41 research outputs found

    Notes on the value function approach to multiobjective bilevel optimization

    Full text link
    This paper is concerned with the value function approach to multiobjective bilevel optimization which exploits a lower level frontier-type mapping in order to replace the hierarchical model of two interdependent multiobjective optimization problems by a single-level multiobjective optimization problem. As a starting point, different value-function-type reformulations are suggested and their relations are discussed. Here, we focus on the situations where the lower level problem is solved up to efficiency or weak efficiency, and an intermediate solution concept is suggested as well. We study the graph-closedness of the associated efficiency-type and frontier-type mappings. These findings are then used for two purposes. First, we investigate existence results in multiobjective bilevel optimization. Second, for the derivation of necessary optimality conditions via the value function approach, it is inherent to differentiate frontier-type mappings in a generalized way. Here, we are concerned with the computation of upper coderivative estimates for the frontier-type mapping associated with the setting where the lower level problem is solved up to weak efficiency. We proceed in two ways, relying, on the one hand, on a weak domination property and, on the other hand, on a scalarization approach. Throughout the paper, illustrative examples visualize our findings, the necessity of crucial assumptions, and some flaws in the related literature.Comment: 30 page

    Recent advances in multiobjective convex semi-infinite optimization

    Get PDF
    This paper reviews the existing literature on multiobjective (or vector) semi-infinite optimization problems, which are defined by finitely many convex objective functions of finitely many variables whose feasible sets are described by infinitely many convex constraints. The paper shows several applications of this type of optimization problems and presents a state-of-the-art review of its methods and theoretical developments (in particular, optimality, duality, and stability)

    Optimality conditions in convex multiobjective SIP

    Get PDF
    The purpose of this paper is to characterize the weak efficient solutions, the efficient solutions, and the isolated efficient solutions of a given vector optimization problem with finitely many convex objective functions and infinitely many convex constraints. To do this, we introduce new and already known data qualifications (conditions involving the constraints and/or the objectives) in order to get optimality conditions which are expressed in terms of either Karusk–Kuhn–Tucker multipliers or a new gap function associated with the given problem.This research was partially cosponsored by the Ministry of Economy and Competitiveness (MINECO) of Spain, and by the European Regional Development Fund (ERDF) of the European Commission, Project MTM2014-59179-C2-1-P

    A Variational Approach to Lagrange Multipliers

    Get PDF
    We discuss Lagrange multiplier rules from a variational perspective. This allows us to highlight many of the issues involved and also to illustrate how broadly an abstract version can be applied

    A Theory of the Perturbed Consumer with General Budgets

    Get PDF
    We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints

    Symbolic approaches and artificial intelligence algorithms for solving multi-objective optimisation problems

    Get PDF
    Problems that have more than one objective function are of great importance in engineering sciences and many other disciplines. This class of problems are known as multi-objective optimisation problems (or multicriteria). The difficulty here lies in the conflict between the various objective functions. Due to this conflict, one cannot find a single ideal solution which simultaneously satisfies all the objectives. But instead one can find the set of Pareto-optimal solutions (Pareto-optimal set) and consequently the Pareto-optimal front is established. Finding these solutions plays an important role in multi-objective optimisation problems and mathematically the problem is considered to be solved when the Pareto-optimal set, i.e. the set of all compromise solutions is found. The Pareto-optimal set may contain information that can help the designer make a decision and thus arrive at better trade-off solutions. The aim of this research is to develop new multi-objective optimisation symbolic algorithms capable of detecting relationship(s) among decision variables that can be used for constructing the analytical formula of Pareto-optimal front based on the extension of the current optimality conditions. A literature survey of theoretical and evolutionary computation techniques for handling multiple objectives, constraints and variable interaction highlights a lack of techniques to handle variable interaction. This research, therefore, focuses on the development of techniques for detecting the relationships between the decision variables (variable interaction) in the presence of multiple objectives and constraints. It attempts to fill the gap in this research by formally extending the theoretical results (optimality conditions). The research then proposes first-order multi-objective symbolic algorithm or MOSA-I and second-order multi-objective symbolic algorithm or MOSA-II that are capable of detecting the variable interaction. The performance of these algorithms is analysed and compared to a current state-of-the-art optimisation algorithm using popular test problems. The performance of the MOSA-II algorithm is finally validated using three appropriately chosen problems from literature. In this way, this research proposes a fully tested and validated methodology for dealing with multi-objective optimisation problems. In conclusion, this research proposes two new symbolic algorithms that are used for identifying the variable interaction responsible for constructing Pareto-optimal front among objectives in multi-objective optimisation problems. This is completed based on a development and relaxation of the first and second-order optimality conditions of Karush-Kuhn-Tucker.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    On the stability of the optimal value and the optimal set in optimization problems

    Get PDF
    The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property)

    Extremality and stationarity of collections of sets : metric, slope and normal cone characterisations

    Get PDF
    Variational analysis, a relatively new area of research in mathematics, has become one of the most powerful tools in nonsmooth optimisation and neighbouring areas. The extremal principle, a tool to substitute the conventional separation theorem in the general nonconvex environment, is a fundamental result in variational analysis. There have seen many attempts to generalise the conventional extremal principle in order to tackle certain optimisation models. Models involving collections of sets, initiated by the extremal principle, have proved their usefulness in analysis and optimisation, with non-intersection properties (or their absence) being at the core of many applications: recall the ubiquitous convex separation theorem, extremal principle, Dubovitskii Milyutin formalism and various transversality/regularity properties. We study elementary nonintersection properties of collections of sets, making the core of the conventional definitions of extremality and stationarity. In the setting of general Banach/Asplund spaces, we establish nonlinear primal (slope) and linear/nonlinear dual (generalised separation) characterisations of these non-intersection properties. We establish a series of consequences of our main results covering all known formulations of extremality/ stationarity and generalised separability properties. This research develops a universal theory, unifying all the current extensions of the extremal principle, providing new results and better understanding for the exquisite theory of variational analysis. This new study also results in direct solutions for many open questions and new future research directions in the fields of variational analysis and optimisation. Some new nonlinear characterisations of the conventional extremality/stationarity properties are obtained. For the first time, the intrinsic transversality property is characterised in primal space without involving normal cones. This characterisation brings a new perspective on intrinsic transversality. In the process, we thoroughly expose and classify all quantitative geometric and metric characterisations of transversality properties of collections of sets and regularity properties of set-valued mappings.Doctor of Philosoph
    corecore