6714 Hz 

--------r-- -----

MOllE 14 
wl4 0 2.3364 Hz 

(b) Second bending group 

MOllE 2 
w2

0 0 

(c) Rigid body modes 

MODE 6 
w6 00.17794 Hz 

MooE 9 
w9 0 0,302OS Hz 

MooE 12 
w

12 
0 1.7533 Hz 

MOllE 15 
"'IS 0 2.3389 Hz 

MOllE 3 
w3

0 0 

FIgure 7. Four-Panel space station modal properties 
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~CORElOOY ... ~~= ..... ~fRfQ. 
_ P/L CONTROL IW 

__ FOUR-PANEL STATION 

_ TWO-PANEL STATION 

_ ACS CONTROL BANDWIDTH 

~ SOLAR PANEL Ll8AATiON RATE IN GRAV. fiELD 

I SPACE STATION OUITAL RATE 

SYSTEM FRfQUENCY. Hz 

Figure 8. Frequency characteristics of space station dynamical systems 

model are shown in Fig. 8 with their modeled frequencies identified by 

vertlcal lines. The dashed regions extending the modeled modes represent 

the modal spectra that are not included in the models. The payload atti-

tude control systems for a range of applications will have bandwidths in 

a range centered at 1 Hz. The core body including the pressurized modules 

should have structural frequencies above 9 Hz. The figure indlcates that 

the spectral separations of the orbital rate, the attitude controllers, and 

the low frequency modes of the station structure are reasonable. However, 

the same cannot be said about the structural modes and the payload 

controls. For lnstance, the payload bandwidth falls between the modes of 

the first and the second bending groups. This result strongly suggests 

that decoupling control of the payload is required. 
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APPROXIMATION OF OPTIMAL INFINITE 
DIMENSIONAL COMPENSATORS FOR 

FLEXmLE STRUCTURES 
J. S. Gibson, D. L. Mingori, A. Adamian, and F. Jabbari 

Umverslty of CalIfornia 
Los Angeles, CA 90024 

1. Introductlon 

The lnflnite dimensional LQG problem for a dlstrlbuted system 
results in an optimal compensator WhlCh lS inflnite dimenslonal. 
Although such a compensator cannot be bUllt, lt can serve as a 
gUlde for deslgnlng a good flnlte dlmensional compensator. Slnce 
the ldeal lnflnlte dimenslonal compensator produces optimal sys-
tem performance, a f1n1te dlmenslonal compensator Wh1Ch approx1-
mates the ldeal compensator should produce near-opt1mal performance. 

In thlS paper, we d1SCUSS the inflnite dimensional compensator 
for a large class of flexible structures, modeled as distributed 
systems, and outllne an approximation scheme for designing finite 
d1mens1onal compensators to apprOX1mate the lnfin1te dimenslonal 
compensator. The approximat1on scheme 1S applied to develop a com
pensator for a space antenna model based on wrap-rib antennas be-
1n£ bU1lt currently. Wh1le the present model has been simplified, 
1t reta1ns the salient features of rigid body modes and several 
d1str1buted components of dlfferent characteristics. 

The control and estimator galns are represented by functlonal 
ga1ns, Wh1Ch provlde graphical representations of the control and 
est1mator laws. These functlonal gains also 1ndicate the conver
gence of the fln1te dimensional compensators and show Wh1Ch modes 
the opt1mal compensator ignores. 

Of course, the practical value of th1S compensator design 
method depends on whether the infin1te dimensional compensator can 
be approxlmated by a flnite dimensional compensator of sufficlently 
low order. For the antenna problem here, a related paper [6] 
develops a reduced order co~pensator based on the large order 
approx1mation in this paper to the infinite dimensional compensator. 

ThlS work was performed for the Jet Propulslon Laboratory, Callfor
nla Instltute of Technology under contract to the Nat10nal Aero
naut1cs and Space Adm1n1strat1on. The work was funded as a sub
contract from H R Textron Inc., Irvlne. 
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2. Abstract Control System 

The space antenna model used here falls lnto the large class 
of flexlble structures represented by the abstract control system 

( 2 . 1 ) 

( 2 . 2 ) 

M x + V X + A x 
000 

y = C x + \) 
o 0 

where the generallzed dlsplacement x(t) lS ln a real Hllbert space 

H, the control u(t)s Rm, the measurement y(t)s RP. The dlsturbance 
\)1 and the nOlse Vo are zero-mean GausSlan whlte nOlse 
processes, as ln the standard flnlte dTmenslonal LQG problem. The 
mass operator M is bounded, selfadJolnt and coerClve on H, B lS 

mO p 0 
bounded from R to H and Co lS bounded from H to R. The unbounded 

stlffness operator Ao lS selfadJolnt and bounded below, wlth compact 

resolvent, and the damplng operator Vo lS symmetrlc, nonnegatlve 

and '\o-bounded. (See [5] for the termlnology). 

As usual, by natural modes we mean the elgenvectors xJ of the 

probleill 

( 2 . 3 ) 2 
w M x

J 
= 

J 0 
Ax J=12··· 

o J' '" 

where the w 's are the natural frequencles of the structure. In 
J 

the antenna problem, as ln most structure control problems, the 
only nonposltlve elgenvalues of Ao are zero elgenvalues correspond-
lng to rlgld body modes. When these rlgld body modes are control
lable,they are contalned In the posltlve elgenspace of BoB; , so 
that the operator 

( 2 . 4 ) A = A + B B* ~ m > 0, 
o 000 

for some posltlve m; l.e., A lS coerClve. 

Next, we deflne the straln-energy space V 

product 

( 2 . 5 ) 
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Th1S 1S a natural space for the general1zed d1splacement because 
2 usually, as 1n our example, II xliv 1S Just tW1ce the sum of the 

elast1c stra1n energy and the squares of the r1g1d body d1splace
Illen t s. 

To wr1te (2.1) 1n f1rst order form, we def1ne the energy space 
E = VxH M where HM 1S H w1th the equ1valent k1net1c-energy 1nner 

product 

( 2 . 6 ) 

• 2 
Thus II xii At 1S tW1ce the kinet1c energy 1n the structure. Now we 

can wnte (2.1) as 

(2.7) 
. 
z = 

~ 

Az+Bu+v l , 

(2.8) y = Cz + vo' 

where 

( 2 . 9) z = B = 

and 

(2.10) D(A ) x D(A )cD(A). 
o 0 

As 1n [ 3, Sec. 2], D(A) 1S chosen uniquely so that A generates a 
C -sem1group T(·) on E. 

o 
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3. Inf1n1te D1mens1onal LQG Problem 

As 1n the f1n1te d1mens1onal case, a separat10n pr1nc1ple [1,~ 
allows us to des1gn the opt1mal compensator by solv1ng the deter
m1n1st1c opt1mal regulator problem and the stochast1c state
est1mat1on problem separately. The 1nf1n1te d1mens1onal opt1mal 
control problem lS to choose u to m1n1m1ze 

00 

( 3 . 1 ) ,J = I « Q z , z > E + < R u , u > R m) d t , 

o 

where z lS the Solut1on to (2.7), Q = Q* lS a nonnegat1ve bounded 
llnear operator on E, and R = R*>O. 

To slmpl1fy certa1n techn1cal1ties about eX1stence of Solut1ons 
to the LQG problem, we w1ll assume that Do + BoB~ lS coercive, 
Wh1Ch means that the flex1ble co~ponents of the structure have 
coerC1ve damp1ng, and that Q lS coerC1ve, Wh1Ch guarantees that the 
opt1mal closed-loop system lS un1formly exponent1ally stable. 

For th1S determ1n1st1c problem, the opt1mal control has the 
feedback form 

( 3 . 2 ) u = - Kz, 

where 

( 3. 3 ) 

and IT lS the un1que nonnegat1ve selfadJo1nt element of LeE) Wh1ch 
sat1sf1es the inf1n1te d1mens1onal Riccat1 equat10n 

( 3. 4 ) 

See [1,2,3]. 

The min1mum-var1ance estimator, or inf1n1te d1mensional Kalman 
f1lter, lS [J,2] 

. 
( 3 • 5 ) z = AZ + Bu + G(Y-Cz), 

where 
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( 3. 6 ) 

"-

and n satisf1es the R1ccat1 equat10n 

( 3. 7) 
A A * 

An + nA rrC*R- 1 Crr + Q = O. 

A A ~* 

The pxp matr1x R and the bounded nonnegat1ve operator Q = Q are 
the covar1ance operators for Vo and v 1 ' respect1vely. We assume 
that any undamped modes are observable, so that the closed-loop 
est1mator 1S un1formly exponent1ally stable. 

The opt1mal compensator cons1sts of the 1nf1n1te d1mens1onal 
est1mator (3.5) and the control law 

A 

( 3 .8) U = - Kz, 

where K 1S glven by (3.3). With (3.8), (3.5) becomes 

( 3 • 9 ) 

where 

(3.10) A = A - BK - GC c 

Note that the opt1mal compensator has the irrat10nal transfer func
t10n 

(3.11) 
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4. FUnctlonal Galns 

When there lS a slngle actuator (m=l), the operator 8
0 

lS 
actually an element of Hand B€E. Hence 

( 4. 1 ) 

or 

( 4 • 2 ) Kz = <f,x>v + <g,x>M 

where 

( 4 • 3) 

wlth feV and 9€H M = H. We call f and 9 functional control galns. 

Slmllarly, for a slngle sensor, the measurement y lS a scalar 
and C*€E. fhen 

( 4 • 4 ) 
'" *"'_1 

G = nc R 

A 

where f€V and g€H are functional estimator galns. 

For the multl-lnput-multl-output case, there lS a palr of 
functlonal galns for each actuator and for each sensor. 
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5. Approx1mat1on 

To obta1n a sequence of approx;mat1ng f1n1te d1mens1onal LQG 
problems, we use a R1tz-Galerk1n approx1mat1on scheme for (2.1). 
We assume a sequence of llnearly lndependent bas1s vectors e 1 , Wh1Ch 
are complete 1n V. The nth approx1mate Solut1on to (2.1) lS 

n 
( 5. 1 ) c: n (t)e

1
, 

w h 1 C h 1 S 1 n V n = spa n t e 1 ' •••• , en) . We w 1 1 1 nee d bot h V nan d HAl n ' 
WhlCh are the same set but have the V and HM 1nner products, re
spect1vely. 

Inlt1ally, let us conslder the case vI = 0 ;n (2.1). Then the 

coefflc1ents a~(t) sat1sfy 

( 5.2) t1 0 nan + D an + A a n = B u on on on 

where an(t) lS the n-vector conta1n1ng a~(t), 1 = 1, ... ,no The 

mass, damp1ng and st1ffness matr1ces are glven respect1vely by 

( 5.3 ) MOn,lJ <e1,eJ>M = <Moei,eJ>H' 

( 5. 4 ) 

l 5. 5) 

In general, (5.3) and (5.4) are val1d only If the baslS vectors are 
In D(A o)' Otherw1se, we use 

( 5. 5 I ) 

lrecall (2.4) and (2.5)) and a s;m1lar express10n for Don (In our 

model, Do lS essent1ally a scalar tlmes Ao ') Also, 

( 5 • 6 ) <e,B >,l=I, ... ,n J 
1 oJ 

1, ... ,111. 
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The convergence of such approximations and the correspond1ng 
f1n1te d1mens1onal optimal control problems is discussed 1n [3] for 
e1ED(A o)' wh1ch includes the cases where the baS1S vectors are 
elther natural modes of the structure or component modes. Here, we 
only outllne the formulatlon of the sequence of n-order LQG problems. 
The most eff1c1ent way to do this 1S to note that, with (5.1), (5.2) 
is equlvalent to the following d1fferential equation on HMn = span 
(e 1 ,····,e n ): 

( 5. 7) 

where Mon' Von' Aon and Bon are the operators on HMn determined by 
the matr1ces ln (5.3) - (5.5) and the 1dentiflcation (5.1). Of 
course, we can write (5.7) as 

( 5 .8) z = A z + B u n n x n 

For (5.7) and (5.8), the optimal regulator problem leads to 
the flnlte dlmensional Riccati equation 

( 5 • 9 ) 

where the operator Qn is defined as follows. Let En = Vn x HMn and 
denote by Pn the projection of E onto En. Then 

With this Q and our preceding hypotheses about damping and the 
completenes~ of the e 's in V, the IT of (5.9) is guaranteed to 

1 n 
converge strongly to the solution IT of the infinite dlmenslonal 
Rlccatl equation (3.4). 

The functlonal control gains in (4.3) are approximated by 

(5.10) f ) R-l (n = IT B gn n n . 
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The strong convergence of ITn and Bn lmplles that fn converges in 
V to f and gn converges In H to g. 

The functlonal control gains fn and gn are associated wlth 
the nth order control law 

(S.I1) 
. 

= - <f ,z >V - <g ,Z >M' n n n n 

wlth 

(S.12) 

To approxlmate the inflnlte dimensional compensator, we con
struct a flnlte dlmenslonal state estlmation 

(S.13) 

where 

(S.14) 

and IT 
n 

(S.lS) 

. "-

zn = Anzn + Bn u + Gn{Y - CnZ n), 

satlsfles the Rlccatl equation 

"-

The operator Qn lS glven by 

(S.16) 

for Q the covarlance of the process nOlse vI In (2.7). As before, 
R lS the covarlance of the measurement nOlse vo. 

We now have the components of the nth approximatlon to the 
infinlte dlmenslonal compensator. The nth flnlte dlmenslonal com
pensator conslsts of (5.13) and the control law 

(S.l7) 
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ThlS compensator has the rational transfer function 

(5.18) 

where 

{5.19) 

For each s£P(A c )' this transfer functlon approaches the value of 
the transfer function in {3.11) as n increases. 
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6. Appl1cat1on to Space Antenna 

We have appl1ed the compensator des1gn procedure of the pre
ceding sect10ns to the control ofalarge space antenna model, Wh1Ch 
is based on the Lockheed wrap-r1b antenna. Our model 1S shown in 
F1gure 1. Slnce th1S 1S our f1rst application to a truly complex 
structure, we have slmpl1f1ed the model by tak1ng the antenna to be 
flat and uS1ng e1ght instead of the actual 48 r1bs. Otherw1se, the 
parameters of the model are based on the phys1cal parameters of 
the 48 r1b antenna as nearly as poss1ble. 

As shown 1n F1gure 1, our antenna cons1sts of a r1g1d hub, 
e1ght r1bs and a mesh reflecting surface. The r1bs are modeled as 
cant1levered beams, and the mesh is modeled as a membrane. The 
center of the hub 1S fixed, but the hub can rotate out of plane. 
Hence, there are two out-of-plane rigid body modes. For more d1S
CUSS10n of th1S model, see [4]. 

The actuators apply torques to the hub, and the sensors mea
sure the r1g1d-body rotation of the hub and the displacement of the 
t1P of each r1b. We have designed a compensator to control the 
llnear out-of-plane mot1on of the antenna. 

The symmetry of the antenna reduces the complex1ty of the 
des1gn process because, for small d1splacements, the motion of the 
antenna can be separated 1nto two sets of orthogonal modes control
led lndependently by one actuator. Each set of modes consists of 
those modes that are either symmetric or asymmetric about one of 
the torque axes. Modes symmetric or asymmetric about both axes are 
uncontrollable. Although the compensator can control only the con
trollable modes, these are the only modes that are excited by 
rotat1ng the antenna. 

V1scoelast1c damping 1S modeled in both ribs and mesh. If the 
st1ffness operator Ao is separated 1nto rib and mesh components as 

( 6. 1 ) 

then the damp1ng operator 1S 

( 6 • 2 ) Vo = .001 A~ + .003 A~ . 

Th1S structural damp1ng couples the natural modes - but not control
lable and uncontrollable modes. 

For the performance index (3.1), we take Q = I and R = .11. 
For the d1sturbance vI and measurement noise, we take 
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"... 

Q = 
A 

and R = .011. 

The generalized displacement vector x for this system has com
ponents represent1ng each of the two out-of-plane rigid body angles, 
the out-of-plane elastic deformat1on of each rib and of each mesh. 
The basic space H is then 

( 6. 3 ) H = R2 x L2(0,~) x L2(~) x ••• x L2(0,~) x L2(~)' 
\" 'v ,/ 

for each r1b and 
mesh 

where ~ 1S the length of the ribs and ~ is area of each mesh sector. 
The strain-energy space V is like H with L2(0,~) x L2(~) replaced 
by H 2 ( 0 , ~) x HI (~ ) • 

(6.4) 

The functional gains have the form 

( r m r m) 
f = Ct 1 ,Ct 2 , <Pf' <Pf' .... '<Pf'<P

f 

functions for 
each rib and 
mesh 

F1gures 2-5 show our approx1mat1ons to the fUnctions <p~, <p~, <P~ 
and <P; for the control ga1ns. Because of symmetry, these functions 
are the same for each sector. The funct10ns <P~ and <pm are plotted 
along the center llne of a mesh sector. g 

We used a finite element approximation of the structure to 
determ1ne the natural modes of the indiv1dual components and of the 
entire antenna. After some numerical work, we decided that it was 
most convenient and efficient to use the antenna modes for the 
baS1S vectors in the compensator approximation described ln Sectlon 
5. The converged functional gains in Figures 2-5 are for 21 con
trollable modes. With this number of modes, we also achieved 
convergence of the estlmator fUnctional galns. 
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CONTROL OF A FLEXffiLE SPACE ANTENNA: 
A FINITE DIMENSIONAL PERSPECTIVE BASED ON 

DISTRIBlTTED PARAMETER THEORY 
D. L. Mingori, J. S. Gibson, P. Blelloch, and A. Adamian 

Umverstty of Cahfonlla 
Los Angeles, CA 90024 

ABSTRACT 

LQG based compensators are developed using a des1gn approach 
Wh1Ch blends f1n1te d1mens1onal and 1nf1n1te d1mens1onal control 
theory. A feature of the approach lS that model reduct1on, control 
law des1gn and est1mator design are accomplished in an 1ntegrated 
manner produc1ng a reduced order model that 1S appropriate for the 
part1cular control problem. The method is used to develop a 
compensator for a flex1ble space antenna. The antenna compensator 
1S further slmpl1f1ed uS1ng balanced real1zat1ons. 

I. INTRODUCTION 

In Ref. [lJ the not1on of funct10nal ga1ns has been developed 
1n an 1nf1n1te d1mens1onal context and applied to a flex1ble space 
antenna. In th1S paper, slm1lar 1deas are developed, but 1n a 
f1n1te d1mens1onal context. Although some of the r1gor of the 
mathemat1cal development 1S lost, a descr1pt1on of the approach 1n 
f1n1te d1mens1onal terms may make 1t more accessible to eng1neers 
who are not fam1liar w1th funct10nal analys1s. A fin1te dimensional 
formulat1on also recogn1zes that control system des1gners are 
frequently prov1ded w1th a plant model Wh1Ch 1S based on a f1n1te 
element analys1s and 1S, therefore, f1nite d1mens1onal. The ap
proach presented here preserves the feature of Ref. [lJ, that 
the reduced order des1gn model, the control law and the estimator 
are produced slmultaneously as the steps of the procedure are 
worked out. The des1gn model 1S thus an appropr1ate one for the 
control problem that has been posed. 

II. PLANT DESCRIPTION AND CONTROL OBJECTIVES 

The approach assumes that a large order descr1pt1on of the 
plant lS ava1lable 1n state var1able form: 

Th1S work was performed for the Jet Propuls10n Laboratory, Cal1for
n1a Inst1tute of Technology under contract to the Nat10nal Aero
naut1cs and Space Adm1n1strat1on. The work was funded as a sub
contract from H R Textron Inc., Irv1ne, CA. 
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( 1 ) 
. 
x = Ax + Bu + W 

T ~ 
E[ww ] = Q 

The measurement equat10n is 1n the form: 

(2) z = Mx + v; E[vv T] = ~ 

and the output equation is given as: 

( 3 ) y = Cx 

(The output 1S 1n general distinct from the measurements and 
represents those variables we wish to control. In special cases, 
the output can be the same as the measurements.) 

The matr1ces in Eqs. (1-3) have the following d1mensions: 

x, w = (nxl) 

B = (nxp) 
~ 

R = (qxq) 

~ 

A,Q = (nxn) z,v = (qxl) 

u = (pxl) 

y = (rxl) 

~1 = (qxn) 

c = (rxn) 

A quadratic performance index for the control problem 1S introduced 
as 

00 00 

(4) J = f [yTy + uTRu]dt = Io[xTCTcx + uTRu]dt 
o 

where R is positive definite, the palr (A,B) is controllable, and 
the pair (A,C) is observable. 

III. GAINS FOR THE CONTROL PROBLEM 

Introduce a set of llnearly lndependent basis vectors e i for 
approximating the state vector x. 

( 5 ) e. = 
1 

i = 1,2, ... ,rl < n 
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eT=(nxrl) 

Then x may be approx1mated as 

(7) x = x = eTa 
rl 

The (rlxl) vector a 1S a vector of state variables Wh1Ch will 
become the reduced state vector. Subst1tute (7) into (1), (4) to 
obta1n (after some man1pulation) 

( 8 ) 
. 

Ar 1 + B a = a u rl 

( 9 ) J = J 0 [a T Q rl a + uT Ru]dt 

where 

( 1 0 ) Arl 
t;, [eeT]-l e A eT B t;, [ T r 1 

rl ee eB 

(11) Q r 1 
~ e CT C eT 

(w has been om1tted 1n Eq. (8) since it is not needed for the 
regulator problem.) Eqs. (8) and (9) represent a reduced order 
state equat10n and performance index, respectively. Using standard 
methods, a feedback gain matrix Krl can be obtained for this reduced 
order problem. The reduced feedback law becomes 

(12) u = - Krl a 

US1ng Eq. (7) we can express a as a function of x. 

(13) a = [eeTJ-l ex 

Subst1tute (13) into (12) to obta1n 

(14) u = - Kn(rl)x 
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where 

Kn(rl) represents an approximation of the pxn feedback gain matr1x 
based on a reduced problem of order rl. The exact feedback gain 
matrlX for the full order problem of Eqs. (1) and (4) would be 
Kn(n). 

Often it 1S unnecessary to solve the full order problem to 
o b t a In K (n). Ins tea don e can sol ve a seq u en ceo flo w e r 0 r de r 
problemt proceeding as follows: 

1) Select a number of l1nearly 1ndependent vectors as 1n Eq. 
( 6 ) 

2) Formulate and solve a reduced order problem as defined 
by Eqs. (8-12) 

3) Calculate Kn(rl) according to Eq. (15) 

4) Enlarge the number of basis vectors included in eT and 
repeat steps 2) and 3) 

5) When Kn(rl) ceases to change as add1t1onal bas1s vectors 
are added to eT, term1nate the procedure. 

The "convergence" of Kn(rl) as rl is increased may be measured 

1n terms of any appropriate matrix norm. ~Jhen the norm of the 
d1fference between succeSS1ve approximat10ns of Kn(rl) becomes 
small, 1t is an 1nd1cation that Kn(rl) is a good approx1mation of 
Kn(n). It 1S further an ind1cat10n that the reduced order model 
for the current rl (Eqs. 8-11) is a sU1table model for the control 
problem that has been posed. In fact, if rl 1S approachlng nand 
Kn(rl) is still changing as new basls vectors are added, one may 
conclude that the full order model 1S lnadequate for the control 
problem at hand. In th1S case, elther a larger model must be 
obtained, the level of performance must be reduced, or the physlcal 
system must be changed, e.g., by introducing addit10nal paSS1ve 
damping, moving actuators, stiffenlng members, etc. 

IV. GAINS FOR THE ESTIMATION PROBLEM 

As In the control problem, a set of llnearly 1ndependent baslS 
functlons is used to approxlmate the n dimensional state vector x. 
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To emphaslze that these baS1S vectors need not be the same as those 
used ln the control problem, they wlll be denoted by f , 1 = 1, 
2, r2 < n. I n genera 1 r2 wlll be d 1 fferent from 1 rl. Thus, 

f 11 

1 ( 1 6 ) f = 
f12 

1,···,r2<n r2 1 = ~ rl 1 

J f1n 

fT = (nxr2) 

Then the approximat10n of x based on fT 1S 

( 18 ) 
. 

x = 

Substltutlng (18) lnto (1) and (2) Ylelds (after some man1pula
t1on) a reduced order state equat10n and measurement equation In 
terms of b. 

( 20) z = Mr2 b + v 

where 

( 21 ) Ar2 ~[ffTrlf A fT B ~[ffTJ-lf 
r2 B 

( 22) 11r2 ~ t1 f T wr2 ~[ffTJ-lf W 

A 1 so, 

(23 ) 

( 24) 

An opt1mal est1mator based on (19) - (24) wlll have the form 
A 

(25) b = Ar2 b + Br2 u + Gr2 (z-M r2 b) 

where Gr2 lS determlned as the Solut1on of 
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(26) 

An equat10n for estlmat1ng Xr2 can be developed from Eqs. (18) 
and (25): 

= fTAr2[ffTJ-1f xr2 + 

+ fTGr2[z-Mr2[ffTJ-1f 

Eq. (27) may be compared with the full order est1mator Wh1Ch has 
form: 

(28) i = A i + Bu + G [z-MiJ n 

A key th1ng to note 1n this comparison is the form of the est1mator 
gain. As more bas1s vectors are added to fT(i.e., r2 1S increased), 
we w111 expect to see fT Gr2 approach Gn . Thus fT Gr2 represents an 

approximation of G which can be used as a guide for determining 
n T 

when the r2 bas1s vectors in f are adequate for construct1ng a 
reduced order est1mator. The procedure is analogous to that used 
in the control problem, and may be summarized as follows: 

1) Select a number of 11nearly independent vectors as in Eq. 
( 1 7) 

2) Formulate and solve a reduced order problem as defined by 
Eqs. (19) - (26). 

3) Calculate Gn(r2) using 

(29) Gn(r2) = fT Gr2 

4) Enlarge the number of basls vectors included 1n fT and 
repeat steps 2) and 3). 

5) When G (r2) ceases to change as addit1ona1 vectors are 
n T 

added to f , term1nate the procedure. 

Using any appropr1ate matrix norm, one may examlne the norm 
of the d1fference between succeSS1ve approx1mat1ons of Gn . ~Jhen 
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th1S norm becomes small, it is an 1nd1cat1on that Gn(r2) 1S a 

good approx1mat1on of G and that the reduced order model used to 
n 

generate G (r2) is an appropr1ate one for construct1ng a reduced n 
order est1mator. The observation made at the end of Section III 
also appl1es here 1f G (r2) continues to change as r2 approaches 

n 
n. Note that 1f the est1mator design procedure reveals that some 

of the bas1s vectors 1n eT Wh1Ch were important for the control 
problem are not needed in fT, the correspond1ng states will not be estimated 
and the control law cannot be implemented. In th1S case, sensors 
should be moved or added until good estimates can be obtained for 
all of the states Wh1Ch must be fed back. 

V. CONSTRUCTION OF THE COMPENSATOR 

After complet1ng the procedures described 1n Sections III and 
IV, one should emerge w1th sets of bas1s funct10ns sU1table for 
the control and est1mation problems, and good approx1mat1ons of 
the full order control and est1mation gains. To be conservat1ve, 
control and est1mat1on ga1ns can be recomputed, uS1ng the un10n 
of the bas1s funct10ns from the control and est1mat1on problems. 
The compensator then cons1sts of the following equat1ons: 

(30 ) u = 

( 31 ) 

. 
A 

(32) b = Ar2 b + Br2 u + Gr2 (z-tl r2 b) 

In transfer matr1x form, these equat10ns become: 

( 33) 

where 

(34) Ac ~ Ar2 - Br2 Kn(rl)f
T 

- Gr2 Mr2 

Because of the "convergence" 1ssues that were addressed 1n con
struct1ng the compensator descr1bed by Eqs. (33) and (34), th1S 
compensator should be an excellent approx1mat1on of the ful I order 
compensator even though it is based on reduced order calculat1ons. 
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VI. SIMPLIFICATION OF THE COMPENSATOR: AN EXAMPLE 

Although developed here ent1rely 1n fin1te d1mens1onal terms, 
the procedure descr1bed above is 1dentical to that used in Ref. 1, 
where an 1nfin1te dimensional perspective 1S employed. Thus the 
spacecraft example worked out in that reference serves equally 
well to illustrate the procedure developed here. It is assumed 
that the reader has access to Ref. 1. The ga1n matr1ces K (rl) 

n 
and Gn(r2) of the present paper are analogous to the functional 
ga 1 ns of Ref. 1. 

The spacecraft example of Ref. 1 involves 3 sensors and one 
actuator. Thus the transfer matrix of the compensator correspond
ing to Eq. (33) 1S a lx3 matrix in which each element is a transfer 
function. The frequency response of the (1,1) element of this 
matrix is d1splayed in Fig. 1. This transfer function is based 
on a model of 42nd order and thus it has 42 poles and 41 zeros. 
Although the procedure used to generate the compensator produces 
a suitable reduced order model for the control and est1mation 
problem at hand, there is no guarantee that 1t is the lowest order 
model that would work. It is frequently possible to simpl1fy the 
compensator further without significant lo?s of performance. 

To illustrate this assertion, the order of the compensator of 
Fig. 1 has been reduced using the technique of balanced state 
space representations (Ref. 2,3). These methods were applled 
d1rectly to the compensator and not to the physical model (though 
appl1cat10n to the phys1cal model may be useful when selecting 
the bas1s functions for eT and fT). In essence, the method 
1nvolves transformat10n to a ("balanced") representation where 
the states can be ordered in terms of the importance of their 
contributions to the transfer matrix. Then the least important 
states may be truncated untll significant features of the transfer 
matr1x begin to be lost. 

Figures 2 through 4 show the frequency response of the (1,1) 
element of the transfer matrix as its order is reduced from 42 
to 34 to 20 and finally to 16. It seems clear that a reduction 
from 42nd order to 34th order can be accomplished without any loss 
of performance. Some features begin to disappear upon further 
reduction, but the basic character of the frequency response is 
preserved. Further work is necessary to ascertain how important 
the loss of var10US features would be. 

VII. CONCLUSIONS 

The methods presented in this paper are based on results 
fro min f 1 nit e d 1 men s 1 0 n a 1 con t r 0 1 the 0 r y, but the y can bed esc rl b ed 
and used in a finite dimensional context. Th1S blend leads to 
an approach which employs powerful ideas on convergence, and is 
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also qUlte practlcal for systems of realistic complexity. 

Approprlate reduced order models are generated slmultaneously 
with the developemt of the compensator. The required models change 
as a functlon of changes ln the performance demanded, sensor and 
actuator locatlon, inherent damping, disturbances, etc. Thus they 
are drlven by the control and estimation problems at hand. 

The compensator which emerge are very close to the "ideal" 
compensators WhlCh would be obtained with a very large order model. 
However, some slmplificatlon is frequently possible. The method 
of balanced realizations has been found effective for this purpose. 
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AN INTEGRATED CONTROL AND MINIMUM MASS 
STRUCTURAL OPTIMIZATION ALGORITHM FOR 

LARGE SPACE STRUCTURES 

Abstract 

A. Messac* 
The Charles Stark Draper Laboratory 

Cambndge, MA 02139 

J. Turner and K. Soosaar 
Cambndge Research 
Belmont, MA 02178 

This paper proposes a new approach for solv~ng dual structural

control opt~mizat~on problems for h~gh-order flexible space structures, 

where reduced-order structural models are employed and ~n~mum mass de

s~gns are sought. For a ~ven init~al structural des~gn, a quadratic 

control cost is m~nim~zed subject to a constant-mass constra~nt. The 

sens~t~vity of the optimal control cost with respect to the structural 

design var~ables ~s then determined and used to obtain success~ve struc

tural redes~gns, using a constrained grad~ent optimizat1on algor1thm. 

Th1S process is repeated until the constrained control cost sensitiv1ty 

becomes negligible. The m1n1mUm mass design 1S obta1ned by solv1ng a 

sequence of ne1ghboring opt1mal constant mass des1gns, where the sequence 

of opt1mal performance 1nd1ces has a minimum at the optimal m1nimum mass 

des1gn. A numer1cal example 1S presented wh1ch demonstrates that this 

new approach effectively addresses the problem of dual optimization for 

potent1ally very h1gh-order structures. 

*Doctoral Cand1date in the Department of Aeronautical and Astronautical 
Engineering, M.I.T., Draper Fellow 
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I. Introduction 

One important var~able, which determines the cost of transporting 

a payload to orbit, is ~ts total mass. Consequently, at the structural 

design stage, a strong effort is made to optimize the structure for the 

mission at hand. Minimum mass and max~mum structural eigenvalues consti

tute the two most frequently used structural optimization criteria 

(Refs. 1-7). The resulting structure is generally highly flex~ble and 

often requires active control (Refs. 8-12). As a result, subsequent to 

the structural design, the control engineer attempts to determine the 

optimal control strategy necessary to accomplish the miss~on. 

Tradit1onally, the problem of optimal structural design and that 

of optimal control design are solved with little or no interaction. As a 

result, the "global design" is not optimal. In an effort to overcome 

this situation, we present in this paper a new method for simultaneously 

optimizing the structural and control design. There are two key features 

of the proposed method. First, a reduced-order model for the equations 

of motion is used which dramatically lowers the computational cost. 

Second, a minimum mass design is obtained by solv1ng a sequence of 

neighboring optimal constant mass designs, and selecting the design wh1ch 

yields the min1mum performance index as a function of total system mass. 

A numerical solution for the problem of optimal spacecraft slewing maneu

vers of a structurally-opt~mal minimum mass des1gn for a spacecraft is 

presented. 
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This dual opti~zation problem has previously been cons~dered by 

Hale (Refs. 13, 14) for problems ~nvolv~ng s~mple structures and by 

Messac and Turner (Refs. 14, 15) for problems of ~gh structural d~men-

s10n. 

In the interests of computational effic1ency, the problem is form

ulated in modal- rather than physical-space. As a result, the order of 

the TPBVP is d~ctated, no longer by the complexity of the structure 

(~.e., order of the mass and stiffness matrices), but rather by the num

ber of structural modes which part~cipate in the dynamic excitation of 

the spacecraft. The total number of such modes rarely exceeds a dozen in 

most pract~cal appl1cat1ons. 

Spec~f1cally, we seek the opt1mal structural des1gn that enables 

the slew1ng maneuver and vibration suppression of the spacecraft to be 

performed optimally, wh~le f~rst keeping the total mass constant and 

secondly allow~ng the total mass to vary ~n an effort to obta~n a min~mum 

mass design. 

II. Generic Problem Statement 

A. Performance Index Definition 

We seek the structural design that m~nimizes the follow~ng per

formance ~ndex 

t 
J = ~ x~ S(d)X

f 
+ ~ J f[xTQ(d)x + UTRuJ dt 

o 
( 1 ) 

subJect to the following l~near time-invariant plant dynam~cs equation 

. 
x(t) = A(d)x(t) + B(d)u(t) (2 ) 
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where the total mass IlIT and initial state Xc are given. In the above 

equation d 1S the design variable vector, tt and xf are the f1nal time 

and final state respectively, x(t) the state vector, u(t) the control 

force vector, Sand Q are real positive semi-defin1te matrices, R 1S a 

real positive definite matrix, and S, Q, and R are defined in Appendix B. 

Equation (2) is obtained by first deriving second-order ordinary 

differential equations of motion of the form 

M(d)w(t) + K(d)w(t) = E(d)u(t) (3 ) 

where M(d) and K(d) represent the (N x N) symmetric mass and stiffness 

matrices, wet) is a generalized coordinate vector for the elastic and 

rigid-body motions, E(d) 1S an (N x Nc ) control influence matrix which 

determines the point of applicat10n of the generalized control forces. 

Equation (3) 1S transformed to modal coordinates by carrying out an 

eigenvalue analysis and normalizing the modes ~ ~uch that ~TM~ = I and 

~TK~ = A. By retaining only those modes - numbering Nm < N - which 

s1gnif1cantly participate in the dynamic response of the structure, a 

reduced-order state space model of the form of Eq. (2) is obtained by 

defining 

(4 ) 

(5) 

T x a: (6) 
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where A and B are of order (2Nm x 2Nm) and (2Nm x Nc ) respect~ve

ly, n ~s a vector of modal coord~nates, and I ~s an ~dent~ty matr~x. 

B. Dependence of Xo on the Design Variable 

As shown in Ref. (16) the in~t~al condition vector Xc ~s an ex

plic~t function of the design vector d, as follows: 

(8) 

where 

rr (d) = (9) 

The initial cond~t~on dependence on the design vector d is important for 

both the constant and minimum mass design optim~zation processes. 

Furthermore, as shown in Ref. (16) the partial derivative of Xc 

w~th respect to the design vector d is given by 

where 

ax 
o 

ad = 
arr (d) 

ad E:x 
o 

E:(d) = Block Diag. [ <p, <p J 
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III. Optimization Problem Solution 

A. Optimal Control Design 

As shown in Refs. (9, 15, 16) the optimal control solution for 

Eqs. (1) and (2) is given by 

X(t) Dt 
= e X(o) x = 

A is the cos ta te vector 

where 

D(d) = 
-Q(d) 

Dt 
e = 

(12 ) 

(13 ) 

(14 ) 

(15) 

As shown in Ref. (16) the solution for the initial costate A(O) is 

given by 

where 

A(O) = Hx 
o 

H 
-1 

= -H H 
A B 
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and 

= (18 ) 

= 
(19 ) 

Moreover, from Ref. 11, it follows that the control cost of Eq. (1) can be 

wr1tten as 

J(d) = 21 xT(d)H(d)x (d) 
o 0 

(20) 

The solut10n for J(d) above corresponds to solv1ng a time-varY1ng 

R1ccati equation, as a result the ga1ns for the control are time-varying. 

