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Abstract

Using the technique of generating trees, we prove that there are exactly 10 classes of pattern
avoiding permutations enumerated by the large Schr�oder numbers. For each integer, m¿1, a
sequence which generalizes the Schr�oder and Catalan numbers is shown to enumerate

(
m+2
2

)
classes of pattern avoiding permutations. Combinatorial interpretations in terms of binary trees
and polyominoes and a generating function for these sequences are given. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Permutations with forbidden subsequences

Let Sn denote the symmetric group on [n] = {1; 2; : : : ; n}. For � ∈ Sn−1 and j ∈ [n],
let �j be the permutation in Sn obtained from � by inserting n into the jth position.
That is,(

i
�j(i)

)
=
(

1 2 · · · j − 1 j j + 1 · · · n
�(1) �(2) · · · �(j − 1) n �(j) · · · �(n− 1)

)
:

Throughout this paper, we will write only the bottom line of the above two-line notation
for permutations.
Permutations which avoid certain patterns or subsequences have been widely studied.

Much of the background information related to this paper can be found in [18,19].

De�nition 1. Let  ∈ Sk . A permutation � ∈ Sn, is said to be -avoiding if there
is no sequence of integers i1; i2; : : : ; ik such that 16i(1)¡i(2)¡ · · ·¡i(k)6n and
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�(i1)¡�(i2)¡ · · ·¡�(ik). The subsequence {�(i( j))}kj=1 is said to have type . We
write Sn() for the set of -avoiding permutation of length n. More generally, if �⊂ Sk ,
let Sn(�) =

⋂
∈� Sn() be the set of all permutations in Sn which avoid every  ∈ �.

If � ∈ Sn−1(�), then we call j an active site if insertion of n into the jth position of
� yields an element of Sn(�).

For example, if �={132; 231}, then Sn({132; 231}) is the set of permutations in Sn,
none having a three-element subsequence in which the middle element is
the largest. S4({132; 231}) = {4321; 3214; 4213; 2134; 4312; 3124; 4123; 1234}, and
|S4({132; 231})|=8. The active sites (indicated by arrows) of ↓213↓ are sites 1 and 4. It
was shown by Schmidt and Simion [15], and also by West [21] that |Sn({132; 231})|=
2n−1. In the same reference, Schmidt and Simion enumerate Sn(�) for all �⊂ S3. In
the case where � consists of a single permutation in S4, the reader is referred to work
of Babson and West [1], Bona [3,4], Regev [12], Stankova [16], and West [18–20].
It will be convenient to de�ne the reversal, �� ∈ Sn of a permutation � ∈ Sn as

��(i) = �(n+ 1− i), and the complement, �∗ ∈ Sn of � as �∗ = n+ 1− �(i). Then the
following lemma (taken from Simion and Schmidt [15]) limits the number of cases
which need to be enumerated. In [20], Lemma 2 is formulated in terms of an action
of the dihedral group D4 on permutation matrices.

Lemma 2. For any set � of permutations in Sk ; let ��={ �:  ∈ �}; �∗={∗:  ∈ �};
and �−1 = {−1:  ∈ �}. Then;

� ∈ Sn(�) i�
�� ∈ Sn( ��) i�
�∗ ∈ Sn(�∗) i�

�−1 ∈ Sn(�−1):

Thus; |Sn(�) = |Sn( ��)|= |Sn(�∗)|= |Sn(�−1)|:

For the purpose of enumerating Sn(�), we say that the sets �; ��; �∗, and �−1 as
de�ned in Lemma 2 are equivalent.
For example, if � consists of a single permutation in S3, this lemma gives that

|Sn(132)|= |Sn(231)|= |Sn(312)|= |Sn(213)| and |Sn(123)|= |Sn(321)|. In this case, it
is well known that |Sn(�)| = cn = 1=(n + 1)

