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Abstract

Variational analysis, a relatively new area of research in mathematics, has become one of the most
powerful tools in nonsmooth optimisation and neighbouring areas. The extremal principle, a tool to
substitute the conventional separation theorem in the general nonconvex environment, is a fundamental
result in variational analysis. There have seen many attempts to generalise the conventional extremal
principle in order to tackle certain optimisation models.

Models involving collections of sets, initiated by the extremal principle, have proved their usefulness
in analysis and optimisation, with non-intersection properties (or their absence) being at the core of
many applications: recall the ubiquitous convex separation theorem, extremal principle, Dubovitskii
Milyutin formalism and various transversality/regularity properties. We study elementary nonintersec-
tion properties of collections of sets, making the core of the conventional definitions of extremality and
stationarity. In the setting of general Banach/Asplund spaces, we establish nonlinear primal (slope)
and linear/nonlinear dual (generalised separation) characterisations of these non-intersection properties.
We establish a series of consequences of our main results covering all known formulations of extremal-
ity/stationarity and generalised separability properties. This research develops a universal theory, unify-
ing all the current extensions of the extremal principle, providing new results and better understanding
for the exquisite theory of variational analysis.

This new study also results in direct solutions for many open questions and new future research direc-
tions in the fields of variational analysis and optimisation. Some new nonlinear characterisations of the
conventional extremality/stationarity properties are obtained. For the first time, the intrinsic transver-
sality property is characterised in primal space without involving normal cones. This characterisation
brings a new perspective on intrinsic transversality. In the process, we thoroughly expose and classify
all quantitative geometric and metric characterisations of transversality properties of collections of sets
and regularity properties of set-valued mappings.
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Chapter 1

Introduction

1.1 Goals of Research

The first goal of our research is to provide a universal tool that covers all the existing extensions of the
extremal principle. In order to do this, we study geometric non-intersection properties of finite collections
of sets, which are the building blocks of the conventional extremality/stationarity properties. This study
develops a new efficient tool to study extremality, stationarity and transversality/regularity properties
of collections of sets.

The second goal is to expand further the applications of the techniques of variational analysis to opti-
misation and neighbouring areas. Particularly, in our research, the techniques of variational analysis are
employed to study generalised convexity properties. We consider two different properties of generalised
convexity: robust quasiconvexity and abstract convexity. They represent two independent generalisa-
tions of convexity. The former property aims to preserve certain important optimisation properties of
convex functions such as: all the lower level sets are convex; local minimum is global minimum; and
stationary points are global minimisers. The latter reflects one of the fundamental concepts of convex
analysis, which is every lower semicontinuous convex function f is the upper envelope of affine functions.

The third goal of my study is to broaden the border of my research to other branches of mathematics.
I study polytopes, the fundamental objects in optimisation, via their graphs and face lattices. This
research potentially creates connections between many different fields in optimisation.

1.2 Motivation, Literature Review and Contributions

1.2.1 Arrangement of Collections of Sets

Models involving pairs, or more generally finite (and even infinite) collections of sets, are pretty common
in various fields of mathematics, especially variational analysis, optimisation and neighbouring areas. For
instance, the classical separation theorem [130,141,168] for convex sets, one of the key results of functional
and nonlinear analysis, is instrumental when establishing multiplier rules or subdifferential calculus rules;
the ubiquitous feasibility problems [100] cover solving systems of (generalised) equations, while appro-
priate transversality (regular intersection) conditions produce constraint qualifications and convergence
estimates for alternating projections (von Neumann method) [16, 52, 107, 128], or more generally cyclic
projections, which in turn provide a convenient model for convergence analysis of computational algo-
rithms. On the other hand, (local) optimality in optimisation problems can naturally be interpreted
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as ‘irregular’ (extremal) intersection of certain sets, and sufficient transversality conditions immediately
produce necessary optimality conditions.

In this major part of the thesis, we study a unified theory to thoroughly study metric, slope and
normal cone characterisations of certain types of arrangement of collections of sets.

Extremality, Stationarity Properties and Extremal Principle

In the framework of convex analysis, the property of two sets that one set does not meet the interior
of the other set (while both are nonempty), which is the key assumption of the conventional separation
theorem, provides an example of the absence of regular intersection. Thus, the separation theorem can
be interpreted as a characterisation of the absence of regular intersection of convex sets. On the other
hand, the opposite property, i.e., when the intersection of one set with the interior of the other set is
nonempty, is a typical qualification condition in various convex analysis statements [168].

There have been many successful applications of convex analysis, and particularly the separation
theorem in the nonconvex settings by considering appropriate local convex approximations of sets and
functions. The most prominent example in the optimisation area is probably given by the Dubovitskii–
Milyutin formalism [54]. The Clarke tangent cone (2.3) is an important example of a local convex
approximation of a set. However, in many situations it is impossible to construct satisfactory local
convex approximations of nonconvex sets. For instance, if a set consists of two intersecting lines on the
plain, it is easy to check that its Clarke tangent cone at the point of intersection is trivial (contains only
the zero vector), and provides no meaningful information about the set. The powerful tools of convex
analysis generally fail outside of the comfortable convex setting.

A new tool with the potential to substitute the conventional separation theorem in the general
nonconvex environment — currently known as the Extremal principle — was suggested in 1979–1980
in [101–103]. It was observed that the separation theorem actually characterises a kind of extremal
arrangement of sets. Building on this observation, the key assumption of the conventional separation
theorem, that one set does not meet the interior of the other set, was replaced by a more general geometric
(local) extremality (Definition 2.3.1(i) and (ii)). This property assumes neither convexity of the sets nor
that one of the sets has nonempty interior, while still embracing many conventional (and generalised)
optimality notions. Moreover, it is applicable to any finite (n ≥ 2) collections of sets (cf. [101–103])
and, if the space is Banach and the sets are closed, the function measuring the distance between points
in different translated sets satisfies the assumptions of the Ekeland variational principle. Employing
an appropriate sum rule to the perturbation of the distance function arising from the application of
the Ekeland variational principle, one can formulate dual characterisations of extremality in terms of
appropriate normals to individual sets. Such dual conditions can be interpreted as a kind of generalised
separation; cf. conditions (ii) and (iii) in Theorem 2.7.3.

Since its inception 40 years ago, the extremal principle has indeed impacted strongly on the nonconvex
analysis and optimisation substituting the conventional separation theorem. Several examples of its
application to proving necessary optimality conditions (multiplier rules) can be found already in the very
first publications [102, 103]. Numerous applications of the extremal principle in multiple publications
on optimisation and analysis are exposed and commented on in the monograph [120]. The original
publications have been followed by several studies of the concept of extremality of collections of sets and
the extremal principle, resulting in its additional characterisations and several extensions.

It was established in [88, 89] that, similar to the classical Lagrange multiplier rule, the conclusion
of the extremal principle (the generalised separation), being a dual necessary condition of extremality,
actually characterises a property which is weaker than local extremality. This property can be interpreted
as a kind of stationarity of a collection of sets. The explicit primal space definition of this property was
introduced (cf. Definition 2.3.1(iv)), and it was shown (by refining slightly the original proof of the
extremal principle) that for this property the conclusion of the extremal principle is not only necessary
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(in the Asplund space setting), but also sufficient, thus producing the ultimate conventional version of
the extremal principle, known as the extended extremal principle; cf. Theorem 2.7.3. This stationarity
property called approximate stationarity [92] happens to be strongly connected to (in fact the negation
of) another important geometric property of a collection of sets called transversality (also known under
other names; cf. Definition 2.5.1), having its roots in the classical differential geometry and instrumental
for the convergence analysis of alternating projections; see a discussion of the role of the latter property
in [100], while a table illustrating the evolution of the terminology can be found in [99, Section 2]. The
connections of the approximate stationarity and (extended) extremal principle can be traced further
to the fundamental for variational analysis metric regularity property of set-valued mappings and the
corresponding coderivative criterion; see [92].

The powerful (extended) extremal principle, despite its recognised universality and wide applicability,
has its limitations. The authors in [97] encountered a problem while attempting to extend the extremal
principle to infinite collections of sets. The initial idea to consider families of finite subcollections and
apply the conventional extremal principle to each of them failed, as well as the belief of the authors in [97]
in the unlimited universality of the conventional extremal principle. Uniform estimates were required,
holding for all finite subcollections, and the conventional extremal principle was unable to provide such
estimates. The solution was found within the conventional (extended) extremal principle, more precisely,
in its proof, providing another piece of evidence for the well-known fact that important mathematical
results are often deeper than their statements.

The conventional extended extremal principle asserts the equivalence of two properties of a collection
of sets: one in the primal space (approximate stationarity) and another one in the dual space (generalised
separability); see Theorem 2.7.3, which for completeness gives two (equivalent) versions of the latter
property. Both (in the case of Theorem 2.7.3 all three) properties are formulated “for any ε there exist
. . . ”, and as such, the ε’s and the other parameters in different properties seem completely independent.
However, this cannot be true. To prove that one property of this kind implies another one, there must
be a way, given any ε in the second property, to construct another one to be substituted into the first
property to produce the needed estimates, i.e., the parameters must be related. The relationship between
the parameters in the two parts of the conventional (extended) extremal principle is exactly what was
required to establish the uniform estimates needed in [97], and it indeed could be found in the proof of the
conventional result. This observation made the authors of [97] carve out the core part of (the proof of) the
conventional (extended) extremal principle with ε and other parameters fixed (a kind of ε-extremality),
and formulate it as a separate statement in [97, Theorem 3.1] (see Proposition 3.3.14(iii) below), exposing
the relationship between the parameters hidden in the proof of the conventional statement. As a result,
both the conventional statement and its extension to infinite collections of sets are corollaries of [97,
Theorem 3.1].

There are many equivalent formulations of the primal space approximate stationarity property (as well
as other extremality and stationarity properties) and the dual space generalised separability properties,
all formulated in the form “for any ε there exist . . . ”; see Section 2.3. The relationships between the
parameters involved in these formulations can also be established and are important for identifying and
analysing the core arguments in the conventional proofs of metric and dual characterisations of the
extremality and stationarity and their extensions. This analysis is performed in Sections 2.3 and 3.3.

Another successful ‘surgical operation’ on the proof of the conventional extremal principle was done
earlier by Zheng and Ng in [169], producing an ε-separability characterisation of another kind of ε-
extremality property with the explicit relationship between the ε’s in both properties. Unlike the con-
ventional extremal principle and its extension in [97, Theorem 3.1] which assume the sets to have a
common point, [169, Lemmas 2.2 and 2.2’] assume, on the contrary, that the intersection of the sets is
empty. At the same time, their proofs follow the original ideas from [102, 103], utilizing the Ekeland
variational principle and either the Asplund space fuzzy or the general Banach space Clarke–Rockafellar
subdifferential sum rule; cf. Lemma 2.2.1 below. The statements have been further polished and anal-
ysed in a sequence of subsequent papers [112,113,170,172]. In particular, it was proved by Guoyin Li et
al in [113, Theorem 3.1] that the conclusion of [169, Lemma 2.2] is actually equivalent to the Ekeland
variational principle, and as such implies (the Banach space with Clarke normal cones version of) the

3



extremal principle. This fact confirms the need to move from the conventional “for any ε . . . ” extremal-
ity statements to more subtle ones with ε fixed. The most advanced version of the Zheng and Ng lemma
was given in [172, Theorems 3.1 and 3.4] (unified separation theorems; see Theorem 4.2.7 below), where,
besides other improvements, an additional condition was added to the concluding part, relating the dual
vectors involved in the ε-separability characterisation with certain primal space vectors involved in the
original ε-extremality property.

Refining again the original proof of the conventional extremal principle, a systematic study of the
non-intersection properties involved in all four parts of Definition 2.3.1 was conducted recently in our
research (cf. [29, 30]), producing a series of elementary generalised separation statements, clarifying the
relationships between them and, particularly, unifying the statements from [170,172,174] and [97].

Our research follows this scheme of research.

Contributions of Research

1- In our research, we expose, analyse and refine primal and dual characterisations of approximate
stationarity and transversality of collections of sets, leading to a unifying theory, encompassing all
existing approaches to obtaining ‘extremal’ statements. For that, we examine and clarify quanti-
tative relationships between the parameters involved in the respective definitions and statements
(cf. Chapters 3& 4).

2- We formulate in Theorem 3.3.1 (and prove) a new general ε-extremality statement which exposes
the core arguments and the role of the parameters in the conventional proofs of dual characterisa-
tions of the extremality and stationarity and, in particular, implies [97, Theorem 3.1] and [172, The-
orems 3.1 and 3.4]. We also establish in Section 3.3 a series of other consequences of Theorem 3.3.1,
covering primal and dual space conditions involved in (hopefully) all known formulations of ex-
tremality/stationarity and generalised separability properties (cf. Chapter 3).

3- In the setting of general Banach/Asplund spaces, we establish nonlinear primal (slope) and dual
(generalised separation) characterisations of these non-intersection properties (cf. Chapter 4).

4. Some new (even in the linear setting) characterisations of the conventional extremality and station-
arity properties are obtained. Realisations of the obtained characterisations in the Hölder setting
are formulated (cf. Chapter 5).

5- Besides, we clarify the relations between various quantitative geometric and metric characterisations
of the transversality properties of collections of sets and the corresponding regularity properties
of set-valued mappings (cf. Chapter 2). We expose all the parameters involved in the definitions
and characterisations and establish relationships between them. This allows us to classify all
quantitative geometric and metric characterisations of transversality and regularity, and subdivide
them into two groups with complete exact equivalencies between the parameters within each group
and clear relations between the values of the parameters in different groups (cf. Chapter 2).

Intrinsic Transversality

Transversality and subtransversality are two important properties of collections of sets which reflect the
mutual arrangement of the sets around the reference point in normed vector spaces. These properties
are widely known as constraint qualification conditions in optimisation and variational analysis for for-
mulating optimality conditions [75,120,125,167] and calculus rules for subdifferentials, normal cones and
coderivatives [70,72,73,75,97,98,120,125], and as key ingredients for establishing sufficient and/or neces-
sary conditions for linear convergence of computational algorithms [13,53,65,100,109,110,114,135,159].
A variety of their sufficient and/or necessary conditions in both primal and dual spaces are well-studied
in [90–92,97–100,104,106] by Kruger and his collaborators.
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Transversality is strictly stronger than subtransversality. It is sufficient for many applications where
the latter is not, for example, in proving linear convergence of the alternating projection method for
solving nonconvex feasibility problems [109,110], or in establishing error bounds for the Douglas-Rachford
algorithm [65, 135] and its modified variants [159]. However, transversality is too restrictive for many
applications, and there have been a number of attempts to identify weaker properties, still sufficient
for such applications. Of course, one cannot expect a universal transversality-type property that works
well for all applications. When formulating necessary optimality conditions for optimisation problems in
terms of abstract Lagrange multipliers and establishing intersection rules for tangent cones in Banach
spaces, Bivas et al. [20] recently introduced a property called tangential transversality, which is a primal
space property lying between transversality and subtransversality, but there is no evidence that this new
property is actually different from both.

When establishing linear convergence criteria of the alternating projection algorithm for solving non-
convex feasibility problems, a series of meaningful transversality-type properties have been introduced
and analysed in the literature: affine-hull transversality [135], inherent transversality [18], separable in-
tersection property [128] and intrinsic transversality [52]. In contrast to tangential transversality, the
latter ones are dual space properties since they are defined in terms of normal vectors. Unlike the
transversality property, all the above transversality-type properties are independent on the underlying
space, that is, if a property is satisfied in an ambient space X, then so is it in any ambient space con-
taining X. Recall that in Euclidean spaces, a pair of two closed sets {A,B} is transversal at a common
point x̄ if and only if

NA(x̄) ∩
(
−NB(x̄)

)
= {0}, (1.1)

where NA(x̄) stands for the limiting normal cone to A at x̄. This characterisation reveals that transver-
sality is a property that involves all the limiting normals to the sets at the reference point. This
fundamentally explains why the property is not invariant with respect to the ambient space and becomes
too restrictive for many applications. Indeed, the hidden idea leading to the introduction of the above
dual space transversality-type properties in the context of nonconvex alternating projections is simply
based on the observation that not all such normal vectors are relevant for analysing convergence of the
algorithm. The affine-hull transversality is merely transversality but considered only in the affine hull L
of the two sets, that is, the pair of translated sets {A− x̄, B− x̄} is transversal at 0 in the subspace L− x̄.
As a consequence, the analysis of this property is straightforwardly obtained from that of transversal-
ity [135]. The key feature of the inherent transversality1 [18] is the use of restricted normal cones in place
of the conventional limiting normal cones in characterisation (1.1) of transversality in Euclidean spaces.
As a result, the analysis of this property is reduced to the calculus of the restricted normal vectors as
conducted in [18]. The separable intersection property [128, Definition 1] was motivated by nonconvex
alternating projections and ultimately designed for this algorithm. The intrinsic transversality was also
introduced in the context of nonconvex alternating projections in Euclidean spaces [52], it turns out to
be an important property itself in variational analysis as demonstrated by Ioffe [75, Section 9.2] and [74]
and Kruger [96]. On the one hand, a variety of characterisations of intrinsic transversality in various
settings (Euclidean, Hilbert, Asplund, Banach and normed linear spaces) have been established by a
number of researchers [52,74,75,96,100,107,128]. On the other hand, there are still a number of impor-
tant open questions about this property, for example, the ones raised by Kruger [96, page 140] or the
challenge by Ioffe about primal counterparts of intrinsic transversality [74, page 358]. It is known that
for pairs of closed and convex sets, subtransversality admits an equivalent characterisation in terms of
normal vectors, and the latter is equivalent to intrinsic transversality in the Euclidean space setting [96].
Another interesting question is whether this equivalence is also valid in the nonconvex setting.

Contributions of Research

Motivated by a number of questions concerning transversality-type properties of pairs of sets recently
raised by Ioffe [74] and Kruger [96], this work reports several new characterisations of the intrinsic
transversality property in Hilbert spaces. New results in terms of normal vectors clarify the picture of

1The property originated in [18, Theorem 2.13] without a name, then was refined and termed as inherent transversality
in Definition 4.4 of the preprint “Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Alternating projections and coupling slope.
Preprint, arXiv:1401.7569, 1–17 (2014)”.
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intrinsic transversality, its variants and sufficient conditions for subtransversality, and unify several of
them. For the first time, intrinsic transversality is characterised by an equivalent condition which does
not involve normal vectors. This characterisation offers another perspective on intrinsic transversality. As
a consequence, the obtained results allow us to answer a number of open questions about transversality-
type properties (cf. Chapter 6).

1.2.2 Generalised Convexity

The functions that are, close to, but not precisely, convex often possess some important properties of
convex functions. The idea of ‘almost’ convex functions, namely generalised convex functions, leads to
various generalisations of the concept of convexity. In fact, many real world models are more easily
formulated using mathematical models that involve generalised convex functions than using models with
conventional convex functions. The topic of generalised convex functions is relatively new, but since
getting its name, has received tremendous interests due to its wide range of applications in mechanics,
economics, engineering, finance etc. Generalised convexity is now considered as an independent field of
mathematics.

Generalised convexity is strongly related to variational analysis. They complement one another. The
technique of variational analysis plays a key role in the development of generalised convexity. In turn,
generalised convexity enriches the theory of variational analysis with numerous applications in nonconvex
optimisation, variational inequalities, and equilibrium problems.

Robustly Quasiconvex Functions

One way to generalise the notion of convexity is to drop the conventional convexity assumption, but still
preserve some desired properties. Here, we consider three prominent optimisation properties of convex
functions: (1) all the lower level sets are convex; (2) local minimum is global minimum; (3) stationary
points are global minimisers. Each of the properties reflects different classes of generalised convex
functions: quasiconvex functions, explicitly quasiconvex functions, pseudo convex functions respectively
(cf. [64, 67, 115, 152]). However, unlike their forerunner, convexity, these three generalised convexity
properties are not at all stable under linear perturbations; counterexamples can be found in [67]. The
stability of these properties is significant of practical and computational aspects. The concept of a more
stable property was introduced in [10,67], namely “robustly quasiconvexity”.

Robustly quasiconvex functions were first defined in [67] under the name “s-quasiconvex” or “stable
quasiconvex”, and then renamed “robustly quasiconvex” in [10]. This class of functions holds a notable
role, as many important optimisation properties of generalised convex functions are stable when per-
turbed by a linear functional with a sufficiently small norm (for instance, all lower level sets are convex,
each minimum is global minimum, each stationary point is a global minimiser). For interested readers,
we refer to [67] again, and further related works [10,134].

The question of characterising convexity and generalised convexity properties in terms of subdiffer-
entials receives tremendous attention in optimisation theory and variational analysis. For decades, there
have been many significant contributions devoted to this question such as [37,38,120,137,141] for convex
functions, [3–5,11,47,131] for quasiconvex functions and [11] for robustly quasiconvex functions.

Significant contributions concerning dual criteria for quasiconvex functions are in [3, 4]. These char-
acterisations are applicable for a wide range of subdifferentials, for instance Rockafellar-Clarke subdif-
ferentials in Banach spaces, and Fréchet subdifferentials in Asplund spaces.

A zero and first order characterisations of robust convexity were given in [11, Proposition 5.3] for
finite dimensional spaces. We remark that there is an oversight in the proof given there; although the
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function f is only assumed to be lower semicontinuous, the existence of z in the second paragraph actually
requires continuity.

Contributions of Research

Two criteria for the robust quasiconvexity of lower semicontinuous functions are established in terms of
Fréchet subdifferentials in Asplund spaces. The first criterion extends to such spaces a result established
in [11]. The second criterion is totally new even if it is applied to lower semicontinuous functions on
finite-dimensional spaces (cf. Chapter 7).

Abstract Convexity

The theory of abstract convexity, also called convexity without linearity, is a powerful tool that allows to
extend many facts from classical convex analysis to more general frameworks. It has been the focus of
active research for the last fifty years because of its many applications in functional analysis, approxima-
tion theory, and nonconvex analysis. Nevertheless, just like convex analysis, the development of abstract
convexity has been mainly motivated by applications to optimization.

The works [34, 35, 44, 48, 55–57, 71, 78, 119, 121, 122, 144, 146–149, 154, 166] use abstract convexity
for applications to nonconvex optimization. As a recent example, the tools of abstract convexity are
used in [19, 156, 157] to derive stronger versions of Lagrangian duality and minimax theorems that are
applicable to lower semicontinuous functions which are bounded below by a quadratic function. A deep
study on abstract convexity can be found in the seminal book of Alexander Rubinov [144], see also
the monograph by Ivan Singer [77]. Abstract convexity reflects one of the fundamental facts of convex
analysis: every lower semicontinuous convex function f is the upper envelope of affine functions. More
precisely, at every point x, we have

f(x) = sup{h(x) : h is an affine function, h ≤ f}. (1.2)

Most results in convex analysis are consequences of the two important aspects of (1.2): (i) the “supre-
mum” operation, and (ii) the set over which this supremum is taken. Results emanating from aspect
(ii) are likely to depend on specific properties of linear/affine functions. How to distinguish which facts
from convex analysis follow from the “upper envelope” operation, and which follow from the particular
structure of the set of linear/affine functions? Abstract convexity is the fundamental tool that addresses
this crucial question: it retains the “upper envelope” operation in aspect (i) of (1.2), but changes the
set of functions over which the supremum is taken. These functions are called abstract linear and they
naturally induce the abstract affine sets. Since aspect (i) of (1.2) is retained, global properties of convex
analysis may be preserved even when dealing with nonconvex models. Thus, this approach is sometimes
called a “non-affine global support function technique” (see for example [34,78,144]).

Many tools from convex analysis, such as subgradients and ε-subgradients, have their “abstract”
counterparts, obtained again by using abstract linear functions. For instance, the abstract subgradient
of an abstract convex function f at a point x collects all the supporting abstract linear functions which
are minorants of f (i.e., their graphs stay below the graph of f), and coincide with f at x. This extends
the concept of the convex subgradient and provides a valuable tool for studying certain nonconvex
optimization problems (see [34,78,144,149]). Another example is the Fenchel-Moreau conjugate f∗ of a
function f . The definition of f∗ uses the set of linear functions, and abstract convexity allows to produce
“abstract” types of conjugates.

In [23], zero duality gap is shown to be equivalent to (a) certain properties involving ε−subgradients
and (b) other facts involving conjugate functions. One of the aims of the present work is to extend
these results to the context of abstract convexity. Additionally, we supplement the sum rule for abstract
subdifferentials, improving the result in [78]. To the best of our knowledge, with the exception of [35], this
paper is the very first attempt to consider explicitly the weak∗ topology (pointwise convergence topology)
on the space of abstract linear functions to deduce calculus rules for subdifferentials. We extend the
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fundamental Banach–Alaoglu–Bourbaki theorem on the weak∗ closedness of the dual unit ball of dual
space X∗ to the general space L of abstract linear functions.

Contributions of Research

We extend conditions for zero duality gap to the context of nonconvex and nonsmooth optimisation.
By using tools provided by the theory of abstract convexity, we establish new characterisations of zero
duality gap under no assumptions on the topology of L. Moreover, under a mild assumption on the
set L (namely, assuming that L is equipped with the weak∗-topology), we establish and extend several
fundamental results of convex analysis. In particular, we prove that the zero duality gap property can be
stated in terms of an inclusion involving ε-subdifferentials. The weak∗ topology C(L, X) is exploited to
obtain the sum rule for abstract ε-subdifferential. The Banach–Alaoglu–Bourbaki theorem is extended
to the abstract linear functions space L. We extend a fact recently established by Borwein, Burachik
and Yao in the conventional convex case (cf. Chapter 8).

1.2.3 Convex Polytopes

Convex polytopes are fundamental geometric objects, especially in optimisation. There has seen a
growing interest in study their combinatorial properties.

The k-dimensional skeleton of a polytope P is the set of all its faces of dimension of at most k. The
1-skeleton of P is the graph G(P ) of P . We denote by V (P ) the vertex set of P .

This part of the thesis studies the (vertex) connectivity of a cubical polytope, the (vertex) connectivity
of the graph of the polytope. A cubical d-polytope is a polytope with all its facets being cubes. By a
cube we mean any polytope that is combinatorially equivalent to a cube; that is, one whose face lattice
is isomorphic to the face lattice of a cube.

Connectivity

In the three-dimensional world, Euler’s formula implies that the graph of a cubical 3-polytope P has
2|V (P )| − 4 edges, and hence its minimum degree is three; the degree of a vertex records the number
of edges incident with the vertex. Besides, every 3-polytope is 3-connected by Balinski’s theorem [9].
Hence the dimension, minimum degree and connectivity of a cubical 3-polytope all coincide.

Theorem 1.2.1 (Balinski [9]). The graph of a d-polytope is d-connected.

This equality between dimension, minimum degree and connectivity of a cubical polytope no longer
holds in higher dimensions. In Blind and Blind’s classification of cubical d-polytopes where every vertex
has degree d or d+ 1 [21], the authors exhibited cubical d-polytopes with the same graph as the (d+ 1)-
cube; for an explicit example, check [79, Section 4]. More generally, the paper [79, Section 6] exhibited
cubical d-polytopes with the same (bd/2c − 1)-skeleton as the d′-cube for every d′ > d, the so-called
neighbourly cubical d-polytopes. And even more generally, Sanyal and Ziegler [151, page 422], and later
Adin, Kalmanovich and Nevo [1, Section 5], produced cubical d-polytopes with the same k-skeleton as
the d′-cube for every 1 ≤ k ≤ bd/2c− 1 and every d′ > d, the so-called k-neighbourly cubical d-polytopes.
Thus the minimum degree or connectivity of a cubical d-polytope for d ≥ 4 does not necessarily coincide
with its dimension; this is what one would expect. However, somewhat surprisingly, we can prove a result
connecting the connectivity of a cubical polytope to its minimum degree, regardless of the dimension;
this is a vast generalisation of a similar, and well-known, result in the d-cube [138, Proposition 1]; see
also Section 10.1.

Define a separator of a polytope as a set of vertices disconnecting the graph of the polytope. Let
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Figure 1.1: Cubical 3-polytopes with minimum separators not consisting of the neighbours of some vertex.
The vertices of the separator are coloured in gray. The removal of the vertices of a face F does not leave
a 2-connected subgraph: the remaining vertex in gray disconnects the subgraph. Infinitely many more
examples can be generated by using well-known expansion operations such as those in [27, Fig. 3].

FL

FR
# =

(a) P1 (b) P2 (c) P1#P2

Figure 1.2: Connected sum of two cubical polytopes.

X be a set of vertices in a graph G. Denote by G[X] the subgraph of G induced by X, the subgraph
of G that contains all the edges of G with vertices in X. Write G − X for G[V (G) \ X]; that is, the
subgraph G−X is obtained by removing the vertices in X and their incident edges. Our main result is
the following.

Theorem (Connectivity Theorem). A cubical d-polytope P with minimum degree δ is min{δ, 2d − 2}-
connected for every d ≥ 3.

Furthermore, for any d ≥ 4, every minimum separator X of cardinality at most 2d− 3 consists of all
the neighbours of some vertex, and the subgraph G(P )−X contains exactly two components, with one of
them being the vertex itself.

A simple vertex in a d-polytope is a vertex of degree d; otherwise we say that the vertex is nonsimple.
An immediate corollary of the theorem is the following.

Corollary. A cubical d-polytope with no simple vertices is (d+ 1)-connected.
Remark 1.2.2. The connectivity theorem is best possible in the sense that there are infinitely many
cubical 3-polytopes with minimum separators not consisting of the neighbours of some vertex (Fig. 1.1).

It is not hard to produce examples of polytopes with differing values of minimum degree and connec-
tivity. The connected sum P1#P2 of two d-polytopes P1 and P2 with two projectively isomorphic facets
F1 ⊂ P1 and F2 ⊂ P2 is obtained by gluing P1 and P2 along F1 and F2 [175, Example 8.41]. Projective
transformations on the polytopes P1 and P2, such as those in [139, Def. 3.2.3], may be required for P1#P2
to be convex. Figure 1.2 depicts this operation. A connected sum of two copies of a cyclic d-polytope
with d ≥ 4 and n ≥ d+1 vertices ( [175, Theorem 0.7]), which is a polytope whose facets are all simplices,
results in a d-polytope of minimum degree n− 1 that is d-connected but not (d+ 1)-connected.

On our way to prove the connectivity theorem we prove results of independent interest, for instance,
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the following (Corollary 10.2.5 in Section 10.2).

Corollary. Let P be a cubical d-polytope and let F be a proper face of P . Then the subgraph G(P )−V (F )
is (d− 2)-connected.

Remark 1.2.3. The examples of Fig. 1.1 also establish that the previous corollary is best possible in the
sense that the removal of the vertices of a proper face F of a cubical d-polytope does not always leave a
(d− 1)-connected subgraph of the graph of the polytope.

The corollary gives another unusual property of cubical polytopes. A tight result of Perles and
Prabhu [132, Theorem 1] implies that the removal of the vertices of any k-face (−1 ≤ k ≤ d− 1) from a
d-polytope leaves a max{1, d− k − 1}-connected subgraph of the graph of the polytope.

The connectivity theorem also gives rise to the following corollary and open problem.

Corollary. There are functions f : N→ N and g : N→ N such that, for every d ≥ 4,

(i) the function f(d) gives the maximum number such that every cubical d-polytope with minimum
degree δ ≤ f(d) is δ-connected;

(ii) the function g(d) gives the maximum number such that every minimum separator with cardinality
at most g(d) of every cubical d-polytope consists of the neighbourhood of some vertex; and

(iii) 2d− 3 ≤ g(d) and g(d) < f(d).

An exponential bound in d for f(d) is readily available. The connected sum of two copies of a
neighbourly cubical d-polytope with minimum degree δ > 2d−1, which exists by [79, Theorem 16], results
in a cubical d-polytope with minimum degree δ and with a minimum separator of cardinality 2d−1, the
number of vertices of the facet along which we glued. The cardinality of this separator gives at once the
announced upper bound. This exponential bound in conjunction with the connectivity theorem gives
that

2d− 3 ≤ g(d) < f(d) ≤ 2d−1. (1.3)

The following problem naturally arises.

Problem 1.2.4. For d ≥ 4 provide precise values for the functions f(d) and g(d) or improve the lower
and upper bounds in (1.3).

We suspect that both functions are linear in d.

Contributions of Research

We first establish that, for any d ≥ 3, the graph of a cubical d-polytope with minimum degree δ is
min{δ, 2d− 2}-connected. Second, we show, for any d ≥ 4, that every minimum separator of cardinality
at most 2d−3 in such a graph consists of all the neighbours of some vertex and that removing the vertices
of the separator from the graph leaves exactly two components, with one of them being the vertex itself
(cf. Chapter 10).

Linkedness

A graph with at least 2k vertices is k-linked if, for every set of 2k distinct vertices organised in arbitrary
k unordered pairs of vertices, there are k vertex-disjoint paths joining the vertices in the pairs. If the
graph of a polytope is k-linked we say that the polytope is also k-linked.
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Larman and Mani in 1970 proved that simplicial d-polytopes, d-dimensional polytopes with all their
facets being combinatorially equivalent to simplices, are b(d+1)/2c-linked; this is the maximum possible
linkedness given the facts that a b(d + 1)/2c-linked graph is at least (2b(d + 1)/2c − 1)-connected and
that some of these graphs are d-vertex-connected but not (d+ 1)-vertex-connected.

Here we establish that d-dimensional cubical polytopes are also b(d + 1)/2c-linked for every d 6= 3;
this is again the maximum possible linkedness for such a class of polytopes.

Being k-linked imposes a stronger demand on a graph than just being k-vertex-connected, or d-
connected for short. A k-linked graph needs to be at least (2k−1)-connected, and yet there are (2k−1)-
connected graphs that are not k-linked. The classification of 2-linked graphs [153,161] contextualised for
3-polytopes readily gives examples of this phenomenon: with the exception of simplicial 3-polytopes, no
3-polytope, despite being 3-connected by Balinski’s theorem [9], is 2-linked. However, there is a linear
function f(k) such that every f(k)-connected graph is k-linked, which follows from works of Bollobás
and Thomason [22]; Kawarabayashi, Kostochka and Yu [80]; and Thomas and Wollan [162]. In the case
of polytopes, Larman and Mani [108, Theorem 2] proved that every d-polytope is b(d + 1)/3c-linked, a
result that was slightly improved to b(d+ 2)/3c in [164, Theorem 2.2].

The first edition of the Handbook of Discrete and Computational Geometry [61, Problem 17.2.6]
posed the question of whether or not every d-polytope is bd/2c-linked. This question had already been
answered in the negative by Gallivan in the 1970s with a construction of a d-polytope that is not
b2(d + 4)/5c-linked; see [116, p. 107] or [60]. A weak positive result however follows from [162]: every
d-polytope with minimum degree at least 5d is bd/2c-linked.

Restricting our attention to particular classes of polytopes gives stronger results. Simplicial d-
polytopes, polytopes in which every facet is a simplex, are b(d + 1)/2c-linked [108, Theorem 2]. Since
there are simplicial d-polytopes that are d-connected but not (d+1)-connected, the bound of b(d+1)/2c
is best possible for this class of polytopes. Polytopes with small number of vertices were considered
in [164], where it was shown that d-polytopes with d + γ + 1 vertices are b(d − γ + 1)/2c-linked for
0 ≤ γ ≤ (d+ 2)/5.

In his PhD thesis [165, Question 5.4.12] Wotzlaw asked whether every cubical d-polytope is bd/2c-
linked. Here we answer the question in the strongest possible way.

Theorem. For every d 6= 3, a cubical d-polytope is b(d+ 1)/2c-linked.

Our methodology relies on results on the connectivity of strongly connected subcomplexes of cubical
polytopes, whose proof ideas were first developed in [33], and a number of new insights into the structure
of d-cube (Section 11.1). One obstacle that forces some tedious analysis is the fact that the 3-cube is
not 2-linked.

In line with the main result of Chapter 10 (or in [33]), where it was proved that a cubical d-polytope
of minimum degree δ is min{δ, 2d− 2}-connected, we wonder if the following is true.

Question 1.2.5. For every δ 6= 3, is a cubical polytope with minimum degree δ necessarily b(δ + 1)/2c-
linked?

Contributions of Research

We establish that d-dimensional cubical polytopes are b(d+1)/2c-linked for every d 6= 3; this is again
the maximum possible linkedness for such a class of polytopes (cf. Chapter 11).

11



1.3 Organisation of the Thesis

The organisation of the thesis is as follows:

In the first and major part of the thesis (chapter 2-6), following the works by Kruger, we examine
extremality and stationarity properties of collections of sets using techniques of variational analysis.
We thoroughly study metric, slope and normal cone characterisations of these properties. The core
arguments used in various proofs of the extremal principle and its extensions as well as in primal and
dual characterisations are fully exposed, analysed and refined, leading to a unifying theory, encompassing
all existing approaches to obtaining ‘extremal’ statements. This work contributes to the development of
nonsmooth analysis and optimisation.

In the second part (chapter 7-8), we study some generalised convexity notions using the techniques
of variational analysis. In particular, robustly quasiconvex functions, which retain many important
optimisation properties of convex functions, are characterised by means of Fréchet subdifferentials; and
generalisations of the convex subdifferentials are studied in the framework of abstract convexity, also
known as the theory of convexity without linearity. This work develops certain special global tools for
solving nonsmooth optimisation problems.

In the third part (chapter 9-11), we study convex polytopes via their graphs and face lattices. Many
continuous optimisation problems can be discretised into problems of finding the best solution from a
finite set of points, using powerful tools like simplex method. Here, we study properties of graphs of
some convex polytopes. In particular, the connectivity and the linkedness properties of graphs of cubical
polytopes are explored. This work contributes to the development of combinatorics optimisation.
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Part I

Extremal Principle:
Characterisations of

Non-Intersection Properties
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Overview

This research studies a geometric non-intersection properties of finite collections of sets initiated 40 years
ago by the extremal principle [101–103]. Models involving collections of sets have proved their usefulness
in analysis and optimisation, with non-intersection properties (or their absence) being at the core of
many applications: recall the ubiquitous convex separation theorem, Dubovitskii–Milyutin formalism [54]
and various transversality/regularity properties [20,52,74,75,90–92,96,99,100,127].

In the setting of general Banach/Asplund spaces, we establish metric and linear dual (generalised
separation) characterisations (Chapter 3) and nonlinear primal (slope) and dual characterisations (Chap-
ter 4) of these non-intersection properties. As an application, in Chapter 5 some new (even in the linear
setting) characterisations of the conventional extremality/stationarity properties are obtained. Realisa-
tions of the obtained characterisations in the Hölder setting are formulated. In Chapter 6, some open
questions on the intrinsic transversality are answered thoroughly; and its primal space characterisation
is established.
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Chapter 2

Preliminaries

2.1 Basic Definitions and Notions

Our basic notation is standard; see e.g., [51, 75, 120, 129, 130, 143]. Throughout X is either a metric or
(more often) a normed vector space. In the latter case, we often require it to be Banach or Asplund.
The distance and the norm are denoted by d(·, ·) and ‖ · ‖, respectively. We use the same symbols
to denote distances and norms in all spaces (primal and dual). When considering products of spaces,
we usually assume them equipped with the maximum distance or norm. Bδ(x) and Bδ(x) denote,
respectively, the open and closed balls with center x and radius δ > 0. Given a point x and a set A in X,
d(x,A) := inf

a∈A
d(x, a) denotes the distance from x to A; in particular d(x, ∅) := +∞. Given two subsets

A,B ⊂ X, d(A,B) := inf
a∈A

d(a,B) denotes the distance between A and B. Given a set A, a point a ∈ A
and a number δ > 0, we call the set A∩Bδ(a) a localisation of the set A near a. If X is a normed vector
space, its topological dual is denoted by X∗ while 〈·, ·〉 denotes the bilinear form defining the pairing
between the two spaces. The open unit balls in X and X∗ are denoted by B and B∗, respectively. N
stands for the set of all positive integers. We also use the notation R∞ := R ∪ {+∞}. Given a function
f : X → R∞, its domain is the set dom f := {x ∈ X : f(x) <∞}.

A set-valued mapping F : X ⇒ Y between two sets X and Y is a mapping, which assigns to every
x ∈ X a subset (possibly empty) F (x) of Y . We use the notations

gphF := {(x, y) ∈ X × Y | y ∈ F (x)}, domF := {x ∈ X | F (x) 6= ∅}

for the graph and the domain of F , respectively, and F−1 : Y ⇒ X for the inverse of F . This inverse
(which always exists with possibly empty values) is defined by

F−1(y) := {x ∈ X| y ∈ F (x)}, y ∈ Y,

and satisfies
(x, y) ∈ gphF ⇐⇒ (y, x) ∈ gphF−1.

Obviously, domF−1 = F (X).

The distance from a point x ∈ X to a set Ω ⊂ X is defined by dist (x,Ω) := inf
ω∈Ω
‖x−ω‖, and we use

the convention dist (x,Ω) = +∞ when Ω = ∅. The set-valued mapping

PΩ : X ⇒ X : x 7→ {ω ∈ Ω, ‖x− ω‖ = dist (x,Ω)}

is the projector on Ω. An element ω ∈ PΩ(x) is called a projection. Note that the projector is not, in
general, single-valued and can have empty values. The single-valuedness of PΩ everywhere in fact defines
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the Chebyshev property of Ω. Every nonempty closed convex set in a Hilbert space is Chebyshev. The
inverse of the projector, P−1

Ω , is defined by

P−1
Ω (ω) ≡ {x ∈ X| ω ∈ PΩ(x) ∀ω ∈ Ω} .

The proximal normal cone to Ω at a point x̄ ∈ Ω is defined by

Np
Ω(x̄) := cone

(
P−1
Ω (x̄)− x̄

)
,

which is a convex cone. Here cone (·) denotes the smallest cone containing the set in the brackets.

2.2 Normal Cones and Subdifferentials

In the thesis, we use dual tools – normal cones and subdifferentials, usually in the Fréchet or Clarke
sense. Given a subset A of a normed vector space X and a point x̄ ∈ A, the set (cf. [88])

NF
A (x̄) :=

{
x∗ ∈ X∗ : lim sup

x→x̄, x∈A\{x̄}

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0
}

(2.1)

is the Fréchet normal cone to A at x̄. It is a nonempty closed convex cone, often trivial (i.e. NF
A (x̄) =

{0}). The Clarke normal cone to A at x̄ is defined as the set (cf. [37])

NC
A (x̄) :=

{
x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0 for all z ∈ TCA (x̄)

}
, (2.2)

where TCA (x̄) is the Clarke tangent cone to A at x̄:

TCA (x̄) :=
{
z ∈ X : ∀xk

A→ x̄, ∀tk ↓ 0, ∃zk → z (2.3)
such that xk + tkzk ∈ A for all k ∈ N

}
.

The set (2.2) is a nonempty weak∗ closed convex cone, and NF
A (x̄) ⊂ NC

A (x̄). If A is a convex set, then
(2.1) and (2.2) reduce to the normal cone in the sense of convex analysis (cf. e.g. [88, Proposition 1.19], [37,
Proposition 2.4.4]):

NA(x̄) := {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0 for all x ∈ A} .

We will often use the generic notation N for both Fréchet and Clarke normal cones, specifying wherever
necessary that either N := NF or N := NC .

The following ε-extension (ε ≥ 0) of (2.1) is used in the sequel: the set of ε-normal elements to A at
a ∈ A:

Nε(a | A) :=
{
x∗ ∈ X∗ | lim sup

x→a, x∈A\{a}

〈x∗, x− a〉
‖x− a‖

≤ ε

}
. (2.4)

When ε = 0, it reduces to (2.1). It is easy to check that Nε(a | A) ⊃ NA(a) + εB for any ε ≥ 0, and if A
is not convex, the inclusion can be strict (see [84]).

Several kinds of subdifferential sum rules are used throughout when deducing dual space results.
They are collected in the next lemma.

Lemma 2.2.1 (Subdifferential sum rules). Suppose X is a normed vector space, f1, f2 : X → R∞, and
x̄ ∈ dom f1 ∩ dom f2.

(i) Convex sum rule. Suppose f1 and f2 are convex and f1 is continuous at a point in dom f2. Then

∂(f1 + f2)(x̄) = ∂f1(x̄) + ∂f2(x̄).
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(ii) Differentiable sum rule. Suppose f1 is Fréchet differentiable at x̄. Then,

∂F (f1 + f2)(x̄) = ∇f1(x̄) + ∂F f2(x̄).

(iii) Fuzzy sum rule. Suppose X is Asplund, f1 is Lipschitz continuous and f2 is lower semicontinuous
in a neighbourhood of x̄. Then, for any ε > 0, there exist x1, x2 ∈ X with ‖xi − x̄‖ < ε, |fi(xi)−
fi(x̄)| < ε (i = 1, 2), such that

∂F (f1 + f2)(x̄) ⊂ ∂F f1(x1) + ∂F f2(x2) + εB∗.

(iv) Clarke–Rockafellar sum rule. Suppose f1 is Lipschitz continuous and f2 is lower semicontin-
uous in a neighbourhood of x̄. Then

∂C(f1 + f2)(x̄) ⊂ ∂Cf1(x̄) + ∂Cf2(x̄).

The first sum rule in the lemma above is the conventional subdifferential sum rule of convex analysis;
see e.g. [76, Theorem 0.3.3] and [168, Theorem 2.8.7]. Together with the second one, theses are examples
of exact sum rules. The third sum rule is known as the fuzzy or approximate sum rule (Fabian [59])
for Fréchet subdifferentials in Asplund spaces; cf., e.g., [88, Rule 2.2] and [120, Theorem 2.33]. Note
that, unlike the sum rules in parts (i) and (ii) of the lemma, the subdifferentials in the right-hand side
of the inclusion are computed not at the reference point, but at some points nearby. This explains
the name. The fourth sum rule is formulated in terms of Clarke subdifferentials. It was established
in Rockafellar [142, Theorem 2]. Similar to the previous one, it is valid generally only as inclusion.
Nevertheless, it is another example of exact sum rule.

Recall that a Banach space is Asplund if every continuous convex function on an open convex set is
Fréchet differentiable on a dense subset [136], or equivalently, if the dual of each its separable subspace
is separable. We refer the reader to [25,120,136] for discussions about and characterisations of Asplund
spaces. All reflexive, particularly, all finite dimensional Banach spaces are Asplund.

The following facts are immediate consequences of the definition of the Fréchet subdifferential and
normal cone (cf. e.g. [88, Propositions 1.10 and 1.29]).

Lemma 2.2.2. Suppose X is a normed vector space and f : X → R∞. If x̄ ∈ dom f is a point of local
minimum of f , then 0 ∈ ∂F f(x̄).

Lemma 2.2.3. Suppose X1 and X2 are normed vector spaces, x̄1 ∈ A1 ⊂ X1 and x̄2 ∈ A2 ⊂ X2. Then

NF
A1×A2

(x̄1, x̄2) = NF
A1

(x̄1)×NF
A2

(x̄2).

We are going to use a representation of the subdifferential of a special convex function on Xn given
in the next lemma; cf. [41, 99].

Lemma 2.2.4. Let X be a normed vector space and

ψ(u1, . . . , un) := max
1≤i≤n−1

‖ui − ai − un‖, u1, . . . , un ∈ X, (2.5)

where ai ∈ X (i = 1, . . . , n− 1). Let x1, . . . , xn ∈ X and max
1≤i≤n−1

‖xi − ai − xn‖ > 0. Then

∂ψ(x1, . . . , xn) =
{

(x∗1, . . . , x∗n) ∈ (X∗)n |
n∑
i=1

x∗i = 0,

n−1∑
i=1
‖x∗i ‖ = 1,

n−1∑
i=1
〈x∗i , xi − ai − xn〉 = max

1≤i≤n−1
‖xi − ai − xn‖

}
. (2.6)

Remark 2.2.5. (i) It is easy to notice that in the representation (2.6), for any i = 1, . . . , n− 1, either
〈x∗i , xi − ai − xn〉 = max

1≤j≤n−1
‖xj − aj − xn‖ or x∗i = 0.
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(ii) The maximum norm on Xn−1 used in (2.5) and (2.6) is a composition of the given norm on X
and the maximum norm on Rn−1. The corresponding dual norm produces the sum of the norms
in (2.6). Any other finite dimensional norm can replace the maximum norm in (2.5) and (2.6) as
long as the corresponding dual norm is used to replace the sum in (2.6).

2.3 Arrangement of Collections of sets

Here we consider n sets Ω1, . . . , Ωn (2 ≤ n <∞) and write {Ω1, . . . , Ωn} to denote the collection of the
sets as a single object.

2.3.1 Extremality, Stationarity and Approximate Stationarity

The next definition collects several extremality and stationarity properties of collections of sets.

Definition 2.3.1. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi. The
collection {Ω1, . . . , Ωn} is

(i) extremal if and only if for any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying
n⋂
i=1

(Ωi − ai) = ∅ and max
1≤i≤n

‖ai‖ < ε; (P1)

(ii) locally extremal at x̄ if and only if there exists a number ρ ∈]0,∞] such that, for any ε > 0,
there are vectors ai ∈ X (i = 1, . . . , n) satisfying

n⋂
i=1

(Ωi − ai) ∩Bρ(x̄) = ∅ and max
1≤i≤n

‖ai‖ < ε; (P2)

(iii) stationary at x̄ if and only if for any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X
(i = 1, . . . , n) satisfying

n⋂
i=1

(Ωi − ai) ∩Bρ(x̄) = ∅ and max
1≤i≤n

‖ai‖ < ερ; (P3)

(iv) approximately stationary at x̄ if and only if for any ε > 0, there exist a number ρ ∈]0, ε[, points
ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X (i = 1, . . . , n) satisfying

n⋂
i=1

(Ωi − ωi − ai) ∩ (ρB) = ∅ and max
1≤i≤n

‖ai‖ < ερ. (P4)

The condition (P1) (conditions (P2), (P4)) means that an appropriate arbitrarily small shift of the sets
makes them nonintersecting (in a neighborhood of x̄). This is a very general model that embraces many
optimality notions. In nonconvex analysis, the extremality properties replaces the crucial assumption
on the emptyness of the intersection of one of the sets with the interior of the other set in convex
separation theorem. It is easy to observe that if the collection of sets {Ω1, . . . , Ωn} is extremal, it is
locally extremal at any points in ∩ni=1Ωi with any positive parameter ρ > 0, when the sets are convex
the inverse also holds. On the other hand, the extremality condition can be considered as a special case
of the local extremality with ρ = +∞. The other two conditions correspond to more subtle properties
of optimisation problems, closer to stationarity.
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Unlike the definition of local extremality (Definition 2.3.1(ii)), the definitions of stationarity and
approximate stationarity (Definition 2.3.1(iii)–(iv)) relate the size of the ‘shifts’ of the sets to that of the
neighborhood in which the sets become nonintersecting. That makes these stationarity properties have
strong connections with important regular/transversal properties of collections of sets (Section 2.3.2), and
closed related to the fundamental property of metric regularity of set-valued mappings (see Section 2.5).
In condition (P4), instead of the common point x̄, the sets Ωi (i = 1, . . . , n) are considered near their
own points ωi ∈ Ωi.

The formulas in Definition 2.3.1 and several their modifications discussed in Proposition 2.3.4 are
central for our analysis and are going to be extensively referred to throughout the thesis. We will use
special P tags: (P1), (P2), . . . for such formulas as well as some other formulas in Chapter 2 involved in
primal space of extremality and stationarity. M tags: (M1), (M2),. . . are for the formulas involved in the
corresponding metric characterisations. D tags: (D1), (D2), . . . are reserved for the formulas involved in
the corresponding dual space characterisations of extremality and stationarity.

For easy consultation by the reader, we present below a table to categorise each group of definitions
and characterisations of extremality and transversality properties in this preliminary section.

Extremality and Transversality
Definition/Geometric
characterisation &
reformulation

Metric characterisation Dual characterisa-
tion

Extremality (P1), (P5) (D1), (D2)
Local extremality (P2), (P6) (D1), (D2)
Stationarity (P3), (P7) (M3) (D1), (D2)
Approximate stationarity (P4), (P8) (M4), (M4.1), (M4.2) (D3), (D4), (D5),

(D6)

Semitransversality (P9) (M9)
Subtransversality (P10), (P12) (M10)
Transversality (P11). (P13) (M11), (M11.1), (M11.2) Theorem 2.7.15 (ii),

(iii)

Table 2.1: List of definitions and characterisations for extremality and transversality properties.

The properties in parts (i) and (ii) of Definition 2.3.1 were introduced in [102] and [83], respectively;
see also [88, 120]. The properties in parts (iii) and (iv) first appeared in [89] and [85], respectively;
see also [29, 91]. Property (iv) was referred to in [85] as extremality near x̄. The name approximate
stationarity was suggested in [92].

Unlike condition (ii), in conditions (iii) and (iv) the magnitudes of the “shifts” of the sets are related to
that of the neighbourhood in which the sets become nonintersecting that is the condition max

1≤i≤n
‖ai‖ /ρ <

ε. Compared to (iii), in condition (iv), instead of the common point x̄, each set Ωi is considered near its
own point ωi.

The relationships between the properties in Definition 2.3.1 are straightforward. The equivalences in
part (ii) of the proposition below were proved in [90, Proposition 14].

Proposition 2.3.2. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi.

(i) For the properties in Definition 2.3.1, the following implications hold true: (i)⇒ (ii)⇒ (iii)⇒ (iv).

(ii) If the sets are convex, then the implications in the previous item hold as equivalences: (i) ⇔ (ii)
⇔ (iii) ⇔ (iv).

(iii) If the collection {Ω1, . . . , Ωn} is locally extremal at x̄ with ρ =∞, then it is extremal.
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(iv) If the collection {Ω1, . . . , Ωn} is locally extremal at x̄ with some ρ ∈]0,∞], then the collection of
n+ 1 sets Ω1, . . . , Ωn, Bρ(x̄) is extremal.

It is easy to check that all the implications in Proposition 2.3.2(i) can be strict; see examples in
[29,90,92] and Example 2.3.3.

Thanks to Proposition 2.3.2(i), approximate stationarity is the weakest of the four properties in
Definition 2.3.1. It happens to be an important type of mutual arrangement of a collection of sets in
space.

B

(0, 0)

A

Figure 2.1: Extremality

B

A

(−1, 1)
(0, 0)

Figure 2.2: Not extremality & local extremality

The next example illustrates the difference between the extremality, the local extremality, the sta-
tionarity, and the approximate stationarity.
Example 2.3.3. 1. The sets A := {(x1, x2) | x2 ≤ 0} and B := {(x1, x2) | x2

1 ≤ x2} in R2 (see Fig. 2.1)
are obviously extremal.

2. If the set A above is modified slightly: A := {(x1, x2) | x2 ≤ 0 or x1 ≤ −1} (see Fig. 2.2), then
{A,B} is not extremal any more. At the same time, it is still locally extremal at (0, 0) ∈ A∩B (but not
at (−1, 1)!).

B

A

(0, 0)

Figure 2.3: Stationarity

B

A

(0, 0)

Figure 2.4: Stationarity

3. The set A is as in example 1. (figure 2.1), but the set B is the epigraph of the function x3,
B := {(x1, x2) : x2 ≤ x3

1} (see figure 2.3), then {A,B} is not locally extremal at (0, 0), but stationary at
(0, 0).

4. The sets A := {(x1, x2) : x2 ≥ 0} and B := {(x1, x2) : x2 ≤ x2
1} in R2 (see figure 2.4) are also

stationary at (0, 0).

5. The sets A := {(x1, x2) : x2 ≤ |x1|} and B := {(x1, x2) : x2 ≥ − |x1|} in R2 (see figure 2.5) are
not stationary at (0, 0) but approximately stationary at (0, 0).

6. The sets A := {(x1, x2) : x2 ≤ 0} and B := {(x1, x2) : x2 ≥ x1} in R2 (see figure 2.6) are not
approximately stationary at (0, 0).

In Definition 2.3.1, it is sufficient to consider translations of all but one sets allowing the remaining set
unchanged. Based on this observation, the following proposition provides asymmetric conditions which
are useful for our analysis in Chapters 3 and (4).

Proposition 2.3.4. Let Ω1, . . . , Ωn be subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi. The
collection {Ω1, . . . , Ωn} is
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A

(0, 0)

Figure 2.5: Approximate stationarity

B

A

(0, 0)

Figure 2.6: Not approximate stationarity

(i) extremal if and only if, for any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

(Ωi − ai) ∩Ωn = ∅, max
1≤i≤n−1

‖ai‖ < ε; (P5)

(ii) locally extremal at x̄ if and only if there exists a number ρ ∈]0,+∞] such that, for any ε > 0, there
exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

(Ωi − ai) ∩Ωn ∩Bρ(x̄) = ∅, max
1≤i≤n−1

‖ai‖ < ε; (P6)

moreover, if {Ω1, . . . , Ωn} is locally extremal at x̄ with some ρ ∈]0,+∞], then the above condition
holds with any ρ′ ∈]0, ρ[ in place of ρ; if ρ = +∞, one can take ρ′ := +∞;

(iii) stationary at x̄ if and only if, for any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X
(i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

(Ωi − ai) ∩Ωn ∩Bρ(x̄) = ∅ and max
1≤i≤n−1

‖ai‖ < ερ; (P7)

(iv) approximately stationary at x̄ if and only if, for any ε > 0, there exist a number ρ ∈]0, ε[, points
ωi ∈ Ωi ∩Bε(x̄) (i = 1, . . . , n) and vectors ai ∈ X (i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

(Ωi − ωi − ai) ∩ (Ωn − ωn) ∩ (ρB) = ∅ and max
1≤i≤n−1

‖ai‖ < ερ. (P8)

Proof. The properties above imply the corresponding ones in Definition 2.3.1 with an = 0.

For the opposite implication, given vectors ai ∈ X (i = 1, . . . , n), it is natural to consider vectors
a′i := ai − an (i = 1, . . . , n− 1). Then

n−1⋂
i=1

(Ωi − a′i) ∩Ωn =
n⋂
i=1

(Ωi − ai) + an. (2.7)

From condition (P1), the set ∩ni=1(Ωi − ai) is nonempty, so is ∩n−1
i=1 (Ωi − a′i). Hence, (P5) holds with

the collection of vectors a′i’s in place of ai’s. Given an ε > 0, if one of the conditions max
1≤i≤n−1

‖ai‖ < ε

or max
1≤i≤n−1

‖ai‖ < ρε is satisfied with some ε′ ∈]0, ε/2] in place of ε, then the corresponding condition

max
1≤i≤n−1

‖ai‖ < ε or max
1≤i≤n−1

‖ai‖ < ρε is satisfied with the collection a′i’s in place of ai’s. Given a

ρ ∈]0,+∞] and a ρ′ ∈]0, ρ[, one can take a smaller ε′ > 0 to ensure that ρ′ + ε′ < ρ. Then, in view of
(2.7) and assuming max

1≤i≤n−1
‖ai‖ < ε with ε′ in place of ε, we have

n−1⋂
i=1

(Ωi − a′i) ∩Ωn ∩Bρ′(x̄) ⊂
n⋂
i=1

(Ωi − ai) ∩Bρ(x̄).
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The above inclusion obviously holds also with ρ′ = ρ = +∞. Thus, condition (P2) implies condition (P6)
with a′i’s and ρ′ in place of ai’s and ρ, respectively. Observe that conditions (P4) and (P8) are actually
conditions (P2) and (P6), respectively, with the sets Ωi − ωi (i = 1, . . . , n) in place of Ωi (i = 1, . . . , n).
Hence, condition (P4) implies condition (P8) with a′i’s and ρ′ in place of ai’s and ρ, respectively. It
follows that the properties in Definition 2.3.1 imply the corresponding ones in the proposition with a′i’s
in place of ai’s, as well as the ‘moreover’ part in item (ii).

There exist several modifications of the properties discussed in Section 2.7, scattered in the literature.
Below we briefly discuss some of them which are going to be important for our subsequent study.

The properties in Definition 2.3.1 involve translations of all the sets. It is easy to see that in all the
properties it is sufficient to consider translations of all but one sets leaving the remaining set unchanged.
This simple observation leads to asymmetric conditions in the next proposition which can be useful,
especially in the case n = 2.

Proposition 2.3.5 (Distance characterisations of extremality). Suppose X is a normed linear space,
A,B ⊂ X are closed and A∩B 6= ∅. The pair {A,B} is extremal if and only if for any ε > 0 there exist
u, v ∈ X such that max{‖u‖, ‖v‖} < ε and any one of the two following (equivalent) conditions hold:

(i) d(a− u,B − v) > 0 for all a ∈ A;

(ii) d(b− v,A− u) > 0 for all b ∈ B.

Proof. It is sufficient to show that each of the conditions (i) or (ii) is equivalent to (A−u)∩ (B− v) = ∅.
Each of these conditions obviously implies (A− u) ∩ (B − v) = ∅. Conversely, if (A− u) ∩ (B − v) = ∅,
then a− u /∈ B− v for any a ∈ A, and consequently, since B is closed, d(a− u,B− v) > 0, i.e. condition
(i) is satisfied. Similarly, since A is closed, condition (A − u) ∩ (B − v) = ∅ implies d(b − v,A − u) > 0
for all b ∈ B, hence, condition (ii).

The closedness assumption in Proposition 2.3.5 cannot be dropped.
Example 2.3.6. The pair of sets A := R2 \ {(t, 0) | t > 0} and B := {(0, 0)} in R2 is obviously extremal
in the sense of Definition 2.3.1(i). At the same time, d(a− u,B − v) = d(b− v,A− u) = 0 for all a ∈ A,
b ∈ B and u, v ∈ R2.
Remark 2.3.7. Condition (A − u) ∩ (B − v) = ∅ which is crucial for the extremality property in Defi-
nition 2.3.1 is obviously implied by the stronger condition d(A − u,B − v) > 0, which is also stronger
than each of the conditions (i) or (ii) in Proposition 2.3.5. As the next example shows, condition
d(A − u,B − v) > 0 can be strictly stronger than (A − u) ∩ (B − v) = ∅ even when both A and B are
closed.
Example 2.3.8. In this example, we use the superscript notation Kth term to indicate the order of an
element in a sequence in `∞.

Consider two sets in `∞:

A :=
{
x = (xk) | xK ∈ [K,K + 1] ∪

[
K + 1 + 1

K
,K + 2

]
for some K ∈ N;

xk ∈ [−1, 1] for all k 6= K

}
,

B :=
{
x = (xk) | xK = K + 1 for some K ∈ N; xk = 0 for all k 6= K

}
.

Observe that A ∩B = B 6= ∅.

We first show that A is closed. Let (xn) ⊂ A and xn → x0 ∈ `∞. There exist numbers K,N ∈ N
such that xKn ∈ [K,K + 1] ∪ [K + 1 + 1/K,K + 2] for all n > N. Indeed, assume on the contrary
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that for any N > 0 there exist m,n > N , m 6= n and Km,Kn ∈ N, Kn 6= Km such that xKmm ∈
[Km,Km + 1] ∪ [Km + 1 + 1/Km,Km + 2] and xKnn ∈ [Kn,Kn + 1] ∪ [Kn + 1 + 1/Kn,Kn + 2]. Then

‖xn − xm‖ ≥ max
{
|xKnn − xKnm |, |xKmn − xKmm |

}
≥ max

{
|xKnn | − |xKnm |, |xKmm | − |xKmn |

}
≥ max{Kn,Km} − 1 ≥ 1,

which contradicts the assumption that (xn) is convergent. Hence, x0 = (x1
0, x

2
0, . . .) with xK0 ∈ [K,K +

1] ∪ [K + 1 + 1/K,K + 2] and xk0 ∈ [−1, 1] for all k 6= K. Thus, A is closed.

A similar argument can be used to show that B is closed. Observe that for all x1, x2 ∈ B with
x1 6= x2 one has ‖x1 − x2‖ = max{K1,K2}+ 1 for some K1,K2 ∈ N, K1 6= K2. Hence, ‖x1 − x2‖ > 1.
It follows that any convergent sequence (xn) ⊂ B must be stationary when n is sufficiently large. This
immediately yields the closedness of B.

Now we show that {A,B} is extremal. Given an ε ∈ (0, 1), find and an n ∈ N such that 1/n < ε ≤
1/(n − 1) and define a u ∈ `∞ as follows: ui = 1/n if i < n, and ui = 1/(i + 1) if i ≥ n. We have
‖u‖ ≤ 1

n
< ε. Let b = (bk) ∈ B, i.e. there exists a K ∈ N such that bK = K + 1 and bk = 0 for all

k 6= K. Then 0 < (b+ u)k ≤ 1/n < 1 for all k 6= K. If K < n, then (b+ u)K = K + 1 + 1/n. If K ≥ n,
then (b+ u)K = K + 1 + 1/(K + 1). In both cases, K + 1 < (b+ u)K < K + 1 + 1/K. Hence, b+ u /∈ A,
and consequently, (A− u) ∩B = ∅.

Let u = (uk), v = (vk) ∈ `∞ be such that max{‖u‖, ‖v‖} < 1/2 and (A − u) ∩ (B − v) = ∅. We
are going to show that d(A − u,B − v) = 0. Obviously ‖u − v‖ < 1. Moreover, |uk − vk| < 1/k for
all k ∈ N. Indeed, suppose on the contrary that 1/K ≤ |uK − vK | < 1 for some K ∈ N and choose
a b = (bk) ∈ B such that bK = K + 1 and bk = 0 for k 6= K. Then for any k 6= K, we have
‖(b + u − v)k‖ = ‖(u − v)k‖ < 1, and (b + u − v)K = K + 1 + uK − vK , and consequently, either
K < (b + u − v)K < K + 1 or K + 1 + 1/K ≤ (b + u − v)K < K + 2. In any case, b + u − v ∈ A, and
b− v ∈ A− u, which is a contradiction. Thus, |uk − vk| < 1/k for all k ∈ N. For any ε > 0, we can find
a b ∈ B and a K ∈ N such that bK 6= 0, |uK − vK | < ε. Set aK := bK and ak := uk − vk for all k 6= K.
Then a = (ak) ∈ A and ‖(a− u)− (b− v)‖ = |aK − bK | < ε. Hence, d(A− u,B − v) = 0.

2.3.2 Semitransversality, Subtransversality and Transversality

The content of this subsection is mostly taken from [28, Section 2]. In this section, we study ‘good
arrangements’ of collections of sets in normed vector spaces near a point in their intersection, known
as transversality (regularity) properties and playing an important role in optimisation and variational
analysis, e.g., as constraint qualifications in optimality conditions, and qualification conditions in sub-
differential, normal cone and coderivative calculus, and convergence analysis of computational algo-
rithms [2, 8, 13–15,28,39,40,42,43,52,75,90–92,96–100,104–107,109,111,123–125,128,129,171,173].

The next definition is a modification of [106, Definition 3.1].
Definition 2.3.9. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi and α > 0.

(i) {Ω1, . . . , Ωn} is α−semitransversal at x̄ if and only if there exists a number δ > 0 such that
n⋂
i=1

(Ωi − ai) ∩Bρ(x̄) 6= ∅ (P9)

for all ρ ∈]0, δ[ and ai ∈ X (i = 1, . . . , n) with max
1≤i≤n

‖ai‖ < αρ.

(ii) {Ω1, . . . , Ωn} is α−subtransversal at x̄ if and only if there exist numbers δ1 > 0 and δ2 > 0 such
that

n⋂
i=1

Ωi ∩Bρ(x) 6= ∅ (P10)
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for all ρ ∈]0, δ1[ and x ∈ Bδ2(x̄) with max
1≤i≤n

d(x,Ωi) < αρ.

(iii) {Ω1, . . . , Ωn} is α−transversal at x̄ if and only if there exist numbers δ1 > 0 and δ2 > 0 such that
n⋂
i=1

(Ωi − ωi − ai) ∩ (ρB) 6= ∅ (P11)

for all ρ ∈]0, δ1[, ωi ∈ Ωi ∩Bδ2(x̄) and ai ∈ X (i = 1, . . . , n) with max
1≤i≤n

‖ai‖ < αρ.

Three properties in Defintion 2.3.9 are known under various names. A table illustrating the evolution
of the terminology can be found in [99, Section 2].

Each of the properties in Definition 2.3.9 is determined by a number α > 0, playing the role of a rate
of the respective property, and either a number δ > 0 in item (i) or two numbers δ1 > 0 and δ2 > 0 in
items (ii) and (iii). The exact upper bound of all α > 0 such that the property holds with some δ > 0,
or δ1 > 0 and δ2 > 0, is called the modulus of this property. We use notations setr [Ω1, . . . , Ωn](x̄),
str [Ω1, . . . , Ωn](x̄) and tr [Ω1, . . . , Ωn](x̄) for the moduli of the respective properties. If the property
does not hold, then by convention the respective modulus equals 0.

If {Ω1, . . . , Ωn} is α−semitransversal (respectively, α−subtransversal or α−transversal) at x̄ with
some α > 0 and δ > 0 (respectively, δ1 > 0 and δ2 > 0), we often simply say that {Ω1, . . . , Ωn} is
semitransversal (respectively, subtransversal or transversal) at x̄.

The role of the δ’s in the definitions is more technical: they control the size of the interval for the
values of ρ and, in the case of subtransversality and transversality in parts (ii) and (iii), the size of
the neighbourhoods of x̄ involved in the respective definitions. Of course, if a property is satisfied with
some δ1 > 0 and δ2 > 0, it is satisfied also with the single δ := min{δ1, δ2} in place of both δ1 and
δ2. We use here two different parameters to emphasise their different roles in the definitions and the
corresponding characterisations. Moreover, we are going to provide quantitative estimates for the values
of these parameters, which can be important in applications.

The negation (or the absence) of the stationarity (see Definition 2.3.1(iii)) implies that the value
setr [Ω1, . . . , Ωn](x̄) > 0 that is {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0 and some
α > 0. The negation of the approximate stationarity (Definition 2.3.1) means tr [Ω1, . . . , Ωn](x̄) > 0, or
the collection {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1, δ2 > 0 and some α > 0 (cf. [29, 90–92]).

The representation of the subtransversality property in part (ii) of Definition 2.3.9 differs from the
corresponding one in [106, Definition 3.1]. In view of the next proposition, the two representations are
equivalent.

Proposition 2.3.10. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, and α > 0.
{Ω1, . . . , Ωn} is α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

n⋂
i=1

(Ωi + (αρ)B) ∩Bδ2(x̄) ⊂
n⋂
i=1

Ωi + ρB (P12)

for all ρ ∈]0, δ1[.

Proof. Condition (P12) is equivalent to the inclusion x ∈ ∩ni=1Ωi + ρB holding for all x ∈ Bδ2(x̄) with
max

1≤i≤n
d(x,Ωi) < αρ. In its turn, this inclusion is equivalent to (P10).

If all the sets coincide, the subtransversality property is satisfied trivially.

Proposition 2.3.11. Let Ω be a subset of a normed vector space X, x̄ ∈ Ω, and α ∈]0, 1]. The collection
{Ω, . . . , Ω} of n ≥ 2 copies of Ω is α−subtransversal at x̄ with any δ1 > 0 and δ2 > 0.
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Proof. Condition (P10) in the current setting takes the form Ω ∩ Bρ(x) 6= ∅ and is trivially satisfied if
d(x,Ω) < αρ.

The transversality property in part (iii) of Definition 2.3.9 admits several alternative representations.
The three equivalent representations in the next proposition are of independent interest. They differ
from the one in Definition 2.3.9(iii) by values of the parameters δ1 and δ2. The relationship between the
values of the parameters in the two groups of representations can be estimated.
Proposition 2.3.12. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, and α > 0.
Then, {Ω1, . . . , Ωn} is α−transversal at x̄ if and only if there exist numbers δ1 > 0 and δ2 > 0 such that
the following equivalent conditions hold:

(i) condition (P11) is satisfied for all ρ ∈]0, δ1[, ωi ∈ Ωi and ai ∈ X with ωi + ai ∈ Bδ2(x̄) and
‖ai‖ < αρ (i = 1, . . . , n);

(ii) condition (P9) is satisfied for all ρ ∈]0, δ1[ and ai ∈ δ2B with d(x̄, Ωi − ai) < αρ (i = 1, . . . , n);

(iii) for all ρ ∈]0, δ1[, x ∈ X and ai ∈ X with x+ ai ∈ Bδ2(x̄) and d(x,Ωi − ai) < αρ (i = 1, . . . , n), we
have

n⋂
i=1

(Ωi − ai) ∩Bρ(x) 6= ∅. (P13)

Moreover, if {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then conditions (i)–(iii)
hold with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . , Ωn} is α−transversal
at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Proof. We first prove the equivalence of conditions (i)–(iii). Let numbers δ1 > 0 and δ2 > 0 be given.

(iii) ⇒ (ii). This implication is trivial.

(ii) ⇒ (i). Let ρ ∈]0, δ1[, ωi ∈ Ωi, ai ∈ X, ωi + ai ∈ Bδ2(x̄) and ‖ai‖ < αρ (i = 1, . . . , n). Set
a′i := ai + ωi − x̄ (i = 1, . . . , n). We have ai ∈ δ2B and d(x̄, Ωi − a′i) ≤ ‖x̄− ωi + a′i‖ = ‖ai‖ < αρ
(i = 1, . . . , n). By (ii), (P9) is satisfied with a′i in place of ai (i = 1, . . . , n). This is equivalent to (P11).

(i) ⇒ (iii). Let ρ ∈]0, δ1[, x ∈ X, ai ∈ X, x + ai ∈ Bδ2(x̄) and d(x,Ωi − ai) < αρ (i = 1, . . . , n).
Choose ωi ∈ Ωi such that ‖x− ωi + ai‖ < αρ and set a′i := x − ωi + ai (i = 1, . . . , n). We have
ωi + a′i = x + ai ∈ Bδ2(x̄) and ‖a′i‖ < αρ (i = 1, . . . , n). By (i), (P13) is satisfied with a′i in place of ai
(i = 1, . . . , n). This is equivalent to (P11).

Suppose {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, and let δ′1 ∈]0, δ1] and
δ′2 > 0 be such that δ′2 + αδ′1 ≤ δ2. Then, for all ρ ∈]0, δ′1[, ωi ∈ Ωi and ai ∈ X with ωi + ai ∈ Bδ′2(x̄)
and ‖ai‖ < αρ (i = 1, . . . , n), we have ‖ωi − x̄‖ ≤ ‖ωi + ai − x̄‖ + ‖ai‖ < δ′2 + αδ′1 ≤ δ2 (i = 1, . . . , n).
By Definition 2.3.9 (iii), (P11) is satisfied, and consequently condition (i) (as well as conditions (ii) and
(iii)) holds with δ′1 and δ′2.

Conversely, suppose conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, and let δ′1 ∈]0, δ1] and
δ′2 > 0 be such that δ′2 + αδ′1 ≤ δ2. Then, for all ρ ∈]0, δ′1[, ωi ∈ Ωi ∩ Bδ′2(x̄) and ai ∈ X (i = 1, . . . , n)
with max

1≤i≤n
‖ai‖ < αρ, we have ‖ωi + ai − x̄‖ ≤ ‖ωi − x̄‖+ ‖ai‖ < δ′2 +αδ′1 ≤ δ2, or ωi + ai ∈ Bδ2(x̄). By

(i), (P11) is satisfied, and consequently {Ω1, . . . , Ωn} is α−transversal at x̄ with δ′1 and δ′2.

Remark 2.3.13. (i) The inequality δ′2 + αδ′1 ≤ δ2 in the last part of Proposition 2.3.12 and some
statements below can be replaced by the equality δ′2 + αδ′1 = δ2 providing in a sense the best
estimate for the values of the parameters δ′1 and δ′2.
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(ii) Each of the conditions (i)–(iii) in Proposition 2.3.12 can serve as an equivalent definition of
α−transversality. For the estimates derived in the subsequent statements in this thesis, such equiv-
alent definitions can have some advantages compared to the original one in Definition 2.3.9 (iii).
In particular, they allow to reduce some conventional proofs to a few lines.

α−transversality is the strongest of the three properties in Definition 2.3.9.

Proposition 2.3.14. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, and α > 0.
If {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then it is α−semitransversal at x̄
with δ := δ1 and α−subtransversal at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 such that δ′2 + αδ′1 ≤ δ2. As a
consequence, setr[Ω1, . . . , Ωn](x̄) ≥ tr[Ω1, . . . , Ωn](x̄) and str[Ω1, . . . , Ωn](x̄) ≥ tr[Ω1, . . . , Ωn](x̄).

Proof. Let {Ω1, . . . , Ωn} be α−transversal at x̄ with some δ1 > 0 and δ2 > 0. Since condition (P9)
is a particular case of condition (P11) with ωi = x̄ (i = 1, . . . , n), we conclude that {Ω1, . . . , Ωn} is
α−semitransversal at x̄ with δ := δ1. Since d(x̄, Ωi − ai) ≤ ‖ai‖ for any ai ∈ X and any i = 1, . . . , n,
{Ω1, . . . , Ωn} is α−subtransversal at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 such that δ′2 + αδ′1 ≤ δ2 in view
of Proposition 2.3.12 (ii).

Properties α−semtransversality and α−subtransversality are in general independent; cf. [106, Sec-
tion 3.2].

All three transversality properties in Definition 2.3.9 are only meaningful when x̄ ∈ bd ∩ni=1 Ωi.

Proposition 2.3.15. Let Ω1, . . . , Ωn be subsets of a normed vector space X. If x̄ ∈ int ∩ni=1 Ωi, then,
for any α > 0, all three properties in Definition 2.3.9 hold true (with some δ > 0, or δ1 > 0 and δ2 > 0).

Proof. Let x̄ ∈ int ∩ni=1 Ωi and α > 0. In view of Proposition 2.3.14, we only need to prove that
{Ω1, . . . , Ωn} is α−transversal at x̄. Choose a number δ > 0 such that Bδ(x̄) ⊂ ∩ni=1Ωi. Then x̄ ∈
∩ni=1(Ωi − ai) for all ai ∈ δB (i = 1, . . . , n), and consequently, condition (P9) is satisfied for all ρ > 0.
Hence, condition (ii) in Proposition 2.3.12 holds with δ2 := δ and any δ1 > 0, and {Ω1, . . . , Ωn} is
α−transversal at x̄.

In view of Proposition 2.3.15, the collection {Ω1, . . . , Ωn} being approximately stationary at some
x̄ ∈ ∩ni=1Ωi implies x̄ ∈ bd ∩ni=1 Ωi.

If x̄ ∈ bd ∩ni=1 Ωi and the sets are closed, then the α−subtransversality and α−transversality prop-
erties can only hold with α ≤ 1.

Proposition 2.3.16. Let Ω1, . . . , Ωn be closed subsets of a normed vector space X, x̄ ∈ bd∩ni=1Ωi and
α > 0. If {Ω1, . . . , Ωn} is α−subtransversal (particularly, if it is α−transversal) at x̄, then α ≤ 1.

Proof. Let {Ω1, . . . , Ωn} be α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0. Choose a point
x /∈ ∩ni=1Ωi such that ‖x − x̄‖ < min{δ2, αδ1}. Then x ∈ Bδ2(x̄), 0 < max

1≤i≤n
d(x,Ωi) ≤ d(x,∩ni=1Ωi) ≤

‖x− x̄‖ < αδ1, and by Definition 2.3.9 (ii), ∩ni=1Ωi∩Bρ(x) 6= ∅ for all ρ ∈]0, δ1[ satisfying d(x,∩ni=1Ωi) <
αρ, which is only possible when α ≤ 1. If {Ω1, . . . , Ωn} is α−transversal at x̄, then by Proposition 2.3.14,
it is α−subtransversal at x̄, and α ≤ 1.

In the convex case, the requirements that the relations in parts (i) and (iii) of Definition 2.3.9 hold
for all small ρ > 0 can be relaxed.

Proposition 2.3.17. Let Ω1, . . . , Ωn be convex subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi and
α > 0.
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(i) {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0 if and only if

n⋂
i=1

(Ωi − ai) ∩Bδ(x̄) 6= ∅ (2.8)

for all ai ∈ X with ‖ai‖ < αδ (i = 1, . . . , n).

(ii) {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

n⋂
i=1

(Ωi − ωi − ai) ∩ (δ1B) 6= ∅ (2.9)

for all ωi ∈ Ωi ∩Bδ2(x̄) and ai ∈ X with ‖ai‖ < αδ1 (i = 1, . . . , n).

Proof. (i) If {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0, then, by Definition 2.3.9(i), for
all ai ∈ X with ‖ai‖ < αδ (i = 1, . . . , n), and any number ρ satisfying α−1 max

1≤i≤n
‖ai‖ < ρ < δ,

condition (P9) holds. The latter condition obviously implies (2.8).

Conversely, suppose that, for some δ > 0, condition (2.8) is satisfied for all ai ∈ X with ‖ai‖ < αδ
(i = 1, . . . , n). Let ρ be an arbitrary number in ]0, δ[ and let ai ∈ X with ‖ai‖ < αρ (i = 1, . . . , n).
Set t := ρ/δ and a′i := ai/t (i = 1, . . . , n). Then 0 < t < 1 and ‖a′i‖ = ‖ai‖/t < αδ (i = 1, . . . , n),
and consequently, there exists an x′ ∈ ∩ni=1(Ωi−a′i)∩Bδ(x̄), i.e. x′ ∈ Bδ(x̄) and x′ = ωi−a′i for some
ωi ∈ Ωi, or equivalently, ai = t(ωi−x′) (i = 1, . . . , n). In view of the convexity of the sets, we have
tωi+(1−t)x̄ ∈ Ωi (i = 1, . . . , n). Set x := x̄+t(x′−x̄). We have x = tωi+(1−t)x̄−t(ωi−x′) ∈ Ωi−ai
(i = 1, . . . , n). Moreover, ‖x − x̄‖ = t‖x′ − x̄‖ < ρ. Hence, condition (P9) is satisfied. In view of
Definition 2.3.9(i), {Ω1, . . . , Ωn} is α−semitransversal at x̄ with δ.

(ii) If {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then, by Definition 2.3.9(ii),
for any ωi ∈ Ωi ∩ Bδ2(x̄), ai ∈ X with ‖ai‖ < αδ1 (i = 1, . . . , n), and any number ρ satisfying
α−1 max

1≤i≤n
‖ai‖ < ρ < δ1, condition (P11) holds. The latter condition obviously implies (2.9).

Conversely, suppose that, for some δ1 > 0 and δ2 > 0, condition (2.9) is satisfied for all ωi ∈
Ωi ∩Bδ2(x̄) and ai ∈ X with ‖ai‖ < αδ1 (i = 1, . . . , n). Then the collection of convex sets Ωi − ωi
(i = 1, . . . , n), considered near their common point 0, satisfies the conditions in part (i) and is
consequently α−semitransversal at 0 with δ1 uniformly over ωi ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . , n). This
means that {Ω1, . . . , Ωn} is α−transversal at x̄ with δ1 and δ2.

Employing the same arguments as in the proof of Proposition 2.3.17, it is easy to show that in
the convex case the alternative representations of α−transversality in Proposition 2.3.12 can also be
simplified.

Proposition 2.3.18. Let Ω1, . . . , Ωn be convex subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, α > 0,
δ1 > 0 and δ2 > 0. Conditions (i)–(iii) in Proposition 2.3.12 are satisfied if and only if the following
equivalent conditions hold:

(i) condition (2.9) is satisfied for all ωi ∈ Ωi and ai ∈ X with ωi + ai ∈ Bδ2(x̄) and ‖ai‖ < αδ1
(i = 1, . . . , n);

(ii) for all ai ∈ δ2B with d(x̄, Ωi − ai) < αδ1 (i = 1, . . . , n), we have

n⋂
i=1

(Ωi − ai) ∩Bδ1(x̄) 6= ∅;
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(iii) for all x ∈ X and ai ∈ X with x+ ai ∈ Bδ2(x̄) and d(x,Ωi − ai) < αδ1 (i = 1, . . . , n), we have
n⋂
i=1

(Ωi − ai) ∩Bδ1(x) 6= ∅.

When the sets are convex, the semitransversality and transversality properties are equivalent.

Proposition 2.3.19. Let Ω1, . . . , Ωn be convex subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi and
α > 0. If {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0, then, for any α′ ∈]0, α[, it is
α′−transversal at x̄ with δ1 := δ and δ2 := (α− α′)δ.

As a consequence, {Ω1, . . . , Ωn} is semitransversal at x̄ if and only if it is transversal at x̄, and
setr[Ω1, . . . , Ωn](x̄) = tr[Ω1, . . . , Ωn](x̄).