For many problems, however, we are interested 1n constant feedback ga1ns 

for the control. For opt1mization problems where constant gains are 

requ1red, Eq. (20) becomes 

(21 ) 

where Pss is the solution to the algebraic R1ccati equat10n 

o = + Q (22) 

The key feature of Eqs. (20) and (21) is that time has disappeared 

from the problem formulation. As a result, the optimization problem 

becomes an algebra1c minimization problem for the design vector d. 
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B. Iterative Structural Redesigns--Constant Mass Case 

So far, we have determined the opt~mal control cost assoc~ated w~th 

a g~ven set of design variables d, as defined by Eg. (20). We now present 

the numerical scheme which is used to minimize the control cost by 

iteratively refining d. 

To this end, we first express the constant mass requirement as 

pTd = ~, where d is the design variable vector, mT the ~ ven total 

mass, and p a vector of structural parameters. More spec~fically, in 

terms of changes in the design var~ables 6d, the constant mass constraint 

follows as 

= o (23) 

In order to establish a constrained optimizat~on algor~thm 

wh~ch takes into account Eg. ( ), we first determine the normalized 

gradient vector a = - ~~/II ~~ II (Appendix A) where II * II denotes the Eu

clid~an norm (see Figure 1). We subsequently make use of the Orthogonal

Projection-Theorem (Ref. 17) which states that the proJection of the vec

tor a onto the surface of constant mass represents the direction of great

est decrease in J which also sat~sfies Eg. (23). As a result, the desired 

change in the des~gn variable vector, to w~thin a multipicative constant 

c, becomes 

= :!J:j T P 
p p 

(24) 

The performance index partial der~vatives for Eg. (20) are listed in 

Appendix A. The corresponding performance index partial der~vat~ves for 

the constant 'gain case of Eg. (21) are listed in Appendix C. 
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From a geometr~cal po~nt of view, the above equat~on clearly 

states that when aTp = Ilall·llpll, the gradient vector a ~s orthogonal 

to the constant-mass-constraint plane and ~d = 0; thus no further ~mprove

ment can be made and a min~murn has been reached (see Figure ,). On the 

other hand, when aTp = 0, the grad~ent vector Lles in the constant mass 

plane and Eq. (24) requires ~ = ca; thus great improvement can be made. 

In order to mon~tor progress towards the opt~mum dual design, the 

follow~ng convergence parameter ~s defined 

8 = (25) 

which is equal to 0 for the worst poss~ble des~gn, and , for the opt~mal 

des~gn where 1*1 denotes absolute value. 

The constant c ~n Eq. (23) can be chosen ~n the beg~nn~ng of the 

opt~m~zation process such that a ~ven small fraction of the total des~gn

mass ~s displaced. Exam~nat~on of Eq. (23) reveals the desirable property 

that the norm of ~d decreases monotonically as the optimal design ~s be~ng 

approached. Once c ~s chosen, the following step s~zes are then automat

~cally determined. The dually optimal design is reached when the param

eter 8 sat~sfies the ~nequal~ty 1'-81 < e" where e, ~s user speci-

fied. 

c. Iterative Structural Redesigns-~nimum Mass Case 

To f~nd the minimum mass des~gn we employ a coarse grid search as 

a funct~on of total system mass. As depicted in the hypothet~cal example 

of the follow~ng f~gure, the sequence of performance ~nd~ces as a func

t~on of the total system mass (~.e., m~, ~ = 0, •• ', 5) has a ~n~mum 
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near m2. As a result, the search procedure requires that the direct~on 

yielding 

must be determined. Once the search direction is known, the next 1ssue is 

to determine what values for d should be used. 

J(m) 

* 

* * 
* 

__ -+ __ 0 __ - ___ ' ___ 0 ___ ' _________ 0 ___ 0 ___ m 

m 
o 

One simple technique readily suggests itself. F~rst, we can make 

the "opt1mlstlc assumption" that all design var~ables scale accord1ng to 

the following equation: 

T 
P ~+1 = (26) 

where 

= (1 + '\+1) dk = 

which leads to 

'\+1 
== (27) 
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Second, using th1S technique we then compute a sequence of perform

ance 1ndex costs, as follows: 

= (k = 0, 1, ••• ) (28) 

Once a minimum has been passed, we assume that 1n the vicinity of the 

m1n1mum mass design, the performance index can be modeled as a quadratic 

polynom1al 1n the total mass, as follows: 

J(d,m) .. 2 am +bm+c (29) 

The a, b, c coefficients above are then recovered by evaluating 

J(d, m) at three adjacient points where the min1murn is contained, leading 

to a s1mple linear system wh1ch defines the solution. 

The opt1mal m1n1mUm mass solut10n is then found by differentiating 

the expreSS10n for J(d, m) above with respect to m, yield1ng 

* * o = 2am + b ---> m = -b/2a (30) 

Subject to the m* found above, an estimate of d is obtained and 

the constant mass algorithm of Section III.B is used to refine the design 

vector d. 

A local search is then conducted 1n order to ver1fy that the mini

mum mass solut1on has indeed been obtained. 

More elaborate algor1thms for obtaining extrapolated estimates of 

dk+l based on back values of dk' dk-l, ••• , naturaly suggest them

selves; however, the efficacy of these approaches are not cons1dered 1n 

this paper. 
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IV. Illustrative Example 

A. Structural Model 

The example problem analyzed ~n th~s paper cons~sts of a l~near 

structure which has the following characteristics (see Figure 2): 

20 extensional finite elements of equal length 

21 nodal ~splacements wh~ch co~ncide ~th the lumped masses 

un~form mass density p = 100 kg/m3 

uniform Young's modulus E = 800 N/m2 

equal in~t~al cross-sect~onal areas which const~tute the des~gn 
parameters (see F~g. 2) 

length £. = 3m 

a control force applied to the left-most structural node 
(see Figure 2). 

This structure has been selected because it offers two desirable 

features. First, in order to ver~fy the ab~lity of the proposed approach 

to optimize h~gher-order structures through reduced-order modelling, it 

was deemed necessary to analyze a structure which is composed of more than 

15 elements (clearly th~s object~ve has been met.) Second, the structure 

1S s~mple enough so as to allow physical interpretat~on of the results. 

B. Optimal vs. Non-Optimal Dynamic Response 

In the control problem cons~dered here, it ~s des~red to perform a 

rest-to-rest maneuver where the r~gid body modal ~splacement takes on the 

~n~t~al value of 30.0 and the f~nal value of 0.0 in 2 seconds (Figure 3). 

As shown in Figure 3, the optimal control performance is greatly ~mproved 

through successive iterative structural redes~gns, where the "opt1mal" 

control design of the ~nitial structure is contrasted to that of the f~nal 

- opt~mal - structure. There are two sal1ent features of the dynam1c 
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response. F~rst, the peak values of these time-vary~ng quant~t~es are 

signif~cantly higher in the case of the non-optimal structural des~gn. In 

part~cular, the opt~mal design requ~res a peak control force 3.4 times 

lower, and the resulting elast~c deflection is 3.07 and 4.96 times lower 

for the f~rst and second mode, respect1vely. Second, the optimal dynamic 

responses are typ~cally smoother ~n the case of the opt~mal structural 

des~gn. 

C. Control Cost Decrease 

As prev~ously stated, each step of the redesign process is respons

~ble for a decremental change ~n the control cost J at each redesign 

stage. F~gure 4 clearly depicts the expected monoton~c decrease 1n J: 83% 

from the 1nit~al to final structural des1gn in 45 iterat~ons. Clearly, 

th~s represents a dramatic decrease ~n the optimal cost. At a value of 

the convergence parameter B of 0.95, the optimal design was considered 

reached, ~n order to prevent the last design variable from vanishing. It 

is antic~pated that further ga1ns in system performance can be ach~eved 

by: 1) allow~ng the total mass to be a design var~able; i~) allow~ng the 

elements of the control weighting matrices .S, Q, and R to be design vari

ables (Append1x B); and i1i) allowing the sensor and actuator locat10ns to 

be des1gn variables. However, these extens~ons are not cons~dered here. 

D. Inclusion of a Tip Mass 

In an effort to determine a minimum-mass design, we add a t1P mass 

of 15.0 kg to the right of the prev10usly mentioned structure (Figure 8), 

with the understand1ng that 1t does not const1tute a des~gn variable, and 

~s not to be changed dur1ng the opt~m1zation process. As can be estab

l1shed 1ntuit~vely, without the t~p mass the result1ng minimum-mass would 

be simply zero--a tr~vial case. We then follow the previously out11ned 
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optim1zat1on process to determ1ne both the associated constant-mass and 

m1n1mUm-mass des1gns (F1gures 8, 9). The opt1mal constant-mass design 

offered a decrease in the control cost of 82%; the subsequent opt1mal 

m1nimum-mass des1gn resulted 1n an additional 3% decrease in control cost 

together w1th a 71% decrease in des1gn mass. Finally, we make the 1nter

esting observation that the inclusion of the tip mass drastically changed 

the nature of the opt1mal structure (F1gures 2 and 8). 

E. Consequences of Mode Shape Derivatives 

Often, in structural analyses involving the var1ations of eigen

values and eigenvectors, the structural des1gner only accounts for the 

changes 1n the e1genvalues. While in many cases such action 1S accept

able, 1n many others the om1ssion of the eigenvector sensit1v1t1es leads 

to erroneous results. Unfortunately, the problem dealt with 1n th1s paper 

belongs to the latter class of problems. To see this we refer to Figure 

5, where we observe that the first eigenvalues Wh1Ch participate 1n the 

dynam1c response increase (see Figure 6). Furthermore, we make the 

1mportant observat1on that the e1genvector nodal-displacements which are 

close to the po1nt of application of the force decrease, while the others 

1ncrease. (We recall that the force vector is applied to the left, see 

F1gure 2.) Phys1cally, the smaller nodal displacement at the force

app11cat10n-point leads to reduced structural excitation (Ref. 1~). 

We finally note that the effect of the mode shape sensitivity 1S 

conta1ned 1n the control-influence-coeffic1ent matrix B (see Eq. (5», and 

thus conclude that the eigenvalue derivat1ve, alone, will not capture the 

ingredients neccesary for convergence toward the global optimum. 

The ba~ic algor1thm is formulated in F1gure 7. 
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V Conclusion 

In th~s paper we present an approach for solv1ng a dual structural

control problem which involves high-order structures through a reduced

order model. The validity of the theory developed is demonstrated by 

using a structural model of 20 finite-elements. The significant findings 

of this paper are: ~) the use of reduced-order models has a tremendous 

1mpact on the computer time required in the optimizat10n process and may 

be necessary 1n the opt1mization of high-order structures; ii) the imple

mentat10n of a constant mass opt1mization leads to a dramatic decrease in 

the control cost; ii1) the use of mode shape derivat1ves are required for 

convergence towards the global optimum; and iv) the use of the eigenvalue 

and e1genvector extrapolation formulas of Appendix A makes the reduced

order model formulation a practical numer1cal technique (indeed, the exact 

eigen solut10n was computed only three times during the constant-mass 

optimization process). 
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CONSTANT MASS PLANE 
DEFINED BY pT ~d = 0 

", / INTERMEDIATE DESIGN 

I 

DECREASING 
COST 

~WORST POSSIBLE 
~SIGN 

ct = NEGATIVE OF NORMAUZED COST GRADIENT VECTOR 

"D.d = C (01. _ aT P p\ 
pT p ) 

Figure 1. Gradient vector with respect to the constant-mass 
plane. 
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U(t)"1 I I I I I I I I I I~ Ll_I~_L_LJ_LJ 
INITIAL. DESIGN 

FINAL. DESIGN 

• BOTH DeSIGNS HAVE EQUAL. TOTAL. MASS 

• ultl • CONTROL. FORCE 

Figure 2. Initial vs. final structural design. 
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10~------------------------------------------------------------------~ 

Jo - INITIAL COST 

J - INTERMEDIATE COST 

0.17 

o~----------------------------------------------------~----~ 1 ~ 
ITERATION NUMBER 

F~gure 4. Monotonic decrease of optimal control cost during 
the "dual" optimization process. 
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Figure S. In1tial vs. final eigenstructure. 
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st=uctural Spectrum (rad) 2 
s 

Mode # Inl.tl.al Optl.Inal 

1 0.0 o 0 
2 8.8 16 6 
3 34.8 47 9 
4 77.5 93.5 
5 135.0 152 0 
6 208.0 223.0 
7 293.0 306.0 
8 388.0 398.0 
9 491.0 498.0 

10 600 0 603.0 
11 711.0 711 0 
12 822.0 818.0 
13 931.0 923.0 
14 1034.0 1023.0 
15 1129.0 1115.0 
16 1214.0 1198.0 
17 1286.0 1269.0 
18 1345.0 1328.0 
19 1387.0 1374 0 
20 1413.0 1405.0 
21 1422 0 1422 0 

St~uctural Desl.gns 

Design 
Initial Opt l.rna 1 Par. # 

1 0.1451 0.405 
2 o 1451 0.363 
3 0.1451 0.326 
4 0.1451 o 291 
5 0.1451 0.258 
6 0.1451 0.227 
7 0.1451 0.198 
8 0.1451 0.171 
9 0.1451 0.146 

10 0.1451 0.122 
11 0.1451 0.101 
12 0.1451 0.082 
13 0.1451 0.065 
14 0.1451 0.050 
15 0.1451 0.037 
16 0.1451 o 026 
17 o 1451 o 017 
18 0.1451 0.010 
19 0.1451 0.005 
20 o 1451 o 002 

Figure 6. Structural spectrum and structural desl.gn 
parameters for the l.nitial and final-optl.mal 
design. 
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INPUT p,d,Xo,fl' f2' STRUCTURAL CONFIGURATION 

S-Q-R RELATED CONSTANTS 
i =0, imox 

COMPUTE M, K, rp, A 

E!E aA 
COMPUTE A,B,J(dl'od 'ad' EQS (4,5,18, Al 

COMPUTE Ci =-*/11 ~II 

STOP 
(OPTIMAL DESIGN) 

COMPUTE ~d = c{a-* p} Ea. 18 

i = i +1 

O¢ a,\ 
EXTRAPOLATE¢,,.\, USING ad 'ad 

>--+; COMPUTE EXACT ¢,,\ 

STOP 
EXAMINE CONVERGENCE 

Figure 7. Different~al correct~on algor~thm. 
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Initial Design 

I I I I I I I I I I I I I II 

Optimal Constant-Mass Design 

II' II1I11 ~ 

Optimal Minimum-Mass Design 

II Non-Structural Mass 

u (t) Control Force 

F·igure 8. Structural Designs (Tip Mass Added) 
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Desl.gn 
Initial Constant-Mass Minimum-Mass Parameter 
Design Optimal Design Optimal Design No. 

1 0.1451 o 0016 0.0042 
2 0.1451 o 0147 o 0053 
3 0.1451 0.0290 0.0085 
4 0.1451 o 0435 0.0128 
5 0.1451 0.0582 0.0171 
6 0.1451 0.0730 o 0214 
7 0.1451 o 0881 o 0258 
8 0.1451 0.1033 0.0303' 
9 o 1451 o 1187 o 0348 

10 0.1451 o 1342 o 0394 
11 0.1451 0.1500 o 0440 
12 0.1451 o 1659 o 0486 
13 o 1451 0.1820 0.0534 

- 14 o 1451 o 1983 0.0581 
15 0.1451 o 2148 o 0630 
16 o 1451 0.2314 o 0678 
17 0.1451 o 2483 0.0728 
18 0.1451 o 2653 o 0778 
19 0.1451 o 2825 o 0798 
20 0.1451 0.2988 0.0859 

Fl.gure 9. Structural Design Parameters (Tip Mass Added) 
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APPENDIX A 

PERFORMANCE INDEX GRADIENT 

The part1al der1vatives of J(d) in Eg. (16) with respect to the 

1-th des1gn variable follows as 

where 

dHjdd. 
1 

dJji)d1 = (1j2)X~(dHjdd1) Xo 

+ (dX jdd. ) THx 
010 

= 

and dxojadi is given by Eg. ( j). 

The partial derivatives for the state transition matrix of 

(A-1 ) 

(A-2) 

(A-3 ) 

(A-4) 

Eq. (15) with respect to the i-th des1gn variable can be expressed as 

(Ref-18) 

a'l'jdd 
1 
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where 

and 

= 

or/od = 
~ 

r = 

oAjod. = 
~ 

oB/od. = 
~ 

o'i'11/0d~ 

o'i'21 /Od~ 

2 N 
m 

O(Atf)/odi 

- 0 ( Qt f ) j od i 

Dtf 

o -oll/od 

o o 

o 

o'i'12/ odi 2 N 
m 

o'i'22/od~ 2 N 
m 

2 N 
m 

-O(BR-1BTtf)/Od
i 

(A-G) 

-O(ATtf)/Od~ 

~ 

(A-7) 

(A-8) 

It is understood that the cha~n rule is to be applied to produce 

the appropriate expressions ~n Egs. (A-G) and (A-8). 

The structural e~genvalue and e~genvector part~als required ~n 

Eqs. (A-G-8), follow as (Ref. 15) 

258 



a = r 

aA lad. 
J l. = 

n 

= L ak~ + 
k=1 
k*J 

a.4> 
:JJ 

{ 

4>~ [aK/ddi-\(aM/ddl.)J l.k/(\-"r) , r * k 

4>T [aM/ad. J 4> /2 , r = k 
r l. r 

(A-9) 

(A-10) 

(A-11 ) 

Since the calculatl.on of the structural el.gen solution and assocl.

ated partl.als is costly, we use the followl.ng analytl.c continuation form

ulas for extrapolating these important qualities. 

n 
A. (d+t.d) .. A. (d) + L (aA. lad. ) M 
J J j=1 J l. J 

(A-12 ) 

n 
c!> (d+t.d ) .. 4> (d) + L (<l4> lad ) M. 
J -J 

J =1 
-J l. J 

(A-13 ) 

where t.d l.S the current dl.fferential correction vector for the design 

variables. The partial derivatives of ~ and fJ are then produced by 

substituting the results of Eqs. (A-12) and (A-13) into Eqs. (A-9 through 

A-l1). In order to monl.tor the validl.ty of the fl.rst-order extrapolation 

formulas above we test the followl.ng inequality: 

where £2 l.S user specl.fied. 
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STATE TRANSITION MATRIX SENSITIVITY CALUCLATION 

To eff1ciently compute the state-trans1tion-matrix partial der1-

vatives of Eq. (A-5), we f1rst express the matrix r = Otf 1n terms of 

the following r1ght and left eigenvector descript1on: 

rR = RY, rTL = LY, LTR = I 

(A-14) 

r = RYLT, Y = Oiag. [Y1 ' ... , YN J 
m 

where R and L denote the norma11zed r1ght and left eigenvector matrices, 

respectively, lead1ng to 

where 

ra 
e 

-ra -yO' T 
e = Re L 

Introducing the expressions above into Eg. (A-5) we find 

aUJ/ ~, 
1 

H = 1 

G = 1 

J 
0 

r T = Re H,L 
1 

1 
-yaG YO"d e e 0' 

1 

LT(ar/ad )R 
1 

260 

(A-15) 

(A-17) 

(A-18) 

(A-19) 



The pq-th term of Eq. (A-18) can further be written as 

[H, J 
~pq 

= J 
o 

1 (y -y )0 
lG, J e q p dO' 
~pq 

or, upon carry~ng out the integral above analyt~cally we find 

= 
{ 

[G J (e (Yq -Yp )-1 >/(Y -y) 
~ pq q p 

[G~Jpq 

q '* p 

q = p 

(A-20) 

(A-21 ) 

The ~mportant feature of the calculat~on above is that one set of 

r~ght and left e~genvectors produces the sensit~vity partials for all the 

design var~ables. 
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APPENDIX B 

CONTROL PENALTY MATRICES S, Q, AND R 

The matrices S, Q, and R define the we~ghts imposed on the final 

state, the intermed~ate states, and the control, respectively (see Eq. 

(1 ) ) • 

Mot~vated by the desire to mlnimlze the sum of the square of the 

phys~cal nodal displacements and velocities, we wr~te 

T 
w w 

(B-1 ) 

where modal trunction has already taken place, w is def~ned by Eq. (3), 

and 

(B-2) 

We further let 

e = 

and recall that 
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T 
x (B-3) 

As a result, the form of the matrix Q which has resulted ~n 

desirable dynam~c responses ~s glven by 

where 

5 [0 J 
~J 

= 

0.' [0J 
~J 

[0 J . 
~J 

0.01[0J 
~J 

Q = 
0, 0 

o o 
2 

(B-4 ) 

for any i or j = , (rigid-body veloc~ty) 

for any ~ or J >, (flexible-body veloc~ty) 

for any ~ or j = , (rig~d-body displacement) 

for any i or j greater than 2 (flexible-body 
displacement) 

and [*) ~j denotes the ~j -th element of "*". The matrix S was chosen to 

be equal to 109 times the matnx Q. Finally, the control penalty 

matrix has one entry equal to 0.5. 

263 



APPENDIX C 

STEADY-STATE CONTROL GAIN OPTIMIZATION PARTIALS 

The partial derivative of J(d) in Eq. (~I) with respect to the 

~-th des~gn variable follows as 

aJ / ad = ( 1 /2) X T (ap / ad ,) x 
~ 0 ss ~ 0 

+ (dX / ad ) T P X 
o ~ ss 0 

where dXoddi ~s g~ven by Eq. (10), and the solution for apss/ad~ 

~s defined by the follow~ng algebraic Lyapunov equation: 

~?(dP /dd,) + (dP lad )A 
ss ~ ss ~ 

= -(dA/ad,)Tp, - P (dA/dd,) 
~ ss ss ~ 

- dQ/ad, 
~ 

(C-1 ) 

(C-2 ) 

where aA/ddi is def~ned by Eq. (A-7), dB/ddi ~s defined by Eg. (A-8), 

and 

where 82 and 82 are def~ned by Eq. (B-4). 
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The solution for Eq. (C-2) 1S efficiently obtained by first 

express1ng the A matr1x 1n terms of the follow1ng r1ght and left 

e1genvector descr1pt1on: 

AR = Ry ATL = LY LTR = I 

A = RYLT Y = Diag. (y l' ... , Y2N 
m 

where Rand L denote the norma11zed right and left eigenvector matrices, 

respectively. 

-Introducing the expressions above for A into Eq. (C-2), we obtain 

= 

where _ denotes the right-hand s1de of Eq. (C-2). 

Pre-multiplying Eq. (C-3) by RT and post-mult1plying the 

result1ng equation by R, leads to 

yr + Ty = 

(C-3 ) 

(C-4 ) 

where T = RT(ap lad. )R. S1nce y is diagonal, the solut1on for T follows 
ss 1 

as 

[T). 
1J 

= (C-5 ) 
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where we assume that Y~ + YJ * 0 and [*JiJ denotes the ~J-th 

element of the bracketed matr~x. 

The solution for dPss/ddi follows as 

dP Idd 
5S ~ 

= (C-6) 

The important feature of the calculation above is that one set of 

r~ght and left eigenvectors produces the sens~tivity partials for all the 

design var~ables. 

It is important to observe when comparing the complex~ty of the 

part~al derivatives in Eg. (A-2) and (C-2), that the ~mens~on of the 

state trans~t~on matr~x partial d~/dd~ is 4Nm x 4Nm, whereas the 

dimens~on of steady-state Riccat~ matr~x partial is 2Nm x 2Nm• Thus 

the cost associated with solv~ng the steady state version ~s considerably 

less. 
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CHARACTERISTIC ELASTIC SYSTEMS OF 
TIME-LIMITED OPTIMAL MANEUVERS 

A. L. Hale* and R. J. Lisouski** 
UmvefSlty of IllInOIS at Urbana-Champaign 

Urbana, IL 61801 

ABSTRACT 

Tills paper extends earner work by the authors on optmuzmg an elastIc system and 
1ts adive control M <neuvers from an lnlual state to a final state m a firute hme mterval 
are coTlSldered. An adive generalized control forre that aro:>rnpllshes the desu-ed 
maneuver of a prespea.fied system is oIfunallf it rmninuzes a given quadratlc cost fune
bon By ale;o varymg a "P.t of design pararnE'ter.;, th~ ~la.c::b(' c;y"t£m am ~ d~tE'rminM so 
as to further rrnrurmze the cost funcb.on Here. the elastIc system that nururrnzes the 
adual control cost 1S compared With the system that IIllIllIIllzes the rano of adual cost to 
th~ mc::t of optimally mane\lvE'ling a rigrd c;y"t.em of thp sarT1f' mernal propprti~ It Ie; 
shown that an elastIc system correspondmg to an extrerm.un of the raho IS acb.lall.y a 
c:haracl.en.sIJ.c of the b.me-luruted maneuver. Because both the spab.al domam and the b.me 
interval are fixed. a charad:.enstlc elastic system is tuned to the specified temporal boun
dary conwuans The unpllcaban for rest-to-rest, spnup. and spm reversal maneuver.> of 
sp1CCOnft 1S thllt the opumill control for a dlllmC'tcnstIc clashc ~t 1S idenuml to 
the opb.rnal control for the same spacecraft as If It were Ilgld 

1. IN'l'HODUC'l'lON 

The concern is With fiexJ.ble structures whose elastIc deformab.ons can mteract stgruficantly Willi an 
acb.ve control systeIIL As in [1-5]. the opbmal mtegrnted destgIl of a structme and Its acb.ve control is 
pxphcitlyaddrec::sed 

A sp€Clfi.c obJechve for the mtegrated opbmizahon must fir.>t be 1dentified To this end, maneuvers 
are considered mamly because maneuvering loads are a stgruficant source of large magrnwde wstmbances. 
at least for ~t. Example sources of loads are t:.hrusta- finngs for stab.on k-eepmg maneuvers. and 
abrupt reamon wheel and/or tl1rUSler exa.tab.on for rap1d large angle rotab.anal maneuver.> These control 
achone; nece~ly affed the entire stnlmlre becau"e they reqUIre mangrng the mohon of the body fl." if It 
were ngld They also define a well-posed strud:ure/control ophmlzahon probleIIL The obJecflve 1S to bal
ance structural merb.a (e. g. mass) With required control energy The two components of this objectIve are 
cont.rad.!ctory for many fleXlble structures and they can be thought of as separate entnes of a vector valued 
cost (obJecflve) funcb.on to be mmlffilzed.. Then, mmlffilZlIlg a ocalar funcb.on that IS a llnecr combmahon 
of the vector's enmes leads to aPareto-opb.rnal solutIon [2] At one extreme of the Pareto-optmnzatlon the 
obJed:J.ve is qmte narrow: what structure/control TIRl1lrrnzes total control energy" The solOOon to ttus 

Presented at the JPL W~ On/oJRi;Jfi;t.4t1Jnard COTtrol 0/ inTgfJ.~ .~. San DIego, Cebfonna, 
June 4-6, 1984 

* A'lSI<;\JII'lt ProfE"Rlr, HpIXllmro lOlmly tD thl" C1Vll Rne'Tlf'I"1"IT18 n~ M ('mb!"r A fA A 

>I-*Ml1,jorUSAF. Mt:lIIh~AIAA 

267 



problcm is of cspecllll sigrufiCilllce illld It IS thc problcm illidrcsscd hcrem 

The outlme of the paper is as follows Secuon 2 presents a bnef statement of the mlegrated optmnza
uon problem addressed It IS a parametne opb.mal control problem [6] for the slIlrultaneous design of a 
structure and Its acb.ve control Slffillar problems have been coOSldered m a number of papers by the 
aulilO!'S ll-4J and m the Ulesl~ If>J A sl1ghUy dltIerenl approach than that of ll-f>J hdS also been presented 
recently m [7]. As m [1-5]. rrnncuvcrs from illl IDlucl stcl.c to a fincl stcl.c m a speClficd firutc b.mc mtcrvru 
are constdered here The roam new contnbuhon of tlus paper IS that soluhons that ffiIDlffilze actual control 
cost are now compared With soluuons that rmnUTIlze the raho of aciual control cost to the cost of opumally 
controlling a ngld body of the same mernal propernes. When ffiIDlffilztng the later mUo of costs, a charac
tenslle value problem anses. Hence. Its soluuons are referred to as characlensb.e elaslle systems for the 
ume-hrmted opumal maneuver m quesb.on Semon 3 solves both mtegrated problems assoClated With a 
rest-to-rest translatIonal maneuver of an Ideahzed ela..c;b.c system that has only two natural modes of vtbra
uon. one bemg a ngtd body mode and the other an elasb.e mode. The system has one free structural param
eter and by Its chmce the natural frequency of the elasbe mode can be assigned. T he example IS sunple 
enough th8t the essenual mgredients of the soluuon ron be obtomed analyb.cally Thus. the ffiIDlffia of both 
cntr.na am be coIDpt..m:-d WIthout mtroduang SIgIllfiamt numcnrol errors. On the other hillld. S(:-c. -1. 
presents numencal soluuons for a rest-to-rest smgle axiS rotatlOnal maneuver of a symmetnc four boom 
strudl.lre The results are contaIned also m [3] and [5] but mterpret.ed here m the context of charad.enshc 
clnsb.e systems 

2. OPTIMAL INTEGRATED STRUCTUREICONTROL DESIGN - PROBLEM STATEMENTS 
2 1 M1TflJT1l2'J17f} ActznL Ccmtrnl Cost 

We conSlder the spea.tied temnnal value maneuver of a fleXlble structure m the spec!fied tirute tune 
N 

mt.erval O!:; t~ tf In thls subsecb.on. a control vector EJ..t) E: R C and a vedaI' of strucb.rral parameters 
~E: RN<i are deSired that rmnirrnze the cost funcb.on 

tJ 

J(.E.~ = J t<E.T REj dt • ( 1) 
o 

"uhrt tn thp follnwmg ciltlpf'Pntml f'qUr1tlOn mn<;t-rnmtR, ~fiPd lnlbr11 Vr1l\lP." "P'C'lfipd finr11 vruuP." r1nd 
mequcllty constmmts, rcspccUvdy. 

J,f (~1L(t) + K(~1L(t) = CE1.t) • (2a) 

~~=~.~~=~. (~~ 

~t/) = lit . ~t.t) =.Ej . (2d.e) 

(\ ~ o. 1.=1,2, .Nrj (2f) 

In (1). R IS an Ncx Nc PJSluve detirute symrnetnc welghb.ng matruc. and m (2a-e) 1L(t) ERN IS the gen
eralized dtsplacement vedaI'. and M (~ and K(~ are the NxN syrrnnetne mass matnx and sb.tIness 
matnx. respecll.vely For sunpl1Clty. other expllc.t constramts are not conSldered. The constramts (~). 
where (\ IS the 1.th entry of ~ are mlended. to represent non-ne.gab.vtty constramts on physIcal parameters 
:mm ac; <rtnlduml TTlf'mhpr "'HUh." length." r1nd/or cm~ "edmnru r1rea", The "Pf'~fied tf'mnnr11 v~luP'> (2b
e) defme the deSired maneuver. and (2a) 1S assumed to be obt.amed by dtscreb.zrng the equahons of molt on 
of an actual distributed 5trud:ure by the firute element method 

The necessary condttions are denved by the mlcu1.us of vanab.ons and their denvab.on IS di9:!USSed m 
[4]. The dUferenual equatiOn constramts (2a) are UlVOked by mtroducmg a vedaI' U· of adJomt ~ 
mcnts (Lagrangc mulupllcr.;) illld appcndmg thc constrnmts to (1). After domg so. the vLlllab.ons of E. 1L 
lL- are arbitrary so that thelr coefficients all vaniSh, leadmg to the 2N + Nc necessary condib.ons for an 
opb.mal control 

E.{t) = R-1G T U-(t) 

M(~~t) + K(~~t) = GE.{t) 
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(3c) 

W hen a parameter 1S on the boWldary of the adrruss1ble pararneters, tile vanahon of ti1at parhcular parame
ter must Itself varnsh. However, m the netghborhood of extrema not on the botll1dary the coefficent of the 
vanallon of earn. t" vanishes, leadmg to the Nd necessary conditions 

t 
_ J'f -1'[ aM aK."l _ _ 

L\ - 0 lL a~\ 1L + a~\ left - 0, '1.-1,2, (3d) 

The necessary condlhons (3) are a hybnd system of nonlmear equahons wllich must be solved 
numencally [G,0.fl] For specified p3.I'aI"IletenQ:. (0a-e) are lmear. In conjunmon W1th (Gb-e), they represent 
a two-pomt bolmdary value problem for an opb.mal control Once the opb.mal control problem 1S solved, the 
NtJ entncs Lt of the gm.dJ.ent of J WIth respect to ~mn be evcllmlrd The gm.dJ.ent IS then used m a reo
jected gradlent lterallve algonthm for deternurung an adrrnsSlble rrnmrruzmg value of 4- Because the numer
lcal soluhon for even relahvely Slillple stzuctures can be computab.onally expeI1Slve, It IS natural to collSlder 
rcprcsenbng the fleXlblc stzucturc by a trunmtcd number n (~N) of 1ts lowcst modes of free Vlbrobon 
[3-G,7] The. p:1l"illueLer 0PUU11ZdLLoIl ~ UleIl l.kJsed 011 d r-edut:ed-onler model of ilillIl:!U~OU n. Fur deldLls 
regardmg the numencal JrOcedure we use and red.ured-order models. the reader should consult [3-5] 

2.2 M1TllTT1lZl1?[} fh2 Rahn of Actz.m CcmIrol Cost fn Rtgl!! l3Ddy CcmIrol Cost 

Next, for co~son. we collSlder a control vector E(t) ERNe for the act.ual elastic system, a control 
N 

vector .,ER(t) E: R C for a ngtd body of the same merb.al. properues. and a vector of struct:ural parameters 
N 

4-E: R d Values of the parameters are deSIred. that rmrurruze a funruon whlch 1S the the 000 of cost fune-
hans for the adual system and for the ngtd body, namely. 

'I 

J ~.E.r RE)dt 
'\ J(E.$d = -,-:0:.....2 ___ _ 
I\. = JR(ER.~ tl 

J ¥.4REn)eft 
o 

(4) 

The nurunuzahon of A 15 subject to the constramts (2a-e) for the actual stzud:ure. the mequal!ty constraints 
(2f), as well as the followmg dtfierenhal equatlOn constral.nts, and speafied Ullb.al and final values for the 
rigtd body, 

7TW(~11fl(t) = gRER(t) . 

lIR(O) =lIRo. lIR(O) =llRo 

lIR (t,) = lIR,. lIR (t,) = llR, 

(5a) 

(5b,c) 

(5d,e) 

In (5a-e). lIR(t) E: RI'IJl IS the generalIzed dlsplacement vector for the ngtd body. and 7TW(t) 15 the TlRxTIR 
symmetnc mass matnx. The speClfied terrnmal values (5~e) define the deSlred ngtd body maneuver. More
over, (5a) 1S obtatned from (2a) by transforming to a set of reduced roordinates that span the spare of ngLd 
body modes. For stmpllClty. we make the assumphon thai:. by varying the parameters no addlhonal ngLd 
horly dE'gJ<'ffi of fl"ff'dom Rl"P mtmducffi l'hm, thE' trRnsformRhon ItRPlf I" pPrfomlPd by mn..trnmmg 1L to 
be a lmear combmahon of '"R constanL vectors f/J..ln that span the spare of ngtd body modes, 1 e., by wnhng 

"R 
ll.{t) = ~~lIR = ~ RlIR (6) 

\=1 

By defuution, the vectors f/l.Ry, have the property K f/lR1. =D. wluch holds for all adrmss.ble values of ~ even 
though K depends on ~and fIJ..RI. does not. Hence, upon subshtutmg (6) mto (2a) and premultlplymg by 
41 k one obtams (5a) where 

(7a.b) 

F"tnally, the raho (4) is mearungful only If the maneuver of the aclu.al fleXlble structure IS inb.rnately related 
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to the rrnncuver of lts correspondIng I1gld model Our prncllmJ. mterest IS m rrnneuvers of the fleXl.ble 
strudure for whlch the tennmal cxmdluons (2b-e) spec1fy ngld body mouons only, so that elasltc 
defteeuons and velOClues are zero at the terrrunal urnes. Then, the temnnal condlhons (5b-e) for the ngtd 
body QI'C a proJccbon of (2b-e), where li1?o=( q, JM q, R )-lq, JIJ14J LlIld a SlIl1l.l.nr CA-prt:sSlon holds for cildl of 
(5l:.u,e) Of WW"l>e, fur d ngld buuy Ule eld!:lut: ueilewum, cl[~ t:eru fUI cill ume, cl[lU Ule UrihUguUcll WIJIPIt:
mfmt of (fib-p) for the p1n..<;tH' moop<; 1<;. thprpforp, tnvli'llly <;ahc;fieo 

A gam the necessary condluons are denved by the calculus of vanatJ.ons The dItIerenual equahon con
stramts (2a) and (5a) are mvoked by mtroducmg lL- and uR and appendIng the constraInts to the numera
tor and denommator of (4), respemvely TakIng the vanab.on leads to condIuons (3a:-c) for the opb.mal 
control of the cctual structure, to the 2r'fl + Nr; necessary condluons for the opb.mal control of the 
correspondIng ngId body, namely, 

.l!.R(l) = H -llMu!?(l) 

~ (~1IR = lJR.l!.R 

T11R(~uR = 11. 

(Hd) 

(Hb) 

(Hc) 

and., finally, to the Nd necessary condIuons (for extrema not on the boundary of adrruSSlbl.e parameters) for 
the parameters t, 

'J [ 4 'J 8 L = flL"'} aM:1.L + aK cit - 'Af ",}."'R dt = U '=1 ~. No ).\ at at 1IR ~ ,'t", et o I), I)' 0 I), 

(9) 

Note that although M vanes WIth ~so that the temnnal. values (5b-e) also vary, no addIuonal terms appear 
m the npCffi."ar:Y mndJtlOn" (Aa-c-) rmd (q). Thl" IR bPmll<>P Ci mmpJf'tp Rf't of "gld body modp" I" \lTd, I. e., 
the space spanned by the columns of q, R IS mvananl 

The funcllon 'A IS a dass1C fonn. namely, the 000 of two poSluve funcb.ons of ~ I t IS, therefore, no 
surpnse that the condluons (9) have the claSSIC form of a charadenshe value publem Clearly, the best we 
can do IS to have the cost for the flexIble structure to be equal to the cost for the same structure as if It 
were ngtd The dllr.lci.cnshe values of A arc, thcrdoI'C, illl umty CorrespondIng to cad:l value of A (r)= 1 IS 
a charactenshe vedor of structural. parameters ~r) (r=l,2, ). The parameter vectors CDrrespDnd to 
local rru.ru.ma of (4), and fuel!' cctuaJ. values for most elashe systems nrust be found numencally. Note that 
the same numencal procedure that is used to rrururruze J can also be used to mmuruze A once one nouces 
Uldl Ule weffiueul of 'A ill (9) vdfllshe:. If Ule equdllou:. of rnouou (2.1) ~ uomldlized by Ule told! illerUd. 