(
2n
n

)
, the nth Catalan number. The �rst

explicit enumeration of 321-avoiding permutations seems to be due to Hammersley [9].
The �rst published proof is a combinatorial proof given by Rogers [14]. Knuth [10]
�rst proved that an(213) = cn. Bijective proofs that |Sn(321)| = |Sn(213)| have been
given by Simion and Schmidt [15], West [18], and Richards [13].
In this paper, we consider the following 10 pairs of permutations (1; 2) ∈ S4 × S4:
I. (1234; 2134) II. (1324; 2314) III. (1342; 2341) IV. (3124; 3214) V. (3142; 3214)

VI. (3412; 3421) VII. (1324; 2134) VIII. (3124; 2314) IX. (2134; 3124) and
X. (2413; 3142).
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Gire [8] and West [18] showed that for three of these pairs, |Sn(1; 2)| = rn−1,
the (n − 1)st large Schr�oder number. The generating function ∑n¿1 rnx

n = (1 + x −√
1− 6x + x2=2), with r0 = 1, de�nes rn. It is referred to as ‘large’ in order to dis-

tinguish it from the Schr�oder number sn, where rn = 2sn, for n¿ 0. The �rst few
terms of the sequence are (r0; r1; r2; r3; : : :) = (1; 2; 6; 22; 90; 394; 1806; : : :). Gire showed
that |Sn(2341; 3241)| = rn−1. (By Lemma 2, (2341,3241) is equivalent to pair IV on
our list.) West showed that Sn(2413; 3142)((2413; 3142) is pair X) and Sn(4132; 4231)
((4132,4231) is equivalent to pair II) are also counted by rn−1.
Based on computer-generated data for |Sn(1; 2)|, where (1; 2) is any pair in S4×S4,

and n67, Richard Stanley (private communication) conjectured that these 10 pairs are
all enumerated by the Schr�oder numbers. A result of Stanley’s computations is that
there are at most 10 pairs which show that no other pair satis�es |S7(1; 2)| = 1806.
In Section 3 we verify Stanley’s conjecture:

Theorem 3. There are exactly 10 pairs (inequivalent in the sense of Lemma 2);
(1; 2) ∈ S4×S4 such that the number of permutations avoiding both 1 and 2 is the
(n− 1)st large Schr�oder number.

In Theorem 8, we generalize West’s [18] results concerning the Catalan and Schr�oder
numbers to enumerate Sn(�) where � is a certain set of m! permutations in Sm+2.
Taking m = 1, we reproduce the Catalan result. Taking m = 2 we con�rm Stanley’s
conjecture, Theorem 3, for the �rst six pairs on the above list. For each m¿ 2, we get

a sequence {an(m)} which generalizes the Schr�oder and Catalan numbers, and
(
m+2
2

)
classes of permutations counted by {an(m)}. In Proposition 11 we verify Theorem 3
for the remaining three pairs.

2. Generating trees

The enumerative technique used by West in [18,19], was that of generating trees,
�rst introduced in the study of Baxter permutations [5]. In addition to giving many
new enumerative results, this technique has the advantage that it often also gives a
natural bijection between equinumerous sets of permutations. We are able to extend
West’s de�nition of Catalan and Schr�oder trees to obtain our results. Thus, in addition
to enumerating certain classes of permutations, we obtain combinatorial proofs that
some of these classes are equinumerous.

De�nition 4. A generating tree is a rooted labeled tree with the property that if v1 and
v2 are any nodes with the same label and l is any label, then v1 and v2 have exactly
the same number of children with the label l. To specify a generating tree, it su�ces
to specify

• the label of the root, and
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• a set of succession rules de�ning the number of children a node with label k has
and what the label of each child is.

Using the notation of West [18], we are interested in the number of nodes on level n,
denoted by �n with the root being on level 1.

For example, the complete binary generating tree is de�ned to have the labels:

• Root: (2).
• Rule: (2)→ (2)(2).