Proof. Let {Ω1, . . . , Ωn} be α−semitransversal at x̄ with some δ > 0, and let α′ ∈]0, α[, δ1 := δ and
δ2 := (α − α′)δ. Let ωi ∈ Ωi ∩ Bδ2(x̄) and ai ∈ X with ‖ai‖ < α′δ (i = 1, . . . , n), set a′i := ωi + ai − x̄
(i = 1, . . . , n). Then ‖a′i‖ ≤ ‖ωi − x̄‖ + ‖ai‖ < δ2 + α′δ = αδ (i = 1, . . . , n), and by Proposi-
tion 2.3.18(i), ∩ni=1(Ωi−a′i)∩Bδ(x̄) 6= ∅, which is equivalent to condition (2.8). By Proposition 2.3.18(ii),
{Ω1, . . . , Ωn} is α′−transversal at x̄ with δ1 and δ2. Since α′ can be chosen arbitrarily close to α, we have
setr[Ω1, . . . , Ωn](x̄) ≤ tr[Ω1, . . . , Ωn](x̄). In view of Proposition 2.3.14, this inequality actually holds as
equality.

Remark 2.3.20. (i) Proposition 2.3.19 strengthens [90, Proposition 13(iv)].

(ii) In view of Propositions 2.3.19 and 2.3.14, in the convex case, α−semitransversality is in general
stronger than α−subtransversality.

2.4 Metric Characterisations

The transversality properties of collections of sets in Definition 2.3.9 admit equivalent characterisations
in metric terms.

Proposition 2.4.1. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi and α > 0.

(i) {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0 if and only if

αd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
≤ max

1≤i≤n
‖ai‖ (M9)

for all ai ∈ X (i = 1, . . . , n) with max
1≤i≤n

‖ai‖ < αδ.

(ii) {Ω1, . . . , Ωn} is α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

αd

(
x,

n⋂
i=1

Ωi

)
≤ max

1≤i≤n
d(x,Ωi) (M10)

for all x ∈ Bδ2(x̄) with max
1≤i≤n

d(x,Ωi) < αδ1.

(iii) {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

αd

(
0,

n⋂
i=1

(Ωi − ωi − ai)
)
≤ max

1≤i≤n
‖ai‖ (M11)

for all ωi ∈ Ωi ∩Bδ2(x̄) and ai ∈ X (i = 1, . . . , n) with max
1≤i≤n

‖ai‖ < αδ1.
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Proof. (i) By Definition 2.3.9 (i), {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0 if and only
if d (x̄,∩ni=1(Ωi − ai)) < ρ for all ai ∈ X (i = 1, . . . , n) with max

1≤i≤n
‖ai‖ < αδ and all numbers

ρ > α−1 max
1≤i≤n

‖ai‖. The conclusion follows.

(ii) By Definition 2.3.9 (ii), {Ω1, . . . , Ωn} is α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0
if and only if d (x,∩ni=1Ωi) < ρ for all x ∈ Bδ2(x̄) with max

1≤i≤n
d(x,Ωi) < αδ1 and all numbers

ρ > α−1 max
1≤i≤n

d(x,Ωi). The conclusion follows.

(iii) By the Definition 2.3.9 (iii), {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if
and only if d (0,∩ni=1(Ωi − ωi − ai)) < ρ for all ωi ∈ Ωi ∩ Bδ2(x̄) and ai ∈ X (i = 1, . . . , n) with
max

1≤i≤n
‖ai‖ < αδ1, and all numbers ρ > α−1 max

1≤i≤n
‖ai‖. The conclusion follows.

The alternative metric characterisations of α−transversality in the next proposition correspond to
the respective properties in Proposition 2.3.12.

Proposition 2.4.2. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, and α > 0.
Then, {Ω1, . . . , Ωn} is α−transversal at x̄ if and only if there exist numbers δ1 > 0 and δ2 > 0 such that
the following equivalent conditions hold:

(i) inequality (M11) is satisfied for all ωi ∈ Ωi and ai ∈ X (i = 1, . . . , n) with ωi + ai ∈ Bδ2(x̄) and
max

1≤i≤n
‖ai‖ < αδ1;

(ii) for all ai ∈ δ2B (i = 1, . . . , n) with max
1≤i≤n

d(x̄, Ωi − ai) < αδ1, we have

αd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
≤ max

1≤i≤n
d(x̄, Ωi − ai); (M11.1)

(iii) for all x ∈ X and ai ∈ X with x+ ai ∈ Bδ2(x̄) and d(x,Ωi − ai) < αδ1 (i = 1, . . . , n), we have

αd

(
x,

n⋂
i=1

(Ωi − ai)
)
≤ max

1≤i≤n
d(x,Ωi − ai). (M11.2)

Moreover, if {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then conditions (i)–(iii)
hold with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . , Ωn} is α−transversal
at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Proof. The statement is a consequence of Proposition 2.3.12. It suffices to notice that inequality (M11)
is equivalent to condition (P8) satisfied for any ρ > α−1 max

1≤i≤n
‖ai‖, inequality (M11.1) is equivalent

to condition (P5) satisfied for any ρ > α−1 max
1≤i≤n

d(x̄, Ωi − ai), and inequality (M11.2) is equivalent to

condition (P9) satisfied for any positive number ρ with ρ > α−1 max
1≤i≤n

d(x,Ωi − ai).

Remark 2.4.3. Condition (M11.2) served as the main metric characterisation of transversality in [90,91]
and subsequent publications. Condition (M11.1) has been picked up recently in [30]. This condition
seems an important advancement as it replaces an arbitrary point x with the given reference point x̄.
Condition (M11) seems new. In accordance with Proposition 2.3.12, it is the most straightforward metric
counterpart of the original geometric property (P8).
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In the convex case, the estimates in parts (i) and (iii) of Proposition 2.4.1 as well as the alterna-
tive metric characterisations of α−transversality in Proposition 2.4.2 can be simplified. The next two
statements are direct consequences of Propositions 2.4.2 and 2.3.18, respectively.

Proposition 2.4.4. Let Ω1, . . . , Ωn be convex subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi and
α > 0.

(i) {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0 if and only if

d

(
x̄,

n⋂
i=1

(Ωi − ai)
)
< δ (2.10)

for all ai ∈ X with ‖ai‖ < αδ (i = 1, . . . , n).

(ii) {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

d

(
0,

n⋂
i=1

(Ωi − ωi − ai)
)
< δ1 (2.11)

for all ωi ∈ Ωi ∩Bδ2(x̄) and ai ∈ X with ‖ai‖ < αδ1 (i = 1, . . . , n).

Corollary 2.4.5. Let Ω1, . . . , Ωn be convex subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, α > 0,
δ1 > 0 and δ2 > 0. Conditions (i)–(iii) in Proposition 2.3.18 are satisfied if and only if the following
equivalent conditions hold:

(i) condition (2.11) is satisfied for all ωi ∈ Ωi and ai ∈ X with ωi + ai ∈ Bδ2(x̄) and ‖ai‖ < αδ1
(i = 1, . . . , n);

(ii) for all ai ∈ δ2B (i = 1, . . . , n) with max
1≤i≤n

d(x̄, Ωi − ai) < αδ1, we have

αd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
< δ1; (2.12)

(iii) for all x ∈ X and ai ∈ X with x+ ai ∈ Bδ2(x̄) and d(x,Ωi − ai) < αδ1 (i = 1, . . . , n), we have

αd

(
x,

n⋂
i=1

(Ωi − ai)
)
< δ1. (2.13)

Moreover, if {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0 then conditions (i)–(iii)
hold with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . , Ωn} is α−transversal
at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

As discussed in Section 2.3.2, the absence of semitransversality (transversality) implies stationarity
(approximate stationarity). Based on this observation, Proposition 2.4.1 gives us metric characterisations
of stationarity and approximate stationarity.

Corollary 2.4.6. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi.

(i) {Ω1, . . . , Ωn} is stationary at x̄ if and only if for any ε > 0, there is an ρ ∈]0, ε[ and ai ∈ X
(i = 1, . . . , n) with max

1≤i≤n
‖ai‖ < ερ such that

εd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
≤ max

1≤i≤n
‖ai‖ . (M3)
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(ii) {Ω1, . . . , Ωn} is approximately stationary at x̄ if and only if for any ε > 0, there are an ρ ∈]0, ε[,
ωi ∈ Ωi ∩Bε(x̄) and ai ∈ X (i = 1, . . . , n) with max

1≤i≤n
‖ai‖ < ερ

εd

(
0,

n⋂
i=1

(Ωi − ωi − ai)
)
≤ max

1≤i≤n
‖ai‖ . (M4)

2.5 Regularity of Set-Valued Mappings

In this section, we clarify quantitative relationships between transversality properties of collections of
sets and the corresponding regularity properties of set-valued mappings.

The next definition is a modification of [106, Definition 5.1].

Definition 2.5.1. Let F : X ⇒ Y be a set-valued mapping between metric spaces, (x̄, ȳ) ∈ gphF and
α > 0.

(i) F is α−semiregular at (x̄, ȳ) if there exists a number δ > 0 such that

αd(x̄, F−1(y)) ≤ d(y, ȳ)

for all y ∈ Bαδ(ȳ).

(ii) F is α−subregular at (x̄, ȳ) if there exist numbers δ1 > 0 and δ2 > 0 such that

αd(x, F−1(ȳ)) ≤ d(ȳ, F (x))

for all x ∈ Bδ2(x̄) with d(ȳ, F (x)) < αδ1.

(iii) F is α−regular at (x̄, ȳ) if there exist numbers δ1 > 0 and δ2 > 0 such that

αd(x, F−1(y)) ≤ d(y, F (x)) (2.14)

for all x ∈ X and y ∈ Y with d(x, x̄) + d(y, ȳ) < δ2 with d(y, F (x)) < αδ1.

The number α > 0 in each of the properties in Definition 2.5.1 plays the role of a rate of the respective
property. The exact upper bound of all α > 0 such that the property holds with some δ > 0, or δ1 > 0
and δ2 > 0, is called the modulus of this property. We use notations serg [F ](x̄, ȳ), srg [F ](x̄, ȳ) and
rg [F ](x̄, ȳ) for the moduli of the respective properties. If the property does not hold, then by convention
the respective modulus equals 0.

The last two regularity properties in Definition 2.5.1 have been very well studied for decades due
to their numerous important applications; see, e.g., monographs [51, 75, 82, 120]. Note the notations
subreg (F ; x̄ | ȳ) and reg (F ; x̄ | ȳ) often used for the respective moduli (cf., e.g., [51]), as well as an
important difference in their definitions which is reflected in the relations:

srg [F ](x̄, ȳ) = 1
subreg (F ; x̄ | ȳ) , rg [F ](x̄, ȳ) = 1

reg (F ; x̄ | ȳ) .

(In fact, rg [F ](x̄, ȳ) coincides with the modulus of surjection [75].) Unlike its more famous siblings, the
first property in Definition 2.5.1 has only recently started attracting attention of researchers; see [36,92].

As in the case of Definition 2.3.9 of the transversality properties, the role of the δ’s in the above
definitions is more technical: they control the size of the neighbourhoods involved in the respective
definitions. Of course, if a property in part (ii) or (iii) is satisfied with some δ1 > 0 and δ2 > 0, it is
satisfied also with the single δ := min{δ1, δ2} in place of both δ1 and δ2. Moreover, in this case (or more
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generally, when δ1 ≥ δ2) the inequality d(ȳ, F (x)) < αδ1 in part (ii) and the inequality d(y, F (x)) < αδ1
in part (iii) can be dropped. We use here two different parameters to emphasise their different roles in
the definitions and the corresponding characterisations, and expose connections with the transversality
properties in Definition 2.3.9.

It is immediate from the definition that, if a mapping is α−regular at a point in its graph, it is also
α−semiregular and α−subregular at this point; hence, serg [F ](x̄, ȳ) ≥ rg [F ](x̄, ȳ) and srg [F ](x̄, ȳ) ≥
rg [F ](x̄, ȳ).

Note the combined inequality d(x, x̄) + d(y, ȳ) < δ2 employed in (2.14) instead of the more tradi-
tional separate conditions x ∈ Bδ2(x̄) and y ∈ Bδ2(ȳ). This replacement does not affect the property of
metric α−regularity itself, but can have an effect on the value of δ2 which ensures the property. Em-
ploying this inequality in (2.14) is convenient for establishing the relationship between the regularity and
transversality properties.

Now we return to our main setting of a collection of n ≥ 2 subsets Ω1, . . . , Ωn of a normed vector
space X, having a common point x̄ ∈ ∩ni=1Ωi, and consider a set-valued mapping F : X ⇒ Xn given by

F (x) := (Ω1 − x)× . . .× (Ωn − x), x ∈ X. (2.15)

which is going to play the key role in establishing relationships between the regularity and transversality
properties. It was most likely first used by Ioffe in [70]. Observe that ȳ := (0, . . . , 0) ∈ F (x̄) and

F−1(x1, . . . , xn) = (Ω1 − x1) ∩ . . . ∩ (Ωn − xn), x1, . . . , xn ∈ X.

Let the space Y := Xn be equipped with the maximum norm.

The next proposition is a reformulation of Proposition 2.4.1.

Proposition 2.5.2. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, α > 0, F :
X ⇒ Xn be defined by (2.15), and ȳ := (0, . . . , 0) ∈ Xn.

(i) {Ω1, . . . , Ωn} is α−semitransversal at x̄ with some δ > 0 if and only if F is α−semiregular at (x̄, ȳ)
with the same δ.

(ii) {Ω1, . . . , Ωn} is α−subtransversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if F is α−semiregular
at (x̄, ȳ) with the same δ1 and δ2.

(iii) {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0 if and only if

αd
(
0, F−1(ω1 + a1, . . . , ωn + an)

)
≤ ‖y‖ (2.16)

for all ωi ∈ Ωi ∩Bδ2(x̄) (i = 1, . . . , n) and y := (a1, . . . , an) ∈ Xn with ‖y‖ < αδ1.

Thanks to parts (i) and (ii) of Proposition 2.5.2, we have the exact equivalences between the
α−semitransversality and α−subtransversality properties of {Ω1, . . . , Ωn} on one hand, and the respec-
tive α−semiregularity and α−subregularity properties of F on the other hand. However, we do not seem
to have the exact equivalence between the remaining two properties, at least quantitatively, as condition
(2.16) is not exactly of the form (2.14). Fortunately, Proposition 2.5.2 resolves the issue. Here is its
reformulation in terms of F . It shows that the conventional α−regularity property in Definition 2.5.1(iii)
is not a direct counterpart of the conventional α−transversality property in Definition 2.3.9(iii), but
rather of its alternative representation in Proposition 2.3.12(iii).

Proposition 2.5.3. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, α > 0, F :
X ⇒ Xn be defined by (2.15), and ȳ := (0, . . . , 0) ∈ Xn. Then, {Ω1, . . . , Ωn} is α−transversal at x̄ if
and only if there exist numbers δ1 > 0 and δ2 > 0 such that the following equivalent conditions hold:

(i) inequality (2.16) is satisfied for all ωi ∈ Ωi (i = 1, . . . , n) and y := (a1, . . . , an) ∈ Xn with
ωi + ai ∈ Bδ2(x̄) (i = 1, . . . , n) and ‖y‖ < αδ1;
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(ii) for all y ∈ δ2B with d(y, F (x̄)) < αδ1, we have

αd
(
x̄, F−1(y)

)
≤ d(y, F (x̄));

(iii) inequality (2.14) is satisfied for all x ∈ X and y := (a1, . . . , an) ∈ Xn with x + ai ∈ Bδ2(x̄)
(i = 1, . . . , n) and d(y, F (x)) < αδ1, i.e. F is α−regular at (x̄, ȳ) with the same δ1 and δ2.

Moreover, if {Ω1, . . . , Ωn} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then conditions (i)–(iii)
hold with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Conversely, if conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, . . . , Ωn} is α−transversal
at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Thanks to Proposition 2.5.3, we have equivalence between the α−transversality property of {Ω1, . . . , Ωn}
and the α−regularity property of F , although not necessarily with the same δ1 and δ2. The three con-
ditions in Proposition 2.3.12 together with condition (iii) in Proposition 2.5.3 provide a series of metric
characterisations of both equivalent properties in terms of the set-valued mapping F . Observe also that,
thanks to Proposition 2.3.12, the set-valued mapping F given by (2.15) provides an important case when
the point x in the inequality (2.14) defining metric α−regularity can be replaced by the fixed reference
point x̄.

The next corollary of Propositions 2.5.3 and 2.5.2 collects ‘δ-free’ versions of the discussed equiva-
lences. It recaptures [106, Proposition 5.1].

Corollary 2.5.4. Let Ω1, . . . , Ωn be subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, α > 0, F : X ⇒
Xn be defined by (2.15), and ȳ := (0, . . . , 0) ∈ Xn.

(i) {Ω1, . . . , Ωn} is α−semitransversal at x̄ if and only if F is α−semiregular at (x̄, ȳ). Hence,
setr [Ω1, . . . , Ωn](x̄) =serg [F ](x̄, ȳ).

(ii) {Ω1, . . . , Ωn} is α−subtransversal at x̄ if and only if F is α−subregular at (x̄, ȳ).
Hence, str [Ω1, . . . , Ωn](x̄) =srg [F ](x̄, ȳ).

(iii) {Ω1, . . . , Ωn} is α−transversal at x̄ if and only if F is α−regular at (x̄, ȳ). Hence,
tr [Ω1, . . . , Ωn](x̄) =rg [F ](x̄, ȳ).

In view of Proposition 2.4.4, it follows from the above corollary that, when the sets Ω1, . . . , Ωn are
convex, the semitransversality and transversality properties for the mapping F defined by (2.15) are
equivalent, and serg [F ](x̄, ȳ) =rg [F ](x̄, ȳ).

In view of Propositions 2.5.3 and 2.5.2, the α−transversality properties of collections of sets can be
viewed as particular cases of the corresponding α−regularity properties of set-valued mappings. Now we
are going to show that the two popular models are in a sense equivalent.

Given an arbitrary set-valued mapping F : X ⇒ Y between metric spaces and a point (x̄, ȳ) ∈ gphF ,
we can construct the two sets:

Ω1 := gphF, Ω2 := X × {ȳ} (2.17)

in the product space X × Y . To establish the relationship between the regularity properties of F and
the transversality properties of the collection of sets (2.17), we have to assume that X and Y are normed
vector spaces.

The next proposition translates the metric characterisations of the transversality properties of col-
lection of sets in Proposition 2.5.2 into certain metric properties of the set-valued mapping F .
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Proposition 2.5.5. Let X and Y be normed vector spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF and α > 0. Let
Ω1 and Ω2 be defined by (2.17).

(i) If {Ω1, Ω2} is α−semitransversal at (x̄, ȳ) with some δ > 0, then

αd
(
x̄+ u, F−1(ȳ + v)

)
≤ max

{
‖u‖ , 1

2 ‖v‖
}

(2.18)

for all u ∈ (αδ)BX and v ∈ (2αδ)BY .
Moreover, if α ≤ 1, then both conditions are equivalent.

(ii) If {Ω1, Ω2} is α−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then

αd
(
x, F−1(ȳ)

)
≤ max {d((x, y), gphF ), ‖y − ȳ‖} (2.19)

for all x ∈ Bδ2(x̄) and y ∈ Bmin{αδ1,δ2}(ȳ) with d((x, y), gphF ) < αδ1.
Moreover, if α ≤ 1, then both conditions are equivalent.

(iii) If {Ω1, Ω2} is α−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then

αd
(
x+ u, F−1(y + v)

)
≤ max

{
‖u‖ , 1

2 ‖v‖
}

(2.20)

for all (x, y) ∈ gphF ∩Bδ2(x̄, ȳ), u ∈ (αδ1)BX and v ∈ (2αδ1)BY .
Moreover, if α ≤ 1, then both conditions are equivalent.

Proof. First observe from (2.17) that

Ω1 ∩Ω2 = F−1(ȳ)× {ȳ}, (2.21)

and consequently, (x̄, ȳ) ∈ Ω1 ∩Ω2.

(i) Given a1 := (u1, v1) and a2 := (u2, v2) ∈ X × Y , we have

(Ω1 − a1) ∩ (Ω2 − a2) =
(
F−1(ȳ + v1 − v2)− u1

)
× {ȳ − v2}, (2.22)

d ((x̄, ȳ), (Ω1 − a1) ∩ (Ω2 − a2)) = max
{
d
(
x̄+ u1, F

−1(ȳ + v1 − v2)
)
, ‖v2‖

}
.

Thus, inequality

αd ((x̄, ȳ), (Ω1 − a1) ∩ (Ω2 − a2)) ≤ max{‖a1‖ , ‖a2‖} (2.23)

implies

αd
(
x̄+ u1, F

−1(ȳ + v1 − v2)
)
≤ max{‖u1‖ , ‖u2‖ , ‖v1‖ , ‖v2‖}, (2.24)

and the converse implication is true if α ≤ 1.
We claim that the following conditions are equivalent:

(a) condition (2.24) holds for all u1, u2 ∈ (αδ)BX and v1, v2 ∈ (αδ)BY ;
(b)

αd
(
x̄+ u, F−1(ȳ + v1 − v2)

)
≤ max{‖u‖ , ‖v1‖ , ‖v2‖} (2.25)

for all u ∈ (αδ)BX and v1, v2 ∈ (αδ)BY ;
(c) condition (2.18) holds for all u ∈ (αδ)BX and v ∈ (2αδ)BY .
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(a) ⇒ (b). Given a u ∈ (αδ)BX and v1, v2 ∈ (αδ)BY , condition (2.25) is a consequence of (2.24)
with u1 := u and u2 := 0.
(b) ⇒ (a). Given u1, u2 ∈ (αδ)BX and v1, v2 ∈ (αδ)BY , condition (2.24) is a consequence of (2.25)
with u := u1:

αd
(
x̄+ u1, F

−1(ȳ + v1 − v2)
)
≤ max{‖u1‖ , ‖v1‖ , ‖v2‖}
≤ max{‖u1‖ , ‖u2‖ , ‖v1‖ , ‖v2‖}.

(b) ⇒ (c). Given a u ∈ (αδ)BX and a v ∈ (2αδ)BY , condition (2.18) is a consequence of (2.25)
with v1 := v/2 and v2 := −v/2.
(c) ⇒ (b). Given a u ∈ (αδ)BX and v1, v2 ∈ (αδ)BX , condition (2.25) is a consequence of (2.18)
with v := v1 − v2:

αd
(
x̄+ u, F−1(ȳ + v1 − v2)

)
≤ max

{
‖u‖ , 1

2 ‖v1 − v2‖
}

≤ max
{
‖u‖ , 1

2(‖v1‖+ ‖v2‖)
}

≤ max{‖u‖ , ‖v1‖ , ‖v2‖}.

Hence, (a) ⇔ (c), which, in view of Proposition 2.4.1(i), completes the proof.

(ii) Given an (x, y) ∈ X × Y , thanks to (2.17) and (2.21), we have

d((x, y), Ω2) = ‖y − ȳ‖, d((x, y), Ω1 ∩Ω2) = max
{
d(x, F−1(ȳ)), ‖y − ȳ‖

}
.

Thus, inequality

αd ((x, y), Ω1 ∩Ω2) ≤ max {d((x, y), Ω1), d((x, y), Ω2)}

implies condition (2.19) and the converse implication is true if α ≤ 1. In view of Proposi-
tion 2.4.1(ii), this proves the assertion.

(iii) Given a1 := (u1, v1), a2 := (u2, v2), (x, y) ∈ X × Y and x2 ∈ X, we have

(Ω1 − (x, y)− a1) ∩ (Ω2 − (x2, ȳ)− a2)
=
(
F−1(y + v1 − v2)− x− u1

)
× {−v2},

d ((0, 0), (Ω1 − (x, y)− a1) ∩ (Ω2 − (x2, ȳ)− a2))
= max

{
d
(
x+ u1, F

−1(y + v1 − v2)
)
, ‖v2‖

}
.

Thus, inequality

αd ((0, 0), (Ω1 − (x, y)− a1) ∩ (Ω2 − (x2, ȳ)− a2)) ≤ max{‖a1‖ , ‖a2‖} (2.26)

implies

αd
(
x+ u1, F

−1(y + v1 − v2)
)
≤ max{‖u1‖ , ‖u2‖ , ‖v1‖ , ‖v2‖}, (2.27)

and the converse implication is true if α ≤ 1. The same arguments as in the proof of (i) show that
the last inequality holds for all (x, y) ∈ Ω1 ∩ Bδ2(x̄, ȳ), u1, u2 ∈ (αδ1)BX and v1, v2 ∈ (αδ1)BY if
and only if inequality (2.20) holds for all (x, y) ∈ gphF ∩Bδ2(x̄, ȳ), u ∈ (αδ1)BX and v ∈ (2αδ1)BY .
In view of Proposition 2.4.1(iii), this proves the assertion.

Employing the estimates established in the proof of Proposition 2.5.3, we can also translate the
metric characterisations of the α−transversality in Proposition 2.4.2 into corresponding properties of the
set-valued mapping F .
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Proposition 2.5.6. Let X and Y be normed vector spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF and α > 0. Let
Ω1 and Ω2 be defined by (2.17). If {Ω1, Ω2} is α−transversal at x̄, then there exist numbers δ1 > 0 and
δ2 > 0 such that the following equivalent conditions hold:

(i) for all (x, y) ∈ gphF , (u, v1) ∈ (αδ1)B and v2 ∈ min{αδ1, δ2}B with x+u ∈ Bδ2(x̄), y+v1 ∈ Bδ2(ȳ),
we have

αd
(
x+ u, F−1(y + v1 − v2)

)
≤ max{‖u‖ , ‖v1‖ , ‖v2‖}; (2.28)

(ii) for all (u, v1) ∈ δ2B and v2 ∈ min{αδ1, δ2}B with d((x̄, ȳ) + (u, v1), gphF ) < αδ1, condition (2.25)
is satisfied;

(iii) for all (x, y), (u, v1) ∈ X × Y and v2 ∈ Y with (x, y) + (u, v1) ∈ Bδ2(x̄, ȳ),
d ((x, y) + (u, v1), gphF ) < αδ1 and ‖y + v2 − ȳ‖ < min{αδ1, δ2}, we have

d
(
x+ u, F−1(y + v1 − v2)

)
≤ max {d ((x, y) + (u, v1), gphF ) , ‖y + v2 − ȳ‖} . (2.29)

Moreover, if {Ω1, Ω2} is α−transversal at x̄ with some δ1 > 0 and δ2 > 0, then conditions (i)–(iii)
hold with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.
Conversely, if α ≤ 1 and conditions (i)–(iii) hold with some δ1 > 0 and δ2 > 0, then {Ω1, Ω2} is
α−transversal at x̄ with any δ′1 ∈]0, δ1] and δ′2 > 0 satisfying δ′2 + αδ′1 ≤ δ2 in place of δ1 and δ2.

Proof. Definitions (2.17) yield representation (2.21), and consequently, (x̄, ȳ) ∈ Ω1 ∩Ω2.

(i) Given a1 := (u1, v1), a2 := (u2, v2), (x, y) ∈ X × Y and x2 ∈ X, condition (2.26) implies (2.27),
and the conditions are equivalent if α ≤ 1. Moreover, given x, u ∈ X and y, v1, v2 ∈ Y , condition
(2.27) holds with u1 := u for all u2 ∈ X with ‖u2‖ < αδ1 if and only if condition (2.28) is satisfied.
Hence, condition (i) is equivalent to Proposition 2.4.2(i).

(ii) Given a1 := (u1, v1) and a2 := (u2, v2), condition (2.23) implies (2.24), and the conditions are
equivalent if α ≤ 1. Moreover, given a u ∈ X and v1, v2 ∈ Y , condition (2.24) holds with u1 := u
for all u2 ∈ X with ‖u2‖ < αδ1 if and only if condition (2.25) is satisfied. Hence, condition (ii) is
equivalent to Proposition 2.4.2(ii).

(iii) Given a1 := (u1, v1), a2 := (u2, v2) and (x, y) ∈ X × Y , we have representation (2.22), and
consequently,

d ((x, y), (Ω1 − a1) ∩ (Ω2 − a2))
= max

{
d
(
x+ u1, F

−1(y + v1 − v2)
)
, ‖y + v2 − ȳ‖

}
.

Thus, inequality

d ((x, y), (Ω1 − a1) ∩ (Ω2 − a2)) ≤ max {d ((x, y), Ω1 − a1) , d ((x, y), Ω2 − a2)}

implies condition (2.29), and the converse implication is true if α ≤ 1. Hence, condition (iii) is
equivalent to Proposition 2.4.2(iii).

The conclusions follow from Proposition 2.4.2.

Next we apply the metric estimates in Proposition 2.4.1 to establish relations between regularity
properties of set-valued mappings in Definition 2.5.1 and the corresponding transversality properties of
the collection of sets (2.17).

Theorem 2.5.7. Let X and Y be normed vector spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF and α > 0. Let Ω1
and Ω2 be defined by (2.17), α1 := (2α−1 + 1)−1 and α2 := 2α.
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(i) If F is α−semiregular at (x̄, ȳ) with some δ > 0, then {Ω1, Ω2} is α1−semitransversal at (x̄, ȳ)
with δ′ := (1 + α/2)δ.

Conversely, if {Ω1, Ω2} is α−semitransversal at (x̄, ȳ) with some δ > 0, then F is α2−semiregular
at (x̄, ȳ) with the same δ.

(ii) If F is α−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then {Ω1, Ω2} is α1−subtransversal at
(x̄, ȳ) with any δ′1 > 0 and δ′2 > 0 such that δ′1 ≤ (1 + α/2)δ1 and α1δ

′
1 + δ′2 ≤ δ2.

Conversely, if {Ω1, Ω2} is α−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then F is
α2−subregular at (x̄, ȳ) with δ′1 := min{δ1, α−1δ2} and δ2.

(iii) If F is α−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then {Ω1, Ω2} is α1−transversal at (x̄, ȳ)
with any δ′1 > 0 and δ′2 > 0 such that δ′1 ≤ (1 + α/2)δ1 and α1δ

′
1 + δ′2 ≤ δ2/2.

Conversely, if {Ω1, Ω2} is α−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0, then F is α2−re-
gular at (x̄, ȳ) with any δ′1 ∈]0, δ1] and δ′2 > 0 such that α2δ

′
1 + δ′2 ≤ δ2.

Proof. Note that α1 ∈]0, 1[.

(i) Let F be α−semiregular at (x̄, ȳ) with some δ > 0. Set δ′ := (1 + α/2)δ. Let u ∈ (α1δ
′)BX and

v ∈ (2α1δ
′)BY . Observe that

2α1δ
′ = 2(1 + α/2)

2α−1 + 1 δ = αδ.

Thus, v ∈ (δBY ). In view of Definition 2.5.1(i),

d(x̄+ u, F−1(ȳ + v)) ≤ d(x̄, F−1(ȳ + v)) + ‖u‖ ≤ α−1‖v‖+ ‖u‖

≤ (2α−1 + 1) max
{
‖u‖ , 1

2 ‖v‖
}

= α−1
1 max

{
‖u‖ , 1

2 ‖v‖
}
.

By Proposition 2.4.1(i), {Ω1, Ω2} is α1−semitransversal at (x̄, ȳ) with δ′.

Conversely, let {Ω1, Ω2} be α−semitransversal at (x̄, ȳ) with some δ > 0. Let v ∈ (α2δ)BY .
Thus, v ∈ (2αδ)BY . By Proposition 2.4.1(i), αd

(
x̄, F−1(ȳ + v)

)
≤ ‖v‖ /2, and consequently,

α2d
(
x̄, F−1(ȳ + v)

)
≤ ‖v‖. Hence, by Definition 2.5.1(i), F is α−semiregular at (x̄, ȳ) with the

same δ.

(ii) Let F be α−subregular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose numbers δ′1 > 0 and δ′2 > 0
such that δ′1 ≤ (1 + α/2)δ1 and δ′2 + α1δ

′
1 ≤ δ2. Observe that

2α1δ
′
1 ≤

2(1 + α/2)
2α−1 + 1 δ1 = αδ1. (2.30)

Let x ∈ Bδ′2(x̄), y ∈ Bmin{α1δ′1,δ
′
2}(ȳ) and d((x, y), gphF ) < α1δ

′
1. Then, for any number ε with

d((x, y), gphF ) < ε < α1δ
′
1, there exists a point (x′, y′) ∈ gphF such that ‖(x, y) − (x′, y′)‖ < ε.

Thus,

‖x′ − x̄‖ ≤ ‖x− x̄‖+ ‖x′ − x‖ < δ′2 + α1δ
′
1 ≤ δ2,

d(ȳ, F (x′)) ≤ ‖y′ − ȳ‖ ≤ ‖y − ȳ‖+ ‖y′ − y‖ < 2α1δ
′
1 ≤ αδ1,

and, in view of Definition 2.5.1(ii),

d
(
x, F−1(ȳ)

)
≤ d

(
x′, F−1(ȳ)

)
+ ‖x′ − x‖

≤ α−1d(ȳ, F (x′)) + ‖x′ − x‖
≤ α−1(‖y − ȳ‖+ ‖y′ − y‖) + ‖x′ − x‖
< α−1‖y − ȳ‖+ (α−1 + 1)ε
≤ (2α−1 + 1) max{‖y − ȳ‖, ε} = α−1

1 max{‖y − ȳ‖, ε}.
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Letting ε ↓ d((x, y), gphF ), we arrive at (2.19). By Proposition 2.4.1(ii), {Ω1, Ω2} is α1−subtransversal
at (x̄, ȳ) with δ′1 and δ′2.

Conversely, let {Ω1, Ω2} be α−subtransversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Set δ′1 :=
min{δ1, α−1δ2}. Let x ∈ Bδ2(x̄) and d(ȳ, F (x)) < α2δ

′
1. Then, for any number ε with d(ȳ, F (x)) <

ε < α2δ
′
1, there exists a point y′ ∈ F (x) such that ‖y′ − ȳ‖ < ε. Set y := y′ + ȳ

2 . Observe that

‖y − y′‖ = ‖y − ȳ‖ = ‖y
′ − ȳ‖
2 <

α2δ
′
1

2 = αδ′1,

‖y − ȳ‖ < αδ′1 ≤ min{αδ1, δ2}, d((x, y), gphF ) ≤ ‖y − y′‖ < αδ′1 ≤ αδ1.

By Proposition 2.4.1(ii),

αd
(
x, F−1(ȳ)

)
≤ max {d((x, y), gphF ), ‖y − ȳ‖} = ‖y − ȳ‖ = ‖y

′ − ȳ‖
2 <

ε

2 .

Thus, α2d
(
x, F−1(ȳ)

)
< ε. Letting ε ↓ d((x, y), gphF ), we obtain

α2d
(
x, F−1(ȳ)

)
≤ d((x, y), gphF ).

By Definition 2.5.1(ii), F is α2−subregular at (x̄, ȳ) with δ′1 and δ2.

(iii) Let F be α−regular at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose numbers δ′1 > 0 and δ′2 > 0 such
that δ′1 ≤ (1 + α/2)δ1 and δ′2 + α1δ

′
1 ≤ δ2/2. Then we have (2.24). Let (x, y) ∈ gphF ∩Bδ′2(x̄, ȳ),

u ∈ (α1δ
′
1)BX and v ∈ (2α1δ

′
1)BY . Set y′ := y + v. Then

‖x− x̄‖+ ‖y′ − ȳ‖ ≤ ‖x− x̄‖+ ‖y − ȳ‖+ ‖v‖ < 2δ′2 + 2α1δ
′
1 ≤ δ2,

d(y′, F (x))) ≤ ‖y′ − y‖ = ‖v‖ < 2α1δ
′
1 ≤ αδ1,

and, in view of Definition 2.5.1(iii),

d
(
x+ u, F−1(y + v)

)
≤ d

(
x, F−1(y′)

)
+ ‖u‖ ≤ α−1d (y′, F (x)) + ‖u‖

≤ α−1‖v‖+ ‖u‖ ≤ (2α−1 + 1) max
{
‖u‖ , 1

2 ‖v‖
}

= α−1
1 max

{
‖u‖ , 1

2 ‖v‖
}
.

By Proposition 2.4.1(iii), {Ω1, Ω2} is α1−transversal at (x̄, ȳ) with δ′1 and δ′2.

Conversely, let {Ω1, Ω2} be α−transversal at (x̄, ȳ) with some δ1 > 0 and δ2 > 0. Choose numbers
δ′1 ∈]0, δ1] and δ′2 > 0 such that α2δ

′
1+δ′2 ≤ δ2. Let x ∈ X and y ∈ Y be such that ‖x−x̄‖+‖y−ȳ‖ <

δ′2 and d(y, F (x)) < α2δ
′
1. Then, for any number ε with d(y, F (x)) < ε < α2δ

′
1, there exists a point

y′ ∈ F (x) such that ‖y − y′‖ < ε. Then (x, y′) ∈ gphF ,

‖x− x̄‖ < δ′2 < δ2, ‖y′ − ȳ‖ ≤ ‖y′ − y‖+ ‖y − ȳ‖ < α2δ
′
1 + δ′2 ≤ δ2,

‖y − y′‖ < α2δ
′
1 ≤ α2δ1 = 2αδ1.

By Proposition 2.4.1(iii),

αd
(
x, F−1(y)

)
≤ ‖y − y

′‖
2 <

ε

2 .

Thus, α2d
(
x, F−1(y)

)
< ε. Letting ε ↓ d(y, F (x)), we obtain

α2d
(
x, F−1(y)

)
≤ d(y, F (x)).

By Definition 2.5.1(iii), F is α2−regular at (x̄, ȳ) with δ′1 and δ′2.
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The next corollary collects ‘δ-free’ versions of the relations in Theorem 2.5.7. It recaptures [106,
Theorem 5.1].

Corollary 2.5.8. Let X and Y be normed vector spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF and α > 0. Let Ω1
and Ω2 be defined by (2.17).

(i) F is semiregular at (x̄, ȳ) if and only if {Ω1, Ω2} is semitransversal at (x̄, ȳ). Moreover,

1
2serg [F ](x̄, ȳ)−1 + 1 ≤ setr [Ω1, Ω2](x̄) ≤ serg [F ](x̄, ȳ)

2 .

(ii) F is subregular at (x̄, ȳ) if and only if {Ω1, Ω2} is subtransversal at (x̄, ȳ). Moreover,

1
2srg [F ](x̄, ȳ)−1 + 1 ≤ str [Ω1, Ω2](x̄) ≤ srg [F ](x̄, ȳ)

2 .

(iii) F is regular at (x̄, ȳ) if and only if {Ω1, Ω2} is transversal at (x̄, ȳ). Moreover,

1
2rg [F ](x̄, ȳ)−1 + 1 ≤ tr [Ω1, Ω2](x̄) ≤ rg [F ](x̄, ȳ)

2 .

2.6 Distances between n Sets

When studying mutual arrangement of collections of sets in space, particularly their extremality, sta-
tionarity and regularity/transversality properties, we need to be able to estimate the ‘distance’ between
the sets, i.e. how ‘far apart’ they are, or, at least, whether they have a common point. In the case of
two sets, the conventional distance

d(Ω1, Ω2) := inf
ω1∈Ω1, ω2∈Ω2

d(ω1, ω2) (2.31)

does the job. The general case of n ≥ 2 sets is not that straightforward. In this section we discuss several
candidates for the role of ‘distance’.

We start with discussing distances between n ≥ 2 points.

2.6.1 Distances between n Points

Our aim in this subsection is to consider ways of defining n-point distances estimating quantitatively the
overall ‘closeness’ of a collection of n ≥ 2 points in a metric space (X, d).

Given n ≥ 2 points ω1, . . . , ωn in X, one can use one of the following two quantities:

d1(ω1, . . . , ωn) := max
1≤i≤n−1

d(ωi, ωn), (2.32)

d2(ω1, . . . , ωn) := inf
x∈X

max
1≤i≤n

d(ωi, x). (2.33)

When n = 2, (2.32) reduces to the conventional distance d(ω1, ω2). However, when n > 2 this distance
is not symmetric: the last point in the list plays a special role, and the quantity itself depends on the
choice of the last point. In contrast to (2.32), in definition (2.33) all points play the same role, and it
involves minimization over an additional parameter x. Formulas (2.32) and (2.33) produce in general
different numbers, whatever the choice of the last point in (2.32) is.
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In the setting of a normed vector space, the following symmetric distance can be of interest:

d3(ω1, . . . , ωn) := max
1≤i≤n

∥∥∥∥∥∥ωi − 1
n

n∑
j=1

ωj

∥∥∥∥∥∥ . (2.34)

Example 2.6.1. Consider three points in R: 0, 1 and 5. By (2.32), we have d1(0, 5, 1) = max{|0− 1|, |5−
1|} = 4, while d1(0, 1, 5) = d1(1, 5, 0) = 5. The infimum in definition (2.33) is achieved at x = 2.5 and
equals d2(0, 1, 5) = max{|0 − 2.5|, |1 − 2.5|, |5 − 2.5|} = 2.5. The average 1

3(0 + 1 + 5) equals 2, and
formula (2.34) gives d3(0, 1, 5) = max{|0− 2|, |1− 2|, |5− 2|} = 3. Thus, for these three points all three
definitions (2.32), (2.33) and (2.34) give different numbers.

Note the obvious connection between the distances d1 and d2:

d2(ω1, . . . , ωn) := inf
x∈X

d1(ω1, . . . , ωn, x).

Observe also that d1(ω1, . . . , ωn) is actually the maximum distance between the points (ω1, . . . , ωn−1) and
(ωn, . . . , ωn) in Xn−1, while d2(ω1, . . . , ωn) represents the distance from the points (ω1, . . . , ωn) ∈ Xn to
the ‘diagonal’ subspace {(ω, . . . , ω) ∈ Xn : ω ∈ X}. If the points ω1, . . . , ωn do not all coincide, then
the quantity computed in accordance with formula (2.33) will remain strictly positive if the infimum
there is taken not over the whole space, but over any its subset. This can be a way of defining ‘localised
distances’.

Some properties of the quantities (2.32) and (2.33) are collected in the next proposition.

Proposition 2.6.2. Suppose ω1, . . . , ωn (n ≥ 2) are points in a metric space X.

(i) d2(ω1, . . . , ωn) ≤ d1(ω1, . . . , ωn) ≤ 2d2(ω1, . . . , ωn).

(ii) If X is a normed vector space with the distance induced by the norm and n = 2, then d1(ω1, ω2) =
2d2(ω1, ω2), i.e. the last inequality in (i) holds as equality.

Suppose additionally that X is a normed vector space.

(iii) d2(ω1, . . . , ωn) ≤ d3(ω1, . . . , ωn) ≤ 2d2(ω1, . . . , ωn).

(iv) If n = 2, then d2(ω1, ω2) = d3(ω1, ω2), i.e. the first inequality in (iii) holds as equality.

Proof. (i) The first inequality follows immediately from the definitions:

d2(ω1, . . . , ωn) = inf
x∈X

max
1≤i≤n

d(ωi, x) ≤ max
1≤i≤n

d(ωi, ωn) = max
1≤i≤n−1

d(ωi, ωn) = d1(ω1, . . . , ωn).

To prove the second inequality, first fix an x ∈ X.

d1(ω1, . . . , ωn) = max
1≤i≤n−1

d(ωi, ωn) ≤ max
1≤i≤n−1

(d(ωi, x) + d(ωn, x)) ≤ 2 max
1≤i≤n

d(ωi, x).

Taking the infimum over x ∈ X in the right-hand side of the above inequality, we arrive at the
second inequality in (i).

(ii) Let X be a normed vector space with the distance induced by the norm and n = 2. Then

d1(ω1, ω2) = ‖ω1 − ω2‖ = 2 max
{∥∥∥∥ω1 + ω2

2 − ω1

∥∥∥∥ ,∥∥∥∥ω1 + ω2

2 − ω2

∥∥∥∥}
≥ 2 inf

x∈X
max{‖x− ω1‖ , ‖x− ω2‖} = 2d2(ω1, ω2).

Combining this with the second inequality in (i) proves (ii).
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(iii) Suppose that X is a normed vector space. The first inequality follows immediately from the
definitions. To prove the second inequality, first fix an x ∈ X. Then

d3(ω1, . . . , ωn) = max
1≤i≤n

∥∥∥∥∥∥ωi − 1
n

n∑
j=1

ωj

∥∥∥∥∥∥ ≤ max
1≤i≤n

‖ωi − x‖+

∥∥∥∥∥∥ 1
n

n∑
j=1

ωj − x

∥∥∥∥∥∥
≤ max

1≤i≤n
‖ωi − x‖+ 1

n

n∑
j=1
‖ωj − x‖ ≤ 2 max

1≤i≤n
‖ωi − x‖ .

Taking the infimum over x ∈ X in the right-hand side of the second inequality, we arrive at the
last inequality in (iii).

(iv) Let n = 2. Using definitions (2.34) and (2.32), and the equality in (ii), we obtain:

d3(ω1, ω2) = max
{∥∥∥∥ω1 −

ω1 + ω2

2

∥∥∥∥ ,∥∥∥∥ω2 −
ω1 + ω2

2

∥∥∥∥}
= 1

2 ‖ω1 − ω2‖

= 1
2d1(ω1, ω2) = d2(ω1, ω2).

It follows from part (ii) of Proposition 2.6.2 that quantity (2.33) does not reduce to the conventional
distance when n = 2: in the setting of a normed vector space it equals 1

2d(ω1, ω2). In part (ii) of
Proposition 2.6.2, the infimum in formula (2.33) is computed explicitly. Unfortunately, when n > 2,
this seems impossible in general even in the setting of a normed vector space; see the discussion in [31,
Section 6].
Remark 2.6.3. In the setting of a normed vector space, if n = 2 and ω1 6= ω2, then, in view of Proposi-
tion 2.6.2(ii) and (iv), the first inequality in Proposition 2.6.2(i) and the second inequality in Proposi-
tion 2.6.2(iii) are strict. If n > 2, then all the inequalities in Proposition 2.6.2(i) and (iii) can be strict.
This fact is illustrated by Example 2.6.1.

2.6.2 Distances between n Sets

Now we employ the distances between collections of points discussed in the previous subsection to
quantify ‘closeness’ of collections of sets. Given n ≥ 2 subsets Ω1, . . . , Ωn of a metric space X and an
n-point distance d, the distance between Ω1, . . . , Ωn is defined in the usual way:

d(Ω1, . . . , Ωn) := inf
ω1∈Ω1,...,ωn∈Ωn

d(ω1, . . . , ωn). (2.35)

Applying construction (2.35) to the n-point distances (2.32), (2.33) and (2.34), we obtain the following
definitions of particular distances between n sets, respectively:

d1(Ω1, . . . , Ωn) := inf
ω1∈Ω1,...,ωn∈Ωn

max
1≤i≤n−1

d(ωi, ωn), (2.36)

d2(Ω1, . . . , Ωn) := inf
ω1∈Ω1,...,ωn∈Ωn,x∈X

max
1≤i≤n

d(ωi, x), (2.37)

d3(Ω1, . . . , Ωn) := inf
ω1∈Ω1,...,ωn∈Ωn

max
1≤i≤n

∥∥∥∥∥∥ωi − 1
n

n∑
j=1

ωj

∥∥∥∥∥∥ . (2.38)
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When n = 2, definition (2.36) reduces to the conventional distance (2.31). Definition (2.38) is meaningful
in the setting of a normed vector space only.

Proposition 2.6.2 leads to similar relations for the distances between n sets.

Proposition 2.6.4. Suppose Ω1, . . . , Ωn are subsets of a metric space X.

(i) d2(Ω1, . . . , Ωn) ≤ d1(Ω1, . . . , Ωn) ≤ 2d2(Ω1, . . . , Ωn).

(ii) If n = 2, then d1(Ω1, Ω2) = 2d2(Ω1, Ω2).

(iii) d1(Ω1, . . . , Ωn) > 0 ⇐⇒ d2(Ω1, . . . , Ωn) > 0.

Suppose additionally that X is a normed vector space.

(iv) d2(Ω1, . . . , Ωn) ≤ d3(Ω1, . . . , Ωn) ≤ 2d2(Ω1, . . . , Ωn).

(v) If n = 2, then d2(Ω1, Ω2) = d3(Ω1, Ω2).

(vi) d1(Ω1, . . . , Ωn) > 0 ⇐⇒ d2(Ω1, . . . , Ωn) > 0 ⇐⇒ d3(Ω1, . . . , Ωn) > 0.

Proof. Conditions (i), (ii) and (iv), (v) are consequences of the corresponding conditions in Proposition
2.6.2. Condition (iii) is a consequence of condition (i). Condition (vi) is a consequence of conditions (iii)
and (iv).

Another distance can be of interest and is going to be used in the sequel. Given a subset Ωn+1 of X,
define

dΩn+1(Ω1, . . . , Ωn) := inf
ω1∈Ω1,...,ωn∈Ωn,x∈Ωn+1

max
1≤i≤n

d(ωi, x).

Now observe that dΩn+1 as well as the symmetric distance d2 (2.37) are particular cases of the asymmetric
distance d1 (2.36) applied to n+ 1 sets:

dΩn+1(Ω1, . . . , Ωn) = d1(Ω1, . . . , Ωn, Ωn+1) and d2(Ω1, . . . , Ωn) = d1(Ω1, . . . , Ωn, X). (2.39)

This observation makes the asymmetric distance d1 a rather general quantitative measure of closeness
of collections of sets. Apart from the most straightforward case Ωn+1 := X used in the above example,
another useful particular case is given by Ωn+1 := Bρ(x̄) where x̄ ∈ X is a fixed point (related to the
sets Ω1, . . . , Ωn) and ρ > 0. This allows one to examine closeness of sets in a neighbourhood of the given
point.
Remark 2.6.5. (i) As it was observed earlier, the distance d1 (2.36) depends in general on the order

of the sets. However, thanks to Proposition 2.6.4(iii), if it is strictly positive for some permutation
of the sets, it remains strictly positive for any other permutation.

(ii) The maximum operation in all the above definitions of distances between n points and n sets
corresponds to the maximum norm in either Rn−1 or Rn. It can be replaced in all these definitions
and subsequent statements by any other finite dimensional norm producing different but in a
sense equivalent ‘distances’. The p-norm version of the quantity (2.36) was considered in [172]
under the name (p-weighted) nonintersect index. In the current thesis, for the sake of simplicity of
presentation only the maximum norm is considered.

The next proposition and its corollary characterise a set of points in the given collection of sets, which
are almost closest (up to ε) points of these sets with respect to the chosen n-point distance. (When n = 2
such points play a key role in the geometric versions of the Ekeland variational principle considered in
Section 3.) It also introduces a two-step procedure, which is going to be used in the sequel. Given a
collection of sets Ω1, . . . , Ωn with empty intersection and a collection of points ωi ∈ Ωi (i = 1, . . . , n), we
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1) consider another collection of sets Ω1−ω1, . . . , Ωn−ωn, whose intersection is obviously nonempty,
and

2) construct ‘small’ (up to ε) translation vectors a1, . . . , an such that the translated sets Ω1 − ω1 −
a1, . . . , Ωn − ωn − an have empty intersection again.

Thus, the proposition translates ε-closeness of a collection of points, which served as the key assumption
when proving unified separation theorems in [172], into the language of ε-translations of the sets employed
in Definition 2.3.1 of extremality/stationarity properties, the corresponding Proposition 2.3.4.

For simplicity and in view of the observed above universality of the distance d1 (2.36), we first consider
this distance.

Proposition 2.6.6. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, ∩ni=1Ωi = ∅, ωi ∈ Ωi
(i = 1, . . . , n) and ε > 0. If

d1(ω1, . . . , ωn) < d1(Ω1, . . . , Ωn) + ε, (2.40)

then M := d1(ω1, . . . , ωn) > 0 and condition (P8) is satisfied, where ai := ε′

M
(ωn−ωi) (i = 1, . . . , n− 1)

and ε′ is either any number in [0, ε[ satisfying M − d1(Ω1, . . . , Ωn) < ε′ ≤ M if d1(Ω1, . . . , Ωn) > 0, or
ε′ = M if d1(Ω1, . . . , Ωn) = 0.

Proof. In view of ∩ni=1Ωi = ∅, we have M > 0. Let condition (2.40) be satisfied.

Suppose first that d1(Ω1, . . . , Ωn) > 0. Choose a positive number ε′ < ε such that

M − d1(Ω1, . . . , Ωn) < ε′ ≤M.

Then max
1≤i≤n−1

‖ai‖ = ε′ < ε. Suppose that the first condition in (P8) does not hold. Then there exists

a point x ∈ ∩n−1
i=1 (Ωi − ωi − ai) ∩ (Ωn − ωn), and consequently, ω̂i := ωi + ai + x ∈ Ωi (i = 1, . . . , n− 1)

and ω̂n := ωn + x ∈ Ωn. Thus,

‖ω̂i − ω̂n‖ =
∥∥∥∥ωi − ωn − ε′

M
(ωi − ωn)

∥∥∥∥ =
(

1− ε′

M

)
‖ωi − ωn‖ (i = 1, . . . , n− 1),

and consequently,

d1(Ω1, . . . , Ωn) ≤ d1(ω̂1, . . . , ω̂n) =
(

1− ε′

M

)
d1(ω1, . . . , ωn) = M − ε′.

This contradicts the choice of ε′. Hence, conditions (P8) hold true.

In the case d1(Ω1, . . . , Ωn) = 0, set ai := ωn − ωi (i = 1, . . . , n− 1). Then, by (2.40), max
1≤i≤n−1

‖ai‖ =
d1(ω1, . . . , ωn) < ε and

n−1⋂
i=1

(Ωi − ωi − ai) ∩ (Ωn − ωn) =
n⋂
i=1

(Ωi − ωn) =
n⋂
i=1

Ωi − ωn = ∅,

i.e., conditions (P8) hold true.

Applying Proposition 2.6.6 to the collection of n + 1 sets Ω1, . . . , Ωn, X, we arrive at the following
statement in terms of the distance d2 (2.37).

Corollary 2.6.7. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, ∩ni=1Ωi = ∅, ωi ∈ Ωi
(i = 1, . . . , n), x ∈ X and ε > 0. If

max
1≤i≤n

d(ωi, x) < d2(Ω1, . . . , Ωn) + ε, (2.41)
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then M := max
1≤i≤n

‖ωi − x‖ > 0 and conditions (P1) hold true with Ω′i := Ωi−ωi in place of Ωi and ai :=
ε′

M
(x−ωi) (i = 1, . . . , n), where ε′ is either any number in ]0, ε[ satisfying M−d2(Ω1, . . . , Ωn) < ε′ ≤M

if d2(Ω1, . . . , Ωn) > 0, or ε′ = M if d2(Ω1, . . . , Ωn) = 0.

2.7 Extended Extremal Principle

The next well-known theorem (see Remark 2.7.2 below) gives approximate dual necessary conditions of
local extremality in terms of Fréchet normals. It can be considered as a generalisation of the classical
convex separation theorem to pairs of nonconvex sets.

Theorem 2.7.1. Suppose Ω1, . . . , Ωn are closed subsets of an Asplund space X and x̄ ∈ ∩ni=1Ωi. If
the collection {Ω1, . . . , Ωn} is local extremal at x̄ then the following equivalent conditions hold with N
standing for the Fréchet normal cone (N := NF ):

(i) for any ε > 0, there exist points ωi ∈ Ωi ∩Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε, x∗i ∈ NΩi(ωi) (i = 1, . . . , n) and
n∑
i=1
‖x∗i ‖ = 1; (D1)

(ii) for any ε > 0, there exist points ωi ∈ Ωi ∩Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that
n∑
i=1

x∗i = 0,
n∑
i=1

d(x∗i , NΩi(ωi)) < ε and
n∑
i=1
‖x∗i ‖ = 1. (D2)

Remark 2.7.2. The inequalities in (D1) and (D2) are only meaningful when ε ≤ 1, because otherwise
they are direct consequences of the corresponding equalities. Indeed, when ε > 1, condition (i) in
Theorem 2.7.1 is satisfied automatically while condition (ii) guarantees only the existence of nontrivial
normals in the ε-neighbourhood of x̄ to at least one of the sets Ωi (i = 1, . . . , n), which is trivial as long
as x̄ is a boundary point of one of the sets (which is the case when {Ω1, . . . , Ωn} is locally extremal at
x̄). If conditions (D1) and (D2) hold with ε = 1, they also hold with some ε < 1. Thanks to these
observations, when applying Theorem 2.7.1 or its extensions, one can always assume that ε < 1.

Both conclusions in the above theorem are pretty common dual space properties used in many con-
temporary formulations of the extremal principle and its extensions. Properties (i) and (ii) can be found
e.g. in, respectively, [120, Definition 2.5] (the approximate extremal principle) and [88, Definition 2.3]
(the generalised Euler equation); cf. [92, property (SP)S ]. Condition (i) guarantees the existence of a pair
of vectors x∗i (i = 1, . . . , n) in the dual space, which are ‘almost normal’ (up to ε) to the corresponding

sets at certain points with
n∑
i=1

x∗i = 0 and
n∑
i=1
‖x∗i ‖ = 1, while condition (ii) guarantees the existence of

a set of vectors x∗i which are exactly normal (in the Fréchet sense) to the corresponding sets at certain

points with their sum
n∑
i=1

x∗i being small (up to ε) and
n∑
i=1
‖x∗i ‖ = 1.

The extremal principle in Theorem 2.7.1 gives necessary conditions of (local) extremality which are in
general not sufficient. Just like in the classical analysis and optimisation theory, it actually characterises
a weaker than extremality property which can be interpreted as a kind of stationarity. The properties
in the next proposition came to life as a result of a search for the weakest assumptions on the sets
{Ω1, . . . , Ωn} (approximate stationarity) which still ensure the conclusions of the extremal principle.

Theorem 2.7.3 (Extended extremal principle). Suppose Ω1, . . . , Ωn are closed subsets of an Asplund
space X and x̄ ∈ ∩ni=1Ωi. Then, {Ω1, . . . , Ωn} is approximately stationary at x̄ if and only if (D1) and
(D2) holds with N standing for the Fréchet normal cone (N := NF ).
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The fact that the generalised separation actually characterises a weaker than (local) extremality prop-
erty of approximate stationarity, and this characterisation is necessary and sufficient was first established
(in a slightly different form) in [85] in the setting of a Fréchet smooth Banach space and extended to
Asplund spaces in [86]. The full proof of the extended extremal principle appeared in [87], while the name
Extended extremal principle was introduced in [88]. It is worth noting that the proof of the necessity (of
either condition (ii) or condition (iii)) in the extended extremal principle follows that of the conventional
extremal principle and only refines some estimates, while the sufficiency is almost straightforward and is
valid in arbitrary normed vector spaces.
Remark 2.7.4. (i) Conditions (D1) and (D2) in Theorem 2.7.3 represent two kinds of widely used

generalised (approximate) separation of a collection of sets: they claim the existence of n vectors

x∗i ∈ X∗ (i = 1, . . . , n), satisfying the normalisation condition
n∑
i=1
‖x∗i ‖ = 1, and being either

normal to the respective sets at some points close (up to ε) to x̄ with their sum being almost (up
to ε) 0 (condition (ii)), or almost (up to ε) normal with their sum equal exactly 0 (condition (iii)).
The equivalence of the conditions (D1) and (D2) in Theorem 2.7.3 is not difficult to check directly
(even in the setting of an arbitrary normed vector space and without assuming the closedness of
the sets) using elementary arguments which involve small perturbations of the vectors and then
scaling the perturbed vectors to ensure the normalisation condition. Such arguments have been
used in many proofs and are scattered across a number of publications. They were made explicit
(in the case of two sets) in [29, Lemma 1]. In the next subsection, we formulate a more general
statement, which will be used also in Section 3.3.

(ii) The inequality in (D2) is only meaningful when ε ≤ 1, because otherwise it is a direct consequence
of the equalities. If condition (D2) holds with ε = 1, it also holds with some ε < 1. Thanks to these
observations, when applying Theorem 2.7.3 or its extensions, one can always assume that ε < 1.

(iii) Theorem 2.7.3 (as well as the conventional extremal principle) with conditions (ii) and (iii) in their
current form cannot be extended beyond Asplund spaces. However, replacing in these conditions
Fréchet normal cones with normal cones corresponding to other subdifferentials possessing reason-
able (approximate or exact) sum rules in the respective trustworthy [69] spaces, one can employ
basically the same routine to show the necessity of the amended conditions in these spaces; see
e.g. [24, 69, 97, 120] and the discussion in the Introduction. Thanks to Lemma 2.2.1(iv) and (i), in
general Banach spaces one can use Clarke normal cones or even conventional normal cones in the
sense of convex analysis if the sets are convex. Note that the sufficiency of the conditions (D1) and
(D2) in Theorem 2.7.3 is only valid for the Fréchet normal cones, though in general normed vector
spaces. Thus, with such extensions, we only have (i) ⇒ (ii) ⇔ (iii), unless the sets are convex.

2.7.1 Perturbations and Scaling of Vectors

Below we present several assertions containing elementary arguments which are used in proving the
equivalence of the conditions(D1) and (D2) in Theorem 2.7.3 and similar facts. We start with a general
statement, which will be used also in Section 3.3.

Lemma 2.7.5. Suppose K1, . . . ,Kn are cones in a normed vector space, ε > 0, ρ > 0 and λ > 0.
Suppose also that vectors z1, . . . , zn satisfy

λ

n∑
i=1

d(zi,Ki) + ρ

∥∥∥∥∥
n∑
i=1

zi

∥∥∥∥∥ < ε,

n∑
i=1
‖zi‖ = 1. (2.42)

(i) If ε < ρ and λ ≤ ρ− ε, then there exist vectors ẑi (i = 1, . . . , n) satisfying the following conditions:

n∑
i=1

ẑi = 0,
n∑
i=1

d(ẑi,Ki) <
ε

λ
,

n∑
i=1
‖ẑi‖ = 1. (2.43)
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(ii) If ρ < λ and ε ≤ λ− ρ then there exist vectors ẑi (i = 1, . . . , n) satisfying the following conditions:∥∥∥∥∥
n∑
i=1

ẑi

∥∥∥∥∥ < ε

ρ
, ẑi ∈ Ki (i = 1, . . . , n),

n∑
i=1
‖ẑi‖ = 1. (2.44)

(iii) Moreover, if the underlying space is dual to a normed vector space X, and

n∑
i=1
〈zi, xi〉 ≥ τ max

1≤i≤n
‖xi‖ (2.45)

for some vectors xi ∈ X (i = 1, . . . , n), not all zero, and a number τ ∈]0, 1], then the vectors ẑi
(i = 1, . . . , n) in parts (i) or (ii) satisfy

n∑
i=1
〈ẑi, xi〉 > τ̂ max

1≤i≤n
‖xi‖, (2.46)

where τ̂ := τρ− ε
ρ+ ε

under the assumptions in part (i), and τ̂ := τλ− ε
λ+ ε

under the assumptions in

part (ii).

Proof. (i) Let ε < ρ and λ ≤ ρ− ε. Set z :=
n∑
i=1

zi and vi := zi −
1
n
z (i = 1, . . . , n). Then

n∑
i=1

vi = 0

and, by (2.42), ‖z‖ < ε

ρ
< 1,

n∑
i=1
‖vi‖ ≤

n∑
i=1
‖zi‖+ ‖z‖ < 1 + ε

ρ
and

n∑
i=1
‖vi‖ ≥

n∑
i=1
‖zi‖ − ‖z‖ = 1− ‖z‖ > 0.

Set ẑi := vi/

n∑
i=1
‖vi‖. Then

n∑
i=1

ẑi = 0,
n∑
i=1
‖ẑi‖ = 1 and

n∑
i=1

d(ẑi,Ki) ≤
∑n
i=1 d(zi,Ki) + ‖z‖∑n

i=1 ‖vi‖
<
ε− (ρ− λ)‖z‖
λ(1− ‖z‖) ≤ ε− ε‖z‖

λ(1− ‖z‖) = ε

λ
,

i.e., all conditions in (2.43) are satisfied.

(ii) Let ρ < λ and ε ≤ λ− ρ. By (2.42), there exist vectors vi ∈ Ki (i = 1, . . . , n) such that

λ

n∑
i=1
‖zi − vi‖+ ρ

∥∥∥∥∥
n∑
i=1

zi

∥∥∥∥∥ < ε.

In particular,
n∑
i=1
‖zi − vi‖ <

ε

λ
< 1. Hence,

n∑
i=1
‖vi‖ ≤

n∑
i=1
‖zi‖+

n∑
i=1
‖zi − vi‖ = 1 +

n∑
i=1
‖zi − vi‖ ,

n∑
i=1
‖vi‖ ≥

n∑
i=1
‖zi‖ −

n∑
i=1
‖zi − vi‖ = 1−

n∑
i=1
‖zi − vi‖ > 0,∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥ ≤
n∑
i=1
‖zi − vi‖+

∥∥∥∥∥
n∑
i=1

zi

∥∥∥∥∥ < 1
ρ

(
ε− (λ− ρ)

n∑
i=1
‖zi − vi‖

)
.
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Set ẑi := vi/

n∑
i=1
‖vi‖. Then ẑi ∈ Ki (i = 1, . . . , n),

n∑
i=1
‖ẑi‖ = 1 and

∥∥∥∥∥
n∑
i=1

ẑi

∥∥∥∥∥ = ‖
∑n
i=1 vi‖∑n
i=1 ‖vi‖

<
ε− (λ− ρ)

∑n
i=1 ‖zi − vi‖

ρ(1−
∑n
i=1 ‖zi − vi‖)

≤
ε− ε

∑n
i=1 ‖zi − vi‖

ρ(1−
∑n
i=1 ‖zi − vi‖)

= ε

ρ
,

i.e., all conditions in (2.44) are satisfied.

(iii) Suppose that the underlying space is dual to a normed vector space X and condition (2.45) is
satisfied for some vectors xi ∈ X (i = 1, . . . , n), not all zero, and a number τ ∈]0, 1]. Then, using
the notations introduced above, we have:

n∑
i=1
〈ẑi, xi〉 ≥

∑n
i=1 〈zi, xi〉 − (

∑n
i=1 ‖zi − vi‖) max1≤i≤n ‖xi‖∑n
i=1 ‖vi‖

≥
τ −

∑n
i=1 ‖zi − vi‖∑n
i=1 ‖vi‖

max
1≤i≤n

‖xi‖.

Employing the estimates in part (i), we obtain

τ −
∑n
i=1 ‖zi − vi‖∑n
i=1 ‖vi‖

= τ − ‖z‖∑n
i=1 ‖vi‖

>
τ − ε

ρ

1 + ε
ρ

= τρ− ε
ρ+ ε

,

while the estimates in part (ii) give

τ −
∑n
i=1 ‖zi − vi‖∑n
i=1 ‖vi‖

≥
τ −

∑n
i=1 ‖zi − vi‖

1 +
∑n
i=1 ‖zi − vi‖

>
τ − ε

λ

1 + ε
λ

= τλ− ε
ρ+ λ

.

Thus, in both cases we arrive at (2.46).

The next two corollaries present two important special cases of Lemma 2.7.5.

Corollary 2.7.6. Suppose K1, . . . ,Kn are cones in a normed vector space, ε ∈]0, 1[ and vectors z1, . . . , zn
satisfy ∥∥∥∥∥

n∑
i=1

zi

∥∥∥∥∥ < ε, zi ∈ Ki (i = 1, . . . , n),
n∑
i=1
‖zi‖ = 1.

Then there exist vectors ẑi (i = 1, . . . , n) satisfying the following conditions:
n∑
i=1

ẑi = 0,
n∑
i=1

d(ẑi,Ki) <
ε

1− ε ,
n∑
i=1
‖ẑi‖ = 1.

Moreover, if the underlying space is dual to a normed vector space X, and condition (2.45) is satisfied for
some vectors xi ∈ X (i = 1, . . . , n), not all zero, and a number τ ∈]0, 1], then the vectors ẑi (i = 1, . . . , n)
satisfy condition (2.46) with τ̂ := τ − ε

1 + ε
.

Proof. Apply Lemma 2.7.5(i) with ρ = 1 and λ = 1− ε.

Corollary 2.7.7. Suppose K1, . . . ,Kn are cones in a normed vector space, ε ∈]0, 1[ and vectors z1, . . . , zn
satisfy

n∑
i=1

zi = 0,
n∑
i=1

d(zi,Ki) < ε,

n∑
i=1
‖zi‖ = 1.
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Then there exist vectors ẑi (i = 1, . . . , n) satisfying the following conditions:∥∥∥∥∥
n∑
i=1

ẑi

∥∥∥∥∥ < ε

1− ε , ẑi ∈ Ki (i = 1, . . . , n),
n∑
i=1
‖ẑi‖ = 1. (2.47)

Moreover, if the underlying space is dual to a normed vector space X, and condition (2.45) is satisfied for
some vectors xi ∈ X (i = 1, . . . , n), not all zero, and a number τ ∈]0, 1], then the vectors ẑi (i = 1, . . . , n)
satisfy condition (2.46) with τ̂ := τ − ε

1 + ε
.

Proof. Apply Lemma 2.7.5(ii) with ρ = 1− ε and λ = 1.

As an immediate consequence of Corollaries 2.7.6 and 2.7.7, we obtain the following important asser-
tion.

Corollary 2.7.8. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi. Condi-
tions (D1) and (D2) in Theorem 2.7.3 are equivalent.

When n = 2, the main estimate in Corollary 2.7.6 can be improved.

Proposition 2.7.9. Suppose K1 and K2 are cones in a normed vector space, ε > 0, and vectors z1 and
z2 satisfy

‖z1 + z2‖ < ε, z1 ∈ K1, z2 ∈ K2, ‖z1‖+ ‖z2‖ = 1.

Then, there exist vectors ẑ1 and ẑ2 satisfying the following conditions:

ẑ1 + ẑ2 = 0, ẑ1 ∈ K1, d(ẑ2,K2) < ε, ‖ẑ1‖+ ‖ẑ2‖ = 1.

Proof. Without loss of generality, we can assume that ‖z2‖ ≤
1
2 ≤ ‖z1‖. Set ẑ1 := z1

2 ‖z1‖
and ẑ2 := −ẑ1.

Then ẑ1 + ẑ2 = 0, ‖ẑ1‖ = ‖ẑ2‖ = 1
2, ẑ1 ∈ K1 and

d(ẑ2,K2) ≤
∥∥∥∥ẑ2 −

z2

2 ‖z1‖

∥∥∥∥ = ‖z1 + z2‖
2 ‖z1‖

<
ε

2 ‖z1‖
≤ ε.

This completes the proof.

Next we formulate an asymmetric modification of Corollary 2.7.7 which will be used in Section 3.3.

Proposition 2.7.10. Suppose K1, . . . ,Kn are cones in a normed vector space, ε ∈]0, 1[ and vectors
z1, . . . , zn satisfy conditions

n∑
i=1

zi = 0,
n∑
i=1

d(zi,Ki) < ε,

n−1∑
i=1
‖zi‖ = 1.

Then, there exist vectors ẑi (i = 1, . . . , n) satisfying the following conditions:

n∑
i=1

ẑi = 0, ẑi ∈ Ki (i = 1, . . . , n− 1), d (ẑn,Kn) < ε

1− ε and
n−1∑
i=1
‖ẑi‖ = 1. (2.48)
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Proof. Take yi ∈ Ki (i = 1, . . . , n) such that
n∑
i=1
‖zi − yi‖ < ε. Then

∥∥∥∥∥
n∑
i=1

yi

∥∥∥∥∥ < ε and
n−1∑
i=1
‖yi‖ > 1− ε.

It follow that d(−
n−1∑
i=1

yi,Kn) ≤ d(−
n−1∑
i=1

yi, yn) < ε. Hence, vectors ẑi := yi/

n−1∑
i=1
‖yi‖ (i = 1, . . . , n − 1)

and ẑn := −
n−1∑
i=1

ẑi. satisfy all the conditions in (2.48).

Observe that, by scaling the vectors, the normalisation condition
n∑
i=1
‖x∗i ‖ = 1 in the dual generalised

separation properties (D1) and (D2) can be dropped if the inequalities there are amended to

n∑
i=1

d(x∗i , NΩi(ωi)) < ε

n∑
i=1
‖x∗i ‖ and

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε

n∑
i=1
‖x∗i ‖ ,

respectively. Note that each of the amended inequalities still implies that
n∑
i=1
‖x∗i ‖ > 0. Moreover, the

normalisation condition
n∑
i=1
‖x∗i ‖ = 1 involving n vectors can be replaced by the similar asymmetric

condition involving n − 1 vectors:
n−1∑
i=1
‖x∗i ‖ = 1. This observation can be especially useful in the case

n = 2.

Observe further that parameter ε in the Definition 2.3.1(iv) of approximate stationarity and its refor-
mulation in Proposition 2.3.4(iv) as well as the metric and dual characterisations in Proposition 2.4.2(ii)
and (iii) and 2.7.3(ii) and (iii) plays multiple roles. To get a deeper insight into the approximate sta-
tionarity property, it makes sense to split the parameter ε into two components. From now on, we will
use the letter α to denote the component controlling the size of the shifts of the sets. This parameter
is going to be crucial for quantifying the corresponding transversality property, playing the role of the
rate/modulus of the property.

Based on the above observations, we now formulate a list of primal and dual equivalent characteri-
sations of approximate stationarity, complementing Definition 2.3.1(iv), Proposition 2.3.4(iv), Proposi-
tion 2.4.2(ii) and (iii) and Theorem 2.7.3, which will be used in the sequel.

Proposition 2.7.11. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi. The
following conditions are equivalent:

(i) the collection {Ω1, . . . , Ωn} is approximately stationary at x̄;

(ii) for any ε > 0 and α > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying

n⋂
i=1

(Ωi − ωi − ai) ∩ (ρB) = ∅ and max
1≤i≤n

‖ai‖ < αρ;

(iii) for any ε > 0 and α > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n) and
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

(Ωi − ωi − ai) ∩ (Ωn − ωn) ∩ (ρB) = ∅ and max
1≤i≤n−1

‖ai‖ < αρ;
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(iv) for any ε > 0 and α > 0, there exist vectors ai ∈ X (i = 1, . . . , n) such that

αd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
> max

1≤i≤n
d (x̄, Ωi − ai) and max

1≤i≤n
‖ai‖ < ε; (M4.1)

(v) for any ε > 0 and α > 0, there exist a point x ∈ Bε(x̄) and vectors ai ∈ X (i = 1, . . . , n) such that

αd

(
x,

n⋂
i=1

(Ωi − ai)
)
> max

1≤i≤n
d(x,Ωi − ai) and max

1≤i≤n
‖ai‖ < ε. (M4.2)

With N standing for either Clarke (N := NC) or Fréchet (N := NF ) normal cone, the following
conditions are equivalent to conditions (D1) and (D2) in Theorem 2.7.3:

(vi) for any ε > 0 and α > 0, there exist points ωi ∈ Ωi ∩ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n)
such that ∥∥∥∥∥

n∑
i=1

x∗i

∥∥∥∥∥ < α, x∗i ∈ NΩi(ωi) (i = 1, . . . , n) and
n∑
i=1
‖x∗i ‖ = 1; (D3)

(vii) for any ε > 0 and α > 0, there exist points ωi ∈ Ωi ∩ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n)
such that

n∑
i=1

x∗i = 0,
n∑
i=1

d(x∗i , NΩi(ωi)) < α and
n∑
i=1
‖x∗i ‖ = 1; (D4)

(viii) for any ε > 0 and α > 0, there exist points ωi ∈ Ωi ∩ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n)
such that ∥∥∥∥∥

n∑
i=1

x∗i

∥∥∥∥∥ < α, x∗i ∈ NΩi(ωi) (i = 1, . . . , n) and
n−1∑
i=1
‖x∗i ‖ = 1; (D5)

(ix) for any ε > 0 and α > 0, there exist points ωi ∈ Ωi ∩ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n)
such that

n∑
i=1

x∗i = 0,
n∑
i=1

d(x∗i , NΩi(ωi)) < α and
n−1∑
i=1
‖x∗i ‖ = 1. (D6)

If X is Asplund and N = NF , then all conditions (i)–(ix) are equivalent.

Remark 2.7.12. The maximum in each of the conditions in Definition 2.3.1, Proposition 2.4.2, Proposi-
tion 2.3.4 and the first (primal space) part of Proposition 2.7.11 can be replaced by the sum. Moreover,
any norm on Rn (or Rn−1 in the case of Proposition 2.3.4 and Proposition 2.7.11(iii)) can be used instead.
The sum of the norms in the normalisation conditions in (D1) and (D2) and the second (dual space) part
of Proposition 2.7.11 stands for the corresponding dual norm and can be replaced by the maximum, or
any other norm on Rn or Rn−1.

The “α-version” of the approximate stationarity based on its equivalent representation in Proposi-
tion 2.7.11(i) is going to be used in the subsequent study.

Definition 2.7.13 (Approximate α-stationarity). Suppose Ω1, . . . , Ωn are subsets of a normed vector
space X, x̄ ∈ ∩ni=1Ωi and α > 0. The collection {Ω1, . . . , Ωn} is approximately α-stationary at x̄ if
and only if for any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying conditions (P4) with α in place of ε.
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In view of the above discussion, the next assertion is straightforward.

Proposition 2.7.14. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi. The
collection {Ω1, . . . , Ωn} is approximately stationary at x̄ if and only if it is approximately α-stationary
at x̄ for all α > 0.

In our deeper analysis of the core arguments in proofs of metric and dual characterisations of the
extremality and stationarity in Sections 3.2 and 3.3, we will study properties which correspond to fixing,
besides α, also other parameters involved in the primal and dual properties discussed above.

Theorems 2.4.2 and 2.7.3 as well as the equivalent characterisations in Proposition 2.7.11 can be
‘reversed’ into statements providing primal and dual space criteria for the absence of the approximate
stationarity, which turns out to be an important regularity/transversality property of collections of sets
(Definition 2.3.9), which plays an important role in constraint qualifications, qualification conditions in
subdifferential/coderivative calculus and convergence analysis of computational algorithms [17,52,65,75,
90–92,100,104,106,109].

Adding condition (ii) to the list of equivalent conditions sheds additional light on the transversality
property.

Theorem 2.7.15 (Transversality: dual criteria). Suppose Ω1, . . . , Ωn are closed subsets of an Asplund
space X and x̄ ∈ ∩ni=1Ωi. With N standing for the Fréchet normal cone (N := NF ), the following
conditions are equivalent:

(i) the collection {Ω1, . . . , Ωn} is transversal at x̄;

(ii) there exist numbers α > 0 and ε > 0 such that

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ > α for all points ωi ∈ Ωi ∩ Bε(x̄) and

vectors x∗i ∈ NΩi(ωi) (i = 1, . . . , n) satisfying
n∑
i=1
‖x∗i ‖ = 1;

(iii) there exist numbers α > 0 and ε > 0 such that
n∑
i=1

d(x∗i , NΩi(ωi)) > α for all points ωi ∈ Ωi∩Bε(x̄)

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying
n∑
i=1

x∗i = 0 and
n∑
i=1
‖x∗i ‖ = 1.

In view of Theorem 2.7.15, transversality of a collection of sets is equivalent to the absence of the
generalised separation.
Remark 2.7.16. (i) In view of Corollaries 2.7.6 and 2.7.7, conditions (ii) and (iii) in Theorem 2.7.15

are equivalent.

(ii) The supremum of all numbers α in part (ii) of Theorem 2.7.15 equal the constant tr[Ω1, . . . , Ωn](x̄);
see [90, Theorem 1], [92, Theorem 4(vi)] and Corollary 3.2.10 below. The supremum of all numbers
α in part (iii) of Theorem 2.7.15 can be different from the constant tr[Ω1, . . . , Ωn](x̄), but its
relationship with tr[Ω1, . . . , Ωn](x̄) can be easily established using elementary arguments discussed
in the next subsection.

Example 2.7.17. In the space R2 equipped with the maximum norm (hence, the dual norm is the sum
norm), consider the two perpendicular lines: Ω1 := {(t, 0) : t ∈ R} and Ω2 := {(0, t) : t ∈ R}. Then we
have x̄ := (0, 0) ∈ Ω1 ∩ Ω2, NF

Ω1
(x) = {(0, t) : t ∈ R} for any x ∈ Ω1 and NF

Ω1
(x) = {(t, 0) : t ∈ R} for

any x ∈ Ω2.

If x∗1 = (0, t1) and x∗2 = (t2, 0) are normal vectors to Ω1 and Ω2, respectively, then ‖x∗1‖ + ‖x∗2‖ =
‖x∗1 + x∗2‖ = |t1|+ |t2|. Hence, the supremum of all α in part (ii) of Theorem 2.7.15 is 1 (and is equal to
tr[Ω1, Ω2]).
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If x∗1, x∗2 ∈
(
R2)∗, x∗1 + x∗2 = 0 and ‖x∗1‖ + ‖x∗2‖ = 1, then x∗1 = −x∗2 = (t1, t2) for some numbers t1

and t2 satisfying |t1| + |t2| = 1
2, and the distances from x∗1 and x∗2 to the corresponding normal cones

equal |t1| and |t2|, respectively. Hence, the supremum of all α in part (iii) of Theorem 2.7.15 is 1
2 .

Remark 2.7.18. Since the approximate stationarity and transversality properties are complementary to
each other, it would be natural to refer to the negation of the approximate α-stationarity property, i.e.,
the existence of a number ε > 0 such that condition (P11) for all ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) and
vectors ai ∈ X (i = 1, . . . , n) satisfying max

1≤i≤n
‖ai‖ < αρ, as α-transversality at x̄.

2.7.2 More Extensions

As it was pointed out in the overview, the key tool used in the proof of Theorem 2.7.3 is the Ekeland
variational principle. The next natural step in the extremal principle refinement process is to single out
the core part of the conventional proof of the extremal principle around the application of the Ekeland
variational principle, identify the minimal assumptions on the sets and the immediate conclusions and
formulate it as a separate statement. Such a result (results) would expose the core arguments behind the
extremal principle and could serve as a key building block when constructing other generalised separation
statements, applicable in situations where the conventional (extended) extremal principle fails.

We are aware of two recent attempts of this kind: [97, Theorem 3.1] which served as a tool when
extending Theorems 2.7.3 to infinite collections of sets, and [170, Lemmas 2.1 and 2.2] used when proving
fuzzy multiplier rules in set-valued optimisation problems. The last couple of lemmas have been further
refined and strengthened in [172, Theorems 3.1 and 3.4] and [174, Theorem 1.1].

The next two theorems are reformulations for the setting adopted in the current paper of [97, Theo-
rem 3.1] and [172, Theorem 3.4], respectively.

Theorem 2.7.19 (Kruger and López, 2012). Suppose Ω1, . . . , Ωn are closed sets of an Asplund space,
and x̄ ∈ ∩ni=1Ωi, α > 0.

(i) If the numbers ε > 0, ε1, ε2 > 0, ε1 + ε2 ≤ ε; ρ ∈]0, ε2/(α + 1)[, and points ωi ∈ Ωi and ai ∈ X
(i = 1, . . . , n) are given such that Ωi ∩Bε(x̄) and max

1≤i≤n
‖ai‖ < αρ, and (P4) holds, then there exist

points ω′i ∈ Ωi ∩Bε2(x̄) and x∗i ∈ NΩi(ω′i) satisfying (D3).

(ii) If ωi ∈ Ωi and x∗i ∈ NΩi(ωi) (i = 1, . . . , n) satisfy conditions (D3), then, for any δ > 0, there
exists a ρ ∈]0, δ[ and points ai ∈ X (i = 1, . . . , n) satisfying conditions (P4).

Theorem 2.7.20 (Zheng and Ng, 2011). Suppose Ω1, . . . , Ωn are closed sets of an Asplund space, and
∩ni=1Ωi = ∅, ε > 0. If points ωi ∈ Ωi (i = 1, . . . , n) satisfy condition (2.40), then, for any λ > 0 and
τ ∈ (0, 1), there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n) and x∗i ∈ X∗ (i = 1, . . . , n) such that

n−1∑
i=1
‖x∗i ‖ = 1,

n∑
i=1

x∗i = 0,
n∑
i=1

d(x∗i , NΩi(ω′i)) < ε/λ, (2.49)

τ

n−1∑
i=1
‖ω′i − ω′n‖ ≤

n−1∑
i=1
〈x∗i , ω′i − ω′n〉. (2.50)

First observe that the extremal principle in Theorem 2.7.3 is a direct corollary of Theorem 2.7.19.

Theorem 2.7.3 from Theorem 2.7.19. Let the collection {Ω1, . . . , Ωn} be approximately stationary at x̄.
We are going to show that condition (D1) in Theorem 2.7.3 holds true. Given an ε > 0, find an ε′ > 0
such that ε′(ε′ + 2) < ε. By Definition 2.3.1(iv), there exist ρ ∈]0, ε′[, ωi ∈ Ωi ∩ Bε′(x̄) and ai ∈ X

52



(i = 1, . . . , n) such that conditions (P4) are satisfied with ε′ in place of ε. Then max
1≤i≤n

‖ωi−x̄‖+ρ(ε′+1) <

ε′ + ε′(ε′ + 1) < ε, and it follows from Theorem 2.7.19(i) that there exist points ω′i ∈ Ωi ∩ Bε(x̄) and
x∗i ∈ NΩi(ω′i) (i = 1, . . . , n), satisfying (D1).