3. SJVPT.F. TWO DF.GRF.F. OF FRF.F.DOV F.XAVPT.F. 

The concepts advanced in Sec. 2 are not parilrularly complex. Nevertheless, the reader l11io/ question 
our clrum that rmruma of A are mdeed urutyand a dlaradenshe of the parl.tcular maneuver We demon
strate the behavIor m thIs secb.on byaJnSIdenng a rest-to-rest translab.onal. maneuver of two equal. masses 
uf II~~ TTl. wuued.ed by d wIDolm eld!:lu.t: bell. The bell l~ lUeellJt:eu dS d blIlgie [HIlte elemenl ill dXlcll exten
sion It has the mass per unit of volume -y. the length [,. the modulus of elasha.ty F.. and the cross
secb.onal area A The unIform area A IS free to be deSJ.gl1ed The maneuver IS to be accomplIshed Wlth 
uuly d :.mgle wnlrul fUI~ crJiIlg dl une uf tile enu IJ~~b. Hent:t:, Ule uus~:.elil.Orldl dC~ A WUIlol 
become zero WlthOut losmg the ability to translate the second mass 

The ~Ud.!J.un!>_ of U1UUOIl for till:' :'ybtecn hdve Ule fOlIn uf (2d) WiUl N=2, Nr;= 1, Net = 1, 
lL=fU!, U21 ,tl=A, and 

~A 
tim EA r 1 -11 
1+~A • K(A) = mL [-1 1 . 

3m 

(lOa. b,e) 

Due to symmetry, the CIgCnvcdors (not nonmlIzcd) arc always 
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(lla.b) 

wh<:'I"e fP.R 18 the ngld body mode, and Ip£ lS the elasb.c mode The equahons of mohon can be decoupled by 
I:rnnsformmg to modal coordinates The decoupled equ<lhons ngilill have the fonn (2a) Wlth ll.=~'liR, 11£lT 
and 

r2+2f..A o 
m 

M(A) = L • K(A) = 
2+~A 

3m 
o 

(1~a.b,e) 

A mntml forrP E. ~ c;rn.1~r m thl<; problem, 1<; oe<;]T'PO th~t trnn<;l~tE'<; the ~E'm between the followmg 
tennmal condiuons (m modal coordmates) 

l4J = !l, .£0 = !l., lit = (~I, .Yt =!l. (13a:-d) 

~nd th~t mmlm17P<; (1) with R = 1 Rpmu<;p thp. equ~hon~ of TTJf)tmn iif'P opmuplP-d, thp ()phm~1 mntrnl, thp 
modal displacements, and the modal velonhes can be obtamed easIly In tenns of four constants 
C I' , C 4 depending on the final condihons ( 13c, d), one obtams 

(14) 

(15a) 

(15b) 

(15c) 

(15d) 

where the natural frequency of the elashe mode lS 

~= [~~L2Alt (16) 

Of course, the four spea.fied illlhal condihons (13a.b) are already reflected m (15a:-d) and, as al.reirly men
boned, the four speafied tIDal condluons (1~d) Yield four equahons for tile constants C l , C2• C3• and Col 
It lS eas.est to compute the constants numencally. However. the control cost J can be evaluated inalytiailly 
m terms of the const.ants. The resulhng expresSon is evaluated numerically once the constants are known. 
One can also ea<illy detennme the ophmal control and ophmal control cost for the ngtd body of mass 
(2m+,),LA). respectIvely, 

(l"r'a) 
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JR = 6[ IJl(2m+')'LA)~ 
The mho (4) 1S, the"refore, rear.hly computed for companson to J 

(17b) 

The actual control cost J 1S plotted verses frequency (.£.-) in F1g 1 for the spea.fie values t1 =1, 
2rr 

m= 1, ')'= 1, L = 1, and E= 10000 The area A 1S also shown, although the frequency 1S not a lrnear funchon 
of A. The chosen values of E, m., L, and "y allow a great deal of freedom in ClSSlgntng c.> by varymg A 
Note the rnany local 111ll1llTIa m Fig 1 and the trend towanimcreasmg cost Wlth structural frequency The 
frequenCles and areas of the rrurnma are shown m Table 1, along Wlth the COrrE'SIXlndmg values of the cost. 
For companson, the raho A 1S plotted m FIg 2, and the frequenQes and areas of the ffilIllffia are also shown 
ill Table 1 Note that the rrurnma of the rab.o are all equal to 1. Moreover, the rrurnma of the rab.o occur at 
nearly the same frequenQes (areas) as the rrnruma of the actual control cost The value of the actual 
optunal control cost is very shghtly hlgher for a value of A that corresponds to a rmrumum of A rather than 
a rmrumum of J However, the pnce m choosmg a value that corresponds to a rmrumum of A 1S worth pay
mg, prlleularly because of the meanmg of the ffill1lffia of A. 

To see the meanmg of the mmuna of A, we shall now substantiate our dalffi that rrnruma of A ocrur 
at frequenQes that are exactly tuned to the opbmal. control for the ngld body. To trus end. the Ilgld body 

2t 
wuuul [Urll:! (17d) WU be wnlwu d:> FR=a(1- t ). Lt!lw. dp[Jly Ull~ CUnl:! lu Ult~ dliudl fit!x.Ll.>l.t! ~lruclure. 

J 
The equahon of motion for the elasbe mode has the form 

11r; + (.)'4ur; = b[ 1 - ~t 1 (18) 

where b IS the appropnat.c pnUCl¢.ton of the force m the modal. equahon. Note that (.) and b both depend 
on A, the deSlgn parameter. USlIlg the illlUa!. conchhons 'U£(O) ='U£(O) =0, the soluuon of (18) 1S 

11r;( t) = --=--SlIlC.>t - --=-<DSr.Jt + - 1 - -2b b b [ 2tj 
(.)3t/ (.)2 (.)2 I, 

(19) 

Our deSlI'e 1S that the modal displacement and veloClty are qulescent at the final hme, L e., 
~(t, )=~ (t,)=O These final condlhons are generally not met because the force FH IS generally not a con
trol force for the elashe body However, the poSSlbUity exJSts that by chosing (.) (equivalently A) the final 
condtuons can be mel Two equahons for (.) result by mvokmg the final oondthons, namely, 

~t, - ~s:.>t, - ~ = 0 (20a) 
(.)3t, .I (.)2 J (.)2 

2 1 2 
-;;-rosr.Jt, + -sJIU.)t, - -., - = 0 (20b) 
(.)~t, (.) (.)~t! 

Equahons (20a,b) are tnns::endental equahons m teITIlS of (.), and values of CJ that sahsfy both equahons 
surrultaneously rnn be found numencal.ly. Tills Yields an mfinlte number of riurmr:Izrisbr: natmal frequen
Cles. although only N of them are apphcable to the dtscrehzed systems col1Sl.dered here The fin>t 25 fre-

quenCles (~ ) are llsted m Table::! Companng the frequenQes of the mmtma of A Wlth those m Table::! 

reveals that the II1lDlJIla of A OCL'UI' at preasely the chmu.c:JImstic frequenaes. The unphcahon LS that the 
optunal. control for an elasb.c system With all nahIral. frequenaes at values of (.) sahsfytng (2Oa, b) is the 
SiYTlP ffi thf' oph~ ngJd body control. Here, thf' ngJd body control perform" R /"f'c;t-to-J"f"'t mrmf'lNf'r. Thf' 
ngid body control for other rnanelNers, such as spinup and spin reversal manelNers, Yields chfferent cha.roo
tenshe natural frequenaes. Therefore. a charad:.enstlc elashc system depends on the speafie rnanelNer 

Of course, a structure oomposed of two masses oonnected by a urufonn elashc bar LS not representa
hve of an adual oomplex structure, and m partlrular a large space structure Moreover, the conceIt of a 
chilrnctcnsb.e cl~e system for the maneuver LS degenerate when only one cl~e mode 1S IX'Cscnl The 
real allure of the conceplls in pacmg naI:.ural frequena.es of all elasUc modes {or at least a number of the 
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lowcst modcs) of II complcx structure vi vclucs sllb.sfymg (20a,b) In complcx systcms WIth mmy dnsb.c 
modes. the placement of natural frequena.es at the charadenstlc values may not always be posSIble, and 
havmg values ill order of Table 2 IS also not necessary 

4 SINGLE AXIS ROTATIONAL MANEUVER OF A SYMMETRIC FOUR BOOM STRUCTURE 

W c now coDSldcr II smglc ilXlS rest-to-rest rotilioncl mmcuvcr of an IdccllZcd four boom flcXlble 
structure (FIg 3) Tills structure IS more representauve and It poses several of the problems JUst disrussed 
The booms are IdenucaJ. and only anusymmetnc bendmg defiedlons are allowed A control torque fl(t) 
ads on the ngld hub A lthough shown ill Fig 3, the boom torques f 2 are not used here Each boom 1S 
modeled by four firute elements of equal length. constant thickness, and vanable WIdth (Fig 4). Thus, the 
structural deSIgn parameters are h ~ 2, b and ~ 4' where ~ 1 IS the root Wldt..l-:! and ~ 4 lS the up vndth. Equa
uons of mobon are glVen in [2.3,5] The full dunenslOn of the di&TE'te equabons IS N=9 The same rest
to-rest maneuver and parameters ffi ill [3,5] are used here. SpecU.ically, the structure IS slewed from rest 
and ~U to rest and ~1 ill one urut of tune USIng only the hub torque The booms' elastlc defonnabons 
are qtuescent lIDUally and spea.fied to be qmescent at the final bme To keep the rompulauon rost low, the 
pilI"illIlcocr optmnzllb.on lS OOscd on II rrouccd-orocr model that contaills only the tm;t four (n=1) nviurnl 
modes of free Vlbrauon [3-5] The modes are updated at eadl change of the parameters ~ Of course, when 
the optnnal control for the reduced-oroer model 1S applled to the full-oroer model the reSIdual modes are 
also eXCltcd Bemuse the I'CSlducl modes arc not coIlSldcrcd in rolrulatmg the control. thCir tin.cl. displace-
ments dfHl veloulJ.e~ df~ nol ue~dflly qUl~nL 

Fust, we conSlder rrn.mrruzmg the Lril.ml control cost J for the rmncuvcr The opllmcl parnmetcrs (m 
the sense of rrururrnzmg J) are presented ill Table 3. For companson, a non-opllmal set of constant pmm1-

eters, eadl of willch is the average value of the oplunal parameters, 1S also illcluded The natural frequen
a.es correspondmg to the eigenvalues used ill the reduced-oroer model are ltsted along With the natural fre
quefl(.ie~ wn~~pomlll1g Lo Ule l~~idud modes. The Wble d~ il1l.:lude~ lile flIlcti vdue~ [or lile l~dud mode 
displacements and veloa.ues for both cases. The reSldual mode responses result from t.akmg the optunal 
control for the reduced-order model and awlymg 1t to the full-order model. Tlffie hlstones obtamed from 
the full-oroer Slffiulahons are shown ill Flg. 5 and F1g 6 for the optunal and non-optunal cases, respec
uvely F1gure ? presents the magrutude spedrum of the control for the two cases. The opUmal parameter 
rnse 1S shown ill solld llnes and the non-oIfunal. pmmleter rnse ill dffihed llnes. Many attradwe properl1es 
flT'P ohq>1'VPO fl.';; fI mn"f'C].tJPncp of C'ho"lng ophmfll pnT'flmPtE'l""t For pxamplp. thp optlmfll mntml for thp 
opllmal structure 1S both lower ill magrutude and has less excrlabon at high frequenCles than the opbmal 
control for the slIucture With non-opllmal parnmet.ers. The Up defiedlOns and veloClues are also much 
lower for the op:.unal structure Because the para1l).et.ers are det.emnned so as to rrururrnze J. however. the 
structure 1S not tuned exactly to the maneuver Tills 1S seen by observmg the full-oroer sunuialton results ill 
Table 4, where an opUrnal control for the correspondmg ngtd optunal and ngld non-opUrnal structure 1S 
applled to the full-order model of the structure W Me the modal exa.tab.on at the final bme for the optunal 
structure 1S much less than that for the non-optunal strudure, 1t'S level1s SlgIllficanl 

N ext, we shall COnSIder a chara.ct.enshc structure corresp:mdlng to the same rest-to-rest maneuver By 
choSlng the Nd,=4 parameters ~\' only four elasllc modes can be as5lgTled The ngtd body mode 1S always a 
charadenshc of the maneuver Hence, n=5 natural frequena.es can be chosen to sabsfy the condtuons 
(20a b). However. 1t lS not poSSlble ill this example to ffiSlgD the first five frequenCles ill oroer of Table 2. 
Tills 15 due to the coarse strud.ural. dlScreuzaUon ill willch only four firute elements are used In~tead. we 
a.<&gn the ngtd bodl:mode Wlth CJ=O (a mVlal asstgnment). and the first elaslle mode With CJ= 14303 The 
remammg freedom ill chosmg the ~rs allows as>lgIllIlg CJ=3.4709. CJ= 7. 4865. and CJ=17.4942. The 
prtnmpteT'" fl1"P preq>nt.ed In Tflble 5 iilong Wlth fill a~C'lfltE'd nahlfnl f1"PfJ.\lpnC'lp~ For thp fn\lr pi'll<I11p tE'r 
case coDSldered here, values of the parameters to asSIgI1 charactenshc frequenCles can be determmed by 
tnal and error, although many S1mple numencal algonthrns to accorntitsh the same goal can be concocted. 

lleU1llbe lile (In,l five lldlurdl Crt!<J.ueI1u~ <ire uwrdl.ienslll! [requem.1e~ Cor lile UldCleuver, lilt:! opWudl 
control for the ngtd body does a remarkably good Job maneuvenng the ac-tual fleXlble structure. Table 5 
pT'f'<;ent.s thp finfll vfll\lp<; of modal dl~flcpment and vE'loaty for fill E'la<ltw mndE'~ whpn thp nglri body 
optunal rontrol torque is apflied Note that the level of exa.lauon at t=tJ =11s small for all modes It 1S 
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slightly hIgher for modes 6-9 bemuse the frequenCles of these modes were not e::-""pliatly LlSSloancd. FIgure B 
presents the bme lustones for the maneuver of the tuned structure, the dl.a:rodensb£ structure The opUmal 
control 1S computed based on all rune modes For companron, FIg 9 presents hme blstones for the full
order SlIIlll!ab.on when the opbmill control for the ngld body IS llPplled to the <lcluill fima.ble structure 
Tben! c, flU nulwecIDle wfTen!IJt.:e belweefl Ule lv.u fJgwl:!~ Tbe IIwgwLutle ~peW:ll!Il uf Ule uplmwl wulIul 
bffiPO on nll nmp moop<; 1<; ploUE'o ffi n <;0110 lme m FIg 10 A 1"0, on FIg 101<; thp mngnlt1l0P "IEcimm for 
the ngtd body control (a dashed lrne) The first nouceable difference between the two OCCllIS at frequenCles 
dbove 20 H.l Wbell:! Ule Iw.LulcU rll:!queuu~ Well:! nul d!:hlgned 

An addihonal mterpretaUon of the charactensb.e frequenaes of Table 2 IS now noted The values of 
Table 2 are preasely the frequenCles of the notdles m the magrutude spedrum of the optunal ngld body 
control (see FIg 10) In effect, the chanrlenshe structure IS a filter that does not pass the ngld body con
trol mp..lt. 

Fmally, It IS mterestrn,g to observe the difference between the natural frequenCles obtamed by mmun
lZlng J and those oblatned by ffilnlffilZlng "A (the ffilrnma of "A are shown m Table 2) The difference IS 
smallm the four parameter ruse, and decreases as we lllCl.'€ase the number of parameters (Table G) More
UVeI, d!:J Ule number of pctrameLeIb 1~ ll1Ul:!dSt:!u, lL 1~ poshlble W obl&n frequt:Illle~ ned! IlllJre uf Ule luw~l 
vnl\l~ In Tnhlp 2 Thl<; IS <;ppn In Tnblp 6, whpl"P Pight nno <;JxtAf'n pnmmetpr ]"P<;]J1t<; nl"f' ol<;plnyPo 

5. CONCLUDING REMARKS 
The concept of a d1aradenshe elashe system for a bme-lmnted opbmal maneuver hffi been discussed 

The concept mayor may not be useful m pradlce Nevertheless, 1t 1S fundamentally unportant because 1t 
allows a physcal unden>tandmg of the mteracbon between a fiexIble structure and Its optunal bme-lmnted 
control The cone'er*- IS also partiC\.tlarly saU&ytng because of Its sunplia.ty In £E'bc'ular, an mfirutE' number 
of charad.erishe elashe systems exist, and one need not choose the one Wlth the lowest mas;; even though It 
IS probably the one of most prnd.J.cal mterest. Moreover, It has been graplucally illustrated that the raho of 
actual ophmal control cost to opUmal ngJ.d body control cost, whlle uruty at spea.fic pomts for a fir:'XIble 
structure, llPprood1es uruty everywhere LlS the structure IS sb.ffencd. Thus, the concept 1S conSlstcnt Wlth the 
fact that the fieXIblhty effects are relahvely Ul1lIJ1tx>rlant when maneuvenng sb.ff structures. 
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Table 1 
Comoanson of Control Cost M mnna for the Simole Examole 

M muna of the Cost Raho M lnlma of the Actual Cost 

AREA FREQ(HZ) AREA FREQ(HZ) cosr 
000404 14303 0.00403 14293 24097 
o 011!1b G 4bSlO o 011!1;J G4b4G G4 Gtj? 
002387 31709 002369 31575 21571 
003983 4.4774 0.03933 44489 249591 
O.Ob!1!10 b 4tj1b o Obtj7o b 4G!17 Gb44b 
008416 64844 008190 63979 26034 i 

Table 2 
Charadensbc N aturaJ. FrequenCles 

for Rest-tn-Rest Maneuver 

MODE NUMBER NATURAL FREQUENCY(HZ) 

0 00000 
1 14303 
2 24500 
3 34709 
4 4.4774 
5 54815 
6 64844 
7 74965 
A A4AA1 
9 948!13 

10 104903 
11 11 4912 
12 121919 
13 134925 
14 144930 
15 151935 
10 10 493!J 
17 174942 
18 184945 
19 19.4948 
GO GO 4!1[J1 
21 21.495.3 
22 224955 
~ G:3 49b7 
24 244959 
25 254960 
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I 
Table 3 

Parameters, Frequenaes, and ResIdual Response of Four Boom Structure 
(Nd=1, n=1) 

OPTIMAL NON-OPTIMA L 
D ESIC N PA RA METERS 07S33, 01~ 01837, 00/23 cn:-.3D 

MODELED NATURAL 0, 1 300, 3.131, 7500 0, 778, 3 \J72, 11 007 
FREQUENCIES (HZ) 

RF.STnUA T. NA'T'URAT. FTNAT. FTNAT. NA'T'lJRAT. FTN AT. FTNA T. 

MODE FREQ(HZ) DISPL VELOC FREQ(HZ) DISPL VELOC 

5 17354 9 X 10-5 -2 X 10-2 21 B64 5 X 10-4 3 X 10-2 

6 23500 6 x10 G 5x10 :I 40650 - 3 x 10 5 - 1 x 10 2 

7 40 fiGl - 4 X 10-6 -.2 X 10-3 60279 1 XIO--{; -.6 X 10-3 

8 72831 -.7 X 10-6 -2x10-4 100180 - 2 x 10-6 2 X 10-4 

9 141 CX34 - 2 xl0-6 2 xICJ4 169779 -4 X 10-7 4 X 10-4 

Tcililt!4 
lieSldualliesponse of Four Boom Strucb.lre With lilgld Body Uptunal Control 

(Nd=4, n=l) 

OPrIMAL NON-OPTIMA L 
DESIGN PARAMETERS 07"".J33, 04005, OHm, 00'723 CX3f.39 

RESIDUAL NATURAL F[NAL F[NAL NATURAL F[NAL F[NAL 
MODE FREQ(HZ) DISPL VELOC FREQ(HZ) DISPL VELOC 

2 1396 -6 X 10-3 2 X 10-1 0778 5 X 10-1 3 x lot 

3 3.434 7 x 10-4 -7 x 10-4! 3.972 6 X 10-3 .1 x10-1 

4 7500 - 8xlCrll - 1 xI0.....! 11 097 4 X 10-4 2 xIo-<! 

5 17354 .8 X 10-5 - 2 X 10-4! 21 B64 .5xI0--{; 5 X 10-3 

6 23.5.':8 6 X 10-6 5 X 10-'1 10650 o X 10-6 .:~ X 10-'1 

7 40627 -.4 X 10-6 - 2 X 10-3 65.279 .3 X 10-6 9 Xla--' 

8 72.831 -6x10-6 -2 X 10-3 103.480 7 X 10-7 4 Xla--' 

0 141034 - 2 xlQ-6 2 X 10-4 160770 6 X 10-4\ 5 x 10-00; 
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Table 5 
PdIClfIld~r"l>, Fn~queI1~e~, dflU Re::.tuuc.ll R~puI1~e 

For StmNllT'e WIth FIve Chrlrncipn<;bC' F1"Pqtlpn~e<; 
(N.=4 n=l) 

DESIGN PARAMETERS U71~, 04079, U19Ub, 00779 

RESIDUAL NATURAL FINAL FINAL 
MODE FREQ(HZ) DISPL VELOC 

2 14303 - 3 x 10-'7 - 1 x 10-:5 
3 34709 - 9 x 10-9 2 X 10-6 

4 7.4865 - 3 x 10-9 4 X 10-6 

5 174942 2 x 10-'7 - 6 X 10-4 

6 243927 1 x 10-:5 -.5 X 10-3 

7 42 06G7 - 2 x 10-'5 1 x 1O-~ 
8 721615 -.8 x 10-6 .1 X 10-3 

9 1365019 - 4 x 10-'7 7 X 10-4 

Table 6 
Parameters and Lowest Eight Natural FrequenCles of Four Boom Structure 

j'n=4) 

Nn=8 Nd=16 
OPI'IMAL NATURAL OPI'IMAL NATURAL 

PARAMETERS FREQUENCIES(HZ) PARAMETERS FREQ UEN CIES(HZl 

01623 O. .08733 0 
.~ 1 ;j~ .utbn 1.410 
.03657 2.444 .05220 245:::l 
.02744 4.504 .04260 4453 
.01831 a887 .03500 7.010 
.01070 15.177 02879 10931 
.00638 22871 .02371 16148 
00200 28220 .01952 23.118 

.01620 

.01357 

.Ulllt! 

.00077 
00616 

.00364 

.00200 
00085 

277 



I
if) 

o 
o 

o 
o 
· o 
~ 

o 
o 
· <D 

en 

Do 
Uo 

· N 
en 

o 
o 
· co 

N 

o 
o 
· 
~~---------r--------~--------~--------~------~ 
"b. 00 1. 41 2.82 4.24 5.65 7.06 

FREQUENCY (HZ) 

I I I i I 

00000 0.0039 0.0157 0.0357 0.0637 0.1000 

AREA 

Figure 1 
Actual Control Cost vs. Frequency - Simple Example 

278 



C) 
C) 

· C'\J 

C) 

CD 

· .... 

C) 

CD 

· .... 
I
m 
D 
UC) 

~ 

· .... 

C) 

C'\J 

· .... 

C) 
C) 

· .-. 
0.00 

00000 

1. 41 2.82 4.24 5.65 7.06 
FREQUENCY (H Z ) 

i i I I 

o 003g 0.0157 00357 0.0637 01000 

AREA 

Figure 2 
Ratio of Control Costs vs. Frequency - Simple Example 

279 



8(t),',(t) 

EI(x).p(x) 

Figure 3 
Undeformed Symmetric Structure 

x 

EI(.), '(I' 

) ] 

) I 
If, 

I I 
I- '/Ncs -I 1 

Figure 4 
FiDlte Element Model of Flexible Boom 

280 



0 
0 -

~O 

~'" w . 
;CO 

~ 

0 
0 

9).00 

0 

'" ci 

...J 
~o 
Wo 
0 

n.. 91 DO 

~ 
0 

'" ci 
I 

0 
0 . -
0 
0 -~cb 00 

0 
0 . -I 

0.25 0.50 0.75 1. O~ 
T HAT 

1.00 

1.00 

Figure 5 

0 
0 

an 

~ 

0 
00 

'" ~N 
~ 

W 
;C .-

0 
0 

0 
0 

an 

-l 
wo 
>0 

n..9:1 -~ 
0 
0 

an 
I 

0.25 0.50 
THAT 

0.50 
THAT 

Time Histories for the Optimal Structure (Nd=4, n=4) 

281 

0.75 1. 00 

1. 00 



o 
o 

o 
O~~ ____ ~ ______ ~ ______ ~ ______ , 

t::tl.oo 
o 
U'I 

C 

-l 
lL.. o Wo 
o '~------r-----~~-----.----~ 
o...t::tl 
~ 

o 
U'I 

C 
I 

Figure 6 
TIme Histories Cor the Non-Optimal Structure (Nd=4, n=4) 

282 



o 
o . 
If) 
N 

o 
o 

~c:i 
o 

o 
-1 0 

Dvi 
a::N 
r.- I 

Z 
D 
Uo 

o 
LL • o 
Dlf) 

I 

o 
o . 
o 
o 
-~------~----~-------r------'------' 
10 . 00 5. 00 10. 00 15. 00 20. 00 25. 00 

FREQUENCY (HZ) 

Figure 7 
Magnitude Spectra of Optimal Control (Ntl=4, n=4) 

283 



0 
0 

-

a:O 
~L1l 

Wo 
I 
~ 

0 
0 

9> 00 

0 
1Il 

0 

-l 
lJ.... o 
We 
0 

0..9> 00 

~ 
e 
1Il 

0 
I 

0 
0 

('oj 

e 
e 

1J....9> 00 

0 
0 

N 
I 

0 
0 

N 

~ 

0 
00 

0 

a:...: 
~ 

W 
I 
~ 

0 
0 

O. 25 a 50 0.75 1. 00 00 0.25 0.50 
T HAT T HAT 

0 
0 

.... 

-l 
We 
>0 

1. 00 o..tb 0.50 

~ 
T HAT 

e 
e 
.... 
I 

a 25 a 50 
T HAT 

Figure 8 
Optimal Control TIme Histories for the Characteristic Structure 

(Nd=4, n=g) 

284 

0.75 I. 00 



0 
0 

a:O 
.-11> 
wci 
:z:: .-

0 
0 

'1l. 00 0.25 

0 
II> 

0 

-1 lL. e we 
0 

0...'1l 00 

.-
0 
II> 

ci 
I 

0 
0 

'" 

0 
0 

lL.'1l 00 0.25 

0 
0 

'" I 

0 
0 

N 

.-
0 
00 

0 

a:' .-
W 
:z:: .-

0 
0 

0.50 0.75 1. 00 o 25 
T HRT T 

0 
0 

.... 

-1 
Wo 
>0 

1. 00 

.- T 
0 
0 .. 

I 

0.50 
T HRT 

Figure 9 
Time Histories for the Rigid Body Optimal Control 

A pphed to the C h.arocteristic Structure 
(Nd=4) 

285 

0.50 0.15 I. 00 
HRT 

0.50 1.00 
HRT 



o 
o . 
1Il 
("\I 

o 
o 

,-.. . 
en O 

o 
o 

.-JO 
O~ 
a: ("\I 

...-1 
z 
o 
Uo 

o 
LL • o 
Olll 

I 

o 
o . 
o 
o 
-4---------~--------_r--------._--------Ir--------1 
10• 00 5. 00 10. 00 15. 00 20. 00 25. 00 

FREQUENCY (HZ) 

Figure 10 
Magnitude Spectra of Optimal Controls For the Characteristic Structure 

(Nd=4) 

286 



ISAAC (INTEGRATED STRUCTURAL ANALYSIS AND 
CONTROL) VIA CONTINUUM MODELING AND 

DISTRIBUTED FREQUENCY DOMAIN 
DESIGN TECHNIQUES 

c. L. Gustafson, M. Aswani, A. L. Doran, and G. T. Tseng 
The Aerospace Corporation 

Los Angeles, CA 90009 

ABSTRACT 

Th~s paper proposes a methodology for the integrated design of 

structures and the~r controls. The integration of design is accomplished 

through simultaneous selection, via optimization, of designer-spec~fied par

ameters govern~ng the structure and its controller. The cost function is 

chosen to address the primary structural and control goals. Inequality con

straints are added to ~nsure that addit~onal design requirements are met. 

The methodology ~s illustrated through development of an example 

~nvolv~ng a cant~lever beam. A distributed transfer function is der~ved 

from the Bernoulli-Euler beam equation. A controller parametrization is 

then chosen, and performance requirements specified. A controller is then 

obtained via opt~mization. which is shown to give good performance. 
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I. Introduction 

In this paper, we propose a methodology for the lntegrated deslgn of 

structures and thelr controls. The lntegration of deslgn lS accomplished 

through slmultaneous selectlon, Vla optlmizatlon [1, 2) (provlde excellent 

references on optimlzation). of deslgner-speclfied parameters governing the 

structure and ltS controller ([3, 4, 5) present varlOUS optimlzatlon-based 

deslgn approaches). The cost functlon of the optimlzatlon problem lS chosen 

to address the prlmary structural and control deslgn goals. Inequallty 

constralnts are added to tnsure that addltlonal deslgn requlrements are met. 

Hlstorlcally, the deslgn of a large, flexlble space structure and lts 

control POllCy has been an expenslve and tlme consumlng process. Because 

destgn goals have often necessltated the lntertwlnlng of control and 

structural frequencles, thls process has become sequentlal, In whlch separate 

control and structural englneerlng groups tterate towards a flnal deslgn. It 

t5 even posslble that thlS process mlght not converge. 

A hybrld model lS developed for the structure uSlng dlscrete modellng for 

rtsld components, and equlvalent contlnuum modellng (6, 7, 8, 9) for the 

flexlble components. Partlal dlfferentlal equatlons (PDE's) are obtalned from 

the equlvalent contlnuum model, and solved ln the frequency domaln so that 

expllclt dependence upon structural parameters lS achteved. Thts Solutlon lS 

ln d15trtbuted form, WhlCh thus retalns all modal tnformatton avatlable tn the 

POE. 

Thts modeltng approach neceSSttates the use of dlstrtbuted frequency 

domatn control destgn technlques; a parametrlzed deslgn technlque suggested by 

Zames [10) and later developed in [11, 12) lS used. USlng such a technlque, 

the deslgner can speclfy control parameters best sUlted to a partlcular 

problem. ThlS approach has been used tn the past, wtth optlmlzatlon, solely 

for control deslgn [5, 13). 

As the approaches to the modeltng and control prOblems both allow eXOltClt 

dependence on deslgn parameters, the selectlon of the two sets of parameters 
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can be combLned Lnto a sLngle optLmLzatLon problem, thus avoLdLng an LteratLve 

desLgn process. 

To illustrate the methodology, a simple desLgn example 1nvolvLng a 

cantLlever beam LS given in sectLon III. 

The paper 1S organLzed as follows: 

SectLon I IntroductLon and Notat10n 

Sect10n II Des1gn ~ethodology 

SectLon III - DesLgn Example 

Sect10n IV Concluslons 

a .. b means "a denotes b." R denotes the real 11ne and C denotes the complex 

plane. C (C, resp.) denotes the closed r1ght (left, resp.) plane 
+ -

Re ( s) ~ 0 (Re ( s) 2. 0) • 

co 

f e::A _ 1 f f f ( t) = f (t) + [ 
a 

f. Q (t - t ) where 
1 1 L 

1=0 

f ~K W1th f (t) = 0 for t<O, and t :: 0, t.>O, fER, for 1>1 
a a 0 1 1 

SUbject to: 

(i) There eXLsts e:: > 0, such that: 

f co If (t)1 ee::t < co 
o a 

(11) There eXLsts e:: > 0, such that 

co 

I 
i=O 

If.1eE:L < co 
L 

4 4CO 

f denotes the Laplace transform of f. A ={f: fe::A_}. A_ (A ,resp.), denotes 
-,0 

the subset of 

tnftntty Ln C 
+ 

A_ consistLng of those f that are bounded away from zero at 
A 

(f that go to zero at infintty ln C+' resp.). 

4CO -1 
[A_) ,the commutatLve algebra of fractl0ns 

g = n/d where n e:: A and d E: A [ 14-16) • 
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A 

Roughly speakLng, A denotes the set of proper stable L dlstrlbuted 

transfer functLons, A_,o denotes the se~ of s~rictly proper, stable, 

dtstrLbuted transfer functions, B denotes the set of proper, posstbly 

unstable, dlstrLbuted transfer functlons, and B denotes the set of 9trlctly 
o 

proper, posslbly unstable distrlbuted transfer functlons. See [14-16J for 

more. 

If S 19 a set, then E(S) denotes the set of all matrlces havln~ elements 
nxm In S, and S denotes the set of all nxm matrlces havlng elements In s. 

-"nxm () ri ( For H E B , H' denotes the derlvatlve of H, l.e., H' s := ds H s) , 

for almost all sEC. 

ri. Deslgn ~ethodology 

11.1 Contlnuum modellng 

A methodology was developed to obtaln equlvalent contlnuum models for 

tr~ss type structures wlth a pattern of repeatlng elements. The procedure, 

summarlzed In Flgure 1, essentla11y conslsts of derlvlng elastic and dynamLc 

propertles for the equlvalent contlnuum model In terms of the geometrlc and 

macerlal propertles of the orlglnal truss structure. The detal1s of the 

procedure may be found In [6J. Such an approach was used In obtalnlng an 

equLvalent contlnuum model for a truss type beam problem dlscussed In Sectlon 

1I: . 

The ECM approach provldes useful lnslght lnto the baslC characterlstlcs of 

a structure. In partlcular, useful trade studles can be carrled out to 

enhance the structural performance. These studles are made posslb1e because 

the ECM approach descrlbes the structure by a set of PDE's. A closed form 

solutlon may eXlst, slmp1LfYlng the slmultaneous design process. The example 

covered In sectlon III wlll show how useful such a closed form Solutlon lS • 

. Even lf closed form solutlons are not easlly obtalned, wrltLng the EC~ as a 

PDE facllltates app1lcatlon of a numerlca1 technlque useful to the control 

deslgn, as presented in [13J. 
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11.2 Control Theory 

11.2.1 PrelLmLnaries 

We wLll consLder the feedback system of FLgure II throughout the paper. 

Y2 

FIGURE II. S(p,F,In 

d 
o 

In Flgure II, P represents the plant, F the feed~ack compensator, and IT 

the pre-compensator. All are assumed to be lLnear dlstrLbuted tLme-LnvarLant 

'II~O transfer functLons. ~e wLll need the followLng assumptLon. 

~ n xn 
(p l) Pe: a 0 1 (p LS strLctly proper) 

0 

n '<n 
(P2) ?e: 

0 1 (p LS strLctlv proper and stable) A 
-,0 

(Ft) Fe: 
~n xn 
B 1 0 (F LS prop~r) 

~n xn. 
( ITt) ITe: A L t (IT tS and stable) proper 

Under (Pl) and (Fl), det(I + PF)-le: B [14-16], and thus S(P,F,l) lS 

weLl-posed* and descrtbed by the followLng equatLons. 

*well-posed means that (I + PF)-l and (1 + FP)-l e: E(B) 
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IY
1 

II 0 0 0 

p( I+FP r lii P(I+FP)-l F(I+PF)-l (I+PF)-l = 

( FP(I+FP)-lII 
. 

F(I+PF)-l Y2 FP( I+FP )-1 -PF(I+PF)-l 

We define the lndividual transfer functlons as follows: 

;-Y II [Hy 1 V l 
H H 

yiul 

I Y 1 
= H H H 

ylv l ylu l 

~2J H H H y2v
l y2ul 

If we now de~ine 'A:= [v~ u~ 
deilnes H € E(B) as follows: yu 

Y 

ylu2 

YluZ 

y2u2 

= H • u yu 

Thls leads to the following deflnltion 

v
l 

H 
YidO 

• u l I i 
H I 

yldo I I Uz I I 
H I 

y2dOJ I 

I L dO 

Vll 
ul 

(2.10 ) 

U2J 
dO 

(2.11) 

T T Y2 ] , then (Z.ll) 

(Z.12) 

A 

Derlnltlon 2.1: The closed loop system S(p,F,II) lS sald to be A - stable If 

" and only If H € E(A ). 
yu 

The feedback system s(p,F,II) can be shown to have two degrees of freedom 

In the sense of Horowitz [17]. Roughly speaking, thls is because 

H d and H can be selected lndependently. 
Yl 0 y1u l 

Stabillty analysls of S(P,F,IT) is greatly simplified through use of the 

followlng matrix parameter [10]. 

Q F(I+PF)-l (2.13) 
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The equatlons (2.10) can be rewritten in terms of P, Q, and n. 

.., rv 
I 1 

Yl 7T 0 0 0 

I ul 
Yl 

::II p(I-QP)7T P(I-QP) Q 1-PQ . (2. 14 ) 

I 
I 

l::J Y2J QP7T QP -PQ Q J 

Note that F can be obtalned from P and Q as follows. 

F :::I Q(1 _ PQ)-l (2. 15 ) 

11.2.2 Stabillty Theory and Design Parametrizatlon 

The following theory not only gives necessary and sufflclent condLtLons 
" for A_ - stabLllty of S(P,F,IT), but also gLves a parametrLzatLon of all 

compensators whlch stabLlize a gLven plant. This parametrLzation wlll be 

utLILzed in the deslgn algorLthm of sectlon 11.3. 