This notation means that any node with label 2 will have two children, each of which
also has label 2. In this generating tree, �n = 2n−1.

De�nition 5. For a set of forbidden permutations, � = {1; 2; : : : ; l} de�ne the tree
T (�), as the rooted, labeled tree with root (1) ∈ S1(�). The vertices on the nth level
are the permutations of Sn(�): � ∈ Sn(�) is a child of �′ ∈ Sn−1(�) if � can be
obtained from �′ by inserting n into some position of �′. It is clear that the number
of elements on the nth level of T (�) is |Sn(�)|.

In [19], West showed that T ({132; 231}) is isomorphic to the complete binary
tree. Here, West also used generating trees to give a bijective proof that |Sn(123)| =
|Sn(132)|= cn by showing that T (123) and T (132) are both isomorphic to the Catalan
generating tree:

De�nition 6. The Catalan generating tree is de�ned by the labels:

• Root: (2).
• Rule: (k)→ (2)(3) · · · (k + 1).
West showed that �n = cn.
The generating function for {cn} is given by

∑
n¿1 cnx

n = (1−√
1− 4x)=2x:

Similarly, in [18] West showed that |Sn(2413; 3142)| = |Sn(4132; 4231)| = rn−1
by showing that T (2413; 3142) and T (4132; 4231) are isomorphic to the Schr�oder
generating tree, de�ned below. Recently, Barcucci et al. [2] showed that T (4231; 4132)
((4231, 4132) is equivalent to pair II. (1324,2314)) is also isomorphic to the Schr�oder
generating tree.

De�nition 7. The Schr�oder generating tree is de�ned by the labels:

• Root: (2).
• Rule: (k)→ (3)(4) · · · (k + 1)(k + 1).
In this case, �n−1 = rn−1.
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3. Permutations enumerated by the Schr�oder numbers

In this section, we complete the proof of Theorem 3, that there are exactly 10 pairs of
length four patterns enumerated by the large Schr�oder numbers. Six of the pairs (pairs
I–VI on the list found in Section 1), including two of the pairs previously enumerated
(pairs II and IV), come as a corollary to Theorem 8 which enumerates permutations
in Sn avoiding the set of m! permutations in Sm+2 in which the positions occupied by
m+ 1 and m+ 2 are �xed. Pairs VII, VIII and IX are enumerated in Proposition 11,
and pair X is due to West [18].

Theorem 8. Let m be a positive integer. Let � = �(s; t) = {1; 2; : : : ; m!} be the set
of m! permutations in Sm+2 such that for �xed s and t; 16s; t6m+2; i(s)=m+1
and i(t) = m+ 2; for all 16i6m!: T (�) is isomorphic to the generating tree which
has root (2) and recursive rule

(k)→
{
(k + 1)k if 26k6m;
(m+ 1)(m+ 2) · · · (k)(k + 1)m if k¿m+ 1:

(1)

Therefore; for all (s; t); (s′; t′) ∈ [m + 2] × [m + 2]; T (�(s; t)) ∼= T (�(s′; t′)); and
|Sn(�(s; t))|= |Sn(�(s′; t′))|; for every positive integer n.

For example, when m=3; �(2; 4)={14253; 14352; 24153; 24351; 34152; 34251}; and
T (�) has rule, for k¿4; (k) → (4)(5) · · · (k)(k + 1)(k + 1)(k + 1): The crux of our
argument is that when generating Sn(�) from Sn−1(�), we need only to keep track
of the position which the largest element of � ∈ Sn−1(�) occupies. In this example,
�1 =↓ 5↓1↓2↓3↓4↓ and �2 =↓ 1↓5↓234↓ are in S5(�). We will argue that �1 has six
active sites (indicated by arrows) because 5 is too far to the left to play the role of
4 in a forbidden subsequence while �2 has only four active sites, since 5 is in the
position to play the role of 4 in case 6 is inserted in any of the two inactive sites.
More generally, we will show that in a forbidden subsequence, created by the insertion
of n + 1; n will play the role of m + 1 while n + 1 will play the role of m + 2. The
reader should be advised that in this proof we will compute the number of elements
in Sn+1(�), equivalently, the number of active sites in Sn(�), relying on information
about Sn−1(�).