Conversely, let condition (D1) in Theorem 2.7.3 holds true and an ε > 0 be given. Then there exist
points ωi ∈ Ωi ∩ Bε(x̄), x∗i ∈ NΩi(ωi) (i = 1, . . . , n) satisfying conditions (D1). By Theorem 2.7.19(ii),
there exists a ρ ∈]0, ε[ and points ai ∈ X (i = 1, . . . , n) satisfying conditions (P4), i.e. the collection
{Ω1, . . . , Ωn} is approximately stationary at x̄.

Next we compare the statements of Theorem 2.7.19(i) and Theorem 2.7.20. There are important
similarities between them: both establish a kind of generalised separation of the two sets, related somehow
to the given pair of points a ∈ A and b ∈ B possessing a certain approximate ‘extremality’ property.
There are also essential differences.

We start with comparing the assumptions in the two statements. On the first glance, they look
mutually exclusive: the first one assumes the existence of a point x̄ ∈ ∩ni=1Ωi, while in the second
theorem, it is assumed on the contrary that ∩ni=1Ωi = ∅. However, this distinction is easy to overcome.
Given points ωi ∈ Ωi (i = 1, . . . , n) in Theorem 2.7.20, one can set Ω′i := Ωi − ωi (i = 1, . . . , n); then
x̄ := 0 ∈ ∩ni=1(Ωi−ω′i) (this trick is used in the proof of Theorem 2.7.20′ below). This observation exposes
also the different roles played by the pairs a ∈ A and b ∈ B in Theorem 2.7.19(i) and Theorem 2.7.20.
In the first one, these are actually additional parameters having no analogues in Theorem 2.7.20, which
corresponds to ω1 = . . . = ωn = x̄ in Theorem 2.7.19(i).

The second distinction is related to the main approximate ‘extremality’ assumptions on the pair of
sets: conditions (P4) in Theorem 2.7.19(i) and condition (2.40) in Theorem 2.7.20. The Proposition 2.6.6
shows that condition (2.40) implies a stronger version of conditions (P4).

Proposition 2.6.6 is not reversible: condition (P4) being satisfied with some small ai ∈ X (i = 1, . . . , n)
does not imply that d1(ω1, . . . , ωn) is close to the distance d1(Ω1, . . . , Ωn) between the n sets.
Example 2.7.21. Let A := {(x1, x2) ∈ R2 | x2 ≤ 0} and B := {(x1, x2) ∈ R2 | x2 ≥ 1}. Then, assuming
that R2 is equipped with e.g. the sum norm, d(A,B) = 1. If a := (α, 0) ∈ A and b := (β, 1) ∈ B with
some α, β ∈ R, then condition

(A− a− u) ∩ (B − b− v) ∩ (ρB) = ∅

is satisfied with u := (0, ε), v := (0,−ε) and any ε > 0. At the same time, ‖a− b‖ = |α− β|+ 1 can be
arbitrarily large when the numbers α and β are far apart.

Thus, condition (P4) with small ai is less restrictive than condition (2.40). Moreover, the first
condition in (2.3.1) with ρ < ∞ is weaker than (P4) and allows for local versions of the corresponding
properties.

The next assertion is immediate from Proposition 2.6.6.
Corollary 2.7.22. Suppose X is a normed linear space, Ωi ⊂ X (i = 1, . . . , n), ∩ni=1Ωi = ∅. If sequences
{ωi,k} ⊂ Ωi (i = 1, . . . , n) are such that ‖ωi,k−ωn,k‖ → d(Ωi, Ωn), then there exist sequences {ai,k} ⊂ X
(i = 1, . . . , n) converging to 0, such that

n⋂
i=1

(Ωi − ωi,k − ai,k) = ∅.

With the sets in Example 2.7.21, one can easily see that the statement of Corollary 2.7.22 is not
reversible.

Now we are going to compare the conclusions of the two theorems. Similarly to the two conditions in
Theorem 2.7.3, they represent two different ways of formulating dual extremality/separation conditions:
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in terms of normal (in Theorem 2.7.19(i)) or ‘almost normal’ (in Theorem 2.7.20) vectors, with the
connection between the two formulations provided by Lemma 2.7.5. However, unlike the two equivalent
conditions in Theorem 2.7.3 formulated ‘for any ε > 0’, in both Theorem 2.7.19(i) and Theorem 2.7.20
the number ε > 0 is a given quantitative parameter. Corollary 2.7.6 and (2.7.7) used in the proof of
the equivalence of the two conditions in Theorem 2.7.3 cannot provide one-to-one translation between
the two settings with the given ε > 0; it only gives estimates, and its application leads to some ‘loss
of accuracy’. Note that the proof of [97, Theorem 3.1], where Theorem 2.7.19 is taken from, contains
estimates in terms of ‘almost normal’ vectors and then employs the arguments used in the proof of
Corollary (2.7.7) to ensure that the vectors belong to the normal cones. To make a fair comparison, one
needs to either reformulate Theorem 2.7.20 in terms of normal vectors using Corollary 2.7.7, or extract
the pre-Corollary 2.7.7 statement from the proof of [97, Theorem 3.1]. Below for simplicity we follow the
first approach. The next statement is a consequence of Theorem 2.7.20 and Corollary 2.7.7.

Theorem 2.7.20′ Suppose X is an Asplund space, Ω1, . . . , Ωn ⊂ X (i = 1, . . . , n) are closed, ∩ni=1Ωi = ∅.
If points ωi ∈ Ωi (i = 1, . . . , n) satisfy condition (2.40) with some ε ∈]0, 1[, then, for any λ > 0, there
exist points ω′i ∈ Ωi ∩ Bλ(1−ε)(ωi) and x∗i ∈ NΩi(ω′i) (i = 1, . . . , n) such that

n∑
i=1
‖x∗i ‖ = 1 and

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε/λ. (2.51)

Proof. Given ε > 0 and λ > 0, set λ′ := λ(1 − ε). Thanks to Theorem 2.7.20, there exist points
ω′i ∈ Ωi ∩ Bλ′(ωi) and x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (2.49) with λ′ in place of λ. Then,
(2.51) follows thanks to Corollary 2.7.7.

Now the comparison is straightforward.

Proposition 2.7.23. Theorem 2.7.19(i) implies Theorem 2.7.20′.

Proof. Under the conditions of Theorem 2.7.20′, set Ω′i := Ωi − ωi (i = 1, . . . , n). Then 0 ∈ ∩ni=1Ω
′
i.

By Proposition 2.6.6, there exist ai ∈ X (i = 1, . . . , n − 1) such that max
1≤i≤n−1

‖ai‖ < ε(1 − ε) and

∩ni=1(Ω′i − ai) = ∅. Choose an ε′ ∈ (2‖u‖, ε) and set ρ := (ε − 1)λ, ε̂ := ε′/λ and δ := (ε + λ)/2. Then
ε̂ < ε/λ and δ > ρ(ε̂ + 1). By Theorem 2.7.19(i) applied to the sets Ω′i (i = 1, . . . , n) at 0, there exist
points ω′i ∈ Ωi ∩ Bδ(ωi), x∗i ∈ NΩi(ω′i) (i = 1, . . . , n) satisfying conditions (2.51).

Thus, Theorem 2.7.20′ is a special case of Theorem 2.7.19(i). On the other hand, as demonstrated
in [170,172], Theorem 2.7.20 (as well as its version formulated above as Theorem 2.7.20′) is sufficient for
many important applications. Next we show that Theorem 2.7.20′ implies the nonlocal version of the
extremal principle.

Corollary 2.7.24 (Nonlocal extremal principle). Suppose X is an Asplund space, Ω1, . . . , Ωn ⊂ X
(n ≥ 2) are closed and x̄ ∈ ∩ni=1Ωi. If the collection {Ω1, . . . , Ωn} is extremal at x̄, then the two
equivalent conditions in Theorem 2.7.3 hold true.

Proof. Let the collection {Ω1, . . . , Ωn} be extremal and a number ε > 0 be given. Choose an ε′ ∈]
0, ε2

ε+ 1

[
. Then ε′

ε
< ε − ε′ and we can choose a λ such that 2ε′

ε
< λ < 2(ε − ε′). There exist

vectors ai ∈ X (i = 1, . . . , n) satisfying conditions (P1) with ε′ in place of ε. Define Ω′i := Ωi − ai and
ωi := x̄ − ai (i = 1, . . . , n). Then ∩ni=1Ω

′
i = ∅ and d1(ω1, . . . , ωn) < 2ε′. Applying Theorem 2.7.20′,

we find points ω′i ∈ Ωi (i = 1, . . . , n) and x∗i ∈ NΩ′
i
(ω′i − ai) = NΩi(ω′i) (i = 1, . . . , n) such that
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max
1≤i≤n

‖ω′i − x̄‖ < ε′ + λ/2 < ε,
n∑
i=1
‖x∗i ‖ = 1 and

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < 2ε′/λ < ε. Thus, condition (D2) in

Theorem 2.7.3 is satisfied.

Remark 2.7.25. 1. It is not difficult to modify the proof of Corollary 2.7.24 to cater for the relaxed
version of nonlocal extremality without the assumption ∩ni=1Ωi 6= ∅.

2. Theorem 2.7.20 does not seem to be able to recapture the full local extremal principle (as in
Theorem 2.7.1), not to say the extended extremal principle (as in Theorem 2.7.3).

3. Condition (2.50) in Theorem 2.7.20 determining the ‘direction’ of the vector x∗i does not have a
direct analogue in the statement of Theorem 2.7.19(i). Together with the first condition in (2.49), it comes
from subdifferentiating a norm at a nonzero point in the proof of [172, Theorem 3.4]. Subdifferentiating
a norm is an essential component also in the proofs of the conventional extremal principle and all its
modifications, including the one in [97, Theorem 3.1]; so analogues of (2.50) are implicitly present in
all such proofs. Zheng and Ng [172] seem to be the first to notice the importance of conditions like
(2.50) for recapturing the classical convex separation theorem, and make (2.50) explicit in the statement
of [172, Theorem 3.4]. In the current paper, keeping in line with the conventional formulations and for
the sake of simplicity of the presentation, we will not formulate analogues of the condition (2.50) in the
subsequent statements.
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Chapter 3

Linear Characterisations

The proof of the conventional extremal principle and all its subsequent extensions is based on the two
fundamental results of variational analysis:

• Ekeland variational principle,

• a sum rule for the appropriate subdifferential.

The definitions of all four extremality/stationarity properties involve non-intersection of certain col-
lections of sets being small (in some sense) translations of the original sets (see Definition 2.3.1), and the
Ekeland variational principle and the subdifferential sum rule in the proof of each version of the extremal
principle are applied to certain functions constructed on these non-intersecting sets.

In this chapter, we refine again the original proof of the conventional extremal principle, and conduct a
systematic study of the non-intersection properties involved in all four parts of Definition 2.3.1, producing
a series of elementary generalised separation statements, clarifying the relationships between them and,
particularly, unifying the statements from [170,172,174] and [97].

3.1 Geometric Ekeland Variational Principle

In this section, we are going to use the next two geometric versions of the Ekeland variational principle.
They characterise the mutual arrangement of a pair of sets in a complete metric space with respect to
a pair of points, being almost (up to ε) closest points of these sets and, similarly to the conventional
Ekeland variational principle, establish the existence of another pair of points arbitrarily close (up to
an additional parameter or a pair of parameters) to the given one and minimising a certain perturbed
function. The perturbed functions in both assertions involve the distance between localisations of the
sets near these points, i.e. intersections of the sets with neighbourhoods of the points.

The following classical result due to Ekeland [58] (see also [51,75,120,129,130]) plays the key role in
the subsequent studies.

Lemma 3.1.1 (Ekeland Variational Principle (EVP)). Suppose X is a complete metric space, f : X →
R∞ is lower semicontinuous, x̄ ∈ X and ε > 0. If

f(x̄) < inf
X
f + ε,

then, for any λ > 0, there exists an x̂ ∈ X such that
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(i) d(x̂, x̄) < λ;

(ii) f(x̂) ≤ f(x̄);

(iii) f(x) + (ε/λ)d(x, x̂) > f(x̂) for all x ∈ X \ {x̄}.

Theorem 3.1.2 (Geometric Ekeland Variational Principle (GEVP)). Suppose X is a complete metric
space, A and B are closed subsets of X, a ∈ A, b ∈ B, and ε > 0. If

d(a, b) < d(A,B) + ε, (3.1)

then, for any λ > 0, there exist â ∈ A ∩Bλ(a) and b̂ ∈ B ∩Bλ(b) such that

(i) d(â, b̂) ≤ d(a, b);

(ii) d(A ∩Bξ(â), B ∩Bξ(b̂)) + ξε

λ
> d(â, b̂) for all ξ > 0.

Theorem 3.1.3 (Asymmetric Geometric Ekeland Variational Principle (AGEVP)). Suppose X is a
complete metric space, A and B are closed subsets of X, a ∈ A, b ∈ B, and ε > 0. If condition (3.1) is
satisfied, then, for any λ, ρ > 0, there exist â ∈ A ∩Bλ(a) and b̂ ∈ B ∩Bρ(b) such that

(i) d(â, b̂) ≤ d(a, b);

(ii) d(A ∩Bξλ(â), B ∩Bξρ(b̂)) + ξε > d(â, b̂) for all ξ > 0.

Unlike GEVP, its asymmetric version AGEVP allows for balls with different radii to be used in the
localisations of the sets. This feature is going to play an important role in our subsequent analysis. It is
easy to see that GEVP is a particular case of AGEVP with ρ = λ. We now show that the two geometric
versions of the Ekeland variational principle formulated above are both equivalent to the conventional
one.

Proposition 3.1.4. EVP ⇔ GEVP ⇔ AGEVP.

Proof. We first show that EVP⇒ AGEVP. Let the assumptions of AGEVP be satisfied. Given numbers
λ, ρ > 0, we consider the space X ×X with a metric defined as follows:

dλ,ρ((x, y), (u, v)) := max
{

1
λ
d(x, u), 1

ρ
d(y, v)

}
(x, y, u, v ∈ X). (3.2)

Since X is complete, (A × B, dλ,ρ) is a complete space. Choose an ε′ ∈]0, ε[ such that (3.1) is satisfied
with ε′ in place of ε. EVP applied to the function d on (A×B, dλ,ρ) gives the existence of points â ∈ A
and b̂ ∈ B such that

dλ,ρ((â, b̂), (a, b)) < 1, d(â, b̂) ≤ d(a, b), (3.3)
d(x, y)− d(â, b̂) + ε′dλ,ρ((x, y), (â, b̂)) ≥ 0 for all (x, y) ∈ A×B. (3.4)

In view of the definition (3.2), the first inequality in (3.3) is equivalent to the following two: d(â, a) < λ

and d(b̂, b) < ρ. Given any ξ > 0, x ∈ A ∩ Bξλ(â) and y ∈ B ∩ Bξρ(b̂), by (3.2) and (3.4), we have,
respectively, dλ,ρ((x, y), (â, b̂)) < ξ and

d(x, y) ≥ d(â, b̂)− ε′dλ,ρ((x, y), (â, b̂)) > d(â, b̂)− ξε′.

It follows that d(A ∩Bξλ(â), B ∩Bξρ(b̂)) ≥ d(â, b̂)− ξε′ > d(â, b̂)− ξε. This proves AGEVP.

The implication AGEVP ⇒ GEVP is straightforward.

57



To complete the proof, we next show that GEVP ⇒ EVP. Let the assumptions of EVP be satisfied.
Choose a positive number ε′ < ε such that f(x̄) < inf

X
f + ε′ and another number α such that 0 < α <

λ(ε′−1 − ε−1). We are going to consider the space X × R with the metric d := dX + α| · |, which makes
X × R a complete metric space, two closed subsets of X × R: A := {(x, y) : x ∈ X, y ≥ f(x)} and
B := X × {M}, where M := inf

X
f , and two points a := (x̄, f(x̄)) ∈ A and b := (x̄,M) ∈ B. We have

d(A,B) = 0 and
d(a, b) = α(f(x̄)−M) < αε′ = d(A,B) + αε′.

GEVP gives the existence of points â = (x̂, ŷ) ∈ A ∩Bλ(a) and b̂ = (x̂′,M) ∈ B ∩Bλ(b) satisfying

d(â, b̂) ≤ d(a, b), (3.5)

d(A ∩Bξ(â), B ∩Bξ(b̂)) + ξαε′

λ
> d(â, b̂) for all ξ > 0. (3.6)

Observe that d(x̂, x̄) < λ, and consequently, (x̂,M) ∈ B ∩ Bλ(b). Moreover, x̂′ = x̂. Indeed, if x̂ 6= x̂′,
then we can take ξ := d(x̂, x̂′). Then (x̂, ŷ) ∈ A ∩Bξ(â), (x̂,M) ∈ B ∩Bξ(b̂) and

d((x̂, ŷ), (x̂,M)) + ξαε′

λ
< α(ŷ −M) +

(
1− ε′

ε

)
d(x̂, x̂′) < α(ŷ −M) + d(x̂, x̂′) = d(â, b̂),

which contradicts (3.6); hence x̂′ = x̂ and b̂ = (x̂,M). Consequently, condition (3.5) reduces to α(ŷ −
M) ≤ α(f(x̄)−M), which implies that f(x̂) ≤ ŷ ≤ f(x̄).

It remains to prove condition (iii) in EVP. Let x 6= x̂. If f(x) ≥ f(x̂), the condition holds trivially.
Let f(x) < f(x̂), and take ξ := d(x, x̂) + α(ŷ − f(x)). Then (x, f(x)) ∈ A ∩ Bξ(â), (x,M) ∈ B ∩ Bξ(b̂),
and by (3.6),

α(f(x)−M) + αε′

λ
(d(x, x̂) + α(ŷ − f(x))) = d((x, f(x)), (x,M)) + ξαε′

λ
≥ d(â, b̂) = α(ŷ −M).

Thus,
f(x) + ε′

λ
(d(x, x̂) + α(ŷ − f(x))) ≥ ŷ,

or equivalently,
f(x) + ε′

λ− αε′
d(x, x̂) ≥ ŷ.

By the definition of α, we have λ− αε′ > λε′ε−1. Hence,

f(x) + ε

λ
d(x, x̂) > f(x) + ε′

λ− αε′
d(x, x̂) ≥ ŷ ≥ f(x̂).

The proof is complete.

Condition (ii) in GEVP and AGEVP corresponds to condition (iii) in the conventional EVP, while
condition (i) corresponds to the pair of conditions (i) and (ii). The ε-closeness condition (3.1) is going
to play an important role in our analysis. It is discussed in Sections 2.7.2 and further in 3.3.3.

3.2 Localisations and Translations of the Sets

In this section, we continue studying mutual arrangement of n sets in space started in Section 3.1.

The next lemma extends the Asymmetric Geometric Ekeland Variational Principle (AGEVP) from
Section 3.1 to the case of n ≥ 2 sets, and as such it is also equivalent to the Ekeland Variational Principle.
Just like in AGEVP, balls of two different radii are used in the concluding part of the lemma, one of
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them employed in the localisations of the first n− 1 sets and the other one for the remaining single set.
The latter set is going to play a special role in the subsequent analysis.

The lemma translates ε-closeness of a given collection of points into ξε-closeness (with an additional
parameter ξ) of another collection of points with respect to a collection of certain localisations of the
sets (depending on ξ).

Lemma 3.2.1. Suppose Ω1, . . . , Ωn are closed subsets of a complete metric space X, ωi ∈ Ωi (i =
1, . . . , n), and ε > 0. If condition (2.40) is satisfied, then, for all numbers λ, ρ > 0, there exist ω̂i ∈
Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω̂n ∈ Ωn ∩Bρ(ωn) such that

(i) d1(ω̂1, . . . , ω̂n) ≤ d1(ω1, . . . , ωn);

(ii) d1(Ω1 ∩Bξλ(ω̂1), . . . , Ωn−1 ∩Bξλ(ω̂n−1), Ωn ∩Bξρ(ω̂n)) + ξε > d1(ω̂1, . . . , ω̂n) for all ξ > 0.

Proof. The product space Xn−1 considered with the maximum metric is complete. Set A := Ω1 × . . .×
Ωn−1, and B := {(x, . . . , x) : x ∈ Ωn} ⊂ Xn−1, a := (ω1, . . . , ωn−1) ∈ A, b := (ωn, . . . , ωn) ∈ B. Then
d1(Ω1, . . . , Ωn) = d(A,B) and d1(ω1, . . . , ωn) = d(a, b).

Applying AGEVP, we find points

â = (ω̂1, . . . , ω̂n−1) ∈ A ∩Bλ(a), and b̂ = (ω̂n, . . . , ω̂n) ∈ B ∩Bρ(b)

satisfying conditions (i) and (ii) in AGEVP. Recalling that the maximum metric is used in Xn−1, it
follows that ω̂i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n− 1), ω̂n ∈ B ∩ Bρ(ωn) and conditions (i) and (ii) above are
satisfied.

In view of the equalities in (2.39), the following corollary involving the symmetric distance d2 is
immediate.

Corollary 3.2.2. Suppose Ω1, . . . , Ωn are closed subsets of a complete metric space X, ωi ∈ Ωi (i =
1, . . . , n), x ∈ X and ε > 0. If condition (2.40) is satisfied, then, for all λ, ρ > 0, there exist ω̂i ∈
Ωi ∩Bλ(ωi) (i = 1, . . . , n) and x̂ ∈ Bρ(x) such that

(i) max
1≤i≤n

d(ω̂i, x̂) ≤ max
1≤i≤n

d(ωi, x);

(ii) dBξρ(x̂)(Ω1 ∩Bξλ(ω̂1), . . . , Ωn ∩Bξλ(ω̂n)) + ξε > max
1≤i≤n

d(ω̂i, x̂) for all ξ > 0.

The next proposition is a consequence of Lemma 3.2.1 in the Banach space setting. It characterises
ε-closest points of a collection of sets with empty intersection and involves localisations of the sets and
small (up to ξε) translations of the first n − 1 localisations. The proposition transforms the nonlocal
non-intersection condition ∩ni=1Ωi = ∅ into a non-intersection condition of translated localisations of the
sets. It also exposes the special role played by the last set in the list.

Proposition 3.2.3. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ωi ∈ Ωi (i = 1, . . . , n),
and ε > 0. If ∩ni=1Ωi = ∅ and condition (2.40) is satisfied, then, for any λ, ρ > 0, there are points
ω̂i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n − 1), ω̂n ∈ Ωn ∩ Bρ(ωn) such that, for any ξ > 0, there exist vectors
ai ∈ X (i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

((
(Ωi − ω̂i) ∩ (ξλ)B

)
− ai

)
∩ (Ωn − ω̂n) ∩ (ξρ)B = ∅ and max

1≤i≤n−1
‖ai‖ < ξε. (3.7)

Proof. Applying Lemma 3.2.1, we find points ω̂i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω̂n ∈ Ωn ∩Bρ(ωn)
satisfying condition (ii) in that lemma. Given any number ξ > 0, we can now apply Proposition 2.6.6
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with the function d1 and sets Ω1∩Bξλ(ω̂1),. . . , Ωn−1∩Bξλ(ω̂n−1), Ωn∩Bξρ(ω̂n), points ω̂i (i = 1, . . . , n)
and number ξε in place of sets Ω1,. . . , Ωn, points ωi (i = 1, . . . , n) and number ε, respectively, to find
vectors ai ∈ X (i = 1, . . . , n− 1) such that condition (3.7) is satisfied.

Remark 3.2.4. (i) Under the conditions of Proposition 3.2.3, 0 ∈ ∩ni=1(Ωi−ωi), 0 ∈ ∩ni=1(Ωi− ω̂i), and
the expressions involved in the first condition in (3.7) correspond to localisations of the sets Ωi− ω̂i
(i = 1, . . . , n) near 0, or equivalently, localisations of the original sets Ωi near ω̂i (i = 1, . . . , n).

(ii) There are certain similarities between Propositions 2.6.6 and 3.2.3 in terms of both assumptions
and conclusions. There are also important differences. The assumptions of Propositions 2.6.6 are
weaker: the space is not assumed to be complete and the sets are not assumed to be closed. The
concluding non-intersection condition in (P8) (Propositions 2.3.4) is formulated for the given sets
and in terms of the given collection of points, while Proposition 3.2.3 establishes existence of another
collection of points, and the corresponding condition in (3.7) is formulated for localisations of the
sets near these points. The translations of the sets are constructed in Propositions 2.6.6 explicitly
and are entirely determined by the given collection of points. At the same time, in Proposition 3.2.3
the size of the translations and localisations of the sets as well as the distance of the new points
from the given ones are controlled by additional parameters. These parameters, which appear in
Proposition 3.2.3, represent the major feature of this statement compared to Propositions 2.6.6.
They provide an additional degree (degrees) of freedom for the applications of the result.

Applying Proposition 3.2.3 to the collection of n + 1 sets Ω1, . . . , Ωn, X, we arrive at the following
statement.

Corollary 3.2.5. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ωi ∈ Ωi (i = 1, . . . , n),
x ∈ X and ε > 0. If ∩ni=1Ωi = ∅ and condition (2.41) is satisfied, then, for any numbers λ, ρ > 0,
there are points ω̂i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n) such that, for any ξ > 0, there exist vectors ai ∈ X
(i = 1, . . . , n) satisfying

n⋂
i=1

((
(Ωi − ω̂i) ∩ (ξλ)B

)
− ai

)
∩ (ξρ)B = ∅ and max

1≤i≤n
‖ai‖ < ξε. (3.8)

Observe that conditions (3.7) and (3.8) are exactly conditions (P6) and (P2), respectively, applied
to the localisations of the sets Ω1 − ω̂1, . . . , Ωn − ω̂n with x̄ := 0, and ξε and ξρ in place of ε and ρ,
respectively.

Proposition 3.2.3 assumes that the sets have empty intersection. Next we demonstrate that it can
be also applied to collections of sets having a common point. Specifically, we consider the special case
(P2) in the Definition 2.3.1(ii) of local extremality, where the last set in the list (of n+ 1 sets) is a ball
centered at this point. Since the radius of the ball is allowed to be infinite, the global setting is covered
too.

Proposition 3.2.6. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ε > 0 and
ρ ∈]0,∞]. If conditions (P2) are satisfied for some vectors ai ∈ X (i = 1, . . . , n), then, for any λ > 0,
there are points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and a number δ ∈]0, 1[ such that, for all ξ ∈]0, δ[,

n⋂
i=1

((
(Ωi − ωi) ∩ (ξλ)B

)
− a′i

)
∩ (ξρ)B = ∅ and max

1≤i≤n
‖a′i‖ < ξε (3.9)

for some vectors a′i ∈ X (i = 1, . . . , n).

Moreover, if λ ≥ ρ+ ε, then
n⋂
i=1

(Ωi − ωi − a′i) ∩ (ξρ)B = ∅; (3.10)
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if λ+ ε ≤ ρ, then
n⋂
i=1

((
(Ωi − ωi) ∩ (ξλ)B

)
− a′i

)
= ∅. (3.11)

Proof. Let ρ′ ∈]0, ρ[. By (P2), ∩n+1
i=1 Ω

′
i = ∅, where Ω′i := Ωi− ai (i = 1, . . . , n) and Ω′n+1 := Bρ′(x̄), and

d1(x̄− a1, . . . , x̄− an, x̄) = max
1≤i≤n

‖ai‖ < ε.

Applying Proposition 3.2.3, we can find points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and x ∈ X with ‖x‖ < ρ′

such that, for any ξ > 0, there exist vectors a′i ∈ X (i = 1, . . . , n) satisfying
n⋂
i=1

((
(Ωi − ωi) ∩ (ξλ)B

)
− a′i

)
∩Bρ′(x) ∩ (ξρ)B = ∅ and max

1≤i≤n
‖a′i‖ < ξε.

Set δ := (ρ′ − ‖x‖)/ρ. Then, δ ∈]0, 1[ and, for any ξ ∈]0, δ[, we have (ξρ)B ⊂ Bρ′(x), and consequently,
(3.9) holds true. If λ ≥ ρ + ε, then (ξρ)B ⊂ (ξλ)B − a′i for all i = 1, . . . , n, and consequently, (3.9)
implies (3.10). Similarly, if λ + ε ≤ ρ, then (ξλ)B − a′i ⊂ (ξρ)B for all i = 1, . . . , n, and consequently,
(3.9) implies (3.11).

Remark 3.2.7. Conditions (P2) in Proposition 3.2.6 are formulated for a fixed point x̄ ∈ ∩ni=1Ωi and
fixed ε > 0 and ρ ∈]0,∞]. It presumes a certain balance between the values of ε and ρ: the larger the
value of ρ is, the larger value of ε is needed to ensure the existence of vectors a′i ∈ X (i = 1, . . . , n)
satisfying (P2). In contrast, condition (3.9) involves two additional parameters: an arbitrary λ > 0 and
a sufficiently small ξ ∈]0, 1[. Fixed ε and ρ are replaced by ξε and ξρ, respectively, preserving their ratio,
while the sets are replaced by their localisations controlled by ξλ. This advancement comes at a price:
instead of a single common fixed point x̄, we now have to deal with a collection of individual points
ωi ∈ Ωi (i = 1, . . . , n), whose distance from x̄ is controlled by λ. Now the balance between this distance
and the size of the localisations of the sets becomes important: choosing a smaller λ ensures that the
individual points ωi are closer to x̄ while at the same time reducing the size of the localisations of the
sets and, thus, weakening condition (3.9).

Given a collection of sets Ω1, . . . , Ωn (n ≥ 2), a point x̄ ∈ ∩ni=1Ωi and a ρ ∈]0,∞], define (cf. [89,90]):

θρ[Ω1, . . . , Ωn](x̄) = sup
{
r > 0 :

n⋂
i=1

(Ωi − ai) ∩Bρ(x̄) 6= ∅ for all ai ∈ rB

}
.

This nonnegative quantity tells us how far the sets can be pushed apart until their intersection becomes
empty with respect to the fixed ρ-neighbourhood of x̄.

Corollary 3.2.8. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X and x̄ ∈ ∩ni=1Ωi. If ρ > 0
and ε > θρ[Ω1, . . . , Ωn](x̄), then

inf
ωi∈Ωi∩Bρ+ε(x̄)

(i=1,...,n)

lim sup
α↓0

α−1θα[Ω1 − ω1, . . . , Ωn − ωn](0) ≤ ρ−1θρ[Ω1, . . . , Ωn](x̄).

Moreover, if x̄ ∈ bd ∩ni=1 Ωi, then

lim inf
ωi→x̄, ωi∈Ωi

(i=1,...,n)

lim sup
α↓0

α−1θα[Ω1 − ω1, . . . , Ωn − ωn](0) ≤ lim inf
ρ↓0

ρ−1θρ[Ω1, . . . , Ωn](x̄).

Proof. The first assertion is a direct consequence of Proposition 3.2.6. The second assertion is a conse-
quence of the first one since x̄ ∈ bd ∩ni=1 Ωi implies that θρ[Ω1, . . . , Ωn](x̄)→ 0 as ρ ↓ 0; cf. [90, Propo-
sition 3].

The next proposition presents a metric counterpart of the conditions (P2). It contains the key
ingredients of the metric criteria of approximate stationarity and transversality in Theorems 2.4.1 and
2.4.2, respectively.
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Proposition 3.2.9. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X
(i = 1, . . . , n), ε > 0, ρ > 0 and α := ε

ρ
. Then

(i) conditions (P2) imply condition (M4.1).

(ii) if conditions (M4.1) is satisfied, then there exist a number ρ′ ∈]0, ρ[, points ωi ∈ Ωi ∩ Bε(x̄) and
vectors a′i ∈ X (i = 1, . . . , n) such that conditions (P4) are satisfied with ρ′ and a′i in place of ρ
and ai.

Proof. (i) If conditions (P2) are satisfied, then max
1≤i≤n

‖ai‖ < ε and

αd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
> αρ = ε > max

1≤i≤n
‖ai‖ ≥ max

1≤i≤n
d (x̄, Ωi − ai) .

(ii) Let conditions (M4.1) be satisfied. Then

max
1≤i≤n

d (x̄, Ωi − ai) ≤ max
1≤i≤n

‖ai‖ < ε = αρ,

and there exists a number ρ′ ∈]0, ρ[ such that

αd

(
x̄,

n⋂
i=1

(Ωi − ai)
)
> αρ′ > max

1≤i≤n
d (x̄, Ωi − ai) .

It follows from the first inequality above that ∩ni=1(Ωi − ai) ∩Bρ′(x̄) = ∅, while due to the second
inequality, there exist ωi ∈ Ωi (i = 1, . . . , n) such that max

1≤i≤n
‖a′i‖ < αρ′, where a′i := ai + x̄ − ωi

(i = 1, . . . , n).

Corollary 3.2.10. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, x̄ ∈ ∩ni=1Ωi and α > 0.
The following conditions are equivalent:

(i) the collection {Ω1, . . . , Ωn} is approximately α−stationary at x̄;

(ii) for any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) such that conditions (M4.1) are satisfied;

(iii) for any ε > 0, there exist vectors x ∈ Bε(x̄) and ai ∈ X (i = 1, . . . , n) such that conditions (M4.2)
are satisfied.

Proof. (i) ⇒ (ii). Let condition (i) be satisfied and a number ε > 0 be given. Set ε′ := ε/(α + 1).
Then conditions (P4) hold with some ρ ∈]0, ε′[, ωi ∈ Ωi ∩ Bε′(x̄), and ai ∈ X (i = 1, . . . , n). By
Proposition 3.2.9(i), applied to the sets Ωi − ωi (i = 1, . . . , n) having the common point 0, we have

αd

(
0,

n⋂
i=1

(Ωi − ωi − ai)
)
> max

1≤i≤n
d(0, Ωi − ωi − ai).

It follows that the first inequality in (M4.1) is satisfied with a′i := ai+ωi− x̄ in place of ai (i = 1, . . . , n),
and max

1≤i≤n
‖a′i‖ < αρ+ ε′ < (α+ 1)ε′ = ε. Hence, condition (ii) is satisfied.

(ii) ⇒ (i). Let condition (ii) be satisfied and a number ε > 0 be given. Set ε′ := min{α, 1}ε, and
find vectors ai ∈ X (i = 1, . . . , n) such that conditions (M4.1) are satisfied with ε′ in place of ε. By
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Proposition 3.2.9(ii), there are ρ ∈]0, ε′/α[, ωi ∈ Ωi ∩Bε′(x̄), a′i ∈ X (i = 1, . . . , n) such that conditions
(P4) hold with a′i in place of ai. Since ε′ ≤ ε and ε′/α ≤ ε, condition (i) is satisfied.

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (ii). Let condition (iii) be satisfied and a number ε > 0 be given. Set ε′ := ε/2. Then
conditions (M4.2) hold with some x ∈ Bε′(x̄), ai ∈ X (i = 1, . . . , n) and ε′ in place of ε. Set a′i :=
ai + x− x̄ (i = 1, . . . , n). Then conditions (M4.2) hold true with a′i in place of ai. Hence, condition (ii)
is satisfied.

In view of Proposition 2.7.14, Corollary 3.2.10 immediately yields Proposition 2.4.2.

3.3 Dual Characterisations

This section presents a series of ‘generalised separation’ statements, providing dual characterisations of
certain typical ‘extremal’ arrangements of collections of sets, discussed in the preceding sections, and
traces the relationships between them. These statements contain core arguments, which can be found in
various existing versions of the (extended) extremal principle, as well as some new extensions.

The definition of the approximate stationarity (Definition 2.3.1(iv)) and its conventional dual char-
acterisations in the extended extremal principle (Theorem 2.7.3) are all formulated “for any ε > 0 there
exist . . . ”. At the same time, the proofs of the extremal principle and its extensions establish connections
between the values of ε and other parameters involved in the assumptions and the conclusions. These
connections, usually hidden in the proofs, are of importance for more subtle extremality statements. We
expose them in the statements below.

All the separation statements in this section are consequences of the next general theorem, providing
dual characterisations of the slightly weakened version of the asymmetric extremality property contained
in Proposition 2.3.4(i). It involves the d1 distance between n sets defined in (2.36) and actually combines
two statements: for closed sets in general Banach spaces and specifically in Asplund spaces. So far it
has been common to formulate (and prove!) such statements separately; cf. [120,172].
Theorem 3.3.1. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X
(i = 1, . . . , n− 1), and ε > 0. Suppose also that

n−1⋂
i=1

(Ωi − ai) ∩Ωn = ∅, (3.12)

max
1≤i≤n−1

‖ai‖ < d1(Ω1 − a1, . . . , Ωn−1 − an−1, Ωn) + ε (3.13)

(or simply max
1≤i≤n−1

‖ai‖ < ε). Then,

(i) for any λ > 0 and ρ > 0, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n − 1), ωn ∈ Ωn ∩ Bρ(x̄),
and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that

n∑
i=1

x∗i = 0,
n−1∑
i=1
‖x∗i ‖ = 1, (3.14)

λ

n−1∑
i=1

d (x∗i , NΩi(ωi)) + ρd (x∗n, NΩn(ωn)) < ε, (3.15)

n−1∑
i=1
〈x∗i , ωn + ai − ωi〉 = max

1≤i≤n−1
‖ωn + ai − ωi‖, (3.16)
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where N in (3.15) stands for the Clarke normal cone (N := NC);

(ii) if X is Asplund, then, for any λ > 0, ρ > 0 and τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n − 1), ωn ∈ Ωn ∩ Bρ(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(3.14), (3.15), where N in (3.15) stands for the Fréchet normal cone (N := NF ), and

n−1∑
i=1
〈x∗i , ωn + ai − ωi〉 > τ max

1≤i≤n−1
‖ωn + ai − ωi‖. (3.17)

Proof. Let λ > 0 and ρ > 0. In view of (3.13), we can choose positive numbers ε1 and ε2 satisfying

max
1≤i≤n−1

‖ai‖ − d1(Ω1 − a1, . . . , Ωn−1 − an−1, Ωn) < ε1 < ε2 < ε (3.18)

Note that max
1≤i≤n−1

‖ai‖ = d1(x̄ − a1, . . . , x̄ − an−1, x̄). We can apply Lemma 3.2.1 to find points ω̂i ∈
Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and ω̂n ∈ Ωn ∩Bρ(x̄) such that

max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖ <

d1(Ω1 ∩Bαλ(ω̂1)− a1, . . . , Ωn−1 ∩Bαλ(ω̂n−1)− an−1, Ωn ∩Bαρ(ω̂n)) + αε1 (3.19)

for all α > 0. Consider the three functions f1, f2, f3 : Xn → R+ ∪ {+∞}:

f1(u1, . . . , un) := max
1≤i≤n−1

‖ui − ai − un‖ , (3.20)

f2(u1, . . . , un) :=ε2 max
{
λ−1 max

1≤i≤n−1
‖ui − ω̂i‖, ρ−1 ‖un − ω̂n‖

}
, (3.21)

f3(u1, . . . , un) :=
{

0 if ui ∈ Ωi (i = 1, . . . , n),
∞ otherwise.

(3.22)

Observe that, in view of (3.12), f1(ω̂1, . . . , ω̂n) = max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖ > 0. Moreover,

f1(u1, . . . , un)− f1(ω̂1, . . . , ω̂n) + f2(u1, . . . , un) ≥ 0 for all ui ∈ Ωi (i = 1, . . . , n).

Indeed, assume that there are ui ∈ Ωi (i = 1, . . . , n) such that the inequality does not hold. Then
(u1, . . . , un) 6= (ω̂i, . . . , ω̂n), and consequently, f2(u1, . . . , un) > 0. Set α := f2(u1, . . . , un)/ε1. We have

‖ui − ω̂i‖ ≤
ε1

ε2
αλ < αλ(i = 1, . . . , n− 1), ‖un − ω̂n‖ ≤

ε1

ε2
αρ < αρ

max
1≤i≤n−1

‖ui − ai − un‖ − max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖+ αε1 < 0,

which contradicts (3.19). Thus, (ω̂1, . . . , ω̂n) is a point of minimum of the sum f1 + f2 + f3, and
consequently (Lemma 2.2.2)

0 ∈ ∂(f1 + f2 + f3)(ω̂1, . . . , ω̂n).

Functions f1 and f2 are convex and Lipschitz continuous. It is easy to check that the subdifferentials
of f1, f2 and f3 possess the following properties:

1) The function f1 (3.20) is a composition function: f1(u1, . . . , un) = g
(
A(u1, . . . , un) −

(a1, . . . , an−1)
)
, where A is the linear operator from Xn to Xn−1: A(u1, . . . , un) :=

(u1 − un, . . . , un−1 − un), and g is the maximum norm on Xn−1: g(u1, . . . , un−1) := max
1≤i≤n−1

‖ui‖. The

corresponding dual norm has the form (v∗1 , . . . , v∗n−1) 7→
n−1∑
i=1
‖v∗i ‖. It is easy to check that the ad-

joint operator A∗ : (X∗)n−1 → (X∗)n is of the form A∗(v∗1 , . . . , v∗n−1) =

v∗1 , . . . , v∗n−1,−
n−1∑
j=1

v∗j

.
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When f1(u1, . . . , un) > 0, the subdifferential ∂g (u1 − a1 − un, . . . , un−1 − an−1 − un) is the set of
(v∗11, . . . , v

∗
1,n−1) ∈ (X∗)n−1 satisfying (see e.g. [168, Corollary 2.4.16])

n−1∑
i=1
‖v∗1i‖ = 1 and

n−1∑
i=1
〈v∗1i, ui − ai − un〉 = max

1≤i≤n−1
‖ui − ai − un‖ . (3.23)

Thus, in view of the convex chain rule (see e.g. [168, Theorem 2.8.3]), if f1(u1, . . . , un) > 0, then

the subdifferential ∂f1(u1, . . . , un) is the set of all vectors

v∗11, . . . , v
∗
1,n−1,−

n−1∑
j=1

v∗1j

 ∈ (X∗)n, where

vectors v∗1i ∈ X∗ (i = 1, . . . , n− 1) satisfy (3.23).

2) The function f2 (3.21) is a positive multiple of the norm on Xn (translated by (ω̂1, . . . , ω̂n)). Its
subgradients (v∗21, . . . , v

∗
2n) at any point satisfy

λ

n−1∑
i=1
‖v∗2i‖+ ρ ‖v∗2n‖ ≤ ε2. (3.24)

3) The function f3 (3.22) is the indicator function of the set Ω1 × . . .×Ωn. Its subdifferential has a

simple representation: ∂f3(u1, . . . , un) =
n∏
i=1

NΩi(ui) for all ui ∈ Ωi (i = 1, . . . , n) (Lemma 2.2.3).

From this point the proof splits into two cases.

(i) We apply the Clarke–Rockafellar subdifferential sum rule (Lemma 2.2.1(iv)) to find elements of
the three subdifferentials: (v∗11, . . . , v

∗
1,n−1) ∈ ∂g(ω̂1 − a1 − ω̂n, . . . , ω̂n−1 − an − ω̂n), (v∗21, . . . , v

∗
2n) ∈

∂f2(ω̂1, . . . , ω̂n) and (v∗31, . . . , v
∗
3n) ∈ ∂f3(ω̂1, . . . , ω̂n) such that

v∗1i + v∗2i + v∗3i = 0 (i = 1, . . . , n− 1) and −

n−1∑
j=1

v∗1j

+ v∗2n + v∗3n = 0.

Then v∗3i ∈ NΩi(ω̂i) (i = 1, . . . , n) and conditions (3.23) and (3.24) are satisfied. The conclusion of part
(i) of the theorem holds true with ω̂i in place of ωi (i = 1, . . . , n), x∗i := −v∗1i (i = 1, . . . , n − 1) and

x∗n :=
n−1∑
j=1

v∗1j .

(ii) Let X be Asplund and τ ∈]0, 1[. We can apply the fuzzy sum rule (Lemma 2.2.1(iii)) to the sum
(f1 + f2) + f3 followed by the conventional convex sum rule (Lemma 2.2.1(i)) applied to f1 + f2. Choose
a ξ > 0 satisfying the following conditions:

ξ < ε− ε2, ξ < λ− max
1≤i≤n−1

‖ω̂i − x̄‖, ξ < ρ− ‖ω̂n − x̄‖, (3.25)

(10− 2τ)ξ < (1− τ) max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖. (3.26)

Since τ ∈]0, 1[, the last inequality implies in particular that

2ξ < max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖. (3.27)

Applying the fuzzy sum rule, we find two points (x1, . . . , xn), (ω1, . . . , ωn) ∈ Xn such that ωi ∈ Ωi
(i = 1, . . . , n) and

max
1≤i≤n

‖xi − ω̂i‖ < ξ, max
1≤i≤n

‖ωi − ω̂i‖ < ξ, (3.28)
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and elements of the three subdifferentials: (v∗11, . . . , v
∗
1,n−1) ∈ ∂g(x1 − a1 − xn, . . . , xn−1 − an − xn),

(v∗21, . . . , v
∗
2n) ∈ ∂f2(x1, . . . , xn) and (v∗31, . . . , v

∗
3n) ∈ ∂f3(ω1, . . . , ωn) such that

n−1∑
i=1
‖v∗1i + v∗2i + v∗3i‖+

∥∥∥∥∥∥−
n−1∑
j=1

v∗1j

+ v∗2n + v∗3n

∥∥∥∥∥∥ < ξ

max{λ, ρ} .

The last condition implies

λ

n−1∑
i=1
‖v∗1i + v∗2i + v∗3i‖+ ρ

∥∥∥∥∥∥−
n−1∑
j=1

v∗1j

+ v∗2n + v∗3n

∥∥∥∥∥∥ < ξ. (3.29)

In view of (3.25), (3.26), (3.27) and (3.28), we have the following estimates:

‖ωi − x̄‖ ≤ ‖ω̂i − x̄‖+ ‖ωi − ω̂i‖ < λ (i = 1, . . . , n− 1), ‖ωn − x̄‖ < ‖ω̂n − x̄‖+ ‖ωn − ω̂n‖ < ρ,

(hence, ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bρ(x̄))

‖ωi − xi‖ ≤ ‖ωi − ω̂i‖+ ‖xi − ω̂i‖ < 2ξ (i = 1, . . . , n), (3.30)
max

1≤i≤n−1
‖xi − ai − xn‖ ≥ max

1≤i≤n−1
(‖ω̂i − ai − ω̂n‖ − ‖xi − ω̂i‖ − ‖xn − ω̂n‖)

> max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖ − 2ξ > 0,

max
1≤i≤n−1

‖ωi − ai − ωn‖ ≥ max
1≤i≤n−1

(‖ω̂i − ai − ω̂n‖ − ‖ωi − ω̂i‖ − ‖ωn − ω̂n‖)

> max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖ − 2ξ > 0,

(1− τ) max
1≤i≤n−1

‖ωi − ai − ωn‖ > (1− τ)
(

max
1≤i≤n−1

‖ω̂i − ai − ω̂n‖ − 2ξ
)

(3.31)

> (10− 2τ)ξ − 2(1− τ)ξ = 8ξ,

conditions (3.23) and (3.24) are satisfied and v∗3i ∈ NΩi(ωi) (i = 1, . . . , n). Denote x∗i := −v∗1i (i =

1, . . . , n − 1) and x∗n :=
n−1∑
j=1

v∗1j . Then
n∑
i=1

x∗i = 0 and
n∑
i=1
‖x∗i ‖ = 1. Using (3.23) and (3.30), we obtain

the following inequalities:

n−1∑
i=1
〈x∗i , ωn + ai − ωi〉 ≥

n−1∑
i=1
〈v∗1i, xi − ai − xn〉 −

n−1∑
i=1
‖v∗1i‖ (‖ωi − xi‖+ ‖ωn − xn‖)

> max
1≤i≤n−1

‖xi − ai − xn‖ − 4ξ

≥ max
1≤i≤n−1

(‖ωi − ai − ωn‖ − ‖ωi − xi‖ − ‖ωn − xn‖)− 4ξ

> max
1≤i≤n−1

‖ωi − ai − ωn‖ − 8ξ. (3.32)

Adding (3.31) and (3.32), we arrive at (3.17). Making use of (3.24), (3.29) and (3.25), we obtain the
following estimates:

λ

n−1∑
i=1
‖x∗i − v∗3i‖+ ρ ‖x∗n − v∗3n‖ < λ

n−1∑
i=1
‖v∗2i‖+ ρ ‖v∗2n‖+ ξ < ε2 + ξ < ε.

The last inequality yields (3.15).

Remark 3.3.2. (i) Conditions (3.12) and (3.13) are implied by conditions (P5). Hence, in view of
Proposition 2.3.4(i), Theorem 3.3.1 provides dual necessary characterisations of extremality.

(ii) Conditions (3.16) and (3.17) relate the dual vectors x∗i and the primal space vectors ωn + ai − ωi
(i = 1, . . . , n − 1). Such conditions, though not common in the conventional formulations of the
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extremal/generalised separation statements, seem to provide important additional characterisations
of the properties. Conditions of this kind first appeared explicitly in the generalised separation
theorems in [172], where the authors also provided motivations for employing such conditions. As
one can see from the proof above, conditions (3.17) and (3.16) originate in computing the convex
subdifferential of the norm in Xn−1 at a nonzero point; see (3.23). Subdifferentiating a norm (in
either Xn−1 or Xn) at a nonzero point is a necessary step in the proofs of all existing versions of
the extremal principle and its extensions, starting with the very first one in [103, Theorem 6.1],
with conditions like (3.23) hidden in the proofs. In several statements in the rest of this section,
following [172], we make such conditions exposed.

(iii) Lemma 3.2.1 substitutes in the proof of Theorem 3.3.1 the conventional Ekeland variational prin-
ciple.

(iv) If condition (3.13) in Theorem 3.3.1 is replaced by a stronger one:

max
1≤i≤n−1

‖ai‖ = d1(Ω1 − a1, . . . , Ωn−1 − an−1, Ωn),

which means that the infimum of max
1≤i≤n−1

‖ωi − ai − ωn‖ over ωi ∈ Ωi (i = 1, . . . , n) is attained at
ω1 = . . . = ωn = x̄, then the application of Lemma 3.2.1 in the proof can be dropped, leading to an
improvement in part (i): conditions (3.15) and (3.16) can be replaced by x∗i ∈ NC

Ωi(x̄) (i = 1, . . . , n)

and
n−1∑
i=1
〈x∗i , ai〉 = max

1≤i≤n−1
‖ai‖, respectively. A similar fact was observed in [172, Theorem 3.1′].

The assumption ∩ni=1Ωi 6= ∅ in Theorem 3.3.1 is not restrictive. The common point x̄ ∈ ∩ni=1Ωi of
the collection of sets can be replaced by a collection of individual points ωi ∈ Ωi (i = 1, . . . , n). The next
statement provides dual characterisations of the slightly weakened version of the asymmetric extremality
property contained in Proposition 2.3.4.

Corollary 3.3.3. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ωi ∈ Ωi (i = 1, . . . , n),
ai ∈ X (i = 1, . . . , n− 1), and ε > 0. Suppose also that

n−1⋂
i=1

(Ωi − ωi − ai) ∩ (Ωn − ωn) = ∅, (3.33)

max
1≤i≤n−1

‖ai‖ < d1(Ω1 − ω1 − a1, . . . , Ωn−1 − ωn−1 − an−1, Ωn − ωn) + ε (3.34)

(or simply max
1≤i≤n−1

‖ai‖ < ε). Then,

(i) for any λ > 0 and ρ > 0, there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1), ω′n ∈ Ωn ∩Bρ(ωn),
and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (3.14), (3.15) and (3.16) with N := NC

and ω′i in place of ωi (i = 1, . . . , n);

(ii) if X is Asplund, then, for any λ > 0, ρ > 0 and τ ∈]0, 1[, there exist points ω′i ∈ Ωi ∩ Bλ(ωi)
(i = 1, . . . , n − 1), ω′n ∈ Ωn ∩ Bρ(ωn), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(3.14), (3.15) and (3.17) with N := NF and ω′i in place of ωi (i = 1, . . . , n).

Proof. The sets Ω′i := Ωi − ωi (i = 1, . . . , n) satisfy 0 ∈ ∩ni=1Ω
′
i and conditions (3.12) and (3.13). The

conclusion follows from Theorem 3.3.1 after noticing that NΩ′
i
(ω′i − ωi) = NΩi(ω′i) (i = 1, . . . , n).

Theorem 3.3.1 is a particular case of Corollary 3.3.3 with ωi = x̄ (i = 1, . . . , n).

The following theorem is an immediate consequence of Theorem 3.3.1. It combines two unified
separation theorems due to Zheng and Ng [172, Theorems 3.1 and 3.4].
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Theorem 3.3.4. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ∩ni=1Ωi = ∅, ωi ∈ Ωi
(i = 1, . . . , n), ε > 0 and condition (2.40) is satisfied. Then,

(i) for any λ > 0, there exist points ω′i ∈ Ωi ∩ Bλ(ωi) and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying
conditions

n∑
i=1

d(x∗i , NΩi(ω′i) <
ε

λ
, (ZN1)

with N standing for the Clarke normal cone (N := NC), and

n−1∑
i=1
〈x∗i , ω′n − ω′i〉 = max

1≤i≤n−1
‖ω′i − ω′n‖ ; (ZN2)

(ii) if X is Asplund, then, for any numbers λ > 0 and τ ∈]0, 1[, there exist points ω′i ∈ Ωi∩Bλ(ωi) and
vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (ZN1) with N standing for the Fréchet normal
cone (N := NF ), and

n−1∑
i=1
〈x∗i , ω′n − ω′i〉 > τ max

1≤i≤n−1
‖ω′i − ω′n‖ . (NZ3)

Proof. Observe that the sets Ω′i := Ωi − ωi (i = 1, . . . , n) and vectors ai := ωn − ωi (i = 1, . . . , n − 1)

satisfy 0 ∈
n⋂
i=1

Ω′i and

n−1⋂
i=1

(Ω′i − ai) ∩Ω′n =
n⋂
i=1

(Ωi − ωn) =
n⋂
i=1

Ωi − ωn = ∅,

max
1≤i≤n−1

‖ai‖ = d1(ω1, . . . , ωn) < d1(Ω1, . . . , Ωn) + ε = d1(Ω′1 − a1, . . . , Ω
′
n−1 − an−1, Ω

′
n) + ε.

Applying Theorem 3.3.1 with ρ = λ, we arrive at the conclusions.

Remark 3.3.5. (i) In [172], instead of the d1 distance in condition (2.40), a slightly more general p-
weighted nonintersect index was used with the corresponding q-weighted sums replacing the usual
ones in (ZN1), (ZN2) and (NZ3). This corresponds to considering `p norms on product spaces
and the corresponding `q dual norms. In the thesis, for simplicity only the maximum norm on
product spaces is considered together with the corresponding sum norm in the dual space; (cf.
Remark 2.6.5(ii).)

(ii) Theorem 4.2.7 is a consequence of Theorem 3.3.1, which in turn is a consequence of the Ekeland
variational principle. Thanks to [113, Theorem 3.1], part (i) of Theorem 4.2.7 is equivalent to the
Ekeland variational principle. Hence, the conclusion of Theorem 3.3.1 is also equivalent to the
Ekeland variational principle (and to completeness of the space X).

The next theorem is a ‘symmetric’ version of Theorem 3.3.1.

Theorem 3.3.6. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X
(i = 1, . . . , n), ρ > 0 and ε > 0. Suppose also that

n⋂
i=1

(Ωi − ai) ∩Bρ(x̄) = ∅, (3.35)

max
1≤i≤n

‖ai‖ < dBρ(x̄)(Ω1 − a1, . . . , Ωn − an) + ε (3.36)

(or simply max
1≤i≤n

‖ai‖ < ε). Then,
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(i) for any λ > 0, there exist points ωi ∈ Ωi∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bρ(x̄), and vectors x∗i ∈ X∗
(i = 1, . . . , n) such that

λ

n∑
i=1

d(x∗i , NΩi(ωi)) + ρ

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε,

n∑
i=1
‖x∗i ‖ = 1, (3.37)

n∑
i=1
〈x∗i , x+ ai − ωi〉 = max

1≤i≤n
‖x+ ai − ωi‖, (3.38)

where N in (3.37) stands for the Clarke normal cone (N := NC);

(ii) if X is Asplund, then, for any λ > 0 and τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n)
and x ∈ Bρ(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (3.37), where N stands
for the Fréchet normal cone (N := NF ), and

n∑
i=1
〈x∗i , x+ ai − ωi〉 > τ max

1≤i≤n
‖x+ ai − ωi‖. (3.39)

Proof. Choose an ε′ ∈]0, ε[ such that condition (3.36) holds true with ε′ in place of ε, and then choose
a ρ′ ∈]0, ρ[ such that ρ − ρ′ < ε − ε′. It is sufficient to apply Theorem 3.3.1 to the collection of n + 1
closed sets Ω1, . . . , Ωn and Ωn+1 := Bρ′(x̄) with ε′ and ρ′ in place of ε and ρ, respectively. Notice that
Ωn+1∩Bρ′(x̄) = Bρ′(x̄) and NΩn+1(x̄)(x) = 0 for any x ∈ Bρ′(x). One only needs to check the inequality
in (3.37), which is straightforward:

λ

n∑
i=1

d(x∗i , NΩi(ωi)) + ρ

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε′ + (ρ− ρ′)
∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ ≤ ε′ + (ρ− ρ′) < ε.

The proof is complete.

Remark 3.3.7. (i) Conditions (3.35) and (3.36) are implied by conditions (P2). Hence, Theorem 3.3.6
provides dual necessary characterisations of the local extremality.

(ii) The inequality in (3.37) combines two constraints on the vectors x∗i ∈ X∗ (i = 1, . . . , n): they must
be close to the respective normal cones and their sum must be small. This inequality obviously
implies two separate inequalities:

n∑
i=1

d(x∗i , NΩi(ωi)) <
ε

λ
and

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε

ρ
,

while the converse implication is not true in general. Both these constraints are involved in each
of the two generalised separation conditions in the (extended) extremal principle discussed in
Section 2.7.2 (conditions (D1) and (D2) of Theorem 2.7.3 ). However, each of the generalised
separation conditions in Theorem 2.7.3 requires actually a stronger version of one of the constraints:
either the vectors must belong to the respective normal cones (condition (D1) of Theorem 2.7.3)
or their sum must be exactly zero (condition (D2) of Theorem 2.7.3). Fortunately, as the next two
corollaries show, the required stronger versions of (one of) the constraints are consequences of the
combined condition (3.37) and Lemma 2.7.5.

Corollary 3.3.8. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X
(i = 1, . . . , n), 0 < ε < ρ, 0 < λ ≤ ρ − ε, and conditions (3.35) and (3.36) are satisfied (the latter
condition can be replaced by the simpler and stronger one: max

1≤i≤n
‖ai‖ < ε). Then,

(i) there exist points ωi ∈ Ωi∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bρ(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n),
satisfying conditions (D4) with N standing for the Clarke normal cone (N := NC) and α := ε

λ
,

and condition (3.39) with τ := ρ− ε
ρ+ ε

;
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(ii) if X is Asplund, then, for any τ ∈]0, ρ− ε
ρ+ ε

[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and

x ∈ Bρ(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying condition (D4) with N standing for the
Fréchet normal cone (N := NF ) and α := ε

λ
, and condition (3.39).

Proof. Set τ ′ := τ(1 + ε

ρ
) + ε

ρ
, and observe that τ ′ = 1 in part (i), and τ ′ ∈]0, 1[ in part (ii). Applying

Theorem 3.3.1, we find points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and x ∈ Bρ(x̄), and vectors x∗i ∈ X∗

(i = 1, . . . , n) such that condition (3.37) with the respective normal cone is satisfied and
n∑
i=1
〈x∗i , x+ ai − ωi〉 ≥ τ ′ max

1≤i≤n
‖x+ ai − ωi‖. (3.40)

The assertion follows from Lemma 2.7.5(i) and (iii) after noticing that τ
′ρ− ε
ρ+ ε

= τ .

Corollary 3.3.9. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X
(i = 1, . . . , n), 0 < ρ < λ, 0 < ε ≤ λ − ρ, and conditions (3.35) and (3.36) are satisfied (the latter
condition can be replaced by the simpler and stronger one: max

1≤i≤n
‖ai‖ < ε). Then,

(i) there exist points ωi ∈ Ωi∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bρ(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n),
satisfying conditions (D3) with N standing for the Clarke normal cone (N := NC) and α := ε

ρ
,

and condition (3.39) with τ := λ− ε
λ+ ε

;

(ii) if X is Asplund, then, for any τ ∈]0, λ− ε
λ+ ε

[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bρ(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (D3) with N standing for the
Fréchet normal cone (N := NF ) and α := ε

ρ
, and condition (3.39).

Proof. Set τ ′ := τ(1 + ε

λ
) + ε

λ
, and observe that τ ′ = 1 in part (i), and τ ′ ∈]0, 1[ in part (ii). Applying

Theorem 3.3.1, we find points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and x ∈ Bρ(x̄), and vectors x∗i ∈ X∗

(i = 1, . . . , n) such that conditions (3.37) (with the respective normal cone) and (3.40) are satisfied. The

assertion follows from Lemma 2.7.5(ii) and (iii) after noticing that τ
′λ− ε
λ+ ε

= τ .

The versions of Theorem 3.3.6 and Corollaries 3.3.8 and 3.3.9 with a common point x̄ ∈ ∩ni=1Ωi of
a collection of sets replaced by a collection of individual points ωi ∈ Ωi (i = 1, . . . , n), presented in the
next three corollaries, follow immediately.

Corollary 3.3.10. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ωi ∈ Ωi, ai ∈ X
(i = 1, . . . , n), ρ > 0 and ε > 0. Suppose also that

n⋂
i=1

(Ωi − ωi − ai) ∩ (ρB) = ∅, (3.41)

max
1≤i≤n

‖ai‖ < dρB(Ω1 − ω1 − a1, . . . , Ωn − ωn − an) + ε (3.42)

(or simply max
1≤i≤n

‖ai‖ < ε). Then,

(i) for any λ > 0, there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and x ∈ ρB, and vectors x∗i ∈ X∗
(i = 1, . . . , n) satisfying conditions (3.37) and (3.38) with N standing for the Clarke normal cone
(N := NC), and ω′i in place of ωi (i = 1, . . . , n);
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(ii) if X is Asplund, then, for any λ > 0 and τ ∈]0, 1[, there exist points ω′i ∈ Ωi∩Bλ(ωi) (i = 1, . . . , n)
and x ∈ ρB, and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (3.37) and (3.39) with N
standing for the Fréchet normal cone (N := NF ), and ω′i in place of ωi (i = 1, . . . , n).

Corollary 3.3.11. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ωi ∈ Ωi, ai ∈ X
(i = 1, . . . , n), 0 < ε < ρ, 0 < λ ≤ ρ − ε, and conditions (3.41) and (3.42) are satisfied (the latter
condition can be replaced by the simpler and stronger one: max

1≤i≤n
‖ai‖ < ε). Then,

(i) there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n) and x ∈ ρB, and vectors x∗i ∈ X∗ (i = 1, . . . , n)
such that conditions (D4) and (3.39) are satisfied with N standing for the Clarke normal cone
(N := NC), α := ε

λ
, τ := ρ− ε

ρ+ ε
, and ω′i in place of ωi (i = 1, . . . , n);

(ii) if X is Asplund, then, for any τ ∈]0, ρ− ε
ρ+ ε

[, there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and

x ∈ ρB, and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that conditions (D4) and (3.39) are satisfied with
N standing for the Fréchet normal cone (N := NF ), α := ε

λ
, and ω′i in place of ωi (i = 1, . . . , n).

Corollary 3.3.12. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, ωi ∈ Ωi, ai ∈ X
(i = 1, . . . , n), 0 < ρ < λ, 0 < ε ≤ λ − ρ, and conditions (3.41) and (3.42) are satisfied (the latter
condition can be replaced by the simpler and stronger one: max

1≤i≤n
‖ai‖ < ε). Then,

(i) there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n) and x ∈ ρB, and vectors x∗i ∈ X∗ (i = 1, . . . , n)
such that conditions (D3) and (3.39) are satisfied with N standing for the Clarke normal cone
(N := NC), α := ε

ρ
, τ := λ− ε

λ+ ε
, and ω′i in place of ωi (i = 1, . . . , n);

(ii) if X is Asplund, then, for any τ ∈]0, λ− ε
λ+ ε

[, there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and
x ∈ ρB, and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that conditions (D3) and (3.39) are satisfied with
N standing for the Fréchet normal cone (N := NF ), α := ε

ρ
, and ω′i in place of ωi (i = 1, . . . , n).

Remark 3.3.13. In the above three corollaries, the assumption of the existence of a common point
x̄ ∈ ∩ni=1Ωi of a collection of sets, used in Theorem 3.3.6 and Corollaries 3.3.8 and 3.3.9, is relaxed to
that of a collection of individual points ωi ∈ Ωi (i = 1, . . . , n) (which always exist as long as all the
sets are nonempty). On the other hand, if such a point x̄ ∈ ∩ni=1Ωi exists, it can be used along with
the collection ωi ∈ Ωi (i = 1, . . . , n) to provide additional useful estimates. Indeed, if ‖ωi − x̄‖ ≤ ξ
(i = 1, . . . , n) for some ξ ≥ 0 (one can take, e.g., ξ := max

1≤i≤n
‖ωi − x̄‖), then each of the above three

corollaries immediately gives ‖ω′i− x̄‖ < ξ+λ (i = 1, . . . , n). This simple observation plays an important
role in the proof of the extended extremal principle. It is used also in the next statement, which is a
consequence of Corollaries 3.3.11 and 3.3.12.

Proposition 3.3.14. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ξ ≥ 0,
ωi ∈ Ωi ∩Bξ(x̄), ai ∈ X (i = 1, . . . , n), α ∈]0, 1[, ρ > 0, ξ + ρ(1 − α) < δ, and conditions (P8) are
satisfied. Then,

(i) there exist points ω′i ∈ Bδ(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that conditions (D3) and
(3.39) are satisfied with N standing for the Clarke normal cone (N := NC), τ := 1

1 + 2α , and ω′i

in place of ωi;

(ii) there exist points ω′i ∈ Bδ(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that conditions (D4) and
(3.39) are satisfied with N standing for the Clarke normal cone (N := NC), τ := 1− α

1 + α
, and

α′ := α

1− α and ω′i in place of α and ωi, respectively.
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Suppose X is Asplund and N stands for the Fréchet normal cone (N := NF ). Then,

(iii) for any τ ∈]0, 1
1 + 2α [, there exist points ω′i ∈ Bδ(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that

conditions (D3) and (3.39) are satisfied with ω′i in place of ωi;

(iv) for any τ ∈]0, 1− α
1 + α

[, there exist points ω′i ∈ Bδ(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that

conditions (D4) and (3.39) are satisfied with α′ := α

1− α and ω′i in place of α and ωi, respectively.

Proof. In view of Remark 3.3.13, assertions (i) and (iii) are consequences of Corollary 3.3.11 with ε := αρ
and λ := (1− α)ρ, while assertions (ii) and (iv) are consequences of Corollary 3.3.12 with ε := αρ and
λ := (1 + α)ρ.

Remark 3.3.15. The assertion in Proposition 3.3.14(iii) improves [97, Theorem 3.1], which was used
in [97] as the main tool when extending the extremal principle to infinite collections of sets.

The above proposition yields dual characterisations of approximate α−stationarity defined in Defini-
tion 2.7.13.
Corollary 3.3.16. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi and α > 0.
Suppose also that the collection {Ω1, . . . , Ωn} is approximately α-stationary at x̄. Then,

(i) for any ε > 0, there exist points ωi ∈ Ωi ∩ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that
conditions (D3) and (3.39) are satisfied with N standing for the Clarke normal cone (N := NC)
and τ := 1

1 + 2α ;

(ii) if additionally α ∈]0, 1[, then, for any ε > 0, there exist points ωi ∈ Ωi∩Bε(x̄) and vectors x∗i ∈ X∗
(i = 1, . . . , n) such that conditions (D4) and (3.39) are satisfied with N standing for the Clarke
normal cone (N := NC), τ := 1− α

1 + α
, and α′ := α

1− α in place of α.

Suppose X is Asplund and N stands for the Fréchet normal cone (N := NF ). Then,

(iii) for any ε > 0 and τ ∈]0, 1
1 + 2α [, there exist points ωi ∈ Ωi ∩ Bε(x̄) and vectors x∗i ∈ X∗ (i =

1, . . . , n) such that conditions (D3) and (3.39) are satisfied;

(iv) if additionally α ∈]0, 1[, then, for any ε > 0 and τ ∈]0, 1− α
1 + α

[, there exist points ωi ∈ Ωi∩Bε(x̄) and

vectors x∗i ∈ X∗ (i = 1, . . . , n) such that conditions (D4) and (3.39) are satisfied with α′ := α

1− α
in place of α.

Proof. In each of the assertions, let numbers ε > 0 and τ , satisfying the respective conditions, be
given. For parts (i) and (iii), choose a number ξ ∈]0, ε

2 + α
[, while for parts (ii) and (iv), choose a

number ξ ∈]0, ε

2− α [. By Definition 2.7.13, there exist a number ρ ∈]0, ξ[, points ωi ∈ Ωi ∩ Bξ(x̄) and
vectors ai ∈ X (i = 1, . . . , n) such that conditions (P4) are satisfied. In parts (i) and (iii), we have
ξ + ρ(1 + α) < ξ(2 + α) < ε, and in parts (ii) and (iv), we have ξ + ρ(1 − α) < ξ(2 − α) < ε. The
conclusions follow from Proposition 3.3.14.

Remark 3.3.17. The infinitesimal statements in Corollary 3.3.16 are crucial for the extended extremal
principle and its extensions to infinite collections of sets. For instance, in view of Proposition 2.7.14,
Corollary 3.3.16(iii) and (iv) immediately yield the implications, respectively, (i) ⇒ (ii) and (i) ⇒ (iii)
in Theorem 2.7.3.
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The dual characterisations of the ‘extremal’ arrangements of collections of sets given in the statements
in the first part of this section are themselves in a sense extremal properties of collections of sets. They
can be partially reversed in the setting of a general normed vector space. We start with an ‘asymmetric’
statement where the last set on the list plays a special role.

Proposition 3.3.18. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, ωi ∈ Ωi (i = 1, . . . , n)
and ε > 0. If vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfy

x∗i ∈ NF
Ωi(ωi) (i = 1, . . . , n− 1), d(x∗n, NF

Ωn(ωn)) < ε (3.43)

and conditions (3.14), then there exists a δ > 0 such that, for any ρ ∈]0, δ[ and τ ∈]0, 1[, there exist
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying conditions (P8) and

n−1∑
i=1
〈x∗i , ai〉 > τερ. (3.44)

Proof. By (3.43), we can choose a vector x∗ ∈ NF
Ωn(ωn) and a positive number ε′ < ε such that

‖x∗n − x∗‖ < ε′. (3.45)

Choose also numbers ε1 > 0 and ε2 > 0 such that

nε1 + (n− 1)ε2 < ε− ε′ and (n− 1)ε2 < ε(1− τ). (3.46)

By the definition of the Fréchet normal cone, there exists a number δ > 0 such that

〈x∗i , ω − ωi〉 ≤
ε1

ε+ 1 ‖ω − ωi‖ for all ω ∈ Ωi ∩B(ε+1)δ(ωi) (i = 1, . . . , n− 1), (3.47)

〈x∗, ω − ωn〉 ≤ ε1 ‖ω − ωn‖ for all ω ∈ Ωn ∩Bδ(ωn). (3.48)

Let ρ ∈]0, δ[. Choose vectors ai ∈ X (i = 1, . . . , n− 1) such that

‖ai‖ < ερ and 〈x∗i , ai〉 > ερ ‖x∗i ‖ − ε2ρ (i = 1, . . . , n− 1). (3.49)

Then, by (3.14) and (3.46),
n−1∑
i=1
〈x∗i , ai〉 > ερ− (n− 1)ε2ρ > τερ.

Hence, the inequality in (P8) and condition (3.44) are satisfied. Suppose that the equality in (P8) does
not hold. Then there exist ω′i ∈ Ωi (i = 1, . . . , n) and an x ∈ ρB such that

ω′1 − ω1 − a1 = . . . = ω′n−1 − ωn−1 − an−1 = ω′n − ωn = x.

By (3.49), ‖ω′i − ωi‖ = ‖x+ ai‖ ≤ ‖x‖+ ‖ai‖ < (ε+ 1)ρ < (ε+ 1)δ (i = 1, . . . , n− 1) and ‖ω′n − ωn‖ =
‖x‖ ≤ ρ < δ. Hence, by (3.47), (3.48) and (3.49),

〈x∗i , x〉 = 〈x∗i , ω′i − ωi〉 − 〈x∗i , ai〉 < −ερ ‖x∗i ‖+ (ε1 + ε2)ρ,
〈x∗, x〉 = 〈x∗, ω′n − ωn〉 < ε1ρ,

and consequently, using (3.14) and (3.46),

〈x∗ − x∗n, x〉 =
n−1∑
i=1
〈x∗i , x〉+ 〈x∗, x〉 < −ερ+ nε1ρ+ (n− 1)ε2ρ < −ε′ρ.

On the other hand, by (3.45), 〈x∗ − x∗n, x〉 > −ε′ρ. A contradiction.

The corresponding ‘symmetric’ statement follows immediately after applying Proposition 3.3.18 to
the collection of n+ 1 sets Ω1, . . . , Ωn and X.
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Corollary 3.3.19. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, ωi ∈ Ωi (i = 1, . . . , n)
and ε > 0. If vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfy conditions (D1), then there is a δ > 0 such that, for
any ρ ∈]0, δ[ and τ ∈]0, 1[, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (P4) and

n∑
i=1
〈x∗i , ai〉 > τερ. (3.50)

In view of Proposition 2.7.11(iv), the above two statements produce dual sufficient characterisations
for approximate stationarity.

Corollary 3.3.20. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X and x̄ ∈ ∩ni=1Ωi. If for
any ε > 0 there exist points ωi ∈ Ωi ∩Bε(x̄) (i = 1, . . . , n) and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying
either conditions (3.43) or conditions (D1), then the collection {Ω1, . . . , Ωn} is approximately stationary
at x̄.

Remark 3.3.21. Similar to the dual necessary characterisations of extremality/stationarity properties dis-
cussed in the first part of this section, the sufficient conditions in Proposition 3.3.18 and Corollary 3.3.19
contain conditions (3.44) and (3.50), respectively, relating the given dual vectors x∗i (i = 1, . . . , n) and
the primal space translation vectors ai (i = 1, . . . , n) guaranteed by the statements. In view of Re-
mark 3.3.2(ii), such conditions seem to be an intrinsic feature of the extremality/stationarity properties,
independently on whether one goes from primal space conditions to dual space ones or the other way
round.

Combining Corollaries 3.3.16 and 3.3.19, we can formulate a full dual characterisation of approximate
α-stationarity when either the space is Asplund or the sets are convex.

Corollary 3.3.22. Suppose Ω1, . . . , Ωn are closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi and α >
0. Suppose also that either X is Asplund or Ω1, . . . , Ωn are convex. The collection {Ω1, . . . , Ωn} is
approximately α-stationary at x̄ if and only if, for any ε > 0, there exist points ωi ∈ Bε(x̄) and vectors
x∗i ∈ X∗ (i = 1, . . . , n) such that conditions (D3) are satisfied with N standing for the Fréchet normal
cone (N := NF ).

Moreover, under the above conditions, if X is Asplund and τ ∈]0, 1
1 + 2α [, or Ω1, . . . , Ωn are convex

and τ := 1
1 + 2α , then, for any ε > 0, points ωi ∈ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n) can be chosen

to satisfy also condition (3.39), while, for any τ̂ ∈]0, 1[, vectors ai ∈ X (i = 1, . . . , n) in Definition 2.7.13

of the approximate α-stationarity can be chosen to satisfy additionally
n∑
i=1
〈x∗i , ai〉 > τ̂αρ.

Proof. The ‘only if’ part together with the condition (3.39) in the ‘moreover’ part follow from parts (i)
and (iii) of Corollary 3.3.16, taking into account that for convex sets the Clarke and Fréchet normal cones
coincide. Conversely, given any ε > 0, τ̂ ∈]0, 1[, points ωi ∈ Bε(x̄) and vectors x∗i ∈ X∗ (i = 1, . . . , n)
satisfying conditions (D3), Corollary 3.3.19 with α and τ̂ in place of ε and τ , respectively, yields the

approximate α-stationarity and condition
n∑
i=1
〈x∗i , ai〉 > τ̂αρ.

Remark 3.3.23. In view of Corollary 2.7.8 and Remark 2.7.16, the first part of Corollary 3.3.22 yields
the statements of Theorems 2.7.3 and 2.7.15.

The assumption x∗i ∈ NF
Ωi(ωi) (i = 1, . . . , n−1) in Proposition 3.3.18 can be relaxed (at the expense of

weakening the estimates in (P8) and (3.44)). The next statement is a consequence of Propositions 3.3.18
and 2.7.10.

Corollary 3.3.24. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, ωi ∈ Ωi (i = 1, . . . , n)
and ε ∈]0, 1[. If vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfy conditions (D6) with N standing for the Fréchet
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normal cone (N := NF ), then there is a δ > 0 such that, for any ρ ∈]0, δ[ and τ ∈]0, 1[, there exist
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying conditions (P8) and (3.44) with ε′ := ε/(1− ε) in place of ε.

Since ε/(1− ε) < ε, the conclusions of Corollary 3.3.24 are weaker than those of Proposition 3.3.18.
Observe that conditions (P5) involve a localisation of the n-th set (near ωn ∈ Ωn). The estimates can
be improved by considering localisations of all the sets.

Proposition 3.3.25. Suppose Ω1, . . . , Ωn are subsets of a normed vector space X, ωi ∈ Ωi (i = 1, . . . , n)
and ε > 0. If vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfy conditions (D6) with N standing for the Fréchet
normal cone (N := NF ), then there is a δ > 0 such that, for any ρ ∈]0, δ[ and τ ∈]0, 1[, there are vectors
ai ∈ X (i = 1, . . . , n− 1) satisfying

n−1⋂
i=1

(
(Ωi − ωi) ∩ (ρB)− ai

)
∩ (Ωn − ωn) ∩ (ρB) = ∅ and max

1≤i≤n−1
‖ai‖ < ερ, (3.51)

and condition (3.44).

The proof below is a modification of that of Proposition 3.3.18.

Proof. Choose vectors y∗i ∈ NF
Ωi(ωi) (i = 1, . . . , n) and a positive number ε′ < ε such that

n∑
i=1
‖x∗i − y∗i ‖ < ε′. (3.52)

Then choose numbers ε1 > 0 and ε2 > 0 such that ε1 + ε2 < ε− ε′ and ε2 < (1− τ)ε. By the definition
of the Fréchet normal cone, there is a δ > 0 such that

〈y∗i , ω − ωi〉 ≤
ε1

n
‖ω − ωi‖ for all ω ∈ Ωi ∩Bδ(ωi) (i = 1, . . . , n). (3.53)

Let ρ ∈]0, δ[. Choose vectors ai ∈ X (i = 1, . . . , n) satisfying

‖ai‖ < ερ and 〈x∗i , ai〉 > ερ ‖x∗i ‖ −
ε2ρ

n− 1 (i = 1, . . . , n− 1).

By (D6), we have

n−1∑
i=1
〈x∗i , ai〉 > ερ− ε2ρ. (3.54)

The inequality in (3.51) and condition (3.44) follow. Suppose that the equality in (3.51) is not satisfied.
Then there exist points ω′i ∈ Ωi ∩Bρ(ωi) (i = 1, . . . , n) and an x ∈ ρB such that

ω′1 − ω1 − a1 = . . . = ω′n−1 − ωn−1 − an−1 = ω′n − ωn = x. (3.55)

Hence, making use of (3.55), (D6), (3.54), (3.53) and (3.52), we have

0 =
n−1∑
i=1
〈x∗i , (ω′n − ωn)− (ω′i − ωi − ai)〉 = −

n−1∑
i=1
〈x∗i , ω′i − ωi − ai〉 − 〈x∗n, ω′n − ωn〉

=
n−1∑
i=1
〈x∗i , ai〉 −

n∑
i=1
〈x∗i , ω′i − ωi〉 =

n−1∑
i=1
〈x∗i , ai〉 −

n∑
i=1
〈y∗i , ω′i − ωi〉+

n∑
i=1
〈y∗i − x∗i , ω′i − ωi〉

> ερ− ε2ρ−
ε1

n

n∑
i=1
‖ω′i − ωi‖ − ε′ max

1≤i≤n
‖ω′i − ωi‖ ≥ (ε− ε′ − ε1 − ε2)ρ > 0.

This contradiction proves the proposition.
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Chapter 4

Nonlinear Characterisations

The conventional extremal principle and all its subsequent extensions, including the recent dual gener-
alised separation characterisations of the elementary non-intersection properties in [29, 30, 97, 170, 172,
174], use only ‘linear’ estimates. Motivated partially by the very recent developments in [40,42,43], where
nonlinear transversality properties are studied, in Chapter 4, we target linear and nonlinear primal and
dual characterisations of the elementary non-intersection properties involved in Definition 2.3.1. Note
that, unlike the corresponding transversality properties, the properties in Definition 2.3.1 do not contain
explicitly any nonlinearity. Nevertheless, nonlinear estimates can be added naturally to their charac-
terisations. As discussed above, when proving dual generalised separation statements, non-intersection
properties of sets are first reformulated in terms of functions, which admit application of the Ekeland
variational principle. Starting from [101–103], distance-type functions are normally used for that pur-
pose. It is elementary to observe that more general nonlinear functions can be used as well. The functions
do not even have to be continuous (the Ekeland variational principle only requires the function to be
lower semicontinuous), but we do not go that far in this context.

In this chapter, we establish nonlinear primal (slope) and dual (normal cone) characterisations of the
key non-intersection properties (3.35) and (3.12), with fixed vectors ai’s. These ubiquitous properties
are present in one form or another in all four parts of Definition 2.3.1 and Proposition 2.3.4, as well as in
all known extensions of the extremality/stationarity properties. Thus, any necessary characterisations of
these properties translate into the corresponding characterisations of the properties in Definition 2.3.1.
In particular, their dual characterisations lie at the heart of the conventional extremal principle. Be-
sides, examining the elementary non-intersection properties independently of the containing them four
conventional properties in Definition 2.3.1 opens a way for studying other related properties, e.g., in the
important for applications setting when all the sets lie in a subspace of X.

(Linear) metric and dual characterisations of (3.35) and (3.12) have been studied in [30]. Here we
aim at establishing more general nonlinear characterisations (also in the slope form). The nonlinearity in
our model is determined by a continuous strictly increasing function ϕ : R+ → R+ satisfying ϕ(0) = 0.
The family of all such functions is denoted by C. We denote by C1 the subfamily of functions ϕ ∈ C
which are continuously differentiable on ]0,∞[ with ϕ′(t) > 0 for all t > 0. Obviously, if ϕ ∈ C (ϕ ∈ C1),
then ϕ−1 ∈ C (ϕ−1 ∈ C1).

Along with the conventional maximum norm, we are going to consider on the product Xn of n > 1
copies of the space X the following parametric norm depending on a number γ > 0:

‖(u1, . . . , un)‖γ := max {‖u1‖ , . . . , ‖un−1‖ , γ ‖un‖} , u1, . . . , un ∈ X, (4.1)

where the parameter is always associated with the last component.
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4.1 Slope Characterisations

4.1.1 Slopes

Let ψ : X → R∪{+∞} be an extended-real-valued function on a metric space. The slope [45] (cf. [6,75])
of ψ at x ∈ domψ is defined by

|∇ψ|(x) := lim sup
u→x, u 6=x

[ψ(x)− ψ(u)]+
d(x, u) ,

where α+ := max{0, α} for any α ∈ R. If ψ(x) ≥ 0, one can define the nonlocal slope [94] (cf. [126]) of
ψ at x:

|∇ψ|�(x) := sup
u6=x

[ψ(x)− ψ(u)+]+
d(x, u) .

When x /∈ domψ, we set |∇ψ|(x) := |∇ψ|�(x) := +∞. Obviously, 0 ≤ |∇ψ|(x) ≤ |∇ψ|�(x) for all x ∈ X
(with ψ(x) ≥ 0), and both quantities can be infinite.

The next lemma from [42] provides a chain rule for slopes. It slightly improves [7, Lemma 4.1],
where ψ and ϕ were assumed lower semicontinuous and continuously differentiable, respectively. The
composition ϕ ◦ψ of a function ψ : X → R∪{+∞} on a metric space and a function ϕ : R→ R∪{+∞}
is understood in the usual sense with the natural convention that (ϕ ◦ ψ)(x) = +∞ if ψ(x) = +∞.