"-
Theorem 2.1: [ll} Let P 5atLsfy (P2). Then S(P,F,IT) L5 A - stable wlth F 

satlsfYlng (Fl) Lf and only If 

( it> 

A n xn 
L 0 Q e A 

A n.xn. 
IT e ALL 

Remark: The class of all compensators F stablllzing P lS thus: 

A n.xn 
F := {Q(I_PQ)-l: Q ~ A L o} 

(2.16) 

0.17) 

(2.18) 

ThLS result can be extended to the case where P lS unstable as 

follows. 
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Theorem Z.Z: [lZ) Let P satisfy (Pl). Additionally, let P be glven by 

pes) ::J 
1 (2.19) 

n xn. 
where Al E C+, RIZ ' Ril' E COL and PEA a -,0 

n xn. 
o L Then S(P,F,IT) is 

~ 

A -stable with F satisfying (Fl) 

(0 Q 
~ n xn 

E A L 0 (2.Z0) 

~ n.xn 
( U) IT E A L L (2.Zl) 

(Lii) Q(Al)R lZ = o and RIZQ(A l ) ::J 0 (2.22) 

( iv) Q(Al)Rll = -Q'(A
l

)R
12 and RIIQ(A l ) '" -RIZQ'(A l ) (Z.23) 

(v) RIZ H (A l ) '" 0 (Z.24) 
ylu l 

(vd RU H (A l ) + Rl2 H' (A l ) = 0 (2.25) 
ylu l ylu l 

Remark: CondltLons (iLi) - (vi) simplify greatly when R12 has full rank, 

becoming: 

( iii) Q(A
l

) = 0 (2.26) 

(LV) Q'(A)=O 
1 

(2.27> 

(v) H (Al) '" a (Z.28) 
ylu l 

( vi) H' (\) '" a (Z.29) 
ylu l 

These results indicate that (Q, Q', H and H' must have blocking 
y1u1 y1u 1 

~ at s = Al • In (2.22) - (Z.25), only transmission zeros are required. 

Thus, (2.26) - (Z.Z9) represent more conservative constraints. 
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11.3 Deslgn Algorlthm 

In thlS section. we develop a general. somewhat conceptual algorlthm for 

the Lntegrated deS1gn of structures and controls. This algorithm 1ncorporates 

the modeling techn1ques of section 11.1 and the control theory of sectlon 11.2 

to j01ntly parametrize the structural and control des1gns. A joint 

opt1mizat10n problem is then formulated to simultaneously solve for the 

structural and control parameters. 

ALgorithm 2. L 

Step 1: US1ng cont1nuum modeling. develop partlal differential equatlons (and 

ord1nary different1al equat1ons) descr1bing the motion of the structure. which 

depend expllcitly on a des1gner-specified parameter vector x E RP1 • 

Step 2: 
..... n xn. 

Calculate a dlstrlbuted transfer function P € B 0 1 for the 
o 

structure WhlCh malntains an explicit dependence on the structural parameters 

1n x. 

" S:ep 3: Choose a representation for Q € A 
-.0 

n.xn 
1 0 Wh1Ch is dependent 

upon a designer-spec1f1ed control parameter vector P2 
y € R • 

Step 4: Formulate a JOlnt opt1mlzatlon problem WhlCh translates design goals 

1nto a cost funct10n and lnequality constraints as follows: 

m1n f(x.y) 

x.y 

subject to: 

sup g.(x.y.w) < 1.(w.) 
w. € n. l 1 - 1. l 

• l = 1.2 ••••• n 
g 

1 1 

• k = 1.2 ••••• n
k 
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The lnequality constraints should be chosen so as to guarantee that the 

flnal values of x and y that result 1n structures and controllers that can 

actually be implemented. 

1\ n xn. 
Remark: This algorithm requires having P £ B 0 1, a distributed 

o 
transfer function. Since the ECM of a structure is in POE form, obtaining a 

distr1buted transfer requires taking a Laplace transform, and evaluating 

boundary conditions. In general these operat1ons could be difficult. To 

avo1d thlS problem, P can be calculated at discrete points (commonly along the 

J'~axls), directly from the POE, uS1ng only complex arithmetic. Such an 

approach has been developed (13), and applications and extenslons are being~ 

investlgated. " 

III. Design Example 

Th1S sectlon demonstrates the methodology of section II through 

a~plicatlon to the example of a cantilever beam. The beam considered (see 

F~gure III) has a torque actuator and displacement sensor located at its tip. 

We assume that It has the truss structure of Flgure IV, and has length L = 
1000 ft. Flnally, we assume that the displacement v(x,t) is given by the, • 

Euler-Bernoulli beam equatlon: 

EI v = -pv (3.1) 
xxxx tt 

suoJect to: v(O,t) ::I 0 (3.2 ) 

v (O,t) = 0 (3.3 ) 
x 

EI v (L,t) ::I T(t) (3.4) 
xx 

EI v (L,t)::I 0 (3.5) 
xxx 

where E is the equlvalent modulus of elasticity, I is the equlvalent 

cross-sectlonal inertia, and P is the equivalent density. T(t) is the 

applied torque. 
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TRUSS STRUCTURE 

EROD = 10 x 106 PSI 

AROD = 0.2 IN2 

u = 0.33 

PROD = 0.1 LBS/IN3 
N 
\0 
1.0 

/-:'f' 

/ 
L 

// 
/' 
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__ _/~-if.1 // 
-- ~ 
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FIGURE IV 



111.1 Equ1valent Continuum Model 

We parametrize the beam equations (3.1) - (3.5) by two structural 

parameters: EI and~. If the truss structure'ln Figure IV is made of 

alumlnum, and the rods are assumed to have cross-sectional area A = 0.2 in2 , 

then the equivalent EI and ~, as calculated by the method of [6) are: 

E1 

~ 

= 
= 

4.15-10 12 lbf - ft 2 

.108 sl/ft 

If compos1te materials are substituted for the aluminum, stiffness increases 

and mass decreases. A reasonable range is: 

.054 sllft < ~ ~ .108 sllft 

These values were used 1n the optimization procedure. 

111.2 Transfer Funct10n Der1vation 

We def1ne the transfer function ~ as mapp1ng the torque T to the 

displacement v at x = L. Equivalently, 

(3.6) 

(3.7) 

pes) = Vel,s) (3.8) 
T(s) 

wh~re Vel,s) .= 

T(s) := 

[veL,s») 

[T(t)1 

* 

*L[fj denotes the Laplace transform of f. 
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To find p, we first take the Laplace transform of (3.1): 

EI (x,s) ~ _pa 2 Vex,s) xxxx (3.11) 

This is an ordinary different1al equation in x, w1th solution: 

(3.12 

where 

y :=./2/(EI/p) (3.13 ) 

By taking the Laplace transform of (3.2) - (3.5), c
l

' c2 ' c3 ' and c4 
can be found. Evaluat1ng Vex,s) at x :: L (thus placing the sensor at x :: L) 

Y1elds 

: = V (L! s) ::: ___ c;....o_s_h __ L ..... y;;-._s_-_c_O...;;;s...;;;L~y(.;...;;..5 ___ _ 

T(s) ;p-Ef 5(2 + coshLy;S- + cosL~) 
(3.14 ) 

Th1s can be rewr1tten in infinite product form: 
co L4 s2 
IT 0 + 

L2 244 
pes) :: -_. n=l k 7T n 

2 EI co 4L 29 
IT 0+ 2 4 4 

n=l k 7T (n-1/2) 

(3.15 ) 

where k 

The poles of this form are approximate, w1th the exact poles given by: 

p ::: + 
n 

where a ~ R solves: 

a 

cosn a cos a :: 1 

(3.16 ) 

(3.17) 

(3.14) and (3.15) clearly retain an explicit dependence on EI and, p 

(and L - though we have chosen a fixed L :: 1000 ft.). 
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111.3 Control Problem and Parameter~zation 

To illustrate the design methodology we will consider the following 

control problem: stabilize the closed-loop system, and suppress a 25 Hz 

disturbance torque applied at the end of the beam. 

A 

To provide a means for accomplishing this, we parameterize q E A as 

follows (and choose IT = 1): 

(3.18 ) 

The third numerator term ~s included so that no plant poles occur in all 

transfer funct~ons except Hand H • The third denominator term is 
ylv l ylu l included to insure the properness of q (only if a > Ly). To keep q stable we 

must choose a > 0 {guaranteeing that cosh a;; is analyic in C+).We define the 

vector y E R10, the vector of control parameters, by: 

y := a b. c • s : w : ~d 1 : ~d2 : wd2 : a ] T n. n. n. n .... 

To formulate the opt~m~zation problem, we apply equality and inequality 

constraints on the control parameters as follows. 

F~rst, to guarantee closed-loop stabil~ty, in accordance with Thm. 2.1, we 
.... 

constra~n q to be A stable: 

.05~Wd~ < 10
4 

(3.20) 

for i = 1,2 

.05 < ~di < 1 (3.21) 

Ly ~ a (3.22) 
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The upper bounds in (3.20) and (3.21) represent "performance" bounds; they are 

not stab~lity constra~nts. The lower bounds give stab~l~ty "constraints":

The lower bound in (3.22) not only guarantees that cosh a ,-; has roots with 

only negat1ve real part, but that Q is proper (which 1S necessary for Q to be ,.. 
~n A ).* 

Secondly, to guarantee that a phys~cally reasonable q 1S selected, we 

constra1n: 

as < < 10~ • w (3.23 ) 
n 

.05 < F,: < 100 
- n-

(3.24) 

We are not greatly concerned w~th the damp~ng of the numerator zeros, so 

(3.24) g~ves a loose upper bound on C • 
n 

The parameters a , b , and c are selected through imposition of 
n n n 

equal1ty constra1nts on q: 

(3.25) 

(3.26 

(x ) ~ 
1 

Al is the first plant mode 

(3.27) 

(3.25) guarantees that the closed-loop system w~ll have low sensltlvlty to 

oucput nOlse at low frequencies. (3.26) - (3.27) will Yleld a closed-loop 

system in WhlCh the first bending mode of the plant, A
l

, will not be an 

elgenvalue of he closed-loop system. This follows from Theorem 2.2. 

"
*Note that the p ~ A 

-,0 
- thus Thm. 2.1 technically does not apply. 

" However, the introductlon of damping in p would yield p ~ A , and -,0 
real1stically, p does have ~ damping. Thus, use of a controller 

by Thm. 2.1 would yield a stable closed-loop system. 

303 

deslgned 



The followLng cost functLon was chosen for the optimLzatLon problem: 

(3.28) 

where 6
1

, 62, 63 are scalar weightLng factors and wd::: 50Ur/s. By 

mLnimLzLng the first two terms of (3.28), the steady-state response of to the 

2S hz dLsturbance torque is mLnimLzed. And, by mLnlmlzLng the thLrd term, the 

weLght of the beam LS minLmlzed. 

Thus, the optlm1zatlon problem solved 1S (3.28) subject to (3.6) - (3.7), 

and (3.20) - (3.27). 

111.4 Optimization and Results 

Upon solution of the above optLmization problem, the followlng parameter 

values were obtained: 

a :: -4.9159 106 
/;dl 

:: .050584 n 

b :: 9.4234 108 wdl 
:: 158.2 n 

c 6.8844 107 
I;d2 .051721 (3.29 ) 

n 

/;n :: .18394 wd2 
::: 161.22 

w :: 8038.9 <l :: 1.4159 n 

E1 :a 1.3678 1013 ft-lb :: .054 sl/ ft 
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The optlmlzatlon problem was solved using the IMSL subroutine ZXSSQ. 

The resulting compensator lS lnfinlte dimenslonal; the finite dimensional 

verSlon shown below was obtalned by truncatlon of the compensator above the 

dlsturbance frequency: 

As the Bode plot of h d (jwd ) in Figure V indlcates, there is a notch 
Yl a 

at W = 50 rls. ThlS notch lS present because the value of EI chosen places 

the flrst zero of the beam at w = 50 rls (for minimum p). Additlonally, 

there are two compensator poles near 50 rls. Note that the first pole of p 

(56 rls) does not appear. 

IV. Concluslons 

ThlS paper has presented a methodology which inte3rates the design of a 

structure and lts controller. The methodology achleves this integration of 

deslgns Vla ]Olnt optlmizatlon of structural and control parameters. The 

structural parameters are obtalned through differentlal equations resulting 

from hybrld model lng, and the control parameters are obtalned through 

dlstrlbuted frequency domain deslgn techn1ques. 

The use of thlS methodology has been demonstrated in a simple example 

lnvolvln~ a cant1lever beam. Currently, the methodology 1S being applied to a 

more complex model, and we antlcipate its appllcation to a wide vartiety of 

problems. 

We feel that this methodology should be most useful in the conceptual and 

prellmlnary stages of the deslgn process - in estblishing some of the 

tradeoffs between the structural and control problems. it should also be 

useful as a br1dge to particlpation ln system level designs involving other 

dlsciplines. 
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ABSTRACT 

A formulat~on ~s presented for the coupled optimal design of a structural 

system and ~ts control by def~n~ng a composite objective funct~on as a linear 

comb~nat~on of two components: a structural obJect~ve and a control objective. 

For the case when the structural obJect~ve is a funct~on of the structural 

des~gn var~ables only, and when the control object~ve is represented by the 

quadrat~c funct~onal of the response and control energy, one can analytically 

express the optimal control in terms of any set of adm~ssible structural design 

var~ables. The expression for the optimal control is used recursively in an 

~terat~ve Newton-Raphson search scheme, the goal of which is to determine a 

correspond~ng optimal set of structural design variables that minimize the 

compos~te obJect~ve funct~on. A numerical example is g~ven to illustrate the 

computat~onal procedure. 

*The research described in this paper was performed by the jet Propulsion Labora
tory, Cal~fornia Institute of Technology, and was sponsored by the Air Force 
Wr~ght Aeronaut~cal Laboratories, Wr~ght-Patterson A~r Force Base, Ohio through 
an agreement w~th the Nat~onal Aeronautics and Space Administration. 
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I. INTRODUCTION 

The opt~al deslgn of structural systems whose response to dlsturbances must 

be controlled to meet certaln deslgn obJectlves has traditlonally proceeded along 

two separate paths. Flrst, the structure is opt~lzed by selectlng an opt~al 

set of structural deslgn varlables ~l' which mlnlmlze a structural obJectlve 

functlon Jl-often taken as the mass of the structure - subjected to a set of pre-

determlned behavloral constralnts h (a) > 0 on deformation, stresses, frequencles, 
J '\.0 -

etc. : 

h (a) > 0 
J '\.0 

(1) 

Durlng the structural opt~lzatlon, the external loads are taken to be design-

lnvarlant quantltles, regardless of whether they are due to external dlsturbances 

or due to commands for controillng the response of interest. 

Second, havlng completely speclfled the structural deslgn ~l' optlmal control 

theory lS used to determlne an optlmal set of control variables ~l that minlmlze 

a control obJectlve functlon J
2 

- frequently taken as a quadratlc cost functlonal 

of the response and control energy: 

(2) 

ThlS "separate" optlmlzation procedure artificially decouples the deslgn space 

lnto a structure deslgn space and a control design space, without maklng use of 

dependency relatlons between them. It is posslble, therefore, that the resultlng 

optimal deslgn (~l'~l) of the uncoupled system may be subopt~al relative to the 

* * true optlmal (a ,u ) of the coupled system, l.e. 
'\.0 '\.0 
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j~ * 
J (a , u ) 

'\., '\., 
mln 

~,~ 

(3) 

The reallzatlon of the lnequality expressed by (3) has high potential in the de-

slgn of large flexlble space structures. These structures tend to be spatially 

distrlbuted. Thelr frequencies tend to be very low (fraction of a Hertz) and 

densely packed over a narrow range that overlaps wlth the control system frequen-

cles. The correspond1ng vlbratlon modes are usually poorly known and llghtly 

damped. As a result, there can be conslderable coupling between the optlmal 

structure and optlmal control deslgns. In additlon, uncertalntles ln character-

lzlng the structural design parameters, behavior of joints, tensioning devices 

and damplng propertles can adversely impact the control system performance and 

serlously reduce lts stabillty margin. Conversely however, their controlled 

behavior can be made beneflclal to the overall control system performance and 

stablilty, whlle slmultaneously improving satisfaction of the structural opti-

mallty requlrements. 

The baslc motlvatlng ldea embodied by Eq. (3) has also been recently recog-

nlzed ln somewhat dlfferent perspectives by other investigators [1-5]. However, 

due to the relatlvely high degree of mathematlcal and numerical complexity of the 

coupled structure - control optimlzation problem, there stlll remaln many baslc 

questl0ns that begln wlth the formulation of the problem itself and the goals of 

the optlmlzatl0n process. 

In thlS paper, we present a unifled formulation which admlts structural ob-

]ective functl0ns that do not depend on the control variables (e.g. structural 

mass), and assumes a quadratlc control Ob]ectlve functl0n. Coupled structure-

control systems belonging to this class are shown here to lead to a simple formu-

latlon that enjoys the same theoretlcal guarantees regardlng stablllty and con-

trollablllty of the system as for the tradltl0nal state regulator problem. A 

numerlcal example ls_used to illustrate the computatl0nal procedure. 
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II. FORMULATION 

A. Opt~lzatlon ObJectlve 

A structure whose response to initlal condit1ons ~(tO) = ~O' i(to) = ~o 

must be controlled by a force vector u is cons1dered here. The discrete equatlons 
'V 

of mot1on of the system are: 

M(a)v + D(a); + K(a)v 
'V 'V 'V 'V 'V 'V 'V 'V 'V 

where M(a) 1S (n x n ) symmetrlc pos1tlve definite mass matr1x, n being the 
'V 'V s s S 

number of dynamlc degrees-of-freedom of the structure; K(a) is (n ~ n ) sym-
'V 'V S S 

(4 ) 

metr1c defin1te or sem1def1n1te stiffness matr1x; v is n -dlffiens1onal vector of 
'V s 

phys1cal coord1nates; and u is n -dlffiensional vector of control forces whose 
'V c 

p01nts of appl1cat1on are mapped onto the structure by the (n x n ) control 
s c 

1nfluence matr1x ~O. Add1t1onally, the damping matrix D(a) 1S congruent to a 
'V 'V 

d1agonal matr1x through the modal transformat1on: 

v <I> J;1, 'V 'V 

q,T M q, I 
'V 'V 'V 'V 

q,T K q, diag02nJ 'V 'V 'V 

q,T D q, 
d1a

g(2<nsWnJ 'V 'V 'V 

T 
The state form of Eq. (4) may be expressed 1n physical coordinates x 

'V 

and leads to: 

where 

X 
'V 

A(a)x + B(a)u 
'V 'V 'V 'V 'V 'V 

314 

(5) 

( 6) 



(7) 

The structural system described by (4), (5), and (6) ~s assumed to cons~st of n -
a 

number of ~ndependent design variables, a, whose magnitudes may be adjusted to 
'V 

create des~gns having var~ous degrees of effic~ency. For example, a, may des~g
'V 

nate member s~zes of bars or beams, or thicknesses of plates or membranes. As 

such, M, D, K, A, B, and wns are all function of the design variables ~. 

We assume an output measurement vector ~ of dimension n
m

, 

Z 
'IJ 

c X 
'V 'V 

(n x 2n ) observat~on matr~x. 
m s 

(8) 

In accordance w~th (3), the coupled optim~zation problem may be stated as 

follows: 

* * F~nd the opt~ma1 set of var~ab1es [a ,u 1 E [a,ul that m~nimize the object~ve 
'V 'V 'V 'V 

functional 

J(a,u) 
'V 'V 

+ 

00 

1 / (:;? 0 ~ 2" P2v 1'& v 
t=O 

+ 

subject to the state equations (6), along w~th any n
h 

number of behav~or con-

stra~nts h (a) on frequencies, deformations, stresses ..• etc. 
J 

h. (a) 
J 'V 

u - U (a) > 0 
J 'V 

j 1,2, ••. n
h 

and upper bound a or lower bound a on the ith des~gn variable a : 
~ 

a > a. > a 
~ 
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a 

( 9) 

(10) 

(11) 



In the present coupled structure - control optDnizat1on, the compos1te obJect1ve 

funct10n 1n (9) 1S selected as a 11near comb1nat1on of two parts: a structural 

obJect1ve, and a control obJect1ve. The assumpt10n 1S made further that the 

f1rst part J
1 
(~) represent1ng the structural measure of opt1ma1ity 1S dependent 

only upon the structural design var1ab1es ~, wh11e the second part J2(~'~) repre

sent1ng the control measure of optima11ty here taken as the trad1t1ona1 quad-

rat1c performance 1ndex - 1S dependent upon both a and u. Since the two parts of 
'V 'V 

the objective funct10n do not necessarily have the same un1ts or magnitudes, one 

may choose the scalar coeffic1ents P1 and P
2 

so as to control the relative 1m

portance of the two obJect1ves dur1ng computat1ons. 

AS1de from the restr1ct1ons that the weighting matr1x Q must be non-negat1ve, 
'\j 

and R must be pos1t1ve def1n1te, these matrices may be selected to ach1eve any 
'V 

des1rab1e re1at1ons. For example, as noted 1n Ref. [5], one may select 

and 

R 
'V 

(12) 

where 8
k

, 8
m 

and 8
R 

are sca11ng parameters. If (12) is assumed, the 1ntegrand 1n 

(9) w111 have un1ts of energy: stra1n, kinet1c and potential. 

B. OptDnal1ty Cond1t1ons 

It should be noted that ~hether or not the relat1onsh1p in (12) 1S assumed, 

the control obJect1ve 1n (9) 1S dependent upon both a and u, wh11e the structural 
'V 'V 

obJect1ve 1S dependent only on a. As such, (9) may be restated as: 
'V 
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* '1" l(a ,u ) 
'U 'U 

min 
a 
'U 

+ min 

For a spec1f1ed 1n1t1al condltlOn x(O) 
'U 

00 

j<l ~ Z + 
t=O 

~ 

ZO' 1t lS well known that [6]: 

* and that the correspond1ng opt1mal control u is obtained from: 

,~ 

U 
'U 

(13) 

(14) 

(15) 

where Pea) lS the pos1t1ve def1n1te Solut1on of the algebraic Riccat1 equat1on: 
'U 'U 

-1 T 
Pea) B(a) R (a) B (a) Pea) 
'U 'U 'U 'U 'U 'U 'U 'U 'U 'U 

o (16) 

* From the above, 1t lS seen that the optlffial control u and the express10n for the 
'U 

m1n1mum 1n (14) are 1mpl1c1t funct10ns of the des1gn var1ables a. The stab1l1ty 
'U 

of the closed loop system lS assured by the positive def1niteness of Pea) for all 
'U 'U 

adm1sS1ble values of a. It lS assumed here that conditions for the existence of 
'U 

a pos1t1ve def1n1te Solut1on to the Riccat1 equation are satisf1ed. 

In der1v1ng cond1t1ons (14), (15) and (16), use was made of the state equa-

t10n (6), but the behav10r and side constraints (10) and (11) were not enforced. 

The m1n1m1zat1on of (9) lS thus reduced to select1ng an optlffial set of structural 

,~ 

des1gn var1ables a that m1nlffi1ze F(a): 
'U 'U 

F(a) 
'U 

(17) 
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subJect to constra~nts (10) and (11). The re1at~onsh~p between the opt~ma1 con-

* tro1 variables u 
'V 

* and opt~a1 structural var~ab1es ~ ~s implicitly preserved by 

sat~sfying (10), (11), (15), (16), and (17). The constrained problem (17), (10) 

and (11) may be converted to an unconstrained one of the form: 

L 

+ 

,\ h 
J J 

n 
a 

+ "" rll (a -a) .L.J~~ ~-
~=1 

+ v.(a-aJ 
~ ~~ 

(18) 

where A , J1 and v. respectively are unknown multipliers, one for each constra~nt. 
J ~ ~ 

A local opt~um of (13) must necessar~ly satisfy the following first order Kuhn-

Tucker opt~a1ity condlt~ons [7]: 

F +L A.h. + J1 + v. ,a J J,a i 
~ ~ 

~ 
J=l 

,\ h 0 
J J 

J1 (a ~) 0 
~ ~ 

v (a a ) 0 
~ ~ 

where the mu1t~p1~ers A
J

, J1~, vi must be non-negative for all j 

i = 1,2, ... n . 
a 
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III. COMPUTATIONAL ASPECTS 

A. Recurs1ve Relat10ns 

An 1terat1ve Solut1on method based on a mod1f1ed Newton-Raphson scheme lS 

employed to 1nsure sat1sfact1on of the optimal1ty cond1t1on (19). The method lS 

relat1vely general so as to allow various forms of dependence of Q(a), R(a), 'V 'V 

* B(a), and var10US types of constra1nts h. The set of des1gn variables a and 
'V J 'V 

mult1pl1ers A that sat1sfy (19) are obta1ned 1terat1vely from the recurS1ve 
'V 

relat1ons: 

-1 

~\ r+1 :t 
F + L A.h h F + L A. h 
, z it J 'VJ'VJ 'zit 'VJ 'it ,iG j J J, it 

a. 

h 0 h 
'VJ , it, 'VJ 

r r 

(20) 

Rather than 1nclud1ng the mult1pl1ers ~. and v. for the slde constra1nts 1n (20), 
1 1 

these are dealt w1th 1nd1rectly through the parameter a. which limits the step 

slze dur1ng an 1terat1on so that none of the design variables go outside the1r 

range a and a. 

B. Express10ns for Der1vatives 

The 1mplementat1on of Eq. (20) requ1res the ava1lab1l1ty of the f1rst and 

second der1vat1ves of the R1ccat1 Solut1on P, structural cost funct1on, and 

constra1nts, all w1th respect to the des1gn var1ables it,. The f1rst der1vatives 

P a , 1=1,2, ... n are obtained by d1fferentiating (16), and are governed by the 
'V' 1 a 

Lyapunov equat1on: 
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where 

~l 

~2 

~l + ~2 ~,a 

P E 'V 'V 

~ 

+ p 
'V, a, 

~ 

\, ~,a, 
~ 

T 
~2 o 

PEr + 'V 'V,a ,v 
~ 

~ a , ~ 

S~m~larly, the second derivatives P a'ak (i=1,2, ••• n , k=1,2, ••. n ) obey the 'V, ~ a a 

Lyapunov equat~on: 

+ P + P 
T 

0 ~3 ~2 'V,a a 'V,aiak 
~2 

~ k 

where 

+ 
T 

+ 
T 

~3 ~4 ~ + ~5 ~5 

~ ( ~~ai P E P E ) P 'V,a,'V 'V 'V,a i 'V,at<. 
~ 

~5 
AT P + ~T P P E P 
'V,a~ak 'V ,ak 

'V,a
L 

'V,a~ 'V,a
k 

'V 

1 '!'Q - - P E P + 2 'V 'V,aiak 
'V 2 'V,aiak 

(21) 

(22) 

(23) 

(24) 

Other derivat~ve ~nformat~on for the structural object~ve function and constraints 

has been dealt with ~n the l~terature [8,9,10,11], For example, ~f a lower 

2 *2 bound ~s placed on the lowest open-loop frequency w
l 

> W , then 

2 *2 wl - W > 0 (25) 
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2 2 
Accordlng to (19), both wand ware needed, and may be computed in a 

l,a l l,alak 

number of ways as dlscussed In Ref. [9 and 10]. 

c. Numerlcal Example 

To lllustrate the computational procedure outlined above, the following 

numerlcal example lS used. Given a cantilever beam modeled by three finite 

bendlng elements of equal flxed lengths under the actlon of a lateral control 

force applled at the free tlP, flnd the optimal dlstribution of cross-sectlonal 

areas that mlnlffilzes the cost functlon of equatlon (9), subject to a constralnt 

on the structure's flrst open loop frequency. The structure and relevant param-

eters are shown In Flg. 1. 

Addltlonal assumptlons are made regardlng the nature of the structural 

matrlces M, K, and D. The element mass matrices are assumed dlagona1, wlth the 

mass llnearly dependent upon the cross-sectlona1 area. The element bendlng 

stlffness lS represented by a quadratic functlon of the cross-sectlonal area a . 
1 

That lS: For the clrcular tube under conslderatlon with a 

2 flxed lnner dlameter d
l

, It can be shown that b
l 

= (Ed
i 

/8) and b
2 

= (1/4n). 

Damplng lS assumed to be lndependent of the design variables, wlth values 

selected equal to 0.5% damplng in each mode of the uniform beam satisfying the 

frequency constralnt. 

In the obJectlve function (9), the structural objective J
l 

is chosen to be the 

total mass, and the weightlng matrices Q and Rare arbl.trarl.ly taken as identl.ty ma-
'\j 'V 

trlces. Values of (P2/ Pl) ranglng from 0 to 5 were considered. The uniform beam 

satlsfYlng a fundamental frequency constral.nt w
l 

= .35 rad/sec has a cross-sectlonal 

2 
area of .01 m corresponding to outer diameter = .11 m and lnner dl.ameter = .01 m. For 

P
2

/ P
1 

= 0, the optlml.Zatl.on reduces to that for the structure alone, as In equation 

(1). The resultl.ng optlffial structure gives 74% reductl.on In structural mass as 

321 



compared w1th the uniform beam. The area distribution and costs are shown 1n 

Table 1. These correspond to vary1ng outer diameter, but fixed 1nner diameter 

.01 m. 

For (P2/ P1) > 0, the cost depends on the init1a1 cond1tions ~o and ~o' Two 

sets of in1t1al cond1tions are cons1dered. For the first case, the initial dis-

placement (XO = ~1) 1S taken as the fundamental mode of the un1form beam. For the 

second case, the second mode of the same structure was used: (~O = ~2)' In both 

cases, the assumed 1n1t1a1 d1sp1acement shapes were made orthonormal to the mass 

matrix, and the 1nitia1 ve1oc1ties assumed zero. 

F1gures 2 and 3 show the iterat10n histories of the structural and control 

obJect1ves of the compos1te function (9) w1th (P2/ P1) = 5. Both f1gures are 

norma11zed to un1t 1n1t1a1 objectives. The initial control objective was roughly 

1.7% of the 1n1t1a1 structural obJect1ve. For th1S reason, a plot of the total 

obJect1ve 1S quite slm11ar to F1gure 2. Reduct10n in structural mass - as 

compared w1th a un1form beam - 1S therefore aga1n nearly 74%. Also, Fig. 3 

shows that dependlng on the lnitlal conditl0ns, the optimal beam requires 

approx1mate1y 93% to 95% less control cost than required by the 1nit1a1 uniform 

beam. 

For the range of (P
2

/P
1

) cons1dered, inc1us1on of the controller did not 

measurably alter the shape (relative sizes of a.; i = 1,2,3) of the structure, 
1 

because the frequency constra1nt appears to numerically dominate the optimiza-

t10n process. It 1S necessary therefore, to fully 1nvestigate the effect of 

other (P 2/P1 ) values as well as other types of constraints. 
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IV. CONCLUSIONS 

Being at the lntersectlon of two relatively complex and computationally 

demandlng problems, a successful slffiultaneous optlmizatlon of the coupled 

structure-control system crucially depends upon slmpllclty of the formulation 

and the strength of ltS theoretlcal foundatlon. The composlte obJectlve functlon 

lntroduced here as a llnear comblnatlon of a structural obJectlve (which is a 

functlon of the structural deslgn varlable a) and a control obJectlve (whlch is a 
~ 

functlon of both a and the control design varlables u) allowed a slffiple and 
~ ~ 

computatlonally tractable solution. By assuming the usual quadratic performance 

for the control obJectlve It lS posslble to solve analytically for the optlffial 

* control varlables u (a). As such, one lS able to carryover wlthout modifica-
~ ~ 

tlon all mathematlcal bases for solutlon existence, stablilty, and robustness, 

readlly avallable In the optlmal control literature. Being valid for all 

feaslble structural deslgn varlables a, the analytical expression for the optlmal 
~ 

* control u lS easlly encapsulated wlthin an lterative numerlcal search scheme to 
~ 

* determlne a correspondlng optlffial set of structural variables a , without 
~ 

lncreaslng the dimenslonality of the deslgn space belng searched. Thls is an 

lmportant conslderatlon for computatlonal efficiency, especially as one seeks to 

solve practlcal problems having larger number of varlables ~ and ~, and con-

stralnts h . 
J 

The example dlscussed In thls paper illustrates the numerlcal results for 

one set of structural and control parameters. The constraint on the flrst open 

loop frequency used in the example seemed to domlnate the optlmal solution for 

the speclflc parameters presented. A more extenslve study of the optlmal deslgn 

of thls and other conflguratlons and constraints over a broad range of parameter 

values wlll be the subject of a subsequent paper. 
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Element Length = 15 m 
Inner Diameter = .01 m 

Graphite Epoxy: 
p = 1660 kg/m3 
E = 9.56 (10}10 N/m2 

Frequency Constraint: 
wI = .35 rad/sec 

Figure 1. Structure and Parameters for Example 

P2/P1 ~o Optimal Shape Cost Ratio: 

0 

5 

5 

(element areas, m) Optimal Beam /Unifonn Beam 

al 

- .00354 

xl .00354 

~2 .00354 

Unifonn Beam 
(a = .01 m) 

Optimal Shape: 

a2 a3 Structure Controller 

.00176 .00024 .18 -

.00176 .00024 .18 .07 

.00176 .00024 .18 .04 

lengths not to scale 

Table 1. Cost Ratios 
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PARAMETRIC STIFFNESS CONTROL OF 
FLEXIBLE STRUCTURES* 

F. c. Moon+ and R. H. Rand++ 
Cornell UniversIty 
Ithaca, NY 14853 

ABSTRACT 

We exam~ne an unconvent~onal method for control of flex~ble space struc
tures us~ng feeaback control of certa~n elements of the st~ffness matrix. The 
advantage of us~ng th~s method of conf~guration control ~s that ~t can be accom
pl~shed ~n pract~cal structures by chang~ng the initial stress state ~n the 
structure. The ~n~t~al stress state can be controlled hydraulically or by 
cables. The method leads, however, to nonl~near control equat~ons. In part~
cular, we exam~ne a long slender truss structure under cable ~nduced ~n~tial 
compress~on. Both analyt~cal and numer~cal analyses are presented. Nonl~near 

analys~s us~ng center man~fold theory and normal form theory ~s used to 
aeterm~ne cr~ter~a on the nonl~near control ga~ns for stable or unstable 
operat~on. The analys~s ~s made poss~ble by the use of the exact computer 
algeora system ~~CSYMA. 

INTRODUCTION 

The use of l~near feedback forces to control l~near flex~ble structures has 
been stud~ea for over a decade, (1)-(4). The efficacy of these methods has been 
aemonstrated exper~mentally ~n the laboratory for a few cases (see e.g. Ref. 2, 
3). However, the problem of apply~ng l~near feedback forces to an actual struc
ture ~n space ~s form~dable. For structures w~th s~gnif~cant bend~ng deforma
t~ons, forces transverse to the maJor axis of the structure are requ~red such as 
small d~str~buted rocket motors. An alternative ~s to use a scheme used in 
nature to control an~mal structural configurat~on, namely act~ve control of 
the~r ~nternal stress or muscles. In a man-made structure th~s analogy can be 
explo~ted by apply~ng a self-equ~l~brated internal stress state through the use 
of cables or hydraul~c actuators (F~gure 1). The tens~on ~n cables can be 
controlled by DC servomotors and gear reducers. Such a method for control of 
~nternal stresses ~s su~ted to low frequency appl~cat~ons where control of the 
lowest moaes of the structure ~s des~rea. From elementary structural theory ~t 
~s known that the ~n~t~al stress state can change the elast~c st~ffness matr~x. 
'fhe s~mplest example ~s the beam-column. In th~s case, the init~al ax~al stress 
can even make the st~ffness go to zero at buckling. Stiffness control of a 

* Supported by a grant from the A~r Force Office of Sc~ent~f~c Research, 
Matnemat~cal Sc~ences and Aerospace Div~s~ons. 

+ Professor and Cha~rman, Theoret~cal and Appl~ed Mechan~cs, Cornell Un~vers~ty, 
Ithaca, NY 14853, U.S.A. 

++Professor, ~heoret~cal ana Appl~ed Mechan~cs, Cornell Un~vers~ty, Ithaca, ~Y 
14853, U.S.A. 
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vibrating string has been studied by Chen (5), and a two mode analysis of 
stiffness control has been presented by Fason et al. (6). 

We propose the use of feedback to control elements of the stiffness matr1x 
by controll1ng the 1nternal stress. In one problem, we assume the structure is 
1n1t1ally 1n a deS1red conf1gurat10n and 1S 1mpulsively d1sturbed. We exam1ne 
the ab1l1ty ot several control laws to return the structure to 1ts 1n1t1al 
conf1gurat10n. Both l1near and nonl1near control laws are examined. Conditions 
for stable ana unstable behav10r of the system are der1ved. 

STIFFNESS CONTROL - A SIMPLE EXAMPLE 

The s1mplest structure for wh1ch an 1n1t1al stress T can change the 
st1ffness 1S the beam-column whose equat10n for the transverse d1splacement u 
1S g1ven below (F1gure 2): 

wnere t represents e1ther a1str1buted d1sturbances or l1near control forces 
and 9 represents d1str1buted torques such as those due to thermal or solar 
1nduced stresses. D 1S the bend1ng st1ffness and T 1S the aX1al 
compress10n 1nduced by plac1ng cables in tens10n along the beam. The mass 
aens1ty 1S y • 

Convent10nal control theory of flex1ble structures uses f(x,t) to control 
the shape. In th1s paper we propose to use the 1n1t1al stress or cable tension 
T to control the lowest mode. Th1s el1m1nates the need for transverse control 
torces such as rockets or Jets. When D and Tare un1form along the beam, we 
have (neglect1ng d1str1buted torques): 

A s1ngle mode model may be der1ved using Galerk1n's method where we assume the 
shape funct10n is known 

u(x,t) = a(t)U(x) 

The equat10n for A(t) takes the form, 

(2) 

(3) 

A + (w
2 

- 8T)A = F(t) (4) 

Thus we can see that the st1ffness term 1S linear in the initial stress T. 