Proof. If n6m, then it is clear that |Sn(�)| = |Sn| and T (�) has recursive rule
(k)→ (k +1)k , for 26k6m. Assume that s¡ t. If s¿ t, then a symmetric argument
will give the tree isomorphism. Let � ∈ Sn−1(�), for n¿m + 1, such that � has k
active sites.
Let �j ∈ Sn(�) be the child of � obtained by inserting an n into the jth active site

of �, j = 1; : : : ; k. For any r; 16r6n − 1, if the site between �(r) and �(r + 1) is
inactive in �, then the site between �(r) and �(r+1) is also inactive in �j. There are
thus at most k + 1 active sites in �j.
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We claim that the number of active sites in �j is determined by j, the position
occupied by n. Consider the sequence obtained by inserting n+1 into one of the k+1
potentially active sites in �j, say the rth site, 16r6k+1. A forbidden subsequence is
created by this insertion if and only if this sequence is of the form v= v1; v2; : : : ; vm+2
with vs = n; vt = n+ 1, and for i 6= s; t; 16vi ¡n. It is clear that n+ 1 must play the
role of the largest element, and that a sequence of this form is forbidden. If n does not
participate in the new forbidden subsequence, then insertion of n into � would have
already created the forbidden subsequence supposedly created by n + 1, and the rth
site of �j would not be a potentially active site.
The number of active sites in �j is determined by j, s, and t as follows. The t − 1

sites at the beginning of �j and the (m + 2) − (t) sites at the end of �j are always
active, since m+2 has t− 1 numbers to its left and (m+2)− (t) numbers to its right
in each element of �. This leaves at most (k +1)− (m+1)= k −m of the potentially
active sites to check. Call these middle sites. These are located between the (t)th and
the [(k+1)− (m+2− t)]th potentially active sites. In the example preceding the proof,
the �rst three and the last site are always active. There are three cases:
(1) If j¡ s, then since all of the sites to the left of t are active and t ¿ s¿j, n

is too far to the left in �j to create a forbidden subsequence, so �j has (k + 1) active
sites. (�1 of the example preceding this proof is an instance of this case.)
(2) If j¿(k+1)− [(m+2)− (s+1)]= s+(k−m), then since m+2− s¿m+2− t,

all of the sites to the right of j are active, making n too far to the right in �j to create
a forbidden subsequence, so �j has (k + 1) active sites. (�4 = 12354 and �5 = 12345
are examples.)
(3) If s6j6s+(k −m) then j− s of the k −m middle sites will be active in �j. A

forbidden subsequence is created whenever n+ 1 is inserted at least t − s sites to the
right of j. If j¿ t, the number of active middle sites to the right of j plus the number
of active middle sites to the left of j is ((t − s) + (j − t)) = (j − s).
If j6t, then the number of active middle sites to the right of j minus the number

of these active sites which are not in the middle is ((t − s) − (t − j)) = (j − s). (�2
has no active middle sites, for example, while �3 = 12534 has 1.)
Summarizing, (1) and (2) give that a node with label k¿m+1 will have m children

with label (k +1). Case (3) gives k −m children with labels (m+1); (m+2); : : : ; (k),
respectively.

Corollary 9. T (1234; 2134) ∼= T (1324; 2314) ∼= T (1342; 2341) ∼= T (3124; 3214) ∼=
T (3142; 3241) ∼= T (3412; 3421). And for all positive integers; n; |Sn(1234; 2134)| =
|Sn(1324; 2314)| = |Sn(1342; 2341)| = |Sn(3124; 3214)| = |Sn(3142; 3241)| =
|Sn(3412; 3421)|= rn−1; the (n− 1)st large Schr�oder number.