Lemma 4.1.1 (Slope chain rule). Let X be a metric space, ψ : X → R ∪ {+∞}, ϕ : R→ R ∪ {+∞},
x ∈ domψ and ψ(x) ∈ domϕ. Suppose ϕ is nondecreasing on R and differentiable at ψ(x), and either
ϕ′(ψ(x)) > 0 or |∇ψ|(x) < +∞. Then

|∇(ϕ ◦ ψ)|(x) = ϕ′(ψ(x))|∇ψ|(x).

Remark 4.1.2. The chain rule in Lemma 4.1.1 is a local result. Instead of assuming that ϕ is defined
on the whole real line, one can assume that ϕ is defined and finite on a closed interval [α, β] around the
point ψ(x): α < ψ(x) < β. It is sufficient to redefine the composition ϕ ◦ ψ for x with ψ(x) /∈ [α, β] as
follows: (ϕ◦ψ)(x) := ϕ(α) if ψ(x) < α, and (ϕ◦ψ)(x) := ϕ(β) if ψ(x) > β. This does not affect the
conclusion of the lemma.

4.1.2 Slope Characterisations

The next statement gives slope characterisations for the non-intersection property (3.12), where the
vectors a1, . . . , an−1 ∈ X are fixed. If ∩ni=1Ωi 6= ∅, then condition (3.12) implies max

1≤i≤n−1
‖ai‖ > 0.

Note that condition (3.12) is not symmetric: the role of the set Ωn differs from that of the other sets
Ω1, . . . , Ωn−1. This difference is exploited in the subsequent statements.

To quantify non-intersection properties, we are going to use the the asymmetric distance-like quantity
(2.32) (nonintersect index [172]):

d1(Ω1, . . . , Ωn) := inf
ui∈Ωi (i=1,...,n)

max
1≤i≤n−1

‖un − ui‖ .

Theorem 4.1.3. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X (i =
1, . . . , n− 1), ε > 0 and ϕ ∈ C. Suppose that condition (3.12) is satisfied, and

ϕ

(
max

1≤i≤n−1
‖ai‖

)
< ϕ(d1(Ω1 − a1, . . . , Ωn−1 − an−1, Ωn) + ε (4.2)
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(or simply ϕ
(

max
1≤i≤n−1

‖ai‖
)
< ε). Then, for any λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩Bλ(x̄)

(i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄) such that

sup
ui∈Ωi (i=1,...,n)

(u1,...,un)6=(ω1,...,ωn)

ϕ
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)
− ϕ

(
max

1≤i≤n−1
‖un + ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn)‖γ

<
ε

λ
, (4.3)

0 < max
1≤i≤n−1

‖ωn + ai − ωi‖ ≤ max
1≤i≤n−1

‖ai‖ , (4.4)

where γ := λ

η
. As a consequence,

lim sup
Ωi3ui→ωi (i=1,...,n)
(u1,...,un)6=(ω1,...,ωn)

ϕ
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)
− ϕ

(
max

1≤i≤n−1
‖un + ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn)‖γ

<
ε

λ
. (4.5)

Moreover, if ϕ is differentiable at max
1≤i≤n−1

‖ωn + ai − ωi‖, then

ϕ′
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)

× lim sup
Ωi3ui→ωi (i=1,...,n)
(u1,...,un)6=(ω1,...,ωn)

max
1≤i≤n−1

‖ωn + ai − ωi‖ − max
1≤i≤n−1

‖un + ai − ui‖

‖(u1 − ω1, . . . , un − ωn)‖γ
<
ε

λ
, (4.6)

with the convention 0 · (+∞) = 0.

Proof. Let λ > 0, η > 0, γ := λ

η
, and a number ε′ satisfy

ϕ

(
max

1≤i≤n−1
‖ai‖

)
− ϕ(d1(Ω1 − a1, . . . , Ωn−1 − an−1, Ωn) < ε′ < ε. (4.7)

Consider a continuous function f : Xn → R+:

f(u1, . . . , un) := ϕ
(

max
1≤i≤n−1

‖un + ai − ui‖
)
, u1, . . . , un ∈ X. (4.8)

It follows from (3.12) and (4.7) that

f(u1, . . . , un) > 0 for all ui ∈ Ωi (i = 1, . . . , n),

f(x̄, . . . , x̄) = ϕ

(
max

1≤i≤n−1
‖ai‖

)
< ϕ(d1(Ω1 − a1, . . . , Ωn−1 − an−1, Ωn) + ε′.

Applying the Ekeland Variational Principle (Lemma 3.1.1) to the restriction of the function f to the
complete metric space Ω1 × . . . × Ωn with the metric induced by the norm (4.1), we find points ωi ∈
Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄) such that

0 < f(ω1, . . . , ωn) ≤ f(x̄, . . . , x̄),

f(u1, . . . , un) + ε′

λ
‖(u1 − ω1, . . . , un − ωn)‖γ ≥ f(ω1, . . . , ωn)

for all ui ∈ Ωi (i = 1, . . . , n). In view of the monotonicity of ϕ, the last two inequalities imply conditions
(4.3) and (4.4). Condition (4.3) obviously yields (4.5). If ϕ is differentiable at max

1≤i≤n−1
‖ωn + ai − ωi‖,

then condition (4.5) implies (4.6) thanks to Lemma 4.1.1.
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Remark 4.1.4. (i) The expressions in the left-hand sides of the inequalities (4.3) and (4.5) are the
main ingredients of the, respectively, global and local slopes of the restriction of the function f
given by (4.8) to the complete metric space Ω1 × . . . × Ωn with the metric induced by the norm
(4.1) (γ-slopes [94]), and can be equivalently replaced in these inequalities by the respective slopes.
This observation justifies the name ‘slope characterisations’ adopted in the thesis for this type of
estimates as well as the reference to Lemma 4.1.1 in the proof of Theorem 4.1.3.

(ii) The functions in the left-hand sides of the inequalities (4.3), (4.5) and (4.6) are computed at
some points ωi ∈ Ωi (i = 1, . . . , n) in a neighbourhood of the reference point x̄. The size of the
neighbourhoods is controlled by the parameters λ and η, which can be chosen arbitrarily small.
Note that both the left and the right-hand sides of (4.3), (4.5) and (4.6) also depend on λ and η,
and decreasing their values weakens these conditions. Note also that the neighbourhoods for ωi
(i = 1, . . . , n − 1) on one hand, and ωn on the other hand are controlled by different parameters.
This reflects the fact that condition (3.12) is not symmetric.

(iii) It is easy to see that the conditions under sup in (4.3) and under lim sup in (4.5) and (4.6) can be
complimented by the inequality

max
1≤i≤n−1

‖un + ai − ui‖ < max
1≤i≤n−1

‖ωn + ai − ωi‖

with the convention that supremum over the empty set equals 0.

(iv) Condition (4.4) relates points ωi, . . . , ωn to the given vectors a1, . . . , an and complements the
other conditions in Theorem 4.1.3 on the choice of these points. The smaller the norms of these
vectors are, the more binding condition (4.4) is; for instance, it follows from conditions ωi ∈ Bλ(x̄)
(i = 1, . . . , n−1) and ωn ∈ Bη(x̄) that, for each i = 1, . . . , n−1, ‖ωn−ωi‖ < λ+η, while condition
(4.4) gives an alternative estimate: ‖ωn − ωi‖ < 2 max

1≤i≤n−1
‖ai‖, which obviously ‘outperforms’ the

first one when max
1≤i≤n−1

‖ai‖ < (λ+ η)/2.

(v) Condition (4.2) in Theorem 4.1.3 can obviously be replaced by a simpler (though stronger!) condi-

tion ϕ
(

max
1≤i≤n−1

‖ai‖
)
< ε. This weakened version of Theorem 4.1.3 is sufficient for characterising

the conventional extremality/stationarity properties in Definition 2.3.1. One can go even further
and require simply that max

1≤i≤n−1
‖ai‖ < ε. Of course, in this case ε in the inequalities (4.3), (4.5)

and (4.6) must be replaced by ϕ(ε). This creates an interesting phenomenon: ϕ disappears com-
pletely from the assumptions of Theorem 4.1.3 and remains only in its conclusions (which must
hold true for any ϕ ∈ C!)
The importance of the full version of a condition of the type (4.2) for some applications was
demonstrated in [170,172].

(vi) The conclusions of Theorem 4.1.3 are true with any positive number γ ≤ λ

η
.

Theorem 4.1.3 gives nonlinear primal (slope) characterisations of the asymmetric non-intersection
property (3.12), which is a special case of the key non-intersection property (3.35) in the definition of
extremality. Now observe that characterisations of even more general than (3.35) symmetric ‘local’ non-
intersection property (P2) can be straightforwardly deduced from Theorem 4.1.3. It is sufficient to add
to the given collection of n sets a closed ball Bη(x̄) ⊂ Bρ(x̄) and apply Theorem 4.1.3.

Theorem 4.1.5. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X (i =
1, . . . , n), ε > 0 and ϕ ∈ C. Suppose that condition (P2) is satisfied with some ρ ∈]0,∞], and

ϕ

(
max

1≤i≤n
‖ai‖

)
< ϕ(d1(Ω1 − a1, . . . , Ωn − an, Bη(x̄))) + ε (4.9)
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(or simply ϕ
(

max
1≤i≤n

‖ai‖
)
< ε). Then, for any λ > 0 and η ∈]0, ρ[, there exist points ωi ∈ Ωi ∩ Bλ(x̄)

(i = 1, . . . , n) and x ∈ Bη(x̄) such that

sup
ui∈Ωi (i=1,...,n), u∈Bη(x̄)
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ
(

max
1≤i≤n

‖x+ ai − ωi‖
)
− ϕ

(
max

1≤i≤n
‖u+ ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn, u− x)‖γ

<
ε

λ
, (4.10)

0 < max
1≤i≤n

‖x+ ai − ωi‖ ≤ max
1≤i≤n

‖ai‖ , (4.11)

where γ := λ

η
. As a consequence,

lim sup
Ωi3ui→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ
(

max
1≤i≤n

‖x+ ai − ωi‖
)
− ϕ

(
max

1≤i≤n
‖u+ ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn, u− x)‖γ

<
ε

λ
. (4.12)

Moreover, if ϕ is differentiable at max
1≤i≤n

‖x+ ai − ωi‖, then

ϕ′
(

max
1≤i≤n

‖x+ ai − ωi‖
)

× lim sup
Ωi3ui→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖x+ ai − ωi‖ − max
1≤i≤n

‖u+ ai − ui‖

‖(u1 − ω1, . . . , un − ωn, u− x)‖γ
<
ε

λ
, (4.13)

with the convention 0 · (+∞) = 0.

Remark 4.1.6. The comments concerning Theorem 4.1.3 made in Remark 4.1.4 are, with obvious modi-
fications, applicable to Theorem 4.1.5 and the subsequent statements in this thesis.

All the properties in Definition 2.3.1 as well as the nonlinear primal characterisations of the non-
intersection properties in Theorems 4.1.3 and 4.1.5 presume that the sets have a common point. Fortu-
nately Theorem 4.1.3 is rich enough to characterise a non-intersection property without this assumption.
Indeed, if ∩ni=1Ωi = ∅, then, for any points ωi ∈ Ωi (i = 1, . . . , n), one can consider the sets Ω′i := Ωi−ωi
(i = 1, . . . , n), which obviously satisfy 0 ∈ ∩ni=1Ω

′
i. Moreover, after setting ai := ωn−ωi (i = 1, . . . , n−1),

one has
n−1⋂
i=1

(Ω′i − ai) ∩Ω′n =
n−1⋂
i=1

(Ωi − ωn) ∩ (Ωn − ωn) =
n⋂
i=1

Ωi − ωn = ∅. (4.14)

Thus, Theorem 4.1.3 is applicable and we immediately arrive at the next statement. Note that d(Ω′1 −
a1, . . . , Ω

′
n−1 − an−1, Ω

′
n) = d(Ω1, . . . , Ωn).

Proposition 4.1.7. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, ωi ∈ Ωi (i = 1, . . . , n), ε > 0
and ϕ ∈ C. Suppose that ∩ni=1Ωi = ∅ and

ϕ
(

max
1≤i≤n−1

‖ωn − ωi‖
)
< ϕ(d1(Ω1, . . . , Ωn)) + ε

(or simply ϕ

(
max

1≤i≤n−1
‖ωn − ωi‖

)
< ε). Then, for any λ > 0 and η > 0, there exist points ω′i ∈

Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩Bρ(ωn) such that

sup
ui∈Ωi (i=1,...,n)

(u1,...,un)6=(ω′1,...,ω
′
n)

ϕ
(

max
1≤i≤n−1

‖ω′n − ω′i‖
)
− ϕ

(
max

1≤i≤n−1
‖un − ui‖

)
‖(u1 − ω′1, . . . , un − ω′n)‖γ

<
ε

λ
,

0 < max
1≤i≤n−1

‖ω′n − ω′i‖ ≤ max
1≤i≤n−1

‖ωn − ωi‖ , (4.15)
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where γ := λ

η
. As a consequence,

lim sup
Ωi3ui→ω′i (i=1,...,n)
(u1,...,un)6=(ω′1,...,ω

′
n)

ϕ
(

max
1≤i≤n−1

‖ω′n − ω′i‖
)
− ϕ

(
max

1≤i≤n−1
‖un − ui‖

)
‖(u1 − ω′1, . . . , un − ω′n)‖γ

<
ε

λ
.

Moreover, if ϕ is differentiable at max
1≤i≤n−1

‖ω′n − ω′i‖, then

ϕ′
(

max
1≤i≤n−1

‖ω′n − ω′i‖
)

lim sup
Ωi3ui→ω′i (i=1,...,n)
(u1,...,un)6=(ω′1,...,ω

′
n)

max
1≤i≤n−1

‖ω′n − ω′i‖ − max
1≤i≤n−1

‖un − ui‖

‖(u1 − ω′1, . . . , un − ω′n)‖γ
<
ε

λ
,

with the convention 0 · (+∞) = 0.

4.2 Dual Characterisations

In this subsection, we require the function ϕ to be continuously differentiable.

The dual norm on (X∗)n+1 corresponding to (4.1) has the following form:

‖(x∗1, . . . , x∗n)‖γ =
n−1∑
i=1
‖x∗i ‖+ 1

γ
‖x∗n‖, x∗1, . . . , x

∗
n ∈ X∗.

The next theorem is a dual counterpart of Theorem 4.1.3, providing dual characterisations of the
non-intersection property (3.12). It generalises and improves [30, Theorem 6.1].

Theorem 4.2.1. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X (i =

1, . . . , n−1), ε > 0 and ϕ ∈ C1. Suppose that conditions (3.12) and (4.2) (or simply ϕ
(

max
1≤i≤n−1

‖ai‖
)
<

ε) are satisfied. Then, for any λ > 0 and η > 0,

(i) there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n − 1) and ωn ∈ Ωn ∩ Bη(x̄) satisfying condition
(4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n) such that

n∑
i=1

x∗i = 0,
n−1∑
i=1
‖x∗i ‖ = 1, (4.16)

ϕ′
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)(

λ

n−1∑
i=1

d (x∗i , NΩi(ωi)) + ηd (x∗n, NΩn(ωn))
)
< ε, (4.17)

n−1∑
i=1
〈x∗i , ωn + ai − ωi〉 = max

1≤i≤n−1
‖ωn + ai − ωi‖, (4.18)

where N stands for the Clarke normal cone (N = NC);

(ii) if X is Asplund, then, for any τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄) satisfying

0 < max
1≤i≤n−1

‖ωn + ai − ωi‖ < ε, (4.19)
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and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (4.17), with N standing for the
Fréchet normal cone (N = NF ), and

n−1∑
i=1
〈x∗i , ωn + ai − ωi〉 > τ max

1≤i≤n−1
‖ωn + ai − ωi‖. (4.20)

Proof. Choose a number ε′ satisfying condition (4.7). By Theorem 4.1.3, there exist points ωi ∈ Ωi ∩
Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.4) such that condition (4.6) holds
with γ := η

λ
and ε′ in place of ε. The last condition yields

0 ∈ ∂F (g + g1 + g2)(ω1, . . . , ωn), (4.21)

where, for all u1, . . . , un ∈ X,

g(u1, . . . , un) := max
1≤i≤n−1

‖un + ai − ui‖ , (4.22)

g1(u1, . . . , un) := ε′

λϕ′(g(ω1, . . . , ωn)) ‖(u1 − ω1, . . . , un − ωn)‖γ ,

g2(u1, . . . , un) :=
{

0 if ui ∈ Ωi (i = 1, . . . , n),
∞ otherwise.

Functions g and g1 are convex and Lipschitz continuous, and g2 is lower semicontinuous.

From this point we split the proof into two cases.

(i) X is a general Banach space. Condition (4.21) obviously implies 0 ∈ ∂C(g + g1 + g2)(ω1, . . . , ωn).
By the Clarke–Rockafellar subdifferential sum rule (Lemma 2.2.1(ii)), there exist three subgradients:
(v∗1 , . . . , v∗n) ∈ ∂g(ω1, . . . , ωn), (v∗11, . . . , v

∗
1n) ∈ ∂g1(ω1, . . . , ωn) and (v∗21, . . . , v

∗
2n) ∈ ∂Cg2(ω1, . . . , ωn)

such that

v∗i + v∗1i + v∗2i = 0 (i = 1, . . . , n).

Observe that g(ω1, . . . , ωn) > 0 (thanks to (4.4)), and g2 is the indicator function of the set Ω1× . . .×Ωn.
Hence, by Lemmas 2.2.3 and 2.2.4,

n∑
i=1

v∗i = 0,
n−1∑
i=1
‖v∗i ‖ = 1, (4.23)

n−1∑
i=1
〈v∗i , ωi − ai − ωn〉 = max

1≤i≤n−1
‖ωi − ai − ωn‖ , (4.24)

ϕ′(g(ω1, . . . , ωn))
(
λ

n−1∑
i=1
‖v∗1i‖+ η ‖v∗1n‖

)
≤ ε′, (4.25)

and v∗2i ∈ NC
Ωi(ωi) (i = 1, . . . , n). Setting x∗i := −v∗i (i = 1, . . . , n), we immediately get conditions (4.16)

and (4.18). Moreover,

λ

n−1∑
i=1

d
(
x∗i , N

C
Ωi(ωi)

)
+ ηd

(
x∗n, N

C
Ωn(ωn)

)
≤ λ

n−1∑
i=1
‖v∗i + v∗2i‖+ η‖v∗n + v∗2n‖

= λ

n−1∑
i=1
‖v∗1i‖+ η ‖v∗1n‖ ,

and condition (4.17) is a consequence of (4.25).
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(ii) Let X be Asplund, and τ ∈]0, 1[. In view of (4.21), we can apply the fuzzy sum rule
(Lemma 2.2.1(iii)) to the sum of g+ g1 and g2 followed by the convex sum rule (Lemma 2.2.1(i)) applied
to the sum of g and g1: for any ξ > 0, there are points xi ∈ X and ω′i ∈ Ωi (i = 1, . . . , n) and subgradi-
ents (v∗1 , . . . , v∗n) ∈ ∂g(x1, . . . , xn), (v∗11, . . . , v

∗
1n) ∈ ∂g1(x1, . . . , xn) and (v∗21, . . . , v

∗
2n) ∈ ∂F g2(ω′1, . . . , ω′n)

such that

max
1≤i≤n

‖xi − ωi‖ < ξ, max
1≤i≤n

‖ω′i − ωi‖ < ξ,

n∑
i=1
‖v∗i + v∗1i + v∗2i‖ < ξ.

The number ξ can be chosen small enough so that ω′i ∈ Bλ(x̄) (i = 1, . . . , n − 1), ω′n ∈ Bη(x̄),
g(x1, . . . , xn) > 0, g(ω′1, . . . , ω′n) > 0, conditions (4.19) and (4.20) are satisfied with ω′i in place of
ωi (i = 1, . . . , n), and, taking into account the continuity of g and ϕ′,

ε′

ϕ′ (g(x1, . . . , xn)) + max{λ, η}ξ < ε

ϕ′ (g(ω′1, . . . , ω′n)) .

By Lemmas 2.2.3 and 2.2.4, vectors (v∗1 , . . . , v∗n) and (v∗11, . . . , v
∗
1n) satisfy conditions (4.23), (4.24) and

(4.25) with xi in place of ωi (i = 1, . . . , n), and v∗2i ∈ NF
Ωi(ω

′
i) (i = 1, . . . , n). Set x∗i := −v∗i (i = 1, . . . , n).

Conditions (4.16) follow immediately. Moreover,

λ

n−1∑
i=1

d
(
x∗i , N

F
Ωi(ω

′
i)
)

+ ηd
(
x∗n, N

F
Ωn(ω′n)

)
≤ λ

n−1∑
i=1
‖v∗i + v∗2i‖+ η‖v∗n + v∗2n‖

≤ λ
n−1∑
i=1
‖v∗1i‖+ η ‖v∗1n‖+ max{λ, η}

n∑
i=1
‖v∗i + v∗1i + v∗2i‖

≤ ε′

ϕ′ (g(x1, . . . , xn)) + max{λ, η}ξ < ε

ϕ′ (g(ω′1, . . . , ω′n)) ,

i.e. condition (4.17) is satisfied with ω′i in place of ωi (i = 1, . . . , n).

Remark 4.2.2. (i) Inequality (4.17) together with the first equality in (4.16) play the key role in asym-
metric dual characterisations of extremality/stationarity properties. The inequality ensures that
the dual vectors x∗1, . . . , x∗n, whose sum is zero, are close to the corresponding normal cones. The
second equality in (4.16) is the normalisation condition for the collection of dual vectors; it ensures
that the conditions are nontrivial.

(ii) Note that, when ϕ is linear, the left-hand side of (4.17) is independent of the vectors a1, . . . , an−1.

(iii) Conditions (4.18) and (4.20) first appeared explicitly in [170] and were explored further in [30,172].
Conditions of this type relate dual vectors x∗i and primal space vectors ωn+ai−ωi (i = 1, . . . , n−1),
and allow to reduce the number of dual vectors involved in checking dual characterisations of ex-
tremality/stationarity properties. Such conditions also play an important role in characterisations
of intrinsic transversality [127].

(iv) Primal space conditions (4.4) and (4.19) provide additional characterisations of non-intersection
properties (cf. Remark 4.1.4(iv)). They have not been used in this context before.

(v) Condition (4.17) with Fréchet normal cones is obviously stronger than its version with Clarke
normal cones. On the other hand, conditions (4.19) and (4.20) in the second part of Theorem 4.2.1
are weaker than the corresponding conditions (4.4) and (4.18) in its first part. This is because of
the fuzzy sum rule used in its proof.

(vi) Clarke normal cones in part (i) of Theorem 4.2.1 and the other dual space characterisations in
this thesis can be replaced by the G-normal cones by Ioffe [75], corresponding to the approximate
G-subdifferentials, which, similar to the Clarke ones, possess an exact sum rule in general Banach
spaces; cf. [75, Theorem 4.69].

83



As before, characterisations of the more general than (3.12) symmetric local non-intersection property
(P2) can be straightforwardly deduced from Theorem 4.2.1 by using the same simple trick: adding
to the given collection of n sets a closed ball Bη(x̄) ⊂ Bρ(x̄). The next statement generalises and
improves [30, Theorem 6.3].
Theorem 4.2.3. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi, ai ∈ X
(i = 1, . . . , n), ρ ∈]0,∞], ε > 0 and ϕ ∈ C. Suppose that conditions (3.35) and (4.9) (or simply

ϕ

(
max

1≤i≤n
‖ai‖

)
< ε) are satisfied. Then, for any λ > 0 and η ∈]0, ρ[,

(i) there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄) satisfying condition (4.11), and
vectors x∗i ∈ X∗ (i = 1, . . . , n) such that

n∑
i=1
‖x∗i ‖ = 1, (4.26)

ϕ′
(

max
1≤i≤n

‖x+ ai − ωi‖
)(

λ

n∑
i=1

d (x∗i , NΩi(ωi)) + η

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥
)
< ε, (4.27)

n∑
i=1
〈x∗i , x+ ai − ωi〉 = max

1≤i≤n
‖x+ ai − ωi‖, (4.28)

where N stands for the Clarke normal cone (N = NC);

(ii) if X is Asplund, then, for any τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying

0 < max
1≤i≤n

‖x+ ai − ωi‖ < ε, (4.29)

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.27), with N standing for the
Fréchet normal cone (N = NF ), and

n∑
i=1
〈x∗i , x+ ai − ωi〉 > τ max

1≤i≤n
‖x+ ai − ωi‖. (4.30)

Proof. The statement is a direct consequence of Theorem 4.2.1 applied to the collection of n+ 1 closed
sets Ω1, . . . , Ωn, Bη(x̄). It is sufficient to notice that, once x ∈ Bη(x̄), we have NBη(x̄)(x) = {0}, and

consequently, d
(
−

n∑
i=1

x∗i , NBη(x̄)(x)
)

=
∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥.

Remark 4.2.4. The comments concerning Theorem 4.2.1 made in Remark 4.2.2 are with obvious modi-
fications applicable to Theorem 4.2.3 and the subsequent statements in this thesis.

The single common point x̄ ∈ ∩ni=1Ωi in Theorems 4.2.1 and 4.2.3 can be replaced by a collection of
individual points ωi ∈ Ωi (i = 1, . . . , n) (which always exist as long as the sets are nonempty). The next
statement is a consequence of Theorem 4.2.1 applied to the collection of sets Ω′i := Ωi−ωi (i = 1, . . . , n),
which obviously have a common point 0 ∈ ∩ni=1Ω

′
i. It generalises and improves [30, Corollary 6.1].

Proposition 4.2.5. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, ωi ∈ Ωi (i = 1, . . . , n),
ai ∈ X (i = 1, . . . , n− 1), ε > 0 and ϕ ∈ C1. Suppose that

n−1⋂
i=1

(Ωi − ωi − ai) ∩ (Ωn − ωn) = ∅,

ϕ

(
max

1≤i≤n−1
‖ai‖

)
< ϕ(d(Ω1 − ωi − a1, . . . , Ωn−1 − ωn−1 − an−1, Ωn − ωn) + ε
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(or simply ϕ
(

max
1≤i≤n−1

‖ai‖
)
< ε). Set a′i := ai+ωi−ωn (i = 1, . . . , n−1). Then, for any λ > 0, η > 0,

(i) there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩Bη(ωn) satisfying

0 < max
1≤i≤n−1

‖ω′n + a′i − ω′i‖ ≤ max
1≤i≤n−1

‖ai‖ , (4.31)

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16) and

ϕ′
(

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖
)

×

(
λ

n−1∑
i=1

d (x∗i , NΩi(ω′i)) + ηd (x∗n, NΩn(ω′n))
)
< ε, (4.32)

n−1∑
i=1
〈x∗i , ω′n + a′i − ω′i〉 = max

1≤i≤n−1
‖ω′n + a′i − ω′i‖ ,

where N stands for the Clarke normal cone (N = NC);

(ii) if X is Asplund, then, for any τ ∈]0, 1[, there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n− 1) and
ω′n ∈ Ωn ∩Bη(ωn) satisfying

0 < max
1≤i≤n−1

‖ω′n + a′i − ω′i‖ < ε,

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (4.32), with N standing for the
Fréchet normal cone (N = NF ), and

n−1∑
i=1
〈x∗i , ω′n + a′i − ω′i〉 > τ max

1≤i≤n−1
‖ω′n + a′i − ω′i‖ .

Remark 4.2.6. (i) In the particular case when all the points ωi ∈ Ωi (i = 1, . . . , n) coincide, i.e. ω1 =
. . . = ωn =: x̄ ∈ ∩ni=1Ωi, Proposition 4.2.5 reduces to Theorem 4.2.1.

(ii) Proposition 4.2.5 does not assume the sets Ω1, . . . , Ωn to have a common point and, given some
individual points ωi ∈ Ωi (i = 1, . . . , n), establishes the existence of another collection of points
ω′i ∈ Ωi (i = 1, . . . , n) with certain properties, each point in a neighbourhood of the corresponding
given one. If the sets do have a common point x̄ ∈ ∩ni=1Ωi, then, with ξ := max

1≤i≤n
‖ωi − x̄‖, the

estimates in Proposition 4.2.5 yield ω′i ∈ Bλ+ξ(x̄) (i = 1, . . . , n− 1) and ω′n ∈ Bη+ξ(x̄). In this
form, Proposition 4.2.5 can be considered as a nonlinear extension of [97, Theorem 3.1], which
served as the main tool when extending the extremal principle to infinite collections of sets. Note
that in the linear case, the conclusions of Proposition 4.2.5 admit significant simplifications (see
Section 5.2.5, especially item 3) which make the reduction of Proposition 4.2.5 to (the improved
version of) [97, Theorem 3.1] straightforward; cf. [30, Proposition 6.1].

Another consequence of Theorem 4.2.1 provides dual characterisations for a collection of sets with
empty intersection. It generalises and improves [30, Theorem 6.2].

Proposition 4.2.7. Let Ω1, . . . , Ωn be closed subsets of a Banach space X, ωi ∈ Ωi (i = 1, . . . , n), ε > 0
and ϕ ∈ C. Suppose that ∩ni=1Ωi = ∅ and

ϕ

(
max

1≤i≤n−1
‖ωn − ωi‖

)
< ϕ(d(Ω1, . . . , Ωn)) + ε. (4.33)

Then, for any λ > 0 and η > 0,
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(i) there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n − 1) and ω′n ∈ Ωn ∩ Bη(ωn) satisfying condition
(4.15), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16) and

ϕ′
(

max
1≤i≤n−1

‖ω′n − ω′i‖
)(

λ

n−1∑
i=1

d (x∗i , NΩi(ωi)) + ηd (x∗n, NΩn(ωn))
)
< ε, (4.34)

n−1∑
i=1
〈x∗i , ω′n − ω′i〉 = max

1≤i≤n−1
‖ω′n − ω′i‖ ,

where N stands for the Clarke normal cone (N = NC);

(ii) if X is Asplund, then, for any τ ∈]0, 1[, there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n− 1) and
ω′n ∈ Ωn ∩Bη(ωn) satisfying

0 < max
1≤i≤n−1

‖ω′n − ω′i‖ < ε,

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (2.49), with N standing for the
Fréchet normal cone (N = NF ), and

n−1∑
i=1
〈x∗i , ω′n − ω′i〉 > τ max

1≤i≤n−1
‖ω′n − ω′i‖ .

Proof. It is sufficient to notice that the sets Ω′i := Ωi − ωi (i = 1, . . . , n) and vectors ai := ωn − ωi

(i = 1, . . . , n− 1) satisfy 0 ∈
n⋂
i=1

Ω′i and (4.14), and apply Theorem 4.2.1.

Remark 4.2.8. Proposition 4.2.7 can be considered as a nonlinear extension of the two unified separation
theorems due to Zheng and Ng [172, Theorems 3.1 and 3.4], which correspond to ϕ being the identity
function, and λ = η; cf. [30, Theorem 6.2].

In [172], instead of the distance-like quantity (2.35) in condition (4.33), a slightly more general p-
weighted nonintersect index was used with the corresponding q-weighted sums replacing the usual ones
in (4.16) and (4.34). This corresponds to considering `p norms on product spaces and the corresponding
`q dual norms; cf. Remark 2.2.5(ii). In the current thesis, for simplicity only the maximum norm on
product spaces is considered together with the corresponding sum norm in the dual space.
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Chapter 5

Nonlinear Characterisations of
Extremality/Stationarity Properties

In this Chapter, we illustrate the general necessary slope and dual characterisations of non-intersection
properties established in Subsection 2.3.1 by applying them to characterising each of the properties in
Definition 2.3.1.

Below we formulate a series of necessary conditions for each of the properties. They all follow
straightforwardly from the definitions and corresponding statements in Subsection 2.3.1.

Let Ω1, . . . , Ωn be closed subsets of a Banach space X and x̄ ∈ ∩ni=1Ωi.

5.1 Nonlinear Characterisations

5.1.1 Extremality

Suppose that the collection {Ω1, . . . , Ωn} is extremal at x̄. Then the conditions below hold true.

We start with primal space (slope) necessary extremality conditions.
EC 5.1.1. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition

max
1≤i≤n

‖ai‖ < ε, (5.1)

and such that, for any λ > 0, η > 0 and ϕ ∈ C, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying condition (4.11) and

sup
ui∈Ωi (i=1,...,n), u∈Bη(x̄)
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ
(

max
1≤i≤n

‖x+ ai − ωi‖
)
− ϕ

(
max

1≤i≤n
‖u+ ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn, u− x)‖γ

<
ϕ(ε)
λ

, (5.2)

where γ := λ

η
. As a consequence,

lim sup
Ωi3ui→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

ϕ
(

max
1≤i≤n

‖x+ ai − ωi‖
)
− ϕ

(
max

1≤i≤n
‖u+ ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn, u− x)‖γ

<
ϕ(ε)
λ

. (5.3)
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Moreover, if ϕ is differentiable at max
1≤i≤n

‖x+ ai − ωi‖, then

ϕ′
(

max
1≤i≤n

‖x+ ai − ωi‖
)

× lim sup
Ωi3ui→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖x+ ai − ωi‖ − max
1≤i≤n

‖u+ ai − ui‖

‖(u1 − ω1, . . . , un − ωn, u− x)‖γ
<
ϕ(ε)
λ

, (5.4)

with the convention 0 · (+∞) = 0.

Proof. The necessity follows from Definition 2.3.1(i) and Theorem 4.1.5 (with ρ = +∞).

EC 5.1.2. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n − 1) satisfying condition (5.1) and
such that, for any λ > 0, η > 0 and ϕ ∈ C, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.4) and

sup
ui∈Ωi (i=1,...,n)

(u1,...,un) 6=(ω1,...,ωn)

ϕ
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)
− ϕ

(
max

1≤i≤n−1
‖un + ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn)‖γ

<
ϕ(ε)
λ

, (5.5)

where γ := λ

η
. As a consequence,

lim sup
Ωi3ui→ωi (i=1,...,n)
(u1,...,un) 6=(ω1,...,ωn)

ϕ
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)
− ϕ

(
max

1≤i≤n−1
‖un + ai − ui‖

)
‖(u1 − ω1, . . . , un − ωn)‖γ

<
ϕ(ε)
λ

. (5.6)

Moreover, if ϕ is differentiable at max
1≤i≤n−1

‖ωn + ai − ωi‖, then

ϕ′
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)

× lim sup
Ωi3ui→ωi (i=1,...,n)
(u1,...,un)6=(ω1,...,ωn)

max
1≤i≤n−1

‖ωn + ai − ωi‖ − max
1≤i≤n−1

‖un + ai − ui‖

‖(u1 − ω1, . . . , un − ωn)‖γ
<
ϕ(ε)
λ

, (5.7)

with the convention 0 · (+∞) = 0.

Proof. The necessity follows from Proposition 2.3.4(i) and Theorem 4.1.3.

Remark 5.1.3. (i) Condition 5.1.1 is symmetric. It corresponds to the original Definition 2.3.1(i) of
extremality; all the sets Ω1, . . . , Ωn play the same role; apart from the points ωi ∈ Ωi (i = 1, . . . , n),
the condition involves an additional point x not belonging to any set. On the other hand, Condition
5.1.2 corresponds to the amended asymmetric characterisation of extremality in Proposition 2.3.4(i)
with the last set (it can be any set) playing a special role; the condition does not involve additional
points.

(ii) The necessity of Condition 5.1.1 can also be deduced from Condition 5.1.2 applied to the extremal
collection of n+ 1 sets {Ω1, . . . , Ωn, X}.

Now we formulate dual space (normal cone) necessary extremality conditions. The next two conditions
are for the case of a general Banach space. They employ Clarke normal cones.
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EC 5.1.4. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0, η > 0 and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄)
satisfying condition (4.11), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.28) and

ϕ′
(

max
1≤i≤n

‖x+ ai − ωi‖
)(

λ

n∑
i=1

d (x∗i , NΩi(ωi)) + η

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥
)
< ϕ(ε). (5.8)

Proof. The necessity follows from Definition 2.3.1(i) and Theorem 4.2.3(i) (with ρ = +∞).

EC 5.1.5. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition

max
1≤i≤n−1

‖ai‖ < ε, (5.9)

and such that, for any λ > 0, η > 0 and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1)
and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(4.16), (4.18) and

ϕ′
(

max
1≤i≤n−1

‖ωn + ai − ωi‖
)(

λ

n−1∑
i=1

d (x∗i , NΩi(ωi)) + ηd (x∗n, NΩn(ωn))
)
< ϕ(ε). (5.10)

Proof. The necessity follows from Proposition 2.3.4(i) and Theorem 4.2.1(i).

The next two conditions are versions of, respectively, Conditions 5.1.4 and 5.1.5 for the case when X
is an Asplund space. They employ Fréchet normal cones.

EA 5.1.6. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0, η > 0, τ ∈]0, 1[ and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying condition (4.29), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26),
(4.30) and (5.8).

Proof. The necessity follows from Definition 2.3.1(i) and Theorem 4.2.3(ii) (with ρ = +∞).

EA 5.1.7. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.9) and
such that, for any λ > 0, η > 0, τ ∈]0, 1[ and ϕ ∈ C1, there exist points ωi ∈ Ωi∩Bλ(x̄) (i = 1, . . . , n− 1)
and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.19), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(4.16), (4.20) and (5.10).

Proof. The necessity follows from Proposition 2.3.4(i) and Theorem 4.2.1(ii).

Remark 5.1.8. (i) Conditions 5.1.4 and 5.1.6 are symmetric. They correspond to the original Defi-
nition 2.3.1(i) of extremality. On the other hand, Conditions 5.1.5 and 5.1.7 correspond to the
amended asymmetric definition of extremality in Proposition 2.3.4(i). Cf. Remark 5.1.3(i).

(ii) The necessity of Conditions 5.1.4 and 5.1.6 can also be deduced from Conditions 5.1.5 and 5.1.7
applied to the extremal collection of n+ 1 sets {Ω1, . . . , Ωn, X}; cf. Remark 5.1.3(ii).
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(iii) Inequalities (4.17) and (4.27) play the key role in dual characterisations of extremality properties.

(iv) The derivative ϕ′ involved in the left-hand sides of inequalities (4.17) and (4.27) plays no role when
ϕ is linear. Otherwise, in view of conditions (4.4), (4.11), (4.19) and (4.29), the behaviour of ϕ′
near 0 becomes important, e.g., when ϕ is a power function, i.e. ϕ(t) = tq, the cases 0 < q < 1 and
q > 1 are strongly different.

(v) Conditions (4.18), (4.20), (4.28) and (4.30) relate the corresponding primal and dual vectors in-
volved in the dual characterisations of extremality; cf. Remark 4.2.2(iii). Conditions of this type
have been used in [30,170,172].

(vi) Primal space conditions (4.4), (4.11), (4.19) and (4.29), provide additional characterisations of
non-intersection properties. They have not been used in this context before.

The comments concerning the necessary extremality conditions made in Remark 5.1.8 are with ob-
vious modifications applicable to the formulated below necessary conditions for the other extremal-
ity/stationarity properties.

5.1.2 Local Extremality

Suppose that the collection {Ω1, . . . , Ωn} is locally extremal at x̄ with some ρ ∈]0,+∞]. Then the
conditions below hold true.

We start with primal space (slope) necessary local extremality conditions.

LEC 5.1.9. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and
such that, for any λ > 0, η ∈]0, ρ[ and ϕ ∈ C, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying conditions (4.11) and (5.2), where γ := λ

η
. As a consequence, condition (5.3) is

satisfied. Moreover, if ϕ is differentiable at max
1≤i≤n

‖x+ ai − ωi‖, then condition (5.4) is satisfied, with

the convention 0 · (+∞) = 0.

Proof. The necessity follows from Definition 2.3.1(ii) and Theorem 4.1.5 applied to the collection of n+1
closed sets {Ω1, . . . , Ωn, Bη(x̄)}.

LEC 5.1.10. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.9) and
such that, for any λ > 0, η ∈]0, ρ[ and ϕ ∈ C, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄) satisfying conditions (4.4) and (5.5), where γ := λ

η
. As a consequence, condition (5.6)

is satisfied. Moreover, if ϕ is differentiable at max
1≤i≤n−1

‖ωn + ai − ωi‖, then condition (5.7) is satisfied,

with the convention 0 · (+∞) = 0.

Proof. The necessity follows from Proposition 2.3.4(ii) and Theorem 4.1.3 applied to the collection of n
closed sets {Ω1, . . . , Ωn−1, Ωn ∩Bη(x̄)}.

Now we formulate dual space (normal cone) necessary local extremality conditions. The next two
conditions are for the case of a general Banach space. They employ Clarke normal cones.
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LEC 5.1.11. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0, η ∈]0, ρ[ and ϕ ∈ C1, there exist points ωi ∈ Ωi∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄)
satisfying condition (4.11), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.28) and
(5.8).

Proof. The necessity follows from Definition 2.3.1(ii) and Theorem 4.2.3(i).

LEC 5.1.12. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n − 1) satisfying condition (5.9)
and such that, for any λ > 0, η ∈]0, ρ[ and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1)
and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(4.16), (4.18) and (5.10).

Proof. The necessity follows from Proposition 2.3.4(ii) and Theorem 4.2.1(i).

The next two conditions are versions of, respectively, Conditions 5.1.11 and 5.1.12 for the case when
X is an Asplund space. They employ Fréchet normal cones.

LEA 5.1.13. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0, η ∈]0, ρ[, τ ∈]0, 1[ and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying condition (4.29), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26),
(4.30) and (5.8).

Proof. The necessity follows from Definition 2.3.1(ii) and Theorem 4.2.3(ii).

LEA 5.1.14. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.9)
and such that, for any λ > 0, η ∈]0, ρ[, τ ∈]0, 1[ and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.19), and vectors x∗i ∈ X∗ (i = 1, . . . , n)
satisfying conditions (4.16), (4.20) and (5.10).

Proof. The necessity follows from Proposition 2.3.4(ii) and Theorem 4.2.1(ii).

Remark 5.1.15. Conditions 5.1.9–5.1.14 are weaker than the corresponding Conditions 5.1.1–5.1.7 for the
extremality because of the additional requirement η < ρ. Note that η not only controls the choice of x
and ωn, but is also involved in conditions (4.3), (4.10), (4.17) and (4.27).

5.1.3 Stationarity

Suppose that the collection {Ω1, . . . , Ωn} is stationary at x̄. Then the conditions below hold true.

We start with primal space (slope) necessary stationarity conditions.

SC 5.1.16. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n) satisfying
condition

max
1≤i≤n

‖ai‖ < ρε, (5.11)
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and such that, for any λ > 0, η ∈]0, ρ] and ϕ ∈ C, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying conditions (4.11) and (5.2), where γ := λ

η
. As a consequence, condition (5.3) is

satisfied. Moreover, if ϕ is differentiable at max
1≤i≤n

‖x+ ai − ωi‖, then condition (5.4) is satisfied, with

the convention 0 · (+∞) = 0.

Proof. The necessity follows from Definition 2.3.1(iii) and Theorem 4.1.5.

SC 5.1.17. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n− 1), satisfying
condition

max
1≤i≤n−1

‖ai‖ < ρε, (5.12)

and such that, for any λ > 0, η ∈]0, ρ] and ϕ ∈ C, there exist points ωi ∈ Ωi∩Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄) satisfying conditions (4.4) and (5.5), where γ := λ

η
. As a consequence, condition (5.6)

is satisfied. Moreover, if ϕ is differentiable at max
1≤i≤n−1

‖ωn + ai − ωi‖, then condition (5.7) is satisfied,

with the convention 0 · (+∞) = 0.

Proof. The necessity follows from Proposition 2.3.4(iii) and Theorem 4.1.3.

Now we formulate dual space (normal cone) necessary stationary conditions. The next two conditions
are for the case of a general Banach space. They employ Clarke normal cones.
SC 5.1.18. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n) satisfying
condition (5.11) and such that, for any λ > 0, η ∈]0, ρ] and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n) and x ∈ Bη(x̄) satisfying condition (4.11), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying
conditions (4.26), (4.28) and (5.8).

Proof. The necessity follows from Definition 2.3.1(iii) and Theorem 4.2.3(i).

SC 5.1.19. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n− 1) satisfying
condition (5.12) and such that, for any λ > 0, η ∈]0, ρ] and ϕ ∈ C1, there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n− 1) and ωn ∈ Ωn ∩ Bη(x̄) satisfying condition (4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n)
satisfying conditions (4.16), (4.18) and (5.10).

Proof. The necessity follows from Proposition 2.3.4(iii) and Theorem 4.2.1(i).

The next two conditions are versions of, respectively, Conditions 5.1.18 and 5.1.19 for the case when
X is an Asplund space. They employ Fréchet normal cones.
SA 5.1.20. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n) satisfying
condition (5.11) and such that, for any λ > 0, η ∈]0, ρ], τ ∈]0, 1[ and ϕ ∈ C1, there exist points ωi ∈
Ωi ∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄) satisfying

0 < max
1≤i≤n

‖x+ ai − ωi‖ < ερ, (5.13)

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.30) and (5.8).
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Proof. The necessity follows from Definition 2.3.1(iii) and Theorem 4.2.3(ii).

SA 5.1.21. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n− 1) satisfying
condition (5.12) and such that, for any λ > 0, η ∈]0, ρ], τ ∈]0, 1[ and ϕ ∈ C1, there exist points ωi ∈
Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄) satisfying

0 < max
1≤i≤n−1

‖ωn + ai − ωi‖ < ερ, (5.14)

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (4.20) and (5.10).

Proof. The necessity follows from Proposition 2.3.4(iii) and Theorem 4.2.1(ii).

Remark 5.1.22. Conditions 5.1.16–5.1.21 are weaker than the corresponding Conditions 5.1.9–5.1.14 for
the local extremality because of the additional requirement ρ < ε.

5.1.4 Approximate Stationarity

Suppose that the collection {Ω1, . . . , Ωn} is approximately stationary at x̄. Then the conditions below
hold true.

We start with primal space (slope) necessary approximate stationarity conditions.
ASC 5.1.23. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying condition (5.11) and such that, for any λ > 0, η ∈]0, ρ] and ϕ ∈ C, there exist
points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and x ∈ ηB such that

sup
ui∈Ωi (i=1,...,n), u∈ηB

(u1,...,un,u)6=(ω′1,...,ω
′
n,x)

ϕ
(

max
1≤i≤n

‖x+ a′i − ω′i‖
)
− ϕ

(
max

1≤i≤n
‖u+ a′i − ui‖

)
‖(u1 − ω′1, . . . , un − ω′n, u− x)‖γ

<
ϕ(ε)
λ

,

0 < max
1≤i≤n

‖x+ a′i − ω′i‖ ≤ max
1≤i≤n

‖ai‖ , (5.15)

where γ := λ

η
and a′i := ai + ωi (i = 1, . . . , n). As a consequence

lim sup
Ωi3ui→ω′i (i=1,...,n), u→0
(u1,...,un,u)6=(ω′1,...,ω

′
n,x)

ϕ
(

max
1≤i≤n

‖x+ a′i − ω′i‖
)
− ϕ

(
max

1≤i≤n
‖u+ a′i − ui‖

)
‖(u1 − ω′1, . . . , un − ω′n, u− x)‖γ

<
ϕ(ε)
λ

.

Moreover, if ϕ is differentiable at max
1≤i≤n

‖x+ a′i − ω′i‖, then

ϕ′
(

max
1≤i≤n

‖x+ a′i − ω′i‖
)
× lim sup
Ωi3ui→ω′i (i=1,...,n), u→0
(u1,...,un,u)6=(ω′1,...,ω

′
n,x)

max
1≤i≤n

‖x+ a′i − ω′i‖ − max
1≤i≤n

‖u+ a′i − ui‖

‖(u1 − ω′1, . . . , un − ω′n, u− x)‖γ
<
ϕ(ε)
λ

.

Proof. The necessity follows from Definition 2.3.1(iv) and Theorem 4.1.5 applied to the collection of
closed sets {Ω1 − ω1, . . . , Ωn − ωn} and their common point 0.
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ASC 5.1.24. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n) and
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.12) and such that, for any λ > 0, η ∈]0, ρ] and
ϕ ∈ C, there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩Bη(ωn) satisfying condition
(4.31) and

sup
ui∈Ωi (i=1,...,n), un∈Bη(ωn)

(u1,...,un) 6=(ω′1,...,ω
′
n)

ϕ
(

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖
)
− ϕ

(
max

1≤i≤n−1
‖un + a′i − ui‖

)
‖(u1 − ω′1, . . . , un − ω′n)‖γ

<
ϕ(ε)
λ

,

where γ := λ

η
and a′i := ai + ωi − ωn (i = 1, . . . , n− 1). As a consequence,

lim sup
Ωi3ui→ω′i (i=1,...,n)
(u1,...,un)6=(ω′1,...,ω

′
n)

ϕ
(

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖
)
− ϕ

(
max

1≤i≤n−1
‖un + a′i − ui‖

)
‖(u1 − ω′1, . . . , un − ω′n)‖γ

<
ϕ(ε)
λ

,

Moreover, if ϕ is differentiable at max
1≤i≤n−1

‖ω′n + a′i − ω′i‖, then

ϕ′
(

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖
)

× lim sup
Ωi3ui→ω′i (i=1,...,n)
(u1,...,un)6=(ω′1,...,ω

′
n)

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖ − max
1≤i≤n−1

‖un + a′i − ui‖

‖(u1 − ω′1, . . . , un − ω′n)‖γ
<
ϕ(ε)
λ

.

Proof. The necessity follows from Proposition 2.3.4(iv) and Theorem 4.1.3 applied to the collection of
closed sets {Ω1 − ω1, . . . , Ωn−1 − ωn−1, (Ωn − ωn) ∩ (ρB)} and their common point 0.

Now we formulate dual space (normal cone) necessary approximate stationary conditions. The next
two conditions are for the case of a general Banach space. They employ Clarke normal cones.

ASC 5.1.25. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying condition (5.11) and such that, for any λ > 0, η ∈]0, ρ] and ϕ ∈ C, there exist
points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n) and x ∈ ηB satisfying condition (5.15), and vectors x∗i ∈ X∗

(i = 1, . . . , n) satisfying condition (4.26) and

ϕ′
(

max
1≤i≤n

‖x+ a′i − ω′i‖
)(

λ

n∑
i=1

d (x∗i , NΩi(ω′i)) + η

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥
)
< ϕ(ε), (5.16)

n∑
i=1
〈x∗i , x+ a′i − ω′i〉 = max

1≤i≤n
‖x+ a′i − ω′i‖, (5.17)

where a′i := ai + ωi (i = 1, . . . , n).

Proof. The necessity follows from Definition 2.3.1(iv) and Theorem 4.2.3(i) applied to the collection of
closed sets {Ω1 − ω1, . . . , Ωn − ωn} and their common point 0.

ASC 5.1.26. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n) and
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.12) and such that, for any λ > 0, η ∈]0, ρ] and
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ϕ ∈ C1, there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩Bη(ωn) satisfying condition
(4.31), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying condition (4.16) and

ϕ′
(

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖
)(

λ

n−1∑
i=1

d (x∗i , NΩi(ω′i)) + ηd (x∗n, NΩn(ω′i))
)
< ϕ(ε), (5.18)

n−1∑
i=1
〈x∗i , ω′n + a′i − ω′i〉 = max

1≤i≤n−1
‖ω′n + a′i − ω′i‖, (5.19)

where a′i := ai + ωi − ωn (i = 1, . . . , n− 1).

Proof. The necessity follows from Proposition 2.3.4(iv) and Theorem 4.2.1(i).

The next two conditions are versions of, respectively, Conditions 5.1.25 and 5.1.26 for the case when
X is an Asplund space. They employ Fréchet normal cones.
ASA 5.1.27. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying condition (5.11) and such that, for any λ > 0, η ∈]0, ρ], τ ∈]0, 1[ and ϕ ∈ C,
there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and x ∈ ηB satisfying

0 < max
1≤i≤n

‖x+ a′i − ω′i‖ < ερ, (5.20)

where a′i := ai +ωi (i = 1, . . . , n), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (5.16)
and

n∑
i=1
〈x∗i , x+ a′i − ω′i〉 > τ max

1≤i≤n
‖x+ a′i − ω′i‖. (5.21)

Proof. The necessity follows from Definition 2.3.1(iv) and Theorem 4.2.3(ii) applied to the collection of
closed sets {Ω1 − ω1, . . . , Ωn − ωn} and their common point 0.

ASA 5.1.28. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n) and
vectors ai ∈ X (i = 1, . . . , n − 1) satisfying condition (5.12) and such that, for any λ > 0, η ∈]0, ρ],
τ ∈]0, 1[ and ϕ ∈ C1, there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩ Bη(ωn)
satisfying

0 < max
1≤i≤n−1

‖ω′n + a′i − ω′i‖ < ερ, (5.22)

and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (5.18) and
n−1∑
i=1
〈x∗i , ω′n + a′i − ω′i〉 > τ max

1≤i≤n−1
‖ω′n + a′i − ω′i‖, (5.23)

where a′i := ai + ωi − ωn (i = 1, . . . , n− 1).

Proof. The necessity follows from Proposition 2.3.4(iv) and Theorem 4.2.1(ii).

Remark 5.1.29. Conditions 5.1.23–5.1.28 are weaker than the corresponding Conditions 5.1.16–5.1.21 for
the stationarity because of the additional collection of points ωi ∈ Ωi (i = 1, . . . , n) present in all of
them. Conditions 5.1.16–5.1.21 correspond to setting ωi := x̄ (i = 1, . . . , n) in Conditions 5.1.23–5.1.28.
Note that the other collection ω′i ∈ Ωi (i = 1, . . . , n) in Conditions 5.1.23–5.1.28 corresponds to ωi ∈ Ωi
(i = 1, . . . , n) in Conditions 5.1.16–5.1.21.
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5.2 Hölder Characterisations

In this section, we formulate realisations of the necessary conditions of the extremality/stationarity
properties from Section 5.1 in the Hölder setting.

Let Ω1, . . . , Ωn be closed subsets of a Banach space X, x̄ ∈ ∩ni=1Ωi and q > 0.

The conditions below correspond to setting ϕ(t) := αtq (t > 0) with some α > 0 in the corresponding
conditions from Section 5. ‘H’ in the labels of the conditions stands for ‘Hölder’.

5.2.1 Extremality

Suppose that the collection {Ω1, . . . , Ωn} is extremal at x̄. Then the conditions below hold true.
HE 5.2.1. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄) satisfying
condition (4.11) and

sup
ui∈Ωi (i=1,...,n), u∈Bη(x̄)
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖x+ ai − ωi‖q − max
1≤i≤n

‖u+ ai − ui‖q

‖(u1 − ω1, . . . , un − ωn, u− x)‖γ
<
εq

λ
, (5.24)

where γ := λ

η
. As a consequence,

q max
1≤i≤n

‖x+ ai − ωi‖q−1

× lim sup
Ωi3ui→ωi (i=1,...,n), u→x
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖x+ ai − ωi‖ − max
1≤i≤n

‖u+ ai − ui‖

‖(u1 − ω1, . . . , un − ωn, u− x)‖γ
<
εq

λ
. (5.25)

HE 5.2.2. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n−1) satisfying condition (5.9) and such
that, for any λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄)
satisfying condition (4.4) and

sup
ui∈Ωi (i=1,...,n)

(u1,...,un)6=(ω1,...,ωn)

max
1≤i≤n−1

‖ωn + ai − ωi‖q − max
1≤i≤n−1

‖un + ai − ui‖q

‖(u1 − ω1, . . . , un − ωn)‖γ
<
εq

λ
, (5.26)

where γ := λ

η
. As a consequence,

q max
1≤i≤n−1

‖ωn + ai − ωi‖q−1

× lim sup
Ωi3ui→ωi (i=1,...,n)
(u1,...,un)6=(ω1,...,ωn)

max
1≤i≤n−1

‖ωn + ai − ωi‖ − max
1≤i≤n−1

‖un + ai − ui‖

‖(u1 − ω1, . . . , un − ωn)‖γ
<
εq

λ
. (5.27)

The next two conditions are for the case of a general Banach space. They employ Clarke normal
cones.
HE 5.2.3. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄) satisfying
condition (4.11), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.28) and

q max
1≤i≤n

‖x+ ai − ωi‖q−1

(
λ

n∑
i=1

d (x∗i , NΩi(ωi)) + η

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥
)
< εq. (5.28)
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HE 5.2.4. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n−1) satisfying condition (5.9) and such
that, for any λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄)
satisfying condition (4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (4.18) and

q max
1≤i≤n−1

‖ωn + ai − ωi‖q−1

(
λ

n−1∑
i=1

d (x∗i , NΩi(ωi)) + ηd (x∗n, NΩn(ωn))
)
< εq. (5.29)

The next two conditions are versions of, respectively, Conditions 5.2.3 and 5.2.4 for the case when X
is an Asplund space. They employ Fréchet normal cones.

HEA 5.2.5. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and such
that, for any λ > 0, η > 0 and τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄)
satisfying condition (4.29), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.30) and
(5.28).

HEA 5.2.6. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.9) and
such that, for any λ > 0, η > 0 and τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.19), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(4.16), (4.20) and (5.29).

5.2.2 Local Extremality

Suppose that the collection {Ω1, . . . , Ωn} is locally extremal at x̄ with some ρ ∈]0,+∞]. Then the
conditions below hold true.

HLE 5.2.7. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and
such that, for any λ > 0 and η ∈]0, ρ[, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄)
satisfying conditions (4.11) and (5.24). As a consequence, condition (5.25) is satisfied.

HLE 5.2.8. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n − 1) satisfying condition (5.9)
and such that, for any λ > 0 and η ∈]0, ρ[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.4) and

sup
ui∈Ωi (i=1,...,n), un∈Bη(x̄)

(u1,...,un)6=(ω1,...,ωn)

max
1≤i≤n−1

‖ωn + ai − ωi‖q − max
1≤i≤n−1

‖un + ai − ui‖q

‖(u1 − ω1, . . . , un − ωn)‖γ
<
εq

λ
.

As a consequence, condition (5.27) is satisfied.

The next two conditions are for the case of a general Banach space. They employ Clarke normal
cones.

HLE 5.2.9. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and
such that, for any λ > 0 and η ∈]0, ρ[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and x ∈ Bη(x̄)
satisfying condition (4.11), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26), (4.28) and
(5.28).

HLE 5.2.10. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n − 1) satisfying condition (5.9)
and such that, for any λ > 0 and η ∈]0, ρ[, there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩ Bη(x̄) satisfying condition (4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(4.16), (4.18) and (5.29).

The next two conditions are versions of, respectively, Conditions 5.2.9 and 5.2.10 for the case when
X is an Asplund space. They employ Fréchet normal cones.
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HLEA 5.2.11. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n) satisfying condition (5.1) and
such that, for any λ > 0, η ∈]0, ρ[ and τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄) satisfying condition (4.29), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26),
(4.30) and (5.28).

HLEA 5.2.12. For any ε > 0, there exist vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.9)
and such that, for any λ > 0, η ∈]0, ρ[ and τ ∈]0, 1[ , there exist points ωi ∈ Ωi ∩Bλ(x̄) (i = 1, . . . , n− 1)
and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (4.19), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions
(4.16), (4.20) and (5.29).

5.2.3 Stationarity

Suppose that the collection {Ω1, . . . , Ωn} is stationary at x̄. Then the conditions below hold true.
HS 5.2.13. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n) satisfy-
ing condition (5.11) and such that, for any λ > 0 and η ∈]0, ρ], there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n) and x ∈ Bη(x̄) satisfying conditions (4.11) and (5.24), where γ := λ

η
. As a consequence,

condition (5.25) is satisfied.

HS 5.2.14. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n− 1),
satisfying condition (5.12) and such that, for any λ > 0 and η ∈]0, ρ], there exist points ωi ∈ Ωi ∩Bλ(x̄)
(i = 1, . . . , n− 1) and ωn ∈ Ωn ∩ Bη(x̄) satisfying conditions (4.4) and (5.26), where γ := λ

η
. As a

consequence, condition (5.27) is satisfied.

The next two conditions are for the case of a general Banach space. They employ Clarke normal
cones.
HS 5.2.15. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n) satisfy-
ing condition (5.11) and such that, for any λ > 0 and η ∈]0, ρ], there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n) and x ∈ Bη(x̄) satisfying condition (4.11), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying
conditions (4.26), (4.28) and (5.28).

HS 5.2.16. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n− 1) satis-
fying condition (5.12) and such that, for any λ > 0 and η ∈]0, ρ], there exist points ωi ∈ Ωi ∩ Bλ(x̄)
(i = 1, . . . , n− 1) and ωn ∈ Ωn ∩ Bη(x̄) satisfying condition (4.4), and vectors x∗i ∈ X∗ (i = 1, . . . , n)
satisfying conditions (4.16), (4.18) and (5.29).

The next two conditions are versions of, respectively, Conditions 5.2.15 and 5.2.16 for the case when
X is an Asplund space. They employ Fréchet normal cones.
HSA 5.2.17. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n) satisfying
condition (5.11) and such that, for any λ > 0, η ∈]0, ρ] and τ ∈]0, 1[, there exist points ωi ∈ Ωi ∩Bλ(x̄)
(i = 1, . . . , n) and x ∈ Bη(x̄) satisfying condition (5.13), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying
conditions (4.26), (4.30) and (5.28).

HSA 5.2.18. For any ε > 0, there exist a number ρ ∈]0, ε[ and vectors ai ∈ X (i = 1, . . . , n− 1)
satisfying condition (5.12) and such that, for any λ > 0, η ∈]0, ρ] and τ ∈]0, 1[, there exist points ωi ∈
Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1) and ωn ∈ Ωn ∩Bη(x̄) satisfying condition (5.14), and vectors x∗i ∈ X∗

(i = 1, . . . , n) satisfying conditions (4.16), (4.20) and (5.29).

5.2.4 Approximate Stationarity

Suppose that the collection {Ω1, . . . , Ωn} is approximately stationary at x̄. Then the conditions below
hold true.

98



HAS 5.2.19. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying condition (5.11) and such that, for any λ > 0 and η ∈]0, ρ], there exist points
ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and x ∈ ηB satisfying condition (5.15) and

sup
ui∈Ωi (i=1,...,n), u∈Bη(x̄)
(u1,...,un,u)6=(ω1,...,ωn,x)

max
1≤i≤n

‖x+ a′i − ω′i‖q − max
1≤i≤n

‖u+ a′i − ui‖q

‖(u1 − ω′1, . . . , un − ω′n, u− x)‖γ
<
εq

λ
,

where γ := λ

η
, and a′i := ai + ωi (i = 1, . . . , n). As a consequence,

q max
1≤i≤n

‖x+ a′i − ω′i‖q−1

× lim sup
Ωi3ui→ω′i (i=1,...,n), u→0
(u1,...,un,u) 6=(ω′1,...,ω

′
n,x)

max
1≤i≤n

‖x+ a′i − ω′i‖ − max
1≤i≤n

‖u+ a′i − ui‖

‖(u1 − ω′1, . . . , un − ω′n, u− x)‖γ
<
εq

λ
.

HAS 5.2.20. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n) and
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying (5.12) and such that, for any λ > 0 and η ∈]0, ρ], there exist
points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩Bη(ωn) satisfying (4.31) and

sup
ui∈Ωi (i=1,...,n), un∈Bη(ωn)

(u1,...,un)6=(ω1,...,ωn)

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖q − max
1≤i≤n−1

‖un + a′i − ui‖q

‖(u1 − ω′1, . . . , un − ω′n)‖γ
<
εq

λ
,

where γ := λ

η
and a′i := ai + ωi − ωn (i = 1, . . . , n− 1). As a consequence,

q max
1≤i≤n−1

‖ω′n + a′i − ω′i‖q−1

× lim sup
Ωi3ui→ω′i (i=1,...,n)
(u1,...,un) 6=(ω1,...,ωn)

max
1≤i≤n−1

‖ω′n + a′i − ω′i‖ − max
1≤i≤n−1

‖un + a′i − ui‖

‖(u1 − ω′1, . . . , un − ω′n)‖γ
<
εq

λ
.

The next two conditions are for the case of a general Banach space. They employ Clarke normal
cones.

HAS 5.2.21. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying condition (5.11) and such that, for any λ > 0 and η ∈]0, ρ], there exist points
ω′i ∈ Ωi∩Bλ(ωi) (i = 1, . . . , n) and x ∈ ηB satisfying condition (5.15), and vectors x∗i ∈ X∗ (i = 1, . . . , n)
satisfying conditions (4.26), (5.17) and

q max
1≤i≤n

‖x+ a′i − ω′i‖q−1

(
λ

n∑
i=1

d (x∗i , NΩi(ω′i)) + η

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥
)
< εq, (5.30)

where a′i := ai + ωi (i = 1, . . . , n).

HAS 5.2.22. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n) and
vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.12) and such that, for any λ > 0 and η ∈]0, ρ],
there exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩Bη(ωn) satisfying condition (4.31),
and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (5.19) and

q max
1≤i≤n−1

‖ω′n + a′i − ω′i‖q−1

(
λ

n−1∑
i=1

d (x∗i , NΩi(ω′i)) + ηd (x∗n, NΩn(ω′i))
)
< εq, (5.31)

where a′i := ai + ωi − ωn (i = 1, . . . , n− 1).
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The next two conditions are versions of, respectively, Conditions 5.2.21 and 5.2.22 for the case when
X is an Asplund space. They employ Fréchet normal cones.

HASA 5.2.23. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi∩Bε(x̄) and vectors ai ∈ X
(i = 1, . . . , n) satisfying condition (5.11) and such that, for any λ > 0, η ∈]0, ρ] and τ ∈]0, 1[, there
exist points ω′i ∈ Ωi ∩Bλ(ωi) (i = 1, . . . , n) and x ∈ ηB satisfying condition (5.20), and vectors x∗i ∈ X∗
(i = 1, . . . , n) satisfying conditions (4.26), (5.21) and (5.30), where a′i := ai + ωi (i = 1, . . . , n).

HASA 5.2.24. For any ε > 0, there exist a number ρ ∈]0, ε[, points ωi ∈ Ωi ∩ Bε(x̄) (i = 1, . . . , n)
and vectors ai ∈ X (i = 1, . . . , n− 1) satisfying condition (5.12) and such that, for any λ > 0, η ∈]0, ρ]
and τ ∈]0, 1[, there exist points ω′i ∈ Ωi ∩ Bλ(ωi) (i = 1, . . . , n− 1) and ω′n ∈ Ωn ∩ Bη(ωn) satisfying
condition (5.22), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16), (5.23) and (5.31),
where a′i := ai + ωi − ωn (i = 1, . . . , n− 1).

5.2.5 Linear Dual Characterisations

In this subsection, we briefly discuss simplifications in the above necessary characterisations of the
extremality/stationarity properties in the linear case, i.e. when q = 1. We limit ourselves to the dual
necessary characterisations, where the most important simplifications appear.

1. In each of the dual necessary characterisations of extremality/stationarity properties, the Hölder
parameter q is only involved in a single condition: see the key normal cone conditions (5.28)–(5.31). In
the linear case, all these conditions get much simpler as the terms containing expressions to the power
q− 1 in the left-hand sides of the inequalities disappear. As a result, four different expressions reduce to
just two forms. Specifically, inequalities (5.28) and (5.30) take the form

λ

n∑
i=1

d (x∗i , NΩi(ωi)) + η

∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε, (5.32)

while inequalities (5.29) and (5.31) take the form

λ

n−1∑
i=1

d (x∗i , NΩi(ωi)) + ηd (x∗n, NΩn(ωn)) < ε, (5.33)

with N in both cases standing for either the Clarke or the Fréchet normal cone. Thus, inequalities
(5.28)–(5.31) become independent on the vectors ai’s.

The other simplifications in the necessary characterisations of extremality/stationarity properties
discussed below come at the expense of weakening the conditions.

2. The vectors ai’s (coming from the original definitions of the respective properties) remain in two
conditions in each of the dual necessary characterisations: conditions (4.4), (4.11), (4.19), (4.29), (4.31),
(5.13), (5.14) or (5.15) on the choice of points ωi ∈ Ωi (or ω′i ∈ Ωi) (i = 1, . . . , n), and conditions (4.18),
(4.20), (4.28), (4.30), (5.17), (5.19), (5.21) or (5.23) coupling the primal and dual vectors involved in the
characterisations. Both groups of conditions are important for detecting the respective properties. At the
same time, finding the vectors ai’s is not easy in general, which makes checking these conditions difficult.
Removing the conditions listed above (together with the number τ involved in the characterisations
employing Fréchet normal cones) from the corresponding necessary characterisations makes them simpler
and more practical, though weaker in general. For instance, the dual necessary characterisations of
extremality 5.2.3 and 5.2.4, and their Asplund space versions 5.2.5 and 5.2.6 reduce to the following two
conditions, where N stands for either the Clarke normal cone (N = NC) in the case of a general Banach
space, or the Fréchet normal cone (N = NF ) if the space is Asplund.

EL 5.2.25. For any ε > 0, λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n) and
x ∈ Bη(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.26) and (5.32).
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EL 5.2.26. For any ε > 0, λ > 0 and η > 0, there exist points ωi ∈ Ωi ∩ Bλ(x̄) (i = 1, . . . , n− 1) and
ωn ∈ Ωn ∩Bη(x̄), and vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying conditions (4.16) and (5.33).

The corresponding simplified versions of the necessary characterisations of local extremality, station-
arity and approximate stationarity contain the same dual conditions (5.32) and (5.33).

3. Unlike condition (5.33), which basically requires the dual vectors x∗i ∈ X∗ (i = 1, . . . , n) to be
close to the respective normal cones, condition (5.32) combines two different types of constraints on
theses vectors: they must be close to the respective normal cones and their sum must be small. Within
Condition 5.2.26, the second constraint is taken care of by condition (4.16), which requires even more:
the sum of the vectors must equal 0.

Fortunately, the two types of constraints combined in condition (5.32) can be easily separated and,
using elementary arguments hidden in multiple proofs of ‘generalised separation’ statements and formu-
lated explicitly in [29, Lemma 1], the collection of dual vectors x∗i ∈ X∗ (i = 1, . . . , n) satisfying (5.32)
can be replaced in Condition 5.2.25 and its analogues by another collection of vectors belonging to the

respective normal cones: x∗i ′ ∈ NΩi(ωi) (i = 1, . . . , n), satisfying (4.26) and with
∥∥∥∥∥
n∑
i=1

x∗i
′

∥∥∥∥∥ arbitrarily

small.

4. Finally, it is not difficult to observe that the parameters λ and η in Conditions 5.2.25 and 5.2.26 are
redundant. They both can be replaced in conditions ωi ∈ Bλ(x̄) (i = 1, . . . , n), x ∈ Bη(x̄) in 5.2.25 and
ωi ∈ Bλ(x̄) (i = 1, . . . , n− 1), ωn ∈ Bη(x̄) in 5.2.26 by ε. Moreover, taking into account the observations

in item 3, condition (5.32) can be replaced by x∗i ∈ NΩi(ωi) (i = 1, . . . , n) and
∥∥∥∥∥
n∑
i=1

x∗i

∥∥∥∥∥ < ε, while

condition (5.33) can be replaced by
n∑
i=1

d (x∗i , NΩi(ωi)) < ε. Thus, Conditions 5.2.25 and 5.2.26 reduce,

respectively, to the well known conditions (ii) and (iii) in Theorem 2.7.3.

Similar observations apply to the necessary characterisations of local extremality, stationarity and
approximate stationarity. The auxiliary points ωi ∈ Ωi (i = 1, . . . , n) in the characterisations of approx-
imate stationarity can be disregarded. As a result, the respective analogues of Conditions 5.2.25 and
5.2.26 reduce to the same conventional conditions (ii) and (iii) in Theorem 2.7.3.

Thus, the equivalent conditions (ii) and (iii) in Theorem 2.7.3 represent universal dual necessary
characterisations of all four properties: extremality, local extremality, stationarity and approximate
stationarity in the linear setting. In fact, as it follows from Theorem 2.7.3, these conditions are indeed
good for characterising approximate stationarity. For the other three properties, which are stronger, in
some cases these characterisations can be too weak. In such cases, one has an option of employing the
original (not simplified) characterisations, involving the vectors ai’s.
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Chapter 6

Some New Characterisations of
Intrinsic Transversality in Hilbert
Spaces

Motivated mainly by the above open questions, this part of the thesis is devoted to investigating further
characterisations of intrinsic transversality in connection with other transversality-type properties. Apart
from the appeal to address the aforementioned questions in Chapter 1, this work was also motivated by
the potential for meaningful applications of these properties, for example, in establishing convergence
criteria for more involved projection algorithms (rather than alternating projections) and in formulating
calculus rules for relative limiting normal cones (see Definition 6.3.1).

New results in terms of elements of normal cones are presented in Section 6.1 with the key quan-
titative estimate formulated in Lemma 6.1.11. Theorem 6.1.13 establishes the equivalence of intrinsic
transversality, weak intrinsic transversality [96] and the sufficient condition for subtransversality formu-
lated in [99, Theorem 2]. This result significantly clarifies the picture of transversality-type properties
and unifies several of them. As by-products, we address several important questions concerning these
properties in the Hilbert space setting, see Questions 1–3. In Section 6.2, for the first time, intrinsic
transversality is characterised by an equivalent property which does not involve normal vectors, see The-
orem 6.2.9. This result, which was motivated by a question (see Question 4) raised by Ioffe [74, page
358], opens a new perspective on intrinsic transversality. Intrinsic transversality in Euclidean spaces
is studied in Section 6.3. Lemma 6.3.5 establishes a geometric counterpart of the analytic condition
under which the complete quantitative results of Theorem 6.1.13(ii) are obtained. Theorem 6.2.9 gives
a new characterisation of intrinsic transversality, which refines the corresponding result of [96, Corol-
lary 3]. Theorem 6.3.7 yields further insight on the quantitative results established in Section 6.1 when
specialised to the Euclidean space setting. As by-products, we address a couple of interesting questions
concerning intrinsic transversality in Euclidean spaces raised by Kruger [96, page 140], see Questions 5
and 6.

6.1 Subtransversality, Transversality and Intrinsic Transversal-
ity

The following definition simplifies Definition 2.3.9(ii), (iii) for a pair of sets.

Definition 6.1.1 (subtransversality & transversality). Let {A,B} be a pair of sets and x̄ ∈ A ∩B.
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(i) {A,B} is subtransversal at x̄ if there exist numbers α ∈ ]0, 1[ and δ > 0 such that

αdist (x,A ∩B) ≤ max {dist (x,A),dist (x,B)} ∀x ∈ Bδ(x̄). (6.1)

(ii) {A,B} is transversal at x̄ if there exist numbers α ∈ ]0, 1[ and δ > 0 such that

αdist (x, (A− x1) ∩ (B − x2)) ≤ max {dist (x,A− x1),dist (x,B − x2)} (6.2)
∀x ∈ Bδ(x̄), ∀x1, x2 ∈ δB.

The exact upper bound of all α ∈ ]0, 1[ such that condition (6.1) or condition (6.2) is satisfied for some
δ > 0 is denoted by str[A,B](x̄) or tr[A,B](x̄), respectively, with the convention that the supremum over
the empty set equals 0.

Remark 6.1.2. (i) (subtransversality) The subtransversality property can be traced back to at least
the early 80’s thanks to Dolecki under the name decisive separation [49, 50], where it was known
as a sufficient (and also necessary in the convex setting) condition for the tangent cone of the
intersection of a pair of sets at a reference point being equal to the intersection of the two tangent
cones of the sets at that point [49, Propositions 5.3 and 5.4]. In the surveys [68,70], Ioffe used the
property (without a name) as a qualification condition for establishing calculus rules for normal
cones and subdifferentials. Subtransversality was studied by Bauschke and Borwein [12] under the
name linear regularity as a sufficient condition for linear convergence of the alternating projection
algorithm for solving convex feasibility problems in Hilbert spaces, and became widely known
thanks to this important application. Their results were extended to the cyclic projection algorithm
for solving feasibility problems involving a finite number of convex sets [13]. The term linear
regularity was widely adapted in the community of variational analysis and optimisation for several
decades, for example, Bakan et al. [8], Bauschke et al. [14, 15], Li et al. [111], Ng and Zang [124],
Zheng and Ng [171], Kruger and his collaborators [90–92, 104–106, 158]. Ngai and Théra [125]
referred to this property as metric inequality and used it to establish calculus rules for the limiting
Fréchet subdifferential. Penot [129] referred to the property as linear coherence and applied it
to calculus rules for the viscosity Fréchet and viscosity Hadamard subdifferentials. The name
(sub)transversality was coined by Ioffe in the 2016 survey [72, Definition 6.14]. In his 2017 book [74,
page 301] he explained that “Regularity is a property of a single object while transversality relates
to the interaction of two or more independent objects”. In spite of the relatively long history
with many important features of subtransversality, for example, those in connection with metric
subregularity, error bounds, weak sharp minima, growth conditions and conditions involving primal
and dual slopes, useful applications of the property keep being discovered. For example, Luke et
al. [114, Theorem 8] have very recently proved that subtransversality is not only sufficient but
also necessary for linear convergence of convex alternating projections. This complements the
aforementioned result by Bauschke and Borwein [12] obtained 25 years earlier. Luke et al. [114,
Section 4] also reveal that the property has been imposed either explicitly or implicitly in all
existing linear convergence criteria for nonconvex alternating projections, and hence conjecture
that subtransversality is a necessary condition for linear convergence of the algorithm also in the
nonconvex setting.

(ii) (transversality) The origin of the concept of transversality can be traced back to at least the 19th
century (cf. [63, 66]) in differential geometry which deals of course with smooth manifolds, where
transversality of a pair of smooth manifolds {A,B} at a common point x̄ can also be characterised
by condition 1

NA(x̄) ∩
(
−NB(x̄)

)
= {0}. (6.3)

The property is known as a sufficient condition for the intersection A∩B to be also a smooth man-
ifold around x̄. To the best of our awareness, transversality of pairs (collections) of general sets in
normed linear spaces was first investigated by Kruger in a systematic picture of mutual arrangement
properties of sets. The property has been known under quite a number of other names including reg-
ularity, strong regularity, property (UR)S , uniform regularity, strong metric inequality [90–92,104]

1In this special setting, the normal cones appearing in (6.3) are the normal spaces (i.e., orthogonal complements to the
tangent spaces) to the manifolds at x̄. The minus sign in (6.3) can be omitted.
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and linear regular intersection [109]. Plenty of primal and dual space characterisations of transver-
sality as well as its close connections to important concepts in optimisation and variational analysis
such as metric regularity, (extended) extremal principles, open mapping theorems and other types
of mutual arrangement properties of collections of sets have been established and extended to more
general nonlinear settings in a series of papers by Kruger and his collaborators [81,90–95,105,106].
Apart from classical applications of the property, for example, as constraint qualification conditions
for establishing calculus rules for the limiting normal cones [120, page 265] and coderivatives (in
connection with metric regularity, the counterpart of transversality in terms of set-valued map-
pings) [51,143], important applications have also emerged in the field of numerical analysis. Lewis
et al. [109,110] applied the property to establish the first linear convergence criteria for nonconvex
alternating and averaged projections. Transversality was also used to prove linear convergence of
the Douglas-Rachford algorithm [65,135] and its relaxations [159]. A practical application of these
results is the phase retrieval problem where transversality is sufficient for linear convergence of
alternating projections, the Douglas-Rachford algorithm and actually any convex combinations of
the two algorithms [160].
We refer the reader to the recent surveys by Kruger et al. [99, 100] for a more comprehensive
discussion about the two properties.

A number of characterisations of transversality in terms of normal vectors, especially in the Euclidean
space setting, have been established [90–92,100,104,106,109] and applied, for example, [109,120,135,159].
The situation is very much different for subtransversality. For collections of closed and convex sets, the
following characterisation of subtransversality is due to Kruger.

Proposition 6.1.3 (normal-vector-based characterisation of subtransversality with convexity). [96,
Theorem 3]2 A pair of closed and convex sets {A,B} is subtransversal at a point x̄ ∈ A ∩ B if and
only if there exist numbers α ∈ ]0, 1[ and δ > 0 such that ‖v1 + v2‖ > α for all a ∈ (A \ B) ∩ Bδ(x̄),
b ∈ (B \A) ∩ Bδ(x̄), x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖ and v1, v2 ∈ X satisfying

dist (v1, NA(a)) < δ, dist (v2, NB(b)) < δ,

‖v1‖+ ‖v2‖ = 1, 〈v1, x− a〉 = ‖v1‖ ‖x− a‖, 〈v2, x− b〉 = ‖v2‖ ‖x− b‖.

Let itrc[A,B](x̄) denote the exact upper bound of all α ∈ ]0, 1[ such that the conditions in Proposition
6.1.3 (equivalent to subtransversality in the convex setting) are satisfied for some δ > 0, with the
convention that the supremum over the empty set equals 0. This quantity is well defined regardless of
the convexity of the sets, and the strict inequality itrc[A,B](x̄) > 0 characterises a certain transversality-
type property in not necessarily convex setting. The constant itrc[A,B](x̄) is going to play a central role
in the analysis in this part of thesis.

In the nonconvex setting, the first sufficient condition for subtransversality in terms of normal vectors
was formulated in [105, Theorem 4.1] following the routine of deducing metric subregularity character-
isations for set-valued mappings in [94]. The result was then refined successively in [100, Theorem
4(ii)], [99, Theorem 2] and finally in [96] in the following form.

Proposition 6.1.4 (sufficient condition for subtransversality). [96, combination of Definition 2 and
Corollary 2]3 A pair of closed sets {A,B} is subtransversal at a point x̄ ∈ A ∩ B if there exist numbers
α ∈ ]0, 1[ and δ > 0 such that, for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄) and x ∈ Bδ(x̄) with
‖x− a‖ = ‖x− b‖, one has ‖v1 + v2‖ > α for some ε > 0 and all a′ ∈ A ∩ Bε(a), b′ ∈ B ∩ Bε(b),
x′1 ∈ Bε(a), x′2 ∈ Bε(b) with ‖x− x′1‖ = ‖x− x′2‖, and v1, v2 ∈ X satisfying

dist (v1, NA(a′)) < δ, dist (v2, NB(b′)) < δ,

‖v1‖+ ‖v2‖ = 1, 〈v1, x− x′1〉 = ‖v1‖‖x− x′1‖, 〈v2, x− x′2〉 = ‖v2‖‖x− x′2‖.

Let itrw[A,B](x̄) denote the exact upper bound of all α ∈ ]0, 1[ such that the above sufficient condition
2The result is valid in Banach spaces.
3The result is valid in Asplund spaces.
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for subtransversality is satisfied for some δ > 0, with the convention that the supremum over the empty
set equals 0.

To this end, the following question about the above result is of importance. Our subsequent analysis
will give the negative answer to it (see Remark 6.1.17).

Question 1. Is the sufficient condition formulated in Proposition 6.1.4, i.e. itrw[A,B](x̄) > 0, also
necessary for subtransversality?

We next recall the central concept of this chapter, i.e., the intrinsic transversality property of pairs of
sets. Compared to its better known siblings: transversality and subtransversality, intrinsic transversality
came to life much later.

Definition 6.1.5 (intrinsic transversality in Euclidean spaces). [52, Definition 3.1] A pair of closed sets
{A,B} in a Euclidean space is intrinsically transversal at a point x̄ ∈ A∩B if there exists an angle α > 0
together with a number δ > 0 such that any two points a ∈ (A \ B) ∩ Bδ(x̄) and b ∈ (B \ A) ∩ Bδ(x̄)
cannot have difference a− b simultaneously making an angle strictly less than α with the two proximal
normal cones Np

B(b) and −Np
A(a).

The above property was originally introduced in 2015 by Drusvyatskiy et al. [52] as a sufficient
condition for local linear convergence of the alternating projection algorithm for solving nonconvex
feasibility problems in Euclidean spaces. As demonstrated by Ioffe [75], Kruger et al. [96, 99] and will
also be confirmed in this chapter, intrinsic transversality turns out to be an important qualification
property in the framework of variational analysis. Kruger [96] recently extended and investigated intrinsic
transversality in more general underlying spaces4.

Definition 6.1.6 (intrinsic transversality). [99, Definition 4(ii)] & [96, Definition 2(ii)]5 A pair of closed
sets {A,B} is intrinsically transversal at a point x̄ ∈ A ∩ B if there exist numbers α ∈ ]0, 1[ and δ > 0
such that ‖v1 + v2‖ > α for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄), x ∈ Bδ(x̄) with x 6= a, x 6= b,

1− δ < ‖x− a‖
‖x− b‖

< 1 + δ, and v1 ∈ NA(a) \ {0}, v2 ∈ NB(b) \ {0} satisfying

‖v1‖+ ‖v2‖ = 1, 〈v1, x− a〉
‖v1‖‖x− a‖

> 1− δ, 〈v2, x− b〉
‖v2‖‖x− b‖

> 1− δ.

The exact upper bound of all α ∈ ]0, 1[ that together with some δ > 0 satisfies the above description
of intrinsic transversality is denoted by itr[A,B](x̄), with the convention that the supremum over the
empty set equals 0.