We propose a general control law for T, which includes both linear and 
nonl1near terms. 
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In general, the control law for the cable tension will have a lag due to 
servomotor or hydraulic system inertia or control circuit delay or stress waves 
propagating along the tension cables. (In a large structure the latter might 
not be neg11g1ble.) The tens10n will have a stat1c and a dynamic part: 

Where 

T = T + '1' (t) o 1 

d'l' 
1 1 
---+'l.' = dt 1 

• G (A,A) 

'ihree o1tferent control laws are exam1ned 

G = r Ih + r.). 
G r3A2 + r4AA + rsA2 

. 
r6AA 

G = ----7''"" 
(1 + r of 2) 

Equat10ns (4)-(6) const1tute a non11near system of equat10ns where the 
st1ftness 1S controlled by a feedback parameter T , hence the term parametr1c 
st1ttness control. Th1s system is analogous to the Math1eu equat10n 1n wh1ch, 
however, the st1ffness term 1S a known per10dic funct10n of t1me. 

STIFFNESS CONTROL - GENERAL THEORY 

(5) 

(6) 

(7) 

(8) 

(9) 

For more general structures w1th a st1ffness matr1x (k) , mass matr1x Lm) 
ana a set ot cable tens10ns {T} one has a set of 11near coupled equat10ns for 
the genera11zed Q1splacements or modal amplitudes {x} • 

where tf! represents d1sturbances. In class1c control theory of flex1ble 
structures one would use {f} to prov1de control. In the present theory 
however we recogn1ze that the elements of (kJ are 11near funct10ns of the 
tens10ns, 1.e., 

(10) 

(11) 

Thus one c~on sturpypltoemeVnatrYthtehsee Teqkuatt~onesffoencet a change 1n any or all of the 
tx(t)} • • • requ1res a control law tor the cable 
tens10ns. To account for lags 1n the cable control system, these control laws 
Iugh t take the torm 

1 • -T +'1' 
<Xk k k 
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where the Set) might be desired displacements. The system of equations (10)
(12) is clearly nonlinear. One can raise questions of observability, 
controllability, stability, etc. To effect all the modes one might require a 
combination of control force If} and stiffness control {T}. In the section 
below we exam~ne a s~ngle mode problem and exam~ne the quest~on of stab~l~ty for 
st~tfness control alone. 

ONE-MODE MODEL - STABILITY ANALYSIS 

A) Nonl~near Quadrat~c Feedback Control 

In thlS sect~on we examlne the stablllty of the equlllbrlum pOlnt at the 
or~gln under the quadrat~c feedback law (8). If one nondlmensional~zes the 
modal amplltude so that the physlcal ampl~tude A lS replaced by a 
dlmens~onless ampl~tude x, the equations (4), (6), 
form of the rate of change of the state space vector 

• x = y 

y = -(1 + z)x 

Z = aZ + a(G20x2 + Gll xy + G02y2) 

and (8) can ~e put ~nto the 
r = (x,y,z) where 

(13) 

(14) 

(15) 

wnere a general quadratlc nonllnear control law has been assumed wlth control 
ga~ns (G20 , G l' G02 ) • We shall ~nvestlgate the stab~l~ty of thls system of 
equat~ons ~n tfie ne~ghborhood of the equillbr~um point at the orlg~n r=(O,O,O). 

We note that the Ilnearlzed system has e~genvalues ~, -~, and a. 
The last elgenvalue corresponds to the decay of the servomotor trans~ent z + O. 
ThlS suggests that any motlon startlng close to the or~gln wlll eventually move 
down onto tne x,y plane. To obta~n a more preclse descrlpt~on one must account 
for tne nonllnear terms. ThlS s~tuatlon is clar~fied by the Center Manlfold 
'l'heorem (7), wh~cn states that there eXlsts a surface 

z = f(x,y) (16) 

wh~ch lS tangent to the x,y plane at the orig~n to WhlCh all solut~ons start~ng 
sufflclently close to the orlg~n tend asymptotlcally. The surface lS moreover 
~nvar~ant under the motlon or flow glven by (13)-(15). 

In oraer to formally approx~mate (16) we expand f(x,y) ln a power ser~es: 

z = 
00 00 

L L 
~=2 j=2 

1 J m .. x y 
lJ 

(17) 

'I'he constant and Ilnear terms ln (17) are dropped ln order that the surface be 
tangent to tne x,y plane at the orlgln. The coefflcients mlJ may be found by 
d~fferent~at~ng (17) w~th respect to t and uSlng (13)-(15) and (17) to 
el~m~nate X, y, z and z. Collect~ng terms of llke powers of x~yJ one can 
obta~n the constants m~J • Needless to say th~s procedure ~nvolves much 
algebra WhlCh lS easlly handled by the computer us~ng the exact symbollC 
computer algebra system MACSY¥~ (see e.g. kand (8). Proceedlng ~n thlS fash~on 
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we find that z consists of only even order terms. We expand (17) to powers up 
to fourth order and obtain expressions for the coefficients m20, mll, m02, 
m04, m3l, m22, m13, m04. To illustrate the complex1ty of these 
coeff1c1ents we d1splay four of them; 

(a
2 

+ 2)G20 + aGll + 2G02 m
20 = 2 

+ 4 0. 

-20.G20 + 
2 _ 

o.Gll + 20.G02 
mIl = 2 

+ 4 0. 

2 (18) 
2G 20 - o.Gll + (0. + 2)G02 m02 = 2 + 4 0. 

62 5, 4 2 2 3 
m04=-(20. G02-10o. G02Gll+0. (32G02G20+14Gll+16G02)+0. (-92GIIG20-36G02Gll) 

2 ,2, 2 2 2 
+0. (128G20+96G02G20+8Gll+64G02)+0.(-176GllG20-176G02Gll)+320G20 

, 2 8 6 4 2 
+~56G02G20-64G02)/(0. +280. +240a +832a +1024) 

'l'he tull set w111 be g1ven 1n a forthcom1ng paper w1th more deta11s. 

The Center Man1fold Theorem (7) states that the stab1l1ty of the or1g1n 1n 
the full three d1mensional flow (13)-(15) 1S the same as the stab111ty of the 
equ111br1um po1nt x = y = 0 1n the flow on the center man1fold. 'l'hus, we are 
led to study the stabi11ty of the system of equat10ns 

• x = Y 

4 4 
(19) 

• -(1 + m. x1yj)X y = L L + 0 (7) 1+J < 4 
1=0 j=O 1J 

WU1cn may be conS10erea as an osc111ator w1th l1near, CUb1C, and qU1nt1c torces. 
In the 11near1zea case the e1genvalues ±1 correspond to the "cr1t1cal case" of 
L1apunov (see e.g., N1norsky, p. 150 (9) and the stab111ty cannot be determlned 
on the bas1s of 11near terms alone. 

'1'0 stuay the stab111ty ot (19) we use the method of normal torms (see e.g., 
Guckenhe1mer and Holmes LIO). We POS1t a "near 1dent1ty" transformatlon from 
x,y to u,v coord1nates of the form 
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x = u + g(u,v) 
(20) 

y = v + h(u,v) 

where g,h are polynom1als w1th terms CUb1C and qU1ntic 1n u,v hav1ng 
undeterm1nea coeff1c1ents. Takens (11), has shown that 1t 1S always poss1ble to 
transform systems 11ke (19) (which have 11near parts equ1valent to s1mple 
harr.,un1c osc111ators) 1nto a torm wh1ch may be expressed s1mply 1n polar 
COO[01nates 1n tne u,v plane: 

where u = r cosB, v = r s1n8. Although th1s procedure 1S stra1ghtforward, 
the ch01ce of funct10ns g,h 1nvolves solv1ng s1xteen algebra1c equat10ns. 
Aga1n th1s task was made tractable by uS1ng MACSYMA. 

(21) 

(22) 

'l'he result of th1s computat10n 1S that the quant1 t1es aI' a2 , bl , b2 
1n (21)-(22) are obta1ned 1n terms of the m • We f1nd 

1J 

al = -mn/S 

a 2 = -(2m31 - mllm20 + 2m13 - m02mll)/32 

bl = -(96m20 + 32m02 )/256 

b2 -(80m40 16m22 - 2 = + 21m20 + lSm02m20 
2 

- 5m n + 16m04 + 2 3m02)/256 

In terms of the or1g1nal control ga1ns 1n (15) we f1nd 

2 
2aG20 - a GIl - 2aG02 

al = sa2 + 32 

5 3 2 642 5 a
2 

= -«2a +4Sa +96a)G20+«-a -2Sa -32a )Gll+(4a +64a)G02 )G20 

. 5 3 2 642 532 
+(~a -Sa )Gll+(-a -4a -64a )G02Gll+(2a +16a -32a)G02 ) 

/(32a6+3S4a4+1536a2+204S) 

The equat10n for r, (21), governs the stab111ty of the or1g1n and the 
eX1stence of 11m1t cycles, wh11e the equat10n for e, (22), spec1f1es the 
frequency of the per10d1c mot10n correspond1ng to a 11m1t cycle. 

In part1cular the or1g1n w111 be asymptot1cally stable 1f al < 0 and 
unstable of al > O. If al = 0 then the s1gn of az determ1nes the 
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stability of the origin. Limit cycles correspond to equilibria of (21) and have 
a radius R given by 

S1nce the power ser1es expans10ns (17) and (19) are only va11d in a ne1ghborhood 
of the orig1n, the express10n (25) can only be expected to be va11d 1n a 
ne1ghborhooa of al = O. In terms of the control ga1ns we have 

2 2 2. 42 22 2 5 
R = 4 (a +4) (2G20-ctill-2G02)/ (2a G20+4Sa G20+96G20-a GllG20 

3 4 42 22 5 
-2Sa GIIG20-32aGIIG20+4a G02G20+64G02G20+2a GIl-Sa GIl-a G02Gll 

3 42 22 2 
-4a G02Gll-64aG02Gll+2a G02+16a G02-32G02 ) (26) 

From (24) the cond1t10n for the stab111ty of the equ111br1urn po1nt at the or1g1n 
1S g1ven by 

i + 4 

In the 11m1t of zero servomotor lag a + w, (27) requires that GIl> o. 
Th1s corresponds to a quadrat1c damp1ng feedback law where 1n (7) G = fsA 2 

(27) 

The stab111ty cond1t10n (27) 1S a plane 1n control space (GIl' G02 ' G20 ) w1th 
a normal g1ven by 

~ = (a, 2, -2) 

'l'he llIaX11l1urn aamp1ng 1S obta1ned by choos1ng GIl, G02, G20 so as to 
nlaX1m1ze the d1stance from this plane subject to the 1nequality (27). 

Nurner1cal 1ntegrat10n of three spec1fic quadrat1c feedback laws 1S shown 1n 
F1gures 3, 4, and 5. A fourth order Runge-Kutta algor1thm was used. In the 
stable case, we have G02 = 1, G20 = 0, GIl = -1 , and a = 1 wh1ch 
sat1sf1es the stab111ty cr1ter10n (27). We note the slow osc111atory decay 
hn1cn 15 character1st1C of non11near quaarat1c damp1ng (F1gure 3). 

In the secona case (F1gure 4) a = 3 , and the control system adm1ts a 
11m1t cycle osc111at10n. In th1s case eq. (26) pred1cts a 11m1t cycle rad1us of 
R ~ 0.S6 wh1ch agrees favorably w1th the nurner1cal result. In the th1rd 
example (F1gure 5) we choose G02 = G20 = 0, GIl = 1. Th1S case shows a 
stable damped sp1ral as 1n F1gure 3. 

B) L1near Feedback Control 

The cur10US reader may wonder why we d1d not treat the case of the 11near 
feedback (7) f1rst. A 11near feedback law, however, 1ntroduces quadrat1c terms 
1n the dynam1c equat10n (4) (or (13), (14» 1n the l1m1t of small lag a + w • 
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This introduces a saddle point in the phase plane and the system may not be 
globally bounded. However, using an analysis similar to that in the previous 
section we can show that the origin can be made stable in the limit of a + 00 • 

In thlS Ilmlt a Ilnear feedback law 

leads to the dynamlc equat10n 

USlng normal form theory, an expressIon for the phase plane motion ln polar 
coorOlnates can be found sIm1lar to (21) 

• 
r = + 0(5) 

(28) 

(29) 

(30) 

(31) 

By chooslng klk2 < 0 a damped sp1ral mot1on can be obtained ln the vIclnlty of 
the or1g1n. 

Numer1cal lntegrat10n of the equat10n (29) confIrms the result 1mpl1ed 1n 
(30), namely a stable sp1ral w1ll result for klk2 < O. Th1S 1S 1llustrated 1n 
F1gure 6. One can also observe 1n the F1gure that for large 1n1t1al cond1tlons, 
the motlon lS not bounded because of the aforement1oned saddle polnt at y = 0 , 
x = -l/kl • 

C) ~onllnear Peedback -Rat1onal Funct10ns 

As a tlnal example we examlne the case of stlffness control w1th a ratlonal 
tractlon feedback law where the equatIons take the form 

• x = y 

y = -(1 + z)x 

Z = -az + aP(x,y)/Q(x,y) 

wnere P, Q are polynom1als ln the ampl1tude and veloc1ty varIables x,y. 
As a specIal case, we choose a form of P,Q such that for large ampl1tude 

(32) 

x + 00 and small feedback lag a + 00 , the system (32) looks llke a damped Ilnear 
osclilator. One choIce 1S the followIng 

• x = y 

y = -(l+z)x (33) 

Z = -az + arxy/(l + nx2 ) 
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When Ixl ~ 00 ana a ~ 00 this looks like 

~+.!:.i+x=o 
n 

(34) 

For small lxi, (33) reduces to the prev~ous example 
f = lill • From the prev~ous analys~s we requ~re f > 
choos~ng opt~mum values for f,n one can hope to get 
approach the or~g~n w~th l~ttle osc~llat~on. 

A w~th G02 = G20 = 0 , 
o for stab~I~ty. By 
the state vector to 

A numer~cal s~mulat~on of the equat~ons (33) was carr~ed out us~ng a fourth 
order kunge-Kutta algor~thm for the case f = 10, n = 1. The results are 
shown ~n F~gure 7. Th~s control law has clear advantages over the quadrat~c 
case. 

CONCLUSION 

Th~s p~lot study on the poss~b~lity of st~ffness control of structural 
dynam~cs ~llustrates some of the complex~t~es of this concept. F~rst the nature 
of st~ffness control leads to a nonlinear dynamical problem even when the 
feedback law ~s l~near. Second the study shows that nonl~near feedback laws may 
be more des~rable than l~near control when st~ffness control ~s used. F~nally 

we note the power of exact computer algebra (MACSY¥~) ~n allow~ng one to use 
powerful nonl~near perturbat~on techn~ques such as normal form theory to analyze 
the stab~l~ty ot these nonl~near systems. 
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FIGURE 3. Numerical 
integration of 
eqs.(13)-(15) for 
parameter values 
ri.=l, G02=l, G11=-l, 

G20=0. Note absence 
of limit cycle. 

FIGURE 4. Numerical 
integration of 
eqs.(13)-(15) for 
parameter values 
~=3, G02=l, G11=-1, 

G20=0. Presence of 
limit cycle 
indicated by growing 
inner trajectory and 
decaying outer 
trajectory. 
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FIGURE 5. Numerical 
integration of 
eqs.(13)-(15) for 
parameter values 
0{ =1, G02=0, G11=1, 
G20=0. The origin 
is aymptotically 
stable, in agreement 
wi th eq. ( 27) • 

FIGURE 6. Numerical 
integration of 
eq.(29) with y=dx/dt 
for parameter values 
k1=1, k2=-1. 
Although the origin 
is aymptotically 
stable for 
sufficiently small 
initial conditions, 
the presence of a 
saddle S at x=-l, 
y=O prevents the 
origin from 
exhibiting global 
asymptotic 
stability. 
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FIGURE 7. Numerical 
integration of 
eqs.(33) for 
parameter values 
ol=l, r =10, ,,=1. 



VIBRATIONAL STABILIZATION OF 
FLEXmLE STRUCTURES 

M. Zak 
Jet PropulsIOn Laboratory 

Cahfomta Institute of Technology 
Pasadena, CA 91109 

ABSTRACT 

lhe 1nfluence of high frequency excitations on flexible structure member 
characterist1cs is invest1gated. The response to these exc1tations is decomposed 
1n two parts: "slow" motion, Wh1Ch practically remains unchanged during the 
van1sh1ngly small penod, and "fast" motion, whose value dunng th1s period 1S 
negl1g1ble 1n terms of displacements, but is essential in terms of velocities 
and the k1net1c energy. After such a decompos1tion the "slow" (or the mean) 
motion becomes nonllnearly coupled w1th the "fast" motion (or the fluctuat1ons) 
by the corresponding governing equations. 

This coupl1ng leads to an add1t1onal "effective" potential energy which 
changes the fundamental character1st1c properties of the elastic continuum. 
The most 1mportant contr1but1on of the h1gh frequency exc1tat1on is the 1ncrease 
of ~he acoust1C speed of longitudinal and shear wave propagation, 1.e., the in
crease of the effective elastic moduli in the direction of the wave vector. 
This effect allows the stabilization dnd control of st1ffness 1n any selected 
d1rect1on by the corresponding change in the 1ntensity of the high frequency 
exc1tations. 

Th1S approach for dynam1cal stiffen1ng can be applied to flex1ble structural 
elements (films, shells, etc.) for a temporary 1ncrease of their stiffness in 
the course of occasional loads to prevent buckling or wrinkling. 

In pract1cal terms, the high frequency excitations can be imparted by elec
tromechan1cal transducers. It 1S 1mplied that the excit1ng frequency is much 
smaller than frequenc1es characterizing molecular motions, as well as the wave
length of the excit1ng oscillations being much larger than the distances between 
the atoms in crystal lattices. At the same time, this frequency must be much 
h1gher than all the e1gen-frequencies, whose energy contributions are essential. 

Thus, th1S work addresses a new approach for dynamical st1ffen1ng and st1ff
ness control which can be effective in large flexible structures. Such an ap
proach may prove to be very practical in the sense that large structures need 
to be made as fl1msy as possible for low cost under ord1nary situat1ons. How
ever, for certain operat1ons such as deployment, orbital transfer, docking, and 
other circumstances, it would be v1tal to have a means of temporarily stiffen
ing certain structural members. If the structure was designed to meet these 
occas1onal loads without temporary st1ffen1ng, it would be considerably more 
massive and more expens1ve. 
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I. INTRODUCTION 

The 1nfluence of h1gh frequency exc1tat10ns (HFE) on mechanical systems 
w1th relat1vely low e1gen-frequencies 1S well known [1]. Some appl1cations of 
this effect to v1brational control and stabilization are cons1dered in [2]. 
The present paper 1S devoted to the HFE effect on spec1al types of mechan1cal 
systems Wh1Ch have not been treated before. These systems are character1zed by 
nonl1nearities w1th respect to veloc1ties and include all the continuous systems 
as well as some of the f1nite-degree-of-freedom systems (particularly the sys
tems w1th non-eucl1dean metric of the configuration space). In contrast to the 
systems w1th eucl1dean metric of the configuration space (which were treated 
in L1J, [2J) here HFE cannot be preassigned in advance: they are coupled with 
the bas1c ("slow") motions forming a nonlinear system of a higher order. This 
system possesses new fundamental propert1es such as d1fferent acoustic speeds, 
d1fferent stiffness characteristics, etc., so that HFE can be used as an actua
tor for its stabil1zation and control. 

Here1n, the feasib1l1ty of th1S new approach 1S analyzed. 

II. CONTINUOUS SYSTEMS 

a. Govern1ng Equations. Assume that the motion of a continuous system 
1S character1zed by a t1me scale T and a distance scale t upon which the changes 
of the system parameters are negligible. Suppose now that the continuum is sub
Jected to additional external excitations characterized by frequencies of the 
order of w , where 

>' 1 W -' i 

Then the response can be sought in the form: 

~ = v (v,t) + v(r,t) e1(k.r - wt) 

* 

k = ~ 
c 

(1) 

(2) 

where v is the total d1splacement, v and v are smooth functions character1zed 
by the scales T and t , and k 1S the wave vector: 

k » .! 
t 

and c is the acoustic speed 1n the k-direction. 

ObV10usly, 

27T/W J v ei (k.r - wt) dt=O 

o 

27T/W 

~ Jv dt=v 27T 
o 
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27T/W 

2; f v dt = v (4) 

o 



Thus, Eq. (2) decomposes the original motion into two parts: slow motion Y, 
and fast motion vexp[i(k-r-wt)]. Due to the dlfference in scales they can be 
treated as geometrlcally lndependent, and therefore, formally the veloclty speed 
becomes doublevalued. 

Separatlng dlfferent scale motions in the momentum and continuity equatlons: 

* a v * * p(--) + yVv) = VeT a t ~ + V· (p :) = 0 a t 
(5) 

where p is the denslty, and T 
followlng equatlons: 

is the elastic stress tensor, one arrlves at the 

a v 
p (31 + Y v y + v v v) = v • T 

-v • T 

~ + v • (p y) = 0 a t 

(6) 

(7) 

(8) 

WhlCh nonllnearly couple the slow and fast motions through the convective terms 
of the acceleratlon. 

For better physical interpretation Eqs. (6) and (7) are presented in the 
form: 

where 

P [ ~: + v v y - v x (v x v)] = V • T + v n 

p [ ~ ~ - v x ( v xv) - v x v x v)] = V· T + v 

-2 
n=~ 

2 
if = y·v 

are the addltlonal potential energies contrlbuted by HFE. 

b. Stabllizatlon Effects. For conservative continua if 

v x v = 0, v x V = 0 v 1 v . 

(9) 

(10) 

(11 ) 

(12) 

Eqs. (9) and (10) are decoupled. Comparing now Eq. (9) with the corresponding 
equatlon without HFE: 

(D + y v v) = v • T Pat 

and applYlng the Rayleigh-Courant-Fisher theorem one concludes that 
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A* > A~ (i = 1,2, ..... etc.) 
1 1 

(1'3) 

* where Ai,A1 are the character1st1c frequencies of the llnearized F.qs. (q) and 
(9a), respect1vely. 

In other words, HFE make a conservat1ve continuous syste~ ~ore riqirl if the 
conditions (12) are sat1sfied. 

c. St1ffen1ng Effects. An add1tional evidence of the stabil1zation ef-
fect of HFE on continua follows from a comparison of acoustic speeds before and 
after HFE. 

For an elast1c continuum 

v y2 
Cn = + ---.!!.+ +---.!!. 

2 - 4 
(14 ) 

v M C = + ---.!!.+ § + vn 
T 2 - p 4 (15 ) 

1n Wh1Ch Cn,C are the long1tudinal and transverse acoustic speeds after HFE; 
E,G are the Young's and shear moduli, respectively; ]..l is the Poisson's ratio; 
v 1S the excitat10n velocity in the direction of the wave propagation. 

n 

As follows from these expreSS1ons, the effective Young's and shear ~odul1 
can be lntroduced: 

E , 

which lllustrates the stiffening effect. 

For an inv1sc1d flu1d: 

G' = G + ~y2 > G 4 n 

C ~ 2 + 1 ",2 
n 

v + a -v n - 2 n 

Vn 
C = V +-

T n-W 
where a is the speed of sound. 

(16) 

(17) 

(18) 

Thus, HFE increase the effective speed of sound. ~1oreover, as follows from 
Eq. (18), they create a new elastic (transverse) wave trans~itting vorticity. 

All the results (14) - (18) hold true irrespective to the cond1tions (12). 
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d. ~ As follows from the above, the potential part of 
the HFE veloclty field V v2/2) contrlbutes lnto the potential energy of the sys
tem, and therefore, stabilizes it. At the same time, the rotational (vortex) 
part of the HFE veloclty fleld (V x v) leads to dissipation of the mechanical 
energy through the material viscosity v and contributes to the damping effect. 
The corresponding V1SCOUS stress T' contributlon can be written as: 

V· T' = -pv(vk)·k (19) 

Thus, now the force v·T in Eq. (10) includes the viscous component v·T ' ex
pressed by Eq. (19). The effect of this force, l.e., the decrease of HFF. ampli
tudes as well as the decrease of the depth of their penetration, is proportional 
to w2 = k2c 2 . 

ObVlously, the energy dlssipatlon is accompanied by the heat flow which, in 
general, will be coupled with the equations of motion (9), (10) throu~h arlrlition
al thermal forces. 

e. Remarks 

1. It lS lmplied that the excitlnq frequency w is much smaller than fre-
quencles characterlzing molecular motlons, as well as the wavelength of the ex
cltlng osclllatlons, l/k, is much larger than the distances between the atoms in 
crystal lattlces. 

2. In elastic continua an additlonal limitatlon on the exciting fre
quency w lS imposed by the ultimate stress [T]: 

w < IIL 
pucn 

(21)) 

where u lS the dlsplacement corresponding to the velocity u. As follol'Is from 
(20) : 

Hence, the longltudinal stiffening effect lS practically negliglble since 
usually [T]/E «1. However, the transverse stiffening effect can be essential 
because the ratlo [T]/G can be large for flexlble structural elements wlth low 
shear modull such as strings, membranes, soft shells, and speclal types of 
lamlnated materials. 

3. Theoretlcally, a contlnuous system possesses an infinlte number of 
elgen-frequencles, the sequence of WhlCh lS unbounded. However, practlcally, 
the energy contrlbutlon of very hlgh e1gen-frequency is negl1gible, and there
fore, this sequence can be truncated, and the cond1tion (1) 1S rewrltten ln the 
form: 

w » A* (22) 

where A* 1S the greatest elgen-frequency whose energy contr1but1on lS essent1al. 
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III. EXAMPLE 

In thlS ltem the theory wlll be lllustrated by an example. 

Stabllizatlon of a Strlng In the Gravity Fleld 

The governlng equatlon of equllibrium of a string subjected to longitudlnal 
HFE In a gravlty field is: 

a (T a r) + p g = 0 
a S as (23) 

ilhere r lS the poslt1on vector, T is the tension, pg is the specific weight, and 
pv2 /2 lS the klnetic energy of thg stationary field of the longitudinal excita
ilons. ObVlously, an increase of the effective tension due to HFE stabilizes 
the string shape. In particular, longitudinal HFE can stabilize a vertical 
strlng WhlCh is attached below and has a free end at the top if 

,,2 > 2g h 

iHiere h lS WE. s('rlng lengtl1. Indeed, in thlS case the effective tension is 
posltlve (T>O) although the phys1cal tension is negative (To<O). 

CONCLUSION 

(24) 

It has been demonstrated that a HFE field sign1ficantly changes the funda
mental propert1es of mechanical systems. The most lmportant contribut1on of HFE 
1S the stlffening effect of an elastic continuum in the direction of the wave 
vector. This effect allows control of stiffness in any selected d1rection by the 
correspond1ng changes in the intensity of HFE. 

Th1S new approach can be effective for large flexible space structures. 
Such an approach may prove to be very practical in the sense that large struc
tures need to be made as fl1msy as possible for low cost under ordinary situa
tions. However, for certain operat1ons such as deployment, orbital transfer, 
docking, and other circumstances, it would be vital to have a means of temporar
lly stiffenlng certain structural members. If the structure was designed to meet 
these occasional loads without temporary stiffening, it would be conslderably 
more massive and more expensive. 
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STIFFNESS CONTROL OF LARGE 
SPACE STRUCTURES 

J. L. Fanson*, J. C. Chen**, and T. K. Caughey*** 
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ABSTRACT 

A technique for using lnternal force producing dual element/actuators 
for vibration suppression of large space structures is proposed. The method 
is applied to a low order system. Selective modal damping is achieved. The 
actuators used in this method may be electrically powered. The method is 
sUltable for structures WhlCh are too slender or flimsy to permit the use of 
reaction jet-type actuators. 

I. INTRODUCTION 

Large Space Structures (LSS) or Flexible Space Structures, as they are 
sometimes called, are a natural outgrowth of our rather recently acquired 
ablllty to transport and construct large objects in space. The capability of 
astronauts to do construction-like activities was demonstrated on the last 
Space Shuttle mission (STS-ll). Already proposed LSS concepts include large 
antennas, solar sails, space stations, solar power satellites, and large 
orbiting platforms. 

The performance of many of these systems depends critically on precise 
pointing or precise structural configuration. Since LSS are necessarily very 
flexible, numerous control problems become evident. LSS control objectives 
can be organized into three main categories. In increasing order of 
complexity they are: (1) Pointing accuracy, (2) Vibration suppression, and 
(3) Shape control. The problem of pointing accuracy is not new in spacecraft 
control, and has been largely solved over the last 25 years. The problems of 
vibration suppression and shape control are new. An important observation is 
that the objective of pointing can always be decoupled from the other two 
objectives. This is more clearly seen if one considers that pointing (in the 
rlgid body sense) is affected by purely external forces, while vibration and 
shape are purely internal to the structure; they are "fle'xible body" 
concerns. 

*Graduate Student, Applied Mechanlcs Department. 
**Member Technical Staff, Jet Propulsion Laboratory 
***Professor of Applied Mechanlcs. 
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The maJor differences then, between LSS control objectives and control 
objectives of the past, are seen to be due to structural complexity. When we 
approach the problems of vibration suppression and shape control we should 
bear in mind the structural nature of the problem. 

It is also important to recognize that conventional-type actuators of 
the past may not be applicable to either the new class of control objectives 
or the new class of space structures. The primary actuators which have been 
used 1n space before are external force producing devices, namely, rockets 
and momentum wheels. These are consistent with the historical objective of 
pointing accuracy Wh1Ch requires external forces. 

Since the new objectives do not require external forces, convent10nal 
actuators may not be the best way to meet them. Furthermore, rockets require 
fuel. Refuel1ng a structure in high earth orbit may be prohibitively 
expensive; for a structure on an interplanetary traJectory, it may simply be 
1mpossible. Structures, such as solar sails or large antennas, may also be 
too th1n and flimsy to al1 01]the attachment of a massive actuator such as a 
rocket or a momentum wheel L • 

One source of power for a new class of actuator is the sun. If we can 
develop a technology which is electrically powered and provides control 
forces internal to the structure, we are well on the way to meeting the new 
objectives of vibration suppression and shape control. 

II. APPROACH 

We wlll approach the LSS control problem from a somewhat more structural 
V1 ewpoi nt. We ca 11 the approach list iffness control. II There are d1 fferent 
possible interpretations of the concept of stiffness control, so it need not 
be narrowly defined. This paper is concerned with one part1cular realization 
of stiffness control; there are others. 

Before delving into the specifics of the approach it 1S useful to reV1ew 
some of the structural peculiar1ties of large space structures. LSS are 
continuous structures and therefore have essentially an iofinite spectrum. 
We say lessent1ally" in view of Hughes I "absurd subspace" L2J • Related to 
this fact is the difficulty of system 1dentification of LSS. Much work is 
being done on the problem of 1dentification, but it seems safe to assume 
that, no matter how good identification becomes, we will be somewhat limited 
1n our ability to estimate modal coordinates in real time. This implies 
possible diff1culty for any control scheme which requires knowledge of modal 
coordinates, particularly of higher modes. 

This does not mean, however, that such control schemes should be 
abandoned. Ideally, modal control, or the ability to damp out selected 
modes, is the most eff1cient means to damp out vibrations, since it makes the 
most intelligent use of knowledge of the structure. Secondly, vibrational 
energy w1ll reside mainly in the lower modes, and these are the modes which 
are estimated best. Thirdly, the lower modes are the most troublesome from a 
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vibratlonal standpoint since they are associated with lower frequencies. At 
lower frequencies it takes longer for energy to dissipate by natural means. 
And lastly, for a given energy, lower modes vibrate at higher amplitude which 
results in a more degraded conflguraton. So, while our knowledge of modal 
coordlnates may be imperfect, this knowledge may still be useful and should 
not be abandoned a priorl. 

LSS may also have the property of very low inherent structural damping. 
This is a benefit from the control standpoint for two reasons: Low inherent 
damping makes the classical normal modes assumption closer to reality. 
Even more importantly, low inherent damping means that our control system 
does not have to introduce large damping into the structure to be useful. If 
only order E damping is lntroduced by active control, it may double the 
overall damplng in the structure. LSS are likely to exhibit many other 
pecullarities such as geometrlc nonlinearity, nonlinear modal coupling, etc., 
but these concerns are beyond the scope of this paper. 

CheQ investigated the stiffness control approach applied to a vibrating 
strlng L1J • For purposes of illustration the method will be reconstructed 
here. Conslder the transverse vibration of a string described by the 
followlng differentlal equation: 

P a
2
y = L (T ay ) 

at 2 ax ax 
(I) 

wlth the initial condition: y = 0, ay/at = sin (rrx/L) at t = 0, and the 
boundary condltion: y = a at x = O,L, 

where y = transverse displacement 
x = axial coordinate 
t = time coordinate 
p = mass density per unit length of the string 
T = tension in the string 
L = string length 

The tension T can be seen from Eq. (I) to represent the system 
"stiffness". By modulating the tension T by an amount 6T{t) it is possible 
to introduce damping. Chen investigated various control laws for 6T{t) and 
was able to produce various damping rates. Thus, by modulating the stiffness 
of the system, the string is rendered stable. 

The string is a simple one-dimensional example. For a large space 
structure, even for a finite element model of one, the system typically has 
thousands of degrees of freedom. The stiffness of such a system is not a 
scalar quantlty. The next step in investigating the application of stiffness 
control to LSS is to apply it to a multi-degree-of-freedom system. There are 
two approaches to choose from: one approach is to attempt some meaningful 
form of modal stiffness control, and the other approach is direct output 
feedback. Since modal control is attractive, the remainder of this paper is 
devoted to thlS first approach. 
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III. PROBLEM FORMULATION 

In order to gain an insight into the basic physical relationships of 
stiffness control for multi-degree-of-freedom systems, we first confine 
ourselves to the simplest configuration, and postpone the consideration of 
structural complexities. Consider the following three mass-two sprlng 
system: 

The dlfferential equation of motion for this system is: 

My + Ky = 0 
'V 'V 

where 

Yl 

Y = Y2 

Y3 

This 1S a three-degree-of-freedom system, but has only two vibratory 
modes. Label the first and second vibratory modal coordinates ~l(t), and 
~2(t) respectively. As control actuators, consider the springs as having 
controllable effectlve stiffness. In other words, the spring elements 
themselves function dually as structural components and control actuators. 
We need not make every element an actuator, but for simplicity let us take 
them both to be. 

(2) 

The first two requlrements for LSS control actuators are satisfled, 
namely, they can be electrically powered, and they apply only internal forces 
to the structure. The details of the deslgn of the actuator/elements are 
unimportant so long as they exhibit the general property of controllable 
stlffness. We will assume that the actuators have an infinite bandwidth in 
order to avoid complications. 

The equation of motion with stiffness modulatlon is glven by: 

M Y + K y = -C(t) K y (3) 

where C(t) is a scalar gain which is yet to be constructed. Because the 
system stiffness matrix is modulated by a scalar, the modal matrix for the 
closed loop system is the same as for the system descrlbed by Eq. (2). Let cI> 
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represent the mass normal1zed modal matr1X. Premult1ply Eq. (3) by ¢T and 
post-mult1ply by ¢ 1n the usual way to obta1n: 

T . T T 
¢ M ¢ ~ + ¢ K ¢ ~ = -C(t) ¢ K ¢ ~ 

Let ~ = 

Equat10n (4), now wr1tten 1n modal space, becomes: 

where: I = 1dent1ty matr1x 

k~m ~] 
o 3k/m 

The equat10ns govern1ng the two vlbratory modes are: 

.. 
~l + kIm ~l + C(t) kIm ~l = 0 

~2 + 3k/m ~2 + C(t) 3k/m ~2 = 0 

The obJect1ve 1S to choose C(t) 1n such a way as to render Eqs. (6) Llapunov 
asymptot1cally stable (LAS). 

Let 

(4) 

(5) 

( 6) 

(7) 

Th1S control law lS mot1vated by the Re1d's sprlng[3]. The true Reld's spr1ng 
would use sgn (~t). Th1S would be expected to glve better performance for 
small values of ~€, but for slmpl1c1ty the sgn has been dropped. 

Th1S control law couples the two modes; however, Slnce C(t) lS llkely 1n 
pract1ce to be a funct10n of order E, the coupl1ng w1ll also be order E. Sub
stltutlng Eq. (7) lnto Eq. (6) results In: 
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(8) 

If C2 /C 1 = 3, then system (8) is LAS. 

To establlsh the asymptotic stabllity of (8) we will employ the Liapunov 
di rect method. 

Let E be a Liapunov function defined by: 

1. 2 k 2 1. 2 3k 2 
E = 2 ~1 + 2m ~1 + 2 ~2 + 2m ~2 

E = 0 at the origin: SI = tl = S2 = S2 = 0 

E > 0 away from the ori gi n 

E is just the total system energy. 

Differentlating E with respect to time gives: 

where 

. 
In Eq. (9), E can be made negative semidefinite by choosing C2/Cl = 3 • 

. 
Hence E = 0 at the origin, 

E < 0 away from the origin. 

This establishes the origin as Liapunov stable. 

To show a~ymptotlc stability notice that away from the origin the 
condition for E = 0 is: 
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which is a line in the Sl~l - s2k2 plane. This plane we call modal-product 
space. 

A tYP1cal trajectory of system (8) in modal-product space is shown in 
F1gure 1. Suppose the system 1S on the line: 

\ G:!:} -j , 
and suppose that 

~t G:!:) = 0 

It can be shown (see Appendix) that if these two conditions are met, then 

s!.:2 (~2~2) = 1! ! r a . 
dt ~l ~l 3 m 

Therefore, away from the origin, E can be zero at most on a set of measure 
zero. Hence, system (8) is actually LAS. 

