21,554 research outputs found

    Note on cubature formulae and designs obtained from group orbits

    Full text link
    In 1960, Sobolev proved that for a finite reflection group G, a G-invariant cubature formula is of degree t if and only if it is exact for all G-invariant polynomials of degree at most t. In this paper, we find some observations on invariant cubature formulas and Euclidean designs in connection with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new proof is shorter and simpler compared to the original one by Xu, and moreover gives a general interpretation of the analytically-written conditions of Xu's theorems. Second, we extend a theorem by Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes a theorem of Bajnok (2007) which classifies tight Euclidean designs invariant under the Weyl group of type B to other finite reflection groups.Comment: 18 pages, no figur

    Large Sets of t-Designs

    Get PDF
    We investigate the existence of large sets of t-designs. We introduce t-wise equivalence and (n, t)-partitionable sets. We propose a general approach to construct large sets of t-designs. Then, we consider large sets of a prescribed size n. We partition the set of all k-subsets of a v-set into several parts, each can be written as product of two trivial designs. Utilizing these partitions we develop some recursive methods to construct large sets of t-designs. Then, we direct our attention to the large sets of prime size. We prove two extension theorems for these large sets. These theorems are the only known recursive constructions for large sets which do not put any additional restriction on the parameters, and work for all t and k. One of them, has even a further advantage; it increase the strength of the large set by one, and it can be used recursively which makes it one of a kind. Then applying this theorem recursively, we construct large sets of t-designs for all t and some blocksizes k. Hartman conjectured that the necessary conditions for the existence of a large set of size two are also sufficient. We suggest a recursive approach to the Hartman conjecture, which reduces this conjecture to the case that the blocksize is a power of two, and the order is very small. Utilizing this approach, we prove the Hartman conjecture for t = 2. For t = 3, we prove that this conjecture is true for infinitely many k, and for the rest of them there are at most k/2 exceptions. In Chapter 4 we consider the case k = t + 1. We modify the recursive methods developed by Teirlinck, and then we construct some new infinite families of large sets of t-designs (for all t), some of them are the smallest known large sets. We also prove that if k = t + 1, then the Hartman conjecture is asymptotically correct.</p

    Resolvable designs with large blocks

    Full text link
    Resolvable designs with two blocks per replicate are studied from an optimality perspective. Because in practice the number of replicates is typically less than the number of treatments, arguments can be based on the dual of the information matrix and consequently given in terms of block concurrences. Equalizing block concurrences for given block sizes is often, but not always, the best strategy. Sufficient conditions are established for various strong optimalities and a detailed study of E-optimality is offered, including a characterization of the E-optimal class. Optimal designs are found to correspond to balanced arrays and an affine-like generalization.Comment: Published at http://dx.doi.org/10.1214/009053606000001253 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Frame difference families and resolvable balanced incomplete block designs

    Full text link
    Frame difference families, which can be obtained via a careful use of cyclotomic conditions attached to strong difference families, play an important role in direct constructions for resolvable balanced incomplete block designs. We establish asymptotic existences for several classes of frame difference families. As corollaries new infinite families of 1-rotational (pq+1,p+1,1)(pq+1,p+1,1)-RBIBDs over Fp+×Fq+\mathbb{F}_{p}^+ \times \mathbb{F}_{q}^+ are derived, and the existence of (125q+1,6,1)(125q+1,6,1)-RBIBDs is discussed. We construct (v,8,1)(v,8,1)-RBIBDs for v∈{624,1576,2976,5720,5776,10200,14176,24480}v\in\{624,1576,2976,5720,5776,10200,14176,24480\}, whose existence were previously in doubt. As applications, we establish asymptotic existences for an infinite family of optimal constant composition codes and an infinite family of strictly optimal frequency hopping sequences.Comment: arXiv admin note: text overlap with arXiv:1702.0750

    New 22-designs from strong difference families

    Full text link
    Strong difference families are an interesting class of discrete structures which can be used to derive relative difference families. Relative difference families are closely related to 22-designs, and have applications in constructions for many significant codes, such as optical orthogonal codes and optical orthogonal signature pattern codes. In this paper, with a careful use of cyclotomic conditions attached to strong difference families, we improve the lower bound on the asymptotic existence results of (Fp×Fq,Fp×{0},k,λ)(\mathbb{F}_{p}\times \mathbb{F}_{q},\mathbb{F}_{p}\times \{0\},k,\lambda)-DFs for k∈{p,p+1}k\in\{p,p+1\}. We improve Buratti's existence results for 22-(13q,13,λ)(13q,13,\lambda) designs and 22-(17q,17,λ)(17q,17,\lambda) designs, and establish the existence of seven new 22-(v,k,λ)(v,k,\lambda) designs for (v,k,λ)∈{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4)(v,k,\lambda)\in\{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4), (783,9,4)}(783,9,4)\}.Comment: Version 1 is named "Improved cyclotomic conditions leading to new 2-designs: the use of strong difference families". Major revision according to the referees' comment

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author
    • …
    corecore