8 research outputs found

    Solving multivariate functional equations

    Full text link
    This paper presents a new method to solve functional equations of multivariate generating functions, such as F(r,s)=e(r,s)+xf(r,s)F(1,1)+xg(r,s)F(qr,1)+xh(r,s)F(qr,qs),F(r,s)=e(r,s)+xf(r,s)F(1,1)+xg(r,s)F(qr,1)+xh(r,s)F(qr,qs), giving a formula for F(r,s)F(r,s) in terms of a sum over finite sequences. We use this method to show how one would calculate the coefficients of the generating function for parallelogram polyominoes, which is impractical using other methods. We also apply this method to answer a question from fully commutative affine permutations.Comment: 11 pages, 1 figure. v3: Main theorems and writing style revised for greater clarity. Updated to final version, to appear in Discrete Mathematic

    Permutations with forbidden subsequences and a generalized Schröder number

    Get PDF
    AbstractUsing the technique of generating trees, we prove that there are exactly 10 classes of pattern avoiding permutations enumerated by the large Schröder numbers. For each integer, m⩾1, a sequence which generalizes the Schröder and Catalan numbers is shown to enumerate m+22 classes of pattern avoiding permutations. Combinatorial interpretations in terms of binary trees and polyominoes and a generating function for these sequences are given

    Combinatorics of fully commutative involutions in classical Coxeter groups

    Full text link
    An element of a Coxeter group WW is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. In the present work, we focus on fully commutative involutions, which are characterized in terms of Viennot's heaps. By encoding the latter by Dyck-type lattice walks, we enumerate fully commutative involutions according to their length, for all classical finite and affine Coxeter groups. In the finite cases, we also find explicit expressions for their generating functions with respect to the major index. Finally in affine type AA, we connect our results to Fan--Green's cell structure of the corresponding Temperley--Lieb algebra.Comment: 25 page

    The enumeration of fully commutative affine permutations

    Get PDF
    We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci--Del Lungo--Pergola--Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations.Comment: 18 pages; final versio

    The excedances and descents of bi-increasing permutations

    Full text link
    Starting from some considerations we make about the relations between certain difference statistics and the classical permutation statistics we study permutations whose inversion number and excedance difference coincide. It turns out that these (so-called bi-increasing) permutations are just the 321-avoiding ones. The paper investigates their excedance and descent structure. In particular, we find some nice combinatorial interpretations for the distribution coefficients of the number of excedances and descents, respectively, and their difference analogues over the bi-increasing permutations in terms of parallelogram polyominoes and 2-Motzkin paths. This yields a connection between restricted permutations, parallelogram polyominoes, and lattice paths that reveals the relations between several well-known bijections given for these objects (e.g. by Delest-Viennot, Billey-Jockusch-Stanley, Francon-Viennot, and Foata-Zeilberger). As an application, we enumerate skew diagrams according to their rank and give a simple combinatorial proof for a result concerning the symmetry of the joint distribution of the number of excedances and inversions, respectively, over the symmetric group.Comment: 36 page
    corecore