Figure 2 shows a time history of the individual modal energies and the 
total system energy corresponding to the trajectory in Figure 1. It can be 
seen that 1f C2/C1 = 3, the second mode is damped out faster than the first 
mode. Plateaus in the total system energy can be readily correlated with 
trajectories approaching the line (~2t2/~ltl) = -1/3. Figures 3 and 4 show 
the time histor1es of the displacements and velocities. The initial 
cond1tions for all the examples are given by: 

~l = 1.732 

~2 = a 
kim = 1 

. 
, ~l = 1 

. 
~2 = 2 

By altering the ratio C2/Cl the two modes can be damped out at different 
relative rates. Figure 5 shows the energy time history for C2 /C 1 = 1. This 
ratio violat~s the condition for ~ < O. A region nQw exists in modal-product 
space where E > O. On the boundary-of this region E = O. The boundaries for 
the reglon 1n modal-product space are given by: 

(~2~2)= _ 1 and 
• 3 ' 

~1~1 

c _ _1 
C2 • 
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Figure 6 shows the trajectory corresponding to the time history of Figure 5. 
The Liapunov stability result 1S seen to be quite conservat1ve. The case for 
C2/C 1 = 1/3 is shown in Figures 7 and 8. Performance still remains good even 
though the rat10 C2/Cl is changed by a factor of 9 from that giving E < O. 

DISCUSSION AND CONCLUSIONS 

The method of stiffness control has been used successfully on a low 
order system. The technique allows the vibratory modes to be damped out 
selectively, even though these modes are not strictly uncoupled. The 
actuator/elements impart only internal forces to the structure. The 
actuators can conceivably be powered electrically. There is another possible 
benefit from using dual purpose actuator/structural elements. It may be 
possible to use these elements to affect shape control simultaneously with 
v1bration suppression. This appl1cation requires further invest1gat10n. 

Several other questions rema1n to be answered. Among these 1S the 
question of robustness: Can the control system tolerate perturbat10ns in 
system parameters? What 1S the effect of observation spillover? How many 
structural elements must also be control actuators? What is the optimal 
location of actuators? 

Work 1S underway at Caltech and JPL to answer these questions. Most 
1mportantly, the technique must be applied to a large order system; the 
results obtained so far are prom1sing. 
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APPENDIX: 

In order for system (8) to remaln on the llne E=O away from the orlgln, the 
followlng relatlons must hold for all tlme: 

1) (Al) 

(A2) 

(A3) 

Assume that relatlon (Al) holds. Expandlng relation (A2) gives: 

Let s2 t 2 = A, then sltl = -3A at a glven lnstant of tlme. 
and uSlng equatlons (8) glves: 

-9 ~ S 2 + 3 ~ 2 _ ~ S 2 + t 2 = 0 
m 22m 1 1 

(M) 

Expandlng equatlon A4, 

(A5) 

In Vlew of relatlon (Al) the varlables ln equatlon (A5) are not all independent. 
• 3A· A 

Let sl = a , s2 = S, then sl = - -;-, s2 = i3 

Substltuting lnto equatlon (A5) gives: 

Real Solutlons for a and S eXlst for equatlon (A6). 
• • k 

1.083, sl = -3, s2 = 0.923, m = 1. Hence, relatlOns 
fled slmultaneously for a given instant of tlme. 
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(A6) 

For example: sl = 1, s2 = 
(Al ), and (A2) can be satl s-



· . Now, to expand the th1rd relat1on, let ~l~l = f(t), ~2~2 = g(t) 

.. 
illl. 
f(t) 

g(t)f(t) 
f2(t) 

g(t)f(t) + g(t)f(t) + 2g(t)f2(t) 
f2(t) f3(t) 

RelatlOns (Al), and (A2) glVe: 

and 

.9ill= f(t) 

.91U = 

f(t) 
- "'3 ' 

Subst1tut1ng these relat10ns and uS1ng equations (8) glves, after much algebra: 

d
2 (.9ill) _ 8 k 

dt2 f(t) -"'3 m 

Th1S lS, by assumpt10n, nonzero. Thus cond1t10ns (Al), (A2), and (A3) cannot be 

satlsfled slmultaneously for any 1nstant of tlme. Therefore system (8) cannot 

remaln on the llne E = O. QED. 
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ABSTRACT 

A simple yet efficient method is presented for the on-l1ne vibrat10n 
control of nonlinear distributed parameter systems, with constant or time
varying properties, responding to a wide class of dynamic environments. The 
control procedure uses pulse generators located at selected posit10ns through
out a glven system. The degree of system oscillation near each controller 
determines the controller's activation time and pulse amplitude. The direct 
method of Liapunov 1S used to establish that the response of the controlled 
nonl1near system is Lagrange stable. Analytical and experimental studies of 
a wing-like plate demonstrate the feasibility, reliability, and robustness of 
the proposed vibration-suppression method. 

1. INTRODUCTION 

One of the significant complications in the application of optimal control 
theory to flex1ble space structures is the need for precise information regar
ding the system order and parameters. In addition, the resulting control law 
may require the application of continuously generated control forces at one or 
more points 1n the structure. These issues are further exasperated in the case 
of large-scale d1stributed parameter systems (DPS) where the physical assembly 
is complex and incorporates components that are quite often nonlinear, with 
uncertain parameters. 

This paper presents a sub-optimal control method suitable for on-line use 
to suppress v1brations in nonlinear flexible systems subjected to arbitrary 
dynamic enV1ronments. The method uses a form of open-loop velocity feedback 
to control pulse generators located at selected positions throughout the struc
ture. The degree of system oscillation near each controller determines the 
controller's act1vation t1me and pulse ampl1tude. 

The proposed control method is described in Section 2 and its stabil1ty 
analysis 1S given in Sect10n 3. Digital computer slmulation studies of a 
11near as well as a nonl1near hysteretic lumped parameter plate model under a 
var1ety of excitations are presented 1n Section 4. Experimental studies with 
a mechan1cal model resembl1ng an a1rcraft w1ng are descr1bed in Section 5. 

2. CONTROL PROCEDURE 

Cons1der a nonlin2ar distributed parameter system whose governing part1al 
d1fferent1al equation (PDE) is known. Using suitable discretizat10n techniqueb 
such as the finite element method (Fill!), a large but fin1te-order mathematical 
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model can be obtained. An excellent d~scussion of and justif~cation for using 
finite-dimensional models for structural control of continuous systems is 
given ln the recent papers by Hughes [lJ and Gran [2J. 

Assume that the finite-order mathematical model of the nonlinear system 
under d~scuss~on has n degrees of freedom and is governed by the differential 
equation 

(1) 

w~th the following propert~es: 

(1) x(t) ~s the system displacement vector of order n, 

(2) M ~s a diagonal positive definite matrix, 

(3) D is a symmetric, positive semi-definite, small matrix such that 

T T 
x Kx > cx Dx 

where c is a positive constant, 0 < c < 1, 

(4) K is a symmetric, positive definite matrix, 

(5) f(x,~) represents nonconservative nonlinear forces 

and If.(x,~)1 ~ B. with i € (l,n) 
~ - - ~ 

and B are bounded posit~ve constants. 
~ 

(2) 

(3) 

(6) VF(~) represents the conservat~ve nonlinear forces which are equal 
to the gradlant of function F, and 

F(x) > 0, xTVF(x) ~ aF(x) (4) 

with constant a > 1. 

(7) q(t) is a bounded excltation vector that satisfies the condition 

and Q. are bounded constants. 
~ 

(5) 

Note from Eq. (3) that nonlinear damping forces of the type encountered in 
distributed systems incorporating mechanical components with joints and inter
face motion (such as damping forces inherent in hysteretic elements, limited
slip systems and Coulomb-type frict~on forces) can be handled w~thin the 
restrictions imposed on !. 

Since the damping matrlX D is small and required to only be pos~tlve semi
definite, and since the presence of nonconservatlve nonlinear forces does not 
guarantee a bounded response in the presence of persistent disturbances (e.g. 
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Coulomb-damped or bilinear hysteretic systems under harmonic excltation), the 
response of the system governed by Eq. (1) may be large or even unbounded. 

The active control procedure of this paper consists of using, at selected 
points in the structure, force actuators whose operation is trlggered every 
time a zero crossing of the displacement of each of the points of interest is 
detected. The magnitude of each control pulse p. will be given by 

1 

where 

c. 
1 

sgn(.) 

V 
1 

n. 
1 

t 
o 

1 

p (t) = 
1 

n. 
-c sgn(v.) Iv. I l;t < 
111 0 

1 

o ·(t , 0 
1 

t < (t 
o. 

1 

+ T )< t < t 
di °i+l 

1S a coefficient for scaling the needed control force at 
locat10n i 

1ndicates the algebraic sign of 1tS argument 

is the absolute or relative velocity of the structure at 
location i, depending on the nature of the problem 

1S some appropriate power of the veloc1ty at location 1 

1S the zero crossing time at location i 

(6) 

is the pulse durat10n of the controlling force at location i. 

Depend1ng on the choice of control parameters in Eq. (6), the actuator 
w1ll, at one extreme, behave as an open-loop control thruster, and at the other 
extreme perform as a negative feedback device whose action introduces nonlinear 
veloc1ty-proport1onal damping. 

In order to incorporate into the control algorithm constraints imposed by 
hardware limitat10ns as well as to conserve the control energy, the control 
law of Eq. (6) can be augmented by the following constraints: 

p (t) = 
1 

(7) 

o 

A more general form of Eq. (6) is to relate the magnitude of the control 
force at location 1 to both the displacement x. and velocity v at that 

1 1 
location: 
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p.(t) = m.(a.x +b.v.) + g.(x.,v.) 
1 111 1 1 111 

(8) 

where m1 is the mass assoc1ated with 1, and gi is some suitable nonlinear 
funct10n. The advantage of the formulat10n 1n Eq. (8) 1S that only local 
measurements of displacement and velocity are needed to determine the control 
force to be applied at a specific 10cat10n. Since no global information 
regarding the stiffness and damping characteristics of the system is needed, 
the control law of Eq. (8) offers a d1stinct advantage in dealing with realis
t1C d1stributed structural systems whose stiffness and damping parameters are 
d1ff1cult to 1dentify accurately in practical cases. 

3. STABILITY ANALYSIS 

Referr1ng back to Eq. (8), suppose that a control force h is created and 
appl1ed to the nonl1near system governed by Eq. (1), with 

(9) 

where c 1S a pos1tive constant and 

• T· 
(x+cx) g(x+cx) ~ 0 . (10) 

The controlled dynam1c system of Eq. (1) is now governed by 

:Hx + (D+2cM)~ + (K+2c~)x + f(x,~) + 'YF(x) + g(rlcx) = q(t). (11) 

US1ng L1apunov's direct method, the authors have shown in [3J that the solu
t10ns of Eq. (11) are Lagrange stable (bounded). 

4. SIMULATION OF CONTROL STRATEGY 

4.1 L1near Plate Model 

Consider a thin triangular plate, that is clamped at one end, initially 
flat, subjected to forces acting perpendicular to it, and having the properties 
shown in F1g. lea). A discrete one-dimensional ~odel of this distributed 
parameter system 1S shown 1n Fig. l(b) and its corresponding lumped parameters 
(mass, stiffness and damping) are listed in Fig. ICc). 

The f1rst six class1cal normal modes corresponding to the stick model with 
nonuniform properties shown in Fig. l(b) are given in Fig. 2. These mode 
shapes are 1n close agreement with the corresponding beam modes obtained by 
using plate elements in a conventional finite element model of the plate shown 
in F1g. lea). The pos1tion of the var10US nodes of the mode shapes 1n F1g. 2 
have a sign1ficant 1nfluence on the optimum number and 10cat10n of the needed 
controllers. 
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4.2 Impulsive Excitation 

If the llnear model of F1g. l(b) is subjected to an impulsive excitat10n 
consist1ng of a velocity-step 1nput applied to the base, the result1ng system 
response w1ll cons1st of an exponentially decaying harmonic osc1llation whose 
envelope varies with time as shown in F1g. 3. If the dynamic system is now 
prov1ded with a slngle controller attached to the tip of the plate at station 
mlO, the result1ng controlled motion will have a much more rapidly decaying 
envelope as shown 1n F1g. 3. The rate of v1bration suppression is heavily 
1nfluenced by the cho1ce of control parameters. 

In Fig. 4, the same situat10n as that of Fig. 3 is investigated except 
that parameter n 1S held f1xed and the effects of varying the control gain 
parameter care 1nvest1gated. Clearly, considerable flexib1lity is available 
in the cho1ce of control parameters to match a particular design sltuation and 
hardware lim1tations. 

4.3 Nonstat10nary Random Exc1tation 

If the broad-band nonstationary random excitation set) shown in Fig. 5(a) 
1S now appl1ed to the base of the linear system 1n Fig. l(b), the relative 
d1splacement and velocity response of the free end of the model will be as 
shown 1n F1gS. 5(b,c). The time history segment shown in Fig. 5 corresponds 
to about 25 fundamental per10ds Tl of the system. 

The results in F1g. 6 show that the relative motion time history at three 
locations along the uncontrolled 10 DOF linear plate model under nonstationary 
random excitation is dominated by the contribution of the first mode illu
strated in F1g. 2(a). 

Applying the control strategy discussed above to this structure, the 
controlled response shown in Fig. 7 is obtained when four identical controllers, 
each with parameters n=O, c=l.O, and Td=O.OS are used at stations m3' m5' m7 
and mlO. In order to simplify comparisons, the response amplitude scales are 
1dent1cal to the corresponding scales 1n Figs. 5 and 6 where no control action 
1S appled. 

The results in F1gS. 8 and 9 correspond to identical situations as the one 
in Fig. 7, except that control parameters nand c are changed in each case as 
1ndicated. To facilitate comparison, the same amplitude scale is used to 
represent the needed control forces for all cases. 

The effects of the number and locat1on of controllers on the temporal rms 
response at statlons m3, mS and m7 of the 10 DOF linear plate model under non
stationary random excitation, with control parameter n=O, is shown in Fig. 10. 
Slm1lar results are shown 1n F1g. 11 for the temporal rms response of the tip 
of the plate when different control strategies are used: n=O in Fig. ll(a), 
n=l in Fig. ll(b), and n=2 in Fig. ll(c). 

The results of Figs. 10 and 11 confirm the expected outcome that, w1th 
everyth1ng else being the same, the extent of vibration suppression throughout 
the structures is proportional to the number of controllers used. 
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4.4 Swept-Slne Excitatlon 

To lilustrate the applicablilty of the control algorithm under arbitrary 
dynamlc envlronments, a swept-sine excitation is used in Fig. 12 where the 
control parameters are identical to those of Flg. 8 in which n=l. 

4.5 Nonllnear Plate Model 

The results shown in Fig. 13 correspond to a 10 DOF nonllnear lumped para
meter plate model in which each of the ten discrete elements possesses bilinear 
hysteretlc characterlstics. If this nonllnear model is subjected to the non
statlonary excltation of Flg. 5(a), its resulting motion without control will 
be as shown in Flg. 13(a-d). Providing this system with four ldentical con
trollers each with n=l, c=0.50, and Td=0.05 results in the controlled motion 
in Flg. l3(e-h) and the corresponding control pulses shown in Fig. l3(i-£). 
Comparable amounts of vibration attenuation is obtained at the other locations 
whose response is not plotted. 

5. EXPERIMENTAL STUDIES 

A mechanlcal model resembling an aircraft wing was designed and fabricated 
to lnvestigate the control algorithm under realistic laboratory conditions. 
The photographs in Fig. 14 indicate the details of the test structure, vibra
tlon exclter, instrumentation, pneumatic power supply, and control thrusters. 

Figure 15 shows sample results for the structure under harmonic excitation 
wlth a frequency close to the plate fundamental frequency. Because the control 
used in thlS experiment is to simply turn the controller on or off, this 
corresponds to uSlng n=O in Eq. (16) (i.e., active Coulomb damping). Thus, 
lt is not surprising that the envelope of the decaying oscillations at the 
lnltiatlon of the control process exhibits the same characteristics associated 
wlth Coulomb frictlon: a straight-line decay envelope. On the other hand, 
lt is seen from Fig. 15 that when the excitation is turned off, the envelope of 
the free vlbrations can be well approximated by an exponential decay curve, 
which is a well known characterlstic of vlscously damped systems. 

6. SUMMARY AND CONCLUSIONS 

A slmple, yet efficient method is presented for the on-llne pulse control 
of llnear as well as nonlinear dlstributed parameter systems, havlng constant 
or time-varYlng properties, and responding to arbitrary dy~amlc environments. 
A signlficant feature of the method lS that detailed knowledge of the system 
structure is not needed; only local measurements of displacement and velocity 
are needed to determine the control force to be applied at a specific locatlon 
ln the nonlinear flexible structure. 

Analytical and experimental studles with several models of different Slze 
and configuration have demonstrated the feasibillty, rellabllity, and robust
ness of the proposed active control method. 
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1. INTRODUCTION. 
Large Flexible Space Structures (LFSS) are described as distributed parameter sys

tems (DPS) whose dynamics may be modeled by a partial differential equation (PDE). 
LFSS refers to large flexible antennas with applications in global communications, 
astronomy (optical telescopes), surveillance, solar power (electric power) generation, and 
other space missions. Since LFSS are modeled by a partial differential equation, they 
are mathematical models having "infinite" dimension. A popular method to generate a 
finite-dimensional physical model for approximating a DPS uses finite element tech
niques in a model of very large order. The finite element model is impractical to design 
using current control schemes. Consequently, the LFSS problem has essentially two 
interrelated issues. The first involves model reduction and the second concerns con
troller design philosophy. The model reduction occurs in two phases. The first reduc
tion is due to the impossibility of modeling the "infinite" number of vibrational modes 
of a pde. The second reduction is required because all of the modes that can be 
identified through off-line computation le.g. Nastran, Stardyne) cannot be practically 
implemented and controlled because of computational and memory constraints. 

Model reduction techniques include singular value decomposition, modal cost 
analysis, and modal truncation (or singular perturbation). The resulting reduced order 
model will be called the finite design model. With this design model, the goal of the 
design effort is to develop a controller of much lower dimension than the design model. 
Several approaches to accomplish these tasks is given below. 

1) Open-Loop Model Reduction. Retain the primary (or critical) modes and ignore 
residual modes of th design model. Next, design a controller for the primary modes. 

2) Closed-Loop Model Reduction. Design a full order controller. Then, reduce 
controller dimension for feasibility and performance. 

3) Design a controller of specified form and dimension and determine its gains. As 
noted by Kosut [1), this may involve highly nonlinear equations and provides no guaran
tee of global solution. 

All of the above reduced-order approaches do not take into account the effects of 
both spillover and parameter uncertainty. Spillover arises from model-reduction where 
unmodeled modes are measured and excited by the controller. This spillover effect 
occurs when the actuators and sensors are poorly placed driving the LFSS toward insta
bility and has been demonstrated experimentally by Balas [2] for a simple beam. Much 
of the current control literature have dealt with the spillover effects and this fundamen
tal problem has not been totally resolved. For example, expending control energy to 
suppress the spillover effects of unmodeled modes may lead to insufficient energy to con- I 

trol the lower vibrational modes for acceptable performance. For various methods to 
eliminate the spillover effect, see Longman l3], Sesak [4], Lin [5], and Gupta [6]. 

The second issue concerns control design philosophy. That is, state feedback versus 
output feedback, quadratic performance measures versus pole placement, centralized 
control versus decentralized control, stability robustness versus performance robustness. 
These different strategies or philosophies have not dealt with merging the control prob
lem with the modeling problem and conversely. 

The objective of this paper is to briefly describe the latest trends of theoretical 
developments involved with modeling and controlling LFSS from a finite dimensional 
viewpoint. Characteristics and difficulties of LFSS are reviewed. Latest trends in system 
theory for model-reduction involves the controllability and observability subspaces to 
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determine optimal projections and transformations of reduced-order models and con
trollers. Such ideas include balanced realizations and singular-value analysis. Ad hoc 
methods using component cost analysis attempts to combine relationships of cost sensi
tivity, eigenvalues, controllability, and observability norms of each vibrational mode. 
Extensions of Linear Quadratic Gaussian (LQG) theory as applied to LFSS are 
presented including frequency-shaped cost functionals and perturbation methods. This 
paper also attempts to identify those areas of control science and large-scale systems 
theory that appear to have an important role in understanding and solving LFSS model
ing and control; this area includes chained aggregation and decentralized control. Hope
fully, this paper will stimulate ideas to integrate and bridge the gap between the model
ing and control problem. 

2. LFSS CHARACTERISTICS. 
LFSS is similar to other large scale system (LSS) problems in that the designer 

must meet stringent performance requirements while working with a system of large 
dimension with uncertain parameters that affect the performance in an unknown and 
possibly hostile environment. Specifically, the problem areas include 

1) design of a practical finite dimensional controller for the infinite-dimensional LFSS 
model. This is the continuous-discrete nature of the problem; that is, the plant is a con
tinuum while the controller consists of a discrete number of sensors and actuators. 

2) incorporation of modeling errors and un modeled modes in the control problem. 
Modes shapes and frequencies are in 10% error based on past spacecraft design experi
ence (Herzberg, [7]). 

3) satisfaction of ultra-high performance requirements 

4) determination of actuator and sensor number, placement, and characteristics. This 
area involves seeking the optimal distribution of sensors and actuators to meet various 
control objectives and strategies. . 
For closed-loop evaluation, all these areas must be addressed. Additional characteristics 
of LFSS (Herzberg [7]) are model uncertainty in structural damping at low frequencies, 
instability effects or residual interaction between the controller bandwidth and unmo
deled modes at high frequencies, densely packed low frequencies (some only .001 hz 
apart), and limited hardware testing for space behavior prediction. Any testing using 
numerical models will most likely involve insufficient and inaccurate data (Kosut, [I)). 
Finally, LFSS will be subject to many disturbances. These include thermal and gravity 
gradients, aerodynamic forces, solar pressure, and on-board disturbances. 

From the above discussion, it is apparent that resolving all of the above issues 
represents a difficult and significant engineering challenge. Control laws must be 
developed suitable for systems of order of hundreds or thousands characterizing LFSS 
models and cope with the inherent uncertainties of the parameter plant models. 

3. MODEL REDUCTION 

3.1 INTRODUCTION 
Model reduction scheme is a compromise between a complex, accurate models and 

a simple, less accurate model. It is a tradeoff between modeling order and accuracy of 
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plant characteristics. This compromise requires engineering judgement for the problem 
at hand. For LFSS applications, model-reduction is one method to reduce the gap 
between the high-order LFSS structural models and the relatively low-order control 
algorithms (Meirovich [8],(9)). The methods for developing reduced order models are 
needed to simplify controller structure and reduce any required computational simula
tions, analysis, and design. Any model reduction scheme should include appropriate cri
teria for selection of key model parameters or properties to meet high performance 
requiremen ts. 

LFSS structural models is usually represented by a finite-element model consisting 
of a large number of coupled ordinary differential equations (i.e. > 10(0). These equa
tions contain varying degrees of importance and accuracy. The large order of LFSS 
models limits the controller performance due to computer limitations and thus model 
reduction is necessary. Techniques to accomplish this task include modal truncation, 
singular value decomposition ~Moore [10] Jonckheere and Silverman [11], and modal cost 
analysis (MeA) (Skelton [12], 13)). Current control algorithms based on LQG methods 
are limited to plant mcdels 0 orders approximately 100 states or 50 vibrational modes 
(Meirovich [8]). Controller order is even lower for practical implementation of process
ing capabjlities of onboard computers and is not unique. The following subsections will 
present brief descriptions of the various model reduction schemes. 

3.2 MODEL ERROR COMPENSATION 

This scheme was developed to cope with the fundamental drawback of LQG theory 
which requires absolute modeling accuracy of the mathematical model [12]. This 
research effort attempts to provide a systematic guide toward the construction of a 
mathem~tical model which is appropriate for the control problem at hand. The method 
attempts to compensate for errors in the mathematical model of LFSS structures and 
solves the LQG problem subject to an augmented error system to the state equations. 
Here} a model error vector augments the system state vector to compensate for various I 

modeling errors (parameter errors, truncated modes, neglected disturbances, and non
linearities of LFSS). Various model error systems can be viewed from this framework 
[12,14]. To cope WIth more than one type of modeling error, orthogonal functions (e.g. 
Chebyshev polynomials) are generated on-line to approximate the unknown model error 
vector. This latter concept yields a concept called orthogonal filtering for model error 
compensation. However, model error compensation requires additional states to model 
the nonwhiie error characteristic of LFSS which raises an issue of applicability toward 
high order systems. The authors, Gupta, et aI, [151 in LFSS have discovered connections 
between frequency-shaped costs functionals in LQG problems (to be discussed later) and 
o~thogonal filtering. However, further research is required to explore these two points of 
View. 

3.3 SINGULAR VALUE ANALYSIS AND BALANCED REALIZATIONS 
This work was primarily initiated by Moore. Based on this approach, References 

[161-[30] demonstrate the interest of approximating a high order model with a reduced 
order model and some applications toward LFSS has been done. Much of this work is 
based on open-loop model reduction and Jonckheere [16] has applied thi.., approach to 
closed-loop model reduction. 

The method of analysis is based on the input-output characteristics of the state
space model. A criteria is defined to measure the contribution of the modes to the 
input-output characteristics of a state-space model (e.g. finite element model). Based on 
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this criteria, those modes having the lowest contribution or weighting are then deleted. 
The singular values provide a measure of controllability and observability for each state 
of the system. An alternative view is that singular values provide a measure of the con
tribution of each subsystem to the overall interconnected system. 

Balanced realization is built around singular value decomposition or principal com
ponent analysis [10,25]. Although balanced realizations has not been specifically 
developed for LFSS due to ill-conditioning problems, this method does provide useful 
analytical tools and guidelines for coping with structural instabilities and model reduc
tion. The method of solution consists of solving two Lyapunov equations and a sym
metric eigenvalue/eigenvector problem (or singular value analysis problem). For asymp
totically stable systems, these Lyapunov equations determine the observability and con
trollability subspaces. The method uses principal component analysis to measure the 
observability and controllability of the system by evaluating the singular values of the 
controllability and observability Grammians. Singular values provide a crude measure of 
the impulse response error between the full-order and the reduced-order impulse 
response matrix. The model reduction scheme eliminates any weak subsystem which 
provides little contribution to the overall system response. Laub [26] provides an alter
native computational schemes to the calculation of balanced transformations. Balanced 
realization has been applied to suboptimal LQG-design (Verriest, [271). Other studies 
have shown that for discrete time variable systems, both balance<l realization and 
Hankel-norm yields identical reduced models and guaranteed stable reduced order 
models. 

3.4 EXTENSIONS OF BALANCED REALIZATIONS. 
Jonckheere [16] extended Moore's open-loop balanced realization or approximation 

to closed-loop systems. The approach is based on designing a full order controller using 
~tandard LQG techmques. Next, the contribution of each state component to the 
closed-loop LQG is evaluated based on a new set of variables (i.e. similarity invariants) 
which are similar to singular values, described earlier. As before, unimportant states are 
deleted to yield a reduce-order controller. The reduced-order controller is selected to be 
optimal (in the LQG sense) for the reduced-order model. Most important, if the similar
ity invariants which are suppressed are small, closing the loop with the above LQG 
reduced-order controller on the full order system is guaranteed. 

Instead of solving a pair of Lyapunov equations developed in balanced realization, 
the method is based on solving a pair of algebraic Riccati equations. A unique transfor
mation, based on the AREs, will result to decouple the state components. Those state 
components which contribute very little to closed loop behavior, are deleted during the 
design of the reduced order controller. 

Jonckheere developed sufficient conditions for stability of the Cull system closed by 
the reduced-order controller. The most interesting part concerning these conditions 
involves both the gains and its associated phase. Note that phase inCormation has 
been generated as well as gains using this approach. 

The above approach has been applied for a simple LFSS model (24-dimensional 
tetrahedral finite-element model). For LFSS, the open-loop singular values are widely 
spread (where the smallest singular value corresponds to the high vibrational modes). 
UnCortunately, it is well-known that even unmodeled high-frequency modes can lead to 
instability called spillover. Thus, these open-loop singular values do not provide a use
CuI measure of closed-loop contribution along with the numerical difficulties of singular 
value analysis. This is due to the widely spread singular values inherent in LFSS. _How-
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ever, Jonckheere's similarity invariants are not widely spread. In summary, closed-loop 
analysis revealed (where closed-loop characteristic values are moderately spread) impor
tant contributions of those modes which were discarded found in the open-loop analysis. 

Other efforts by Santiago and Jamshidi [311 have extended Moore's open-loop 
balancing concepts to linear time-invariant unstable systems with weighted inputs and 
outputs. This extension includes using modified Lyapunov equations. Preliminary 
results by Santiago [32] also indicate systematic choices for Q and R matrices of the 
quadratic cost function for optimal control is possible. Additionally, if the system is 
unobservable and uncontrollable, another model reduction technique called chained 
aggregation, can be used. Balanced realization can then be applied on the reduced order 
model generated by chained aggregation. This combined approach has been successfully 
done by Santiago [32]. References [331-[50] provide further insight into the balanced 
approach and demonstrate a collective mterest of applying the balanced approach as a 
model-reduction tool by various researchers. 

3.5 MODAL COST ANALYSIS 
Another reduction method is called Modal Cost Analysis and is similar to Moore's 

balanced approach, with respect to model reduction criteria. This scheme attempts to 
combine the modeling and control problem by closed-loop modal truncation [13,51]. 
The method is based on a cost analysis for a linear system. This is done by connecting 
a white noise source at the input and measuring the amount of noise at the output. 
Then, those states having the least cost are deleted. Various criteria (i.e. disturb ability 
norm, observability norm, modal frequency) are chosen to eliminate those closed loop 
modes that do not contribute significantly to the quadratic performance cost. The 
approach yields an iterative scheme for developing a series of state feedback controllers 
of successably lower dimension obtained from closed loop equations for a controller of 
higher dimension. Skelton relates the modeling and control problem using a "model 
quality index" which measures the performance of the higher order system when control 
is applied upon the lower-order model. Those modal coordinates that have smaller sen
sitivity to the model quality index is truncated. The model quality index measures 
controllability and observability. In summary closed-loop model reduction is performed 
in the presence of state dependent feedback using a performance criteria to study the 
cost contribution of each mode with the overall quadratic cost function. 

4. EXTENSIONS OF LQG THEORY 

4.1 LAC/HAC CONTROLLER 
One extension of LQG theory consists of a two-level approach. The formulation is 

made up of a broadband, low damping controller called low-authority control (LAC) 
[52-54] and a narrowband, high damping controller called high-authority control (HAC) 
[55-57]. Low-authority control provides limited damping and uses root perturbation 
techniques for controller synthesis. The purpose of LAC is to provide lOW-damping (low 
authority) in a wide range of vibrational frequencies for robustness. Spillover reduction' 
in the residual modes is accomplished by LAC. LAC takes care of the instabilities 
characteristics found in HAC. HAC redistributes the vibrational energy and provides 
high-damping or mode shaping in a narrow range of frequencies to achieve high perfor
mance. HAC synthesis uses LQG frequency-shaped cost functionals where increased 
penalties in a frequency-dependent cost function are placed on those frequencies where 
less response is desired. HAC applications in LFSS control includes spillover manage-
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ment, disturbance rejection, and state estimation. Both HAC and LAC are then 
integrated properly such that their bandwidths overlapped and designed iteratively to 
yield a high-performance, stable, and robust controller. 

4.2 MESS ALGORITHM 
MESS stands for Model Error Sensitivity Suppression and is described briefly 

below (developed by Sesak (58]). This method uses LQG extensions to cope with the 
unknown high frequency reSIdual modes. The formulation consists of a quadratic cost 
functional containing information concerning the unmodelled but known vibrational 
states (i.e. suppressed states). These states are known, reliably computed, and appreci
ably affect controller performance but are not included in the plant model due to on 
board computer limitations. MESS constrains both control and observation spillover for 
the known modes. With proper placement of actuators and sensors, the undesirable I 

spillover terms are removed. The MESS algorithm penalizes the spillover effects directly 
through the quadratic cost function. The design technique developed in MESS uses the 
alpha-shift approach with known stability margin by Anderson and Moore. The alpha 
value measures control effort and sets an exponentially weighted quadratic cost function. 
Other researchers [5g] describes this specialized LQG formulation as attempts to make 
the controller more positive (energy dissipative). The formulation also requires frequent 
parameter changes or "tuning" to yield acceptable performance. 

4.3 MINIMUM DATA/MAXIMUM ENTROPY 
Developed by Hyland, et al [60]-[62] and unlike the previous LQG formulations 

which require frequent design iterations, this approach attempts to provide a one-step 
design procedure for robust controllers. The design procedure addresses the effects of I 
modelling uncertainty in large order systems and offers a new perspective in LQG 
theory. The approach accounts for parameter uncertainties directly into the design 
using minimum data/maximum entropy models. The approach handles the spillover 
effects and other modeling uncertainties by limiting information in the control law. The 
control design formulation includes measures of uncertainty to eliminate the dimen
sionality and modeling errors in vibrational control of LFSS.One of the major contribu
tions of the work is a stochastic design model to compensate for the dimensionality and 
parameter sensitivity problems inherent in LFSS. The approach recognizes that an accu
rate and precise system model does not exist and develops the model from a severely 
limited set of parameter data. this restricted data set generates a probability model 
consistent with the data set and accounts for the large modeling errors in high order 
modal parameters. With this stochastic design model, a control law, based on the 
ensemble average of the quadratic criterion, is computed. This method assumes com
plete knowledge of the parameter probability distributions and is induced by the data 
set consisting of modal decorrelation times. This data set was chosen since they provide 
significant modelling fidelity. The modal decorrelation times reflect the frequency uncer
tainties in the mean response, the covariance and the expected cost. This data set ade
quately models the open-loop system second moment response. 

Following this modeling philosophy, the objective is to minimize the average oC a 
quadratic cost function. With the above data set, a full probability model for frequency 
uncertainties is constructed which is maximally unconstrained based on the entropy 
principle. The design method posed by Hyland reduces the number of measures of 
parameter uncertainties to a reasonable level. The system model generated by this 
approach accounts for the large uncertainties in high order modal parameters with rela-
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tIvely little input data. The resulting design model permits formulation of closed equa
tions Cor the expected cost matrix and explicit solution of the linear regulator problem. 
The Cormulation yields a modified Riccati equation having important implications to the 
dimensIOnality problem. The stochastic Riccati equation based on the minimum 
data/maximum entropy approach has a unique positive semi-definite solution. Its spe
cial structure permits quantitative distinction between coherent and incoherent modes. 
As a result, very high order models are applicable in regulator design computations. In 
addition, this method assures complete stability Cor high order stochastic (Minimum 
inCormation) design model. The formulation has asympotic properties securing stochas
tic stability over the actual parameter set and models various levels of modeling uncer
tainties for design conservatism. 

The method has demonstrated that the stochastic Riccati equation provides a 
robust rate-feedback control for those modes having large priori frequency uncertainties, 
and a deterministic LQ design for modes having small frequency uncertainties yielding a 
stable mean-square optimal design. In other words, to account for the uncertainties in 
the pl~nt as part of the control design model, a robust and high performance controller 
is assured. The effective dimension of the system model is not dictated the number of 
modes retained but by the quantity of parameter information rests in the model. 

4.4 FIXED ORDER COMPENSATION 
This strategy uses the minimum data/maximum entropy approach discussed ear

lier. However, this control strategy seeks a quadratically dynamic optimal controller of 
prespecified dimension and is based on a relatively high order plant mode. Major results 
from this effort include optimality under incomplete system information, robustness 
comparable with modelled uncertainty, and the resolution of the dimensionality prob
lem. When the order of the compensator is equal to the dimension of the plant, stan
dard LQG results are obtained. Necessary conditions for controllers of prespecified and 
lesser order consists of two modified Riccati equations and two modified Lyapunov equa
tions. Along with these conditions, and optimal projection defines the geometric struc
ture of the controller. The projection, an idempotent matrix, contains the observation 
and control subspaces of the controller. It is interesting to note that this research effort 
has Cound that the optimal subspaces for this formulation are not modal subspaces. In 
summary, these conditions and equations provide an optimal controller of fixed order. 
One can observe that this treatment is analogous to designing reduced-order observers 
(Luenberger f63]). The necessary conditions can serve as a reference for comparing other 
suboptimal design methods. Solving these equations yields a control law which guaran
tees closed-loop stochastic stability and optimal in the mean-square sense. 

4.5 POSITMTY CONCEPTS 
Developed by Benhabib [5gj, this formulation does not rely on modal truncation. 

The concept uses positive (energy dissipative) and embedding operators and the design 
method has been successfully applied to the design of the attitude control and active 
structural damping systems for Draper model #2. A strictly positive operator has a 
physical interpretation as one that is always dissipative and does not create energy. 
The performance is not optimal and system "tuning" is required to yield acceptable per
formance. This method relies on on-orbit model parameter identification and subse
quent controller tuning via ground communication to achieve acceptable performance. 
Balas f64j, direct innovations feed through (LQG-type concept) results in a more positive 
controller. The work also sheds light in the placement of collocated sensors and actua-
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tors combined with the above LQG formulation. Here, a positive controller results. 
Noncollocated sensors and actuators destroy the positivity conditions by losing the spa
tial and time phase relationships that exist between sensors and actuators. Others have 
described this effect as unstably interacting, Gran [65]. 

The positivity design approach is one of the few methods that tackled the discrete
time control for LSS. With the rapid technological change and flexibility of micropro
cessors, LSS digital control is inevitable. 

5. LARGE-SCALE SYSTEMS THEORY 
Due to the vast complexities of LFSS, as it has been argued throughout our discus

sions, there are very few modeling or control strategies available for these effectively 
infinite-dimensional systems. One of the few possibilities may be large-scale systems 
theory. However, within the framework of large-scale system modeling very few schemes 
are appropriate for LFSS. Most of such schemes either require knowledge of the eigen
structure of the system or are limited to single-input single-output systems. One of the 
more promising schemes for modeling and model reduction of LFSS is perhaps "Chained 
aggregation", introduced first by Perkins and associates [66], discussed by Jamshidi [671 
and extended by Kwong [68]. References [6g]-[78] provide further information and 
insight into this modeling scheme. Chained aggregation has been successfully applied 
with the balanced approach, Santiago [31]-[32], using Kwong's example [68]. 