Proof. Let m= 2 in Theorem 8.

Corollary 10. Let � ∈ S3: T (�) is isomorphic to the Catalan generating tree; and for
all n¿1; |Sn(�)|= cn; the nth Catalan number.
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Proof. Let m= 1 in Theorem 8.

The proof of Theorem 3 is completed in Proposition 11. The proof of Proposition 11
is similar to that of Theorem 8. Since the position of 3 is not �xed in the remaining
Schr�oder pairs, we must keep track of the position of the largest element of each
permutation in Sn(�).

Proposition 11. If � = {2134; 1324}; � = {3124; 2314}; or � = {2134; 3124}; then
T (�) is isomorphic to the Schr�oder generating tree. Therefore; |Sn({2134; 1324)})|=
|Sn({3124; 2314})|= |Sn({2134; 3124})|= rn−1; for every positive integer n.

Proof. Let �j=p1 · · ·pn ∈ Sn(�) be the child of � ∈ Sn−1(�) obtained by inserting an
n into the jth active site of �; j=1; : : : ; k. As in the proof of Theorem 8, we observe
that:

• There are thus at most k+1 active sites in �j. Furthermore, the r6k+1 active sites
are the leftmost r sites in �j. This is a consequence of the fact that both forbidden
subsequences end with a 4.

• If a forbidden subsequence is created by the insertion of n + 1 into �j; n must
participate and play the role of 3, while n + 1 plays the role of 4. As a result,
all sites to the right of this insertion will be inactive, and all those to the left will
be active. Thus, the inactive sites in �j are those to the right of the end of the
�rst subsequence, pt1 ; pt2 ; pt3 , of type abc where abc4 ∈ �, and pti = n, for some
i = 1; 2; 3.

Let pm =max{pi: 16i6k; i 6= j}.
Case T ({(2134; 1324)}):
(1) If j = 1, then n is too far to the left to participate in a subsequence of type 13.

If j = m + 1, then any subsequence of type 213 or 132 in �j where n plays the role
of 3 corresponds to a subsequence of the same type in � with pm playing the role
of 3. The sites to the right of this subsequence are inactive in �j. In both cases, �j
has k + 1 active sites.
(2) If 1¡j¡m then pj−1¡pj+1¡n. Otherwise, pj−1pj+1pm is of type 213,

making the sites to the right of pm inactive in �. This contradicts that m6k. Thus,
pj−1npj+1 is a subsequence of type 132. In this case, �j has j + 1 (36j + 16k)
active sites, sites 1; 2; : : : ; j + 1.
If m¡j − 1 (so, 36j6k), then pmpj−1n is a subsequence of type 213. In this

case, �j has j active sites, sites 1; 2; : : : ; j.
As j ranges over the sites {2; : : : ; k}−{m+1}, we get that � has k− 2 descendants

with labels (3)(4) · · · (k).
Therefore, for k ¿ 2, T ({(2134; 1324)}) satis�es the recursive rule
(k)→ (3)(4) · · · (k)(k + 1)(k + 1):

Case T ({(2134; 3124)}):
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An argument similar to the case T ({(2134; 1324)}) will give that:
(1) If j = m+ 1 or m− 1, then �j has k + 1 active sites, since, in either case, pm

already plays the role of 3 in any subsequence of type 13 or 31, and
(2) As j ranges over the sites {1; : : : ; k} − {m+ 1; m− 1}, we get that � has k − 2

descendants with labels (3)(4) · · · (k).
If 16j¡m− 1, then npj+1pj+2 is of type 312. Otherwise, pj+1pj+2pm is of type

213 contradicting our choice of pm. In this case, the active sites are 1; 2; 3; : : : ; j + 2.
If m+ 1¡j6k, then pmpj−1n is of type 213, and the active sites are 1; 2; 3; : : : ; j.
Therefore, for k ¿ 2; T ({(3124; 2314)}) satis�es the recursive rule
(k)→ (3)(4) · · · (k)(k + 1)(k + 1):