Remark 6.1.7. In Definition 6.1.6 it can be assumed without loss of generality that δ ∈ ]0, 1[. In this

case, the three conditions a ∈ A \B, b ∈ B \A and 1− δ < ‖x− a‖
‖x− b‖

< 1 + δ imply conditions x 6= a and
x 6= b. In similar contexts in the sequel, the latter two conditions will be omitted for the sake of brevity,
for example, in the proofs of Lemmas 6.1.11 & 6.2.8, representation (6.70) and Definition 6.3.1(i).

Making use of the quantities str[A,B](x̄), tr[A,B](x̄), itrc[A,B](x̄), itrw[A,B](x̄) and itr[A,B](x̄),
we can concisely summarize the facts recalled so far in this section. The definitions of subtransversality,
transversality and intrinsic transversality and Propositions 6.1.3 & 6.1.4 respectively admit more concise
descriptions.

Proposition 6.1.8 (summary). Let {A,B} be a pair of closed sets and x̄ ∈ A ∩B.

(i) {A,B} is subtransversal at x̄ if and only if str[A,B](x̄) > 0.
4It is worth noting that the extension from Definition 6.1.5 to Definition 6.1.6 of intrinsic transversality is not trivial,

and the coincidence of the two definitions in the Euclidean space setting was shown in [96, Proposition 8(iii)].
5The property was defined and investigated in general normed linear spaces.
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(ii) {A,B} is transversal at x̄ if and only if tr[A,B](x̄) > 0.

(iii) {A,B} is intrinsically transversal at x̄ if and only if itr[A,B](x̄) > 0.

(iv) If the sets A,B are convex, then {A,B} is subtransversal at x̄ if and only if itrc[A,B](x̄) > 0.

(v) {A,B} is subtransversal at x̄ if itrw[A,B](x̄) > 0.

In this section, we are particularly interested in the result established by Kruger [96, Theorem 4]
that intrinsic transversality implies the sufficient condition of subtransversality stated in Proposition
6.1.4, which in turn implies the one stated in Proposition 6.1.3. These implications are captured by
Proposition 6.1.9(i) via the relationships between the corresponding quantities. For completeness, more
comprehensive relationships between the transversality-type properties are also presented here.

Proposition 6.1.9 (relationships between quantitative constants). [96, Proposition 1] Let {A,B} be a
pair of closed sets and x̄ ∈ A ∩B.

(i) 0 ≤ tr[A,B](x̄) ≤ itr[A,B](x̄) ≤ itrw[A,B](x̄) ≤ itrc[A,B](x̄) ≤ 1.6

(ii) itrw[A,B](x̄) ≤ str[A,B](x̄).7

(iii) If A and B are convex, then itrc[A,B](x̄) = str[A,B](x̄).

(iv) If dimX <∞ and A,B are convex, then itrw[A,B](x̄) = itrc[A,B](x̄) = str[A,B](x̄).

Remark 6.1.10 (notation & terminology). In view of Proposition 6.1.9(i)&(ii), the strict inequality
itrw[A,B](x̄) > 0 corresponds to a property, which is weaker than intrinsic transversality and stronger
than subtransversality. That property is called weak intrinsic transversality in [96, 99]. This in partic-
ular explains why the letter “w” is used in the notation itrw[A,B](x̄). Similarly, the strict inequality
itrc[A,B](x̄) > 0 corresponds to a weaker property than weak intrinsic transversality. Such a property
has not been named yet, but it has played an important role in the analysis of transversality-type prop-
erties mainly in the convex setting [96]. This particularly explains why the letter “c” is used in the
notation itrc[A,B](x̄).

Proposition 6.1.9(iv) in particular claims the equivalence between weak intrinsic transversality and
intrinsic transversality in the convex and finite dimensional setting. The following question about their
relationship in more general settings is of interest. Subsequent analysis will give the answer to this
question in the Hilbert space setting (see Remark 6.1.16).

Question 2. [96, question 3, page 140] What is the relationship between weak intrinsic transversality
and intrinsic transversality in the general nonconvex setting?

The next result establishes the main quantitative estimate of this section. Though the statement and
its proof are rather technical, its meaningful consequences will follow shortly.

Lemma 6.1.11 (quantitative estimate). Let {A,B} be a pair of closed sets and x̄ ∈ A ∩B. It holds

min
{

itrc[A,B](x̄), 1/
√

2
}
≤ itr[A,B](x̄). (6.4)

Proof. To proceed with the proof, let us suppose that itrc[A,B](x̄) > 0 since there is nothing to prove
in the case itrc[A,B](x̄) = 0. Let us fix an arbitrary number

β ∈
]
0,min

{
itrc[A,B](x̄), 1/

√
2
}[

(6.5)

6The statement is valid in Banach spaces.
7The statement is valid in Asplund spaces.

106



and prove that itr[A,B](x̄) ≥ β. By the definition of itrc[A,B](x̄), there exist numbers

α ∈
]
β,min

{
itrc[A,B](x̄), 1/

√
2
}[

and δ > 0 such that, for all a ∈ (A\B)∩Bδ(x̄), b ∈ (B \A)∩Bδ(x̄) and x ∈ Bδ(x̄) with ‖x−a‖ = ‖x−b‖,
one has

‖v1 + v2‖ > α (6.6)
for all v1, v2 ∈ X satisfying

dist (v1, NA(a)) < δ, dist (v2, NB(b)) < δ, (6.7)
‖v1‖+ ‖v2‖ = 1, 〈v1, x− a〉 = ‖v1‖‖x− a‖, 〈v2, x− b〉 = ‖v2‖‖x− b‖. (6.8)

Choose a number δ′ ∈ ]0, δ/3[ and satisfying

2
(√

δ′ + δ′
)
< 1/2− β2, (6.9)

√
2δ′+2

√
2δ′ − δ′2

4− 6δ′ + 3δ′2 < min {δ, α− β} . (6.10)

Such a number δ′ exists since 1/2− β2 > 0, min {δ, α− β} > 0 and

lim
t↓0

2
(√

t+ t
)

= 0, lim
t↓0

(
√

2t+ 2
√

2t− t2
4− 6t+ 3t2

)
= 0.

We are going to prove itr[A,B](x̄) ≥ β with the technical constant δ′ > 0. To begin, let us take any
a ∈ (A \B) ∩ Bδ′(x̄), b ∈ (B \A) ∩ Bδ′(x̄) and x ∈ Bδ′(x̄) with x 6= a, x 6= b,

1− δ′ < ‖x− a‖
‖x− b‖

< 1 + δ′, (6.11)

and v1 ∈ NA(a) \ {0}, v2 ∈ NB(b) \ {0} satisfying

‖v1‖+ ‖v2‖ = 1, 〈v1, x− a〉
‖v1‖‖x− a‖

> 1− δ′, 〈v2, x− b〉
‖v2‖‖x− b‖

> 1− δ′. (6.12)

All we need is to show that
‖v1 + v2‖ > β. (6.13)

We first observe from (6.12) that∥∥∥∥ v1

‖v1‖
− x− a
‖x− a‖

∥∥∥∥2
= 2− 2 〈v1, x− a〉

‖v1‖‖x− a‖
< 2− 2(1− δ′) = 2δ′,∥∥∥∥ v2

‖v2‖
− x− b
‖x− b‖

∥∥∥∥2
= 2− 2 〈v2, x− b〉

‖v2‖‖x− b‖
< 2− 2(1− δ′) = 2δ′.

(6.14)

We take care of two possibilities concerning the value of 〈x− a, x− b〉 as follows.

Case 1. 〈x− a, x− b〉 > 0. Then∥∥∥∥ x− a
‖x− a‖

− x− b
‖x− b‖

∥∥∥∥2
= 2− 2 〈x− a, x− b〉

‖x− a‖‖x− b‖
< 2.

Equivalently, ∥∥∥∥ x− a
‖x− a‖

− x− b
‖x− b‖

∥∥∥∥ < √2. (6.15)

By the triangle inequality and estimates (6.15), (6.14), we get that∥∥∥∥ v1

‖v1‖
− v2

‖v2‖

∥∥∥∥ ≤ ∥∥∥∥ x− a
‖x− a‖

− x− b
‖x− b‖

∥∥∥∥+
∥∥∥∥ v1

‖v1‖
− x− a
‖x− a‖

∥∥∥∥+
∥∥∥∥ v2

‖v2‖
− x− b
‖x− b‖

∥∥∥∥
<
√

2 + 2
√

2δ′ =
√

2
(

1 + 2
√
δ′
)
.
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This implies that∥∥∥∥ v1

‖v1‖
− v2

‖v2‖

∥∥∥∥2
= 2− 2 〈v1, v2〉

‖v1‖ ‖v2‖
< 2

(
1 + 2

√
δ′
)2
⇔ 〈v1, v2〉 > −4

(√
δ′ + δ′

)
‖v1‖ ‖v2‖ . (6.16)

Using ‖v1‖+ ‖v2‖ = 1 which implies ‖v1‖ ‖v2‖ ≤ 1/4 and (6.16), respectively, we obtain that

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 + 2 〈v1, v2〉 = 1− 2 ‖v1‖ ‖v2‖+ 2 〈v1, v2〉

> 1− 2 ‖v1‖ ‖v2‖ − 8
(√

δ′ + δ′
)
‖v1‖ ‖v2‖ ≥

1
2 − 2

(√
δ′ + δ′

)
.

This combining with (6.9) yields that

‖v1 + v2‖ >
√

1
2 − 2

(√
δ′ + δ′

)
> β.

Case 2.
〈x− a, x− b〉 ≤ 0. (6.17)

Let us define m = a+ b

2 and

x′ = x− 〈b− a, x−m〉
‖b− a‖2

(b− a). (6.18)

We first check that
‖x′ − a‖ = ‖x′ − b‖. (6.19)

Indeed,

‖x′ − a‖2 − ‖x′ − b‖2 = ‖x− a‖2 − ‖x− b‖2 − 2 〈b− a, x−m〉
‖b− a‖2

〈x− a, b− a〉

+ 2 〈b− a, x−m〉
‖b− a‖2

〈x− b, b− a〉

= ‖x− a‖2 − ‖x− b‖2 − 2 〈b− a, x−m〉
‖b− a‖2

〈b− a, b− a〉

= ‖x− a‖2 − ‖x− b‖2 − 2 〈b− a, x−m〉
= ‖x− a‖2 − ‖x− b‖2 − 〈(x− a)− (x− b), (x− a) + (x− b)〉 = 0.

We next check that
〈x− x′, x′ −m〉 = 0. (6.20)

Indeed, by (6.18), it holds that

〈x− x′, x′ −m〉 = 〈b− a, x−m〉
‖b− a‖2

〈b− a, x′ −m〉 ,

from which (6.20) follows since

〈b− a, x′ −m〉 =
〈
b− a, x−m− 〈b− a, x−m〉

‖b− a‖2
(b− a)

〉
= 〈b− a, x−m〉 − 〈b− a, x−m〉

‖b− a‖2
〈b− a, b− a〉 = 0.

Let us define also
v′1 = ‖v1‖

‖x′ − a‖
(x′ − a), v′2 = ‖v2‖

‖x′ − b‖
(x′ − b). (6.21)

It is clear that
‖v′1‖ = ‖v1‖, ‖v′2‖ = ‖v2‖, ‖v′1‖+ ‖v′2‖ = 1,
〈v′1, x′ − a〉 = ‖v1‖‖x′ − a‖ = ‖v′1‖‖x′ − a‖,
〈v′2, x′ − b〉 = ‖v2‖‖x′ − b‖ = ‖v′2‖‖x′ − b‖.

(6.22)
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We next check that

dist (v′1, NA(a)) < δ, dist (v′2, NB(b)) < δ. (6.23)

Let us prove dist (v′1, NA(a)) < δ. Indeed, since v1 ∈ NA(a), it holds by (6.21) that

dist (v′1, NA(a)) ≤ ‖v′1 − v1‖ =
∥∥∥∥ ‖v1‖
‖x′ − a‖

(x′ − a)− v1

∥∥∥∥
= ‖v1‖

∥∥∥∥ x′ − a
‖x′ − a‖

− v1

‖v1‖

∥∥∥∥
≤ ‖v1‖

(∥∥∥∥ x− a
‖x− a‖

− v1

‖v1‖

∥∥∥∥+
∥∥∥∥ x′ − a
‖x′ − a‖

− x− a
‖x− a‖

∥∥∥∥) .
(6.24)

An upper bound of
∥∥∥∥ x− a
‖x− a‖

− v1

‖v1‖

∥∥∥∥ has been given by (6.14):

∥∥∥∥ x− a
‖x− a‖

− v1

‖v1‖

∥∥∥∥ < √2δ′. (6.25)

We now establish an upper bound of
∥∥∥∥ x′ − a
‖x′ − a‖

− x− a
‖x− a‖

∥∥∥∥ via three steps as follows.

Step 1. We show that

‖x− x′‖2 ≤ 2δ′−δ′2
4(1−δ′)2 min

{
‖x− a‖2, ‖x− b‖2

}
. (6.26)

If ‖x− a‖ ≥ ‖x− b‖, then

‖x− a‖2 − ‖x− b‖2 ≥ 0
⇔ ‖x−m‖2 + ‖m− a‖2+2 〈x−m,m− a〉 − ‖x−m‖2 − ‖m− b‖2 − 2 〈x−m,m− b〉 ≥ 0

⇔〈b− a, x−m〉 ≥ 0.
(6.27)

Note from (6.17) that

〈b− a, x− b〉 = 〈b− x, x− b〉+ 〈x− a, x− b〉 = −‖x− b‖2 + 〈x− a, x− b〉 ≤ 0. (6.28)

Taking (6.18), (6.27) and (6.28) into account, we have that

‖x′ − b‖2 − ‖x− b‖2 = ‖x′ − x‖2 + 2 〈x′ − x, x− b〉

= ‖x′ − x‖2 − 2 〈b− a, x−m〉
‖b− a‖2

〈b− a, x− b〉

≥ ‖x′ − x‖2.

(6.29)

By (6.19) and (6.20) we get that

‖x− a‖2 + ‖x− b‖2 = 2‖x− x′‖2 + ‖x′ − a‖2 + ‖x′ − b‖2 + 2 〈x− x′, 2x′ − (a+ b)〉
= 2‖x− x′‖2 + 2‖x′ − b‖2 + 4 〈x− x′, x′ −m〉
= 2‖x− x′‖2 + 2‖x′ − b‖2.

This together with (6.11) and (6.29) yields that

2‖x− x′‖2 = ‖x− a‖2 + ‖x− b‖2 − 2‖x′ − b‖2

≤ (1 + δ′)2‖x− b‖2 + ‖x− b‖2 − 2‖x′ − b‖2

≤ (1 + δ′)2‖x− b‖2 + ‖x− b‖2 − 2
(
‖x− b‖2 + ‖x′ − x‖2

)
.
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Equivalently,

4‖x− x′‖2 ≤
(
2δ′ + δ′2

)
‖x− b‖2 =

(
2δ′ + δ′2

)
min{‖x− a‖2, ‖x− b‖2} (6.30)

since ‖x− a‖ ≥ ‖x− b‖ in this case.

By a similar argument, if ‖x− a‖ ≤ ‖x− b‖, then

〈b− a, x−m〉 ≤ 0, 〈b− a, x− a〉 ≥ 0.

Thus
‖x′ − a‖2 − ‖x− a‖2 = ‖x′ − x‖2 + 2 〈x′ − x, x− a〉

= ‖x′ − x‖2 − 2 〈b− a, x−m〉
‖b− a‖2

〈b− a, x− a〉

≥ ‖x′ − x‖2.

(6.31)

By (6.19) and (6.20) we get that

‖x− a‖2 + ‖x− b‖2 = 2‖x− x′‖2 + 2‖x′ − a‖2,

which together with (6.11) and (6.31) yields that

2‖x− x′‖2 ≤ ‖x− a‖2 + 1
(1−δ′)2 ‖x− a‖2 − 2

(
‖x− a‖2 + ‖x′ − x‖2

)
.

Equivalently,
4‖x− x′‖2 ≤ 2δ′−δ′2

(1−δ′)2 ‖x− a‖2 = 2δ′−δ′2
(1−δ′)2 min{‖x− a‖2, ‖x− b‖2} (6.32)

since ‖x− a‖ ≤ ‖x− b‖ in this case.

Combining (6.30) and (6.32) and noting that 2δ′ + δ′2 <
2δ′ − δ′2
(1− δ′)2 , we obtain (6.26) as claimed.

Step 2. We show that

‖x′ − a‖2 ≥ 4−6δ′+3δ′2
2δ′−δ′2 ‖x− x

′‖2. (6.33)

Indeed, if ‖x− a‖ ≤ ‖x− b‖, then the use of (6.31) and (6.32) yields (6.33):

‖x′ − a‖2 ≥ ‖x− a‖2 + ‖x− x′‖2

≥ 4(1−δ′)2)
2δ′−δ′2 ‖x− x

′‖2 + ‖x− x′‖2 = 4−6δ′+3δ′2
2δ′−δ′2 ‖x− x

′‖2.

Otherwise, i.e., ‖x− a‖ ≥ ‖x− b‖, then the use of (6.19), (6.29) and (6.30) successively implies that

‖x′ − a‖2 = ‖x′ − b‖2 ≥ ‖x− b‖2 + ‖x− x′‖2

≥ 4
2δ′+δ′2 ‖x− x

′‖2 + ‖x− x′‖2 = 4+2δ′+δ′2
2δ′+δ′2 ‖x− x

′‖2,

which also yields (6.33) since 4 + 2δ′ + δ′2

2δ′ + δ′2
>

4− 6δ′ + 3δ′2
2δ′ − δ′2 . Hence (6.33) has been proved.

Step 3. We show that ∥∥∥∥ x′ − a
‖x′ − a‖

− x− a
‖x− a‖

∥∥∥∥ ≤ 2‖x− x
′‖

‖x′ − a‖
. (6.34)

Indeed, ∥∥∥∥ x′ − a
‖x′ − a‖

− x− a
‖x− a‖

∥∥∥∥ ≤ ∥∥∥∥ x′ − a
‖x′ − a‖

− x− a
‖x′ − a‖

∥∥∥∥+
∥∥∥∥ x− a
‖x′ − a‖

− x− a
‖x− a‖

∥∥∥∥
= ‖x− x

′‖
‖x′ − a‖

+
∣∣∣∣ ‖x− a‖‖x′ − a‖

− 1
∣∣∣∣ .
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If ‖x− a‖ ≥ ‖x′ − a‖, then (6.34) holds true since∣∣∣∣ ‖x− a‖‖x′ − a‖
− 1
∣∣∣∣ = ‖x− a‖
‖x′ − a‖

− 1 ≤ ‖x− x
′‖+ ‖x′ − a‖
‖x′ − a‖

− 1 = ‖x− x
′‖

‖x′ − a‖
.

Otherwise, i.e., ‖x− a‖ < ‖x′ − a‖, then (6.34) also holds true since∣∣∣∣ ‖x− a‖‖x′ − a‖
− 1
∣∣∣∣ = 1− ‖x− a‖

‖x′ − a‖
≤ 1− ‖x

′ − a‖ − ‖x− x′‖
‖x′ − a‖

= ‖x− x
′‖

‖x′ − a‖
.

Hence (6.34) has been proved.

A combination of (6.33) and (6.34) yields that∥∥∥∥ x′ − a
‖x′ − a‖

− x− a
‖x− a‖

∥∥∥∥ ≤ 2
√

2δ′−δ′2
4−6δ′+3δ′2 . (6.35)

Substitute (6.25) and (6.35) into (6.24) and using (6.10), we obtain that

dist (v′1, NA(a)) ≤ ‖v′1 − v1‖ ≤ ‖v1‖

(
√

2δ′ + 2
√

2δ′ − δ′2
4− 6δ′ + 3δ′2

)
(6.36)

<
√

2δ′ + 2
√

2δ′ − δ′2
4− 6δ′ + 3δ′2 < δ.

The proof of dist (v′2, NB(b)) < δ is analogous, and we also obtain that

dist (v′2, NB(b)) ≤ ‖v′2 − v2‖ ≤ ‖v2‖

(
√

2δ′ + 2
√

2δ′ − δ′2
4− 6δ′ + 3δ′2

)
(6.37)

<
√

2δ′ + 2
√

2δ′ − δ′2
4− 6δ′ + 3δ′2 < δ.

Hence (6.23) has been proved.

Conditions (6.23) and (6.22) ensure that the pair of vectors {v′1, v′2} satisfies conditions (6.7) and (6.8),
respectively. It is trivial from the choice of δ′ in (6.10) that a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄).
We also have x′ ∈ Bδ(x̄) since

‖x′ − x̄‖ =
∥∥∥∥x− 〈b− a, x−m〉‖b− a‖2

(b− a)− x̄
∥∥∥∥ ≤ ‖x− x̄‖+ ‖x−m‖ ≤ δ′ + max{‖x− a‖, ‖x− b‖}

≤ δ′ + ‖x− x̄‖+ max{‖a− x̄‖, ‖b− x̄‖} ≤ 3δ′ < δ.

Hence, the estimate (6.6) is applicable to {v′1, v′2}. That is,

‖v′1 + v′2‖ > α. (6.38)

Now using the triangle inequality, (6.36), (6.37), (6.38), (6.10) and (6.5) successively, we obtain the
desired estimate:

‖v1 + v2‖ = ‖v′1 + v′2 + v1 − v′1 + v2 − v′2‖
≥ ‖v′1 + v′2‖ − ‖v′1 − v1‖ − ‖v′2 − v2‖

≥ α− (‖v1‖+ ‖v2‖)
(
√

2δ′ + 2
√

2δ′ + δ′2

4 + 2δ′ + δ′2

)

= α−

(
√

2δ′ + 2
√

2δ′ − δ′2
4− 6δ′ + 3δ′2

)
> α− (α− β) = β.
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This completes Case 2 and (6.13) has been proved.

Hence, we have proved that {A,B} is intrinsically transversal at x̄ with itr[A,B](x̄) ≥ β. Since β
can be arbitrarily close to min

{
itrc[A,B](x̄), 1/

√
2
}

, we also obtain the estimate (6.4) and the proof is
complete.

Remark 6.1.12. The idea behind Lemma 6.1.11 comes from two observations. First, when pairs of vectors
(v1, v2) appearing in the definitions of itr[A,B](x̄) and itrc[A,B](x̄) are further restricted to the constraint
〈v1, v2〉 < 0, the two groups of conditions defining the two constants become equivalent. Second, this
additional constraint, which also gives rise to the number 1/

√
2 in Lemma 6.1.11, does not qualitatively

affect the properties characterised by these constants. See also Lemma 6.3.5 for a geometric counterpart
of this constraint in the Euclidean space setting.

Combining Lemma 6.1.11 with Proposition 6.1.9, we obtain the main result of this section.

Theorem 6.1.13 (complete quantitative relationships). Let {A,B} be a pair of closed sets and x̄ ∈ A∩B.
Then the following statements hold true.

(i) If itrc[A,B](x̄) ≥ 1/
√

2, then

min {itr[A,B](x̄), itrw[A,B](x̄), itrc[A,B](x̄)} ≥ 1/
√

2. (6.39)

(ii) If itrc[A,B](x̄) < 1/
√

2, then

itrc[A,B](x̄) = itr[A,B](x̄) = itrw[A,B](x̄). (6.40)

As a consequence, the three transversality-type properties characterised by the above constants are equiv-
alent. In particular, itrc[A,B](x̄) is a refined equivalent characterisation of intrinsic transversality.

Proof. (i) In this case, it holds min
{

itrc[A,B](x̄), 1/
√

2
}

= 1/
√

2. Lemma 6.1.11 then yields
itr[A,B](x̄) ≥ 1/

√
2, which in turn implies (6.39) because the left-hand-side of (6.39) equals itr[A,B](x̄)

in view of Proposition 6.1.9(i).

(ii) In this case, it holds min
{

itrc[A,B](x̄), 1/
√

2
}

= itrc[A,B](x̄). Lemma 6.1.11 then implies
itrc[A,B](x̄) ≤ itr[A,B](x̄), which together with Proposition 6.1.9(i) yields the equalities in (6.40).

In view of Theorem 6.1.13, the following result covers both Propositions 6.1.3 & 6.1.4 in the Hilbert
space setting. More importantly, it refines Proposition 6.1.4 which establishes the weakest sufficient
condition in terms of normal vectors for subtransversality in the nonconvex setting.

Corollary 6.1.14 (refined sufficient condition for subtransversality). A pair of closed sets {A,B} is
subtransversal at x̄ ∈ A ∩ B if itrc[A,B](x̄) > 0. The inverse implication is also true when the sets are
convex.

Proof. Let us suppose itrc[A,B](x̄) > 0. In both cases of either itrc[A,B](x̄) ≥ 1/
√

2 or itrc[A,B](x̄) <
1/
√

2, Theorem 6.1.13 ensures that itrw[A,B](x̄) > 0. In view of Proposition 6.1.9(ii), the latter implies
subtransversal of {A,B} at x̄. The statement about the inverse implication in the convex setting follows
from Proposition 6.1.3.
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Corollary 6.1.14 gives rise to the following question, which will be addressed in Remark 6.1.18.

Question 3. Is the sufficient condition itrc[A,B](x̄) > 0 also necessary for subtransversality in the
nonconvex setting?

The following result is of importance.

Corollary 6.1.15 (intrinsic transversality is subtransversality in the convex setting). For pairs of closed
and convex sets, subtransversality and intrinsic transversality are equivalent.

Proof. By Corollary 6.1.14, a pair of closed and convex sets {A,B} is intrinsically transversal at x̄ ∈ A∩B
if and only if itrc[A,B](x̄) > 0. In view of Theorem 6.1.13, the latter is equivalent to itrw[A,B](x̄) > 0,
which in turns amounts to str[A,B](x̄) > 0 thanks to Proposition 6.1.9(iii). This is equivalent to
subtransversality of {A,B} at x̄ due to Proposition 6.1.8(i).

As by-products, we address Questions 1 and 2 in the remainder of this section.
Remark 6.1.16 (answer to Question 2). Theorem 6.1.13 clearly shows that weak intrinsic transversality
(i.e., itrw[A,B](x̄) > 0) and intrinsic transversality (i.e., itr[A,B](x̄) > 0) are equivalent in the Hilbert
space setting. Note that it can happen that itrw[A,B](x̄) 6= itr[A,B](x̄) if itrc[A,B](x̄) > 1/

√
2.

It is worth keeping in mind that the question remains open in more general underlying spaces.
Remark 6.1.17 (answer to Question 1). In view of Remark 6.1.16, the condition itrw[A,B](x̄) > 0 (i.e,
weak intrinsic transversality) is equivalent to intrinsic transversality of {A,B} at x̄. But it is widely
known that the latter is not necessary for subtransversality in the nonconvex setting [53,100,128]. This
establishes the negative answer to Question 1.
Remark 6.1.18 (answer to Question 3). Thanks to Theorem 6.1.13, the two conditions itrc[A,B](x̄) > 0
and itrw[A,B](x̄) > 0 are equivalent. The latter is not necessary for subtransversality as explained in
Remark 6.1.17. As a consequence, the condition itrc[A,B](x̄) > 0 is not necessary for subtransversality
in the nonconvex setting.

In conclusion, Theorem 6.1.13 allows us to unify and refine a number of transversality-type properties
in Hilbert spaces including intrinsic transversality [52], weak intrinsic transversality [96], the sufficient
conditions for subtransversality [99,100,106] and the characterisation of subtransversality with convexity
[96]. This result significantly clarifies the picture of transversality-type properties.

6.2 Intrinsic Transversality in Primal Space Terms

In view of Corollary 6.1.15, for pairs of closed and convex sets in Hilbert spaces, intrinsic transversality
is equivalent to subtransversality which is defined in primal space8 terms. The situation for pairs of
nonconvex sets has not been known and requires clarification; see, for example, the following question
raised by Ioffe [75].

Question 4. [75, page 358] What are primal space counterparts of intrinsic transversality?

The analysis in this section is devoted to addressing the above question. The main goal is to charac-
terise intrinsic transversality by conditions which do not involve normal vectors.

8In the framework of this section, the term primal space is occasionally used to indicate that the mentioned ob-
ject/condition/property/representation does not explicitly involve normals.
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For convenience, let us recall the notation of distance defined in (2.32) for three sets as follows9:

d1 (A,B,Ω) := inf
x∈Ω,a∈A,b∈B

max{‖x− a‖ , ‖x− b‖}, ∀A,B,Ω ⊂ X,

with the convention that the infimum over the empty set equals infinity.

Definition 6.2.1 (property (P)10). A pair of closed sets {A,B} is said to satisfy property (P) at a
point x̄ ∈ A ∩ B if there are numbers α ∈ ]0, 1[ and ε > 0 such that for any a ∈ (A \ B) ∩ Bε(x̄),
b ∈ (B \ A) ∩ Bε(x̄) and x ∈ Bε(x̄) with ‖x− a‖ = ‖x− b‖ and number δ > 0, there exists ρ ∈ ]0, δ[
satisfying

d1
(
A ∩ Bλ(a), B ∩ Bλ(b),Bρ(x)

)
+ αρ ≤ ‖x− a‖ , where λ :=

(
α+ 1/

√
ε
)
ρ. (6.41)

The exact upper bound of all α ∈ ]0, 1[ such that {A,B} satisfies property (P) at x̄ for α and some ε > 0
is denoted by itrp[A,B](x̄).

The following statement is straightforward from the definition.

Proposition 6.2.2. A pair of closed sets {A,B} satisfies property (P) at a point x̄ ∈ A∩B if and only
if itrp[A,B](x̄) > 0.

We next reformulate several technical results which are essential for proving the equivalence between
property (P) and intrinsic transversality. We first recall Corollary 3.3.3.

Proposition 6.2.3. [30, Corollary 6.3] 11 Let {A,B} be a pair of closed sets in X, x̄ ∈ A∩B, u, v ∈ X
and numbers ρ, ε > 0. Suppose that

(A− u) ∩ (B − v) ∩ Bρ(x̄) = ∅, (6.42)
max{‖u‖ , ‖v‖} < d1 (A− u,B − v,Bρ(x̄)) + ε. (6.43)

Then for any numbers λ ≥ ε + ρ and τ ∈
[
0, λ−ελ+ε

[
, there exist points â ∈ A ∩ Bλ(x̄), b̂ ∈ B ∩ Bλ(x̄),

x̂ ∈ Bρ(x̄) and vectors v1 ∈ NA(â), v2 ∈ NB(b̂) such that

‖v1‖+ ‖v2‖ = 1, ‖v1 + v2‖ < ε/ρ, (6.44)

〈v1, x̂− â+ u〉+
〈
v2, x̂− b̂+ v

〉
> τ max

{
‖x̂− â+ u‖ , ‖x̂− b̂+ v‖

}
. (6.45)

Remark 6.2.4. Condition (6.45) plays an important role in searching for primal space counterparts of
intrinsic transversality because it relates normal vectors to the primal space elements.

Our subsequent analysis requires the following modified version of Proposition 6.2.3, where the ref-
erence point x̄ ∈ A ∩B is replaced by a triple of points (a, b, x) ∈ A×B ×X.

Proposition 6.2.5. Let {A,B} be a pair of closed sets in X, a ∈ A, b ∈ B, x ∈ X and numbers ρ, ε > 0.
Suppose that

0 < d1 (A,B,Bρ(x)) , (6.46)
max{‖x− a‖ , ‖x− b‖} < d1 (A,B,Bρ(x)) + ε. (6.47)

Then for any numbers λ ≥ ε + ρ and τ ∈
[
0, λ−ελ+ε

[
, there exist points â ∈ A ∩ Bλ(a), b̂ ∈ B ∩ Bλ(b),

x̂ ∈ Bρ(x) and vectors v1 ∈ NA(â), v2 ∈ NB(b̂) satisfying (6.44) and

〈v1, x̂− â〉+ 〈v2, x̂− b̂〉 > τ max
{
‖x̂− â‖ , ‖x̂− b̂‖

}
. (6.48)

9This is the distance between the two sets A×B and {(x, x) ∈ X ×X | x ∈ Ω} in X ×X endowed with the maximum
norm.

10The definition is valid in normed linear spaces.
11The result is valid in Asplund spaces.
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Proof. The idea is to apply Proposition 6.2.3 to

A′ := A− a, B′ := B − b, x̄ := 0 ∈ A′ ∩B′, u := x− a and v := x− b (6.49)

by verifying (6.42) and (6.43). Indeed, condition (6.46) implies that

A ∩B ∩ Bρ(x) = ∅, or equivalently, (A− x) ∩ (B − x) ∩ (ρB) = ∅.

The latter is exactly (6.42) since by (6.49)

(A′ − u) ∩ (B′ − v) ∩ Bρ(x̄) = (A− x) ∩ (B − x) ∩ (ρB).

Note also from (6.49) that

d1 (A′ − u,B′ − v,Bρ(x̄)) = d1 (A− x,B − x, ρB) = d1 (A,B,Bρ(x)) .

This together with (6.47) yields condition (6.43).

In view of Proposition 6.2.3, there exist points

a′ ∈ A′ ∩ (λB), b′ ∈ B′ ∩ (λB), x′ ∈ ρB (6.50)

and vectors v1 ∈ NA′(a′), v2 ∈ NB′(b′) satisfying conditions (6.44) and (6.45). Let us define

â := a′ + a, b̂ := b′ + b and x̂ := x′ + x.

This together with (6.49) and (6.50) ensures that â ∈ A∩Bλ(a), b̂ ∈ B ∩Bλ(b) and x̂ ∈ Bρ(x). Note also
that

NA(â) = NA′(a′), NB(b̂) = NB′(b′), (6.51)
x̂− â = x′ − a′ + x− a = x′ − a′ + u, x̂− b̂ = x′ − b′ + x− b = x′ − b′ + v. (6.52)

The combination of (6.45) and (6.52) yields (6.48) while condition (6.51) ensures that v1 ∈ NA(â),
v2 ∈ NB(b̂).

Therefore, the points â, b̂, x̂ and vectors v1, v2 satisfy all the required conditions of the proposition.
The proof is complete.

Another technical result is needed for our analysis.

Proposition 6.2.6. 12 Let {A,B} be a pair of closed sets in X, a ∈ A, b ∈ B, x ∈ X with ‖x− a‖ =
‖x− b‖ > 0, α, ε > 0 and vectors v1, v2 ∈ X with ‖v1‖+ ‖v2‖ = 1. Suppose that the following conditions
are satisfied:

‖v1 + v2‖+ 2ε
(
α+ 1/

√
ε
)
< α, (6.53)

dist (v1, NA(a)) < ε, dist (v2, NB(b)) < ε, (6.54)
〈v1, x− a〉 = ‖v1‖ ‖x− a‖ , 〈v2, x− b〉 = ‖v2‖ ‖x− b‖ . (6.55)

Then there exists a number δ > 0 such that

d1
(
A ∩ Bλ(a), B ∩ Bλ(b),Bρ(x)

)
+ αρ > ‖x− a‖ , where λ :=

(
α+ 1/

√
ε
)
ρ, (6.56)

holds true for all ρ ∈ ]0, δ[.
12The result is valid in normed linear spaces.
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Proof. By (6.54), there exist vectors u1 ∈ NA(a) and u2 ∈ NB(b) such that

‖v1 − u1‖ < ε, ‖v2 − u2‖ < ε. (6.57)

Since α− ‖v1 + v2‖ > 2ε(α+ 1/
√
ε) due to (6.53), there are positive numbers α1 and α2 such that

α > α1 > α2 > ‖v1 + v2‖ , α1 − α2 > 2ε(α+ 1/
√
ε). (6.58)

Choose a number β > 0 such that

β <
α1 − α2

α+ 1/
√
ε
− 2ε, equivalently, α1 − α2 − (2ε+ β)(α+ 1/

√
ε) > 0. (6.59)

By the definition (2.1) of the Fréchet normal cone, there is a number δ′ > 0 such that

〈u1, a
′ − a〉 ≤ β

2 ‖a
′ − a‖ , 〈u2, b

′ − b〉 ≤ β
2 ‖b

′ − b‖ , ∀a′ ∈ A ∩ Bδ′(a), b′ ∈ B ∩ Bδ′(b). (6.60)

Let us define
δ := δ′

α+1/
√
ε
> 0 (6.61)

and show that δ fulfills the requirement of the proposition. Indeed, let us suppose to the contrary that
condition (6.56) is not satisfied for some ρ ∈ ]0, δ[. That is,

d1
(
A ∩ Bλ(a), B ∩ Bλ(b),Bρ(x)

)
+ ρα ≤ ‖x− a‖ , where λ :=

(
α+ 1/

√
ε
)
ρ.

Since α1 < α, the above inequality ensures the existence of â ∈ A ∩ Bλ(a), b̂ ∈ B ∩ Bλ(b) and x̂ ∈ Bρ(x)
such that

max{‖x̂− â‖ , ‖x̂− b̂‖} < ‖x− a‖ − ρα1. (6.62)
Note that λ =

(
α+ 1/

√
ε
)
ρ < (α+ 1/

√
ε)δ = δ′ thanks to (6.61). Then in view of (6.60), we have

〈u1, â− a〉 ≤ β
2 ‖â− a‖ , 〈u2, b̂− b〉 ≤ β

2 ‖b̂− b‖.

This implies that

〈u1, â− a〉+ 〈u2, b̂− b〉 ≤ β
2 ‖â− a‖+ β

2 ‖b̂− b‖ ≤
β
2λ+ β

2λ = λβ. (6.63)

By (6.55), ‖v1‖+ ‖v2‖ = 1 and ‖x− a‖ = ‖x− b‖, it holds

〈v1, x− a〉+ 〈v2, x− b〉 = ‖v1‖‖x− a‖+ ‖v2‖‖x− b‖ = ‖x− a‖ . (6.64)

By (6.62) and ‖v1‖+ ‖v2‖ = 1, it holds

〈v1, x̂− â〉+ 〈v2, x̂− b̂〉 ≤ max{‖x̂− â‖ , ‖x̂− b̂‖} < ‖x− a‖ − ρα1. (6.65)

By the Cauchy-Schwarz inequality and α2 > ‖v1 + v2‖ in view of (6.58), it holds

〈v1 + v2, x− x̂〉 ≤ ‖v1 + v2‖ ‖x− x̂‖ < ρα2. (6.66)

By the Cauchy-Schwarz inequality and (6.57), it holds

〈v1 − u1, â− a〉+ 〈v2 − u2, b̂− b〉 ≤ ε ‖â− a‖+ ε‖b̂− b‖ ≤ 2λε. (6.67)

Adding (6.67) and (6.63) yields that

〈v1, â− a〉+ 〈v2, b̂− b〉 ≤ 2λε+ λβ. (6.68)

Making use of (6.64), (6.65), (6.66), (6.68), λ =
(
α+ 1/

√
ε
)
ρ and (6.59) successively, we come up with

‖x− a‖ = 〈v1, x− a〉+ 〈v2, x− b〉
= 〈v1, x̂− â〉+ 〈v2, x̂− b̂〉+ 〈v1 + v2, x− x̂〉+ 〈v1, â− a〉+ 〈v2, b̂− b〉
< ‖x− a‖ − ρα1 + ρα2 + 2λε+ λβ

= ‖x− a‖ − ρ
(
α1 − α2 − (2ε+ β)(α+ 1/

√
ε)
)
< ‖x− a‖ ,

which is a contradiction and hence the proof is complete.
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Remark 6.2.7. Condition (6.56) holding true for all ρ ∈ ]0, δ[ is the negation of condition (6.41) holding
true for some ρ ∈ ]0, δ[.

The next lemma establishes the key quantitative estimates of this section.

Lemma 6.2.8 (quantitative estimates13). Let {A,B} be a pair of closed sets and x̄ ∈ A ∩B. Then

itr[A,B](x̄) ≤ itrp[A,B](x̄) ≤ itrc[A,B](x̄). (6.69)

Proof. We first prove itr[A,B](x̄) ≤ itrp[A,B](x̄). Since the inequality becomes trivial when
itrp[A,B](x̄) = 1, we only need to prove the inequality for the case itrp[A,B](x̄) < 1. We take an
arbitrary number α satisfying itrp[A,B](x̄) < α ≤ 1 and show that itr[A,B](x̄) ≤ α. To do this, let us
first recall the following representation of itr[A,B](x̄) [99, Equation (72)]:

itr[A,B](x̄) = lim inf
a→x̄, b→x̄, x→x̄, a∈A\B, b∈B\A

v1∈NA(a)\{0}, v2∈NB(b)\{0}, ‖v1‖+‖v2‖=1
‖x−a‖
‖x−b‖→1, 〈v1,x−a〉‖v1‖‖x−a‖

→1, 〈v2,x−b〉‖v2‖‖x−b‖
→1

‖v1 + v2‖, (6.70)

with the convention that the infimum over the empty set equals 1. In view of (6.70), all we need is to
show that for any (arbitrarily small) number ε > 0, there exists a pair of vectors (v1, v2) satisfying the
constraints under the lim inf in (6.70) and ‖v1 + v2‖ < α.

By the definition of itrp[A,B](x̄) and the inequality itrp[A,B](x̄) < α, we have that for any number
ε > 0, there exist points a ∈ (A \B) ∩ Bε(x̄), b ∈ (B \A) ∩ Bε(x̄) and x ∈ Bε(x̄) with ‖x− a‖ = ‖x− b‖
and a number δ > 0 such that the inequality (6.56) holds true for all ρ ∈ ]0, δ[.

Since A ∩B is a closed set and a, b /∈ A ∩B, there is a number γ ∈ ]0, ε[ such that

Bγ(a) ∩ (A ∩B) = ∅, Bγ(b) ∩ (A ∩B) = ∅. (6.71)

Let us take an arbitrary number ε ∈ ]0, 1[ and choose a number ρ > 0 satisfying

ρ < min
{
δ, γ

α+1/
√
ε
, ε, ε‖x−a‖

1+α+1/
√
ε

}
. (6.72)

Define a number ε′ := αρ > 0 and note from (6.72) that

ε′ = αρ <
(
α+ 1 + 1/

√
ε
)
ρ < ε ‖x− a‖ < ‖x− a‖ = max{‖x− a‖ , ‖x− b‖}. (6.73)

We are going to apply Proposition 6.2.5 to the sets A′ := A ∩ Bλ(a), B′ := B ∩ Bλ(b), the points
a ∈ A′, b ∈ B′, x ∈ X and numbers ρ, ε′, λ and τ := λ−2αρ

λ+αρ . Let us verify all the conditions of the
proposition. First, the inequality (6.56) reduces to (6.47). It also implies (6.46) since d1 (A′, B′,Bρ(x)) >
‖x− a‖−αρ > 0 thanks to (6.73). It is clear that ε′+ ρ = (α+ 1)ρ <

(
α+ 1/

√
ε
)
ρ = λ as ε ∈ ]0, 1[ and

τ = λ−2αρ
λ+αρ < λ−αρ

λ+αρ = λ−ε′
λ+ε′ . We have checked all the conditions of Proposition 6.2.5. Therefore, in view

of Proposition 6.2.5, there exist points â ∈ A′∩Bλ(a), b̂ ∈ B′∩Bλ(b), x̂ ∈ Bρ(x) and vectors v1 ∈ NA′(â)
and v2 ∈ NB′(b̂) satisfying (6.48) and

‖v1‖+ ‖v2‖ = 1, ‖v1 + v2‖ < ε′

ρ = α. (6.74)

The following observations verify that the vectors (v1, v2) in conjunction with the points (â, b̂, x̂) fulfill
the constraints under the lim inf in (6.70).

13The first inequality in (6.69) holds true in Asplund spaces while the second one holds true in normed linear spaces.
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• By the triangle inequality and ρ < ε due to (6.72), it holds that

‖x̄− x̂‖ ≤ ‖x̄− x‖+ ‖x− x̂‖ < ε+ ρ ≤ 2ε,
‖x̄− â‖ ≤ ‖x̄− a‖+ ‖a− â‖ < ε+ λ = ε+

(
α+ 1/

√
ε
)
ρ ≤ (1 + α)ε+

√
ε,

‖x̄− b̂‖ ≤ ‖x̄− b‖+ ‖b− b̂‖ < ε+ λ = ε+ (α+ 1/
√
ε)ρ ≤ (1 + α)ε+

√
ε.

This implies that x̂→ x̄, â→ x̄, b̂→ x̄ as ε ↓ 0.

• Since λ < γ by the choice of ρ in (6.72), we have â ∈ A ∩ Bγ(a) which together with (6.71) implies
that â /∈ B. That is â ∈ A \B. Similarly, we also have b̂ ∈ B \A.

• It holds v1 6= 0 and v2 6= 0. Indeed, if otherwise, (6.74) implies ‖v1 + v2‖ = 1 < α, which is a
contradiction to the inequality α ≤ 1.

• Since â ∈ A′ ∩ Bλ(a) = A ∩ Bλ(a) and b̂ ∈ B′ ∩ Bλ(b) = B ∩ Bλ(b) by the definitions of A′ and B′, we
have

v1 ∈ NA′(â) = NA∩Bλ(a)(â) = NA(â), v2 ∈ NA′(â) = NB∩Bλ(b)(b̂) = NB(b̂).

• By the triangle inequality and
(
α+ 1 + 1/

√
ε
)
ρ < ε ‖x− a‖ in view of (6.72), it holds that

‖x̂− â‖ ≤ ‖x− a‖+ ‖x̂− x‖+ ‖a− â‖ ≤ ‖x− a‖+ ε′ + λ

= ‖x− a‖+
(
α+ 1 + 1/

√
ε
)
ρ < (1 + ε) ‖x− a‖ ,

‖x̂− â‖ ≥ ‖x− a‖ − ‖x̂− x‖ − ‖a− â‖ ≥ ‖x− a‖ − ε′ − λ
= ‖x− a‖ −

(
α+ 1 + 1/

√
ε
)
ρ > (1− ε) ‖x− a‖ .

Hence, we have
(1− ε) ‖x− a‖ ≤ ‖x̂− â‖ ≤ (1 + ε) ‖x− a‖ .

Using similar estimates, we also have

(1− ε) ‖x− b‖ ≤ ‖x̂− b̂‖ ≤ (1 + ε) ‖x− b‖ .

The above estimates together with ‖x− a‖ = ‖x− b‖ 6= 0 imply

1− ε
1 + ε

≤ ‖x̂− â‖
‖x̂− b̂‖

≤ 1 + ε

1− ε ,

which in turn implies that ‖x̂− â‖
‖x̂− b̂‖

→ 1 as ε ↓ 0.

• By (6.74), the Cauchy-Schwarz inequality, (6.48) and the definition of τ , we have

1 = ‖v1‖+ ‖v2‖ ≥
〈v1, x̂− â〉
‖x̂− â‖

+ 〈v2, x̂− b̂〉
‖x̂− b̂‖

≥ 〈v1, x̂− â〉

max
{
‖x̂− â‖ , ‖x̂− b̂‖

} + 〈v2, x̂− b̂〉

max
{
‖x̂− â‖ , ‖x̂− b̂‖

}
> τ = λ− 2αρ

λ+ αρ
= (α+ 1/

√
ε) ρ− 2αρ

(α+ 1/
√
ε) ρ+ αρ

= 1/
√
ε− α

1/
√
ε+ 2α,

which tends to 1 as ε ↓ 0. Thus,

〈v1, x̂− â〉
‖x̂− â‖

+ 〈v2, x̂− b̂〉
‖x̂− b̂‖

→ 1 as ε ↓ 0.

Due to the Cauchy-Schwarz inequality and ‖v1‖ + ‖v2‖ = 1, the above convergence happens if and
only if

〈v1, x̂− â〉
‖v1‖ ‖x̂− â‖

→ 1 and 〈v2, x̂− b̂〉
‖v2‖ ‖x̂− b̂‖

→ 1 as ε ↓ 0.
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By (6.74) and the above observations, letting ε ↓ 0 implies itr[A,B](x̄) ≤ α in view of (6.70).

We now prove itrp[A,B](x̄) ≤ itrc[A,B](x̄). Since the inequality becomes trivial when itrc[A,B](x̄) =
1, we only need a proof for the case itrc[A,B](x̄) < 1. We take an arbitrary number α satisfying
itrc[A,B](x̄) < α < 1 and prove that itrp[A,B](x̄) ≤ α. From Definition 6.2.1, to obtain this inequality,
it suffices to show that {A,B} does not satisfy property (P) at x̄ with α (and any number ε > 0).

Fix a number α1 satisfying itrc[A,B](x̄) < α1 < α. Since 2ε(α+ 1/
√
ε) ↓ 0 as ε ↓ 0 and α− α1 > 0,

there exists a number ε0 > 0 such that ε ∈ ]0, ε0[ is equivalent to ε > 0 satisfying

2ε
(
α+ 1/

√
ε
)
< α− α1. (6.75)

We claim that for any ε ∈ ]0, ε0[, there exist a ∈ (A \B)∩Bε(x̄), b ∈ (B \A)∩Bε(x̄), x ∈ Bε(x̄) with
‖x− a‖ = ‖x− b‖ and a number δ > 0 such that (6.56) holds true for all ρ ∈ ]0, δ[.

To prove the above claim, we first recall the following representation of itrc[A,B](x̄) [96, Equation
(15)]:

itrc[A,B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
dist (v1,NA(a))→0, dist (v2,NB(b))→0, ‖v1‖+‖v2‖=1
〈v1,x−a〉=‖v1‖ ‖x−a‖, 〈v2,x−b〉=‖v2‖ ‖x−b‖

‖v1 + v2‖, (6.76)

with the convention that the infimum over the empty set equals 1.

In view of (6.76) and itrc[A,B](x̄) < α1, there exist a ∈ (A\B)∩Bε(x̄), b ∈ (B\A)∩Bε(x̄), x ∈ Bε(x̄)
with ‖x− a‖ = ‖x− b‖ and v1, v2 ∈ X satisfying

dist (v1, NA(a)) < ε, dist (v2, NB(b)) < ε, ‖v1‖+ ‖v2‖ = 1, ‖v1 + v2‖ < α1, (6.77)
〈v1, x− a〉 = ‖v1‖ ‖x− a‖ , 〈v2, x− b〉 = ‖v2‖ ‖x− b‖ .

The last inequality in (6.77) and (6.75) imply ‖v1 + v2‖+ 2ε
(
α+ 1/

√
ε
)
< α, which is (6.53).

Thus, the points a, b, x together with the numbers α, ε > 0 and the vectors v1, v2 satisfy all the
assumptions of Proposition 6.2.6. In view of this proposition, there exists a number δ > 0 such that
(6.56) holds true for all ρ ∈ ]0, δ[.

Hence, we have proven the above claim, which in turn implies that {A,B} does not satisfy property
(P) at x̄ with the number α. This is because in view of Remark 6.2.7, the statement that (6.56) holds
true for all ρ ∈ ]0, δ[ is the negation of the statement that there exists ρ ∈ ]0, δ[ such that (6.41) holds
true. Then from Definition 6.2.1, we have itrp[A,B](x̄) ≤ α.

The proof is complete.

The first estimate in (6.69) shows that property (P) is a necessary condition for intrinsic transversality
while the second one shows that it is a sufficient condition for the property characterised by itrc[A,B](x̄).
A combination of Lemma 6.2.8 and Theorem 6.1.13 eliminates the gap between these properties in the
Hilbert space setting.

Theorem 6.2.9 (equivalences). Let {A,B} be a pair of closed sets and x̄ ∈ A ∩B. Then the following
statements hold true.
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(i) If itrc[A,B](x̄) ≥ 1/
√

2, then

min {itr[A,B](x̄), itrw[A,B](x̄), itrp[A,B](x̄), itrc[A,B](x̄)} ≥ 1/
√

2.

(ii) If itrc[A,B](x̄) < 1/
√

2, then

itr[A,B](x̄) = itrw[A,B](x̄) = itrp[A,B](x̄) = itrc[A,B](x̄).

Proof. Item (i) follows from Theorem 6.1.13(i) and (6.69) while item (ii) follows from Theorem 6.1.13(ii)
and (6.69).

The following observation is obvious in view of Theorem 6.2.9.
Remark 6.2.10 (answer to Question 4). In Hilbert spaces, intrinsic transversality is equivalent to property
(P). Note that the latter does not involve elements of normal cones. Note also that it can happen that
itrp[A,B](x̄) 6= itr[A,B](x̄) if itrc[A,B](x̄) > 1/

√
2.

6.3 Intrinsic Transversality in Euclidean Spaces

We first recall definitions of the relative limiting normals which are motivated by the compactness of the
unit sphere in finite dimensional spaces as well as the fact that not all normal vectors are always involved
in characterising transversality-type properties. These notions were shown to be useful for analysing
intrinsic transversality and its variants, see [96, page 123] for a more thorough discussion.

In this section, X is a Euclidean space.

Definition 6.3.1 (relative limiting normal). [96, Definition 2] Let A,B be closed sets and x̄ ∈ A ∩B.

(i) A pair (v1, v2) ∈ X ×X is called a pair of relative limiting normals to {A,B} at x̄ if there exist
sequences (ak) ⊂ A \ B, (bk) ⊂ B \ A, (xk) ⊂ X and (v1k), (v2k) ⊂ X such that ak → x̄, bk → x̄,
xk → x̄, v1k → v1, v2k → v2, and

v1k ∈ NA(ak), v2k ∈ NB(bk) (k = 1, 2, . . .),
‖xk − ak‖
‖xk − bk‖

→ 1, 〈v1k, xk − ak〉
‖v1k‖ ‖xk − ak‖

→ 1, 〈v2k, xk − bk〉
‖v2k‖ ‖xk − bk‖

→ 1,

with the convention that 0
0 = 1. The set of all pairs of relative limiting normals to {A,B} at x̄ is

denoted by NA,B(x̄).

(ii) A pair (v1, v2) ∈ X × X is called a pair of restricted relative limiting normals to {A,B} at x̄
if there exist sequences (ak) ⊂ A \ B, (bk) ⊂ B \ A, (xk) ⊂ X and (v1k), (v2k) ⊂ X such that
‖xk − ak‖ = ‖xk − bk‖ (k = 1, 2, . . .), ak → x̄, bk → x̄, xk → x̄, v1k → v1, v2k → v2, and

dist (v1k, NA(ak))→ 0, dist (v2k, NB(bk))→ 0,
〈v1k, xk − ak〉 = ‖v1k‖ ‖xk − ak‖ , 〈v2k, xk − bk〉 = ‖v2k‖ ‖xk − bk‖ (k = 1, 2, . . .).

The set of all pairs of restricted relative limiting normals to {A,B} at x̄ is denoted by N c

A,B(x̄).

The following statement recalls a basic property of NA,B(x̄) and N
c

A,B(x̄). In particular, they are
cones14.

14Here, the empty set is viewed as a cone by convention.
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Proposition 6.3.2. [96, Proposition 2(i)] Let A,B be closed sets and x̄ ∈ A ∩ B. The sets NA,B(x̄)
and N c

A,B(x̄) are closed cones in X ×X. Moreover, if (v1, v2) ∈ NA,B(x̄) (respectively, N c

A,B(x̄)), then
(t1v1, t2v2) ∈ NA,B(x̄) (respectively, N c

A,B(x̄)) for all t1, t2 > 0.

The following equalities show the important role of the cones NA,B(x̄) and N c

A,B(x̄) in characterising
intrinsic transversality [96, Equations (19)&(20)]:

itr[A,B](x̄) = min
(v1,v2)∈NA,B(x̄)
‖v1‖+‖v2‖=1

‖v1 + v2‖, (6.78)

itrc[A,B](x̄) = min
(v1,v2)∈NcA,B(x̄)
‖v1‖+‖v2‖=1

‖v1 + v2‖, (6.79)

with the convention that the minimum over the empty set equals 1. Note that the minima in (6.78) and
(6.79) are attainable thanks to the compactness of the constraint sets under the minima.
Remark 6.3.3. One can formulate a similar representation for itrw[A,B](x̄) using another cone Nw

A,B(x̄)
of ‘weak’ relative limiting normals satisfying

N
c

A,B(x̄) ⊂ Nw

A,B(x̄) ⊂ NA,B(x̄). (6.80)

The objective of this section consists in 1) giving a geometric counterpart of the analytic condition
under which Theorem 6.1.13(ii) is valid - see Lemma 6.3.5; 2) deducing new characterisations of intrinsic
transversality in terms of relative limiting normals - see Theorem 6.3.6; and 3) giving further insight into
the quantitative results established in Section 6.1 when specialized to the Euclidean space setting - see
Theorem 6.3.7. As by-products, we address the following questions raised by Kruger [96] regarding the
cone objects appearing in (6.80) - see Remarks 6.3.8 and 6.3.9.
Question 5. [96, question 4, page 140] What is the relationship between the two cones NA,B(x̄) and
N
c

A,B(x̄)?

Question 6. [96, question 5, page 140] How can N
w

A,B(x̄) be used in characterising intrinsic transver-
sality?

Recall from Theorem 6.1.13 that if itrc[A,B](x̄) ≥ 1/
√

2, then the intrinsic transversality property is
satisfied with a quantitative constant at least 1/

√
2. This indicates that the other case, i.e.,

itrc[A,B](x̄) < 1/
√

2, (6.81)

is of the main interest in studying the property.

The analysis in this section is tuned to the scenario of (6.81). To begin, let us define the set:

C := {(v1, v2) ∈ X ×X | 〈v1, v2〉 < 0}. (6.82)

Proposition 6.3.4. The set C defined above is a cone in X × X. Moreover, if (v1, v2) ∈ C, then
(t1v1, t2v2) ∈ C for all t1, t2 > 0.

Proof. The proof is straightforward from the definition of C.

The following result explains the role of C in the analysis of intrinsic transversality in this chapter.

For convenience, we also define the set

S := {(v1, v2) ∈ X ×X | ‖v1‖+ ‖v2‖ = 1} ,

and note that N c

A,B(x̄) ∩ S is the feasible set under the minimization in (6.79).
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Lemma 6.3.5. Let A,B be closed sets and x̄ ∈ A ∩B. Then

C ∩N c

A,B(x̄) ∩ S 6= ∅ ⇔ itrc[A,B](x̄) < 1/
√

2.

Proof. (⇒) We suppose C ∩ N c

A,B(x̄) ∩ S 6= ∅ and prove that itrc[A,B](x̄) < 1/
√

2. Take a pair
(v1, v2) ∈ C ∩N c

A,B(x̄) ∩ S. We note that v1 6= 0 and v2 6= 0 as (v1, v2) ∈ C, and set v′1 := v1

2 ‖v1‖
and

v′2 := v2

2 ‖v2‖
. It holds (v′1, v′2) ∈ S since ‖v′1‖+ ‖v′2‖ = 1/2 + 1/2 = 1. Thanks to Propositions 6.3.2 and

6.3.4, it also holds (v′1, v′2) ∈ C ∩N c

A,B(x̄). Then we have in view of (6.79) that

itrc[A,B](x̄)2 = min
(v1,v2)∈NcA,B(x̄)∩S

‖v1 + v2‖2 ≤ ‖v′1 + v′2‖2 = 1/2 + 2 〈v′1, v′2〉 < 1/2,

where the last inequality holds true due to (6.82) as (v′1, v′2) ∈ C. Hence itrc[A,B](x̄) < 1/
√

2.

(⇐) We suppose C ∩N c

A,B(x̄)∩S = ∅ and prove that itrc[A,B](x̄) ≥ 1/
√

2. If N c

A,B(x̄)∩S = ∅, then
(6.79) yields itrc[A,B](x̄) = 1 > 1/

√
2. We consider the case N c

A,B(x̄) ∩ S 6= ∅. Take an arbitrary pair
(v1, v2) ∈ N c

A,B(x̄) ∩ S. Then by the assumption, it holds (v1, v2) /∈ C, i.e., 〈v1, v2〉 ≥ 0. This implies

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 + 2 〈v1, v2〉 ≥ ‖v1‖2 + ‖v2‖2 ≥
1
2 (‖v1‖+ ‖v2‖)2 = 1/2.

We have just proved that

‖v1 + v2‖ ≥ 1/
√

2 for all (v1, v2) ∈ N c

A,B(x̄) ∩ S.

This together with the equality (6.79) implies that itrc[A,B](x̄) ≥ 1/
√

2.

Lemma 6.3.5 provides an intuitive geometric counterpart of the quite mysterious analytic condition
(6.81). It also gives rise to the following characterisations of intrinsic transversality.

Theorem 6.3.6 (refined characterisations of intrinsic transversality). Let A,B be closed sets and x̄ ∈
A ∩B. Then the following statements are equivalent.

(i) {A,B} is intrinsically transversal at x̄.

(ii) There exists a number α ∈ ]0, 1[ such that

‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩N c

A,B(x̄) ∩ S. (6.83)

(iii)
{
v ∈ X | (v,−v) ∈ C ∩N c

A,B(x̄)
}
⊂ {0}.

Proof. (i) ⇒ (ii). We suppose that {A,B} is intrinsically transversal at x̄. This is equivalent to
itrc[A,B](x̄) > 0 in view of Theorem 6.1.13. If itrc[A,B](x̄) ≥ 1/

√
2, then by Lemma 6.3.5 the

intersection C ∩ N c

A,B(x̄) ∩ S is empty, and hence the conclusion is trivial. We analyse the case
itrc[A,B](x̄) < 1/

√
2. Take any α satisfying 0 < α < itrc[A,B](x̄). Then in view of (6.79) we have

that
‖v1 + v2‖ ≥ itrc[A,B](x̄) > α for all (v1, v2) ∈ N c

A,B(x̄) ∩ S,
which obviously implies (6.83).

(ii) ⇒ (iii). Suppose that (iii) is violated, i.e., there exists v 6= 0 such that (v,−v) ∈ C ∩ N c

A,B(x̄).

Then the pair (v1, v2) :=
(

v

2‖v‖ ,−
v

2‖v‖

)
∈ C∩N c

A,B(x̄)∩S, but ‖v1 +v2‖ = 0. That is, (ii) is violated.
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(iii) ⇒ (i). Suppose that (i) is violated, i.e., itrc[A,B](x̄) = 0. By [96, Corollary 3, (i)⇔(ii)], there
exists a pair of vectors (v1, v2) ∈ N c

A,B(x̄) ∩ S satisfying ‖v1 + v2‖ = 0. The latter conditions trivially
imply v1 = −v2 6= 0 and 〈v1, v2〉 < 0. Then the vector v 6= 0 satisfies (v,−v) := (v1, v2) ∈ C ∩N c

A,B(x̄).
That is, (iii) is violated.

An implication of Theorem 6.3.6 is that only pairs of relative limiting normals in C are relevant for
characterising intrinsic transversality. This observation guides us to the following concrete relationship
between the two cones NA,B(x̄) and N

c

A,B(x̄).

Theorem 6.3.7. Let A,B be closed sets and x̄ ∈ A ∩B. Then

N
c

A,B(x̄) ∩ C = NA,B(x̄) ∩ C. (6.84)

Proof. It is known by [96, Proposition 2(ii)] that N c

A,B(x̄) ⊂ NA,B(x̄). Thus, it is sufficient to show that

NA,B(x̄) ∩ C ⊂ N c

A,B(x̄) ∩ C.

Let us take any (v1, v2) ∈ NA,B(x̄) ∩ C. Then by the definition of NA,B(x̄), there exist sequences
(ak) ⊂ A \B, (bk) ⊂ B \A, (xk) ⊂ X and (v1k), (v2k) ⊂ X such that ak → x̄, bk → x̄, xk → x̄, v1k → v1,
v2k → v2 and

v1k ∈ NA(ak), v2k ∈ NB(bk) (k = 1, 2, . . .),
‖xk − ak‖
‖xk − bk‖

→ 1, 〈v1k, xk − ak〉
‖v1k‖ ‖xk − ak‖

→ 1, 〈v2k, xk − bk〉
‖v1k‖ ‖xk − bk‖

→ 1. (6.85)

Note that v1 6= 0 and v2 6= 0 as (v1, v2) ∈ C. Then thanks to v1k → v1 and v2k → v2, we can assume
that v1k 6= 0 and v2k 6= 0 for all k ∈ N. In view of Remark 6.1.7, we can also assume that xk 6= ak and
xk 6= bk for all k ∈ N.

Since (v1, v2) ∈ C, it holds that 〈v1, v2〉 < 0, equivalently,∥∥∥∥ v1

‖v1‖
− v2

‖v2‖

∥∥∥∥ > √2. (6.86)

To complete the proof, it suffices to prove that (v1, v2) ∈ N c

A,B(x̄). For each k = 1, 2, . . ., let us define:

mk := ak + bk
2 ,

x′k := xk −
〈bk − ak, xk −mk〉
‖bk − ak‖2

(bk − ak), (6.87)

v′1k := ‖v1k‖
‖x′k − ak‖

(x′k − ak), v′2k := ‖v2k‖
‖x′k − bk‖

(x′k − bk). (6.88)

All we need is to verify the following four conditions:

(i)
‖x′k − ak‖ = ‖x′k − bk‖ (k = 1, 2, . . .); (6.89)

(ii)
x′k → x̄, v′1k → v1, v

′
2k → v2 (k = 1, 2, . . .);

(iii)
dist (v′1k, NA(ak))→ 0, dist (v′2k, NB(bk))→ 0;
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(iv)
〈v′1k, x′k − ak〉 = ‖v′1k‖‖x′k − ak‖, 〈v′2k, x′k − bk〉 = ‖v′2k‖‖x′k − bk‖.

Condition (i). This follows from (6.87) since for each k = 1, 2, . . ., we have that

‖x′k − ak‖2 − ‖x′k − bk‖2 = ‖xk − ak‖2 − ‖xk − bk‖2 − 2 〈bk − ak, xk −mk〉
‖bk − ak‖2

〈xk − ak, bk − ak〉

+ 2 〈bk − ak, xk −mk〉
‖bk − ak‖2

〈xk − bk, bk − ak〉

= ‖xk − ak‖2 − ‖xk − bk‖2 − 2 〈bk − ak, xk −mk〉
‖bk − ak‖2

〈bk − ak, bk − ak〉

= ‖xk − ak‖2 − ‖xk − bk‖2 − 2 〈bk − ak, xk −mk〉
= ‖xk − ak‖2 − ‖xk − bk‖2 − 〈(xk − ak)− (xk − bk), (xk − ak) + (xk − bk)〉 = 0.

Condition (iv). We first infer from (i) and ak 6= bk that x′k 6= ak and x′k 6= bk. This ensures that the
definitions of (v′1k) and (v′2k) by (6.88) are well defined. Then thanks to (6.88), we have that

‖v′1k‖ = ‖v1k‖, ‖v′2k‖ = ‖v2k‖,
〈v′1k, x′k − ak〉 = ‖v1k‖‖x′k − ak‖ = ‖v′1k‖‖x′k − ak‖,
〈v′2k, x′k − bk〉 = ‖v2k‖‖x′k − bk‖ = ‖v′2k‖‖x′k − bk‖.

Condition (iii). Since v1k ∈ NA(ak) and v2k ∈ NA(bk) (k = 1, 2, . . .), whenever condition (ii) has
been verified, we have that

dist (v′1k, NA(ak)) ≤ ‖v′1k − v1k‖ ≤ ‖v′1k − v1‖+ ‖v1k − v1‖ → 0,
dist (v′2k, NB(bk)) ≤ ‖v′2k − v2k‖ ≤ ‖v′2k − v2‖+ ‖v2k − v2‖ → 0.

Condition (ii). Since xk → x̄, ak → x̄ and bk → x̄, it holds by (6.87) that

‖x′k − xk‖ =
∥∥∥∥ 〈bk − ak, xk −mk〉

‖bk − ak‖2
(bk − ak)

∥∥∥∥ ≤ ‖xk −mk‖ =
∥∥∥∥xk − ak + bk

2

∥∥∥∥→ 0.

Then

‖x′k − x̄‖ ≤ ‖x′k − xk‖+ ‖xk − x̄‖ → 0.

In the remainder of the proof, we show that v′1k → v1 while the condition v′2k → v2 is obtained in a
similar manner. Since v1k → v1, all we need is to show that ‖v′1k − v1k‖ → 0. Note that by (6.88) it
holds

‖v′1k − v1k‖ =
∥∥∥∥ ‖v1k‖
‖x′k − ak‖

(x′k − ak)− v1k

∥∥∥∥ = ‖v1k‖
∥∥∥∥ x′k − ak
‖x′k − ak‖

− v1k

‖v1k‖

∥∥∥∥
≤ ‖v1k‖

(∥∥∥∥ xk − ak
‖xk − ak‖

− v1k

‖v1k‖

∥∥∥∥+
∥∥∥∥ x′k − ak
‖x′k − ak‖

− xk − ak
‖xk − ak‖

∥∥∥∥) . (6.90)

Note also that due to (6.85),∥∥∥∥ xk − ak
‖xk − ak‖

− v1k

‖v1k‖

∥∥∥∥ =

√
2− 2 〈v1k, xk − ak〉

‖v1k‖ ‖xk − ak‖
→ 0. (6.91)

In view of (6.90) and (6.91), in order to obtain ‖v′1k − v1k‖ → 0, it suffices to prove that∥∥∥∥ x′k − ak
‖x′k − ak‖

− xk − ak
‖xk − ak‖

∥∥∥∥→ 0.
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To proceed, let us take any number ε > 0 which can be arbitrarily small and show the existence of a
natural N ∈ N such that ∥∥∥∥ x′k − ak

‖x′k − ak‖
− xk − ak
‖xk − ak‖

∥∥∥∥ < ε, ∀k ≥ N. (6.92)

Choose a number ε′ > 0 to satisfy

2
√

2ε′ − ε′2
4− 6ε′ + 3ε′2 < ε. (6.93)

Such a number ε′ exists since ε > 0 and lim
t↓0

2
√

2t− t2
4− 6t+ 3t2 = 0.

By the convergence conditions in (6.85), there exists a natural number N ∈ N such that ∀k ≥ N ,

1− ε′ < ‖xk − ak‖
‖xk − bk‖

< 1 + ε′, (6.94)

〈v1k, xk − ak〉
‖v1k‖ ‖xk − ak‖

> 1− ε′, 〈v2k, xk − bk〉
‖v1k‖ ‖xk − bk‖

> 1− ε′. (6.95)

The estimates in (6.95) amount to∥∥∥∥ v1k

‖v1k‖
− xk − ak
‖xk − ak‖

∥∥∥∥ < √2ε′,
∥∥∥∥ v2k

‖v2k‖
− xk − bk
‖xk − bk‖

∥∥∥∥ < √2ε′. (6.96)

In order to prove (6.92), we first note that

〈xk − x′k, x′k −mk〉 = 0. (6.97)

Indeed, by (6.87), it holds that

〈xk − x′k, x′k −mk〉 = 〈bk − ak, xk −mk〉
‖bk − ak‖2

〈bk − ak, x′k −mk〉 ,

from which (6.97) follows since

〈bk − ak, x′k −mk〉 =
〈
bk − ak, xk −mk −

〈bk − ak, xk −mk〉
‖bk − ak‖2

(bk − ak)
〉

= 〈bk − ak, xk −mk〉 −
〈bk − ak, xk −mk〉
‖bk − ak‖2

〈bk − ak, bk − ak〉 = 0.

Second, we show that ∀k ≥ N ,

‖xk − x′k‖2 ≤ 2ε′−ε′2
4(1−ε′)2 min

{
‖xk − ak‖2, ‖xk − bk‖2

}
. (6.98)

If ‖xk − ak‖ ≥ ‖xk − bk‖, then

〈bk − ak, xk −mk〉 ≥ 0. (6.99)

Note from (6.86) and (6.96) that∥∥∥∥ xk − ak
‖xk − ak‖

− xk − bk
‖xk − bk‖

∥∥∥∥ ≥ ∥∥∥∥ v1k

‖v1k‖
− v2k

‖v2k‖

∥∥∥∥− ∥∥∥∥ v1k

‖v1k‖
− xk − ak
‖xk − ak‖

∥∥∥∥− ∥∥∥∥ v2k

‖v2k‖
− xk − bk
‖xk − bk‖

∥∥∥∥
>
√

2− 2
√

2ε′.

This combining with (6.94) yields that

〈xk − ak, xk − bk〉 < 4
(√

ε′ − ε′
)
‖xk − ak‖‖xk − bk‖ < 4

(√
ε′ − ε′

)
(1 + ε′)‖xk − bk‖2.
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Then
〈bk − ak, xk − bk〉 = 〈bk − xk, xk − bk〉+ 〈xk − ak, xk − bk〉

= −‖xk − bk‖2 + 〈xk − ak, xk − bk〉

< −‖xk − bk‖2 + 4
(√

ε′ − ε′
)

(1 + ε′)‖xk − bk‖2

= −
(

1− 4
(√

ε′ − ε′
)

(1 + ε′)
)
‖xk − bk‖2 < 0.

(6.100)

From (6.87), (6.99) and (6.100) we have that

‖x′k − bk‖2 − ‖xk − bk‖2 = ‖x′k − xk‖2 + 2 〈x′k − xk, xk − bk〉

= ‖x′k − xk‖2 − 2 〈bk − ak, xk −mk〉
‖bk − ak‖2

〈bk − ak, xk − bk〉

≥ ‖x′k − xk‖2.

(6.101)

By (6.89) and (6.97) we get that

‖xk − ak‖2 + ‖xk − bk‖2 = 2‖xk − x′k‖2 + ‖x′k − ak‖2 + ‖x′k − bk‖2 + 2 〈xk − x′k, 2x′k − (ak + bk)〉
= 2‖xk − x′k‖2 + 2‖x′k − bk‖2 + 4 〈xk − x′k, x′k −mk〉
= 2‖xk − x′k‖2 + 2‖x′k − bk‖2.

This together with (6.94) and (6.101) yields

2‖xk − x′k‖2 = ‖xk − ak‖2 + ‖xk − bk‖2 − 2‖x′k − bk‖2

≤ (1 + ε′)2‖xk − bk‖2 + ‖xk − bk‖2 − 2‖x′k − bk‖2

≤ (1 + ε′)2‖xk − bk‖2 + ‖xk − bk‖2 − 2
(
‖xk − bk‖2 + ‖x′k − xk‖2

)
.

Hence

4‖xk − x′k‖2 ≤
(
2ε′ + ε′2

)
‖xk − bk‖2 =

(
2ε′ + ε′2

)
min{‖xk − ak‖2, ‖xk − bk‖2} (6.102)

since ‖xk − ak‖ ≥ ‖xk − bk‖ in this case.

By a similar argument, if ‖xk − ak‖ ≤ ‖xk − bk‖, then

〈bk − ak, xk −mk〉 ≤ 0, 〈bk − ak, xk − ak〉 ≥ 0.

Thus

‖x′k − ak‖2 − ‖xk − ak‖2 = ‖x′k − xk‖2 + 2 〈x′k − xk, xk − ak〉

= ‖x′k − xk‖2 − 2 〈bk − ak, xk −mk〉
‖bk − ak‖2

〈bk − ak, xk − ak〉

≥ ‖x′k − xk‖2.

(6.103)

By (6.89) and (6.97) we get that

‖xk − ak‖2 + ‖xk − bk‖2 = 2‖xk − x′k‖2 + 2‖x′k − ak‖2,

which together with (6.94) and (6.103) yields that

2‖xk − x′k‖2 ≤ ‖xk − ak‖2 + 1
(1−ε′)2 ‖xk − ak‖2 − 2

(
‖xk − ak‖2 + ‖x′k − xk‖2

)
.

Equivalently,

4‖xk − x′k‖2 ≤ 2ε′−ε′2
(1−ε′)2 ‖xk − ak‖2 = 2ε′−ε′2

(1−ε′)2 min{‖xk − ak‖2, ‖xk − bk‖2} (6.104)

since ‖xk − ak‖ ≤ ‖xk − bk‖ in this case.
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Combining (6.102) and (6.104) and noting that 2ε′ + ε′2 < 2ε′−ε′2
(1−ε′)2 , we obtain (6.98) as claimed.

Third, we show that ∀k ≥ N

‖x′k − ak‖2 ≥ 4−6ε′+3ε′2
2ε′−ε′2 ‖xk − x

′
k‖2. (6.105)

Indeed, if ‖xk − ak‖ ≤ ‖xk − bk‖, then the use of (6.103) and (6.104) yields (6.105):

‖x′k − ak‖2 ≥ ‖xk − ak‖2 + ‖xk − x′k‖2

≥ 4(1−ε′)2)
2ε′−ε′2 ‖xk − x

′
k‖2 + ‖xk − x′k‖2 = 4−6ε′+3ε′2

2ε′−ε′2 ‖xk − x
′
k‖2.

Otherwise, i.e., if ‖xk − ak‖ ≥ ‖xk − bk‖, then the use of (6.89), (6.101) and (6.98) successively implies
that

‖x′k − ak‖2 = ‖x′k − bk‖2 ≥ ‖xk − bk‖2 + ‖xk − x′k‖2

≥ 4
2ε′+ε′2 ‖xk − x

′
k‖2 + ‖x′k − xk‖2 = 4+2ε′+ε′2

2ε′+ε′2 ‖xk − x
′
k‖2,

which also yields (6.105) since 4 + 2ε′ + ε′2

2ε′ + ε′2
>

4− 6ε′ + 3ε′2
2ε′ − ε′2 . Hence (6.105) has been proved.

Fourth, we show that ∀k ≥ N∥∥∥∥ x′k − ak
‖x′k − ak‖

− xk − ak
‖xk − ak‖

∥∥∥∥ ≤ 2‖xk − x
′
k‖

‖x′k − ak‖
. (6.106)

Indeed, ∥∥∥∥ x′k − ak
‖x′k − ak‖

− xk − ak
‖xk − ak‖

∥∥∥∥ ≤ ∥∥∥∥ x′k − ak
‖x′k − ak‖

− xk − ak
‖x′k − ak‖

∥∥∥∥+
∥∥∥∥ xk − ak
‖x′k − ak‖

− xk − ak
‖xk − ak‖

∥∥∥∥
≤ ‖xk − x

′
k‖

‖x′k − ak‖
+
∣∣∣∣‖xk − ak‖‖x′k − ak‖

− 1
∣∣∣∣ .

If ‖xk − ak‖ ≥ ‖x′k − ak‖, then (6.106) holds true since∣∣∣∣‖xk − ak‖‖x′k − ak‖
− 1
∣∣∣∣ = ‖xk − ak‖
‖x′k − ak‖

− 1 ≤ ‖xk − x
′
k‖+ ‖x′k − ak‖
‖x′k − ak‖

− 1 = ‖xk − x
′
k‖

‖x′k − ak‖
.

Otherwise, i.e., if ‖xk − ak‖ < ‖x′k − ak‖, (6.106) also holds true since∣∣∣∣‖xk − ak‖‖x′k − ak‖
− 1
∣∣∣∣ = 1− ‖xk − ak‖

‖x′k − ak‖
≤ 1− ‖x

′
k − ak‖ − ‖xk − x′k‖
‖x′k − ak‖

= ‖xk − x
′
k‖

‖x′k − ak‖
.

Hence (6.106) has been proved.

Finally, a combination of (6.105), (6.106) and (6.93) yields that∥∥∥∥ x′k − ak
‖x′k − ak‖

− xk − ak
‖xk − ak‖

∥∥∥∥ ≤ 2‖xk − x
′
k‖

‖x′k − ak‖
≤ 2
√

2ε′ − ε′2
4− 6ε′ + 3ε′2 < ε, ∀k ≥ N,

which is (6.92) and hence the proof is complete.

To this end, we have sufficient information for addressing Questions 5 and 6.
Remark 6.3.8 (answer to Question 5). In view of Theorem 6.3.7, the two cones N c

A,B(x̄) and NA,B(x̄)
are equal when restricted to the cone C given by (6.82). Recall that elements of C are sufficient for
characterising intrinsic transversality in view of Theorem 6.3.6. Their equality outside of C remains an
open question.
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Remark 6.3.9 (answer to Question 6). The combination of (6.80) and (6.84) yields that

N
c

A,B(x̄) ∩ C = N
w

A,B(x̄) ∩ C = NA,B(x̄) ∩ C. (6.107)

In view of Theorem 6.3.6, this particularly implies that the three cones have equivalent roles in charac-
terising intrinsic transversality.
Remark 6.3.10. Corresponding to itrw[A,B](x̄), the cone Nw

A,B(x̄) would not be essential for the analysis
in this section due to (6.80) and (6.107). This explains why we chose not to introduce its definition for
the sake of brevity in terms of terminology. It occasionally comes up in the discussion only for the
purpose of addressing Question 6.
Remark 6.3.11. Thanks to (6.78) and (6.79), Theorem 6.1.13(ii) in the Euclidean space setting can be
deduced from Theorem 6.3.7. But the inverse implication is not trivial since the minimal objective values
in (6.78) and (6.79) being equal does not tell much about the relationship between the corresponding
feasible sets. Instead, Theorem 6.3.7 complements Theorem 6.1.13(ii) and further clarifies the character-
isations of intrinsic transversality in terms of relative limiting normals. It is worth noting that the result
of Theorem 6.3.7 is also inspired by the importance of the cones themselves, see [96, page 123].

We conclude this chapter with a list of characterisations of intrinsic transversality in the Euclidean
space setting.

Proposition 6.3.12 (characterisations of intrinsic transversality in Euclidean spaces). Let A,B be closed
sets and x̄ ∈ A ∩B. The following conditions are equivalent:

(i) {A,B} is intrinsically transversal at x̄;

(ii) itrc[A,B](x̄) > 0;

(iii) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩N c

A,B(x̄) ∩ S;

(iv)
{
v ∈ X | (v,−v) ∈ C ∩N c

A,B(x̄)
}
⊂ {0};

(v) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ N c

A,B(x̄) ∩ S;

(vi)
{
v ∈ X | (v,−v) ∈ N c

A,B(x̄)
}
⊂ {0};

(vii) itr[A,B](x̄) > 0;

(viii) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩NA,B(x̄) ∩ S;

(ix)
{
v ∈ X | (v,−v) ∈ C ∩NA,B(x̄)

}
⊂ {0};

(x) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ NA,B(x̄) ∩ S;

(xi)
{
v ∈ X | (v,−v) ∈ NA,B(x̄)

}
⊂ {0};

(xii) itrw[A,B](x̄) > 0;

(xiii) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩Nw

A,B(x̄) ∩ S;

(xiv)
{
v ∈ X | (v,−v) ∈ C ∩Nw

A,B(x̄)
}
⊂ {0};

(xv) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ Nw

A,B(x̄) ∩ S;

(xvi)
{
v ∈ X | (v,−v) ∈ Nw

A,B(x̄)
}
⊂ {0};

(xvii) itrp[A,B](x̄) > 0;

(xviii) {A,B} satisfies property (P) at x̄.
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If, in addition, the sets A,B are convex, then the following item can be added to the above list:

(xix) {A,B} is subtransversal at x̄.

Proof. (i) ⇔ (ii) follows from Theorem 6.1.13. (i) ⇔ (iii) ⇔ (iv) follow from Theorem 6.3.6. (i) ⇔ (v)
⇔ (vi) follow from Corollary 3 of [96]. (i) ⇔ (vii) follows from Proposition 6.1.8(iii). (i) ⇔ (viii) ⇔
(ix) follow from Theorem 6.3.6 and Theorem 6.3.7. (i) ⇔ (x) ⇔ (xi) follow from Theorem 5 of [96].
(i) ⇔ (xii) ⇔ (xiii) ⇔ (xiv) ⇔ (xv) ⇔ (xvi) are consequences of the previous equivalences in view of
Proposition 6.1.9(i) and the inclusions in (6.80). (i) ⇔ (xvii) ⇔ (xviii) follow from Theorem 6.2.9 and
Proposition 6.2.2, respectively. (i) ⇔ (xix) in the convex setting follows from Proposition 6.1.8(iv).
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Part II

Generalised Convexity

130



Chapter 7

Robustly Quasiconvex Functions

Our aim in the chapter is to establish the first–order characterisations for the robust quasiconvexity of
lower semicontinuous functions using means of Fréchet subdifferential in Asplund spaces. First, some
existing results regarding to the properties of subdifferential operators of convex, quasiconvex functions
are recalled in Section 7.1, where the definitions and some basic results are given as well. Besides,
necessary and sufficient first-order conditions for a lower semicontinuous function to be quasiconvex are
reconsidered. Those characterisations moreover could be used to characterise the Asplund property of
the given space. Second, two criteria for the robust quasiconvexity of lower semicontinuous functions in
Asplund spaces are obtained by using Fréchet subdifferentials in Section 3. Each criterion corresponds
to each type of analogous conditions for quasiconvexity. The first one is based on the zero and first order
condition for quasiconvexity (see Theorem 7.1.5(b) in Section 2). It extends [11, Proposition 5.3] from
finite dimensional spaces to Asplund spaces. Moreover, its proof also overcomes a glitch in the proof of
the sufficient condition of [11, Proposition 5.3]. The second criterion is totally new. It is settled from the
equivalence of the quasiconvexity of lower semicontinuous functions and the quasimonotonicity of their
subdifferential operators (see Theorem 7.1.5(c) in Section 2).