In the area of control, large-scale systems theory provides us with hierarchical and 
decentralized control strategies [7g] both of which can be interpreted as local control 
schemes. Hierarchical control IS based on two key issues - "Decomposition" and 
"Coordination" both of which would be very unfeasible and impractical for a LFSS. i 
Decentralized control, on the other hand, does not require any tearing of the system : 
structure and can utilize local measurements for local control and yet provide an overall ' 
stabilizing effect for the system. Among decentralized control schemes, decentralized I 

robust servomechanism introduced by Davison r7g] , described in text book context by 
Jamshidi [671 and applied for LFSS by W est-Vukovich et al. [80] seems to be a promis
ing control law for LFSS. In this section one modeling and one control strategy of 
large-scale systems i.e. chained aggregation and decentralized robust servomechanism 
control are briefly discussed. 

5.1 CHAINED AGGREGATION 
One of the more recent approaches in aggregating large-scale linear time-invariant 

systems is "chained aggregation", developed by Perkins and associates [66]. The usual 
linear time-invariant system model is transformed through a transformation matrix con
sisting of the output matrix columns depicting the strongly and weakly observable ' 
modes. This would partition the system into an "aggregated" and a "residual" subsys
tems. At this point if the aggregated subsystem is completely aggregatable [66] then the ' 
residual subsystem is discarded and process is complete. Otherwise, a new transform a- I 

tion matrix would be constructed to add on to strongly observable components of the 
system. In other words, the aggregation process continues by choosing an output for the 
residual subsystem and obtain an aggregation with respect to this output and by 
expanding the size of the aggregated subsystem. This process continues until the off
diagonal 1-2 submatrix of the resulting GHF is null. A few points need to be mentioned 
regarding chained aggregation. One is that its GHR formulation is not unique. The 
weak couplings of modes is not identified easily. In spite of these, chained aggregation 
stands a good chance for use in the model reduction of LFSS. 
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5.2 DECENTRALIZED ROBUST CONTROL 
One of the more promising control strategies for LFSS can be decentralized robust 

control. W est-Vukovich et al [80J have applied decentralized robust controlled, to be 
briefly introduced here, to a l00-mode of Purdue's LFSS [81J. 

Consider a large-scale linear time-invariant system 
N 

x = Ax + E BiUi + Ez 

Vi = ci x + DiU + FiZ,i=I, ... ,N 
Vr = cl

m + Dr + Frz, i=I, ... ,N 

where u.R" is the state, UieRm, are the control inputs, VieR" are the outputs to be 
,.. 3 

regulated and VreR ' are the outputs to be measured. The vector zeR is a constant 
disturbance. The existence of a decentralized control 

ui = K.. Vi + til 

is guaranteed by having none of the fixed modes [671 of the system in the right-half 
plane. A system has a fixed mode if one or more of its modes (eigenvalues) are not 
excited regardless of what decentralized controller is chosen. West-Vukovich et a1. [80J' 
have obtained conditions for a LFSS and have applied the decentralized control notion 
to a 200th order Purdue [81J model. 

6. CONCLUSIONS 
Although the structural control of LFSS has been approached by many researchers 

for several years, much theoretical and practical work still remains. There exists a gap 
to combine various model reduction schemes with control strategies and vice versa and 
how and when these two disciplines should be combined during the entire design pro
cess. Various criteria and approaches have been presented to provide an initial step 
toward combining these two disciplines. Santiago's dissertation [32J is a first attempt to 
combine the various modeling and control issues with applications to large-space flexible 
structures. The main thrusts of his dissertation include: (1) Systematic model reduction 
(2) Systematic placement of actuators and sensors (3) Systematic selection of Q and R 
matrices of the linear quadratic optimal control probfem (4) Integrate (1)-(3) and apply 
to a large space structural model. In this paper an effort has been mad.e to introduce 
ideas by other researchers to take on this infinitely challenging problem. 
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FREQUENCY DOMAIN CONTROL DESIGN OF LARGE 
SPACE STRUCTURES; A PRACTICAL APPROACH 

R. Harding and A. Das 
General Electnc Space DIVIsIOn 

Valley Forge, PA 19481 

ABSTRACT 

New requ1rements indicate the need for much larger, more 
accurate, and in some cases, very dynamic satellites. Large 
control system bandwidths are needed to meet accuracy and 
response requirements while maintaining tight control over 
appendage oscillations. Studies in recent years have shown that 
linear quadratic Gaussian (LQG) controllers can achieve the 
des1red performance 1f the system 1S llnearizable and if the 
system model is accurate. This paper presents results of an LQG 
controller applied to a single axis satellite with large solar 
arrays. A reduced order model (ROM) comprises r1g1d body mot1on 
w1th dom1nant structural modes. Optimal control and est1mat1on 
ga1ns are calculated based on an extremely conservative 0.0005 
critical damping ratio. In order to examine stabil1ty 
character1st1cs, slngle-1nput sIngle-output (SISO) frequency 
response concepts are generalized to develop a method of 
displaying open loop frequency response of a multi-input 
mUlti-output (MIMO) control system. The method is developed, 
ver1f1ed, and used to predict unstable conditions. 

INTRODUCTION 

As space structures grow 1n dimension and requirements for 
attitude determInation and control become more str1ngent, control 
systems engineers need an increasingly sophist1cated approach to 
control des1gn and analysis. Spacecraft flex1bility is no longer 
a secondary concern. In fact, 1t becomes of paramount importance 
Wh1Ch drIves the design of the control system so that distrIbuted 
parameter system control, state obervab1l1ty and controllab1lity, 
control and est1mat1on sP1llover, mult1varlable control analyses, 
and crltlcal parameter error sensltlvitles are key concerns 
dur1ng prellmlnary deSIgn. Some of these concerns are relatIvely 
well understood even though few systems have lmplemented the 
underlY1ng pr1nc1ples. Other concerns, such as multivariable 
control, have only recently been investlgated in detall. Thls 
study 1S motlvated by the des1re to apply modern control theory 
to a linear t1me-invarlant flexible space structure and perform 
frequency domaln analyses as an lnvestlgation of the stated 
concerns. 

A hlgh accuracy pOlntlng requ1rment brlngs to llght a fundamental 
conflict for a Large Space Structure (LSS) control des1gn. To 

397 



satisfy pOlnting accuracy requirements, the bandwidths of the 
attitude control system (ACS) have to be at least one or two 
orders of magnitude higher than what classlcal development 
techniques can provide. Hlgher bandwidths can be achieved for 
spacecraft with linearizable dynamic systems by optlmizlng 
quadratic cost functionals in the presence of gausslan noise. 
These optimal llnearlzable quadratic GaUSSlan (LQG) designs seem 
to be a good choice, although, they have several drawbacks. Good 
estimates of the modeshapes, the modal critical damplng ratios 
and the natural frequencies of the spacecraft structure are 
required for the LQG controllers to be effective. Therefore, LSS 
deslgn requlres analysis techniques that ald the investigation of 
parameter error sensitivities and overall MIMO controller 
robustness. 

OPTIMAL CONTROL SYNTHESIS 

Most prevlous sateillte controller designs have been able to meet 
the performance speclfication while avoiding active control of 
any structural modes. The standard design procedure rolls off 
the controller response at higher frequencies so that t~e system 
response is highly attenuated at the modal natural frequencies. 
A quadratic performance index optimlzation method that allows the 
designer to choose the states to be controlled has gained 
widespread appreciation as an alternative to the classlcal 
approach. In this manner, identifiable structural modes can be 
included in the controller instead of avoided as ln the case of a 
classical control design. This type of control will actively 
damp controllable and observable modes and enhance attitude 
control performance. Development of an LQG controller is 
outllned ln the following paragraphs. 

A linear time-lnvarlant system can be represented ln the form 

x = Ax + Bu + w (1) 

y = Cx + v ( 2 ) 

where, 

A = nxn system matrix 

B = nxr control matrlx 

C = mxn measurement matrlx 

x = nxl state vector 

y = mxl sensor output vector 

u = rxl control vector 
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w = nxl noise vector 

v = mxl measurement n01se vector 

n = number of states 

r = number of actuators 

m = number of sensors 

The controller is des1gned based on estimates of A,B,C, and x so 
the equations for the LQG design become 

/\ " X = Ax + Bu + w (3) 

" y = Cx + v ( 4 ) 

where, , signif1es an estimated entity and wand v are 
uncorrelated wh1te noise vectors with zero mean. Deta1led 
lnformat1on for mlnlm1z1ng a scalar performance index as a 
function of the weighted norm of the state and control effort can 
be found in several optimization texts [1-3]. M1nimizing the 
performance index leads to an optimal control law 

/\ 
u ( t) = Kl ( t ) x ( t ) ( 5 ) 

where Kl is rxn optimal gain matrix which is found via the 
following relation. 

-1 AT 
Kl(t) = -Rl (t)B (t)Pl(t) (6) 

and, 

Rl = constant mxm control weighting matrix 

The Pl(t) matrlx 1S obtained by solving the backward matr1x 
Riccatt1 equat10n [3]. 

In a similar fashion, the optimal state estimate, 
solvlng the following equation. 

1\ 1\/\ 1\ AA 
X = Ax + Bu + K2(y - Cx) 

The optimal estimation gains, K2, are found via 

K2(t) = P2(t)~T (t)R2-1 (t) 

where, 

A 
x, is found by 

(8 ) 

R2 = constant mxm measurement noise covarlance matrix 

and P2(t) is found by solv1ng the forward matrlx Rlccatti 

equat~on [2,3]. 
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FREQUENCY DOMAIN ANALYSES 

A designer must aqulre control system margin and sensitlvlty 
lnformation In order to show the robustness of the design In a 
quantitatlve fashion. Many studies during the last several years 
have shown that ROM controllers are sensitive to certaln crltlcal 
parameters [4]. Modelling errors of parameters such as damplng 
ratlos, modal natural frequencies, and modal admittances can 
invalidate whatever stability margins the designer thought 
eXlsted In the approxlmated plant. Approprlate truncation of the 
distributed parameter system is also crucial to controller 
robustness for residual mode rejection. Further, inclusion of a 
particular mode in the ROM state space does not assure adequate 
modal control. Identifying problem modes early in the design 
phase is extremely useful for structure and control deslgn 
lteratlons. All these concerns motivate development of analysis 
tools to show strengths and weakness of a control system deslgn. 
Recent MIMO frequency response technlques draw parallels wlth 
SISO stability criteria in a quest to assure global stability 
over some range of plant perturbations. However, these MIMO 
technlques seem to glve a stablilty indication at the system 
level wlth little insight into the stability or sensitivity of 
the lndlvldual state elements. 

Thls paper presents the results of a frequency analysis method 
that answers many of the stated concerns as well as provide 
lnslght lnto the state elements of a ROM controller. The 
examples highllght these capabilities and include simulation 
results to support frequency response predictions. 

FREQUENCY DOMAIN APPROACH 

All frequency response analyses rely on development of the system 
transfer function. The concept of relatlng a systems output to 
the input is fundamental to system dynamics and feedback control. 
The open loop forward transfer function can be derived from the 
equations for the plant, (1),(2),(S),and (8). Rewriting these 
four equatlons Wlth proper substitutlons one finds the following 
equatlons for the optlmal controller and the Kalman state 
estimator. 

A 
x = Ax + BKlx 
1\ 1\(\ 1\ 1\ AA 
X = Ax + BK1x + K2(Cx - Cx) 

Taklng the Laplace transform of both equatlons gives 
-1 A x = [sI - A] BK1x o 
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(12) 

Combining (11) and (12) leads to the open loop system transfer 
funct1on, G, so that 

where, 
A A A 

G = G(A,A,B,B,C,C,Kl,K2,s) 

At this point in the frequency response analysis, a new transfer 
funct10n 1S der1ved, gOL' Thls is accomplished by appropriate 
partitlonlng of G to isolate the state element of lnterest and 
clos1ng all other loops. The resulting transfer functlon 1S a 
scalar equat10n which can be used to generate familiar Bode, 
Nyquist, and Nichols plots or other frequency doma1n type graphs 
Wh1Ch have been w1dely used for SISO analyses. 

Once the open loop response 1S obta1ned, the closed loop 
frequency response 1S easily calculated from the relat10n 

geL = gOL/(l+gOL) (13) 

Wlth th1S approach, the gain and phase margins for the particular 
state element as well as the effects of all other loops on that 
state element are accurately depicted. The authors have noted 
that each state should be examined when uS1ng this method in 
order to assure complete system stabil1ty. For example, a truth 
model of the plant may comprise ten state elements so that a 
thorough analys1s would require ten open loop calculat10ns uSlng 
thlS approach. Effects of modes which are carried in the truth 
model and resldual to the ROM can be predicted. The usefulness 
and validity of the method is shown in the following sections. 

REDUCED ORDER MODEL 

Truncat10n of the structural modes to only those modes that must 
be controlled 1S very 1mportant 1n order to m1n1m1ze onboard 
processlng. However, a robust controller must lnclude the 
m1n1mum set of dominant modes in 1tS state space, otherWlse 
lnstabil1ty will result. The phenomenon of exc1t1ng structural 
modes outslde the controller state space 1S commonly referred to 
as control spillover. A similar phenomenon, est1mator sP1llover, 
occurs when residual mode inputs to the est1matlon equat10ns 
cause estimation errors which can also lead to Instab1llty. The 
capabllity of the controller to maintain attitude and modal 
control wlthout knowledge of residual modes is one aspect of the 
robustness of the system In the presence of destabll1zing 
factors. All structural modes respond in varylng degrees to an 
actuatlng lnput, but, a robust controller does not exclte 
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res1dual modes to the point of instability. 
these modes allowing the structure to 
passively. 

Instead, it 
damp the1r 

ignores 
response 

Truncat10n of an inf1nite set of structural modes to a reduced 
order model (ROM) 1S based upon the determinat10n of the dom1nant 
modes Wh1Ch will yield max1mum deflections for a given 1nput. 
Ident1fying dominant modes for a structure is a straight forward 
procedure that starts with the flexible mot1on differential 
equation. 

.• , 2 
q.+2~ w .q.+w .q.=~. f 

J J nJ J nJ J ~J ~ 

or, 

where, 

I'll f. 
l"~J ~ 

2 2 s +2~.w s+w 
J nJ n 

qJ = Jth generalized coord1nate 

~~J = jth modal adm1ttance at the 

1; • = jth modal critical damping 
J 

w . = jth modal frequency nJ 
f = torque at the ith node 
~ 

s = Laplace operator 

(14) 

(15) 

ith node 

rat10 (0.0005) 

The general1zed coordinate, q , 1S related to the spacecraft body 
axis, 0, by 

e. = ~. q. 
~ ~J J 

so that (16) becomes 
1'lI

2 f 
l"~J i 

e = 
i 2 2 s +2~ w s+w . J nJ nJ 

Equation (17) is the open loop transfer function 
torques to flex1ble d1splacement. Th1S funct10n 
values at structure natural frequenc1es, so that 

e 
~max = 

f 1.max 

2 
~ 1.J 
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re1at1ng input 
takes on maXlmum 

(18 ) 



which relates maximum modal deflectlon for a maXlmum input 
torque. The greatest deflectlons are due to the modes wlth the 
largest admittances and lowest natural frequencies. For thlS 
study, a finlte element method provldes structural lnformatlon 
for the first thirty modes, all of which are evaluated for 
maXlmum deflections using (18). From the thlrty modes, SlX modes 
dominate all others by a minimum of two orders of magnitude. The 
six domlnant modes and natural frequencles are 

First Symmetnc Bendlng (.0407 Hz) 

First Asymmetric Bendlng (.0904 Hz) 

Second Symmetric Bendlng (.0957 Hz) 

Second Asymmetric Bending (.1500 Hz) 

Thlrd Symmetrlc Bending (.1641 Hz) 

Third Asymmetrlc Bendlng (.2212 Hz) 

The followlng four modes are the next largest. These modes are 
lncluded ln the true plant model and are res~dual to the controller. 

Flrst Symmetrlc Torsion (.0649 Hz) 

Solar Array Blanket Mode ( .1450 Hz) 

Solar Array Blanket Mode (.1453 Hz) 

Thlrd Symmetric Torsion (.2074 Hz) 

It seems prudent to carryall six dominant modes in the ROM. 
However, further ROM reduction is desirable provided that 
stabllity marglns and performance is not seriously degraded by 
neglecting one or more of the SlX dominant modes. To follow 
through with this investigation, some actuator and sensor 
configurations need to be established so that the state equatlons 
of the prevlous section can be constructed. 

Reference [5] outlines the procedure that was used to select 
actuator and sensor conflgurations for this study. That 
procedure made use of two approaches for the selection. A 
familiar eigenvalue analysls was compared with observer and 
controller Gramlan matrlces of varlOUS closed loop controllers 
and estimators [3]. For the sake of brevity, assume these 
configurations are flnallzed. In practice, actuator and sensor 
selections wlli probably be lterated wlth ROM deflnltlon 
selectlons to provide the best control system possible. Baseline 
actuator and sensor locatlons are shown ln Flg. 1. The sensor 
and actuator complements that are used throughout the anlaysis 
portlon of this study are llsted in Table 1. 
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Locatlon 3 

Locatlon 2 

I Location 5 

Loca tl on 4 Locatlon 1 

Figure 1. Actuator and Sensor Locations 

ELEMENT LOCATION TYPE 

Actuator 1 Torque produclng 

Actuator 2 Torque producing 

Actuator 4 Torque producing 

Sensor 1 Angular rate 

Sensor 1 Angular position 

Sensor 2 Relative angular posltion ( 1 ) 

Sensor 3 Relative angular position 

Sensor 4 Relative angular position 

Sensor 5 Relative angular position 

Table 1. ACTUATOR AND SENSOR COMPLEMENT 

Note 1. A relative position sensor measures local angular 
deflections relative to the center body. 
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Flg. 2a and b are the yaw axis position Bode plots depictlng galn 
and phase for the LQG controller (that lncludes the SlX dominant 
modes). The LQG controller has a bandwidth one order of 
magnltude greater than a classlcal controller that was developed 
for the same structure [5]. Yaw aXIS control is severly notched 
at the natural frequency of the first asymmetrIc bendIng mode due 
to poor controllabIlity. Bode plots, FIg. 2c and d, and a 
NyqUIst plot, 0% curve in FIg. 6, for the first asymmetric 
bendIng mode Indicate a stable loop. All frequency response 
curves for all the state elements, as well as curves for the 
resldual modes also Indicate a stable system. This predIctlon 
compares very well WIth transient response simulation data shown 
In FIg. 3a-g. The first asymmetric bending mode is not 
successfully damped whereas the other controlled modes are damped 
qUIte well. 

FURTHER ROM REDUCTION 

The deSIre to minimize computational burdens for onboard 
processing leads to the deSIre to mInImize the number of 
controlled modes. Appllcation of the frequency response analysls 
to the SIX domInant modes can facillitate this procedure so that 
a smaller ROM which meets performance and stability 
specifications can be found. Carrying out the analysls on the 
SIX dominant modes, one finds that a mlnlmum of two dominant 
modes must be kept in the controller state space. They are 

First Symmetric Bending 

Thlrd Asymmetrlc Bending 

(.0407 Hz) 

(.2212 Hz) 

All other modes are residual to the controller. It is 
interesting to note that the first symmetric bending is the 
largest modeshape and the third asymmetrlc mode is the thlrd 
largest modeshape USIng (18). Also, any ROM selection neglectlng 
elther of these two modes is unstable. The yaw axis Bode plots 
for this ROM controller are shown in Flg. 4a and b. Two 
observatIons can be made: One, the effects of the flrst 
asymmetric bending and thlrd symmetrIc bendIng modes are in 
eVIdence whereas before the ROM reduction, both were notched from 
the controller: and two, the bandwidth of the controller has been 
increased 20%. However, examination of the Bode plots for the 
flrst asymmetrlc bendIng mode, Flg. 4c and d, show a 20 DB 
lncrease of the peak galn and a 27 Deg loss In phase when thls 
mode becomes residual to the controller. 

Simulation of the reduced ROM controller, Flg. 5a-g, verlfies the 
frequency response fIndIngs. The increased bandwldth results in 
a qUIcker trans lent response and a 28% faster settllng tIme. 
ThIS enhanced pointlng capablilty is done at the expense of 
greater modal deflect\ons. The fIrst symmetric, first 
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asymmetr1c, and th1rd symmetr1c modes have slgn1f1cantly 
1ncreased peak deflections. Interest1ngly, the f1rst asymmetric 
mode 1S damped qU1cker as a residual mode than as a controlled 
mode. Invest1gat1on of the larger ROM controller shows that the 
state est1mat1on errors for the f1rst asymmetr1c mode are very 
large and slow to converge due to small observabil1ty of this 
mode. Th1S accounts for the poor performance in controlling this 
mode. Combin1ng th1S observation w1th the Bode plot 1nformation 
1n Fig. 4c and d, one concludes that not 1ncluding the first 
asymmetr1c mode 1n the ROM controller 1S a viable alternat1ve 1f 
the designer is w1ll1ng to trade reduced stability margin of the 
first asymmentric bend1ng mode loop in order to ach1eve greater 
system p01nting perfomance. 

ERROR TOLERANCE CALCULATIONS 

LQG derived control and estimation gains are based on critical, a 
pr1or1 structure parameters. Errors 1n the assumed dynamics will 
result 1n non-optimal ga1n calculations such that the system 
becomes unstable. Tolerances to this type of error is essential 
because the true plant parameters are unknown to the control 
systems des1gner. 

EXAMPLE: NATURAL FREQUENCY ERROR TOLERANCE 

Th1S example 1nvestigates the f1rst asymmetric mode natural 
frequency error tolerance as a controlled mode. It is apparent 
from F1g. 2d that the phase marg1n of the control loop may be 
negat1ve 1f the true natural frequency for this mode occured at 
.014 Hz (l.e. an 84% error) in the frequency spectrum. 
Therefore, one expects the system to be unstable if the natural 
frequency of this mode 1S overestimated by some ambunt greater 
than 84%. NyqU1St plots are very useful for modal analys1s 
because of the character1stic circular contour of a mode when 
mapped onto the G plane. NyqU1St stab1lity cr1terion relates the 
number of enc1rclements of the (-1 + JO) p01nt to system poles 
and zeroes 1n the right half plane. The Nyquist plot, F1g. 6 
exh1b1ts an enc1rclement of (-1 + JO) w1th an 84% natural 
frequency error as expected from the Bode plots. TranS1ent 
response slmulat10n data, Fig. 7, correlate very well with the 
Bode and Nyquist stability pred1ctions that successful control 1S 
poss1ble until the a pr10ri second dom1nant modal frequency 1S 
overestimated by approx1mately 84%. 

EXAMPLE: MODAL ADMITTANCE ERROR TOLERANCE 

Any ROM controller 1S susceptable to controller sp1llover. 
F1g. 8a and b dep1ct the Bode plots for the th1rd symmetr1c 
bending mode as a res1dual mode. Closer 1nspect1on at'the modal 
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natural frequency shows 27 DB of galn margln whlch at first 
glance appeared to be marginally stable. This 1S actually an 
Indication of modal admittance error margin because the mode 
shape magntitude defines the he1ght of th1S curve. In short, 

ga1n margln (DB) = 20 log(f(~2 » 

where is the modal admittance. Working backward, one finds 
that 27 DB of galn margln equates to a factor of 4.73 error 
marg1n In the modal adm1ttance values. Mult1plying the 
adm1ttances by 4.73 raises the ga1n curve so that the system 1S 
marginally stable due to zero gain and phase margins. 
Multiplying by a factor greater than 4.73 results 1n negative 
gain margIn thus predicting system instability. Transient 
response simulation data, Fig. 9, support the frequency response 
predictions. 

CONCLUSIONS 

The performance advantages of LQG controllers for LSS are readily 
apparent. Precision p01nting and quick transient response are 
very desirable attributes that an LQG controller can provide even 
with negl1gible structural damping. LQG control methods can be 
well suited to the distributed parameter problem of flexible 
structure control if the dominant characteristics of the system 
are known. The LQG controller developed for this 1nvestigation 
is robust such that four of six dominant modes can be residual to 
the controller with little adverse impact to active flexible 
control performance. 

The frequency response method outlined herein is accurate for 
MIMO controller performance and stabil1ty analysis and criti~al 
parameter error margIn predictions. This method is also useful 
in ROM def1n1tion by identifying modes which lead to system 
1nstab1lity if they are not included in the controller state 
space. One concludes that th1S frequency response anlays1s 
technique is useful and the wealth of 1nformation derived for 
SISO systems is applicable to MIMO systems as well. 
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ABSTRACT 

Th1S paper presents some results found dur1ng the 1nvest1gat1on of control 
problems of large flex1ble spacecraft. A tr1ple plate conf1gurat1on of such a 
spacecraft 1S def1ned and stud1ed. The model 1S def1ned by modal data derived 
from f1n1te element modell1ng. The order reduct10n method applied 1S br1efly 
descr1bed. An att1tude control concept w1th low and h1gh author1ty control has 
been developed to des1gn an att1tude controller for the reduced model. The sta
b1l1ty and response of the or1g1nal system together w1th the reduced controller 
1S analysed. 

I. INTRODUCTION 

Th1S paper concentrates on theoret1cal aspects of the att1tude control 
problem of large flex1ble spacecraft. It reports on basel1ne 1nvest1gat1ons 
for the test and compar1son of des1gn approaches and techniques. 

The Ob]ect1ves of the study carr1ed out are the 1nvest1gat1on of control 
problems of large flex1ble spacecraft and the 1dent1f1cation of basic problems 
that w1ll be stud1ed exper1mentally. The f1rst steps have been the analys1s and 
def1nlt1on of requ1rements for the att1tude control des1gn and the dynam1cs mo
del set up. Then order reduct10n methods have been appl1ed to test the reduc
t10n methods and to achieve reduced order models. The next step 1S the control
ler des1gn 1tself, but 1t 15 clear that order reduct10n and controller des1gn 
have to be seen as elements of an 1terat1on loop, 1n order to come to a f1nal 
reduced order controller. The des1gn 1S f1nished by a performance evaluat10n 
and cr1t1cal assessment of the des1gned systems and the des1gn methods appl1ed. 
The 1dent1f1cat1on of bas1c problems leads to the def1n1tion of an appropr1ate 
test set up and test program to study those problems exper1mentally. F1g. 1-1 
shows the study task flow 1n phase 1. 
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REQUIREMENTS 
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II. DISTRIBUTED FLEXIBILITY MODEL 

CRITICAL 

TEST PROGRAM 
DEFINITION 

PHASE 1 
REPORT & 

PRESENTATION 

Three models were used as reference spacecraft ~n the stud~es. The models 
do no represent real or planned spacecraft, but they are representat~ve for the 
character~st~cs wh~ch playa role ~n the design of attitude control systems for 
future large spacecraft. The simplest model is a free beam. The second model has 
been proposed ~n the l~terature as a gener~c model. It ~s a flat plate w~th a 
rlgld centre body and has been developed at Purdue un~vers~ty. The th~rd model 
~s constructed of three coupled plates w~th the goal to have a spacecraft w~th 
nonhomogeneous flexib~l~ty. This three plate model proved to be the most inter
estlng model, glv~ng the most design problems. We w~ll therefore concentrate on 
th~s model. The model cons~sts of a central plate, hav~ng h~gher st~ffness and 
mass dens~ty, wh~ch ~s coupled to two ~dent~cal plates w~th lower eigenfrequen
Cles. The modal data of th~s trlple plate conf~guration has been derived from a 
flnlte element model. The phys~cal s~ze ~s 100 m by 150 m. Each of the three 
plates has a w~dth of 50 m. 

The thickness of the ~nner plate is set to 2 m, whereas the outer plates 
2 

are 1 m 1h~ck. The elast~city modules ~s 2. E5 N/m for th] outer plates and 
7.ES N/m for the centre plate. The mass density is 2 kg/m . These values are 
qu~te arb~trary. They have been selected ~n order to get densly packed frequen
c~es start~ng at about 0.02 Hz. From the 40 element model with 171 degrees of 
freedom the follow~ng 20 lowest e~genfrequenc~es were found: 
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Mode Omega [rad!s] Frequency [Hz] 

1 0 0 
2 0 0 
3 0 0 
4 0.139 0.022 
5 0.146 0.023 
6 0.269 0.043 
7 0.281 0,045 
8 0.292 0.047 
9 0.311 0.050 

10 0.483 0.077 
11 0.628 0.100 
12 0.668 0.106 
13 0.763 0.121 
14 0.793 0.126 
15 0.972 0.155 
16 1.001 0.159 
17 1.173 0.187 
18 1.243 0.198 
19 1.259 0.200 
20 1. 459 0.232 

Table 2.1: EIGENFREQUENCIES OF THE DISTRIBUTED FLEXIBILITY MODEL 

plots of the f1rst three flex1ble Modes are g1ven 1n F1g. 2.1. Input/Out
put transfer funct10ns of the model are evaluated d1rectly from the eigenvector 
solut10ns of the free-free structure. 

The transfer funct10n cons1sts of parallel second order terms w1th resonant 
frequenc1es accord1ng to the e1genfrequenc1es and we1ght factors accord1ng to 
the modal ga1ns. It can be expressed 1n state space form by decoupled second or
der state space forms for each mode. Hence the system matr1x cons1sts of a band 
of 2 by 2 matr1ces along their d1agonal. 

So far each node of the structural model can be def1ned as input or output 
stat10n. For the use of the model 1n the stud1es different sensor/actuator sta
t10ns have been def1ned. The follow1ng conf1guration proved to be most reason
able: 

Rotat10n sensor x, y at the centre node 
Translat10n sensors z and force actuators z at the edges of the outer 
plates. 

The centre node 1S cons1dered as a reference for att1tude control. 

III. ORDER REDUCTION BY THE MODAL APPROACH OF LITZ 

The 1dea of order reduct10n 1S to try to approx1mate a system of h1gh order 
by a lower order system 1n order to ease the s1mulat10n, analys1s and controller 
design. The des1gn based on a reduced order system may also be less costly and 
reduces the controller order, wh1ch may be 1mportant for the 1mplementat10n 1n 
the control computer aboard a spacecraft. 
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The f~n~te element model ~tself ~s already a reduced model and the or~g~nal 
system order ~s determ~ned by the number of e~gensolut~ons computed from the FEM. 
In our case the or~g~nal order ~s 40. The mathemat~cal methods of order reduct~on 
are then appl~ed to th~s 40th order system called evaluat~on model. S~nce our 
model ~s based on modal data ~t appears reasonable to use modal methods for order 
reduct~on. 

Modal approaches to order reduction requ~re a transformat~on of the or~g~
nal system to the Jordan canon~cal form and take only the dom~nant e~genvalues 
of the or~g~nal model ~nto a reduced model. Methods have been developed since 
the m~d s~xt~es. The techn~ques of E.J. Dav~son, S.A. Marshall and M.R. Ch~dam
bara ~n the~r or~g~nal vers~ons have some shortcom~ngs, wh~ch have been avo~ded 
by a newer techn~que of L. L~tz [1]. In [2] a un~f~ed der~vat~on and critical 
rev~ew of modal approaches has been g~ven. Litz' techn~que ~s shown to be both 
h~ghly accurate and powerful. Therefore this technique has been selected for 
appl~cat~on to the flex~ble spacecraft model. L~tz' method l~nks modal techn~
ques to least square reduct~on techn~ques. It gives an explicit formulation for 
the reduced model and ~s opt~mal in the sense that it minim~zes the weighted ~n
tegral of the square of the dev~at~ons between the or~ginal and the reduced mo
del. 

The or~g~nal states 
subvector ~1: 

are sorted such as to have the relevant states in a 

[ :: 1 
A ~1 + B u. (3.1) 

The relevant states may be ~dent~fied by their phys~cal mean~ng or ~t may 
be the states wh~ch contr~bute to the output vector: 

The reduced model y~elds an approx~mat~on for the substates ~1: 

and for the output z: 
'V 

C Xl' R-

(3.2) 

(3.3a) 

(3.3b) 

As for all modal methods the or~g~nal system (3.1) ~s transformed by: 

x v z (3.4) 
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to Jordan canonlcal form: 

[ 
~1 

1 [ 
Ai 0 

1 [ 
~1 ] [ :::] + u (3.5) 

i2 0 11.2 ~2 

where 

[ :::j B* V 
-1 

B. 

Now agaln the transformed state vector lS reordered such that ~1 represents 
the domlnant part, found by certain dominance measures. The structure of the 
orlglnal model lS shown In Flg. 3.1. 

r - - - - - - - - - --, 
tI I I u, 1_'_1 I, V 11 ! I Vl1 

I 
Is-X, I 

* I I u, B, • • • I I 
~ • • • I V21 !I I • • • !1 tI I 1 I I V 21 

• 
• um 1m ( 

I s-Xm I • 
• I 

* I V,2 !2 Um.l J 1 1 zm+l I • -ls-Xm+ll V 12 I=-I !2 Btl • • • • I ( 
up- 2 • • • I • • • • V22 !2 u~ 1 1 I In I V 22 

I s-X n I I 

I 
L - __ - - - - - - - __ .J V 

Flg. 3.1: STRUCTURE OF ORIGINAL MODEL 

The reduced model lS not derlved by neglectlng the nondomlnant elgenmotl
ons ~2' but by reconstructlng the ~2 out of the retalned states ~1 (see Flg. 
3.2) : 

'U 

~2 E ~1 (3.6) 

'U 
glvlng ~1 (V 11 + V12 

E) ~1 M ~1 (3.7) 

'U 

~2 (V 21 + V22 
E) ~1 L ~1 (3.8) 

and the reduced model (3.3) as: 

'U -1 'V 
B * ~1 = M A M ~1 + M u. 1 1 

(3.9) 
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r-- -- - - - -- - - ---, 
I( 

Vn !1 I u1 ~' I 
Z, 

~ 
5 -A, I VI1 

I 
• • I 

s* • I • 1 • • I-
• I( • • V21 !, 

• I !1 
up ~_1_li Zm V21 { 
~ 

S-Aml 
• I 

I ••• I 
Zm.' V12!2 I 

V12 I • I X
2 E • • I-

• ( 

'in V22 V22!2 1 • 
I 
I - I 
I L _____________ .J 

F1g. 3.2: REDUCED MODEL OF LITZ 

The matr1x E 1S determ1ned such that the follow1ng performance index 1S m1n1m1-
zed: 

r 00 

I L 
2 

J It. (t) /2 dt (3.10) q 
1=1 

--:L 
1 0 

w1th t. (t) = z (t) 
--:L -21 

'V 
- z 

-21 
(t) (r number of 1nputs) • 

The 1ndex 1 1nd1cates that only the 1-th 1nput 1S exc1ted by a un1ty step. The 
we1ght factors q allow d1fferent we1ght1ng of the system 1nputs. 

1 

The opt1m1zat1on problem can be solved explic1tly for: 

E = E (B*, 11., q1 ' ... , q ). 
r 

The solut10n also guarantees stat10nary accuracy by: 

t. (t + (0) = 0 
--:L 

for 1 = 1, r. 

In order to determ1ne the low-order system completely, the output matr1x 
C

R 
of eqn. (3.3b) has to be def1ned. If the h1gh-order system output equat10n 

has the form of eqn. (3_2) th1s problem 1S easy to solve: 

CR = c 1 • (3.11) 

But 1f var1ables of ~2 are also necessary to evaluate the output y of the h1gh
order system, that means: 

(3_ 12) 
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there are two poss1b1l1t1es, on pr1nC1ple, to get C . 
R 

The f1rst one lS to approx1mate the state var1ables of ~2 by means of the 
eqns. (3. 7) and ( 3 • 8) : 

'\, -1 '\, 
X = LM x -2 -1· 

'\, '\, 

Subst1tut1ng the state vector x 1n eqn. 
the low-order output equat1on: 

(3.12) by 1tS approx1mat1on ~1' ~2 Y1elds 

Thus the low-order output matr1x lS glven by: 

(3.13) 

The second poss1b1llty lS a so-called "transformation to sensor-coord1na
tes". A transformat1on T lS appl1ed to the state vector x of the h1gh-order 
system: 

x T~ (3.14) 

Y1eld1ng a new state vector ~, whlch conta1ns the measurable var1ables ~ 
(sensor-coord1nates) as an element: 

The other subvector ~ cons1sts of a llnear comb1natlon of the orlglnal vector x. 

The transformatlon matrlx T has to be deflned by the demand: 

c . T = [I 0]. , (3.15) 
q 

The so transformed hlgh-order model: 

~ 
-1 -1 

T AT ~ + T B ~, (3.16) 

~ [I, 0] ~ (3.17) 

lS of the same form as the system of eqns. (3.1) and (3.2). 

Thus, the low-order system lS obtalned by reduclng thls transformed hlgh
order model. Then the output matrlx C

R 
is glven by eqn. (3.11). 

Remark 1: The maln numerlcal difflculty when evaluatlng the low-order sy
stem matr1ces wlth LITZ's method lles In the fact that three matrlces have to 
be lnverted. Therefore they must be regular. Two of the lnverSlons are necess
ary to get the matrlx E and another one lS the lnverSlon of ~ In eqns. (3.9) 
and (3.13). One of the flrst mentloned matrlces can always be lnverted by an 
approprlate cholce of the welghtlng parameters q In eqn. (3.10). The other 

l 
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two matr1ces depend on parameters of the mathemat1cal model and cannot be 1n
fluenced. Therefore these matr1ces can get slngular. If such a case occurs the 
des1red matr1x E can be set to zero Y1eld1ng the low-order system matr1ces w1th
out opt1m1zat1on of the cr1ter1on 1n eqn. (3.10). Th1S result 1S 1dent1cal w1th 
the low-order model der1ved by the approach of DaV1son [3]. 

