46 research outputs found

    Chromaticity of Certain Bipartite Graphs

    Get PDF
    Since the introduction of the concepts of chromatically unique graphs and chromatically equivalent graphs, numerous families of such graphs have been obtained. The purpose of this thesis is to continue with the search of families of chromatically unique bipartite graphs. In Chapters 1 and 2, we define the concept of graph colouring, the associated chromatic polynomial and some properties of a chromatic polynomial. We also give some necessary conditions for graphs that are chromatically unique or chromatically equivalent. We end this chapter by stating some known results on the chromaticity of bipartite graphs, denoted as K(p,q)

    Chromatic equivalence classes of complete tripartite graphs

    Get PDF
    AbstractSome necessary conditions on a graph which has the same chromatic polynomial as the complete tripartite graph Km,n,r are developed. Using these, we obtain the chromatic equivalence classes for Km,n,n (where 1≤m≤n) and Km1,m2,m3 (where |mi−mj|≤3). In particular, it is shown that (i) Km,n,n (where 2≤m≤n) and (ii) Km1,m2,m3 (where |mi−mj|≤3, 2≤mi,i=1,2,3) are uniquely determined by their chromatic polynomials. The result (i), proved earlier by Liu et al. [R.Y. Liu, H.X. Zhao, C.Y. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math. 289 (2004) 175–179], answers a conjecture (raised in [G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs (In Honour of Prof. Roberto W. Frucht), Sci. Ser. A (1988) 27–37 (special issue)]) in the affirmative, while result (ii) extends a result of Zou [H.W. Zou, On the chromatic uniqueness of complete tripartite graphs Kn1,n2,n3 J. Systems Sci. Math. Sci. 20 (2000) 181–186]

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164

    Graphs determined by polynomial invariants

    Get PDF
    AbstractMany polynomials have been defined associated to graphs, like the characteristic, matchings, chromatic and Tutte polynomials. Besides their intrinsic interest, they encode useful combinatorial information about the given graph. It is natural then to ask to what extent any of these polynomials determines a graph and, in particular, whether one can find graphs that can be uniquely determined by a given polynomial. In this paper we survey known results in this area and, at the same time, we present some new results

    An attempt to classify bipartite graphs by their chromatic Polynomial.

    Get PDF
    For the purpose of tackling the four-colour problem, Birkhoff (1912) introduced the chromatic polynomial of a map, denoted by P(M,A), which is a number of proper Acolouring of a map M. Whitney (1932), who established many fundamental results for it, later generalized the notion of a chromatic polynomial to that of an arbitrary graph. In 1968, Read asked whether it is possible to find a set of necessary and sufficient algebraic conditions for a polynomial to be the chromatic polynomial of some graph. In particular, Read asked for a necessary and sufficient condition for two graphs to be chromatically equivalent; that is, to have the same chromatic polynomial. In 1978, Chao and Whitehead defined a graph to be chromatically unique if no other graphs share its chromatic polynomial. Since then many researchers have been studying chromatic uniqueness and chromatic equivalence of graphs

    Chromatic Equivalence Classes and Chromatic Defining Numbers of Certain Graphs

    Get PDF
    There are two parts in this dissertation: the chromatic equivalence classes and the chromatic defining numbers of graphs. In the first part the chromaticity of the family of generalized polygon trees with intercourse number two, denoted by Cr (a, b; c, d), is studied. It is known that Cr( a, b; c, d) is a chromatic equivalence class if min {a, b, c, d} ≥ r+3. We consider Cr( a, b; c, d) when min{ a, b, c, d} ≤ r + 2. The necessary and sufficient conditions for Cr(a, b; c, d) with min {a, b, c, d} ≤ r + 2 to be a chromatic equivalence class are given. Thus, the chromaticity of Cr (a, b; c, d) is completely characterized. In the second part the defining numbers of regular graphs are studied. Let d(n, r, X = k) be the smallest value of defining numbers of all r-regular graphs of order n and the chromatic number equals to k. It is proved that for a given integer k and each r ≥ 2(k - 1) and n ≥ 2k, d(n, r, X = k) = k - 1. Next, a new lower bound for the defining numbers of r-regular k-chromatic graphs with k < r < 2( k - 1) is found. Finally, the value of d( n , r, X = k) when k < r < 2(k - 1) for certain values of n and r is determined

    Chromaticity of a family of 5-partite graphs

    Get PDF
    AbstractLet P(G,λ) be the chromatic polynomial of a graph G. Two graphs G and H are said to be chromatically equivalent, denoted G∼H, if P(G,λ)=P(H,λ). We write [G]={H∣H∼G}. If [G]={G}, then G is said to be chromatically unique. In this paper, we first characterize certain complete 5-partite graphs G with 5n vertices according to the number of 6-independent partitions of G. Using these results, we investigate the chromaticity of G with certain stars or matching deleted parts . As a by-product, two new families of chromatically unique complete 5-partite graphs G with certain stars or matching deleted parts are obtained
    corecore