7.1 Basic results

An operator A is monotone if for all x, y ∈ domA, one has 〈x∗−y∗, x−y〉 ≥ 0 with x∗ ∈ A(x), y∗ ∈ A(y).
It is well-known that when ϕ is convex, the operator ∂Fϕ is monotone [140]. The inverse implication
also holds in Asplund space [120, Theorem 3.56]; but it is not true in general Banach spaces. The reader
is referred to the proof of the reverse implication in [163, Theorem 2.4] for a counter-example.

Let us recall some notions of generalised convex functions.

Definition 7.1.1. A function ϕ : X → R is

(i) quasiconvex if

∀x, y ∈ X,λ ∈]0, 1[, f(λx+ (1− λ)y) ≤ max{f(x), f(y)}. (7.1)

(ii) α-robustly quasiconvex with α > 0 if, for every v∗ ∈ αB∗, the function ϕv∗ : x 7→ ϕ(x) + 〈v∗, x〉
is quasiconvex.

Clearly, ϕ is α-robustly quasiconvex if and only if the function ϕv∗ is quasiconvex for all v∗ ∈ X∗
such that ‖v∗‖ < α.
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Definition 7.1.2. An operator A : X ⇒ X∗ is quasimonotone if for all x, y ∈ X and x∗ ∈ A(x), y∗ ∈
A(y) we have min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0.

Below, we give a short proof to clarify the dual characterisation in terms of Fréchet subdifferentials
in Asplund spaces. Our proof relies on the proof scheme of [4] and the following approximate mean value
theorem [120, Theorem 3.49].

Theorem 7.1.3. Let X be an Asplund space and ϕ : X → R be a proper lower semicontinuous function
finite at two given points a 6= b. Consider any point c ∈ [a, b) at which the function

ψ(x) := ϕ(x)− ϕ(b)− ϕ(a)
‖a− b‖

‖x− a‖

attains its minimum on [a, b]; such a point always exists. Then, there are sequences xk
ϕ→ c and x∗k ∈

∂Fϕ(xk) satisfying

lim inf
k→∞

〈x∗k, b− xk〉 ≥
ϕ(b)− ϕ(a)
‖a− b‖

‖b− c‖, (7.2)

lim inf
k→∞

〈x∗k, b− a〉 ≥ ϕ(b)− ϕ(a). (7.3)

Moreover, when c 6= a one has
lim
k→∞

〈x∗k, b− a〉 = ϕ(b)− ϕ(a). (7.4)

Theorem 7.1.3 allows us to deduce the following three-points lemma which is similar to [5, Lemma
3.1]. The proof for Lemma 7.1.4 is identical to the proof for [5, Lemma 3.1].

Lemma 7.1.4. Let ϕ : X → R be a proper, lower semicontinuous function on an Asplund space X. Let
u, v, w ∈ X such that v ∈ [u,w], ϕ(v) > ϕ(u) and λ > 0. Then, there are x̄ ∈ domϕ and x̄∗ ∈ ∂Fϕ(x̄)
such that

x̄ ∈ Bλ([u, v]) and 〈x̄∗, w − x̄〉 > 0,
where

Bλ([u, v]) := {x ∈ X : ∃y ∈ [u, v] such that ‖x− y‖ < λ}.

We are in position to establish characterisations of quasiconvexity in terms of Fréchet subdifferentials
in Asplund spaces.

Theorem 7.1.5. Let ϕ : X → R be a proper lower semicontinuous function on an Asplund space X.
The following statements are equivalent

(a) ϕ is quasiconvex;

(b) If there are x, y ∈ X such that ϕ(y) ≤ ϕ(x), then 〈x∗, y − x〉 ≤ 0 for all x∗ ∈ ∂̂ϕ(x).

(c) ∂Fϕ is quasimonotone.

Proof. (a)⇒(b) Assume that x, y ∈ X, ϕ(x) ≥ ϕ(y), and x∗ ∈ ∂Fϕ(x). Consider Sx := {u ∈ X : ϕ(u) ≤
ϕ(x)}. Since ϕ is quasiconvex, then Sx is a convex set. Thus, we have the function f := δSx + ϕ(x) is
convex, where δSx is equal to 0 for u ∈ Sx and to ∞ otherwise. On the other hand, f(x) = ϕ(x) and
f(u) ≥ ϕ(u) for all u ∈ X, thus ∂Fϕ(x) ⊂ ∂F f(x). By the definition of convex subdifferential, since
x∗ ∈ ∂̂ϕ(x) ⊂ ∂F f(x), we have 〈x∗, y − x〉 ≤ 0.

(b)⇒(c) Assume that there are x, y ∈ X and x∗ ∈ ∂Fϕ(x), y∗ ∈ ∂Fϕ(y) such that 〈x∗, x − y〉 < 0 and
〈y∗, x− y〉 > 0. Then, by (b), ϕ(x) < ϕ(y) and ϕ(y) < ϕ(x), which is a contradiction.

(c)⇒(a) By using Lemma 7.1.4, the proof of this assertion is similar to one in [4, Theorem 4.1].
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Remark 7.1.6. Observe that the implications (a) ⇒ (b) and (b) ⇒ (c) hold in Banach spaces while
(c) ⇒ (a) only holds in Asplund spaces. In fact, the equivalence of these statements actually can
characterise the Asplund property in the sense that if X is not an Asplund space, then there is a
function ϕ whose Fréchet subdiferential satisfies (b) and (c) but is not quasiconvex. Such a function ϕ
can be found in [163, Theorem 2.4].

7.2 Characterisations of Robustly Quasiconvex Functions

Here we show that this conclusion in [11, Proposition 5.3] is still correct not only when f is assumed
just to be lower semicontinuous, but also when X is only assumed to be an Asplund space. To derive
this generalisation, we need the following lemmas, revealing that quasiconvex functions have certain nice
properties which resemble those of convex functions.

Lemma 7.2.1. If ϕ : X → R is a quasiconvex and lowersemicontinuous function, and u, v ∈ X are such
that ϕ(v) ≥ ϕ(u) then

lim
t↓0

ϕ(v + t(u− v)) = ϕ(v). (7.5)

Proof. Suppose that u, v ∈ X and that ϕ(v) ≥ ϕ(u). Since ϕ is quasiconvex, for all t ∈]0, 1[, we have
ϕ(v+ t(u− v)) ≤ max{ϕ(v), ϕ(u)} = ϕ(v). It follows that lim sup

t↓0
ϕ(v+ t(u− v)) ≤ ϕ(v). Combining the

latter with the lower semicontinuity of ϕ we get (7.5).

Lemma 7.2.2. Let ϕ : X → R be a quasiconvex function and u, v, w ∈ X such that v ∈]u,w[, ϕ(u) ≤
ϕ(w). Suppose that there exist v∗ ∈ X∗ and z ∈]u, v[ such that ϕv∗(z) > max{ϕv∗(u), ϕv∗(w)}. Then

ϕ(u) < ϕ(z) ≤ ϕ(v) ≤ ϕ(w). (7.6)

Proof. Since z ∈]u, v[⊂]u,w[, ϕ(u) ≤ ϕ(w) and ϕ is quasiconvex we have ϕ(z) ≤ max{ϕ(u), ϕ(w)} =
ϕ(w). Hence, the latter and the inequality ϕv∗(z) > ϕv∗(w) implies that 〈v∗, z〉 > 〈v∗, w〉. As
〈v∗, z − w〉 > 0 and z = λu + (1 − λ)w, we have 〈v∗, z − w〉 = λ 〈v∗, u− w〉 > 0 with λ ∈]0, 1[, hence
〈v∗, u− w〉 > 0. Then, 〈v∗, z − u〉 = (1−λ) 〈v∗, w − u〉 < 0 so 〈v∗, z〉 < 〈v∗, u〉. Therefore, the inequality
ϕv∗(u) < ϕv∗(z) yields ϕ(u) < ϕ(z). Since z ∈]u, v[ and v ∈]z, w[, we deduce ϕ(z) ≤ ϕ(v) ≤ ϕ(w) from
the latter inequality and the quasiconvexity of ϕ. Hence, (7.6) holds.

Lemma 7.2.3. Let ϕ : X → R be a quasiconvex, proper, and lower semicontinuous function, and
v∗ ∈ X∗. If ϕv∗ is not quasiconvex then there exist u, v, w ∈ X such that v ∈]u,w[ and

ϕ(w) ≥ ϕ(v) > ϕ(u), (7.7)

ϕv∗(v) > max{ϕv∗(u), ϕv∗(w)}, (7.8)

∀γ > 0,∃vγ ∈ Bγ(v)∩]v, w[ : ϕv∗(v) > ϕv∗(vγ). (7.9)

Proof. Since ϕv∗ is not quasiconvex, there exist u,w ∈ X such that u 6= w,ϕ(u) ≤ ϕ(w) and v0 ∈]u,w[
such that ϕv∗(v0) > max{ϕv∗(u), ϕv∗(w)}. Applying Lemma 7.2.1, we get lim

t↓0
ϕ(w + t(u− w)) = ϕ(w),

and so lim
t↓0

ϕv∗(w + t(u− w)) = ϕv∗(w). Since ϕv∗(w) < ϕv∗(v0), there exists t0 ∈]0, 1[ such that

ϕv∗(w + t(u− w)) < ϕv∗(v0), ∀t ∈]0, t0[. (7.10)

Consider the set
L := {z ∈]u,w[: ϕv∗(z) ≥ ϕv∗(v0)}.
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Since we already have v0 ∈ L , then L 6= ∅. For each z ∈ L we have ‖z −w‖ ≥ t0‖u−w‖ by (7.10). It
follows that

r := inf{‖z − w‖ : z ∈ L } ∈ [t0‖u− w‖, ‖u− w‖[ ⊂ ]0, ‖u− w‖[,

v := w + r
u− w
‖u− w‖

∈ ]u,w[.

We will show that v ∈ L and so (7.8) holds. Suppose on the contrary that v /∈ L . Then v0 ∈]u, v[ and
we get ϕ(u) < ϕ(v0) ≤ ϕ(v) ≤ ϕ(w) by Lemma 7.2.2. Applying Lemma 7.2.1, we get lim

t↓0
ϕ(v+t(u−v)) =

ϕ(v), and so lim
t↓0

ϕv∗(v + t(u − v)) = ϕv∗(v). By the definition of r, there exists a sequence (zn) ⊂ L

such that ‖zn − w‖ → r and ‖zn − w‖ > r for all n ∈ N. Therefore,

ϕv∗(v) = lim
t↓0

ϕv∗(v + t(u− v))

= limϕv∗

(
v + ‖zn − w‖ − r

‖u− v‖
(u− v)

)
= limϕv∗

(
v − r

‖u− v‖
(u− v) + ‖zn − w‖

‖u− v‖
(u− v)

)
= limϕv∗

(
v − r

‖u− w‖
(u− w) + ‖zn − w‖

‖u− w‖
(u− w)

)
= limϕv∗

(
w + ‖zn − w‖

‖u− w‖
(u− w)

)
= limϕv∗ (zn)
≥ ϕv∗(v0),

which is a contradiction. Now we show that v satisfies (7.9). Let γ be any positive real number and

vγ := w + r − rγ
‖u− w‖

(u− w) with rγ := min{r/2, γ/2} > 0.

Since 0 < r − rγ < r < ‖u− w|, it implies that vγ ∈]v, w[ \ L . Therefore, ϕv∗(vγ) < ϕv∗(v0) ≤ ϕv∗(v).
Furthermore,

‖vγ − v‖ =
∥∥∥∥w + r − rγ

‖u− w‖
(u− w)− w − r u− w

‖u− w‖

∥∥∥∥ = rγ < γ.

Hence, v satisfies (7.9).

Theorem 7.2.4. Let ϕ : X → R be a proper lower semicontinuous function on a Banach space X, and
α > 0. Consider the following statements

(a) ϕ is α−robustly quasiconvex;

(b) For every x, y ∈ X

ϕ(y) ≤ ϕ(x) =⇒ 〈x∗, y − x〉 ≤ −min {α‖y − x‖, ϕ(x)− ϕ(y)} , ∀x∗ ∈ ∂Fϕ(x). (7.11)

Then (a)⇒(b). Additionally, if X is an Asplund space, then (b)⇒(a).

Proof. Suppose that ϕ is α−robustly quasiconvex, and x, y ∈ X satisfy ϕ(y) ≤ ϕ(x). Assume that
x∗ ∈ ∂Fϕ(x). We will prove

〈x∗, y − x〉 ≤ −min {α‖y − x‖, ϕ(x)− ϕ(y)} .

If x = y, the above inequality is trivial. Otherwise, we consider two cases:
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Case 1. α‖y − x‖ ≤ ϕ(x)− ϕ(y)

We then need to prove that
〈x∗, y − x〉 ≤ −α‖y − x‖. (7.12)

By the Hahn-Banach theorem, there exists v∗ ∈ X∗, ‖v∗‖ = 1 such that 〈v∗, y− x〉 = ‖y− x‖. Consider
the function f : X → R given by

f(z) = ϕ(z) + α〈v∗, z − x〉 ∀z ∈ X.

Then f(x) = ϕ(x), and

f(y) = ϕ(y) + α〈v∗, y − x〉 = ϕ(y) + α‖y − x‖ ≤ ϕ(x) = f(x),

i.e., max{f(x), f(y)} = f(x). Since ϕ is α−robustly quasiconvex, f is quasiconvex. Therefore for each
t ∈ [0, 1], we always have

ϕ(x) = f(x) = max{f(x), f(y)} ≥ f(x+ t(y − x))
= ϕ(x+ t(y − x)) + tα〈v∗, y − x〉
= ϕ(x+ t(y − x)) + tα‖y − x‖,

which implies that
ϕ(x)− tα‖y − x‖ ≥ ϕ(x+ t(y − x)). (7.13)

Since x∗ ∈ ∂Fϕ(x), for any γ > 0, there exists a number r > 0 such that

ϕ(z) ≥ ϕ(x) + 〈x∗, z − x〉 − γ‖z − x‖ ∀z ∈ Br(x). (7.14)

Let t ∈]0, 1[ such that x+ t(y − x) ∈ Br(x). It follows from (7.13) and (7.14) that

ϕ(x)− tα‖y − x‖ ≥ ϕ(x) + t〈x∗, y − x〉 − tγ‖y − x‖,

and so
〈x∗, y − x〉 ≤ −α‖y − x‖+ γ‖y − x‖. (7.15)

On taking limit on both sides of the above inequality as γ → 0+, we get (7.12).

Case 2. α‖y − x‖ > ϕ(x)− ϕ(y)

We have ᾱ‖y − x‖ = ϕ(x)− ϕ(y), where

ᾱ := ϕ(x)− ϕ(y)
‖y − x‖

∈]0, α[.

Since ϕ is ᾱ−robustly quasiconvex, we derive from Case 1 that

〈x∗, y − x〉 ≤ −ᾱ‖y − x‖ = ϕ(y)− ϕ(x)
= −min {α‖y − x‖, ϕ(x)− ϕ(y)} .

Conversely, assume that X is Asplund, and (b) holds. It follows from Theorem 7.1.5 that ϕ is
quasiconvex. Suppose that ϕ is not α−robustly quasiconvex, i.e., there exists v∗ ∈ X∗ \ {0}, ‖v∗‖ < α
such that ϕv∗ is not quasiconvex. By Lemma 7.2.3, there are u,w ∈ X and v ∈]u,w[ satisfying (7.7),(7.8),
and (7.9). Since ϕv∗(v) > ϕv∗(u), there exists δ > 0 such that v̄∗ := (1 + δ)v∗ satisfies ‖v̄∗‖ < α and
ϕv̄∗(v) > ϕv̄∗(u). Thus, we have ϕ(v) > ϕ(u), ϕv∗(v) > ϕv∗(u), ϕv̄∗(v) > ϕv̄∗(u) and the lower
semicontinuity of ϕ,ϕv∗ , and ϕv̄∗ . This implies the existence of γ > 0 satisfying

ϕ(z) > ϕ(u), ϕv∗(z) > ϕv∗(u), ϕv̄∗(z) > ϕv̄∗(u) ∀z ∈ Bγ(v). (7.16)
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By the assertion (7.9), there is vγ ∈ Bγ(v)∩]v, w[ such that ϕv∗(v) > ϕv∗(vγ). Then, vγ can be written
as

vγ := v + λ(w − v) with λ ∈
]
0,min

{
1, γ

‖w − v‖

}[
.

Since ϕv∗(v) > ϕv∗(w) and ϕ(v) ≤ ϕ(w), we have 〈v∗, w − v〉 < 0 and so

ϕv̄∗(vγ)− ϕv̄∗(v) = ϕv∗(vγ)− ϕv∗(v) + δ〈v∗, vγ − v〉
= ϕv∗(vγ)− ϕv∗(v) + δλ〈v∗, w − v〉 < 0.

Observe that ‖vγ − v‖ = λ ‖w − v‖ < γ. We can take r ∈] ‖vγ − v‖ , γ[. Applying Lemma 7.1.4 for ϕv̄∗ ,
v ∈ [vγ , u] with ϕv̄∗(v) > ϕv̄∗(vγ), there exist x ∈ domϕv̄∗ and x∗ ∈ ∂Fϕv̄∗(x) such that

x ∈ [vγ , v] + (r − ‖vγ − v‖)B and 〈x∗, u− x〉 > 0. (7.17)

Then x ∈ Bγ(v) and so ϕ(x) > ϕ(u) by (7.16). By the assumption (b) and the second inequality of
(7.17),

−〈v̄∗, u− x〉 < 〈x∗ − v̄∗, u− x〉 ≤ −min{α‖u− x‖, ϕ(x)− ϕ(u)}.
Since 〈v̄∗, u−x〉 ≤ ‖v̄∗‖‖u−x‖ < α‖u−x‖, the above inequality implies that 〈v̄∗, u−x〉 > ϕ(x)−ϕ(u),
i.e., ϕv̄∗(x) < ϕv̄∗(u) and this contradicts (7.16).

We next construct a completely new characterisation for the robust quasiconvexity. It is based on
the equivalence of the quasiconvexity of a lower semicontinuous function and the quasimonotonicity of
its subdifferential operator.

Theorem 7.2.5. Let ϕ : X → R be proper, lower semicontinuous on an Asplund space X and α > 0.
Then, ϕ is α−robustly quasiconvex if and only if for any (x, x∗), (y, y∗) ∈ graph ∂Fϕ, we have

min{〈x∗, y − x〉, 〈y∗, x− y〉} > −α‖y − x‖ =⇒ 〈x∗ − y∗, x− y〉 ≥ 0. (7.18)

Proof. Suppose that ϕ is α−robustly quasiconvex and that there exist (x, x∗), (y, y∗) ∈ graph ∂Fϕ such
that

min{〈x∗, y − x〉, 〈y∗, x− y〉} > −α‖y − x‖. (7.19)
Since ϕ is quasiconvex, ∂Fϕ is quasimonotone by Theorem 7.1.5. It follows that

min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 0. (7.20)

Combining (7.19) and (7.20), we have

0 ≤ −min
{〈

x∗,
y − x
‖y − x‖

〉
,

〈
y∗,

x− y
‖x− y‖

〉}
< α.

Without loss of generality, we may assume〈
x∗,

y − x
‖y − x‖

〉
= min

{〈
x∗,

y − x
‖y − x‖

〉
,

〈
y∗,

x− y
‖x− y‖

〉}
.

Let r > 0 be such that
−
〈
x∗,

y − x
‖y − x‖

〉
< r ≤ α. (7.21)

By the Hahn-Banach theorem, there exists v∗ ∈ X∗ satisfying 〈v∗, y − x〉 = r‖y − x‖ and ‖v∗‖ = r ≤ α.
It follows that

〈x∗, y − x〉+ 〈v∗, y − x〉 > −r‖y − x‖+ r‖y − x‖ = 0. (7.22)
Consider ϕv∗ : X → R given by ϕv∗(u) = ϕ(u) + 〈v∗, u〉 for any u ∈ X. Then, we have ∂Fϕv∗(u) =
∂Fϕ(u) + v∗ for u ∈ domϕ. Hence, by the quasiconvexity of ϕv∗ and by Theorem 7.1.5, we have

min{〈x∗, y − x〉+ 〈v∗, y − x〉, 〈y∗, x− y〉+ 〈v∗, x− y〉} ≤ 0.
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Combining with (7.22), it implies

〈y∗, x− y〉+ 〈v∗, x− y〉 ≤ 0, i.e., 〈y∗, x− y〉 ≤ 〈v∗, y − x〉 = r‖x− y‖.

Letting r → −
〈
x∗,

y − x
‖y − x‖

〉
, we obtain 〈y∗, x− y〉 ≤ 〈x∗, x− y〉 and thus (7.18) holds.

Conversely, assume that (7.18) holds for all x, y ∈ X and x∗ ∈ ∂Fϕ(x), y∗ ∈ ∂Fϕ(y). Taking any v∗ in
αB∗, we next prove that ϕv∗ : X → R, defined by ϕv∗(u) = ϕ(u) + 〈v∗, u〉 for any u ∈ X, is quasiconvex
by showing the quasimonotonicity of ∂̂ϕv∗ . Taking any x, y ∈ X and x∗ ∈ ∂Fϕv∗(x), y∗ ∈ ∂Fϕv∗(y),
then x∗ − v∗ ∈ ∂Fϕ(x), y∗ − v∗ ∈ ∂Fϕ(y). We then consider two cases.

Case 1. min{〈x∗ − v∗, y − x〉, 〈y∗ − v∗, x− y〉} ≤ −α‖y − x‖

Without loss of generality, assume that

〈x∗ − v∗, y − x〉 = min{〈x∗ − v∗, y − x〉, 〈y∗ − v∗, x− y〉}.

Since ‖v∗‖ ≤ α, we have

min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 〈x∗, y − x〉 = 〈x∗ − v∗, y − x〉+ 〈v∗, y − x〉
≤ −α‖y − x‖+ ‖v∗‖‖y − x‖ ≤ 0.

Case 2. min{〈x∗ − v∗, y − x〉, 〈y∗ − v∗, x− y〉} > −α‖y − x‖

Since (7.18) is satisfied, we have

〈(x∗ − v∗)− (y∗ − v∗), x− y〉 ≥ 0,

i.e., 〈x∗ − y∗, x− y〉 ≥ 0. It implies that

2 min{〈x∗, y − x〉, 〈y∗, x− y〉} ≤ 〈x∗, y − x〉+ 〈y∗, x− y〉 ≤ 0.

Hence, ∂Fϕv∗ is quasimonotone and thus ϕv∗ is quasiconvex for any v∗ ∈ αB∗ by Theorem 7.1.5. This
yields the α-robust quasiconvexity of ϕ.
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Chapter 8

Abstract Convexity

Section 8.1 recalls some preliminary definitions and facts used throughout the chapter. We briefly intro-
duce and study the space of abstract linear functions, and abstract convexity notions; some results are
new in the context of abstract convexity. In Section 8.2, we provide some properties that are tantamount
to the equality between the conjugate of the sum of some functions and the infimal convolution of the
conjugates of those functions, which ensures the zero duality gap. We impose no topological assumptions
on the primal space nor on the space of linear functions. A comparison with its forerunner, [23, Theorem
3.2] for convex programming, is established. The necessary and sufficient characterisation of the zero
duality gap is provided, which is new even in the standard convex analysis. In Section 8.3, we equip the
space of abstract linear functions with the weak∗ topology to extend some classical convex subdifferential
calculus in the framework of abstract convexity. Some of the facts in convex analysis cannot be extended
to abstract convexity without imposing additional assumptions. Here, we assume that the epigraphs of
the conjugate functions admit the weak∗ additive property (see (8.38)). This condition holds for lower
semicontinuous convex functions in classical convex analysis. Then, the zero duality conditions are ex-
posed fully. In the last section of this chapter, we construct a nontrivial example for which our analysis
applies.

In this chapter, when talking about a convex function, or convex set we normally mean conventional
convex analysis. Throughout, X is a nonempty set, which can be thought of as a primal space. Note that
we do not assume any algebraic or topological structure on X. Let F := {f : X → R : f is a function} =
XR, i.e., F is the set of all functions acting from X to R. The addition operator in F is the conventional
one, i.e., (f1 + f2)(x) := f1(x) + f2(x) for all x ∈ X. As mentioned above, the linear functions and their
vertical shifts (which are the affine functions) are at the core of convex analysis. They have a crucial role
in the definitions of conjugate functions and ε−subdifferentials. In the next section, we define the set
L of abstract linear functions. We make minimal assumptions on L which trivially hold in the classical
convex case. In Proposition 8.1.3 below, we show that some classical features of the conjugate functions
and ε−subdifferentials, are still true for this general set L of linear functions.

8.1 Preliminaries Results on Abstract Convexity

8.1.1 Abstract Linear Space

Definition 8.1.1. A space of abstract linear functions, denoted by L, is a subset of F that satisfies the
following properties:

(a) L is closed with respect to the addition operator i.e. f1, f2 ∈ L =⇒ f1 + f2 ∈ L;
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(b) For every l ∈ L and m ∈ N, there exist l1, . . . , lm ∈ L such that

l = l1 + . . .+ lm. (8.1)

Remark 8.1.2. If 0 ∈ L and L verifies Definition 8.1.1(a), then L automatically verifies property (b) in
Definition 8.1.1.

Throughout, we assume that L possesses properties (a) and (b).

Using the set L, we state next the abstract counterparts of infimal convolution, Fenchel conjugate
function, and ε−subdifferential.

Definition 8.1.3. (i) Given m functions ψ1, . . . , ψm : X → R+∞, the infimal convolution of the
functions ψ1, . . . , ψm is the function ψ1� . . .�ψm : X → R±∞ defined by

ψ1� . . .�ψm(x) := inf
x1+...+xm=x

{ψ1(x1) + . . .+ ψm(xm)} , ∀x ∈ X (8.2)

with the convention that infimum over an empty set is +∞.

(ii) Given L as in Definition 8.1.1, and a function f : X → R+∞, the Fenchel conjugate of f is the
function f∗ : L → R±∞, defined as

f∗(l) := sup
x∈X
{l(x)− f(x)}. (8.3)

(iii) Given L as in Definition 8.1.1, a number ε ≥ 0, and a function f : X → R±∞, we define the
ε−subdifferential point–to–set mapping ∂εf : X ⇒ L at a point x ∈ dom f as

∂εf(x) := {l ∈ L : f(y)− f(x)− (l(y)− l(x)) + ε ≥ 0 for all y ∈ X}. (8.4)

If x /∈ dom f , then ∂εf(x) = ∅.

We prove next some properties of the concepts defined in (i)–(iii).

Proposition 8.1.4. Let L be a space of abstract linear functions. Then, the following statements hold:

(i) For all x ∈ X and ε ≥ 0, we have

l ∈ ∂εf(x)⇐⇒ f∗(l) + f(x) ≤ l(x) + ε; (8.5)

(ii) Let f : X → R+∞. Then, l ∈ dom f∗ if and only if for any ε > 0, there is an x ∈ X such that
l ∈ ∂εf(x). In other words,

dom f∗ =
⋂
ε>0

∂εf(X);

(iii) For any ε ≥ 0, we always have ⋂
η>0

∂ε+ηf(x) = ∂εf(x).

Suppose now that f1, . . . , fm : X → R+∞ (m ≥ 2) are any functions such that
m⋂
i=1

dom fi 6= ∅.

(iv) The following inequality holds (
m∑
i=1

fi

)∗
≤ f∗1� . . .�f∗m in L; (8.6)
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(v) For any x ∈ X, and any ε ≥ 0, we have the following inclusion

⋂
η>0

⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x) ⊂ ∂ε

(
m∑
i=1

fi

)
(x). (8.7)

Proof. (i) See [145, Proposition 7.10].

(ii) Let l ∈ dom f∗. Due to the definition of f∗, f∗(l) = sup
x∈X
{l(x)− f(x)}, then for all ε > 0 we can

find an x ∈ X such that l(x) − f(x) ≥ f∗(l) − ε, or l(x) + ε ≥ f∗(l) + f(x). By (i), the converse
implication is equivalent to having l ∈ ∂εf(x).

(iii) Fix ε > 0. It is clear from the definition that ∂εf(x) ⊂ ∂ε+ηf(x) for every η > 0. Hence we deduce
that ∂εf(x) ⊂

⋂
η>0

∂ε+ηf(x). For the opposite inclusion, fix η > 0 and take l ∈
⋂
η>0

∂ε+ηf(x).

By (i), the latter is equivalent to having −l(x) + f(x) + f∗(l) ≤ η + ε for all η > 0. Thus,
−l(x) + f(x) + f∗(l) ≤ ε. Using (i) again, we deduce that l ∈ ∂εf(x).

(iv) Take l ∈ L. We consider two cases.

Case 1. Assume that l /∈ dom
(

m∑
i=1

fi

)∗
. We have sup

x∈X

{
l(x)−

m∑
i=1

fi(x)
}

= +∞. Take any

additive decomposition of l, i.e., take any finite collection l1, . . . , lm such that l1 + . . .+ lm = l. We
have

m∑
i=1

f∗i (li) ≥ sup
x∈X

{
m∑
i=1

(li(x)− fi(x))
}

= +∞.

Taking infimum over all possible additive decompositions of l, we deduce that f∗1� . . .�f∗m(l) =
+∞.

Case 2. Assume that l ∈ dom
(

m∑
i=1

fi

)∗
. Take an arbitrary additive decomposition of l, i.e., take

any finite collection l1, . . . , lm such that l1 + . . . + lm = l. By definition of conjugate function, we
have that for every ε > 0, there is an x ∈ X such that(

m∑
i=1

fi

)∗
(l) ≤ l(x)−

m∑
i=1

fi(x) + ε

=
m∑
i=1

(li(x)− fi(x)) + ε

≤
m∑
i=1

f∗i (li) + ε,

where we used the definition of l1, . . . , lm as additive decomposition of l in the equality and the
definition of conjugate function in the last inequality. Since the additive decomposition is arbitrary,
the expression above yields(

m∑
i=1

fi

)∗
(l) ≤ inf

l1+...+lm=l
{f∗1 (l1) + . . .+ f∗m(lm)}+ ε = f∗1� . . .�f∗m(l) + ε.

Since the inequality holds for all l ∈ L and ε > 0, we obtain (8.6).

(v) Take η > 0. We claim that (v) is true if the inclusion
m∑
i=1

∂εifi(x) ⊂ ∂ε+η

(
m∑
i=1

fi

)
(x), (8.8)
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is true for every η > 0 and every additive decomposition ε1, . . . , εm of ε + η. Indeed, consider m
non-negative numbers ε1, . . . , εm such that ε1 + . . .+εm = ε+η and assume that (8.8) holds. Since
the right hand side of (8.8) does not depend on the choice of ε1, . . . , εm, we have that

⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x) ⊂ ∂ε+η

(
m∑
i=1

fi

)
(x).

Now (v) will follow by taking intersection for all η > 0 in both sides of the expression above and
then using (iii). Therefore, our claim is true and we proceed to establish (8.8) for every η > 0 and
every additive decomposition ε1, . . . , εm of ε+ η.

If
m∑
i=1

∂εifi(x) = ∅, then inclusion (8.8) trivially holds. Take l ∈
m∑
i=1

∂εifi(x). Then there are

li ∈ ∂εifi(x) (i = 1, . . . ,m) such that l = l1 + . . . + lm. Using (ii) we can write f∗i (li) + fi(x) ≤
li(x) + εi for all i = 1, . . . ,m. Add up the inequalities above, and use the fact that ε1 + . . .+ εm =
ε+ η, to obtain

m∑
i=1

f∗i (li) +
m∑
i=1

fi(x) ≤
m∑
i=1

li(x) + ε+ η = l(x) + ε+ η, (8.9)

where we used the definition of l1, . . . , lm in the rightmost equality. Using (iv), we have
m∑
i=1

f∗i (li) ≥
(

m∑
i=1

fi

)∗
(l),

which combined with the previous inequality yields

(8.9)⇐⇒ l ∈ ∂ε+η

(
m∑
i=1

fi

)
(x),

where we used (i) in the equivalence. This establishes (8.8), and the proof of (v) is complete.

Remark 8.1.5. In the conventional convex setting, the assertions in Proposition 8.1.4 are well–known.

8.1.2 Abstract Convex Functions and Abstract Convex Sets

We start this subsection by defining the abstract affine functions, which are, as in the standard convex
analysis, the vertical shifts of the abstract linear functions.

Definition 8.1.6. Let X and L be as in Definition 8.1.1. The space of abstract affine functions is defined
as H := {l + c : l ∈ L, c ∈ R}.

Remark 8.1.7. The space of affine function H can be defined independently of the space of abstract linear
functions L as an arbitrary set of functions which is closed with respect to the vertical shifts.

Equipped with the set H, we can now extend the classical notions of convex function and convex set
to our abstract framework.

Definition 8.1.8. [145, Definition 7.2] Let X,L and H be as in Definitions 8.1.6 and 8.1.1.

(i) Given any function f : X → R+∞, the set

suppf := {h ∈ H : h(x) ≤ f(x),∀x ∈ X} ⊂ H, (8.10)

is called the support set of f .
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(ii) A function f : X → R+∞ is said to be L−convex if there is a subset L ⊂ L such that

f(x) = sup
l∈L

l(x), ∀x ∈ X.

(iii) A set C ⊂ L is called L−convex if for every element l0 /∈ C, there is an x ∈ X such that

l0(x) > sup
l∈C

l(x).

The L−convex hull of a set A ⊂ L is the smallest L−convex set that contains A.

Remark 8.1.9. (a) The definition of L−convex set in Definition 8.1.8 (iii) is different from that in [145,
Definition 1.4] and in [78] (we formulate [145, Definition 1.4] in Proposition 8.1.12 (i) below).
Each definition reflects different ideas of convexity. Definition 8.1.8 (iii) is based on the separation
property, whereas the rationale in Proposition 8.1.12 (i) below is based on the notion of convex
combination.

(b) From Definition 8.1.8 (ii), we also have the definition for H−convex functions, that is, a function
f : X → R+∞ is said to be H−convex if there is a non-empty subset H ⊂ H such that

f(x) = sup
h∈H

h(x), ∀x ∈ X. (8.11)

(c) From Definition 8.1.8 (iii), we also can obtain the definition for H−convex sets, that is, a set C ⊂ H
is H−convex if for any h0 /∈ C there is an x ∈ X such that

h0(x) > sup
h∈C

h(x).

(d) If f isH−convex, and C := suppf , then C isH−convex. Similarly, if C isH−convex and f = sup
l∈C

l,

then C = suppf .

Our next proposition collects some properties of H−convex functions.

Proposition 8.1.10. Let X,L and H be as in Definitions 8.1.8 and 8.1.1, and f : X → R+∞. The
following assertions hold.

(i) For all x ∈ X, we have
sup

h∈suppf
h(x) ≤ f(x). (8.12)

Equality holds in (8.12) for all x ∈ X if and only if f is H−convex.

(ii) The following equality holds

epi f∗ = {(l, r) ∈ L × R : l − r ∈ suppf}. (8.13)

(iii) If the function f is H−convex, then for all x ∈ dom f and ε > 0, we have ∂εf(x) 6= ∅. Conversely,
if for all x ∈ X, and ε > 0, we always have ∂εf(x) 6= ∅, then the function f is H−convex.

(iv) If (l, r) ∈ epi f∗, then l ∈ ∂r+f(x)−l(x)f(x) for all x ∈ dom f .

(v) (Fenchel–Moreau) For all x ∈ X, we have

f∗∗(x) ≤ f(x). (8.14)

Equality holds in (8.14) for all x ∈ X if and only if f is H−convex.
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Proof. (i) Inequality (8.12) holds trivially by the definition of suppf . When the equality holds in
(8.12) for all x ∈ X, then f is H−convex by Definition 8.1.8 (ii). Conversely, assume that f is
H−convex. By definition, there exists a set H ⊂ H such that f(x) = sup

h∈H
h(x). It is easy to see

from the definitions that H ⊂ suppf . Since

f(x) = sup
h∈H

h(x) ≤ sup
h∈suppf

h(x) ≤ f(x),

then sup
h∈suppf

h(x) = f(x), for all x ∈ X. This proves that equality holds in (8.12).

(ii) See [78, Equation (1), page 444].

(iii) Assuming the function f is H−convex, by (i), we have sup
h∈suppf

h(x) = f(x). Then for all x ∈ dom f

and ε > 0, there is an affine function l + c ∈ suppf with l ∈ L, c ∈ R such that

l(x) + c+ ε ≥ f(x), and f(y) ≥ l(y) + c, ∀y ∈ X.

Consequently, f(y)− f(x) ≥ l(y)− l(x)− ε, ∀y ∈ X, which implies l ∈ ∂εf(x).
Conversely, assume that for all x ∈ X and ε > 0, we always have ∂εf(x) 6= ∅. We will prove that
f(x) = sup

h∈suppf
h(x). By (i), we always have

f(x) ≥ sup
h∈suppf

h(x). (8.15)

Take ε > 0. By our assumption, there is a linear function l ∈ ∂εf(x), or, equivalently,

f(y) ≥ l(y)− l(x)− ε+ f(x), ∀y ∈ X.

Then the affine function l̂(.) := l(·) − l(x) − ε + f(x) belongs to the set suppf and l̂(x) = l(x) −
ε+ f(x)− l(x) = f(x)− ε. Hence,

f(x)− ε = l̂(x) ≤ sup
h∈suppf

h(x),

where the inequality holds because l̂ ∈ suppf . Since the above inequality holds for all ε > 0,
inequality (8.15) now implies that f(x) = sup

h∈suppf
h(x). Using now the last statement in (i), we

conclude f is a H−convex function.

(iv) Assume (l, r) ∈ epi f∗, then f∗(l) ≤ r. Take x ∈ dom f . By definition of f∗ (see Defini-
tion 8.1.3 (ii)), r + f(x) − l(x) ≥ 0. We have f∗(l) + f(x) ≤ r + f(x) = l(x) + (r + f(x) − l(x)).
By Proposition 8.1.4 (i), l ∈ ∂r+f(x)−l(x)f(x).

(v) See [145, Theorem 7.1].

Remark 8.1.11. (a) Inequality (8.12) holds for f : X → R+∞ even when suppf = ∅. Indeed, in this
case we have sup

h∈suppf
h(x) = −∞ < f(x). In this situation, however, f is not an H-convex function.

Consequently, if f is H-convex, we must have suppf 6= ∅.

(b) Proposition 8.1.10 (iii) is not an “if and only if ” statement. The first implication holds for all
H−convex function, whereas the converse implication needs dom f = X.

The next proposition provides some properties of L−convex sets and H−convex sets used in the
subsequent sections.

Proposition 8.1.12. Let X,L and H be as in Definition 8.1.8, and C ⊂ L. The following assertions
hold.
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(i) The set C is L–convex if and only if there is an L−convex function f : X → R such that

C = suppf.

In this case, suppf ⊂ L, i.e. suppf := {l ∈ L : l(x) ≤ f(x),∀x ∈ X}.

(ii) The nonempty set C ⊂ L is L−convex if and only if there is a L−convex function f : X → R+∞
such that

C = S≤f∗(0) := {l ∈ L : f∗(l) ≤ 0}. (8.16)

(iii) Suppose in this part that L has linear structure (i.e. closed with respect to addition and multipli-
cation by a scalar). If the set C ⊂ L is L−convex, then C is closed for convex combinations of its
elements. Namely, for all l1, l2 ∈ C and α ∈ [0, 1], we have αl1 + (1− α)l2 ∈ C.

Proof. (i) See [145, Lemma 1.1, Page 6].

(ii) Assume that C ⊂ L is a nonempty L−convex set. Let f := sup
l∈C

l. Then, f is L-convex and C =

suppf . By Proposition 8.1.10 (i), we obtain (8.16). For the opposite inclusion, Proposition 8.1.10 (i)
implies C = S≤f∗(0) = suppf is an L−convex set.

(iii) Suppose C is a L−convex set. Take l1, l2 ∈ C and α ∈ [0, 1]. We will show that αl1 + (1−α)l2 ∈ C
Let f := sup

l∈C
l which is L−convex by construction. By (i), we have C ⊂ suppf . Hence, for all

x ∈ X we have l1(x) ≤ f(x), and l2(x) ≤ f(x). Then, it is clear that αl1(x) + (1− α)l2(x) ≤ f(x).
This implies αl1 + (1− α)l2 ∈ suppf = C.

Remark 8.1.13. The converse of Proposition 8.1.12 (iii) is not true. In the example provided in Section 8.4,
the characterisations of L−convex sets and H−convex sets respectively in Propositions 8.4.3 and 8.4.5
show that not all sets which are closed for convex combinations are L−convex or H−convex.

8.2 Conditions for Zero Duality Gap

Let X and L be as in Definition 8.1.1. Given m functions f1, . . . , fm : X → R+∞ (m ≥ 2), consider the
minimization problem

p := inf
(

m∑
i=1

fi(x)
)
, (P)

s.t. x ∈ X.

The dual problem of (P) is given as follows:

d := sup
(

m∑
i=1
−f∗i (li)

)
, (D)

s.t. l1, . . . , lm ∈ L,
l1 + . . .+ lm = 0.
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We refer the readers to [23] for comments and further explanation on the zero duality gap. Problem
(P) is a very general minimization problem in which X is a general nonempty set, and there is no
assumption on the convexity of the functions f1, . . . , fm.

Denote by v(P ), v(D), the optimal values of (P) and (D), respectively. We say that a zero duality
gap holds for problems (P) and (D) if v(P ) = v(D). In general, we have the inequality v(P ) ≥ v(D).

The following characterises the zero duality gap property for (P) and (D), using the infimal convolu-
tion of the conjugate functions f∗i .

p = inf
x∈X

(
m∑
i=1

fi(x)
)

= −
(

m∑
i=1

fi

)∗
(0); (P1)

d = sup
l1+...+lm=0

(
m∑
i=1
−f∗i (li)

)
= −(f∗1� . . .�f∗m)(0). (D1)

Thus, the zero duality gap is equivalent to

(∑
i=1

fi

)∗
(0) = (f∗1� . . .�f∗m)(0). (8.17)

Theorem 8.2.1 below extends [23, Theorem 3.2] to our general framework. It characterises the con-
dition (

m∑
i=1

fi

)∗
= f∗1� . . .�f∗m, in L,

which clearly guarantees (8.17).
Theorem 8.2.1. Let X and L be as in Definition 8.1.1. Fix m ∈ N such that m ≥ 2. Let f1, . . . , fm, :

X → R+∞ be such that
m⋂
i=1

dom fi 6= ∅. The following statements are equivalent.

(i) There is a K > 0 such that, for any x ∈ X and any ε > 0,

∂ε

(
m∑
i=1

fi

)
(x) ⊂

m∑
i=1

∂Kεfi(x). (8.18)

(ii)
(

m∑
i=1

fi

)∗
= f∗1� . . .�f∗m in L.

(iii) For every x ∈
m⋂
i=1

dom fi and any ε ≥ 0,

∂ε

(
m∑
i=1

fi

)
(x) =

⋂
η>0

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εi+ηfi(x)

 . (8.19)

Proof. (i) ⇒ (ii) Let l ∈ L. By Proposition 8.1.4 (iv), we have(
m∑
i=1

fi

)∗
(l) ≤ f∗1� . . .�f∗m(l).
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Let us show the opposite inequality. It is enough to consider the case in which l ∈ dom
(

m∑
i=1

fi

)∗
.

By (ii) in Proposition 8.1.4, for any ε > 0, there is a x ∈ X that l ∈ ∂ε

(
m∑
i=1

fi

)
(x). Using now

(8.18), l ∈
m∑
i=1

∂Kεfi(x), and there are li ∈ ∂Kεfi(x) (i = 1, . . . ,m) such that l = l1 + . . .+ lm. The

following inequalities hold by Proposition 8.1.4 (i)

f∗i (li) + fi(x) ≤ li(x) +Kε, ∀i = 1, . . . ,m.

Adding up the inequalities above and using the definition of infimal convolution, we can write

(f∗i � . . .�f∗m)(l) ≤
m∑
i=1

f∗i (li) ≤ −
m∑
i=1

fi(x) +
m∑
i=1

li(x) +mKε

= −
m∑
i=1

fi(x) + l(x) +mKε ≤

(
m∑
i=1

fi

)∗
(l) +mKε.

Since the inequality above holds for all ε > 0, we deduce that (f∗i � . . .�f∗m)(l) ≤
(

m∑
i=1

fi

)∗
(l).

Using (8.18), we obtain (ii). The proof of (i) ⇒ (ii) is complete.

(ii) ⇒ (iii). Let ε be a non-negative number, x ∈
m⋂
i=1

dom fi. The inclusion

∂ε

(
m∑
i=1

fi

)
(x) ⊃

⋂
η>0

 ⋃
εi≥0,

∑m

i=1
εi=ε+η

m∑
i=1

∂εifi(x)


is shown in Proposition 8.1.4 (v). Let us show the opposite inclusion.

Take l ∈ ∂ε

(
m∑
i=1

fi

)
(x). By Proposition 8.1.4 (i), we have that

(
m∑
i=1

fi

)
(x) +

(
m∑
i=1

fi

)∗
(l) ≤ l(x) + ε. (8.20)

Combine assumption (ii) with (8.20) to obtain, for all η > 0,

(f∗1� . . .�f∗m)(l) + η ≤ l(x)−
m∑
i=1

fi(x) + ε+ η. (8.21)

Inequality (8.21) shows that (f∗1� . . .�f∗m)(l) < +∞. Using the definition of infimal convolution
(Definition 8.1.3 (i)), there exist l1, . . . , lm ∈ L such that l = l1 + . . .+ lm and

f∗1 (l1) + . . .+ f∗m(lm) ≤ (f∗1� . . .�f∗m)(l) + η.

Combine the above inequality with (8.21) to deduce f∗1 (l1)+ . . .+f∗m(lm) ≤ l(x)−
m∑
i=1

fi(x)+ε+η.

Equivalently,
m∑
i=1

(fi(x) + f∗i (li)− li(x)) ≤ ε+ η. (8.22)

Set γi := fi(x) + f∗i (li) − li(x) (i = 1, . . . ,m). We have that γi ≥ 0 by definition of conjugate
function. Moreover, from Proposition 8.1.4 (i) we have that li ∈ ∂γifi(x) for all i = 1, . . . ,m. Due
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to (8.22), we obtain
n∑
i=1

γi =
m∑
i=1

(fi(x)+f∗i (li)−li(x)) ≤ ε+η. Choose εi := γi+1/m(ε+η−
m∑
j=1

γj)

(i = 1, . . . ,m). From the inequality above, we have that εi ≥ γi. Hence, li ∈ ∂γifi(x) ⊂ ∂εifi(x)

for all i = 1, . . . ,m, and
m∑
i=1

εi = ε+ η. Altogether,

l ∈
⋃

ε1+...+εm=ε+η
εi≥0

m∑
i=1

∂εifi(x), ∀η > 0,

which yields (iii). The proof of (ii) ⇒ (iii) is complete.

(iii) ⇒ (i) We will show that (i) holds for K = 2. By (8.19), for all x ∈
m⋂
i=1

dom fi(x) and ε > 0 we

have

∂ε

(
m∑
i=1

fi

)
(x) =

⋂
η>0

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)


⊂

⋂
η>0

m∑
i=1

∂ε+ηfi(x) ⊂
m∑
i=1

∂2εfi(x),

where we used the fact that ∂εifi(x) ⊂ ∂ε+ηfi(x) for all i = 1, . . . ,m in the first inclusion. The last

inclusion is obtained by choosing η = ε. In the case x /∈
m⋂
i=1

dom fi(x), we have ∂ε

(
m∑
i=1

fi

)
(x) = ∅.

Therefore, we have shown that (8.19) holds for all x ∈ X. The proof of (iii) ⇒ (i) is complete.

As mentioned above, Theorem 8.2.1 is an extension from the classical convex case to the framework
of abstract convexity of the main result in [23, Theorem 3.2]. More precisely, the authors of [23] consider
the case L = X∗, the classical dual space of all continuous linear functions, and derive constraint
qualifications for zero duality gap of a convex optimization problem. We quote their main result for the
convenience of comparison.

Theorem 8.2.2. [23, Theorem 3.2] Let X be a normed vector space, X∗ its conjugate space with
weak* topology, m ∈ N, and fi : X → R+∞ be proper lower semicontinuous convex functions where
i ∈ {1, . . . ,m}. Then the following four conditions are equivalent:

(i) There exists K > 0 such that for every x ∈
m⋂
i=1

dom fi, and every ε > 0,

cl
[
m∑
i=1

∂εfi(x)
]
⊂

m∑
i=1

∂Kεfi(x). (8.23)

(ii)
(

m∑
i=1

fi

)∗
= f∗1� . . .�f∗m in X∗.

(iii) f∗1� . . .�f∗m is weak* lower semicontinuous.
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(iv) For every x ∈ X and ε ≥ 0,

∂ε(f1 + . . .+ fm)(x) =
⋂
η>0

 ⋃
ε1+...+εm=ε+η

εi≥0

(∂ε1f1(x) + . . .+ ∂εmfm(x))

 . (8.24)

Remark 8.2.3. Note that (8.23) has the same right hand side as (8.18), but in the left hand side of
(8.23) a topological closure expression is involved. Therefore in general (8.23) is more restrictive than
(8.18). We will show in the next proposition that (8.23) ⇐⇒ (8.18) holds in any space of abstract linear
functions L as long as the topology in L possesses property (8.25) stated below.

Recall the following known result for the conventional linear function space X∗ equipped with the
weak* topology (see [168, Corollary 2.6.7]): for all lower semiconinuous convex functions f1, . . . , fm
(m ≥ 2), x ∈ X and ε ≥ 0, we have

∂ε

(
m∑
i=1

fi

)
(x) =

⋂
η>0

cl

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)

. (8.25)

This calculus rule is the key ingredient in the proof of the implication (i) ⇒ (ii) in [23, Theorem 3.2].

Proposition 8.2.4. Given a set X, a space of abstract linear functions L, m functions f1, . . . , fm :
X → R+∞ (m ≥ 2), and x ∈ X, for any topology defined on L, if the equality (8.25) holds, then the
conditions (8.18) and (8.23) are equivalent.

Proof. Observe that for any positive numbers η, ε with 0 < η ≤ ε, we have

⋃
ε1+...+εm=ε+η,

εi≥0

m∑
i=1

∂εifi(x) ⊂
m∑
i=1

∂ε+ηfi(x) ⊂
m∑
i=1

∂2εfi(x). (8.26)

Assume (8.23) holds with K > 0. Using (8.25), (8.26), and (8.23), we obtain (8.18) as follows:

∂ε

(
m∑
i=1

fi

)
(x) (8.25)=

⋂
η>0

cl

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)


(8.26)
⊂

⋂
η>0

cl
(

m∑
i=1

∂2εfi(x)
)

(8.23)
⊂

m∑
i=1

∂2Kεfi(x).

Conversely, assume that condition (8.18) holds with K > 0. Take in (8.26) the intersection of all η > 0
in the left hand side. Use also (8.25) and (8.18), to deduce the following inclusions

cl
(

m∑
i=1

∂εfi(x)
)
⊂
⋂
η>0

cl

 ⋃
ε1+...+εm=mε+η,

εi≥0

m∑
i=1

∂εifi(x)


(8.25)= ∂mε

(
m∑
i=1

fi

)
(x)

(8.18)
⊂

m∑
i=1

∂mKεfi(x),

which gives (8.23) for K̃ := mK in place of K.

Remark 8.2.5. (a) From the proof above we see that, if (8.23) holds with K > 0, then (8.18) holds
with 2K. On the other hand, if (8.18) holds with K > 0, then (8.23) holds with mK.
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(b) When 0 ∈ L, part (ii) in Theorem 8.2.1 (or in Theorem 8.2.2 above) ensures the zero duality
gap. In our Theorem 8.2.1, we drop the assumption that all the functions f1, . . . , fm are lower
semicontinuous convex as in Theorem 8.2.2 and refine the core argument in the proof in [23].
However, without convexity, condition (8.18) might not be easily satisfied. When the functions
fi (i = 1, . . . ,m) are not convex, there exist an x ∈ X and ε > 0 such that ∂εfi(x) = ∅ (see
Proposition 8.1.10(iii)). In this situation, condition (8.18) fails.

The zero duality gap property is equivalent to equality (8.17), which is clearly less restrictive than
condition (ii) in Theorem 8.2.1. In the next theorem, we relax condition (8.18) as well as item (ii) in
Theorem 8.2.1 to obtain a necessary and sufficient condition for the zero duality gap property. This
characterisation is new even in the classical convex case.

Theorem 8.2.6. Suppose X is a set, L is a space of abstract linear functions with 0 ∈ L, and fi :

X → R+∞ (i = 1, . . . ,m) (m ≥ 2) are functions with
m⋂
i=1

dom fi 6= ∅. Then, the following conditions are

equivalent.

(i) For all ε > 0, there exists an x ∈ X such that

∂εf1(x) + . . .+ ∂εfm(x) 3 0. (8.27)

(ii)
(

m∑
i=1

fi

)∗
(0) = f∗1� . . .�f∗m(0) < +∞.

Proof. (i) ⇒ (ii). Assume that assertion (i) holds. Then, for all ε > 0 there exists x ∈ X such that

0 ∈ ∂ε/mf1(x) + . . .+ ∂ε/mfm(x). (8.28)
By Proposition 8.1.4 (v), we have

0 ∈ ∂ε/mf1(x) + . . .+ ∂ε/mfm(x) ⊂
⋂
η>0

⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)
(8.7)
⊂ ∂ε

(
m∑
i=1

fi

)
(x).

This allows us to use Proposition 8.1.4 (ii) and deduce that 0 ∈ dom
(

m∑
i=1

fi

)∗
, or, equivalently,

that
(

m∑
i=1

fi

)∗
(0) < +∞. Due to Proposition 8.1.4(iv), we only need to show that

(
m∑
i=1

fi

)∗
(0) ≥

f∗1� . . .�f∗m(0). By (8.28) and Proposition 8.1.4 (i), there are li ∈ ∂ε/mfi(x) (i = 1, . . . ,m)
such that 0 = l1 + . . . + lm and f∗i (li) + fi(x) ≤ li(x) + ε/m for all i = 1, . . . ,m. This implies
m∑
i=1

f∗i (li) +
m∑
i=1

fi(x) ≤ ε. We then have the following inequalities

f∗1� . . .�f∗m(0) ≤
m∑
i=1

f∗i (li) ≤ ε−
m∑
i=1

fi(x)≤ε+
(

m∑
i=1

fi

)∗
(0),

where we used the definition of conjugate function in the rightmost inequality. Letting ε ↓ 0, we
obtain (ii).

(ii) ⇒ (i). Using the inequality in (ii), we have that 0 ∈ dom
(

m∑
i=1

fi

)∗
. Take ε > 0. By

Proposition 8.1.4 (ii) we can find an x ∈ X such that 0 ∈ ∂ε

(
m∑
i=1

fi

)
(x). Using the equality in
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(ii) and Proposition 8.1.4 (i), we have

f∗1� . . .�f∗m(0) =
(

m∑
i=1

fi

)∗
(0)

(8.5)
≤ ε−

(
m∑
i=1

fi

)
(x). (8.29)

By Definition 8.1.3 (i), there are l1, . . . , lm ∈ L such that l1 + . . .+ lm = 0 and

f∗1 (l1) + . . .+ f∗m(lm)≤f∗1� . . .�f∗m(0)− ε/2. (8.30)

Thus, we have the following estimation

f∗1 (l1) + . . .+ f∗m(lm)
(8.30)
≤ f∗1� . . .�f∗m(0)− ε/2

(8.29)
≤ ε/2−

(
m∑
i=1

fi

)
(x)

l1+...+lm=0= ε/2 +
m∑
i=1

li(x)−
(

m∑
i=1

fi

)
(x).

We derive
ε/2 ≥

m∑
i=1

(f∗i (li) + fi(x)− li(x)). (8.31)

And we also have fi(x) + f∗i (li)− li(x) ≥ 0 for all i = 1, . . . ,m, then

−(f∗i (li) + fi(x)− li(x)) + ε/2
(8.31)
≥

m∑
j=1,j 6=i

(f∗j (lj) + fj(x)− lj(x)) ≥ 0, ∀i = 1, . . . ,m.

Using the inequality above, we can write f∗i (li) + fi(x) ≤ li(x) + ε/2 for all i = 1, . . . ,m, which by
Proposition 8.1.4 (i) yields li ∈ ∂ε/2fi(x) for all i = 1, . . . ,m. Since ∂ε/2fi(x) ⊂ ∂εfi(x) we deduce

that 0 = l1 + . . .+ lm ∈
m∑
i=1

∂εfi(x).

We will show in the next theorem that if the inclusion (8.27) holds for a fixed x ∈ X for all ε > 0, or
equivalently ⋂

ε>0
(∂εf1(x) + . . .+ ∂εfm(x)) 3 0, (8.32)

then it characterises a stronger property.

Theorem 8.2.7. Suppose X is a set, L is a space of abstract linear functions with 0 ∈ L, and fi :

X → R+∞ (i = 1, . . . ,m) (m ≥ 2) are functions with
m⋂
i=1

dom fi 6= ∅ . Then the following conditions are

equivalent.

(i) There exists an x ∈ X such that (8.32) holds.

(ii)
(

m∑
i=1

fi

)∗
(0) = f∗1� . . .�f∗m(0) < +∞, and the x for which condition (8.32) holds is a solution of

problem (P).

Proof. (i) ⇒ (ii). Suppose there is an x ∈ X such that (8.32) holds. By Theorem 8.2.6, we deduce
the first statement in part (ii). Let us show the second statement in (ii). By (8.32), for all ε > 0,
there are l1, . . . , lm ∈ L such that l1 + . . .+ lm = 0, and li ∈ ∂εfi(x) for all i = 1, . . . ,m. We have

f∗i (li) + fi(x) ≤ li(x) + ε, for all i = 1, . . . ,m,
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which implies
m∑
i=1

f∗i (li) +
m∑
i=1

fi(x) ≤ mε. Then, we have

f∗1� . . .�f∗m(0)
l1+...+lm=0
≤

m∑
i=1

f∗i (li) ≤ −
(

m∑
i=1

fi

)
(x) +mε≤

(
m∑
i=1

fi

)∗
(0) +mε.

Let ε ↓ 0, we have equalities in the expression above. Hence,

f∗1� . . .�f∗m(0) =
(

m∑
i=1

fi

)∗
(0), and −

(
m∑
i=1

fi

)
(x) =

(
m∑
i=1

fi

)∗
(0),

this implies that the supremum in the expression of the conjugate function is attained at x. This
establishes the second statement in (ii).

(ii) ⇒ (i). Suppose there is an x ∈ X such that

f∗1� . . .�f∗m(0) =
(

m∑
i=1

fi

)∗
(0) = −

(
m∑
i=1

fi

)
(x) < +∞. (8.33)

For every ε > 0, there are l1, . . . , lm ∈ L such that l1 + . . .+ lm = 0 and

f∗1 (l1) + . . .+ f∗m(lm) ≤ f∗1� . . .�f∗m(0) + ε. (8.34)

Combining (8.33) and (8.34), we obtain

f∗1 (l1) + . . .+ f∗m(lm) ≤ −
(

m∑
i=1

fi

)
(x) + ε. (8.35)

Since f∗j (lj) + fj(x)− lj(x) ≥ 0 for all j = 1, . . . ,m, we have

f∗i (li) + fi(x)− li(x) ≤ f∗i (li) + fi(x)− li(x) +
m∑

j=1,j 6=i
[f∗j (lj) + fj(x)− lj(x)]

≤
m∑
j=1

(f∗j (lj)) +
m∑
j=1

fj(x)−
m∑
j=1

lj(x)

l1+...+lm=0, and (8.35)
≤

− m∑
j=1

fj(x) + ε

+
m∑
j=1

fj(x) = ε, ∀i = 1, . . . ,m.

Thus, li ∈ ∂εfi(x) for all i = 1, . . . ,m. We deduce that 0 = l1 + . . .+ lm ∈
m∑
i=1

∂εfi(x). Since ε > 0

is arbitrary, we conclude that 0 ∈
⋂
ε>0

m∑
i=1

∂εfi(x), which is (i).

8.3 Abstract Convexity with Weak* Topology

In this section, we consider specifically the weak∗ topology σ(L, X) (see [26, Section 3.3]) on the abstract
linear function space L. We expand some fundamental results of standard convex analysis to the frame-
work of abstract convexity. Condition (8.23) is fully extended into the abstract convexity framework
using weak∗ topology.
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8.3.1 Weak* Topology

Recall from section 8.1 that F is the set of all real functions defined on X. On F , the weak* topology
σ(F , X) is the weakest topology that makes all the functions x : F → R, f 7→ f(x) continuous. It follows
that, for any sequence (fn) ⊂ F , fn −→ f ∈ F if and only if fn(x) −→ f(x) for all x ∈ X (pointwise
convergence topology) (see [26, Proposition 3.1]). Recall that τ(F , σ(F , X)) is a Hausdorff topological
space (the proof of this fact is similar to the one in [26, Proposition 3.11]).

In the context of [26], the weak∗ topology is studied for the dual space X∗ of a normed linear
vector space X. In order to study general abstract linear function spaces L, here, we generalize several
fundamental results in [26] to the set of function L which satisfy certain conditions below. Note that in
our analysis, no topology is assumed on X.

We define the multiplication by a scalar on L as usual: (αl)(x) = α(l(x)) for all x ∈ X and α ∈ R.
We will assume that L satisfies the following conditions:

A- L is an R−vector space.

B- L is weak∗ closed in F .

Observe that the evaluation functions x : L → R, l 7→ l(x), x ∈ X are linear in the conventional
sense. Thus, the functions |x| : L → R, |x|(l) = |l(x)| are seminorms (see [168, Page 4]). The next two
propositions show that the space L is a locally convex topological vector space.
Proposition 8.3.1. Let X be a set, L a space of abstract linear functions equipped with the weak*
topology, l0 ∈ L, ε > 0, and a set of vectors {x1, . . . , xn} in X. Then the set

V (x1, . . . , xn|ε) = {l ∈ L : |l(xi)− l0(xi)| < ε, ∀i = 1, . . . , n}

is a neighbourhood of l0 in L. Moreover, the collection of all V (x1, . . . , xn|ε), n ∈ N, x1, . . . , xn ∈ X and
ε > 0 forms a basis of neighbourhoods of l0 in L.
Proposition 8.3.2. Suppose X is a set, and L is a space of abstract linear functions equipped with
the weak* topology. Assume further that conditions (A), (B) hold, then L is a locally convex topological
vector space.
Remark 8.3.3. Proofs of propositions 8.3.1 and 8.3.2 are natural modifications of ones in [26].
Example 8.3.4. [78, Example 2.1] Let L be a set of functions defined on the Euclidean space Rn,

comprising all the functions l :=
n∑
i=0

aihi ∈ L where ai ∈ R, i = 1, . . . , n and x = (x1, . . . , xn) ∈ Rn

h0(x) = ‖x‖2 , h1(x) = x1, . . . , hn(x) = xn.

The set L possesses the following properties.
Proposition 8.3.5. (i) L is closed in F with respect to weak* topology.

(ii) The sequence (or net) (li)i∈I , li := a0
ih0 + . . .+ani hn → l = a0h0 + . . .+anhn if and only if aji → aj

for all j = 0, 1, . . . , n.

(iii) The space L equipped with weak* topology is homeomorphic to Rn+1 with the standard Euclidean
norm.

Proof. (i) We show that L is closed in F . Let (li)i∈I be a net in L such that li → l ∈ F with li := a0
ih0+

. . .+ ani hn. We have li(1, 0, . . . , 0) + li(−1, 0, . . . , 0) = 2a0
i → l(1, 0, . . . , 0) + l(−1, 0, . . . , 0) =: 2a0,

or a0
i → a0. At the same time, li(x) − a0

i ‖x‖
2 → l(x) − a0 ‖x‖2 for all x ∈ X and li − a0

i ‖·‖
2 is

an usual linear function in Rn (for all i ∈ I). Thus, l − a0 ‖·‖2 is also an linear function in Rn

(because it is a pointwise limit of standard linear functions). Hence, l− a0 ‖·‖2 can be represented
as a linear combination of h1, . . . , hn. Therefore, l ∈ L.

152



(ii) It is shown in (i) that if li → l, then a0
i → a0 and (li−a0

i ‖·‖
2)→ (l−a0 ‖·‖2). This means aij → aj

for all j = 0, . . . , n.

(iii) Consider the bijective mapping ϕ : L → Rn+1 with ϕ(l) := (a0, a1, . . . , an), where l =
n∑
i=0

aihi. In

the view of part (ii), ϕ is continuous.

If (a0
i , a

1
i , . . . , a

n
i )i∈I → (a0, . . . , an), then (ϕ−1(a0

i , a
1
i , . . . , a

n
i ))i∈I =

n∑
j=0

ajihj →
n∑
j=0

ajhj =

ϕ−1(a0, a1, . . . , an). Hence, ϕ−1 is continuous.

In view of Proposition 8.3.5, we can treat the space of abstract linear functions L (in Example 8.3.4)
as the vector space Rn+1 with the basis h0, h1, . . . , hn. Moreover, Proposition 8.3.5 (iii) implies that the
weak∗ topology is equivalent to the Euclidean norm topology in Rn+1.

When X is a normed vector space, and L = X∗ its conventional dual space, the compactness of the
unit ball B∗ is of utmost importance. Here we establish a generalization of the Banach–Alaoglu–Bourbaki
theorem (see [26, Theorem 3.16]) to real functions space F .

Theorem 8.3.6. Suppose that X is a nonempty set (possibly linear vector space), F is the set of all
real functions acting from X to R, and F,G : X → R are any real functions defined on X with G ≤ F
over X. Let K := {f ∈ F : G(x) ≤ f(x) ≤ F (x), ∀ x ∈ X}. Then, K is a weak∗ compact set in F .

Proof. Consider the product space Y := RX , and Y is equipped with the product topology. Let φ : F →
Y be defined as φ(f) := (f(x))x∈X . It is well known that φ is a homeomorphism from F to Y (w.r.t.
the product topology). We will show that the set H := φ(K) = {y ∈ Y : G(x) ≤ y(x) ≤ F (x), ∀x ∈ X}
is a compact set in Y . Indeed, we have

H =
∏
x∈X

[G(x), F (x)], (8.36)

a product of compact sets. By Tychonoff’s Theorem, H is compact, and so K is weak∗ compact.

Corollary 8.3.7. Let X be a linear vector space, F be equipped with the weak∗ topology. Assume that A
is a weak∗ closed subset of F . Then A is weak∗ compact if the functions F := sup

f∈A
f and G := sup

f∈A
(−f)

are finite everywhere i.e. F (x), G(x) ∈ R for all x ∈ X.

Proof. Observe that G = − inf
g∈A

f . The inclusion A ⊂ {f ∈ F : −G(x) ≤ f(x) ≤ F (x),∀x ∈ X} is
trivial. Then we have A = {f ∈ F : −G(x) ≤ f(x) ≤ F (x),∀x ∈ X} ∩ A. Theorem 8.3.6 together with
the weak∗ closedness of A yields the weak∗ compactness of A.

Remark 8.3.8. By taking L = X∗ and G(x) = −1, F (x) = 1, and A = {x∗ : ‖x∗‖ ≤ 1}, we recover the
Banach–Alaoglu–Bourbaki Theorem.

8.3.2 Sum Rule for Subdifferentials

In this subsection, we improve one of the main results of [78, Theorem 3.2]. In [78], the authors studied
the extended sum rule for abstract convex functions using the additivity property of the epigraph of the

153



conjugate functions. The additivity condition on the sets epi f∗ and epi g∗ is stated as follows

epi f∗ + epi g∗ = epi (f + g)∗. (8.37)

However, this additivity condition may not be valid even for convex functions in the classical sense,
because it entails weak∗ closedness of the set epi f∗+epi g∗. It is well known that the sum of closed sets is
not closed in general. Condition (8.37) is even stronger than condition (f+g)∗ = f∗�g∗ (cf. [78, Corollary
5.1]).

Our aim is to sharpen condition (8.37) by the following condition:

cl ∗(epi f∗ + epi g∗) = epi (f + g)∗, (8.38)

where cl ∗A denotes the weak∗ closure of the set A. The weak∗ topology on L×R is the product topology
of the topology τ(L, σ(L, X)) on L and the standard topology on R. Since the set on the right-hand
side of (8.37) is always weak∗ closed, the additivity condition (8.37) readily implies (8.38). Moreover,
condition (8.38) is more convenient because (as shown in [155] and [78, Corollary 3.1]) it holds for
standard convex functions. We will use the less restrictive condition (8.38) in the next section. Namely,
it will allow us to apply Theorem 8.2.2 for establishing new zero duality gap characterisations.

We first recall the sum rule in [78].

Theorem 8.3.9. [78, Theorem 3.2] Let X be a set and let L be a set of abstract linear functions on X.
Let f, g : X → R+∞ be H−convex functions such that dom f ∩ dom g 6= ∅. Then, equality (8.37) holds if
and only if for any ε ≥ 0,

∂ε(f + g)(x) =
⋃

ε1+ε2=ε,ε1,ε2≥0
∂ε1f(x) + ∂ε2g(x), x ∈ dom f ∩ dom g. (8.39)

We next recover some classic properties.

Proposition 8.3.10. Suppose that X is a vector space and that L is a space of abstract functions. Then,

(i) for any x ∈ X, the function x(·) : L → R+∞, l 7→ l(x) is weak∗ continuous;

(ii) for every function f : X → R+∞, its conjugate function f∗ is weak∗ lower semicontinuous.

Proof. (i) Take l ∈ L. For all (li)i∈I ⊂ L (I is a directed set) such that li → l w.r.t weak∗ topology,
we have

lim x(li) = lim li(x) = l(x) = x(l).

Thus, x(·) is weak∗ continuous.

(ii) Take f : X → R+∞, and consider f∗(l) = sup
x∈X
{l(x)− f(x)} for all l ∈ L. Then, the epigraph of f∗

is
epi f∗ := {(l, λ) : f∗(l) ≤ λ} =

⋂
x∈X
{(l, λ) : l(x)− f(x)) ≤ λ} =

⋂
x∈X

epi [x(·)− f(x)].

Since the function [x(·)− f(x)] : L → R+∞ is weak∗ continuous, the set epi [x(·)− f(x)] is weak∗
closed in L × R, and so is epi f∗. This implies the weak∗ lower semicontinuity of the function f∗.

Proposition 8.3.11. Let X be a set, L be a space of abstract linear functions equipped with the weak∗
topology. Assume further that condition (B) holds. Then, the following statements hold.

(i) The L−convex sets are weak* closed in L.
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(ii) The subdifferential set ∂εf(x) is weak∗ closed for any function f : X → R±∞, x ∈ dom f and
ε ≥ 0.

(iii) For any functions f1, . . . , fm (m ≥ 2) x ∈
m⋂
i=1

dom fi and ε ≥ 0, we have the following inclusion

⋂
η>0

cl ∗

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)

 ⊂ ∂ε
(

m∑
i=1

fi

)
(x). (8.40)

Proof. (i) Let f : X → R+∞ be a L−convex function such that suppf = A. Consider the set
B := cl ∗A ⊂ L and the function g(x) := sup

h∈B
h(x). We claim that it is sufficient to show that

g ≡ f . Indeed, if this holds, then for all l ∈ B we have l ≤ g = f , and thus l ∈ A, or A = cl ∗A.
Observe that g is also an L−convex function and by construction g ≥ f . Thus, we proceed to
prove the claim that g ≡ f . Take x ∈ X, we need to show that f(x) ≥ g(x). Indeed, for all l ∈ B,
there exists a net (li)i∈I ⊂ A, with I being a directed set, such that li→l w.r.t weak∗ convergence
and f(x) ≥ li(x) → l(x). Taking the supremum in the right hand side for all l ∈ B, we conclude
that f(x) ≥ g(x). Since this holds for any x, the proof is complete.

(ii) By Proposition 8.1.4 (i), for all x ∈ dom f and ε ≥ 0, we have

∂εf(x) = {l : f∗(l)− l(x) ≤ −f(x) + ε} = S≤f∗−x(·)(−f(x) + ε).

From Proposition 8.3.10, the function f∗ − x(·) is weak∗ lower semicontinuous. Thus, its lower
level set S≤f∗−x(·)(−f(x) + ε) is weak∗ closed. Hence, ∂εf(x) is weak∗ closed.

(iii) Proposition 8.1.4 (v) provides inclusion (8.7). This inclusion and (ii) yield

cl ∗

⋂
η>0

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)


 ⊂ ⋂

η>0
cl ∗

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)


(8.7)
⊂ cl ∗

(
∂ε

(
m∑
i=1

fi

)
(x)
)

(ii)= ∂ε

(
m∑
i=1

fi

)
(x)

This proves (8.40).

We present in the next theorem our main result of this subsection.

Theorem 8.3.12. Let X be a nonempty set, and L an abstract linear function space which is weak*
closed in F and f1, . . . , fm : X → R∞ (m ≥ 2) be functions defined on X with ∩mi=1dom fi 6= ∅. Assume
that

cl ∗
(

m∑
i=1

epi f∗i

)
= epi

(
m∑
i=1

fi

)∗
. (8.41)

Then, for any number ε ≥ 0, for all x ∈
m⋂
i=1

dom fi, (8.25) holds for all x ∈ ∩mi=1dom fi.
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Proof. Assume that (8.41) holds. Take ε ≥ 0. For all x ∈
m⋂
i=1

dom fi, due to Proposition 8.3.11(iii), we

have

∂ε

 m∑
j=1

fj

 (x) ⊃
⋂
η>0

cl ∗

 ⋃
ε1+...+εm=ε+η

εj≥0

m∑
j=1

∂εjfj(x)

.

Now we prove the converse inclusion. Let l ∈ ∂ε

 m∑
j=1

fj

 (x). Then, by Proposition 8.1.4 (i), we have m∑
j=1

fj

∗ (l) ≤ l(x) + ε−
m∑
j=1

fj(x), thus

l, l(x) + ε−
m∑
j=1

fj(x)

 ∈ epi

 m∑
j=1

fj

∗ (8.41)= cl ∗
 m∑
j=1

epi f∗j

 .

There are nets (l1,i, λ1,i)i∈I , . . . , (lm,i, λm,i)i∈I with I is a directed set such that

(lj,i, λj,i) ∈ epi f∗j , j = 1, . . . ,m, i ∈ I, (8.42)
m∑
j=1

lj,i
w∗→ l,

m∑
j=1

λj,i→l(x) + ε−
m∑
j=1

fj(x). (8.43)

Set γj,i := λj,i + fj(x) − lj,i(x) for all j = 1, . . . ,m, i ∈ I. By Proposition 8.1.10 (iv), (8.42) implies
γj,i ≥ 0 and lj,i ∈ ∂γj,ifj(x) for all j = 1, . . . ,m and i ∈ I. Take η > 0. By (8.43), there is i0 ∈ I such
that for all i ≥ i0 we have

m∑
j=1

λj,i ≤
m∑
j=1

lj,i(x) + (ε+ η)−
m∑
j=1

fj(x)

The above inequality yields
m∑
j=1

γj,i ≤ ε+ η. Thus,
m∑
j=1

lj,i ∈
⋃

ε1+...+εm=ε+η
εi≥0

m∑
i=1

∂εifi(x).

Thus, l ∈ cl ∗

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)

 for all η > 0. Hence, we proved (8.25).

Remark 8.3.13. (a) If condition (8.38) holds, and additionally
m∑
i=1

epi f∗i is weak∗ closed, then condition

(8.37) holds.

(b) Thank to (8.40) and Proposition 8.3.11 (ii), we always have

⋃
ε1+...+εm=ε

εi≥0

m∑
i=1

∂εifi(x) ⊂
⋂
η>0

cl ∗

 ⋃
ε1+...+εm=ε+η

εi≥0

m∑
i=1

∂εifi(x)

 ⊂ ∂ε
(

m∑
i=1

fi

)
(x).

Therefore, if the exact sum rule (8.39) holds, the sum rule (8.25) also holds.

8.3.3 Zero Duality Gap with Weak* Topology

We next present our main theorem of this section.
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Theorem 8.3.14. Let X be a normed vector space, L a space of abstract linear functions with weak*
topology, and fi : X → R+∞ (i = 1, . . . ,m) (m ≥ 2). Consider the following five conditions:

(i) There exists K > 0 such that for every x ∈
m⋂
i=1

dom fi, and every ε > 0, (8.18) holds;

(ii) There exists K > 0 such that for every x ∈
m⋂
i=1

dom fi, and every ε > 0, (8.23) holds with respect

to weak∗ topology;

(iii)
(

m∑
i=1

fi

)∗
= f∗1� . . .�f∗m in L;

(iv) f∗1� . . .�f∗m is weak∗ lower semicontinuous;

(v) For every x ∈ X and ε ≥ 0, (8.24) holds.

We have (i) ⇔ (iii) ⇔ (v) ⇒ (iv) ⇒ (ii) .

Additionally, if the sum rule (8.25) (or condition (8.41)) holds, then all five statements are equivalent.

Proof. All the implications (except (ii) ⇔ (iii)) are clear due to Theorems 8.2.1 and 8.2.2, Propositions
8.2.4 and 8.3.10.

(i) ⇔ (iii) ⇔ (v) is proved in Theorem 8.2.1.

(iii)⇒ (iv) is trivial due to the fact that
(

n∑
i=1

fi

)∗
is weak∗ lower semicontinuous (see Proposition 8.3.10).

(iv) ⇒ (ii). The proof proceeds exactly the same way as the proof of (iii) ⇒ (i) in [23, Theorem 3.2].

If the sum rule (8.25) holds, then by Proposition 8.2.4, (i) ⇔ (ii).

Remark 8.3.15. A similar series of intriguing corollaries as in [23] can be deduced with more or less
identical proofs to those in [23].

8.4 Zero Duality Gap for a Family of Noncovex Problems

In this section, we consider a nontrivial example in which the weak* closed additivity condition (8.38)
holds for any H−convex function. Thus, we show that the important sum rule (8.25) holds in a more
general framework. To improve readability, we use here notation different to the one used in previous
sections.

Definition 8.4.1. Let X := R, and set φa(t) := at2 for some a ∈ R, Ψa,b(t) := at2 + b for some a, b ∈ R.
We define

(i) the set L := {φa : a ∈ R} the space of abstract linear functions;
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(ii) the setH := {Ψa,b : a, b ∈ R} the space of abstract affine functions.

Remark 8.4.2. A proof similar to that of Proposition 8.3.5 shows that the weak∗ topologies on L and
H are isomorphic to the usual topologies of R and R2, respectively. Indeed, the mappings Γ1 : L → R,
Γ1(φa) := a and Γ2 : H → R2, Γ2(Ψa,b) = (a, b) are homeomorphism with R,R2 being equipped with the
usual topologies.

We next characterise L−convex sets, and H−convex sets for this example.

Proposition 8.4.3 (Characterisation of L−convex sets). A set C ⊂ L is L−convex if and only if there
exists A ∈ R such that

C = {φa : a ≤ A}.

Proof. The set of the form C := {φa : a ≤ A} (A ∈ R) is the support set of the function φA in L. Hence,
C is L−convex.

Conversely, suppose C is an L−convex set and let A := sup{a : φa ∈ C}. We have C ⊂ {φa : a ≤ A},
by the definition of A. On the other hand, for every a ≤ A, φa(t) ≤ φA(t) for all t ∈ R, then C ⊃ {φa :
a ≤ A}.

To characterise H−convex sets, we need to use a standard strict convex separation theorem, which
we recall next.

Theorem 8.4.4. [26, Theorem 1.7] Let X be a normed vector space, A ⊂ X and B ⊂ X be two
nonempty convex subsets such that A ∩ B = ∅. Assume that A is closed and B is compact. Then there
exists a closed hyperplane that strictly separates A and B i.e. there is x∗ ∈ X∗ \ {0} such that

sup
x∈A
〈x∗, x〉 < inf

y∈B
〈x∗, y〉.

We are now in conditions of characterising H−convex sets.

Proposition 8.4.5 (Characterisation of H−convex sets). A set C is H−convex, C 6≡ H if and only if
the following properties hold

(i) C is weak∗ closed, convex, and upper bounded (i.e. there exist A,B ∈ R such that for all ψa,b ∈ C
we have a ≤ A and b ≤ B);

(ii) if Ψa,b ∈ C, then Ψa′,b′ ∈ C for all a′ ≤ a, b′ ≤ b.

Proof. Suppose C is a H−convex set and f := sup
h∈C

h. In view of Proposition 8.1.12(iii) and Proposi-

tion 8.3.11, C is weak* closed and convex. Let

A := sup{a : Ψa,b ∈ C, for some b ∈ R}, (8.44)
B := sup{b : Ψa,b ∈ C, for some a ∈ R}. (8.45)

We must have A,B ∈ R, otherwise if A = +∞ or B = +∞, then f ≡ +∞, which implies C ≡ H by
Remark 8.1.9 (c), a contradiction to our assumption. Hence, (i) holds.

For all Ψa,b ∈ C, and any numbers a′ ≤ a, b′ ≤ b, we have ψa′,b′(t) ≤ Ψa,b(t) ≤ f(t) for all t ∈ R.
Thus, Ψa′,b′ ∈ suppf = C. Altogether, (i) and (ii) hold when C is H−convex.

Conversely, suppose the set C satisfies conditions (i) and (ii). We will use Remark 8.1.9 (c) to show
that C is H−convex. Suppose Ψā,b̄ /∈ C and let A,B be defined as in (8.44), (8.45). Due to (i), A,B ∈ R.
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Case 1. ā > A.

Observe that ΨA,B(t) ≥ sup
h∈C

h(t) for all t ∈ R. Since ā > A, then for some t with the absolute value

|t| sufficiently large, we always have (ā−A)t2 > B− b̄. Thus, Ψā,b̄(t) > sup
h∈C

h(t). By Definition 8.1.8 (iii),

C is H−convex.

Case 2. ā ≤ A. Then b̄ > B (otherwise by (ii) Ψā,b̄ ∈ C).

Consider the set C2 := {(a, b) : Ψa,b ∈ C} in R2. By (i), C is weak∗ closed and convex and Ψā,b̄ /∈ C.
By Remark 8.4.2, C2 is a closed convex set in R2. Since Ψā,b̄ /∈ C, we have (ā, b̄) /∈ C2. By the strict
convex separation theorem (Theorem 8.4.4), there is (x∗, y∗) ∈ R2 \ {(0, 0)} such that

āx∗ + b̄y∗ > sup
(a,b)∈C2

ax∗ + by∗. (8.46)

We consider three subcases.

1. If y∗ < 0, then due to property (ii), for every Ψa,b ∈ C we can fix parameter a and let b → −∞.
Then, sup

(a,b)∈C2
ax∗ + by∗

b→−∞→ +∞, which is a contradiction to (8.46).

2. If y∗ = 0, then x∗ 6= 0.
If x∗ > 0, then due to our assumption we have Ax∗ ≥ āx∗, which contradicts to (8.46) (āx∗ >

sup
(a,b)∈C2

(ax∗) = Ax∗).

If x∗ < 0, then due to property (ii) and with an argument similar to case (i), we have

sup
(a,b)∈C2

ax∗
a→−∞→ +∞.

Altogether, it yields a contradiction.

3. If y∗ > 0, then we can divide both sides of (8.46) by y∗ to obtain

ā
x∗

y∗
+ b̄ > sup

(a,b)∈C2
a
x∗

y∗
+ b.

Arguing as in (ii), we claim that x
∗

y∗
≥ 0. Let t :=

√
x∗

y∗
we have

āt2 + b̄ > sup
(a,b)∈C2

at2 + b, or Ψā,b̄(t) > sup
Ψ∈C

Ψ(t).

Combining case 1 and case 2, we conclude that C is an H−convex set by Remark 8.1.9 (c).

Remark 8.4.6. (i) Any set of the form {Ψa,b : a ≤ A, b ≤ B} with A,B ∈ R is a H−convex set.
However, not every H−convex set is of this form. Indeed, the set C := {Ψa,b : b ≤ 1

a
, a < 0} (the

support set of the function −2|x|) satisfies the conditions (i), (ii) in Proposition 8.4.5 and cannot
be written under the form {Ψa,b : a ≤ A, b ≤ B} for some A,B ∈ R.

(ii) All the H−convex functions are even functions and minored by H, but the converse is not true.
Take the function sin(t+ π/2) as an example, it is even and minored by H but not H−convex.

We are now in a position to characterise the set H as in Definition 8.4.1 and verify condition (8.41).
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Figure 8.1: Function −2 |x|.
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Figure 8.2: Support set of −2 |x|.

Theorem 8.4.7. Let H be as in Definition 8.4.1 and f, g be H−convex functions, we have cl ∗(suppf +
suppg) is H−convex. Consequently,

cl ∗(epi f∗ + epi g∗) = epi (f + g)∗.