Case T ({(3124; 2314)}):
Here, we get:
(1) If j = k or m− 1, then �j has k + 1 active sites, since no new subsequence of

type 31 is formed, and
(2) As j ranges over the sites {1; : : : ; k − 1} − {m − 1}, � has k − 2 descendants

with labels (3)(4) · · · (k).
If 16j¡m − 1, then let l = min{i 6= j: pj+1¡pi; 16i6k}. If 16l¡ j, then

plnpj+1 is of type 231 and the active sites are 1; 2; : : : ; j + 1.
If 26j+1¡l6m, then npj+1pl is of type 312 and the active sites are 1; 2; 3; : : : ; l.
If m¡j¡k, then pmnpj+1 is of type 231 and the active sites are 1; 2; 3 : : : ; j + 1.
Therefore, for k ¿ 2, T ({(3124; 2314)}) satis�es the recursive rule
(k)→ (3)(4) · · · (k)(k + 1)(k + 1):

4. Generating functions

It is well known that the Catalan number, cn counts the number of full binary plane
trees with n + 1 leaves. A weighted binary plane tree with weight set [m] is a full
binary plane tree in which each interior node is given a weight equal to 1; 2; : : : ; m. A
node is said to be well-weighted if, whenever it has weight w¿ 1, its right child is
not a leaf. A weighted binary plane tree is well-weighted if all of its interior nodes are
well-weighted. In [7], Foata and Zeilberger, using the combinatorial interpretation of
the small Schr�oder numbers sn (rn=2sn) as the number of well-weighted binary plane
trees with n leaves and weight set {1; 2}, proved bijectively the recurrence:

3(2n− 1)sn = (n+ 1)sn+1 + (n− 2)sn−1 for n¿2

with s1 = s2 = 1 (see [6, p. 57]). This recurrence is a generalization of the linear
recurrence for the Catalan numbers given by

2(2n− 1)cn = (n+ 1)cn+1 for n¿1

with c1 = 1. A straightforward generalization of their proof shows that the number
fn(m) of well-weighted binary plane trees with n leaves and weight set [m], satis�es
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the recurrence

(2n− 1)(m+ 1)fn(m) = (n+ 1)fn+1(m) + (n− 2)(m− 1)2fn−1(m)
for n¿2 with initial conditions f2(m) = m;f3(m) = m+ m2.
Sulanke [17] gave a combinatorial proof of this recurrence in terms of parallelogram

polyominoes where m colors are available for the columns. He found the generating
function for {fn(m)} to be

∑
n¿2

fn(m)xn =
1 + (m+ 1)x −

√
1− 2(m+ 1)x + (m− 1)2x2

2
:

In [11], Pergola and Sulanke obtained the Schr�oder generating tree for polyominoes
in which the columns are allowed 2 colors. Allowing m colors for the columns, one
obtains the generating tree de�ned for m¿1 by:

• Root: (m+ 1).
• Rule: (k)→ (m+ 1)(m+ 2) · · · (k + 1)m.
This tree satis�es �n=fn(m). When m=1, we get the Catalan generating tree. When
m= 2, the recursive rule is the same as that for the Schr�oder generating tree. In fact,
�n = sn, the small Schr�oder number. The Schr�oder tree can be obtained from this one
by taking 2 copies of the root at the start.
Let an(m) = |Sn(�)|, where � and m are as in Theorem 8. Let T (�) be the corres-

ponding generating tree. Since for n¿m, an(m) satis�es the same recurrence as fn(m),
and am−1(m) = (m− 1)! we get the generating function

∑
n¿m

an(m)xn=(m− 1)!x(m−2)
(
1+(m− 1)x−

√
1−2(m+ 1)x+(m−1)2x2

2

)
:
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