LITZ has also proposed a method of generat1ng a dom1nance measure. Th1S measure 
does not only take 1nto account the stab1lity of the eigenvalue, i.e. 1tS d1S
tance to the 1mag1nary axis, but 1n add1t1on its controllab1l1ty and observab1-
Ilty character1stics. To keep the presentat10n clear a slngle 1nput slngle out
put system w1th slngle e1genvalues A

l
, .•• , An 1S cons1dered. The state space 

descr1pt1on 1n Jordan canon1cal form 1S: 

A z + b* u 

y 

The vector elements b * and c * determ1ne the controllab1lity and observab1l1ty 

of the system. For b * = 0 th~ e1genmot1on z 1S not controllable with u, and 
1 1 

for c * = 0 1t 1S not observable from y. 
1 

The un1ty step response can be expressed as: 

n b* c* 
(e Ax • t -1) , L 

k k 
Y 

Ak 
t > o. 

k=l 

From th1S: 

can be taken as a measure of the 1nfluence of e1genvalue Ak on the dynam1c be
hav10ur of the output. The def1n1t1on of the equ1valent measure for multiple 
1nput mult1ple output systems 1S easy, considering each signal path from 1nput 
u to output y : 

J 1 

If th1S q k 1S related to the stat10nary value y , the d1mens1onless value 
1J 1Joo 

r 
l.Jk 

/q1Jk/ 

/Y1Joo/ 

glves a measure how the response y, (t) is 1nfluenced by the e1genvalue A
k

• As 
1J 

a Crl.ter1on 1t can be stated that e1genvalues with small r, k are not dom1nant 
w1th1n the path (1, J). 1J 
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A domlnance measure, whlch also reflects that the output is lnfluenced 
dlfferently from the lnputs, whlch may also have dlfferent amplltudes, can be 
deflned by: 

wlth 

d 
lJk 

N 
lJ 

r 
lJk 

N 
lJ 

max (/y. u I) 
-1 1.Joo Jmax J- ,r 

The evaluatlon of the domlnance wlth respect to the overall system can be done 
by elther the maxlmum or the sum of all measures d k wh1.ch belong to the eigen-

\ lJ value I\k: 

max d 
( ) 1.Jk 
l,J 

d 
lJk 

In reference [2] LITZ formulates the domlnance cr1.terion: 

The elgenvalues Ak wlth the highest measures ~, Sk are domlnant. 

Remark 2: Because the domlnance measure lmplies a div1.sion by Ak it would 
not be sUltable for zero-elgenvalues. But on the other slde a zero-elgenvalue 
represents an lntegrator. Therefore It is always domlnant and has to remaln in 
a low-order reduced model. 

IV. CONTROLLER DESIGN 

Beslde the h1.gh order of mathematical models of flexlble spacecraft the 
generally low natural damplng lS of relevance. The control problems can be lar
gely reduced wlth lncreased damplng of the structural vibratlons. One idea is to 
lncrease modal damplng by velocity feedback. The feedback with distributed sen
sors and actuators whlch only moderately modifles the natural modes and frequen
Cles of the structure has been named by Aubrun [4] as Low-Authorlty Control. 

The controller design has been separated into two tasks: 

Low-Authorlty Control (LAC) for damping augmentation 
Hlgh-Authorlty Control (HAC) for attitude control. 

As a deslgn goal the modal damping should be 1.ncreased to 5% due to LAC. 
The LAC des1.gn In the frame of thls study has been done by G. Schulz at DFVLR 
uSlng numer1.cal optimlzatlon [5]. Elght sensors and actuators have been placed 
at the edges of the outer plates. 

The low authorlty controller has been deslgned as feedback of the veloclty sen
sor output y: 

u -K y... + w (4. 1) 
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for the system 

x A x + B u - , (4.2) 

== C x . (4.3) 

The vector ~ represents the control var1able of the h1gh author1ty control
ler. The LAC ga1ns K have been der1ved such as to Y1eld 5% damp1ng. 

Dur1ng the study two approaches to controller deslgn have been compared: 

Step Approach 1 Approach 2 

1 Order reduct10n of or1g1nal LAC des1gn for high order 
hlgh order model model 

2 LAC des1gn for (reduced Order reductlon for LAC 
model or) h1gh order loop closed 
model 

3 HAC des1gn for reduced HAC deslgn for reduced 
model, LAC closed model from step 2 

These two approaches w1ll be dlscussed 1n the follow1ng and the most prom1ss-
1ng approach w1ll be 1dent1fled. 

The LAC des1gn algorlthm showed no problems when appl1ed to h1gh order 
models and the more modes are lncluded In the deslgn model the more the prob
lem of sp1llover 1S reduced. On the other hand the order of the des1gn model 
has no 1mpact on the controller 1mplementaton effort, because not full state 
feedback but output feedback 1S used. Therefore the use of h1gh order models 
for LAC deslgn is preferable. To make the model manageable some order reduc
t10n pr10r to LAC may be reasonable, but the model needs not to be reduced to 
such a low order as used for HAC des1gn. 

IV.1 HAC DESIGN WITH REDUCED-ORDER MODEL OF THE 
UNCONTROLLED SYSTEM 

Approach 1 starts w1th the order reduct10n of the uncontrolled h1gh order 
system (4.2). Th1S Y1elds the low-order model: 

'" AR ~1 + BR ~, (4.4) 

'" C
R ~1 (4.5) 

Connect1ng the output feedback (4.1) w1th the low-order model one gets: 

(4.6) 
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For thls LAC controlled low-order model a llnear state controller 

w (4.7) 

lS deslgned, mlnlmlzlng a quadratlc performance lndex. 

The state varlables are generallzed coordinates and cannot be measured di
rv 

rectly. Therefore an observer lS necessary to estlmate ~1' 

The observer deslgn is also based on the low-order model (4.6): 

rv 
~1 = y) , (4.8) 

The observer matrlx G
1 

can be evaluated as a statlonary Kalman fllter galn 
or by deslgnlng a controller for the transposed system. 

rv 
The estlmated state vector ~1 lS used In the HAC control law: 

w (4.9) 

Although the observer has been deslgned for the system In Eqn. (4.8), It 
lS assumed for the controller reallzatlon, that the observer stlll gives estl
mates ofrvthe state varlables ~1 when the output ~ of the physical system lS re
placlng y. 

ApplYlng the low authorlty controller K, hlgh authorlty controller R1 and obser
ver G

1 
to the hlgh-order system Ylelds the overall system: 

A -B K C -B 
R R R R 

(4.10) 

Slnce controller and observer have been deslgned for a low-order model the 
elgenvalues asslgned In the design steps may change In general, the overall 
system may even become unstable. 

IV.2 HAC DESIGN WITH REDUCED-ORDER MODEL OF THE 
LAC-CONTROLLED SYSTEM 

The second approach flrst couples the LAC to the hlgh-order system before 
order reductlon lS applled. The system of equatlon (4.2) is controlled by the 
LAC of equatlon (4.1) Yleldlng: 

X AL x + B '.!!..., (4.11) 

~ C x (4.12) 
wlth 

A = A - BKC (4.13) 
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Th~s system has been reduced us~ng the approach of L~tz. The reduced order sy
stem ~s: 

'V 'V 'V 
'V 

~1 A ~1 + B !!.., (4.14) 
L L 

'V 'V 'V 

Y... C
L ~1" (4.15) 

As before for the system of equat~on (4.14) a complete state feedback R2 ~s 

des~gned: 

w (4.16) 

m~n~m~z~ng a quadrat~c performance ~ndex. 

'V 
The observer for the state vector ~1 ~s des~gned for the low-order system (4.14), 
g~v~ng a ga~n matr~x G

2
. 

The overall system w~th 
control R2 becomes: 

observer G
2

, low-author~ty control K and h~gh-author~ty 

[~J [:2 -C BKC (4.17) 

The structure ~s descr~bed ~n F~gure 4.1. Both design approaches result ~n for
mally the same structure. This can be seen from the equat~ons (4.10) and (4.17). 
The d~fferences between both systems are in the parameter values of the observer 
and the h~gh-author~ty controller. Also the observer order ~s d~fferent. 

LAC 

K 

System -
Ir -- -- -- -- -- l 0 ~ u x l 

!~A!£+B!! C 
'-' 

L:: -- -- -- -- -- ~ 

Observer 

r;;: -- -- -- -- -- - I 
'" I 

v 
x =~x + BL ~ + G2 ~ I )-l-' 1 

-1 

I 
"- ~1 I HAC 

"- '" R2 CL 

F~g. 4.1: STRUCTURE OF THE OVERALL SYSTEM 
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IV.3 RESULTS 

In order to deslgn an overall controller for the dlstrlbuted flexlblilty 
model derlved In chapter 2 the LAC controller lS deslgned flrst. To do so a so
called local feedback has been deslgned by parameter optlmlzatlon meaning that 
the veloclty of a sensor at one certaln pOlnt has been used to excite only the 
actuator posltloned at the same positlon (collocated posltlonlng). The LAC gains 
of the output feedback K of eqn. (4.1) are glven In Table 4.1: 

0 o -43.8785 0 0 0 0 0 0 0 

0 0 0 -43.8785 0 0 0 0 0 0 

0 0 0 0 -43.8785 0 0 0 0 0 

0 0 0 0 0 -43.8785 0 0 0 0 

0 0 0 0 0 0 -96.2619 0 0 0 

0 0 0 0 0 0 0 -96.2619 0 0 

0 0 0 0 0 0 0 0 -96.2733 0 

0 0 0 0 0 0 0 0 0 -96.2733 

Table 4.1: OUTPUT FEEDBACK GAINS FOR LAC 

It has been deslgned on the base of the hlgh-order system Yleldlng 5% damplng 
for all elgenvalues at a mlnlmum. Wlthout LAC the lowest damplng has been 0.5%. 

Accordlng to the flrst approach a low-order model of the orlglnal hlgh-order 
system has to be evaluated. The dominance analysls of Litz presented in chapter 3 
marks 9 flexlble modes as domlnant. They are underllned In Table 4.2 where the 
domlnance values are deplcted. In addltlon wlth the 3 rigld body modes the low 
system order has to be 24. But wlth thls elgenvalue conflguratlon It was lmpos
slble to get a low-order system applYlng the method of Lltz because always one 
of the matrlces mentloned in the Remark 1 of chapter 3 becomes singular. Thus 
the low-order system matrlces have been evaluated wlth Davlon's approach (see 
Remark 1). 

Now, the LAC and thls low-order model have been sWltched together and for 
thls closed loop the hlgh authorlty controller as well as an observer have been 
deslgned. Flnally, the LAC, the HAC and the observer are connected wlth the 40th
order orlglnal model. Thls overall system lS stable but It lS only weakly damped 
dnd needs very hlgh control varlables u . These facts are demonstrated In FlgS. 

J 
4.2 and 4.3. For the second approach the low authorlty controller of Table 4.1 
lS sWltched to the hlgh-order system. For thls closed loop a dominance analysls 
has been performed. In addltlon to the three zero-elgenvalues whlch are always 
domlnant (see Remark 2) there are 11 elgenvalues wlth hlgh domlnance values (see 
Table 4.3). Thus, the system order 14 seems to be sUltable for a good approxima
tlon. Thls system order lS essentlally lower than In the flrst approach where 
the system order 24 has been necessary. 
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Table 4.2: DOMINANCE MEASURES OF LITZ Table 4.3: DOMINANCE ANALYSIS OF THE 
(only flex1.ble modes; the LAC CONTROLLED HIGH-ORDER 

dominant e1.genvalues are SYSTEM 
underl1.ned) (the dom1.nant e1.genvalues 

are underl1.ned) 

W1.th the reduct1.on techn1.que of L1.tz the low-order system matr1.ces have 
been evaluated. Because the high-order system output matrix C has only 20 zero
columns the output equat1.on 1.sn't of the form of eqn. (3.2). Therefore the low
order system output matr1.X CR has to be evaluated by eqn. (3.13). 

A transformat1.on to sensor-coordinates accord1.ng to eqn. (3.14) has not 
been successful because then always s1.ngular matr1.ces prevent the computat1.on 
of the low-order system matr1.ces w1.th L1.tz' reduct1.on techn1.que. 

On the base of the reduced-order system of order 14 the HAC des1.gn as well 
as the observer des1.gn have been performed. Now, the overall system cons1.st1.ng 
of the 40th-order system the 14th-order observer, the HAC and LAC has not only 
been stable but although the dynamic behav1.our 1.S cons1.derably smoother but nev
ertheless fast. In sp1.te of this the actuat1.ng var1.ables are one or two orders 
of magn1.tude lower than W1.th the f1.rst approach. Th1.s statement 1.S demonstrated 
by the F1.gs. 4.2 and 4.3. 

These favourable character1.st1.cs of the second approach have been poss1.ble 
although the order of the observer and of the HAC have been cons1.derably lower 
than 1.n the f1.rst one. Th1.s affects not only the off-l1.ne effort dur1.ng the de
s1.gn steps of the HAC and of the observer but also the onl1.ne computat1.on of the 
control law. 
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V. CONCLUSIONS 

From the experiences made the follow~ng design concept has been ~dent~fied 
as most promiss~ng: 

Def~n~t~on of sensors and actuators for low author~ty control (type, num-
ber, locat~on) 

Des~gn of LAC feedback ga~ns for a high-order model (output feedback) 

Order reduct~on of the h~gh-order system with LAC loop closed 

Des~gn of a h~gh author~ty controller for th~s low-order system. The HAC 
may use sensors and actuators d~fferent from those used for LAC. 

Des~gn of a state est~mator/observer for the low-order system. An observer 
~s needed s~nce the HAC ~s conce~ved as state feedback ~nclud~ng non-measu
rable var~ables. The low-order system should be used ~n order to decrease 
the computat~onal effort of the h~gh author~ty controller. 

Comb~ne LAC and HAC w~th a high-order evaluat~on model in order to analyze 
stab~l~ty and dynam~c behaviour. S~nce HAC feedback gains and state obser
ver have been des~gned for low-order systems, the influence of those modes 
wh~ch have not been ~ncluded ~n the des~gn model has to be ~nvest~gated. If 
there are problems w~th some modes the HAC des~gn steps, or even LAC, have 
to be repeated ~nclud~ng those cr~t~cal modes ~nto the des~gn model. 
The des~gn concept ~s summar~zed ~n the flow chart F~g. 5. 

NO 

No 

FINITE ElEMENT MODEL 

DEFINITION OF SENSORS AND ACTUATORS FOR DAMPING 
AUGMENTATION (LAC-DESIGN) TYPE, NUMBER, LOC~TION 

PERFORMANCE OF THE EVALUATION HODEL 

WITH LAC ACCEPTED? 

DEFINITION OF SENSORS AND ACTUATORS FOR ATTITUDE 

CONTROL (HAC-DESIGN). TYPE, NUMBER, LOCATION 

WITH LAC + HAC ACCEPTED' 

ATTITUDE CONTROLLER ACCEPTED' No 

(PERFORMANCE ANALYSIS) 

Flg. 5: CONTROLLER DESIGN CONCEPT FOR DISTRIBUTED FLEXIBILITY MODELS 
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ABSTRACT 

Numerous spacecraft missions currently being formulated exhibit several 
basic and sharply conflicting features: selected components (e.g., an optical 
train) of inherently flexible structures are to maintain precision pointing 
performance in a wide band disturbance environment. Within the overall process 
of synthesizing an active controller to deal with this difficult problem, the 
aspects of reduced-order modeling and of actuator and sensor selection are 
crucial to the successful implementation of any controller feedback strategy. 
The principal focus in this paper is on the influence of actuator and sensor 
selection upon the effectiveness of a specified controller strategy for 
wide band disturbance accommodation. A generic optical support structure is 
used for a number of design examples. Active transducer selections are made 
systematically based upon their direct contribution to optical pointing 
error. Controller designs incorporating the various transducer selections 
exhibit stability in the presence of unmodeled modes over a frequency range 
substantially beyond the bandwidth of the disturbance. 

1. INTRODUCTION 

The anticipated need for active control to quench vibrations in flexible 
space structures arises prinCipally because of stringent performance 
requirements involving certain structural components. High-precision pointing 
requirements for optical systems provide an important example. Synthesis of 
an active controller for flexible supporting structures is strongly influenced 
by inherent structural dynamic characteristics, such as low and clustered 
characteristic frequencies, and small inherent damping. Accommodation of 
anticipated disturbances without an unacceptable deterioration in system 
performance is fundamental. From the control synthesis viewpoint, a (small) 
number of periodic disturbances at known frequencies poses only mild 
difficulty. However, aperiodic disturbances with non-negligible power 
spectral density over a wide band of frequencies pose unusually severe 
difficulties, especially for the class of structures to be controlled. The 
purpose of this paper is to give a preliminary account of progress with a 
systematic approach to wide band disturbance accommodation in precision 
flexible space structures. 

* Draper Laboratory Fellow 
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2. AN EXPERIMENTAL APPROACH 

The process of synthesis for active control of flexible space structures 
requires the consideration of at least four principal factors, as illustrated 
in Figure 1: (1) the basic design of the structure to be controlled; (2) the 
selection of reduced-order models for design and for evaluation; (3) the 
selection of active transducers (actuators and sensors) both by functional 
type and by location; and (4) the determination of the controller feedback 
strategy. Much has been written regarding each of these factors standing 
alone, but very little is known about the detailed interactions of one factor 
with another. Especially important for flexible structure control is a mutual 
compatibility between the second and third factors listed. In order to gain a 
deeper understanding of the influence of each factor upon an overall design, 
and of their interactions, a scientific experiment for examination of the 
synthesis process has been defined. This approach is in the spirit of the 
recent comments of Ho [IJ in which he proposed a wider adoption of 
experimental investigation--not necessarily in hardware--in preference to 
attempts at manipulating new problems so as to fit into a known solution 
framework. The principal idea behind the proposed experiment is to execute a 
planned sequence of designs from beginning to end, at each stage of which 
some aspect of one of the principal factors in the synthesis process is 
changed. The objective at each stage of this sequence is not necessarily to 
obtain the best possible design, but rather to isolate the influence of one of 
the principal factors, or of one of the mutual interactions, upon the overall 
synthesis process. 

In the work reported here, the basic structural design (first factor) and 
the controller feedback strategy (fourth factor) are fixed, attention being 
focused on the influence that reduced-order model selections and active 
transducer selections have upon closed-loop stability and performance. The 
object of control is the ACOSS Model No.2 generated by Henderson [2,3J, which 
represents a generic optical support structure as illustrated in Figure 2. 
Revision 1 is chosen as the specific structural design, representing a 
compromise which retains certain improvements on the original structural 
design while avoiding the extremes of relatively high inherent flexibility or 
relatively high inherent stiffness, respectively, reflected in the other 
revisions. The controller feedback strategy is determined using a standard 
disturbance-rejection control design as described by Kwakernaak and Sivan [4J; 
i.e., a linear-quadratic-Gaussian (LQG) design in which the model of the plant 
to be controlled is augmented with a dynamic model of the disturbances, based 
on their statistical description. 

3. ACTIVE TRANSDUCER SELECTION 

The approach to active transducer selection incorporates two notable 
features. First, each transducer selected has relatively strong influence 
upon the design-problem variables to be regulated (for the demonstration 
examples--optical pointing error). Second, the aggregate of transducers 
selected is relatively sparse, containing fewer selections than the number of 
controlled modes. The approach was originally outlined by Fogel [5J, and 
has been amplified recently in Reference 6. A brief summary is presented 
here. 
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Mathematical Formulation of a Selection Problem 

The relevant structural dynamic equations in modal coordinates are: 

= (1) 

y (2) 

z = (D~)n (3) 

where n = {nI,···,nn)T is the vector of modal coordinates retained in the 
reduced-order model; n = diag (wi): n x n is the matrix of characteristic 
structural frequencies; ~: v x n is the truncation of the principal-axis 
transformation to modal coordinates (mode shapes of the reduced-order model), 
v being the number of physical generalized cOQrdinates; Z = diag (~i): n x n is 
the matrix of modal damping ratios assumed to represent inherent structural 
damping; uA = (Ul,···,um)T is the vector of inputs to the actuators; 

uD = (wl,···,Wy)T is the vector of disturbance inputs; y = (Yl,···,Yt)T is the 

vector of outputs from the sensors; z = (zl,···,zs)T is the vector of vari

ables to be regulated; and BA: v x m, BD: v x y, Cp : t x v, Cv: t x v, 
and D: s x v are the influence matrices associated with the actuators, distur
bances, displacement sensors, rate sensors, and regulated variables, respective
ly. The superscript (T) denotes matrix transpose. In the treatment presented 
here, it is assumed that the actuators and sensors are equal in number and 
co located , and that each has infinite bandwidth. To clarify the exposition, 
the regulated variable z in Eq. (3) is identified in what follows with the 
optical line-of-sight (LOS) rotation error and defocus 

z -
T 

(zLOSX' zLOSY' zDEFOCUS) (4) 

relative to local body axes (cf. Fig. 2) that is used in the design examples. 

Any candidate class of actuators may be identified with the columns of a 
matrix 

A 
11 
= (5) 

where the j-th column vector is the modal influence vector ~Tbi (j-th column of 

matrix ~TBA) associated with the actuator input u
j 

in Eq. (1). The vectors 

11 
= (6) 
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T T where dLOSX and dLOSY are the first two row vectors of the line-of-sight 

influence matrix D in Eq. (3), are taken as objective vectors for the 
selection problem. With a sufficiently large class of actuator candidates, 
the equations 

bLOSX lJ 
ajx = Ax - I 

j=1 j 

bLOSY lJ 
ajy = Ay - L 

j=1 j 

(7) 

(8) 

have solutions x = (x1,···,x
lJ

)T 

selection problem is to realize 
fewer actuators: 

T and y - (Yl'···'YlJ) , respectively. An ideal 

the representation of Eqs. (7) and (8) with 

where the sums in Eqs. (9) and (10) extend over the column indices of some 
submatrix A' of A formed by a selection of columns from A. 

(9) 

(10) 

In the absence of a linear algebraic solution to the ideal selection 
problem, an approximate selection problem using a least-squares formulation is 
a feasible alternative. This problem consists of seeking submatrices A' 
(formed by a selection of columns from A) and vectors x' and y' (having 
reduced dimension compatible with A') that minimize 

J(x'; A', bLOSX) A DbLOSX _ A'x' 02 = W 
( 11) 

and 

J(y' ; A', bLOSY) 
A DbLOSY _ A 'y' D 2 = W 

(12) 

respectively, and such that the columns of A' constitute a minimal set with 
respect to acceptable increases in the least-squares-minimum values realized 

2 in Eqs. (11) and (12). The notation laD W denotes the weighted inner product 

T a Wa, for a real symmetric positive-definite weighting matrix W: nX n. 

Theoretical Foundations 

Well-known theoretical tools are available for solving the approximate 
selection problem. The first of these is the representation theory for 
solutions to least-squares problems. An excellent summary may be found in 
Peters and Wilkinson [7J, with a more complete treatment available in Lawson 
and Hanson [8J. In brief, minima of Eq. (11) (similarly for Eq. (12» are 
characterized by solutions of the normal equations 
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(13) 

where the superscripts on A, b, and x appearing in Eq. (11) have been 
suppressed in an obvious way, and the weighting matrix has been taken to be 
the identity matrix (an equivalent problem under a simple scaling). The 
result in Eq. (13) represents an orthogonality relation satisfied by the 
residual vector b - Ax at a least-squares solution. An explicit 
representation of solutions for Eq. (13) is given by: 

x = w : n x 1 arbitrary (14) 

where (t) represents the Moore-Penrose [9,10] inverse, and I represents the 
identity matrix of appropriate dimension. The minimum value realized in 
Eq. (11) by any of the minima in Eq. (14) is 

J min 

and is zero when b is in the column space of A. 

(15) 

The representations of Eqs. (14) and (15) can be sharpened considerably 
if a full-rank factorization such as the OR-decomposition of Francis [11] is 
used to represent the A matrix. This decomposition for a matrix A: n x m 
having full rank k = min {n, m} has the form 

AP OR 

where P: m x m is a co~umn permutation matrix, 0: n x n is an orthogonal 
matrix, and R: n x m has the form 

s] 

or 

according as the matrix A is underdetermined (k = n < m), determinate 
(k = n = m), or overdetermined (k = m < n), respectively. The matrix 
Rl: k x k is upper triangular, its elements having the important diagonal 
dominance property 

> 
j 

L 
i=R. 

j = R., ... k· , R. = 1, . .. k 

(16) 

(17) 

(18) 

(19) 

(20) 

with diagonal elements positive. The relations in Eq. (20) are not obvious 
from the usual interpretation of Eq. (16) as the matrix representation of a 
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Gram-Schmidt orthogonalization. However, they result from the construction 
process involving the Householder [12] triangularization lemma that is employed 
in the LINPACK [13] algorithms for generating the decomposition. In particu
lar, Eq. (20) implies that the diagonal elements of the matrix RI form a 
non-increasing sequence. The expressions for Eqs. (14) and (15) in the over
determined case are especially significant; they are 

x = 

and 

where Q :: [QI 
Eq. (19). 

Q2] is partitioned compatibly with the block matrix in 

A Selection Algorithm 

(21) 

(22) 

Once an actuator candidate class is selected, with corresponding matrix A 
(cf. Eq. (5», the selection algorithm is executed as follows. 

Step I--Compute a QR-decomposition for A (cf. Eqs. (16), (17». 

Step 2--Truncate the rearranged matrix AP (cf. Eq. (16» by retaining 
only the first n columns. The truncated matrix A(I) has linearly independent 
columns and inherits a QR-decomposition from Step 1. Further eliminations from 
A(I) produce an overdetermined system with generally nonzero least-squares
minimum values representable by Eq. (22). 

Step 3--Compute least-squares solutions corresponding to A(I) 
(cf. Eqs. (11), (12». The result corresponding to Eq. (15) is zero. 

Step 4--Select an actuator for elimination from A(I) using one of the 
following considerations: 

Fact I: A small value for the ratio rnn/rn-I,n-I is a measure 

of near-linear-dependence of column an upon the other columns aj, j < n, 
in the truncated matrix A(I). 

Fact II: Small values of products raaxa (resp. rTTYT) 

appearing in the matrix product A(I)x (resp. A(I)y) in Eq. (11) (resp. 
Eq. (12», where x :: (xi) (resp. y :: (Yi» is a least-squares solution to 
Eq. (11) (resp. Eq. (12» from Step 3, Is an indication that aa (resp. aT) 
contributes less to the approximation measured by Eq. (11) (resp. Eq. (12» 
than the other aj , j > a (resp. j > T). This follows from Eq. (20). [6] 

Denote the reduced A(I) matrix (using either Fact I or Fact II) by A(2). 

Step S--Compute a QR-decomposition of A(2) (cf. Eqs. (16), (19». 

Step 6--Compute least-squares solutions corresponding to Eqs. (11) 

and (12) for A(2). 
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Step 7--Repeat Steps 4 through 6, iteratively, generating a sequence of 

matrices {A(i)} with successively fewer columns. 

Step 8--Termination occurs when a reduced A matrix, say A', is obtained 
such that further eliminations result in exceeding a prespecified tolerance on 
the minimUM values corresponding to Eq. (22) for either Eq. (11) or Eq. (12). 
The actuator selections corresponding to A' then constitute a minimal 
selection. 

Remarks--Since each execution of Step 4 may suggest up to three distinct 
candidates for elimination, the aggregate of alternatives for elimination 
generated by the algorithm is generally an expanding lattice. The number p of 
actuators in a minimal selection is of special interest. Results may be 

~ described in terms of the non-negative parameter ~ = n - p called the level 
of reduction (from the number of controlled modes). The qualitative richness 
of the elimination lattice is also of interest. 

4. DESIGN EXAMPLES 

An artist's conception of a generic optical support structure represented 
by ACOSS Model No. 2 and used as the object of control for the design examples 
of the experiment is depicted in Figure 2. Also indicated are the locations 
(node 37 on the upper support truss and node 46 on the equipment section) and 
lines of application of a wideband disturbance. A profile of the power 
spectral density assumed for each disturbance is shown in Figure 3. In order 
to reduce computation costs, each disturbance has been assumed fixed in 
direction (at an equal angle with each body axis). 

To assist in selecting reduced-order models for design, the structural 
modes are ranked in accordance with their open-loop response to the two 
disturbances. The optical pointing error equation for the full-order system 
has the form of Eqs. (3), (4), and can be written (only the first two 
components contribute to the pointing error) as 

(D~)n = (23) 

a where zLOS: 2 x 1 is the line-of-sight pointing error due to a unit displace-

ment in mode a, and N = 150 is the number of flexible modes in the full-order 
system. The root-mean-square (RMS) values of the Euclidean norm of the modal 

a error coefficients zLOS of Eq. (23) in response to the total disturbance are 

listed in Table 1. By comparison, the specification for the optical pointing 
error ariSing from all the modal influences is that each of the two components 
of the variable zLOS be less that 0.05 ~-radians in magnitude. An inevitable 
feature of such a ranking is that, in general, a selected group G of consecu
tively-ranked modes is not contiguous in frequency; i.e., there exist modes not 
in G which are interlaced in frequency with modes in G. This is seen by 
comparing Tables 1 and 2 for the first eleven modes in the ranking of Table 1. 
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A reduced-order model having this property is called interlaced; otherwise it 
is called contiguous. 

Principal observations with respect to the performance of the 
selection algorithm that have emerged from the work to date are the 
following: 

(1) Column ordering with respect to initial elimination that is 
generated by the initial factorization (cf. Step 1) of the matrix of 
actuator candidates may be represented approximately by the 
following partition (cf. Eq. (16»: 

~ = [A : A Translation' Rotation 

where the subscripts of each block submatrix represent groupings 
of actuators of the same functional type (the rank within the 
ordering decreasing toward the right in Eq. (24»; 

(2) The level of reduction increases when: 

(a) Interlaced reduced-order design models on which active 
transducer selection is based are made contiguous, or 

(b) The class of actuator candidates is enlarged from the axial 
type to include either translational or rotational types; 

(24) 

(3) Minimal selections which realize the same level of reduction are not 
necessarily unique. 

The four design examples which follow demonstrate the first two observations. 
The following are assumed in each design example: the modal damping in Eq. (1) 
is taken as ~i = 0.001 for all modes; the weighting matrix W in Eqs. (11) and 
(12) is the diagonal matrix whose nonzero entries are the disturbance-induced 
error values listed in Table 1 for the modes selected; the tolerance 
parameter for Step 8 of the selection algorithm is taken as '0 = 10-6• 

Specifications for the four examples are summarized in Table 3. 
The reduced-order model for Example A consists of the first eleven modes in 
the ranking of Table 1. For the remaining examples, this model is augmented 
so as to become contiguous as indicated in Table 2. An exception is that mode 
19 is not included in the numerical implementation of the active transducer 
selection because the very small associated weighting from Table 1 results in 
ill-conditioning. Its influence upon the optical pointing error is also 
negligibly small. The actuator candidate class for Examples A and B consists 
of all node-connecting elements of the finite-element model as axial 
actuators. For Examples C and D, this class is enlarged to include 
translational and rotational actuators, respectively, at nodes. 
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A summary of the selection results for each example is also shown in 
Table 3, and pictorial representations of the minimal selections are shown in 
Figures 4 through 7, respectively. The principal observations noted above may 
be deduced from Table 3, except for the existence of nonunique minimal selec
tions. 

Disturbance-rejection control designs employing the active 
transducer selections in Examples A through D were made. The specific form of 
the functional being minimized in the LQ designs is: 

J 

where uA and z are the variables in Eqs. (1) and (4), respectively, 
Q = diag (qi): 3 x 3 is the regulated-variable weighting matrix, and PR is 
the actuator-input weighting parameter. Although the measurement equation 
Eq. (2) does not model sensor noise, a matrix POlt, where Po > 0 is small 
and It is the txt identity matrix, is introduced into the calculations 
playing the role of a fictitious sensor noise covariance matrix to permit a 
nonsingular approach to the Kalman filter design. Each LQ design is stable and 
meets performance specifications relative to the optical pointing error. In 
addition, each LQG design is examined for stability in the presence of residual 
modes using an expanding family of contiguous evaluation models. Table 4 
summarizes the results. For clarification, it should be noted that the design 
in Example A is stable when connected across the interlaced reduced-order model 
depicted in Table 2, but is unstable when connected across the contiguous 
closure (i.e., modes 7 through 24) of that interlaced model. Such unacceptable 
behavior is one of the reasons for restricting attention subsequently to 
contiguous reduced-order models for design. The results in the remaining 
examples indicate a range of stability in the presence of unmodeled modes 
substantially beyond the 5 Hz extent of the reduced-order design models. It 
can also be demonstrated (not shown here) that an appropriate augmentation of a 
minimal selection by a larger number of actuators (yet fewer than the number of 
controlled modes) can enhance the stability robustness indicated. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

Preliminary results from a systematic approach to the accommodation 
of wide band disturbances for precision pointing in flexible space structures 
have been encouraging. Substantial insight into an appropriate procedure for 
selecting active transducers has been obtained. A capability for making 
selections which have direct influence upon the variables to be regulated and 
which are substantially fewer in number than the controlled modes has been 
demonstrated. The selection process itself, as well as the selections it 
produces, exhibits potentially beneficial design flexibility. 

Linear-quadratic-Gaussian disturbance-rejection controllers employing 
transducer selections generated as described herein demonstrate stability in 
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the presence of residual modes over a frequency range substantially beyond the 
bandwidth of the disturbance. These demonstrations are significant in that 
stability-enhancing adjustments of the controller feedback strategy have been 
deliberately postponed so as to focus on the influence that the selection of 
reduced-order models and of active transducers have upon closed-loop stability 
and performance. With appropriate modification of the estimator portion of 
the LQG designs, compensators may readily be found that employ the transducer 
selections in Examples C and D and which are capable of stabilizing the full 
150-mode structural model. This will be discussed in a future paper. 

Finally, the active transducer selection procedure outlined here is by no 
means restricted to the consideration of colocated actuator-sensor pairs. In 
fact, it can be readily modified to provide for an independent selection of 
sensors (e.g., so as to provide improved information on disturbance effects). 
The efficacy of such a modification is currently being investigated. 
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artist's conception. 
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Table 1. Ranking of open-loop modal responses to wideband disturbance. 

Rank Mode RMS LOS-Error Rank Mode RMS LOS-Error 
(Il-rad ) (Il- rad ) 

7 0 600.97 26 11 1.19 

2 24 0 455.77 

3 23 0 105.89 
4 13 0 92.65 35 21 0.72 
5 22 0 77.04 
6 12 0 72.43 
7 16 0 32.47 42 20 0.25 
8 14 0 15.91 
9 10 0 12.94 

10 8 0 12.22 
0.09 47 17 

11 9 0 5.06 
12 39 5.01 

78 18 0.005 

22 15 1.45 

145 19 lE-22 

Table 2. Characteristic frequencies for ACOSS Model No. 2 and 
reduced-order models; 0 Design (interlaced) 
• Design (contiguous) • Evaluation (contiguous) • 

Moelp Frequency Mode Frequency 
(Hz) (Hz) 

7 0 • • 0.148 25 • 5.162 

8 0 • • 0.282 26 • 5.170 

9 0 • • 0.319 27 • 7.877 

10 0 • • 0.335 28 • 7.918 
11 • • o 468 29 • 8.772 
12 0 • • 0.583 30 • 8.776 

13 0 • • 0.601 31 • 8.838 
Il, 0 • • 0.673 32 • 8.980 

15 • • 0.960 33 • 9.620 
16 0 • • 1.092 34 • 10 40 

17 • • 1.839 35 • 11.67 
IR • • 1.844 36 • 12.27 
19 • • 1 R89 37 • 13 39 
20 • • 1.990 38 • 13.62 

21 • • 2.060 39 • 14.77 

22 0 • • 2.452 40 • 16.43 

7J 0 • • 2.472 41 20.83 

24 0 • • 3.242 42 21.79 
43 21 84 
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Table 3. Active transducer selection: 
specifications and results. 

design example 

Actuator Candidate Minimal Selection Level of 
Fxample Ilesi!(n Model Class Rtchnells She (p) & Type Reduction (~) 

Rank 1-11 Axial only 10 A Interlaced Sparse 1 
(n - 11) (II - 137) (adal) 

Rank 1-11 Axial only 14 
I! Conti!(uous* Moderate (-) 4 

(n - 18) (II - 137) (adal) 

Axial and Nodal 
Translation 

Rank 1-11 (II - 311) 12 
C Conti!(uous* ----------------- Moderate (+) (translation) 6 

(n - 18) Adal and Nodal 
Transl. & Rotation 

(II - 485) 

Rank 1-11 Axial and Nodal 
5 D Contiguous· Rotation Very rich (rotation) 13 

(n - 18) (II - 311) 

* Mode 19 excluded numerically 

Table 4. Controller design and evaluation. 

Weights LQ LOG LOG 
(modes 7-24) (modes 7-24) (modes 7-36) Modes 

Actuator/ in 

Sensor PR LOSX LOSY DEFOCUS LOSX LOSY DEFOCUS LOSX LOSY DEFOCUS Stable 
Eval-

Selection ql q2 q3 and 
(l0-3m) (l0-3m) (10-3m) uatlon 

Po (Ilr) (pr) ( Ilr) (Ilr) ( Ilr) ( Ilr) 

Design 
Objective - - - - 0.05 0.05 0.025 0.05 0.05 0.025 0.05 0.05 0.025 7-156 

A 
103 101 10-4 10-17 

·Un-
(10 axial) 0.0364 0.02093 0.00180 stable 

B 
103 10 1 10-4 10-17 (14 axial) 0.01958 0.01146 0.00408 7-29 

C 
100 10-1 10-5 10-17 (12 transl. ) 0.00532 0.00851 0.00136 0.00644 0.05073 0.00136' 31.44 19.16 0.03848 7-39 

D 
101 10-1 10-5 10-17 (5 rot.) 0.05587 0.04776 0.00496 0.06019 0.16216 0.00496 7-33 

* Unstable over modes 7-24 inclusive 

448 NASA-JPL-Coml LA Cahf 



End of Document 