Proof. By Remark 8.1.9 (c), the set suppf and suppg are H−convex. By Proposition 8.4.5 (i) and
Remark 8.4.2, these support sets can be uniquely identified with two closed and convex sets Cf and Cg
in R2. The proposition also yields the existence of upper bounds Af , Bf ∈ R and Ag, Bg ∈ R such that
for every (a, b) ∈ Cf we have a ≤ Af and b ∈ Bf and similarly for every (a, b) ∈ Cg we have a ≤ Ag,
b ≤ Bg.

By Proposition 8.4.5 (i) and the convexity of each set Cf , Cg, we conclude that the set S := Cf +Cg
is convex. Moreover, by Remark 8.4.2, the set cl ∗(epi f∗+ epi g∗) is homeomorphic to the set clS, where
the closure in the latter is taken in the usual sense. Since cl (S) is closed and convex in R2, the set
cl ∗(epi f∗ + epi g∗) is weak∗ closed and convex in H. By Remark 8.4.2, the boundedness property holds
for cl (S) as well. This implies that condition (i) in Proposition 8.4.5 holds for the set cl ∗(suppf+suppg).
We proceed now to show that condition (ii) holds for this set.

Take any Ψa,b ∈ cl ∗(suppf + suppg) with a, b ∈ R, and any numbers a′ ≤ a and b′ ≤ b. We must
show that Ψa′,b′ ∈ cl ∗(suppf + suppg), equivalently, by Remark 8.4.2, (a′, b′) ∈ cl (S). Indeed, there
are sequences (af,n, bf,n) ⊂ Cf , (ag,n, bg,n) ⊂ Cg such that (af,n, bf,n) + (ag,n, bg,n)→(a, b), equivalently
(af,n + ag,n, bf,n + bg,n)→ (a, b). By Proposition 8.4.5 (ii), we have

(af,n − (a− a′)/2, bf,n − (b− b′)/2) ∈ Cf , and
(ag,n − (a− a′)/2, bg,n − (b− b′)/2) ∈ Cg,

for all n ∈ N. Then, (af,n + ag,n − (a − a′), bf,n + bg,n − (b − b′)) → (a′, b′) ∈ cl (S). Hence, if the set
cl ∗(suppf + suppg) satisfies the two conditions (i), (ii) as in Proposition 8.4.5, then it is an H−convex
set.

Since f = sup
Ψ∈suppf

Ψ and g = sup
Ψ∈suppg

Ψ (by Proposition 8.1.10 (i)), and taking into account that the

set cl ∗(suppf + suppg) is H−convex, then f + g = sup
Ψ∈cl ∗(suppf+suppg)

Ψ is H−convex with supp(f + g) =

cl ∗(suppf + suppg).

By Proposition 8.1.10 (ii), epi (f + g)∗ = {(φa, b) : Ψa,−b ∈ supp(f + g)} = {(φa, b) : Ψa,−b ∈
cl ∗(suppf + suppg)}, then for all (φa, b) ∈ epi (f + g)∗, there are two nets (Ψai,bi)i∈I and (Ψa′

i
,b′
i
)i∈I

(with I being a directed set) such that

Ψai,bi ∈ suppf, Ψa′
i
,b′
i
∈ suppg, ∀i ∈ I,

Ψai,bi + Ψa′
i
,b′
i

w∗→ Ψa,−b. (8.47)

By Remark 8.4.2, condition (8.47) is equivalent to (ai + a′i, bi + b′i)→ (a,−b) in the standard Euclidean
space R2. Also by Proposition 8.1.10 (ii), (φai ,−bi) ∈ epi f∗ and (φa′

i
,−b′i) ∈ epi g∗ for all i ∈ I. Then,
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φai + φa′
i
→ φa and −bi − b′i → −b. This implies (φa, b) ∈ cl ∗(epi f∗ + epi g∗). Thus,

cl ∗(epi f∗ + epi g∗) = epi (f + g)∗.

Example 8.4.8. Consider the following functions defined in R.

f1(x) := x4 − x2; (8.48)
f2(x) := 1− 2 |x| ; (8.49)

f3(x) :=
{

1− 2 |x| −0.5 ≤ x ≤ 0.5,
0 otherwise.

(8.50)

The functions f1, f2, f3 have their Fenchel conjugate functions respectively

f∗1 (φa) = sup
x∈R
{φa(x)− f1(x)} =


(a+ 1)2

4 a ≥ −1,
0 a < −1;

(8.51)

f∗2 (φa) = sup
x∈R
{φa(x)− f2(x)} =

+∞ a ≥ 0,
−1− 1

a
a < 0;

(8.52)

f∗3 (φa) = sup
x∈R
{φa(x)− f3(x)} =


+∞ a > 0,
a

4 a ∈ [−2, 0],

−1− 1
a

a < −2.
(8.53)
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Figure 8.3: Sum function f1 + f2 + f3. Figure 8.4: The sum of infimal functions −(f∗1 +f∗2 +

f∗3 ) in the subspace φa1 + φa2 + φa3 = 0.

Following Section 3, the minimization problem

p := min (f1 + f2 + f3) , ((p))

has the dual problem

d := sup
φa1+φa2+φa3=0

(−f∗1 (φa1)− f∗2 (φa2)− f∗3 (φa3)) . ((d))

Note that (d) is a convex problem. Indeed, it is the maximization of a concave function over a
subspace. This is always the case because the conjugate functions are suprema of functions which are
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linear in L. From Figure 8.4.8, we see that x = ±1 are the global solutions of (p), with optimal value
-1. We will obtain these facts as a consequence of Theorem 8.4.11 below.

We will show next that f1, f2, f3 are H−convex and that the zero duality gap holds for problems (p)
and (d).

Proposition 8.4.9. The functions f1, f2, f3 given in Example 8.4.8 are H−convex. The support sets of
f1, f2, f3 are

suppf1 =
{
Ψa,b : b ≤ − (1 + a)2

4

}⋃
{Ψa,b : a ≤ −1, b ≤ 0} , (8.54)

suppf2 =
{
Ψa,b : a ≤ 0, b ≤ min

t∈R
{1− 2|t| − at2}

}
, (8.55)

suppf3 =
{
Ψa,b : a ≤ 0, b ≤ min

t∈[−0.5,0.5]
{1− 2|t| − at2}

}
. (8.56)

Proof. See Section 8.5.

−1 −0.5 0.5 1

−2

−1

1

2

3

1
Figure 8.5: Support set of f1.
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Figure 8.6: Support set of f2.
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Figure 8.7: Support set of f3.

Proposition 8.4.10. The subdifferential operators of the functions f1, f2, f3 as in Example 8.4.8 are as
follows

(i)

∂f1(x) =
{
{φa : a ≤ −1} x = 0,
{φa : a = 2x2 − 1} otherwise;

(8.57)

(ii)

∂f2(x) =

∅ x = 0,{
φa : a = − 1

|x|

}
otherwise;

(8.58)

(iii)

∂f3(x) =


∅ x = 0,{
φ− 1
|x|

}
x ∈ (−0.5, 0.5) \ {0},

{φa : a ∈ [−2, 0]} x = ±0.5,
{0} otherwise.

(8.59)

Proof. See Section 8.5.
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Figure 8.8: Sum function f1 + f2 + f3.
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Figure 8.9: Support set of f1 + f2 + f3.

Theorem 8.4.11. Consider problems (p) and (q) as in Example 8.4.8. The zero duality gap of (p) :
f1 + f2 + f3 and (d) : −f∗1 − f∗2 − f∗3 holds. Moreover, x = ±1 are the solutions of (p).

Proof. To prove the claim, we will use Theorem 8.2.7. Namely, we will show that there exists an x ∈ R
such that (8.32) holds. From Proposition 8.4.10, we observe that

0 ∈ ∂f1(1) + ∂f2(1) + ∂f3(1).

So (8.32) holds for x = 1. The same expression can analogously be obtained for x = −1. By Theo-
rem 8.2.7, we have zero duality gap for (p) and (d). By the last statement in Theorem 8.2.7, x = ±1 are
the solutions of (p).

8.5 Apendices

In this section, we provide the proofs for Propositions 8.4.9 and 8.4.10.

Proof of Proposition 8.4.9. (i) Take Ψa,b ∈ H with b ≤ − (1 + a)2

4 . Then, for all t ∈ R

f1(t) = t4 − t2 =
(
t2 − 1 + a

2

)2
−
(

(1 + a)2

4 + b

)
+ (at2 + b) ≥ at2 + b = Ψa,b(t).

This implies Ψa,b ∈ suppf1. Take Ψa,b ∈ H with a ≤ −1, b ≤ 0, we also have

f1(t) ≥ t4 + (−a− 1)t2 ≥ b, ∀t ∈ R,

which implies {Ψa,b : a ≤ −1, b ≤ 0} ⊂ suppf1.
Altogether, it yields the inclusion{

Ψa,b : b ≤ − (1 + a)2

4

}⋃
{Ψa,b : a ≤ −1, b ≤ 0} ⊂ suppf1.

Take Ψa′,b′ ∈ suppf1 (a′, b′ ∈ R) and assume that

Ψa′,b′ /∈
{
Ψa,b : b ≤ − (1 + a)2

4

}⋃
{Ψa,b : a ≤ −1, b ≤ 0} .

This implies b′ + (1 + a′)2

4 > 0 and (a′ + 1 > 0 or b′ > 0).

If b′ > 0, then set t := 0. We have t4 − (a′ + 1)t2 − b′ < 0. So, Ψa′,b′ /∈ suppf1.
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If b′ ≤ 0, then a′+ 1 > 0. Set t :=
√

(1 + a′)/2. We have t4− (a′+ 1)t2− b′ = − (a′ + 1)2

4 − b′ < 0.
So, Ψa′,b′ /∈ suppf1.
In either case, there is a t ∈ R such that t4 − t2 < a′t2 + b′, contradicting the assumption Ψa′,b′ ∈
suppf1. Hence,

suppf1 =
{
Ψa,b : b ≤ − (1 + a)2

4

}⋃
{Ψa,b : a ≤ −1, b ≤ 0} .

It remains to show that f1 = sup
Ψ∈suppf1

Ψ. For any fixed t ∈ R, define a := 2t2 − 1, b := −t4. Then,

b = − (a+ 1)2

4 . By (8.54), Ψa,b ∈ suppf1, and f1(t) = t4 − t2 = at2 + b = Ψa,b(t).

(ii) The proof of (8.55) for f2 can proceed in a similar way as the one in part (iii) below.

(iii) We prove here that f3 is an H−convex function, and that (8.56) holds. For all Ψa,b ∈ H with a ≤ 0,
and b ≤ min

t∈[−0.5,0.5]
{1− 2 |t| − at2}, we have

b ≤ 1− 2 |t| − at2, ∀t ∈ [−0.5, 0.5].

This implies Ψa,b(t) = at2 + b ≤ 1− 2 |t| = f3(t) for all t ∈ [−0.5, 0.5].
On the other hand, we also have

Ψa,b(0.5) = Ψa,b(−0, 5) ≤ f3(0.5) = f3(−0, 5) = 0.

Since a ≤ 0, the function Ψa,b increases on (−∞, 0), and decreases on (0,+∞). Hence,

Ψa,b(t) ≤ Ψa,b(−0.5) ≤ 0 = f3(t), ∀t ∈ (−∞,−0.5),
Ψa,b(t) ≤ Ψa,b(0.5) ≤ 0 = f3(t), ∀t ∈ (0.5,+∞).

Altogether, it yields the inclusion

suppf3 ⊃
{
Ψa,b : a ≤ 0, b ≤ min

t∈[−0.5,0.5]
{1− 2|t| − at2}

}
.

Conversely, take Ψa,b ∈ suppf3.
We must have a ≤ 0, since otherwise lim

t→∞
Ψa,b(t) = +∞, which contradicts Ψa,b(t) ≤ f3(t) for all

t ∈ R.
If b > min

t∈[−0.5,0.5]
{1− 2 |t| − at2}, then there is a t0 ∈ [−0.5, 0.5] such that

b > 1− 2 |t0| − at20 ≥ min
t∈[−0.5,0.5]

{1− 2 |t| − at2}.

Thus, Ψa,b(t0) = at20 + b > 1− 2 |t0| = f3(t0), a contradiction.
Hence, b ≤ min

t∈[−0.5,0.5]
{1− 2 |t| − at2}. Thus,

suppf3 ⊂
{
Ψa,b : a ≤ 0, b ≤ min

t∈[−0.5,0.5]
{1− 2|t| − at2}

}
.

Thus, equality (8.56) holds.
Now, we prove that f3 is H−convex by showing that

f3(x) = sup
Ψ∈suppf3

Ψ(x), x ∈ R. (8.60)

Obviously, f3(x) ≥ sup
Ψ∈suppf3

Ψ(x), ∀x ∈ R.

We aim to show now that f3(x) ≤ sup
Ψ∈suppf3

Ψ(x), ∀x ∈ R.
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1.1 For x /∈ (−0.5, 0.5), consider Ψ ≡ 0 ∈ suppf3. We have f3(x) = Ψ(x) = 0.

1.2 For x ∈ (−0.5, 0.5) \ {0}, consider Ψa,b ∈ suppf3 with a := −1
|x|
≤ 0 and

b := min
t∈[−0.5,0.5]

{1− 2 |t| − at2} = min
t∈[−0.5,0.5]

{
1− 2 |t|+ 1

|x|
t2
}

= 1− |x| .

Then, Ψa,b(x) = ax2 + b = 1− 2 |x| = f3(x).

1.3 For x = 0, f3(0) = 1. Take the sequence of affine functions (Ψan,bn) ⊂ suppf3, with an := − 1
n

and bn := 1− 1
n

, n ≥ 2. Observe that an < 0 and

bn = min
t∈[−0.5,0.5]

{
1− 2 |t| − 1

n
t2
}
, ∀n ≥ 2.

Furthermore, we also have

f3(0) = 1 ≥ sup
Ψ∈suppf3

Ψ(0) ≥ lim
n→∞

Ψan,bn(0) = lim
n→∞

(
1− 1

n

)
= 1 = f3(0).

Altogether, (8.60) holds, hence, f3 is H−convex.

proof of Proposition 8.4.10. (i) Take x ∈ R. By Proposition 8.1.4 and the definition of suppf1, the
linear function φa ∈ ∂f1(x) if and only if

φa + (f1(x)− ax2) ∈ suppf1. (8.61)

By (8.54), f1(x) − ax2 ≤ − (1 + a)2

4 or a ≤ −1 and f1(x) − ax2 ≤ 0. If x = 0, then a ≤ −1. If

x 6= 0, then x4 − (a+ 1)x2 ≤ − (1 + a)2

4 , equivalently
(
x2 − 1 + a

2

)2
≤ 0, hence a = 2x2 − 1.

(ii) The argument for (8.56) is similar to the argument for (8.59) as below.

(iii) Consider the Fenchel conjugate function

f∗3 (φa) = sup
x∈R
{φa(x)− f3(x)} =


+∞ a > 0,
a

4 a ∈ [−2, 0],

−1− 1
a

a < −2.

Then,
φa ∈ ∂f3(x)⇐⇒ f∗3 (φa) + f3(x) = φa(x).

We consider three cases.

1. x = 0, f3(x) = 1. Then, φa ∈ ∂f3(0) ⇐⇒ f∗3 (φa) + 1 = 0. There does not exist a ∈ R such
that f∗3 (φa) + 1 = 0, thus ∂f3(0) = ∅.

2. x ∈ (−0.5, 0.5) \ {0}, f3(x) = 1 − 2|x|. Then, φa ∈ ∂f3(x) ⇐⇒ f∗3 (φa) + 1 − 2 |x| = φa(x).
Observe that we must have a ≤ 0.
If a ∈ [−2, 0], then a

4 + 1 − 2 |x| = φa(x) = ax2, or a(1/4 − x2) = 2 |x| − 1. This implies

a = 2 |x| − 1
1/4− x2 = −4

1 + 2 |x| . Since |x| < 0.5, then a < −2, a contradiction.

If a < −2, then

−1− 1
a

+ 1− 2 |x| = ax2, equivalently (ax)2 + 2a |x|+ 1 = 0.

Hence, a = −1
|x|

, and φa(t) = −1
|x|

t2.
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3. x /∈ (−0.5, 0.5), f3(x) = 0. Then, φa ∈ ∂f3(x)⇐⇒ f∗3 (φa) = ax2.

If a < −2, then −1 − 1
a

= ax2, or −a − 1 = (ax)2 ≥ (0.5a)2, which yields (0.5a + 1)2 ≤ 0, a
contradiction.
If a ∈ [−2, 0], then a

4 = ax2, which only holds true when a = 0 or x = ±0.5.
Hence, a ∈ [−2, 0] if x = ±0.5, and a = 0 otherwise.

This establishes (8.59).
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Chapter 9

Preliminary Results on Cubical
Polytopes

This Preliminary groups a number of results that will be used in later chapters of the thesis.

Unless otherwise stated, the graph theoretical notation and terminology follow from [46] and the
polytope theoretical notation and terminology from [175]. Moreover, when referring to graph-theoretical
properties of a polytope such as minimum degree, linkedness and connectivity, we mean properties of its
graph.

A cubical d-polytope is a polytope with all its facets being cubes. By a cube we mean any polytope
that is combinatorially equivalent to a cube; that is, one whose face lattice is isomorphic to the face
lattice of a cube.

The definitions of polytopal complex and strongly connected complex play an important role in the
context. A polytopal complex C is a finite nonempty collection of polytopes in Rd where the faces of each
polytope in C all belong to C and where polytopes intersect only at faces (if P1 ∈ C and P2 ∈ C then
P1 ∩ P2 is a face of both P1 and P2). The empty polytope is always in C. The dimension of a complex
C is the largest dimension of a polytope in C; if C has dimension d we say that C is a d-complex. Faces
of a complex of largest and second largest dimension are called facets and ridges, respectively. If each of
the faces of a complex C is contained in some facet we say that C is pure.

Given a polytopal complex C with vertex set V and a subset X of V , the subcomplex of C formed by
all the faces of C containing only vertices from X is called induced and is denoted by C[X]. Removing
from C all the vertices in a subset X ⊂ V (C) results in the subcomplex C[V (C) \ X], which we write
as C −X. We say that a subcomplex C′ is a spanning subcomplex of C if V (C′) = V (C). The graph of
a complex is the undirected graph formed by the vertices and edges of the complex. As in the case of
polytopes, we denote the graph of a complex C by G(C). A pure polytopal complex C is strongly connected
if every pair of facets F and F ′ is connected by a path F1 . . . Fn of facets in C such that Fi ∩ Fi+1 is a
ridge of C, F1 = F , and Fn = F ′; we say that such a path is a (d− 1, d− 2)-path or a facet-ridge path if
the dimensions of the faces can be deduced from the context. From the definition, it follows that every
0-complex is trivially strongly connected and that every complex contains a spanning 0-subcomplex.

The relevance of strongly connected complexes stems from the ensuing result of Sallee.

Proposition 9.0.1 ( [150, Section 2]). The graph of a strongly connected d-complex is d-connected.

Strongly connected complexes can be defined from a d-polytope P . Two basic examples are given
by the complex of all faces of P , called the complex of P and denoted by C(P ), and the complex of all
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proper faces of P , called the boundary complex of P and denoted by B(P ). For a polytopal complex C,
the star of a face F of C, denoted star(F, C), is the subcomplex of C formed by all the faces containing
F , and their faces; the antistar of a face F of C, denoted astar(F, C), is the subcomplex of C formed by
all the faces disjoint from F . That is, astar(F, C) = C − V (F ). Unless otherwise stated, when defining
stars and antistars in a polytope, we always assume the underlying complex is the boundary complex of
the polytope.

Some complexes defined from a d-polytope are strongly connected (d − 1)-complexes, as the next
proposition attests; the parts about the boundary complex and the antistar of a vertex already appeared
in [150].

Proposition 9.0.2 ( [150, Cor. 2.11, Theorem 3.5]). Let P be a d-polytope. Then, the boundary complex
B(P ) of P , and the star and antistar of a vertex in B(P ), are all strongly connected (d − 1)-complexes
of P .

Proof. Let ψ define the natural anti-isomorphism from the face lattice of P to the face lattice of its dual
P ∗.

The three complexes are pure. The complex B(P ) is clearly pure, and so is the star of a vertex.
Perhaps a sentence may be appropriate for the antistar of a vertex: a face of P that does not contain the
vertex must lie in a facet that does not contain the vertex. We proceed to prove the strong connectivity
of the complexes.

The statement about B(P ) was already proved in [150, Cor. 2.11]. The facets in B(P ) correspond
to vertices in P ∗. The existence of a facet-ridge path in B(P ) between any two facets F1 and F2 of
B(P ) amounts to the existence of a vertex-edge path in P ∗ between the vertices ψ(F1) and ψ(F2) of P ∗.
That B(P ) is a strongly connected (d− 1)-complex now follows from the connectivity of the graph of P ∗
(Balinski’s theorem).

The assertion about the star of a vertex does not seem to explicitly appear in [150]. The facets in the
star S of a vertex v in B(P ) correspond to the vertices in the facet ψ(v) in P ∗. The existence of a facet-
ridge path in S between any two facets F1 and F2 of S amounts to the existence of a vertex-edge path
in ψ(v) between the vertices ψ(F1) and ψ(F2) of ψ(v). That S is a strongly connected (d− 1)-complex
follows from the connectivity of the graph of ψ(v) (Balinski’s theorem).

The assertion about the antistar of a vertex v was first shown in [150, Theorem 3.5]. The facets in
astar(v) correspond to the vertices of P ∗ that are not in ψ(v). That is, if F1 and F2 are any two facets
of astar(v), then ψ(F1), ψ(F2) ∈ V (P ∗) \ V (ψ(v)). The existence of a facet-ridge path between F1 and
F2 in astar(v) amounts to the existence of a vertex-edge path between ψ(F1) and ψ(F2) in the subgraph
G(P ∗) − V (ψ(v)) of G(P ∗). The removal of the vertices of a facet does not disconnect the graph of a
polytope [150, Theorem 3.1], wherefrom it follows that G(P ∗)− V (ψ(v)) is connected, as desired.

The next two propositions follow from the characterisation of 2-linked graphs carried out in [153,161].
Both propositions also have proofs stemming from arguments in the form of Lemma 9.0.3, a lemma
used implicitly in the original proof of Balinski’s theorem (Theorem 9.0.4) and made explicit in [150,
Theorem 3.1]; for the sake of completeness we give such proofs.

Lemma 9.0.3 ( [150, Theorem 3.1]). Let P be a d-polytope, and let f be a linear function on Rd
satisfying f(x) > 0 for some x ∈ P . If u and v are vertices of P with f(u) ≥ 0 and f(v) ≥ 0, then there
exists a u− v path x0x1 . . . xn with x0 = u and xn = v such that f(xi) > 0 for i ∈ [1, n− 1].

Theorem 9.0.4 (Balinski [9]). For every d ≥ 1, the graph of a d-polytope is d-connected.

Let X be a set of vertices in a graph G. A path in the graph is called X-valid if no inner vertex of
the path is in X. A sequence a1, . . . , an of vertices in a cycle is in cyclic order if, while traversing the
cycle, the sequence appears in clockwise or counterclockwise order.
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Proposition 9.0.5. Let G be the graph of a 3-polytope and let X be a set of four vertices of G. The set
X is linked in G if and only if there is no facet of the polytope containing all the vertices of X.

Proof. Let P be a 3-polytope embedded in R3 and let X be an arbitrary set of four vertices in G. We
first establish the necessary condition by proving the contrapositive. Let F be a 2-face containing the
vertices of X and consider a planar embedding of G in which F is the outer face. Label the vertices of
X so that they appear in the cyclic order s1s2t1t2. Then s1 − t1 and s2 − t2 paths in G must inevitably
intersect, implying that X is not linked.

Assume there is no 2-face of P containing all the vertices of X. Let H be a (linear) hyperplane that
contains s1, s2 and t1, and let f be a linear function that vanishes on H (this may require a translation
of the polytope). Without loss of generality, assume that f(x) > 0 for some x ∈ P and that f(t2) ≥ 0.

First consider the case that H is a supporting hyperplane of a 2-face F . The subgraph G(F )− {s2}
is connected, and so there is an X-valid L1 := s1 − t1 path on G(F ). Then, use Lemma 9.0.3 to find
an L2 := s2 − t2 path in which each inner vertex has positive f -value. The paths L1 and L2 are clearly
disjoint.

Now consider the case that H intersects the interior of P . Then there is a vertex in P with f -value
greater than zero and a vertex with f -value less than zero. Use Lemma 9.0.3 to find an s1 − t1 path in
which each inner vertex has negative f -value and an s2− t2 path in which each inner vertex has positive
f -value.

The subsequent corollary follows at once from Proposition 9.0.5.

Corollary 9.0.6. No nonsimplicial 3-polytope is 2-linked.

Proposition 9.0.5 motivates the ensuing definition.

Definition 9.0.7 (Configuration F). Let Y := {{s1, t1}, {s2, t2}} be a labelling and pairing of four
vertices in a 3-cube. Configuration F is a configuration in the cube where the vertices of Y appear in
cyclic order s1s2t1t2 in a 2-face.

Configuration F is the only configuration in a 3-cube that prevents the linkedness of a pairing Y of
four vertices.

The same reasoning employed in the proof of the sufficient condition of Proposition 9.0.5 settles
Proposition 9.0.8.

Proposition 9.0.8 (2-linkedness of 4-polytopes). Every 4-polytope is 2-linked.

Proof. Let G be the graph of a 4-polytope embedded in R4. Let X be a given set of four vertices in G
and let Y := {{s1, s2}, {t1, t2}} a labelling and pairing of the vertices in X.

Consider a linear function f that vanishes on a linear hyperplane H passing through X. Consider
the two cases in which either H is a supporting hyperplane of a facet F of P or H intersects the interior
of P .

Suppose H is a supporting hyperplane of a facet F . First, find an s1 − t1 path in the subgraph
G(F )− {s2, t2}, which is connected by Balinski’s theorem. Second, use Lemma 9.0.3 to find an s2 − t2
path that touches F only at {s2, t2}.

If instead H intersects the interior of P then there is a vertex in P with f -value greater than zero
and a vertex with f -value less than zero. Use Lemma 9.0.3 to find an s1 − t1 path in which each inner
vertex has negative f -value and an s2 − t2 path in which each inner vertex has positive f -value.
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(a) (b) (c)vv

Figure 9.1: Complexes in the 4-cube. (a) The 4-cube with a vertex v highlighted. (b) The star of the
vertex v. (c) The link of the vertex v.

The distance between two vertices s and t in a graph G, denoted distG(s, t), is the length of a shortest
path between the vertices. Let v be a vertex in a d-cube Qd and let vo denote the vertex at distance d
from v, called the vertex opposite to v. The star of a vertex v in the boundary complex of a d-cube Qd
is the subcomplex Qd − vo, the subcomplex induced by V (Qd) \ {vo}.
Remark 9.0.9. The antistar of v coincides with the star of vo. Consequently, the link of v in a d-cube
Qd is the subcomplex Qd − {v, vo}.

Figure 9.1 depicts the star and link of a vertex in the 4-cube.

By considering a point v′ in Rd beyond a vertex v of a d-polytope P and using [62, Theorem 5.2.1],
we get a statement similar to Proposition 9.0.2 for the link of a vertex in B(P ): Proposition 9.0.11. We
provide all the details, for the sake of completeness.

Following [175, pp. 78, 241], we say that a facet F is visible from a point v′ in Rd \ P if v′ belongs
to the open halfspace that is determined by aff F , the affine hull of the facet, and is disjoint from P ; if
instead v′ belongs to the open halfspace that contains the interior of P , we say that the facet is nonvisible
from v′. Further we say that a point v′ in Rd is beyond a face K of P if the facets containing K are
precisely those visible from v′.

Theorem 9.0.10 ( [62, Theorem 5.2.1]). Let P and P ′ be two d-polytopes in Rd, and let v′ be a vertex
of P ′ such that v′ 6∈ P and P ′ = conv (P ∪ {v′}). Then

(i) a face F of P is a face of P ′ if and only if there exists a facet of P containing F that is nonvisible
from v;

(ii) if F is a face of P then F ′ := conv (F ∪ {v′}) is a face of P ′ if

(a) either v′ ∈ aff F ;
(b) or among the facets of P containing F there is at least one that is visible from v′ and at least

one that is nonvisible.

Moreover, each face of P ′ is of exactly one of the above three types.

Proposition 9.0.11 ( [175, Ex. 8.6]). Let P be a d-polytope. Then the link of a vertex in B(P ) is
combinatorially equivalent to the boundary complex of a (d− 1)-polytope.

Proof. Let v be a vertex of P and let v′ be a point in Rd \P beyond v so that v′ is not on the affine hull
of any face of P . Suppose P ′ := conv (P ∪ {v′}).

The facets in the star of v in B(P ) are precisely those that are visible from v′, and every other
facet of P , including the facets in the antistar of v in B(P ), is nonvisible from v′. The link of v is, by
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Figure 9.2: The link of a vertex in the 4-cube. (a) The 4-cube with a vertex v highlighted. (b) The
link of the vertex v in the 4-cube. (c) The link of the vertex v as the boundary complex of the rhombic
dodecahedron (Proposition 9.0.11).

definition, the subcomplex of B(P ) induced by the ridges of P that are contained in a facet of the star
of v, a facet visible from v′, and a facet of the antistar of v, a facet nonvisible from v′. Consequently,
according to Theorem 9.0.10(i), the ridges in link(v,B(P )) are faces of P ′. Furthermore, for every ridge
R ∈ link(v,B(P )), R′ := conv (R ∪ {v′}) is a facet of P ′ (Theorem 9.0.10(ii-b)), a pyramid over R with
apex v′; and every facet in the star of v′ in B(P ′) is one of these pyramids. Hence, the vertex figure of
P ′ at v′, which is a (d − 1)-polytope [175, Section 2.1], is combinatorially equivalent to the link of v in
P , as desired.

Proposition 9.0.11 is exemplified in Fig. 9.2.
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Chapter 10

Connectivity of Cubical Polytopes

Define a separator of a polytope as a set of vertices disconnecting the graph of the polytope. Let X be
a set of vertices in a graph G. Denote by G[X] the subgraph of G induced by X, the subgraph of G
that contains all the edges of G with vertices in X. Write G−X for G[V (G) \X]; that is, the subgraph
G−X is obtained by removing the vertices in X and their incident edges. The graph G is k−connected
if and only if the minimum separator is of cardinality k.

10.1 Connectivity of the d-Cube

We unveil some further properties of the cube, whose proofs exploit the realisation of a d-cube as a 0− 1
d-polytope [176]. A 0 − 1 d-polytope is a d-polytope whose vertices have coordinates in {0, 1}d. Here
{0, 1}d denotes the set of all d-element sequences from {0, 1}.

We next give some basic properties of the d-cube, including some specific to its realisation as a 0− 1
polytope.
Remark 10.1.1 (Basic properties of the d-cube). Let ~x = (x1, . . . , xd) with xi ∈ {0, 1} be a vertex of the
0− 1 d-cube Qd.

(i) Every two facets of Qd either intersect at a ridge or are disjoint.

(ii) Each of the 2d facets of Qd is the convex hull of a set of the form

F 0
i := conv {~x ∈ V (Qd) : xi = 0} or F 1

i := conv {~x ∈ V (Qd) : xi = 1},

for i in [1, d], the interval 1, . . . , d.

(iii) A (d− k)-face is the intersection of exactly k facets, and thus, its vertices have the form

{~x ∈ V (Qd) : xi1 = 0, . . . , xir = 0, xir+1 = 1, . . . , xik = 1}

for k ∈ [1, d] and r ∈ [0, k].

While it is true that the antistar of a vertex in a d-polytope is always a strongly connected (d− 1)-
complex (Proposition 9.0.2), it is far from true that this extends to higher dimensional faces. Consider
any d-polytope P with a simplex facet J that contains at least one vertex v of degree d in P . Let F
be any face in J that does not contain v. Then the vertex v has degree d − |V (F )| in the subcomplex
P − V (F ). Since every vertex in a pure (d − 1)-complex has degree at least d − 1, the antistar of F in
B(P ), which contains v, cannot be a pure (d − 1)-complex for dimF ≥ 1. This extension is however
possible for the d-cube.
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Lemma 10.1.2. Let F be a proper face in the d-cube Qd. Then the antistar of F is a strongly connected
(d− 1)-complex.

Proof. Without loss of generality, assume that Qd is given as a 0−1 polytope, and for the sake of concrete-
ness, that our proper face F is defined as conv {~x ∈ V (Qd) : x1 = 0, . . . , xk = 0} (Remark 10.1.1(iii)).
That is, F = F 0

1 ∩ · · · ∩ F 0
k ; refer to Remark 10.1.1(ii).

We claim that the antistar of F is the pure (d− 1)-complex

C := C(F 1
1 ) ∪ · · · ∪ C(F 1

k );

refer to Remark 10.1.1(ii)-(iii).

We proceed by proving that astar(F,Qd) ⊆ C. Take any (d− l)-face K 6∈ C. Then K = J1∩· · ·∩Jl for
some facets Ji of Qd. A facet Ji is defined by either conv {~x : V (Qd) : xj = 1 for some j ∈ [k + 1, d]} or
conv {~x : V (Qd) : xj = 0 for some j ∈ [1, d]}. According to Remark 10.1.1(iii), for l ∈ [1, d] and r ∈ [0, l],
we get that

K = conv {~x ∈ V (Qd) : xi1 = 0, . . . , xir = 0, xir+1 = 1, . . . , xil = 1}.

From the form of the facets Ji it follows that ij ≥ k + 1 for all j ∈ [r + 1, l]. Hence there is a vertex
~x = (x1, . . . , xd) in K satisfying x1 = · · · = xk = 0, which implies that {~x} ⊂ K ∩ F . That is,
K 6∈ astar(F,Qd).

To prove that C ⊆ astar(F,Qd) holds, observe that, if K ∈ C then it is in a facet F 1
i for some i ∈ [1, k],

and therefore, it belongs to astar(F,Qd). Hence C = astar(F,Qd).

That C is strongly connected follows from noting that the facets F 1
1 , . . . , F

1
k are pairwise nondisjoint,

and therefore, pairwise intersect at (d− 2)-faces (Remark 10.1.1(i)).

Proposition 10.1.3 is well known [138, Proposition 1], but we are not aware of a reference for Propo-
sition 10.1.4.

Proposition 10.1.3 ( [138, Proposition 1]). Any separator X of cardinality d in Qd consists of the d
neighbours of some vertex in the cube, and the subgraph G(Qd) − X has exactly two components, with
one of them being the vertex itself.

Proof. A proof can be found in [138, Proposition 1]: essentially, one proceeds by induction on d, consid-
ering the effect of the separator on a pair of disjoint facets.

Proposition 10.1.4. Let y be a vertex of the d-cube Qd and let Y be a subset of the neighbours of y in
Qd. Then the subcomplex of Qd induced by V (Qd) \ ({y} ∪ Y ) contains a spanning strongly connected
(d− 2)-subcomplex.

Proof. Without loss of generality, assume that Qd is given as a 0 − 1 polytope, and for the sake of
concreteness, that y = (0, . . . , 0) and Y = {~e1, . . . , ~ek} where ~ei denotes the standard unit vector with
the i-entry equal to one.

Let C := Qd − ({y} ∪ Y ), the subcomplex of Qd induced by V (Qd) \ ({y} ∪ Y ). Consider the d − k
ridges

Ri := conv {~x ∈ V (Qd) : x1 = 0, xi = 1} for i ∈ [k + 1, d]

and the
(
d

2

)
ridges

Ri,j := conv {~x ∈ V (Qd) : xi = 1, xj = 1}for some i, j ∈ [1, d] with i 6= j.
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Let C′ := C(Rk+1) ∪ · · · ∪ C(Rd) ∪ C(R1,2) ∪ · · · ∪ C(Rd−1,d). Then C′ is a pure (d− 2)-subcomplex of C.

We show that C′ is a spanning subcomplex of C. Let ~x = (x1, . . . , xd) be a vertex in V (Qd)\({y}∪Y ).
Then either ~x = ~ei for some i = k + 1, . . . , d or xi = xj = 1 for some i, j ∈ [1, d] with i 6= j; see
Remark 10.1.1(iii). In the former case, the vertex ~x lies in the (d− 2)-face Ri, and in the latter case, the
vertex ~x lies in the (d− 2)-face Ri,j . Therefore ~x ∈ C′. We next show that C′ is strongly connected.

Take any two distinct ridges R and R′ from C′. We consider three cases based on the form of R and
R′.

Suppose that R = Ri and R′ = Rj for i, j ∈ [k+ 1, d] and i 6= j. Then there is a (d− 2, d− 3)-path L
of length one from R to R′ through their common (d−3)-face conv {~x ∈ V (Qd) : x1 = 0, xi = 1, xj = 1}.
That is, L := RR′.

Next suppose that R = Ri and R′ = Rj,l for j, l ∈ [1, d] with j 6= l. If i = j there is a (d−2, d−3)-path
of length one from R to R′ through the common (d− 3)-face conv {~x ∈ V (Qd) : x1 = 0, xi = 1, xl = 1}.
If i 6= j, and consequently i 6= l, then there is a (d− 2, d− 3)-path L of length two from R to R′ through
the (d− 2) face Ri,l, which shares the (d− 3)-face conv {~x ∈ V (Qd) : x1 = 0, xi = 1, xl = 1} with R and
the (d− 3)-face conv {~x ∈ V (Qd) : xi = 1, xj = 1, xl = 1} with R′. That is, L := RRi,lR

′.

Finally suppose that R = Ri,j with i 6= j and R′ = Rl,m with l 6= m. If i = l there is a (d− 2, d− 3)-
path from R to R′ through the common (d − 3)-face conv {~x ∈ V (Qd) : xi = 1, xj = 1, xm = 1}. If
{i, j}∩{l,m} = ∅ then there is a (d−2, d−3)-path L of length two from R to R′ through the (d−2)-face
Ri,l, which shares the (d− 3)-face conv {~x ∈ V (Qd) : xi = 1, xj = 1, xl = 1} with R and the (d− 3)-face
conv {~x ∈ V (Qd) : xi = 1, xl = 1, xm = 1} with R′. That is, L := RRi,lR

′.

Remark 10.1.5. In Proposition 10.1.4, the subcomplex of Qd induced by V (Qd) \ ({y} ∪ Y ), in the
proof of Proposition 10.1.4 denoted by C, is pure if and only if Y is the set of all neighbours of y. Let
Y = {~e1, . . . , ~ek} and y = (0, . . . , 0). If k < d then the facets conv {~x ∈ V (Qd) : x` = 1} for ` ∈ [k + 1, d]
are in C and the ridge conv {~x ∈ V (Qd) : xi = 1, xj = 1} for i, j ∈ [1, k] and i 6= j is in C but the facets
conv {~x ∈ V (Qd) : xi = 1} and conv {~x ∈ V (Qd) : xj = 1} are not in C. Thus C is nonpure. If instead
k = d then no facet is in C, and the vector coordinates of every vertex in C has at least two entries with
ones, and thus, it is contained in some ridge conv {~x ∈ V (Qd) : xi = 1, xj = 1} for i, j ∈ [1, d] and i 6= j,
which is in C. Thus C is a pure (d− 2)-subcomplex of Qd, and it coincides with the complex C′. Figure
10.1 illustrates Proposition 10.1.4.

10.2 Connectivity of Cubical Polytopes

The aim of this section is to prove Theorem 10.2.8, a result that relates the connectivity of a cubical
polytope to its minimum degree.

Two vertex-edge paths are independent if they share no inner vertex. Similarly, two facet-ridge paths
are independent if they do not share an inner facet.

Given sets A,B of vertices in a graph, a path from A to B, called an A−B path, is a (vertex-edge)
path L := u0 . . . un in the graph such that V (L)∩A = {u0} and V (L)∩B = {un}. We write a−B path
instead of {a} −B path, and likewise, write A− b path instead of A− {b}.

Our exploration of the connectivity of cubical polytopes starts with a statement about the connectivity
of the star of a vertex. But first we need a lemma that holds for all d-polytopes.

Lemma 10.2.1. Let P be a d-polytope with d ≥ 2. Then, for any two distinct facets F1 and F2 of P ,
the following hold.
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Figure 10.1: Complexes in the 4-cube. (a) The 4-cube with the vertex y = (0, 0, 0, 0) singled out.
The vertex labelling corresponds to a realisation of the 4-cube as a 0 − 1 polytope. (b) Vertex coordi-
nates as elements of {0, 1}4. (c) The strongly connected 2-complex C induced by V (Q4) \ ({y} ∪ Y )
where Y = {v2, v3, v5, v9}. Every face of C is contained in a 2-face of the cube. (d) The non-
pure complex C induced by V (Q4) \ ({y} ∪ Y ) where Y = {v2 = ~e1, v5 = ~e3}. The 2-face
conv {v6, v8, v14, v16} = conv {~x ∈ V (Q4) : x1 = 1, x3 = 1} of C is not contained in any 3-face, and
there are two 3-faces in C, namely conv {v3, v4, v7, v8, v11, v12, v15, v16} = conv {~x ∈ V (Q4) : x2 = 1} and
conv {v9, v10, v11, v12, v13, v14, v15, v16} = conv {~x ∈ V (Q4) : x4 = 1}.
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(i) There are d independent facet-ridge paths between F1 and F2 in P .

(ii) Let S be the star of a vertex and let F be a facet of S. If F1 and F2 are in S and are both different
from F , then there exists a (d− 1, d− 2)-path between F1 and F2 in S that does not contain F .

(iii) Let F be a facet of P other than F1 and F2. Then there exists a (d− 1, d− 2)-path between F1 and
F2 in P that does not contain F .

(iv) Let R be an arbitrary ridge of P . Then there exists a facet-ridge path J1 . . . Jm with J1 = F1 and
Jm = F2 in P such that J` ∩ J`+1 6= R for each ` ∈ [1,m− 1].

Proof. The proof of the lemma essentially follows from dualising Balinski’s theorem.

Let ψ define the natural anti-isomorphism from the face lattice of P to the face lattice of its dual P ∗.

(i). Any two independent vertex-edge paths in P ∗ between the vertices ψ(F1) and ψ(F2) correspond
to two independent facet-ridge paths in P between the facets F1 and F2. By Balinski’s theorem there
are d independent ψ(F1)− ψ(F2) paths in P ∗, and so the assertion follows.

(ii). The facets in the star S of a vertex s in B(P ) correspond to the vertices in the facet ψ(s) in
P ∗ corresponding to s. The existence of a facet-ridge path in S between any two facets F1 and F2 of S
amounts to the existence of a vertex-edge path in ψ(s) between the vertices ψ(F1) and ψ(F2) of ψ(s).
Since the graph of the facet ψ(s) is (d− 1)-connected (Balinski’s theorem), by Menger’s theorem ( [117];
see also [46, Section 3.3]) there are d−1 independent paths between ψ(F1) and ψ(F2). Hence we can pick
one such path L∗ that avoids the vertex ψ(F ) of ψ(s). Dualising this path L∗ gives a (d− 1, d− 2)-path
L between F1 and F2 in the star S that does not contain the facet F of P .

(iii). By (i) there are d independent facet-ridge paths between F1 and F2 in P , and since d ≥ 2, we
can pick one such path that does not contain F .

(iv). Again by (i), there are d independent facet-ridge paths between F1 and F2 in P , and since d ≥ 2
and the ridge R can be present in at most one such path, there must exist a facet-ridge path that does
not contain R. The assertion now follows.

For a path L := u0 . . . un we write uiLuj for 0 ≤ i ≤ j ≤ n to denote the subpath ui . . . uj .

Proposition 10.2.2. Let F be a facet in the star S of a vertex in a cubical d-polytope. Then the antistar
of F in S is a strongly connected (d− 2)-complex.

Proof. Let s be a vertex of a facet F in a cubical d-polytope P and let F1, . . . , Fn be the facets in the
star S of the vertex s. Let F1 = F . The result is true for d = 2: the antistar of F is just a vertex, a
strongly connected 0-complex. So assume d ≥ 3.

According to Lemma 10.1.2, the antistar of Fi ∩ F1 in Fi, the subcomplex of Fi induced by V (Fi) \
V (Fi ∩ F1), is a strongly connected (d− 2)-complex for each i ∈ [2, n]. Since

astar(F1,S) =
n⋃
i=2

astar(Fi ∩ F1, Fi),

it follows that astar(F1,S) is a pure (d−2)-complex. It remains to prove that there exists a (d−2, d−3)-
path L between any two ridges Ri and Rj in astar(F1,S).

By virtue of Lemma 10.1.2, we can assume that Ri ∈ astar(Fi ∩ F1, Fi) and Rj ∈ astar(Fj ∩ F1, Fj)
for i 6= j and i, j ∈ [2, n]. Since S is a strongly connected (d − 1)-complex (Proposition 9.0.2), there
exists a (d− 1, d− 2)-path M := J1 . . . Jm in S, where J` ∩ J`+1 is a ridge for ` ∈ [1,m− 1], J1 = Fi and
Jm = Fj . Let E0 := Ri and Em := Rj .

177



We can assume the path M doesn’t contain F1 (Lemma 10.2.1(ii)). Let us show that the path L
exists, by proving the following statement by induction.

Claim 1. If ` ≤ m, there exists a (d−2, d−3) path in
⋃̀
i=1

astar(Ji∩F1, Ji) between E0 ∈ astar(J1∩F1, J1)

and any ridge E` ∈ astar(J` ∩ F1, J`).

Proof. The statement is true for ` = 1. The complex astar(J1 ∩ F1, J1) is a strongly connected (d− 2)-
complex and contains E0. So an induction on ` can start.

Suppose that the statement is true for some ` < m. We show the existence of a (d − 2, d − 3)-path
between E0 and any ridge of astar(J`+1 ∩ F1, J`+1).

Let E` be a ridge in astar(J` ∩ F1, J`) such that E` contains a (d− 3)-face I` of astar(J` ∩ F1, J`) ∩

astar(J`+1 ∩F1, J`+1). By the induction hypothesis there exists a (d− 2, d− 3) path L` in
⋃̀
i=1

astar(Ji ∩

F1, Ji) between E0 and E`.

Consider a ridge E′`+1 ∈ astar(J`+1 ∩ F1, J`+1) such that E′`+1 contains the aforementioned (d− 3)-
face I`. There is a (d − 2, d − 3)-path L′`+1 in astar(J`+1 ∩ F1, J`+1) from E′`+1 to any ridge E`+1 in
astar(J`+1 ∩ F1, J`+1), thanks to astar(J`+1 ∩ F1, J`+1) being a strongly connected (d− 2)-complex.

Since E` and E′`+1 share I`, a path L`+1 from E0 to the arbitrary ridge E`+1 is obtained as L`+1 =
E0L`E`E

′
`+1L

′
`+1E`+1.

For this concatenation to work it remains to prove that the complex astar(J` ∩F1, J`)∩ astar(J`+1 ∩
F1, J`+1) contains the aforementioned (d− 3)-face I`. Let K` := J` ∩ J`+1 ∩ F1. Because J` ∩ J`+1 is a
ridge but not of F1 and because {s} ⊆ V (J`)∩ V (J`+1)∩ V (F1), we find that 0 ≤ dimK` ≤ d− 3. From
J` ∩J`+1 being a (d− 2)-cube and dimK` ≤ d− 3 follows the existence of a (d− 3)-face in J` ∩J`+1 that
is disjoint from F1, our I`. As a consequence, this face I` ∈ astar(J` ∩F1, J`)∩ astar(J`+1 ∩F1, J`+1), as
desired. �

Applying the claim to ` = m gives the existence of a path in ∪mi=1 astar(Ji ∩F1, Ji) between E0 = Ri
and Em = Rj ; this is the desired path L.

The proof method used in Proposition 10.2.2 also proves the following.

Theorem 10.2.3. Let F be a proper face of a cubical d-polytope P . Then the antistar of F in P contains
a spanning strongly connected (d− 2)-subcomplex.

Proof. Let F1, . . . , Fn be the facets of P and let F be a proper face of P . The result is true for d = 2:
the antistar of F is a strongly connected 1-complex, and thus, contains a spanning 0-complex. So assume
d ≥ 3.

Let
Cr := B(Fr)− V (F ).

If Fr = F then Cr = ∅, and if Fr ∩ F = ∅ then Cr is the boundary complex of Fr, a strongly connected
(d−2)-subcomplex of Fr (Proposition 9.0.2). Otherwise, Cr is the antistar of Fr∩F in Fr, also a strongly
connected (d− 2)-subcomplex of Fr (Lemma 10.1.2).

Let
C :=

n⋃
r=1
Cr.
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We show that C is the required spanning strongly connected (d−2)-subcomplex of P−V (F ), the antistar
of F in P . It follows that C is a spanning pure (d − 2)-subcomplex of P − V (F ). It remains to prove
that there exists a (d− 2, d− 3)-path L in C between any two ridges Ri and Rj of C with i 6= j.

If Ri, Rj ∈ Cr for some r ∈ [1, n], then, since Cr is a strongly connected (d − 2)-complex
(Lemma 10.1.2), there exists a (d − 2, d − 3)-path in Cr between the two ridges Ri and Rj . There-
fore, we can assume that Ri is in Ci and Rj is in Cj for i 6= j. Observe that Fi 6= F and Fj 6= F .
Hereafter we let E0 := Ri and Em := Rj .

Since B(P ) is a strongly connected (d− 1)-subcomplex of P , there exists a (d− 1, d− 2)-path M :=
J1 . . . Jm in P where J` ∩J`+1 is a ridge for ` ∈ [1,m− 1], J1 = Fi and Jm = Fj . Each facet Jr coincides
with a facet Fir for some ir ∈ [1, n]; we henceforth let Dr := Cir .

By Lemma 10.2.1(iii)-(iv) we can assume that Jr 6= F for r ∈ [1,m] in the case of F being a
facet and that J` ∩ J`+1 6= F for ` ∈ [1,m − 1] in the case of F being a ridge. As a consequence,
dim(J` ∩ J`+1 ∩ F ) ≤ d − 3; this in turn implies that, for each ` ∈ [1,m − 1], J` ∩ J`+1 contains a
(d− 3)-face I` that is disjoint from F . Hence I` ∈ D` ∩ D`+1 for each ` ∈ [1,m− 1].

As in the proof or Proposition 10.2.2, we show that the path L exists by proving the following claim
by induction.

Claim 2. If ` ≤ m, there exists a (d− 2, d− 3) path in
⋃̀
i=1
Di between E0 ∈ D1 and any ridge E` ∈ D`.

Proof. The statement is true for ` = 1. The complex D1 is a strongly connected (d − 2)-complex and
E0 ∈ D1.

Suppose that the statement is true for some ` < m. We show the existence of a (d − 2, d − 3)-path
between E0 ∈ D1 and any ridge of D`+1.

Let E` be a ridge in D` containing a (d − 3) face I` of D` ∩ D`+1; this (d − 3)-face I` exists by our

previous discussion. By the induction hypothesis, there exists a (d− 2, d− 3) path L` in
⋃̀
i=1
Di between

E0 and the ridge E`.

Consider a ridge E′`+1 ∈ D`+1 containing the face I`. There is a (d−2, d−3)-path L′`+1 in D`+1 from
E′`+1 to any ridge E`+1 ∈ D`+1, thanks to D`+1 being a strongly connected (d− 2)-complex.

The desired path L`+1 between E0 and the arbitrary ridge E`+1 is obtained as L`+1 =
E0L`E`E

′
`+1L`+1E`+1. �

The claim for ` = m gives the desired (d − 2, d − 3)-path L in ∪mi=1Di ⊂ C between E0 = Ri and
Em = Rj , which concludes the proof.

Remark 10.2.4. Theorem 10.2.3 is best possible in the sense that the antistar of a face does not always
contain a spanning strongly connected (d− 1)-subcomplex. The removal of the vertices of the face F in
Fig. 1.1 leaves a pure (d− 1)-subcomplex that is not strongly connected.

The ideas presented in Proposition 10.2.2 and Theorem 10.2.3 play a key role in the proof of the main
result of [33].

Before proving the main result of the section, we state a useful corollary that follows from Proposi-
tion 9.0.1 and Theorem 10.2.3.

Corollary 10.2.5. Let P be a cubical d-polytope and let F be a proper face of P . Then the subgraph
G(P )− V (F ) is (d− 2)-connected.
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For d ≥ 4 we define the two functions f(d) and g(d) that we mentioned in the introduction.

(i) The function f(d) gives the maximum number such that every cubical d-polytope with minimum
degree δ ≤ f(d) is δ-connected.

(ii) the function g(d) gives the maximum number such that every minimum separator with cardinality
at most g(d) of every cubical d-polytope consists of the neighbourhood of some vertex.

The functions f(3) and g(3) are not defined. No cubical 3-polytope has minimum degree δ ≥ 4,
and so for every positive integer δ0 ≥ 3 it follows that every cubical 3-polytope with minimum degree
δ ≤ δ0 is δ-connected. Figure 1.1 shows cubical 3-polytopes with minimum separators that are not the
neighbourhood of a vertex.

The function f(d) is well defined for d ≥ 4. There is a cubical d-polytope with minimum degree δ for
every δ ≥ d ≥ 4, for instance, a neighbourly cubical d-polytope [79]. Every d-polytope is d-connected by
Balinski’s theorem. Furthermore, there exists a cubical d-polytope with minimum degree δ > 2d−1 that
is not δ-connected: the connected sum of two copies of a neighbourly cubical d-polytope with minimum
degree δ. Thus d ≤ f(d) ≤ 2d−1.

At this moment, we don’t claim that g(d) exists; this will become evident in the proof of Theo-
rem 10.2.8.

Proposition 10.2.6. Let P be a cubical d-polytope with d ≥ 4. If the function g(d) exists and P has
minimum degree at least g(d) + 1, then G(P ) is (g(d) + 1)-connected.

Proof. Suppose that G(P ) is not (g(d) + 1)-connected. Then there is a minimum separator X with
cardinality at most g(d). By the definition of g(d), X consists of all the neighbours of some vertex u.
This contradicts the degree of u, which is at least g(d) + 1 > |X|.

Corollary 10.2.7. If the function g(d) exists for d ≥ 4, then f(d) > g(d).

Theorem 10.2.8 (Connectivity Theorem). A cubical d-polytope P with minimum degree δ is min{δ, 2d−
2}-connected for every d ≥ 3.

Furthermore, for any d ≥ 4, every minimum separator X of cardinality at most 2d− 3 consists of all
the neighbours of some vertex, and the subgraph G(P )−X contains exactly two components, with one of
them being the vertex itself.

Proof. Let 0 ≤ α ≤ d − 3 and let P be a cubical d-polytope with minimum degree at least d + α. Let
G := G(P ).

We first prove that P is (d + α)-connected. The case of d = 3 follows from Balinski’s theorem. So
assume d ≥ 4. Let X be a minimum separator of P . Throughout the proof, let u and v be two distinct
vertices that belong to G−X and are disconnected by X. The theorem follows from a number of claims
that we prove next.

Claim 3. If |X| ≤ d+ α then, for any facet F , the cardinality of X ∩ V (F ) is at most d− 1.

Proof. Suppose otherwise and let F be a facet with |X ∩ V (F )| ≥ d. Let

G′ := G− V (F ).

According to Corollary 10.2.5, the subgraph G′ is (d− 2)-connected. Since there are at most α ≤ d− 3
vertices in V (G′) ∩X, removing from G′ the vertices in V (G′) ∩X doesn’t disconnect G′.
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We show there is a u − v path in G − X, which would be a contradiction and prove the claim. If
u, v ∈ V (G′) \X then there is a u− v path in G′−X, as G′−X is connected. So assume u ∈ V (F ) \X.
Since u has degree at least d+α and since every vertex in F has at least d+α−(d−1) = α+1 neighbours
outside F (in G′), at least one of them, say uG′ , is in V (G′) \ X. Likewise either v ∈ V (F ) \ X and
there is a neighbour vG′ of v in V (G′) \ X or v ∈ G′ − X. Therefore, if v ∈ V (F ) \ X then there is a
u− v path L in G−X that contains a subpath L′ in G′ between the vertices uG′ and vG′ in V (G′) \X;
that is, L = uuG′L

′vG′v. If instead v ∈ G′ −X then there is a u− v path L in G−X passing through
the vertex uG′ and containing a subpath L′ := uG′ − v in G′ −X; that is, L = uuG′L

′v. Hence there is
always a u− v path in G−X, and thus, G is not disconnected by X, a contradiction. �

Claim 4. If |X| ≤ d + α, then there exist facets F1, . . . , Fd of P such that G(Fi) is disconnected by X
for each i ∈ [1, d].

Proof. Suppose by way of contradiction that X disconnects the graphs of at most k facets F1, . . . , Fk of
P with k ≤ d− 1. We find a u− v path in G−X, which would contradict X being a separator of G.

There are at least d facets containing u and there are at least d facets containing v. As a result,
we can pick facets Ku and Kv with u ∈ Ku and v ∈ Kv whose graphs are not disconnected by X;
that is Ku,Kv 6∈ {F1, . . . , Fk}. If Ku = Kv then we can find a u − v path in G(Ku) − X. So assume
Ku 6= Kv. Since B(P ) is a strongly connected (d− 1)-complex and since there are at least d independent
(d− 1, d− 2)-paths from Ku to Kv in B(P ) (Lemma 10.2.1(i)), there exists a (d− 1, d− 2)-path J1 . . . Jn
in B(P ) with J1 = Ku and Jn = Kv such that {J1, . . . , Jn} ∩ {F1, . . . , Fk} = ∅. As a consequence, the
subgraphs G(Ji) are not disconnected by X.

Construct a u− v path L by traversing the facets J1, . . . , Jn as follows: find a path L1 in J1 from u
to a vertex in J1 ∩ J2, then a path L2 in J2 from J1 ∩ J2 to J2 ∩ J3 and so on up to a path Ln−1 in Jn−1
from Jn−2 ∩ Jn−1 to Jn−1 ∩ Jn; here use the connectivity of the subgraphs G(J1)−X, . . . , G(Jn−1)−X.
Finally, find a path Ln in Jn = Kv from Jn−1 ∩ Jn to the vertex v using the connectivity of G(Jn)−X.
The path L is the concatenation of the paths L1, . . . , Ln.

The aforementioned concatenation works as long as there is at least one vertex in V (J` ∩ J`+1) \X
for each ` ∈ [1, n − 1]. For d ≥ 4, it follows that |V (J` ∩ J`+1)| = 2d−2 ≥ d, which is greater that
|V (J`) ∩X| ≤ d− 1 by Claim 3. Hence V (J` ∩ J`+1) \X is nonempty, and consequently, the u− v path
L always exists and completes the proof of the claim. �

Claim 5. If |X| ≤ d+ α then |X| = d+ α.

Proof. Let F be a facet of P whose graph is disconnected by X, which by Claim 4 exists. Claim 3 together
with Balinski’s theorem ensures that |V (F ) ∩X| = d− 1. Let G′ := G− V (F ). By Corollary 10.2.5, G′
is a (d− 2)-connected subgraph of G.

Suppose that a minimum separator X has size at most d−1+α; we show that X does not disconnect
G by finding a u− v path L between the vertices u and v of G−X, which would be a contradiction.

There are at most α ≤ d − 3 vertices in V (G′) ∩ X, and so removing V (G′) ∩ X from G′ doesn’t
disconnect G′.

If u and v are both in G′ then there is a u − v path in G′ that is disjoint from X. So assume that
u ∈ V (F ) \X. Let X1 denote the set of neighbours of u in G′; then |X1| ≥ α + 1, since u has at least
d + α neighbours in P , with exactly d − 1 of them in F . As a consequence, there is a neighbour uG′
of u in V (G′) \ X. Likewise either v ∈ V (F ) \ X and there is a neighbour vG′ of v in V (G′) \ X or
v ∈ G′ −X. If v ∈ V (F ) \X, there is a u− v path in G−X that passes through the vertices uG′ and
vG′ of V (G′) \X. If instead v ∈ G′ −X, there is a u − v path L in G −X that includes a subpath L′

in G′ −X between uG′ and v so that L = uuG′L
′v. Hence we always have a u− v path in G−X. This

contradiction shows that a minimum separator has size exactly d+ α. �
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From Claim 5 it follows that P is (d+α)-connected. The structure of a minimum separator is
settled in (6), (7). For every d ≥ 4, Claim 6 settles the case α ≤ d− 4 and Claim 7 the case α = d− 3.

Claim 6. If α ≤ d−4, then the set X consists of the neighbours of some vertex and the minimum degree
of P is exactly d+ α.

Proof. As in Claim 5, let F be a facet of P whose graph is disconnected by X and let G′ := G− V (F ).
Then G′ is a (d − 2)-connected subgraph of G (Corollary 10.2.5). Besides, |V (F ) ∩ X| = d − 1 by a
combination of Claim 3 and Balinski’s theorem.

Since there are exactly α + 1 ≤ d − 3 vertices in V (G′) ∩ X, removing V (G′) ∩ X from G′ doesn’t
disconnect G′. We may therefore assume that u ∈ V (F ) \X.

If there is a path Lu in G − X from u to a vertex uG′ ∈ G′ − X and a path Lv in G − X from v
to a vertex vG′ in G′ −X so that Lu and Lv are both disjoint from X, then we get a u − v path L in
G −X defined as L = uLuuG′L

′vG′Lvv where L′ is a path in G′ −X between uG′ and vG′ . Recall the
minimum degree of u is at least d+ α.

We may therefore assume that u is in V (F ) \X and that there is no such path Lu in G−X from u
to G′ −X. The set X1 of neighbours of u in G′ must then be a subset of X, and since |X1| ≥ α+ 1, it
follows that X1 = V (G′)∩X, and thus, that |X1| = α+ 1. In addition, every path of length two from u
to G′ passing through a neighbour of u in F contains some vertex from X; otherwise the aforementioned
path Lu would exist. Let X2 denote the vertices in X that are present in a u − V (G′) path of length
two passing through a neighbour of u in F . Every vertex of F has a neighbour in G′, and so there is a
u − V (G′) path through each neighbour of u in F , d − 1 such neighbours in total. Since there are no
triangles in P , we get X1 ∩ X2 = ∅, which in turn implies that X2 ⊂ V (F ). Hence |X2| = d − 1, and
every neighbour of u in F is in X. Consequently, the degree of u, |X1|+ |X2|, is precisely d+α, and the
set X consists of the d+ α neighbours of u in P , as desired. �

Claim 7. If α = d−3, then the set X consists of the neighbours of some vertex and the minimum degree
of P is exactly d+ α.

Proof. Proceed by contradiction: every vertex in P has at least one neighbour outside X.

By Claim 3 there are at most d−1 vertices from X in any facet F of P . If the removal of X disconnects
the graph of a facet F , then there would be exactly d − 1 vertices in V (F ) ∩ X, which constitute the
neighbours in F of some vertex of F (Proposition 10.1.3). Consequently, the subgraph G(F )−X would
have exactly two components: one being a singleton z(F ) and another Z(F ) being (d − 3)-connected
by Proposition 10.1.4; if X doesn’t disconnect F , we let z(F ) = ∅ and let Z(F ) := G(F ) −X. Hence,
for every facet F of P , the subgraph Z(F ) is connected, and V (F ) = z(F ) ∪ V (Z(F )) ∪ (V (F ) ∩ X).
Abusing terminology, if z(F ) 6= ∅ we make no distinction between the set and its unique element.

Since u and v are separated by X, every u − v path in G contains a vertex from X. Because the
vertex u has a neighbour w not in X, there must exist a facet Fu in which u ∈ Z(Fu): a facet containing
the edge uw. Similarly, there exists a facet Fv containing v in which v ∈ Z(Fv).

Consider an arbitrary (d − 1, d − 2)-path J1 . . . Jn in P with J1 = Fu and Jn = Fv. If, for each
i ∈ [1, n− 1], there is a vertex yi ∈ V (Ji ∩Ji+1) with yi ∈ V (Z(Ji))∩V (Z(Ji+1)), then there would be a
u− v path L in G−X and the claim would hold. Indeed, let y0 := u and yn := v. For all i ∈ [0, n− 1],
there would be a path Li+1 in Z(Ji+1) from yi to yi+1. Concatenating all these paths L1, . . . , Ln, we
would then have a u− v path L in G−X, giving a contradiction and settling the claim. We would say
that a facet-ridge path J1 . . . Jn from Fu to Fv is valid if the aforementioned vertex yi exists for each
i ∈ [1, n− 1]; otherwise it is invalid.

Hence it remains to show that, for some facet-ridge path J1 . . . Jn from J1 = Fu to Jn = Fv,
there exists a vertex in V (Z(Ji)) ∩ V (Z(Ji+1)) for each i ∈ [1, n− 1] when d ≥ 4. In other words,
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it remains to show there exists a valid fact-ridge path from Fu to Fv.

Take a facet-ridge path J1 . . . Jn from Fu to Fv and suppose it is invalid; that is, V (Z(Ji)) ∩
V (Z(Ji+1)) = ∅ for some i ∈ [1, n− 1]. Then V (Z(Ji)) ∩ V (Ji+1) ⊂ z(Ji+1). Therefore,

V (Ji ∩ Ji+1) = V (Ji) ∩ V (Ji+1) = [z(Ji) ∪ V (Z(Ji)) ∪ (V (Ji) ∩X)] ∩ V (Ji+1)
⊂ z(Ji) ∪ z(Ji+1) ∪ (X ∩ V (Ji ∩ Ji+1)).

(10.1)

If neither G(Ji) nor G(Ji+1) is disconnected by X, then z(Ji) = z(Ji+1) = ∅, and by Eq. (10.1) and
Claim 3,

2d−2 = |V (Ji ∩ Ji+1)| ≤ |X ∩ V (Ji)| ≤ d− 1. (10.2)

If instead G(Ji) is disconnected by X, then X ∩ V (Ji) consists of all the d− 1 neighbours of z(Ji) in Ji
(Proposition 10.1.3), and thus, |X ∩ V (Ji ∩ Ji+1)| ≤ d− 2. In this case, by Eq. (10.1),

2d−2 = |V (Ji ∩ Ji+1)| ≤ 2 + d− 2 = d. (10.3)

Equation (10.2) does not hold for d ≥ 4, while Eq. (10.3) only holds for d = 4, in which case it holds
with equality. As a consequence, if d ≥ 5, every facet-ridge path from Fu to Fv is valid. As a result, the
aforementioned u − v path L in G −X always exists for d ≥ 5, a contradiction. This completes the
case d ≥ 5.

The case d = 4 requires more work. Let

X := {x1, . . . , x5}.

Suppose by way of contradiction that every facet-ridge path from Fu to Fv is invalid. Consider a
particular such path M := J1 . . . Jn. Then V (Z(Ji)) ∩ V (Z(Ji+1)) = ∅ for some i ∈ [1, n − 1], and
for that index i, Eq. (10.3) must hold with equality, which implies that Eq. (10.1) must also hold with
equality. Consequently, the following setting ensues

(i) |z(Ji) ∪ z(Ji+1)| = 2; that is, z(Ji) 6= z(Ji+1);

(ii) the graphs of the facets Ji and Ji+1 are both disconnected by X;

(iii) the neighbours of z(Ji) in Ji and of z(Ji+1) in Ji+1 are all from X;

(iv) the ridge Ri := Ji ∩Ji+1 consists of four vertices—namely, z(Ji), z(Ji+1) and two vertices from X,
say x1 and x2;

(v) each vertex z(Ji) and z(Ji+1) has a neighbour in Ji \ Ji+1 and Ji+1 \ Ji, respectively; and

(vi) there is a vertex from X, say x5, lying outside Ji ∪ Ji+1.

Any pair of facets in this setting are said to be in Configuration A and the ridge in which they intersect
is said to be problematic. For instance, the pair (Ji, Ji+1) is in Configuration A and the ridge Ri is
problematic; see Fig. 10.2(a).

For a facet-ridge path from Fu to Fv to be invalid, it must have a pair of facets in Configuration A.

We want to be more careful when selecting the facets Fu and Fv and when selecting the facet-ridge
path M from Fu to Fv. We require the following.

The facets Fu and Fv can be picked so that their graphs are not disconnected by
X; that is, G(Fu)−X and G(Fv)−X are both connected subgraphs of G(Fu) and
G(Fv), respectively.

(*)
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Figure 10.2: Auxiliary figure for Claim 7 of Theorem 10.2.8. (a) Configuration A: two facets Ji and Ji+1
whose graphs are disconnected by X = {x1, x2, x3, x4, x5} and a problematic ridge Ri := Ji ∩ Ji+1. (b)–
(d) The facets Fu and Fu are both disconnected by X and intersects at an edge. The ridge Ru := Fu∩F ′′u
that defines a new facet F ′′u is highlighted.

Proof of (*). Suppose that the facet Fu cannot be picked as desired. Then the graph of Fu is disconnected
by X, and by Proposition 10.1.3 there is a vertex z(Fu) ∈ G(Fu) whose neighbours in Fu are all from
X. Say X ∩ V (Fu) = {xi1 , xi2 , xi3}. Recall that u ∈ Z(Fu).

Since u has degree at least five (it is nonsimple), it follows that there is a facet F ′u in P containing u
and intersecting Fu at a vertex or an edge. Since F ′u contains u, its graph must be disconnected by X
(otherwise it is the desired facet). Therefore |X ∩ V (F ′u)| = 3, and thus, X ∩ V (Fu) ∩ V (F ′u) 6= ∅. As
a consequence, we find that Fu ∩ F ′u is an edge between a vertex of X, say xi2 , and u. It follows that
X ∩ V (F ′u) = {xi2 , xi4 , xi5}. Three configurations are possible: Fig. 10.2(b)–(d).

The argument remains unchanged in all the three configurations. Refer to Fig. 10.2(b) for concrete-
ness. Consider the ridge Ru of Fu that contains the edge uxi2 but does not contain the vertex xi3 ;
the ridge Ru is highlighted in Fig. 10.2(b). Let F ′′u be the facet of P that intersects Fu at Ru. Then
X ∩V (F ′′u ) ⊆ {xi2 , xi4}, since Fu ∩F ′′u and F ′u ∩F ′′u are faces that contain u. Therefore, the graph of F ′′u
is not disconnected by X and F ′′u could have been chosen as Fu. As a consequence of this contradiction,
the facet Fu can be picked as desired.

Similar analysis shows that the facet Fv can also be picked so that G(Fv) is not disconnected by X.
This completes the proof of (*).

We are now ready to complete the proof of the claim by showing that we can always find a valid
facet-ridge Fu − Fv path. The existence of such a path would complete the proof of the claim.

There are at least four independent facet-ridge paths from Fu to Fv (Lemma 10.2.1(i))—say
Ma,Mb,Mc and Md—and at least four pairs of facets exhibiting Configuration A—one per path. Each
pair of facets in Configuration A gives rise to a problematic ridge. We may assume that M = Ma. The
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ensuing four points are key.

(i) The facet Fu or Fv does not appear in any Configuration A (by Statement (*)).

(ii) Any facet of P other than Fu and Fv may appear in at most one facet-ridge Fu − Fv path; in
particular, it appears in at most one pair exhibiting Configuration A.

(iii) The problematic ridges are pairwise distinct, as the paths Ma,Mb,Mc,Md as independent.

(iv) Each problematic ridge appears in precisely one of the paths Ma,Mb,Mc,Md.

(v) Each nonproblematic ridge R of P present in a Configuration A appears in at most two paths in
{Ma,Mb,Mc,Md}. This is so because R is the intersection of two facets F and F ′, and the facet
F or F ′ appears in at most one such path.

With a counting argument we show that Configuration A cannot occur in all the four paths. We
count the ridges that contain two vertices from X and are present in a Configuration A.

For every pair of facets (J, J ′) exhibiting Configuration A, there are five ridges in J ∪ J ′ containing
two vertices from X. For instance, for the pair (Ji, Ji+1) of Fig. 10.2(a), the pairs (x1, x2), (x1, x3),
(x2, x3), (x1, x4) and (x2, x4) induce the five ridges. So, considering the four aforementioned Fu − Fv
paths, we have a total of twenty ridges that are present in a Configuration A and contain two vertices
from X. Besides, there are ten ways of pairing two vertices from X, and thereby there are at most ten
distinct ridges containing two vertices from X.

Each problematic ridge appears in precisely one Configuration A; there are at least four problematic
ridges, and therefore, there are at most six nonproblematic ridges. Each nonproblematic ridge that
contains two vertices from X appears in two facets, and consequently in at most two pairs of facets
exhibiting Configuration A (that is, in at most two Configurations A). We account for the ten ridges
containing two vertices from X in the four Configurations A: at least four problematic ridges and at
most six nonproblematic ones. This means that we can have at most 4 + 6× 2 = 16 ridges that contain
two vertices from X and appear in the four Configurations A. Since the four Configurations A require
twenty ridges containing two vertices from X, we can choose a (d − 1, d − 2)-path Fu − Fv in which
Configuration A doesn’t occur. This completes the case d = 4, and with it the proof of the claim. �

We now complete the proof of the theorem. (6), (7) ensure that, for d ≥ 4, a minimum separator X
with cardinality at most 2d− 3 in a cubical d-polytope consists of the neighbours of a vertex. Thus the
function g(d) exists and satisfies 2d− 3 ≤ g(d).

From Corollary 10.2.7 it then follows that f(d) ≥ 2d − 2; in other words, a cubical d-polytope with
minimum degree δ is min{δ, 2d− 2}-connected. This completes the proof of the theorem.

A simple corollary of Theorem 10.2.8 is the following.

Corollary 10.2.9. A cubical d-polytope with no simple vertices is (d+ 1)-connected.

As we mentioned in the introduction an open problem that nicely arises from Theorem 10.2.8 is
Problem 1.2.4.
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Chapter 11

Linkedness

A graph with at least 2k vertices is k-linked if, for every set of 2k distinct vertices organised in arbitrary
k unordered pairs of vertices, there are k vertex-disjoint paths joining the vertices in the pairs.

Denote by V (X) the vertex set of a graph or a polytope X. Given sets A,B of vertices in a graph,
a path from A to B, called an A−B path, is a (vertex-edge) path L := u0 . . . un in the graph such that
V (L) ∩ A = {u0} and V (L) ∩ B = {un}. We write a − B path instead of {a} − B path, and likewise,
write A− b path instead of A− {b}.

Let G be a graph and X a subset of 2k distinct vertices of G. The elements of X are called terminals.
Let Y := {{s1, t1}, . . . , {sk, tk}} be an arbitrary labelling and (unordered) pairing of all the vertices in
X. We say that Y is linked in G if we can find disjoint si − ti paths for i ∈ [1, k], the interval 1, . . . , k.
The set X is linked in G if every such pairing of its vertices is linked in G. Throughout this part of the
thesis, by a set of disjoint paths, we mean a set of vertex-disjoint paths. If G has at least 2k vertices
and every set of exactly 2k vertices is linked in G, we say that G is k-linked. If the graph of a polytope
is k-linked we say that the polytope is also k-linked.

This part of the thesis studies the linkedness of cubical d-polytopes (see [32]).

11.1 d-Cube

In the d-cube Qd, the facet disjoint from a facet F is denoted by F o, and we say that F and F o is a pair
of opposite facets.
Definition 11.1.1 (Projection π). For a pair of opposite facets {F, F o} of Qd, define a projection πQdF o
from Qd to F o by sending a vertex x ∈ F to the unique neighbour xpF o of x in F o, and a vertex x ∈ F o
to itself (that is, πQdF o (x) = x); write πQdF o (x) = xpF o to be precise, or write π(x) or xp if the cube Qd and
the facet F o are understood from the context.

We extend this projection to sets of vertices: given a pair {F, F o} of opposite facets and a set
X ⊆ V (F ), the projection Xp

F o or πQdF o (X) of X onto F o is the set of the projections of the vertices in X
onto F o. For an i-face J ⊆ F , the projection JpF o or πQdF o (J) of J onto F o is the i-face consisting of the
projections of all the vertices of J onto F o. For a pair {F, F o} of opposite facets in Qd, the restrictions
of the projection πF o to F and the projection πF to F o are bijections.

Let Z be a set of vertices in the graph of a d-cube Qd. If, for some pair of opposite facets {F, F o},
the set Z contains both a vertex z ∈ V (F ) ∩ Z and its projection zpF o ∈ V (F o) ∩ Z, we say that the
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pair {F, F o} is associated with the set Z in Qd and that {z, zp} is an associating pair. Note that an
associating pair can associate only one pair of opposite facets.

In conjunction with connectivity results around strongly connected complexes in cubical polytopes,
the next lemma lies at the core of our methodology.

Lemma 11.1.2. Let Z be a nonempty subset of V (Qd). Then the number of pairs {F, F o} of opposite
facets associated with Z is at most |Z| − 1.

Proof. Let G := G(Qd) and let Z ⊂ V (Qd) with |Z| ≥ 1 be given. Consider a pair {F, F o} of opposite
facets. Define a direction in the cube as the set of the 2d−1 edges between F and F o; each direction
corresponds to a pair of opposite facets. The d directions partition the edges of the cube into sets of
cardinality 2d−1. (The notion of direction stems from thinking of the cube as a zonotope [175, Section 7.3])

A pair of facets is associated with the set Z if and only if the subgraph G[Z] of G induced by Z
contains an edge from the corresponding direction.

If a direction is present in a cycle C of Qd, then the cycle contains at least two edges from this
direction. Indeed, take an edge e = uv on C that belongs to a direction between a pair {F, F o} of
opposite facets. After traversing the edge e from u ∈ V (F ) to v ∈ V (F o), for the cycle to come back
to the facet F , it must contain another edge from the same direction. Hence, by repeatedly removing
edges from cycles in G[Z] we obtain a spanning forest of G[Z] that contains an edge for every direction
present in G[Z]. As a consequence, the number of such directions is at most the number of edges in the
forest, which is upper bounded by |Z| − 1. (A forest is a graph with no cycles.)

The relevance of the lemma stems from the fact that a pair of opposite facets {F, F o} not associated
with a given set of vertices Z allows each vertex z in Z to have “free projection”; that is, for every
z ∈ Z ∩ V (F ) the projection πF o(z) is not in Z, and for z ∈ Z ∩ V (F o) the projection πF (z) is not in Z.

11.1.1 Strong Connectivity of the d-Cube

We next unveil some further properties of the cube that will be used in subsequent sections.

While it is true that the antistar of a vertex in a d-polytope is always a strongly connected (d− 1)-
complex (Proposition 9.0.2), it is far from true that this extends to higher dimensional faces. Refer
to [33, Section 3] for examples of d-polytopes in which this extension is not possible. This extension is
however possible for the d-cube, as shown in Lemma 10.1.2 ( [33, Lemma 8]).

Given sets A,B,X of vertices in a graph G, the set X separates A from B if every A−B path in the
graph contains a vertex from X. A set X separates two vertices a, b not in X if it separates {a} from
{b}. We call the set X a separator of the graph.

We will also require the following three assertions.

Proposition 11.1.3 ( [138, Proposition 1]). Any separator X of cardinality d in Qd consists of the d
neighbours of some vertex in the cube and the subgraph G(Qd)−X has exactly two components, with one
of them being the vertex itself.

A set of vertices in a graph is independent if no two of its elements are adjacent. Since there are no
triangles in a d-cube, Proposition 11.1.3 gives at once the following corollary.

Corollary 11.1.4. A separator of cardinality d in a d-cube is an independent set.
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Remark 11.1.5. If x and y are vertices of a cube, then they share at most two neighbours. In other
words, the complete bipartite graph K2,3 is not a subgraph of the cube; in fact, it is not an induced
subgraph of any simple polytope [133, Cor. 1.12(iii)].

11.1.2 Linkedness of the d-Cube

The linkedness of a d-cube was first established in [118, Proposition 4.4] as part of a study of linked-
ness in Cartesian products of graphs. We give an alternative proof of the result. As discussed before
(Proposition 9.0.8), the linkedness of Q4 is easily shown to be two.

Since we make heavy use of Menger’s theorem [46, Theorem 3.3.1] henceforth, we next remind the
reader of one of its consequences.

Theorem 11.1.6 (Menger [46, Section 3.3]). Let G be a k-connected graph, and let A and B be two
subsets of its vertices, each of cardinality at least k. Then there are k disjoint A−B paths in G.

Two vertex-edge paths are independent if they share no inner vertex.

Lemma 11.1.7. Let P be a cubical d-polytope with d ≥ 4. Let X be a set of d + 1 vertices in P , all
contained in a facet F . Let k := b(d + 1)/2c. Arbitrarily label and pair 2k vertices in X to obtain
Y := {{s1, t1}, . . . , {sk, tk}}. Then, for at least k − 1 of these pairs {si, ti}, there is an X-valid si − ti
path in F .

Proof. If, for each pair in Y there is an X-valid path in F connecting the pair, we are done. So assume
there is a pair in Y , say {s1, t1}, for which an X-valid s1 − t1 path does not exist in F . Since F is
(d − 1)-connected, there are d − 1 independent s1 − t1 paths (by Menger’s theorem), each containing a
vertex from X \ {s1, t1}; that is, the set X \ {s1, t1}, with cardinality d − 1, separates s1 from t1 in F .
By Proposition 11.1.3, the vertices in X \ {s1, t1} are the neighbours of s1 or t1 in F , say of s1.

Take any pair in Y \ {{s1, t1}}, say {s2, t2}. If there was no X-valid s2 − t2 path in F , then, by
Proposition 11.1.3, the set X \ {s2, t2} would separate s2 from t2 and would consist of the neighbours
of s2 or t2 in F , say of s2. But in this case, a vertex x in X \ {s1, s2, t1, t2}, which exists since |X| ≥ 5,
would form a triangle with s1 and s2, a contradiction. See also Corollary 11.1.4. Since our choice of
{s2, t2} was arbitrary, we must have an X-valid path in F between any pair {si, ti} for i ∈ [2, k].

For a set Y := {{s1, t1}, . . . , {sk, tk}} of pairs of vertices in a graph, a Y -linkage {L1, . . . , Lk} is a
set of disjoint paths with the path Li joining the pair {si, ti} for i ∈ [1, k]. For a path L := u0 . . . un
we often write uiLuj for 0 ≤ i ≤ j ≤ n to denote the subpath ui . . . uj . We are now ready to prove
Theorem 11.1.8.

Theorem 11.1.8 (Linkedness of the cube). For every d 6= 3, a d-cube is b(d+ 1)/2c-linked.

Proof. The cases of d = 1, 2 are trivially true. For the remaining values of d, we proceed by induction,
with d = 4 given by Proposition 9.0.8.

Let k := b(d + 1)/2c, then 2k − 1 ≤ d. Let X := {s1, . . . , sk, t1, . . . , tk} be any set of 2k vertices,
called terminals, in the graph of the d-cube. Also let Y := {{s1, t1}, . . . , {sk, tk}}. We aim to find a
Y -linkage {L1, . . . , Lk} with Li joining the pair {si, ti} for i = 1, . . . , k.

We consider three scenarios: (1) all the pairs in Y lie in some facet of Qd, (2) a pair of Y lies in
some facet F of Qd but not every vertex of X is in F , and (3) no pair of Y lies in a facet of Qd, which
amounts to saying that every pair in Y is at distance d in Qd. For the sake of readability, each scenario
is highlighted in bold.
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In the first scenario every vertex in X lies in some facet F of Qd. Hence Lemma 11.1.7
gives an X-valid path L1 in F joining a pair in Y , say {s1, t1}. The projection in Qd of every vertex
in (X \ {s1, t1}) ∩ V (F ) onto F o is not in X. Recall F o denotes the facet opposite to F . Define
Y p := {{sp2, t

p
2}, . . . , {s

p
k, t

p
k}} as the set of k − 1 pairs of projections of the corresponding vertices in

X \ {s1, t1} onto F o. By the induction hypothesis on F o, there is a Y p-linkage {Lp2, . . . , L
p
k} with

Lpi := spi − t
p
i for i ∈ [2, k]. Since V (F o) is disjoint from V (L1) ∪X, each path Lpi can be extended with

si and ti to obtain a path Li := si − ti for i ∈ [2, k]. And together, all the paths {L1, . . . , Lk} give the
desired Y -linkage in the cube.

In the second scenario a pair of Y , say {s1, t1}, lies in some facet F of Qd but not every
vertex in X is in F . Let NK(x) denote the set of neighbours of a vertex x in a face K of the cube and
let N(x) denote the set of all the neighbours of x in the cube.

In what follows, whenever x ∈ X we let {x, y} ∈ Y . Let XF := (X \ {s1, t1}) ∩ V (F ), and partition
XF as follows.

X0 := {x ∈ XF : {x, y} ∈ Y and y ∈ NF (x)}
X1 := {x ∈ XF \X0 : {x, xpF o} ∈ Y }
X2 := {x ∈ XF \ (X0 ∪X1) : xpF o 6∈ X}
X3 := {x ∈ XF \ (X0 ∪X1 ∪X2) : xpF o ∈ X and there is a unique X-valid path xypF y

with {x, y} ∈ Y and y ∈ V (F o)}
X4 := XF \ (X0 ∪X1 ∪X2 ∪X3)

Claim 8. For every vertex x in X1 ∪X2 ∪X3 ∪X4, there is an X-valid path Mx of length at most two
from x to F o such that (V (Mx)∩X) ⊆ {x, y} and the |X1∪X2∪X3∪X4| paths Mx are pairwise disjoint.

Proof. For x ∈ X1 ∪ X2, let Mx = xxpF o . For x ∈ X3, let Mx be the unique X-valid path xypF y with
{x, y} ∈ Y and y ∈ V (F o). To find the paths Mx for x ∈ X4 we run the following algoriTheorem

1: Arbitrarily order the vertices in X4. Let i := 1 and let Oi := πF (X).
2: while i ≤ |X4| do
3: Take the ith element x in the ordering of X4.
4: Choose wx ∈ NF (x) \Oi.
5: Let Mx := xwxπF o(wx) and let Oi+1 := Oi ∪ {wx}.
6: i := i+ 1.
7: end while

We now show that the algorithm is correct: it produces the |X4| pairwise disjoint paths Mx for
x ∈ X4. The algorithm correctly terminates provided we can always find a suitable vertex wx in Step 4;
we next show this is the case.

Let x ∈ X4 be the vertex in the ith position of the ordering. Let

Ox := Oi ∩NF (x).

Since the path Mx is of length at most two, the set Ox represents the set of vertices in NF (x) that cannot
be chosen as wx ∈ NF (x) in the particular path Mx.

Excluding the path xxpF o , there are exactly d−1 disjoint paths of length two in Qd between x and F o,
each going through an element of NF (x). Thus, to show that there is a suitable vertex wx ∈ NF (x) in
Step 4, it suffices to show an injection between Ox and X \ {x, xpF o , y}, which would imply |Ox| ≤ d− 2.
Observe that y, xpF o ∈ X \Ox and y 6= xpF o .

For every vertex z ∈ Ox ∩ X, map z to z. For every v ∈ Ox \ X with vpF o ∈ X, map v to vpF o ;
note that vpF o 6= y, since x 6∈ X3. For a vertex wu ∈ Ox \ X with πFo(wu) 6∈ X there exists a unique
vertex u ∈ X4 \ Ox such that wu is the unique vertex in NF (x) on the path Mu. Since u ∈ X4, it
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Figure 11.1: Auxiliary figure for the second scenario Theorem 11.1.8. (a) Types of neighbours of a vertex
x ∈ X4 for finding the path Mx. (b) An injective function from Ox to X \ {x, xpF oy}. (c) A forbidden
configuration where no path L1 := s1 − t1 exists in F .

follows that upF o ∈ X. In this case, map wu to u if u 6= y, otherwise map wu to upF o . Note that u 6∈ Ox;
otherwise the vertices u, x and wu would all be pairwise neighbours but there are no triangles in Qd.
See Fig. 11.1(a)-(b) for a depiction of the different types of neighbours of the vertex x ∈ X4 and the
injection from Ox to X \ {x, xpF o , y}.

The existence of an injection from Ox to X \ {x, xpF o , y} for x ∈ X4 shows the existence of the vertex
wx in Step 4 of the algorithm and the termination of the algorithm. Thus the algorithm terminates with
the required |X4| pairwise disjoint paths for vertices in X4.

It remains to show that the |X1 ∪ X2 ∪ X3 ∪ X4| paths Mx are pairwise disjoint. Let xi ∈ Xi and
xj ∈ Xj with i, j ∈ [1, 4]. For i = 1, 2 a path Mxi is of length one, and necessarily disjoint from any
other path. If i = j and i, j ≥ 3 then the corresponding Mxi and Mxj paths are disjoint by construction;
if instead i 6= j, this is also clear. �

We now finalise this second scenario. So far the paths Mx have only been defined for terminals in
(X∩V (F ))\(X0∪{s1, t1}). For every vertex x ∈ X∩V (F o), let Mx := x; in this way, the paths Mx have
been defined for every vertex x in X \ (X0 ∪ {s1, t1}). Denote by X ′ the set of vertices in Mx ∩ V (F o)
over all paths Mx with x ∈ X \ (X0 ∪ {s1, t1}). Hence |X ′| ≤ d− 1. Let Y ′ be the corresponding pairing
of the vertices in X ′: if {x, y} ∈ Y with x, y ∈ X \ (X0 ∪ {s1, t1}), then the corresponding pair in Y ′ is
{Mx ∩ V (F o),My ∩ V (F o)}. Note that, for a vertex x ∈ X1, since y = xpF o , the corresponding pair in
Y ′ is {xpF o , x

p
F o}, as Mx ∩ V (F o) = {xpF o} and Mxp

Fo
= xpF o .

The induction hypothesis on F o gives that Y ′ is linked in F o, and therefore, the existence of paths
Lpi in F o between Msi ∩ V (F o) and Mti ∩ V (F o) for si, ti ∈ X \ (X0 ∪ {s1, t1}). Each path Lpi is then
extended with the paths Msi and Mti to obtain a path Li := si − ti for si, ti ∈ X \ (X0 ∪ {s1, t1}). For
a vertex si ∈ X0, let Li := siti.

It only remains to show the existence of a path L1 := s1 − t1 in F pairwise disjoint from the paths
Li for i ∈ [2, k]. Assume that we cannot find a path L1 pairwise disjoint from the other paths Li with
i ∈ [2, k]. Then there would be a set S in V (F ) separating s1 from t1. The set S would consist of
terminal vertices in XF and nonterminal vertices on some path Mx for x ∈ X3 ∪X4. The existence of
each nonterminal vertex in S amounts to the existence of a terminal vertex in F o, namely xpF o , since
πF o(X3 ∪ X4) ⊂ X. Hence, the cardinality of S would equal |XF | + |X3 ∪ X4|, and thus, it would be
at most |XF |+ |X ∩ V (F o)| = X \ {s1, t1}| = d− 1. By the (d− 1)-connectivity of F , the set S would
have cardinality d − 1, which would imply that every terminal in XF and every nonterminal in F that
lies on a path Mx for x ∈ X3 ∪ X4 are in S. Again, by Proposition 11.1.3, the set S would consist of
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the neighbours of s1 or t1, say of s1. In this configuration all the vertices of X would be in F , which
is a contradiction. Indeed, since there is no edge between any two vertices in S (Corollary 11.1.4), no
nonterminal on a path Mx is in S, and therefore, S = XF , or equivalently, X ⊂ V (F ), as desired. The
existence of the path L1 finally settles the second scenario. See Fig. 11.1(c).

It is instructive for the reader to convince himself/herself that the proof of the second scenario works
well by verifying the existence of the paths Mx and the existence of the path L1 for the cubes Q4 and
Q5.

Finally, let us move onto the third and final scenario: every pair in Y is at distance
d. From Lemma 11.1.2 it follows that there exists a pair {F, F o} of opposite facets of Qd that is not
associated with Xs1 := X\{s1}, since |X\{s1}| ≤ d and there are d pairs of the form {F, F o}. This means
that for every x ∈ Xs1∩V (F ), πQdF o (x) 6∈ Xs1 and that for every x ∈ Xs1∩V (F o), πQdF (x) 6∈ Xs1 . Without
loss of generality, assume that s1, . . . , sk ∈ F o and t1, . . . , tk ∈ F . We again apply Lemma 11.1.2, now
to the set W := {πQdF (s2), . . . , πQdF (sk), t2, . . . , tk} on the facet F . So there are at most |W | − 1 ≤ d− 2
pairs of opposite ridges of F associated with W in F . That is, there exists a pair {R,Ro} that is not
associated with W in F . We now consider the projection πF in F of W onto the ridge opposite to the
one containing t1, say t1 ∈ R. Let W p := πFRo(W ). Let s′i := πFRo(π

Qd
F (si)) and t′i := πFRo(ti) for i 6= 1.

Then W p = {s′2, . . . , s′k, t′2, . . . , t′k} for i ∈ [2, k]; notice that dist F (πQdF (si), ti) = d− 1 for i ∈ [2, k], and
therefore, distRo(s′i, t′i) = d− 2 for i ∈ [2, k].

We find k − 1 disjoint paths L′i in Ro between s′i and t′i using the induction hypothesis on Ro for
d ≥ 6. For the case of d = 5, use Proposition 9.0.5, since distRo(s′i, t′i) = 3 for i = 2, 3 in the 3-cube Ro;
in other words, the vertices s′2,s′3, t′2 and t′3 are not in a 2-face of Ro. Notice we must use the projections
πF of W onto Ro, since t1 6∈ W , which may cause that πFR(w) = t1 for some w ∈ W . Thus we have
disjoint si − ti paths Li equal to siπQdF (si)s′iL′it′iti for i ∈ [2, k]. Observe that, for i ∈ [2, k], t1 6∈ Li and
that the subpath πQdF (si)Liti of Li is contained in F . By Menger’s theorem we can find a path L′1 from
πQdF o (t1) to s1 in F o that is disjoint from {s2, . . . , sk}, since F o is (2k − 2)-connected. Also note that
πQdF o (t1) is not in X as a result of {F, F o} being not associated with Xs1 and distQd(s1, t1) = d. The
path L1 := s1L

′
1π
Qd
F o (t1)t1 is our final required path.

11.1.3 Linkedness Inside the Cube

We verify that the link of a vertex in a (d + 1)-cube, which by Proposition 9.0.11 is combinatorially
equivalent to a (cubical) d-polytope, is b(d + 1)/2c-linked for d 6= 3 (Proposition 11.1.9). In another
abuse of terminology, we often think of the link as the corresponding (cubical) d-polytope.

Proposition 11.1.9. For every d 6= 3, the link of a vertex in a (d+ 1)-cube Qd+1 is b(d+ 1)/2c-linked.

Proof. The proposition trivially holds for the cases of d = 1, 2, so assume d ≥ 4.

Let k := b(d+1)/2c. Let v and vo be opposite vertices of G(Qd+1); that is, distQd+1(v, vo) = d+1. Let
X be a given set of 2k vertices in link(v,Qd+1) and let Y := {{s1, t1}, . . . , {sk, tk}} be an arbitrary pairing
of the vertices in X. From Remark 9.0.9 it follows that link(v,Qd+1) is the subcomplex Qd+1 − {v, vo}
of Qd+1. We show that Y is linked in link(v,Qd+1).

Since |X| − 1 ≤ d and there are d + 1 pairs of opposite facets in Qd+1, from Lemma 11.1.2 there
exists a pair {F, F o} of opposite facets of Qd+1 that is not associated with X. This means that, for
every x ∈ X ∩ V (F ), its projection π

Qd+1
F o (x) 6∈ X, and that, for every x ∈ X ∩ V (F o), its projection

π
Qd+1
F (x) 6∈ X. Henceforth we write πF rather than πQd+1

F . Assume that v ∈ F and vo ∈ F o. We consider
two cases based on the number of terminals in the facet F ; for the sake of readability, the second case is
in turn decomposed into two subcases highlighted in bold.
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In what follows we implicitly use the d-connectivity of F or F o. Without loss of generality assume
|X ∩ V (F )| ≥ |X ∩ V (F o)|.

Case 1. |X ∩ V (F )| = d+ 1.

Since F is a d-cube, it is b(d + 1)/2c-linked by Theorem 11.1.8, and hence, we can find k pairwise
disjoint paths L1, . . . , Lk in F between si and ti for i ∈ [1, k]. If no path Li passes through v, we are
done. So suppose one of those paths, say L1, passes through v; there can be only one such path. If
neither the projection of s1 onto F o nor the projection of t1 onto F o is vo, then find a πF o(s1)− πF o(t1)
path L̄1 in F o that avoids vo. So L1 would then become s1πF o(s1)L̄1πF o(t1)t1. If the projection of either
s1 or t1 onto F o is vo, say that of s1, then, since distQd+1(v, vo) = d + 1 ≥ 5 and dist (s1, v) = d ≥ 4,
there must be a neighbour w of s1 on L1 that is different from v. Find a πF o(w) − πF o(t1) path L̄1 in
F o that avoids vo. So L1 would then become s1wπF o(w)L̄1πF o(t1)t1.

Case 2. |X ∩ V (F )| ≤ d.

Let Xp := πF (X). The set Xp comprises the terminals in X ∩ V (F ) together with the projections
onto F of vertices in X ∩ V (F o). Then |Xp| ≤ d+ 1.

First suppose that some vertex in X ∩ V (F o), say t1, is adjacent to v: πF (t1) = v. We must
have that either s1 ∈ F o or s1 ∈ F .

Suppose s1 ∈ F o. Find an X-valid path L1 := s1 − t1 in F o using the d-connectivity of F o as there
are at most d terminals in F o. Thanks to Theorem 11.1.8, F is k-linked, and thus we can find k − 1
disjoint paths L̄2, . . . , L̄k between πF (si) and πF (ti) for i ∈ [2, k], all avoiding v. Each such path L̄i
extends to a path Li := si− ti, if necessary. So we are done in this scenario and ready to assume s1 ∈ F .

Assume s1 ∈ F . Observe that now s1 ∈ Xp. The k-linkedness of F ensures that in F there are k
disjoint paths M1 := s1 − v and L̄i := πF (si)− πF (ti) for i ∈ [2, k]. As before, each path L̄i (i ∈ [2, k])
extends to a path Li := si − ti, if necessary. If vo is not the projection of s1 onto F o, then find an X-
valid πF o(s1)− t1 path L̄1 in F o using the d-connectivity of F o. Then L1 would become s1πF o(s1)L̄1t1,
and so we are also home in this scenario. Otherwise vo is the projection of s1 onto F o, in which case
dist F (s1, v) = d ≥ 4. There is a neighbour w ∈ V (F ) of s1 on the path M1, which is different from v;
observe that πF o(w) 6∈ X since w 6∈ Xp. Find an X-valid path πF o(w) − t1 path L̄1 in F o (here use
again the d-connectivity of F o). So L1 would then become s1wπF o(w)L̄1t1. This settles the subcase of
some vertex in X ∩ V (F o) being adjacent to v.

Finally, assume no vertex in X ∩ V (F o) is adjacent to v. This subcase then reduces to Case
1 with the set Xp ⊂ V (F ) playing the role of X, and so we obtain paths L̄i := πF (si) − πF (ti) in F
for i ∈ [1, k], thanks to the k-linkedness of F . Observe that, following the reasoning in Case 1, if one of
the paths L̄i, say L̄1, passes through v, then the projections πF o(s1) or πF o(t1) onto F o may need to
be considered. Each path L̄i (i ∈ 1, k) extends to a path Li := si − ti, if necessary. This completes the
proof of the case and of the proposition.

Proposition 11.1.9 fails for d = 3 because of the possible presence of Configuration F (Definition 9.0.7)
in the link of a vertex of the 4-cube. For specific examples of Configuration F, consider Fig. 9.2 (b)-(c)
and let s1, s2, t1, t2 be the vertices labelled as 1, 2, 3, 4, respectively.

11.1.4 Strong Linkedness of the Cube

With Proposition 9.0.8, Lemma 11.1.7, and Theorem 11.1.8 at hand, it can be verified that 4-polytopes
and d-cubes for d 6= 3 enjoy a property marginally stronger than linkedness: strong linkedness. A d-
polytope P is strongly b(d + 1)/2c-linked if its graph has at least d + 1 vertices and, for every set X of
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exactly d + 1 vertices and every pairing Y with b(d + 1)/2c pairs from X, the set Y is linked in G(P )
and each path joining a pair in Y avoids the vertices in X not being paired in Y . For odd d = 2k − 1
the properties of strongly k-linkedness and k-linkedness coincide, since every vertex in X is paired in
Y ; but they differ for even d = 2k. Theorem 11.1.10 shows that 4-polytopes are strongly 2-linked while
Theorem 11.1.11 shows that d-cubes for d 6= 3 are strongly b(d+ 1)/2c-linked.

Theorem 11.1.10 (Strong 2-linkedness of 4-polytopes). Every cubical 4-polytope is strongly 2-linked.

Proof. Let G denote the graph of a 4-polytope P embedded in R4. Let X be a set of five vertices in G.
Arbitrarily pair four vertices of X to obtain Y := {{s1, t1}, {s2, t2}}. Let x be the vertex of X not being
paired in Y . We aim to find two disjoint paths L1 := s1 − t1 and L2 := s2 − t2 such that each path Li
avoids the vertex x. The proof is very similar to that of Propositions 9.0.5 and 9.0.8.

Consider a linear function f that vanishes on a linear hyperplane H passing through {s1, s2, t1, x}.
Assume that f(y) > 0 for some y ∈ P and that f(t2) ≥ 0.

Suppose first that H is a supporting hyperplane of a facet F of P . If t2 6∈ V (F ), then find an
X-valid L1 := s1− t1 path in F using the 3-connectivity of F . Then use Lemma 9.0.3 to find an X-valid
s2 − t2 path in which each inner vertex has positive f -value. If instead t2 ∈ F , then X ⊂ V (F ) and
Lemma 11.1.7 ensures the existence of an X-valid si− ti path in F for some i = 1, 2, say for i = 1. Then
use Lemma 9.0.3 to find an X-valid s2 − t2 path in which each inner vertex has positive f -value. So
assume H intersects the interior of P . Then there is a vertex in P with f -value greater than zero and
a vertex with f -value less than zero. In this case, use Lemma 9.0.3 to find an X-valid s1 − t1 path in
which each inner vertex has negative f -value and an X-valid s2− t2 path in which each inner vertex has
positive f -value.

Not every 4-polytope is strongly 2-linked. Take a two-fold pyramid P over a quadrangle Q. Then P
is a 4-polytope on six vertices. Let V (P ) := {s1, s2, t1, t2, x} so that the sequence s1, s2, t1, t2 appears
in cyclic order in Q and the vertex x is in V (P ) \ V (Q). To see that P is not strongly 2-linked, observe
that, for every two paths s1 − t1 and s2 − t2 in P , either they intersect or one of them contains x.

Theorem 11.1.11 (Strong linkedness of the cube). For every d 6= 3, a d-cube is strongly b(d + 1)/2c-
linked.

Proof. It suffices to prove the result for d = 2k. Let X be a set of d+ 1 vertices in the d-cube for d 6= 3.
Arbitrarily pair 2k vertices in X to obtain Y := {{s1, t1}, . . . , {sk, tk}}. Let x be the vertex of X not
being paired in Y . We aim to find a Y -linkage {L1, . . . , Lk} where each path Li joins the pair {si, ti}
and avoids the vertex x.

The result for d = 4 is given by Theorem 11.1.10. So assume d ≥ 6.

From Lemma 11.1.2 it follows that there exists a pair {F, F o} of opposite facets of Qd that is not
associated with Xx := X \{x}, since |X \{x}| = d and there are d pairs {F, F o} of opposite facets in Qd.
Assume x ∈ V (F o). Let Xp := πF (Xx); that is, the set Xp comprises the vertices in Xx ∩V (F ) plus the
projections of Xx ∩ V (F o) onto F . Denote by Y p the corresponding pairing of the vertices in Xp; that
is, Y p := {{πF (s1), πF (t1)}, . . . , {πF (sk), πF (tk)}}. Then |Xp| = d and |Y p| = k. Find a Y p-linkage
{Lp1, . . . , L

p
k} in F with Lpi := πF (si) − πF (ti) by resorting to the k-linkedness of F (Theorem 11.1.8).

Adding si ∈ V (F o) or ti ∈ V (F o) to the path Lpi , if necessary, we extend the linkage {Lp1, . . . , L
p
k} to the

required Y -linkage.
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11.2 Connectivity of Cubical Polytopes

The aim of this section is to present a couple of results related to the connectivity of strongly connected
complexes in cubical polytopes, whose proof ideas originated in Proposition 10.2.2.

The proof idea in Proposition 10.2.2 can be pushed a bit further to obtain a rather technical result
that we prove next. But first we state two simple but useful remarks.
Remark 11.2.1. Let P be a cubical d-polytope. Let v and F be a vertex and a face containing the vertex
in P , respectively. Let vo be the vertex of F opposite to v. The smallest face in the polytope containing
both v and vo is precisely F .
Remark 11.2.2. For any two faces F, J of a polytope, with F not contained in J , there is a facet containing
J but not F . In particular, for any two distinct vertices of a polytope, there is a facet containing one
but not the other.

Two facet-ridge paths are independent if they do not share an inner facet.

Lemma 11.2.3. Let P be a cubical d-polytope with d ≥ 4. Let s1 be any vertex in P and let S1 be the
star of s1 in the boundary complex of P . Let s2 be any vertex in S1, other than s1. Define the following
sets.

• F1 in S1, a facet containing s1 but not s2.

• F12 in S1, a facet containing s1 and s2.

• S12, the star of s2 in S1; that is, the subcomplex of S1 formed by the facets of P in S1 containing
s2.

• A1, the antistar of F1 in S1.

• A12, the subcomplex of S12 induced by V (S12) \ (V (F1) ∪ V (F12)).

Then the following assertions hold.

(i) The complex S12 is a strongly connected (d− 1)-subcomplex of S1.

(ii) If there are more than two facets in S12, then, between any two facets of S12 that are different from
F12, there exists a (d− 1, d− 2)-path in S12 that does not contain the facet F12.

(iii) If S12 contains more than one facet, then the subcomplex A12 of S12 contains a spanning strongly
connected (d− 3)-subcomplex.

Proof. Let us prove (i). Let ψ define the natural anti-isomorphism from the face lattice of P to the face
lattice of its dual P ∗. The facets in S1 correspond to the vertices in the facet ψ(s1) in P ∗ corresponding
to s1; likewise for the facets in star(s2,B(P )) and the vertices in ψ(s2). The facets in S12 correspond to
the vertices in the nonempty face ψ(s1) ∩ ψ(s2) of P ∗. The existence a facet-ridge path in S12 between
any two facets J1 and J2 of S12 amounts to the existence of a vertex-edge path in ψ(s1)∩ψ(s2) between
ψ(J1) and ψ(J2). That S12 is a strongly connected (d− 1)-complex now follows from the connectivity of
the graph of ψ(s1) ∩ ψ(s2) (Balinski’s theorem), as desired.

We proceed with the proof of (ii). If there are more than two facets in S12, then the face ψ(s1)∩ψ(s2)
is at least bidimensional. As a result, the graph of ψ(s1) ∩ ψ(s2) is at least 2-connected by Balinski’s
theorem. By Menger’s theorem, there are at least two independent vertex-edge paths in ψ(s1) ∩ ψ(s2)
between ψ(J1) and ψ(J2). Pick one such path L∗ that avoids the vertex ψ(F12) of ψ(s1)∩ψ(s2). Dualising
this path L∗ gives a (d− 1, d− 2)-path between J1 and J2 in S12 that does not contain the facet F12.
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We now prove (iii). Assume that S12 contains more than one facet. Consider now a facet F ∈ S12
other than F12; it exists by our assumption on S12. We need some additional notation.

• Let AF1 denote the subcomplex F − V (F1); that is, AF1 is the antistar of F ∩ F1 in F .

• Let AF12 denote the subcomplex F − (V (F1) ∪ V (F12)), the subcomplex of F induced by V (F ) \
(V (F1) ∪ V (F12)).

We require the following claim.

Claim 9. AF12 contains a spanning strongly connected (d− 3)-subcomplex CF .

Proof. We first show that AF12 6= ∅. Denoting by so1 the vertex in F opposite to s1, we have that so1 is
not in F1 or in F12 by Remark 11.2.1. So so1 is in AF12.

Notice that s1 6∈ AF1 . From Lemma 10.1.2 it follows that AF1 is a strongly connected (d − 2)-
subcomplex of F . Write

AF1 = C(R1) ∪ · · · ∪ C(Rm),
where Ri is a (d− 2)-face of F for i ∈ [1,m]. No ridge Ri is contained in F12; otherwise Ri = F ∩ F12,
which implies that s1 ∈ Ri, and therefore that s1 ∈ AF1 , a contradiction. Moreover, so1 ∈ Ri for every
i ∈ [1,m], since every ridge of F contains either s1 or so1 and s1 6∈ Ri.

Let Ci := B(Ri) − V (F12). As Ri 6⊂ F12, we have dimRi ∩ F12 ≤ d − 3. Hence Ci is nonempty. If
Ri ∩ F12 6= ∅, then Ci denotes the antistar of Ri ∩ F12 in Ri, a spanning strongly connected (d − 3)-
subcomplex of Ri by Lemma 10.1.2. If Ri ∩F12 = ∅, then Ci denotes the boundary complex of Ri, again
a spanning strongly connected (d− 3)-subcomplex of Ri.

Let CF :=
⋃
Ci. Then the complex CF is a spanning (d−3)-subcomplex of AF12; we show it is strongly

connected.

Take any two (d− 3)-faces W and W ′ in CF . We find a (d− 3, d− 4)-path L in CF between W and
W ′. There exist ridges R and R′ in AF1 with W ⊂ R and W ′ ⊂ R′. Since AF1 is a strongly connected
(d − 2)-complex, there is a (d − 2, d − 3)-path Ri1 . . . Rip in AF1 between Ri1 = R and Rip = R′, with
Rij ∈ AF1 for j ∈ [1, p].

We already established that so1 ∈ Rij for every j ∈ [1, p] and that so1 6∈ F12. Consequently, we get that
Ri` ∩ Ri`+1 6⊂ F12, and therefore, that dimRi` ∩ Ri`+1 ∩ F12 ≤ d − 4 for every ` ∈ [1, p − 1]. Hence the
subcomplex Bi` := B(Ri` ∩Ri`+1)− V (F12) of B(Ri` ∩Ri`+1) is a nonempty, strongly connected (d− 4)-
complex by Lemma 10.1.2; in particular, it contains a (d− 4)-face Ui` . Furthermore, Bi` ⊂ Ci` ∩ Ci`+1 .

Resorting to the strong (d−3)-connectivity of Cij for j ∈ [1, p], we build the path L by concatenating
(d− 3, d− 4)-paths Li1 , . . . , Lip where Lij lies in Cij .

• The path Li1 is a (d−3, d−4)-path in Ci1 between W and some (d−3)-face W ′i1 in Ci1 that contains
the (d− 4)-face Ui1 ∈ Ci1 ∩ Ci2 .

• The path Li2 is a (d− 3, d− 4)-path in Ci2 between a (d− 3)-face Wi2 ∈ Ci2 that contains Ui1 and
some (d− 3)-face W ′i2 in Ci2 that contains the (d− 4)-face Ui2 ∈ Ci2 ∩ Ci3 .

• The path Li1 ∪ Li2 is a (d− 3, d− 4)-path in Ci1 ∪ Ci2 between W and W ′i2 .

• Continuing this process process, we get a path Lip in Cip between a (d − 3)-face Wip ∈ Cip that
contains Uip−1 and the (d− 3)-face W ′ in Cip .

• Concatenating all the paths Li1 , . . . , Lip , we obtain the path L, a (d−3, d−4)-path in Ci1∪· · ·∪Cip ⊆
CF .
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The existence of the path L between W and W ′ completes the proof of Claim 9. �

We are now ready to complete the proof of (iii). The proof goes along the lines of the proof of Claim 9.

We let S12 =
m⋃
i=1
C(Ji), where the facets J1, . . . , Jm are all the facets in P containing s1 and s2.

For every i ∈ [1,m] we let CJi be the spanning strongly connected (d − 3)-subcomplex in AJi12 given
by Claim 9. And we let C :=

⋃
CJi . Then C is a spanning (d − 3)-subcomplex of A12; we show it is

strongly connected.

If there are exactly two facets in S12, namely F12 and some other facet F , then the complex A12
coincides with the complex AF12. The strong (d−3)-connectivity of AF12 is then settled by Claim 9. Hence
assume that there are more than two facets in S12; this implies that the smallest face containing s1 and
s2 in S12 is at most (d− 3)-dimensional.

Take any two (d− 3)-faces W and W ′ in C. If W and W ′ belong to the same facet F in S12, which
is different from F12, then W and W ′ are both in AF12, and consequently, Claim 9 gives the desired
(d− 3, d− 4)-path between W and W ′ in AF12 ⊆ C. So assume there are distinct facets J and J ′ in S12
such that W ⊂ J and W ′ ⊂ J ′. Then J 6= F12 and J ′ 6= F12. By (ii), we can find a (d − 1, d − 2)-path
Ji1 . . . Jiq in S12 between Ji1 = J and Jiq = J ′ such that Jij 6= F12 for j ∈ [1, q].

We next show that, for each ` ∈ [1, q − 1], there exists a (d − 4)-face Ui` in CJi` ∩ CJi`+1 . As
Ji` , Ji`+1 6= F12, we obtain that B(Ji` ∩ Ji`+1) − V (F12) is a nonempty, strongly connected (d − 3)-
subcomplex (Lemma 10.1.2); in particular, it contains a (d − 3)-face Ki` . We pick Ui` in Ki` . On one
hand, Ji`∩Ji`+1 6⊂ F1, since Ji` , Ji`+1 6= F1. On the other hand, Ki` 6⊂ F1; otherwise Ki` = Ji`∩Ji`+1∩F1,
a contradiction because s1 6∈ Ki` but s1 ∈ Ji` ∩ Ji`+1 ∩ F1. As a consequence, B(Ki`) − V (F1) is a
nonempty, strongly connected (d − 4)-subcomplex (Lemma 10.1.2 again); in particular, it contains a
desired (d− 4)-face Ui` .

Let us get back to the (d−3)-faces W ∈ CJi1 and W ′ ∈ CJiq and the path Ji1 . . . Jiq in S12. For every
` ∈ [1, q − 1] consider a (d − 4)-face Ui` in CJi` ∩ CJi`+1 . Using the strong (d − 3)-connectivity of CJi`
and CJi`+1 , we build the path L between W and W ′ by concatenating (d− 3, d− 4)-paths Li1 , . . . , Liq .

• The path Li1 is a (d − 3, d − 4)-path in CJi1 between W and some (d − 3)-face W ′i1 in CJi1 that
contains the (d− 4)-face Ui1 ∈ CJi1 ∩ CJi2 .

• The path Li2 is a (d − 3, d − 4)-path in CJi2 between a (d − 3)-face Wi2 ∈ CJi2 that contains Ui1
and some (d− 3)-face W ′i2 in CJi2 that contains the (d− 4)-face Ui2 ∈ CJi2 ∩ CJi3 .

• The path Li1 ∪ Li2 is a (d− 3, d− 4)-path in CJi1 ∪ CJi2 between W and W ′i2 .

• Continuing this process process we get a path Liq in CJiq between a (d − 3)-face Wiq ∈ CJiq that
contains Uiq−1 and the (d− 3)-face W ′ in CJiq .

• Concatenating all the paths Li1 , . . . , Liq , we obtain the path L, a (d− 3, d− 4)-path in CJi1 ∪ · · · ∪
CJiq ⊆ C ⊆ A12.

The path L between W and W ′ completes the proof of the lemma.
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11.3 Linkedness of Cubical Polytopes

The aim of this section is to prove that, for every d 6= 3, a cubical d-polytope is b(d + 1)/2c-linked
(Theorem 11.3.5).

We proceed with a simple lemma proved in [164, Sect. 3].

Lemma 11.3.1 ( [164, Sect. 3]). Let G be a 2k-connected graph and let G′ be a k-linked subgraph of G.
Then G is k-linked.

Theorem 11.1.8 in conjunction with Lemma 11.3.1 answers the question posed in [165, Question
5.4.12].

Proposition 11.3.2. For every d ≥ 1, a cubical d-polytope is bd/2c-linked.

Proof. Let P be a cubical d-polytope. The results for d = 1, 2 are trivial. The case of d = 3 follows from
the connectivity of the graph of P , while the case of d = 4 follows from Proposition 9.0.8. For d ≥ 5,
since a facet of P is a (d−1)-cube with d−1 ≥ 4, by Theorem 11.1.8 it is bd/2c-linked. So Lemma 11.3.1
together with the d-connectivity of the graph of P gives the desired result.

The remaining part of the section is devoted to proving Theorem 11.3.5 for odd d ≥ 5. Since
bd/2c = b(d+ 1)/2c for even d, Proposition 11.3.2 trivially establishes Theorem 11.3.5 in this case.

Proposition 11.3.3. Let F be a facet in the star S of a vertex in a cubical d-polytope. Then, for every
d ≥ 2, the antistar of F in S is b(d− 2)/2c-linked.

Proof. Let S be the star of a vertex s in a cubical d-polytope and let F be a facet in the star S. Let
A denote the antistar of F in S. The case of d ≤ 5 follows from the strong (d − 2)-connectivity of A
(Proposition 10.2.2), which implies the (d− 2)-connectivity of the graph of A; refer to Proposition 9.0.1.
So assume d ≥ 6.

There is a (d−2)-face R in A. Indeed, take a (d−2)-face R′ in F containing s and consider the other
facet F ′ in S containing R′; the (d− 2)-face of F ′ disjoint from R′ is the desired R. By Theorem 11.1.8
the ridge R is b(d− 1)/2c-linked but we only require it to be b(d− 2)/2c-linked. By Proposition 10.2.2
the graph of A is (d− 2)-connected. Combining the linkedness of R and the connectivity of the graph of
A settles the proposition by virtue of Lemma 11.3.1.

For a pair of opposite facets {F, F o} in a cube, the restriction of the projection πF o : Qd → F o

(Definition 11.1.1) to F is a bijection from V (F ) to V (F o). With the help of π, given the star S of
a vertex s in a cubical polytope and a facet F in S, we can define an injection from the vertices in
F , except the vertex opposite to s, to the antistar of F in S. Defining this injection is the purpose of
Lemma 11.3.4.

Lemma 11.3.4. Let F be a facet in the star S of a vertex s in a cubical d-polytope. Then there is an
injective function, defined on the vertices of F except the vertex so opposite to s, that maps each such
vertex in F to a neighbour in V (S) \ V (F ).

Proof. We construct the aforementioned injection f between V (F )\{so} and V (S)\V (F ) as follows. Let
R1, . . . , Rd−1 be the (d−2)-faces of F containing s, and let J1, . . . , Jd−1 be the other facets of S containing
R1, . . . , Rd−1, respectively. Every vertex in F other than so lies in R1∪· · ·∪Rd−1. Let Roi be the (d−2)-
face in Ji that is opposite to Ri for i ∈ [1, d− 1]. For every vertex v in V (Rj) \ (V (R1)∪ · · · ∪ V (Rj−1))
define f(v) as the projection π in Jj of v onto V (Roj ), namely f(v) := πRo

j
(v); observe that πRo

j
(v) ∈
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V (Roj ) \ (V (Ro1) ∪ · · · ∪ V (Roj−1)). Here R−1 and Ro−1 are empty sets. The function f is well defined as
Ri and Roi are opposite (d− 2)-cubes in the (d− 1)-cube Ji.

To see that f is an injection, take distinct vertices v1, v2 ∈ V (F ) \ {so}, where v1 ∈ V (Ri) \ (V (R1)∪
· · · ∪ V (Ri−1)) and v2 ∈ V (Rj) \ (V (R1) ∪ · · · ∪ V (Rj−1)) for i ≤ j. If i = j then f(v1) = πRo

i
(v1) 6=

πRo
i
(v2) = f(v2). If instead i < j then f(v1) ∈ V (Roi ) ⊆ V (Ro1) ∪ · · · ∪ V (Roj−1), while f(v2) 6∈

V (Ro1) ∪ · · · ∪ V (Roj−1).

We are now ready to prove our main result.

Theorem 11.3.5 (Linkedness of cubical polytopes). For every d 6= 3, a cubical d-polytope is b(d+1)/2c-
linked.

Proof. Proposition 11.3.2 settled the case of even d, so we assume d is odd. In this section, we give a
complete proof for d ≥ 7 and proofs of several cases when d = 5. The case of d = 5 will be finalised in
Section 11.3.1.

Let d be odd and d ≥ 5. Let k := (d + 1)/2. Let X be any set of 2k vertices in the graph G of a
cubical d-polytope P . Recall the vertices in X are called terminals. Also let Y := {{s1, t1}, . . . , {sk, tk}}
be an arbitrary labelling and pairing of the vertices of X. We aim to find a Y -linkage {L1, . . . , Lk} in
G where Li joins the pair {si, ti} for i = 1, . . . , k. Recall we say that a path is X-valid if it contains no
inner vertex from X.

Further recall that, given a pair {F, F o} of opposite facets in a cube Q, for every vertex z ∈ V (F )
we denote by zpF o or πQF o(z) the unique neighbour of z in F o.

The initial idea of the proof is to reduce the analysis space from the whole polytope to a more
manageable space, the star S1 of a terminal vertex in the boundary complex of P , say that of s1. We
do so by considering 2k − 1 disjoint paths Si := si − S1 (i ∈ [2, k]) and Tj := tj − S1 (j ∈ [1, k]) from
the terminals into S1. Here we resort to the d-connectivity of G. In addition let S1 := s1. We then
denote by s̄i and t̄j the intersection of the paths Si and Tj with S1. Using the vertices s1, s̄i and t̄i for
i ∈ [2, k], define sets X̄ and Ȳ in S1, counterparts to the sets X and Y of G. In an abuse of terminology,
we also call terminals the vertices s̄i and t̄i. In this way, the existence of a Ȳ -linkage {L̄1, . . . , L̄k} with
L̄i := s̄i − t̄i in G(S1) implies the existence of a Y -linkage {L1, . . . , Lk} in G(P ), since each path L̄i
(i ∈ [1, k]) can be extended with the paths Si and Ti to obtain the corresponding path Li = si − ti.

The proof of Theorem 11.3.5 is long, so we outline the main ideas. We consider a facet F1 of S1
containing t̄1 and having the largest possible number of terminals. In addition, we let A1 be the antistar
of F1 in S1 and let L1 be the link of s1 in F1. We decompose the proof into four cases based on the
number of terminals in F1.

Case 1. |X̄ ∩ V (F1)| = d+ 1 for d ≥ 7.

Case 2. |X̄ ∩ V (F1)| = d for d ≥ 5.

Case 3. 3 ≤ |X̄ ∩ V (F1)| ≤ d− 1 for d ≥ 5.

Case 4. |X̄ ∩ V (F1)| = 2 for d ≥ 5.

Using the (k− 1)-linkedness of F1 (Theorem 11.1.8), we link as many pairs of terminals in F1 as possible
through disjoint X̄-valid paths L̄i := s̄i − t̄i. Each path L̄i, which is fully contained in F1, can be
extended with the paths Si and Ti to obtain paths Li := si − ti. For those terminals that cannot be
linked in F1, if possible we use the injection from V (F1) to V (A1) granted by Lemma 11.3.4 to find
a set NA1 of pairwise distinct neighbours in A1 not in X̄. Then, using the (k − 2)-linkedness of A1
(Proposition 11.3.3), we link the corresponding pairs of terminals in A1 and vertices in NA1 accordingly.
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Each such path L̄i := s̄i − t̄i, now with a subpath in A1, can then be extended with the paths Si and
Ti to obtain paths Li := si − ti. This general scheme does not always work, as the vertex so1 opposite
to s1 in F1 may not have an image in A1 under the aforementioned injection or the image of a vertex
in F1 under the injection may be a terminal. In those scenarios we resort to ad hoc methods, including
linking corresponding pairs in the link of s1 in F1, which is (k− 1)-linked by Proposition 11.1.9 and does
not contain s1 or so1, or in ridges disjoint from F1, which are (k − 1)-linked by Theorem 11.1.8.

To aid the reader, each case is broken down into subcases highlighted in bold. With the exception of
a portion of Case 1, all the cases work also for d = 5. The difficulty with d = 5 in Case 1 stems from the
(d− 2)-faces of P not being 2-linked (Corollary 9.0.6).

Case 1. |X̄ ∩ V (F1)| = d+ 1 for d ≥ 7.

Here we have that V (A1) ∩ X̄ = ∅. This case is decomposed into three main subcases A, B and C,
based on the nature of the vertex so1 opposite to s1 in F1, which is the only vertex in F1 that does not
have an image under the injection from F1 to A1 defined in Lemma 11.3.4. We find it convenient to
label the subcases with letters as we will return to these subcases in Section 11.3.1, where we deal with
d = 5.

Subcase A. The vertex so1 opposite to s1 in F1 does not belong to X̄. Let X̄ ′ := X̄ \ {t̄1} and
let Ȳ ′ := Ȳ \ {{s1, t̄1}}. Since |X̄ ′| = d, the strong (k − 1)-linkedness of F1 (Theorem 11.1.11) gives a
Ȳ ′-linkage {L̄2, . . . , L̄k} in the facet F1 with each path L̄i := s̄i− t̄i (i ∈ [2, k]) avoiding s1. With the help
of Lemma 11.3.4, we find pairwise distinct neighbours s′1 and t̄′1 in A1 of s1 and t̄1, respectively. If none
of the paths L̄i touches t̄1, we find a path L̄1 := s1 − t̄1 in S1 that contains a subpath in A1 between s′1
and t̄′1 (here use the connectivity of A1, Proposition 10.2.2), and we are home. Otherwise, assume that
the path L̄j contains t̄1. With the help of Lemma 11.3.4, find pairwise distinct neighbours s̄′j and t̄′j in
A1 of s̄j and t̄j , respectively, such that the vertices s′1, t̄′1, s̄′j and t̄′j are pairwise distinct. According to
Proposition 11.3.3, the complex A1 is 2-linked for d ≥ 7. Hence, we can find disjoint paths L̄′1 := s′1− t̄′1
and L̄′j := s̄′j − t̄′j in A1, respectively; these paths naturally give rise to paths L̄1 := s1 − t̄1 in S1 with
L̄′1 ⊂ L̄1 and L̄j := s̄j − t̄j in S1 with L̄′j ⊂ L̄j . The desired Y -linkage is given by the following paths.

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iL̄it̄iTiti, otherwise.

Subcase B. The vertex so1 opposite to s1 in F1 belongs to X̄ but is different from t̄1, say
so1 = s̄2. First find a neighbour s′1 of s1 and a neighbour t̄′1 of t̄1 in A1 using Lemma 11.3.4. There
is a neighbour s̄F1

2 of s̄2 in F1 that is either t̄2 or a vertex not in X̄: {s1, s̄2} ∩ NF1(s̄2) = ∅ and
|NF1(s̄2)| = d− 1. Note that the link L1 of s1 in F1 contains all the vertices in F1 except s1 and s̄2.

Suppose s̄F1
2 = t̄2. Let L̄2 := s̄2t̄2, and using the (k − 1)-linkedness of L1 (see Proposition 11.1.9),

find disjoint paths t̄1− t̄2 and L̄i := s̄i− t̄i for i ∈ [3, k] in L1. Then define a path L̄1 := s1− t̄1 in S1 that
contains a subpath in A1 between s′1 and t̄′1; here we use the connectivity of A1 (see Proposition 10.2.2).
Combining the paths L̄i with the paths Si and Ti for i ∈ [1, k] gives the desired Y -linkage.

Assume s̄F1
2 is not in X̄. Observe that |X̄ \ {s1, s̄2} ∪ {s̄F1

2 }| = d. Using the (k − 1)-linkedness of L1
for d ≥ 7 (Proposition 11.1.9), find in L1 disjoint paths L̄′2 := s̄F1

2 − t̄2 and L̄′i := s̄i − t̄i for i ∈ [3, k].
Since t̄1 is also in L1 it may happen that it lies in one of the paths L̄′i. If t̄1 does not belong to any of
the paths L̄′i for i ∈ [2, k], then find a path L̄1 := s1 − t̄1 in S1 that contains a subpath in A1 between
s′1 and t̄′1 using the connectivity of A1 (see Proposition 10.2.2). The desired Y -linkage is then given by

Li :=


s1L̄1t̄1T1t1, for i = 1;
s̄2s̄

F1
2 L̄′2t̄2T2t2, for i = 2;

siSis̄iL̄
′
it̄iTiti, otherwise.
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If t̄1 belongs to one of the paths L̄′i with i ∈ [2, k], say L̄′j , then consider in A1 a neighbour t̄′j of t̄j and,
either a neighbour s̄′j of s̄j if j 6= 2 or a neighbour s̄′2 of s̄F1

2 . From Lemma 11.3.4 it follows that the vertices
s′1, t̄′1, s̄′j and t̄′j can be taken pairwise distinct. Since A1 is 2-linked for d ≥ 7 (see Proposition 11.3.3),
find in A1 a path L̄′1 between s′1 and t̄′1 and a path L̄′′j between s̄′j and t̄′j . As a consequence, we obtain in
S1 a path L̄1 := s1s

′
1L̄
′
1t̄
′
1t̄1 and, either a path L̄j := s̄j s̄

′
jL̄
′′
j t̄
′
j t̄j if j 6= 2 or a path L̄2 := s̄2s̄

F1
2 s̄′2L̄

′′
2 t̄
′
2t̄2.

The desired Y -linkage is then as follows.

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iL̄it̄iTiti, otherwise.

Subcase C. The vertex opposite to s1 in F1 coincides with t̄1. Then t̄1 has no neighbour in A1.
In fact, F1 is the only facet in S1 containing t̄1.

If t̄1 has a neighbour t̄F1
1 in F1 that is not in X̄, then reason as in the scenario in which s̄2 = so1 and s̄2

has a neighbour not in X̄. Indeed, using the (k − 1)-linkedness of L1 (see Proposition 11.1.9), first find
disjoint paths L̄i := s̄i − t̄i in L1 for i ∈ [2, k]. Second, using Lemma 11.3.4, consider neighbours s′1 and
t̄′1 in A1 of s1 and t̄F1

1 , respectively. If t̄F1
1 doesn’t belong to any path L̄i, then find a path L̄1 := s1 − t̄1

that contains the edge t̄1t̄F1
1 and a subpath in A1 between s′1 and t̄′1. The desired Y -linkage is then given

by

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iL̄it̄iTiti, otherwise.

If t̄F1
1 belongs to one of the paths L̄i with i ∈ [2, k], say L̄j , then consider in A1 a neighbour s̄′j of s̄j

and a neighbour t̄′j of t̄j . From Lemma 11.3.4, it follows that the vertices s′1, t̄′1, s̄′j and t̄′j can be taken
pairwise distinct. Find a path L̄1 := s1 − t̄1 in S1 that contains the edge t̄1t̄F1

1 and a subpath L̄′1 in A1
between s′1 and t̄′1, and a path L̄j := s̄j − t̄j in S1 that contains a subpath L̄′j in A1 between s̄′j and t̄′j ;
the 2-linkedness of A1 for d ≥ 7 ensures that the paths L̄′1 and L̄′j can be taken disjoint, and so can the
paths L̄1 and L̄j . The desired Y -linkage is as before:

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iL̄it̄iTiti, otherwise.

Finally, assume that all the d − 1 neighbours of t̄1 in F1, and thus in S1, belong to X̄. We find it
convenient to create a subcase for this configuration since the strategy we employ to deal with it also
applies to the case of d = 5 (up to this point we have required d ≥ 7).

Let d ≥ 5 and |X̄ ∩ V (F1)| = d+ 1. Assume dist F1(s1, t̄1) = d− 1 and all the d− 1
neighbours of t̄1 in F1, and thus in S1, belong to X̄. (C.2)

This is a complex configuration since every neighbour of t̄1 in F1 belongs to X̄ and so1 (= t̄1) has no
neighbour in A1. So let us appropriately call it Configuration C.2. As a consequence, whenever we can,
we reduce Configuration C.2 to one of the previous configurations of Case 1 or to Cases 2-4. Let R be
a (d− 2)-face of F1 containing so1 = t̄1, then s1 6∈ R. Denote by RF1 the (d− 2)-face of F1 disjoint from
R. Let J be the other facet of P containing R and let RJ denote the (d− 2)-face of J disjoint from R.
Then RJ is disjoint from F1.

Consider again the paths Si and Tj that bring the vertices si (i ∈ [2, k]) and tj (j ∈ [1, k]) into S1.
Also recall that the paths Si and Tj intersect S1 at s̄i and t̄j , respectively. Suppose at least one path Si
or Tj touches RJ . Observe that, since every s̄i (i ∈ [2, k]) and t̄j (j ∈ [1, k]) is in F1, the intersection of
RJ with a path Si or Tj is not in S1. Pick one such path, say S`. Denote the intersection of S` and RJ
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by s̄′`. If there are several paths S`, choose one with the distance in R between s̄′` and πJR(t̄1) as large as
possible. From the definition of s̄`, it follows that s̄′` is not in S1.

We first find an X̄-valid path M` on J from s̄′` to S1 that is disjoint from the other paths Si and
Tj ; we do so in order to replace the subpath s̄′`S`s̄` of S` with M`, thereby obtaining a new terminal
{s̄`} := V (M`)∩V (S1) that replaces the old s̄`. Partition the graph G(RJ) into two subgraphs Gbad and
Ggood such that Gbad contains the neighbours of the terminals in R, namely V (Gbad) = πJRJ (X̄ ∩ V (R))
and V (Ggood) = V (RJ) \ V (Gbad). See Fig. 11.2(a). If s̄′` ∈ Ggood, then M` consists of s̄′`πJR(s̄′`).
Otherwise, distR(s̄′`, πJR(t̄1)) ≤ 1, and the path M` traverses RJ from s̄′` ∈ Gbad towards Ggood, reaching
a vertex s̄′′` that is either in V (Ggood) \ V (S1), in which case its projection πJR(s̄′′` ) onto R is not in X̄
and M` := s′`s̄

′′
` π

J
R(s̄′′` ), or in V (S1), in which case M` := s′`s̄

′′
` . Observe that the path M` cannot meet

another path Si or Tj in Gbad∪Ggood, say Sm, because in that case distR(s̄′m, πJR(t̄1)) > distR(s̄′`, πJR(t̄1))
and we should have chosen Sm instead of S`. Let s̄` be the intersection of M` with S1; this is the new
s̄`, and so the previous s̄` is disregarded as a terminal. Then this new s̄` is either in A1 or in R but at
distance at least two from the vertex so1 opposite to s1 in F1.

If S` coincides with T1, then there is a reduction either to a different configuration of Case 1 or to
Cases 2-4, depending on whether the new vertex t̄1 is in F1 or in A1. If the new t̄1 is in A1, we need to
choose a new facet F1 in S1, one containing the new t̄1 and a largest number of terminals. This new facet
F1 cannot contain the d− 1 neighbours of the old t̄1 in the old F1, thereby implying that the number of
terminals in this new F1 would be at most d and giving a reduction to Cases 2-4. Indeed, the intersection
between the new and the old F1 is at most (d − 2)-dimensional and no (d − 2)-dimensional face of the
old F1 contains all the d− 1 neighbours of the old t̄1. Refer to Fig. 11.2(a) for a depiction of this case. If
the aforementioned path S` is different from T1 then there is a reduction to Case 1 or Case 2, depending
on whether the new vertex s̄` is in F1 or in A1.

Consequently, we can assume that, for any ridge R of F1 that contains t̄1, the aforementioned ridge
RJ in the facet J is disjoint from all the paths Si and Tj .

Consider the vertex t̄1 in F1, an aforementioned ridge R, and the corresponding facet J and ridge
RJ . There is a unique neighbour of t̄1 in RF1 , say s̄k, while every other neighbour of t̄1 in F1 is in
R. There is a path L̄′k := s̄k − πF1

RF1
(t̄k) in RF1 that avoids s1, since RF1 is (d − 2)-connected. Let

X̄p := πJRJ (X̄ \ {s1, s̄k, t̄k}). See Fig. 11.2(b). Let spp1 := πJRJ (πF1
R (s1)). The d− 1 vertices in X̄p ∪ {spp1 }

can be linked in RJ (see Theorem 11.1.8) by a linkage {L̄′1, . . . , L̄′k−1}. Observe that, for the special
case of d = 5 where RJ is a 3-cube, we do not get the configuration preventing the 2-linkedness of
RJ (Configuration F; see Definition 9.0.7) since distRJ (spp1 , πJRJ (t̄1)) = 3. The linkage {L̄′1, . . . , L̄′k−1}
together with the two-path L̄k := s̄kπ

F1
RF1

(t̄k)t̄k can be extended to a linkage {L̄1, . . . , L̄k} given by

L̄i :=


s1π

F1
R (s1)spp1 L̄′1π

J
RJ (t̄1)t̄1, for i = 1;

s̄iπ
J
RJ (s̄i)L̄′iπJRJ (t̄i)t̄i, for i ∈ [2, k − 1];

s̄kπ
F1
RF1

(t̄k)t̄k, for i = k.

Concatenating the paths Si (i ∈ [2, k]) and Tj (j ∈ [1, k]) with the linkage {L̄1, . . . , L̄k} gives the
desired Y -linkage.

Case 2. |X̄ ∩ V (F1)| = d for d ≥ 5.

Without loss of generality, assume that t̄2 6∈ V (F1).

Suppose first that dist F1(s̄2, s1) < d− 1. According to Lemma 11.3.4, there exists a neighbour s̄′2
of s̄2 in A1. With the use of the strong (k − 1)-linkedness of F1 (Theorem 11.1.11), find disjoint paths
L̄1 := s1 − t̄1 and L̄i := s̄i − t̄i (i ∈ [3, k]) in F1, each avoiding s̄2. Find a path L̄2 in S1 between t̄2
and s̄2 that consists of the edge s̄2s̄

′
2 and a subpath in A1 between t̄2 and s̄′2, using the connectivity of
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Figure 11.2: Auxiliary figure for Case 1 of Theorem 11.3.5, where the facet F1 is highlighted in bold. (a)
A configuration where a path Si or Tj touches RJ . (b) A configuration where no path Si or Tj touches
RJ .

A1 (see Proposition 10.2.2). Combining the paths L̄i (i ∈ [1, k]) with the paths Si (i ∈ [2, k]) and Tj
(j ∈ [1, k]) gives the desired Y -linkage.

Now assume dist F1(s̄2, s1) = d−1. Since 2k−1 = d and there are d−1 pairs of opposite (d−2)-faces
in F1, by Lemma 11.1.2 there exists a pair {R,Ro} of opposite ridges of F1 that is not associated with
the set X̄s2 := (X̄ ∩ V (F1)) \ {s̄2}, whose cardinality is d− 1. Assume s̄2 ∈ R.

Suppose all the neighbours of s̄2 in R are in X̄; that is, NR(s̄2) = X̄ \ {s1, s̄2, t̄2}. The projection
πF1
Ro(s̄2) of s̄2 onto Ro is not in X̄ since s1 is the only terminal in Ro and dist F1(s̄2, s1) = d−1 ≥ 2. Next

find disjoint paths L̄i := s̄i− t̄i for i ∈ [3, k] in R that do not touch s̄2 or t̄1, using the (d−1)/2-linkedness
of R if d ≥ 7 or the 3-connectivity of R if d = 5. With the help of Lemma 11.3.4, find a neighbour
u of πF1

Ro(s̄2) in A1, and with the connectivity of A1, a path L̄2 between s̄2 and t̄2 that consists of the
length-two path s̄2π

F1
Ro(s̄2)u and a subpath in A1 between u and t̄2. Finally, find a path L̄1 in F1 between

s1 and t̄1 that consists of the edge t̄1πF1
Ro(t̄1) and a subpath in Ro disjoint from πF1

Ro(s̄2) (here use the
2-connectivity of Ro). Combining the paths L̄i (i ∈ [1, k]) with the paths Si (i ∈ [2, k]) and Tj (j ∈ [1, k])
we obtain the desired Y -linkage.

Thus assume there exists a neighbour s̄′2 of s̄2 in V (R) \ X̄. Let X̄Ro := πF1
Ro(X̄ \ {s̄2, t̄2}). Find a

path L̄2 between t̄2 and s̄2 that consists of the edge s̄2s̄
′
2 and a subpath in A1 between t̄2 and a neighbour

s̄′′2 of s̄′2 in A1 (see Lemma 11.3.4). In the case of d ≥ 7, find disjoint paths L̄i := πF1
Ro(s̄i) − π

F1
Ro(t̄i)

(i ∈ [1, k] and i 6= 2) in Ro linking the d − 1 vertices in X̄Ro using the (k − 1)-linkedness of Ro; add
the edge πF1

Ro(t̄i)t̄i to L̄i if t̄i ∈ R or the edge πF1
Ro(s̄i)s̄i to L̄i if s̄i ∈ R. Extend the disjoint paths L̄i

(i ∈ [1, k]) to a Y -linkage.

The case of d = 5 requires a bit more care. If the four vertices in X̄Ro—namely, s1, πF1
Ro(s3), πF1

Ro(t3)
and πF1

Ro(t1)—do not form a Configuration F (Definition 9.0.7), then the same reasoning as in the case
of d = 7 applies. Thus assume otherwise; that is, they are in cyclic order s1π

F1
Ro(s3)πF1

Ro(t1)πF1
Ro(t3) in a

2-face of Ro. This in turn implies that πF1
R (s3) 6∈ {s̄2, s̄

′
2} and πF1

R (t3) 6∈ {s̄2, s̄
′
2}, since dist F1(s1, s̄2) = 4.

Find a path L̄′3 in R between πF1
R (s3) and πF1

R (t3) such that L̄′3 is disjoint from both s̄2 and s̄′2 and
disjoint from t̄1 if t̄1 ∈ R; here use Corollary 11.1.4, which ensures that the vertices s̄2, s̄′2 and t̄1, if they
are all in R, cannot separate πF1

R (s3) from πF1
R (t3) in R, since a separator of size three in R must be

an independent set. Extend the path L̄′3 in R to a path L̄3 := s̄3 − t̄3 in F1, if necessary. Find a path
L̄′1 := s1 − πF1

Ro(t1) in Ro disjoint from πF1
Ro(s3) and πF1

Ro(t3), using the 3-connectivity of Ro, and extend
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Figure 11.3: Auxiliary figure for Case 3 of Theorem 11.3.5. (a) A configuration where t̄1 ∈ R and the
subset X̄+

Ro of Ro is highlighted in bold. (b) A configuration where t̄1 ∈ Ro and the facet J is highlighted
in bold.

it to a path L̄1 := s1 − t̄1 in F1, if necessary. Using the paths Si (i = 2, 3) and Tj (j = 1, 2, 3) extend
the linkage {L̄1, L̄2, L̄3} to a Y -linkage. This completes the proof of Case 2.

Case 3. 3 ≤ |X̄ ∩ V (F1)| ≤ d− 1 for d ≥ 5.

Since 2k − 1 = d and there are d − 1 pairs of opposite facets in F1, by Lemma 11.1.2 there exists
a pair {R,Ro} of opposite ridges of F1 that is not associated with X̄ ∩ V (F1). Assume s1 ∈ R. We
consider two subcases according to whether t̄1 ∈ R or t̄1 ∈ Ro.

Suppose first that t̄1 ∈ R. The (d− 2)-connectivity of R ensures the existence of an X-valid path
L̄1 := s1 − t̄1 in R. Let X̄Ro := πF1

Ro(X̄ \ {s1, t̄1}). Then 1 ≤ |X̄Ro | ≤ d − 3. Let so1 be the vertex
opposite to s1 in F1; recall that so1 has no neighbour in A1. Let Z be a set of |V (A1) ∩ X̄| pairwise
distinct vertices in A1 adjacent to vertices in V (Ro)\ (X̄Ro ∪{so1}); use Lemma 11.3.4 to obtain Z. Then
|Z| = |V (A1)∩ X̄| ≤ d− 2. To see that we can accommodate the set Z in V (Ro) \ (X̄Ro ∪ {so1}) observe
that, for d ≥ 5 and |X̄Ro | ≤ d− 3, we get

|V (Ro) \ (X̄Ro ∪ {so1})| ≥ 2d−2 − (d− 3)− 1 ≥ d− 2.

Using the (d− 2)-connectivity of A1 (Proposition 10.2.2) and Menger’s theorem, find disjoint paths
S̄i and T̄j (i, j 6= 1) between Ro and terminals s̄i and t̄j in A1, respectively, which pass through Z.
Essentially, each path S̄i = s̄i − Ro with s̄i ∈ A1 consists of a path between s̄i and a vertex zi in Z
plus an edge ziz̄i with z̄i ∈ V (Ro) \ (X̄Ro ∪ {so1}); the same applies to each path T̄j = t̄j − Ro with
t̄j ∈ A1. If s̄i or t̄j is already in Ro, let S̄i := s̄i or T̄j := t̄j , accordingly. If instead s̄i or t̄j is in R, let
S̄i be the edge s̄iπF1

Ro(s̄i) or let T̄j be the edge t̄jπF1
Ro(t̄j). Let X̄+

Ro be the intersections of Ro and the
paths S̄i and T̄j (i, j 6= 1). Consequently, the paths S̄i and T̄i for i ∈ [2, k] are pairwise disjoint. The
set X̄+

Ro , with cardinality d − 1, can be linked through paths L̄i (i ∈ [2, k]) by the (k − 1)-linkedness
of Ro (Theorem 11.1.8). See Fig. 11.3(a) for a depiction of this configuration. In this case, the desired
Y -linkage is given by the following paths.

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iS̄iL̄iT̄it̄iTiti, otherwise.

Some comments for d = 5 are in order. By virtue of Proposition 9.0.5 we need to make sure that the
four vertices in X̄+

Ro do not lie in the forbidden configuration described in Proposition 9.0.5, Configuration
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F (Definition 9.0.7). To ensure this, we need to be a bit more careful when selecting the vertices in Z.
Indeed, if there are already two vertices in X̄Ro at distance three in Ro, no care is needed when selecting
Z, so proceed as in the case of d ≥ 7. Otherwise, pick a vertex u ∈ V (Ro) \ (X̄Ro ∪ {so1}) such that
u is the unique vertex in Ro with distRo(u, x) = 3 for a vertex x ∈ X̄Ro ; this vertex x exists because
|X̄ ∩V (F1)| ≥ 3. Then u 6∈ X̄Ro . Selecting such a u 6= so1 is always possible because so1 is not at distance
three in Ro from any vertex in X̄Ro : the unique vertex in Ro at distance three from so1 is πF1

Ro(s1), and
πF1
Ro(s1) 6∈ X̄ because the pair {R,Ro} is not associated with X̄∩V (F1). Once u is selected, let Z contain

a neighbour z of u. In this way, some path S̄i or T̄j bringing terminals s̄i or t̄j in A1 into Ro through
Z would use the vertex z, thereby ensuring that x and u would be both in X̄+

Ro , avoiding the forbidden
configuration of Proposition 9.0.5.

Suppose now that t̄1 ∈ Ro. Let X̄R := πF1
R ((X̄ \ {t̄1}) ∩ V (F1)). There are at most d− 2 terminal

vertices in Ro. Therefore, the (d− 2)-connectivity of Ro ensures the existence of a X̄-valid πF1
Ro(s1)− t̄1

path L̄′1 in Ro. Then let L̄1 := s1π
F1
Ro(s1)L̄′1t̄1. Let J be the other facet in S1 containing R and let

RJ be the (d − 2)-face of J disjoint from R. Then RJ ⊂ A1. Since there are at most d − 2 terminals
in A1 and since A1 is (d − 2)-connected (Proposition 10.2.2), we can find corresponding disjoint paths
S̄i and T̄j bringing the terminals in A1 to RJ . For terminals s̄i and t̄j in X̄ ∩ V (R), let S̄i := s̄i and
T̄j := t̄j for i, j 6= 1, while for terminals s̄i and t̄j in X̄ ∩ V (Ro), let S̄i := s̄iπ

F1
R (s̄i) and T̄j := t̄jπ

F1
R (t̄j)

for i, j 6= 1. Let X̄J be the set of the intersections of the paths S̄i and T̄j with J plus the vertex s1.
Then X̄J ⊂ V (J) and |X̄J | = d (since t̄1 ∈ Ro). Let {ŝi} := V (S̄i) ∩ V (J) and {t̂i} := V (T̄i) ∩ V (J)
for i 6= 1. Resorting to the strong (k − 1)-linkedness of the facet J (Theorem 11.1.11), we obtain k − 1
disjoint paths L̄i := ŝi − t̂i for i 6= 1 that correspondingly link X̄J in J , with all the paths avoiding s1.
See Fig. 11.3(b) for a depiction of this configuration. In this case, the desired Y -linkage is given by the
following paths.

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iS̄iL̄iT̄it̄iTiti, otherwise.

Case 4. |X̄ ∩ V (F1)| = 2 for d ≥ 5.

In this case, we have that |V (A1) ∩ X̄| = d − 1. Denote by S12 the star of s̄2 in S1; that is, the
complex formed by the facets of P containing s1 and s̄2. Denote by G(S12) the graph of S12 and by Γ12
the subgraph of G(S12) and G(A1) that is induced by V (S12) \ V (F1).

The initial strategy for this case is to bring the terminals in X̄ \ V (F1) into Γ12. Excluding s̄2, there
are exactly d − 2 terminals in V (A1). Denote by S̄i an X̄-valid path in A1 from the terminal s̄i ∈ A1
to Γ12 that is disjoint from X̄ \ {s̄i}, and denote by ŝi the intersection of S̄i and Γ12. Similarly, define
T̄j and t̂j . The existence of these d − 2 pairwise disjoint X̄-valid paths S̄i and T̄j is ensured by the
(d− 2)-connectivity of the graph G(A1) of A1, which in turn is guaranteed by Proposition 10.2.2. It is
important to note that each path S̄i or T̄j touches S12 at a vertex other than s̄2. Every terminal vertex
x̄ already in Γ12 is also denoted by x̂, and the corresponding path S̄i or T̄j consists only of the vertex
x̂. We also let ŝ2 denote s̄2. The set of vertices x̂ is accordingly denoted by X̂. Then |X̂| = d − 1.
Continuing with our abuse of terminology, since there is no potential for confusion, we call the vertices
in X̂ terminals as well. Figure 11.4(a) depicts this configuration.

Pick a facet F12 in S12 that contains t̂2. An important point is that t̄1 is not in F12; otherwise F12
would contain s1,ŝ2 and t̄1 and it should have been chosen instead of F1. The second part of the strategy
is to bring the d− 1 terminal vertices x̂ ∈ Γ12 into the facet F12 so that they can be linked there.

Suppose S12 only consists of F12. Then

X̂ = {ŝ2, . . . , ŝk, t̂2, . . . , t̂k} ⊂ V (F12).

As a consequence, with the help of the strong (k−1)-linkedness of F12 (Theorem 11.1.11), we can link the
pairs {ŝi, t̂i} for i ∈ [2, k] in F12 through disjoint paths L̂i, all avoiding s1. The paths L̂i concatenated
with the paths Si, S̄i, Ti and T̄i for i ∈ [2, k] give a (Y \ {s1, t1})-linkage {L2, . . . , Lk}. To see the
existence of a path L̄1 between s1 and t̄1 that is disjoint from all the paths in {L2, . . . , Lk}, note that

204



s1
(a)

A1

S12

F1

t̄1

t̄i1
T̄i1

s1
(b)

F12

A1

S12

F1

t̄1

t̄i1t̂i1 T̄i1

Γ12

s̄i2 = ŝi2
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Figure 11.4: Auxiliary figure for Case 4 of Theorem 11.3.5: A representation of S1 where the complex
S12 is highlighted in bold, the facet F1 is tiled in a falling pattern and the complex A1 is coloured in
grey. (a) A configuration where the subgraph Γ12 is tiled in a falling pattern. (b) A depiction of S12
with more than one facet; the facet F12 is highlighted in bold and the complex A12 is highlighted in a
falling pattern. (c) A depiction of S12 with more than one facet; the facets F12 and J12 are highlighted
in bold and their intersection U is highlighted in a falling pattern. The set W in J12 is coloured in grey.

the intersection of F12 and F1 is at most a (d − 2)-face containing s1 (but not t1), which is contained
in a (d − 2)-face R of F1 containing s1 but not t1 (Remark 11.2.2). Find a path L̄′1 in Ro, the ridge of
F1 disjoint from R and containing t1, between πF1

Ro(s1) and t̄1 and let L̄1 := s1π
F1
Ro(s1)L̄′1t̄1. Hence the

desired Y -linkage is as follows.

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iS̄iŝiL̂it̂iT̄it̄iTiti, otherwise.

Assume S12 has more than one facet. Recall that

X̂ = {ŝ2, . . . , ŝk, t̂2, . . . , t̂k} ⊂ V (Γ12).

We denote by A12 the complex of S12 induced by V (S12) \ (V (F1) ∪ V (F12)). Then the graph G(A12)
of A12 coincides with the subgraph of Γ12 induced by V (Γ12) \ V (F12). Figure 11.4(b) depicts this
configuration.

Our strategy is first to bring the d− 3 terminal vertices x̂ in Γ12 other than ŝ2 and t̂2 into F12 \ F1
through disjoint paths Ŝi and T̂j , without touching ŝ2 and t̂2. Second, denoting by s̃i and t̃j the
intersection of Ŝi and T̂j with V (F12) \ V (F1), respectively, we link the pairs {s̃i, t̃i} for i = [2, k] in F12
through disjoint paths L̃i, without touching s1; here we resort to the strong (k − 1)-linkedness of F12.
And finally, we find a path L̄1 := s1 − t̄1 in F1, which is disjoint from the paths L̃i with i ∈ [2, k]. We
develop these ideas below.

From Lemma 11.2.3(iii), it follows that A12 is nonempty and contains a spanning strongly connected
(d− 3)-subcomplex, thereby implying, by Proposition 9.0.1, that

G(A12) is (d− 3)-connected.

Since S12 contains more than one facet, there is a (d− 2)-face U in F12 that contains s1 and ŝ2 (= s̄2);
see Remark 11.2.1. Denote by J12 the other facet in S12 containing U and by UJ the (d− 2)-face in J12
disjoint from U , and as a consequence, disjoint from F12.

Denote by CU the subcomplex of U induced by V (U) \ V (F1), namely the antistar of U ∩ F1 in U .
Since ŝ2 ∈ V (U) \ V (F1), it follows that CU is nonempty, and thus, thanks to Lemma 10.1.2, that it is a
strongly connected (d− 3)-complex. Then, from CU containing a (d− 3)-face it follows that

|V (CU )| = |V (U) \ V (F1))| ≥ 2d−3 ≥ d− 1 for d ≥ 5. (11.1)
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Moreover, denote by CUJ the subcomplex of UJ induced by V (UJ)\V (F1). If UJ ∩F1 = ∅ then CUJ = UJ .
Otherwise CUJ is the antistar of UJ ∩ F1 in UJ , and since U ∩ F1 6= ∅ (s1 is in both), it follows that
UJ 6⊆ F1, and thus, that CUJ is nonempty. Put differently, the vertex in J12 opposite to s1 is not in U ,
since s1 ∈ U , nor is it in F1, and so it must be in CUJ . Therefore, according to Lemma 10.1.2, CUJ is a
strongly connected (d− 3)-complex. Hence, in both instances,

|V (CUJ )| = |V (UJ) \ V (F1))| ≥ 2d−3 ≥ d− 1 for d ≥ 5. (11.2)

Recall that we want to bring every vertex in the set X̂, which is contained in Γ12, into F12 \ F1. We
construct |X̂ ∩ V (A12)| pairwise disjoint paths Ŝi and T̂j from ŝi ∈ A12 and t̂j ∈ A12, respectively, to
V (F12) \ V (F1) as follows. Pick a set

W ⊂ V (CUJ ) \ πJ12
UJ

(
(X̂ ∪ {s1}) ∩ U

)
of |X̂ ∩ V (A12)| vertices in CUJ . In other words, the vertices in W are in CUJ and are not projections of
the vertices in (X̂ ∪ {s1}) ∩U onto UJ . We show that the set W exists, which amounts to showing that
CUJ has enough vertices to accommodate W .

First note that
|X̂ ∩ V (A12)|+ |(X̂ ∪ {s1}) ∩ V (F12)| = |X̂ ∪ {s1}| = d,

(X̂ ∪ {s1}) ∩ V (U) ⊆ (X̂ ∪ {s1}) ∩ V (F12).
(11.3)

If UJ ∩ F1 = ∅ then CUJ = UJ , and Eq. (11.3), together with |V (UJ)| = 2d−2 ≥ d for d ≥ 5, give the
following chain of inequalities∣∣∣V (CUJ ) \ πJ12

UJ

(
(X̂ ∪ {s1}) ∩ V (U)

)∣∣∣ ≥ d− ∣∣∣(X̂ ∪ {s1}) ∩ V (U)
∣∣∣

≥
∣∣∣X̂ ∪ {s1}

∣∣∣− ∣∣∣(X̂ ∪ {s1}) ∩ V (F12)
∣∣∣ =

∣∣∣X̂ ∩ V (A12)
∣∣∣ = |W | ,

as desired.

Suppose now UJ ∩ F1 6= ∅. Since s1 ∈ U ∩ F1 and J12 = conv {U ∪ UJ}, the cube J12 ∩ F1 has
opposite facets UJ ∩F1 and U ∩F1. From s1 ∈ U ∩F1 it follows that πJ12

UJ
(s1) ∈ UJ ∩F1, and thus, that

πJ12
UJ

(s1) 6∈ CUJ ; here we use the following remark.
Remark 11.3.6. Let (K,Ko) be opposite facets in a cube Q and let B be a proper face of Q such that
B ∩K 6= ∅ and B ∩Ko 6= ∅. Then πQKo(B ∩K) = B ∩Ko.

Since πJ12
UJ

(s1) 6∈ CUJ , using Eqs. (11.2) and (11.3) we get∣∣∣V (CUJ ) \ πJ12
UJ

(
(X̂ ∪ {s1}) ∩ V (U)

)∣∣∣ =
∣∣∣V (CUJ ) \ πJ12

UJ

(
X̂ ∩ V (U)

)∣∣∣
≥ d− 1−

∣∣∣X̂ ∩ V (U)
∣∣∣ ≥ ∣∣∣X̂∣∣∣− ∣∣∣X̂ ∩ V (F12)

∣∣∣ =
∣∣∣X̂ ∩ V (A12)

∣∣∣ = |W | .

In this way we have shown that CUJ can accommodate the set W .

There are at most d−3 vertices x̂ in X̂ ∩V (A12) since ŝ2 and t̂2 are already in V (F12)\V (F1). Since
G(A12) is (d − 3)-connected, we can find |W | = |X̂ ∩ V (A12)| pairwise disjoint paths Ŝ′i and T̂ ′j in A12

from the terminals ŝi and t̂j in X̂ ∩V (A12) to W . The path Ŝi then consists of the subpath Ŝ′i := ŝi−wi
with wi ∈ W plus the edge wiπJ12

U (wi); from the choice of W it follows that πJ12
U (wi) 6∈ X̂ ∪ {s1}. The

paths T̂ ′j and T̂j are defined analogously. Figure 11.4(c) depicts this configuration.

Denote by s̃i the intersection of Ŝi and V (F12) \ V (F1); similarly, define t̃j . Every terminal vertex x̂
already in F12 is also denoted by x̃, and in this case we let Ŝi or T̂j be the vertex x̃.
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Now F12 contains the pairs (s̃i, t̃i) for i ∈ [2, k] and the terminal s1, as desired. Link these pairs
in F12 through disjoint paths L̃i, each avoiding s1, with the use of the strong (k − 1)-linkedness of F12
(see Theorem 11.1.11). The paths L̃i concatenated with the paths Si, S̄i, Ŝi, Ti, T̄i and T̂i for i ∈ [2, k]
give a (Y \ {s1, t1})-linkage {L2, . . . , Lk}.

We now show how to find the path L̄1 in F1 between s1 and t̄1. The paths S̄i and T̄i (i ∈ [2, k]) lie
in A1, while the paths Ŝi and T̂i (i ∈ [2, k]) lie in Γ12, thus, in A1 as well. As a consequence, the only
paths that could possibly touch F1 are the paths L̃i (i ∈ [2, k]), and they all lie within F12. As in the
case of S12 having exactly one facet, the intersection of F12 and F1 is at most a (d− 2)-face containing
s1 but not t̄1, which is contained in a (d − 2)-face R of F1 containing s1 but not t1. Find a path L̄′1 in
Ro between πF1

Ro(s1) and t̄1 and let L̄1 := s1π
F1
Ro(s1)L̄′1t̄1. Hence the desired Y -linkage is as follows.

Li :=
{
s1L̄1t̄1T1t1, for i = 1;
siSis̄iS̄iŝiŜis̃iL̃it̃iT̂it̂iT̄it̄iTiti, otherwise.

This completes the proof of the case and of the theorem for d ≥ 7.

The missing case of d = 5 is settled in the next subsection.

11.3.1 Proof of Theorem 11.3.5 for d = 5

We keep the same notation as in the first part of the proof in Theorem 11.3.5. Let X :=
{s1, s2, s3, t1, t2, t3} be any set of six vertices in the graph G of a cubical 5-polytope P . We call the ver-
tices in X terminals. Also let Y := {{s1, t1}, {s2, t2}, {s3, t3}}. We aim to find a Y -linkage {L1, L2, L3}
in G where Li joins the pair {si, ti} for i = 1, 2, 3. We say that a path is X-valid if it contains no inner
vertex from X.

As in the proof of Theorem 11.3.5, denote by S1 the star of s1 in B(P ). From the 5-connectivity of G
follows the existence of five disjoint paths Si := si −S1 (i ∈ [2, 3]) and Tj := tj −S1 (j ∈ [1, 3]). Further
denote by s̄i and t̄j the intersection of the paths Si and Tj with S1. Using the vertices s1, s̄i and t̄i for
i = 2, 3, define sets X̄ and Ȳ , counterparts to the sets X and Y of G. In an abuse of terminology, we call
terminals the vertices s̄i and t̄i. Let F1 be a facet of S1 containing t̄1 and a largest number of terminals.
Let A1 denote the antistar of F1 in S1 and let L1 denote the link of s1 in F1.

From Proposition 9.0.5 it follows that, if a 3-cube contains exactly four terminals, then the only
configuration in which the two pairs {si1 , ti1} and {si2 , ti2} cannot be linked in the 3-cube occurs when
the terminals appear in cyclic order si1si2ti1ti2 in a 2-face of the 3-cube. We called this forbidden
configuration Configuration F (Definition 9.0.7). If a 3-cube contains more than four terminals, then we
also call Configuration F any configuration in which four terminals, say si1 , ti1 , x1 and x2, lie in a 2-face
and are arranged in cyclic order si1x1ti1x2; here {x1, x2} may or may not belong to Y . The reason for
calling this configuration forbidden is that the terminals {si1 , ti1} cannot be linked via an X-valid path
in the 3-cube.

Proposition 11.3.7. A cubical 5-polytope is 3-linked.

Proof. We consider three cases based on the number of terminals in F1. The cases of |X̄ ∩ V (F1)| =
5, 4, 3, 2 were settled in Cases 2-4 of Theorem 11.3.5. Consequently, here we focus on the case of |X̄ ∩
V (F1)| = 6 and its subcases A, B and C. We find it advantageous to settle the subcases A and B at the
same time.

Throughout the section we denote by so1 the vertex of F1 opposite to s1.
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Subcases A and B. The vertex so1 opposite to s1 in F1 either does not belong to X̄ or belongs
to X̄ but is different from t̄1.

There is a 3-face R of F1 containing both s1 and t̄1. Let J1 be the other facet in S1 containing R.
Denote by RJ and RF the ridges in J1 and F1, respectively, that are disjoint from R. Then so1 ∈ RF .
We need the following claim.

Claim 10. If a 3-cube R contains three pairs of terminals, there must exist two pairs of terminals in R
that are not arranged in Configuration F; that is, two pairs, say {s1, t̄1} and {s̄2, t̄2}, are not arranged
in cyclic order s1s̄2t̄1t̄2 in a 2-face.

Proof. If the cube does not contain any Configuration F, we are done. So suppose it does, namely
s1x1t̄1x2 with x1, x2 ∈ X̄. Without loss of generality assume that s̄2 6∈ {x1, x2}. Then s̄2 cannot be
adjacent to both s̄1 and t̄1, since the bipartite graph K2,3 is not a subgraph of G(Q3) (Remark 11.1.5).
Thus the pairs {s̄1, t̄1} and {s̄2, t̄2} do not exemplify a Configuration F. �

Suppose all the six terminals are in the 3-face R. By virtue of Claim 10 we may assume
{s1, t̄1} and {s̄2, t̄2} are not arranged in Configuration F in R. Proposition 9.0.5 ensures that the pairs
{πJ1

RJ
(s1), πJ1

RJ
(t̄1)} and {πJ1

RJ
(s̄2), πJ1

RJ
(t̄2)} in RJ can be linked in RJ through disjoint paths L̄′1 and L̄′2,

since they do not lie in Configuration F in RJ : if two pairs do not lie in Configuration F within a facet,
then neither do their projections onto the opposite facet. Moreover, by the connectivity of RF , there is a
path L̄′3 in RF linking the pair {πF1

RF
(s̄3), πF1

RF
(t̄3)}. The linkage {L̄′1, L̄′2, L̄′3} can naturally be extended

to a Ȳ -linkage, which combined with the paths Si (i = 2, 3) and Tj (j = 1, 2, 3) can be extended to the
required Y -linkage.

Suppose that R contains a pair {s̄i, t̄i} for i = 2, 3, say {s̄2, t̄2}. There are at most five terminals
in R, and consequently, applying Lemma 11.1.7 to the polytope F1 and its facet R, we obtain an X̄-valid
path L̄1 := s1 − t̄1 in R or an X̄-valid path L̄2 := s̄2 − t̄2 in R. For the sake of concreteness, say an
X̄-valid path L̄2 exists in R. From the connectivity of RF and RJ follows the existence of a path L̄′3 in
RF between πF1

RF
(s̄3) and πF1

RF
(t̄3), and of a path L̄′1 in RJ between πJ1

RJ
(s1) and πJ1

RJ
(t̄1). The linkage

{L̄′1, L̄′2, L̄′3} can be naturally extended to a linkage {s1 − t̄1, s̄2 − t̄2, s̄3 − t̄3} in S1, which, in turn,
combined with the paths Si (i = 2, 3) and Tj (j = 1, 2, 3), gives rise to a Y -linkage, as desired.

Suppose that the ridge R contains no other pair from Ȳ and that the ridge RF contains
a pair (s̄i, t̄i) (i = 2, 3). Without loss of generality assume s̄2 and t̄2 are in RF .

First suppose that s3 ∈ R, which implies that t̄3 ∈ RF . Further suppose that there is a path M3
of length at most two from t̄3 to R that is disjoint from X̄ \ {s̄3, t̄3}. Let {t̄′3} := V (M3) ∩ V (R). Use
the 2-linkedness of J1 (Proposition 9.0.8) to find disjoint paths L̄1 := s1 − t̄1 and L̄′3 := s̄3 − t̄′3 in J1.
Let L̄3 := s̄3L̄

′
3t̄
′
3M3t̄3. Use the 3-connectivity of RF to find an X̄-valid path L̄2 := s̄2 − t̄2 in RF ;

note that |V (M3) ∩ V (RF )| ≤ 2. The linkage {L̄1, L̄2, L̄3} can be naturally extended to a Y -linkage.
Now suppose there is no such path M3 from t̄3 to R. Then, both s̄2 and t̄2 must be neighbours of t̄3
in RF ; the projection πF1

R (t̄3) is in {s1, t̄1}, say πF1
R (t̄3) = t1; and the projection πF1

RF
(s1) is a neighbour

of t̄3 in RF . This configuration implies that s1 and t̄1 are adjacent in R. Let L̄1 := s1t̄1. Find a path
L̄2 := s̄2− t̄2 in RF that is disjoint from πF1

RF
(s1) and t3, using the 3-connectivity of RF . Then, with the

help of Lemma 11.3.4, find a neighbour s̄′3 in A1 of s̄3, and a neighbour t̄′3 6= s̄′3 in A1 of t̄3; note that,
since dist F1(s1, t̄3) ≤ 2, t̄3 6= so1. Find a path L̄3 in S1 between s̄3 and t̄3 that contains a subpath in A1
between s̄′3 and t̄′3; here use the connectivity of A1 (Proposition 10.2.2). The linkage {L̄1, L̄2, L̄3} can
be naturally extended to a Y -linkage.

Assume that s̄3 ∈ RF ; by symmetry we can further assume that t̄3 ∈ RF . The connectivity of R
ensures the existence of a path L̄1 := s̄1 − t̄1 therein. In the case of so1 ∈ X̄, without loss of generality,
assume so1 = s̄2. The 3-connectivity of RF ensures the existence of an X̄-valid path s̄2 − t̄2 therein. Use
Lemma 11.3.4 to find pairwise distinct neighbours s̄′3 of s̄3 and t̄′3 of t̄3 in A1; these exist since s̄3 6= so1
and t̄3 6= so1. Using the connectivity of A1 (Proposition 10.2.2), find a path L̄3 := s̄3 − t̄3 in S1 that

208



contains a subpath s̄′3 − t̄′3 in A1. Extend the linkage {L̄1, L̄2, L̄3} to a Y -linkage.

Assume neither R nor RF contains a pair {s̄i, t̄i} (i = 2, 3). Without loss of generality assume
that s̄2, s̄3 ∈ R, that t̄2, t̄3 ∈ RF and that t̄2 6= so1.

First suppose that there exists a path M3 in F1 from s̄3 to RF that is of length at most two and is
disjoint from X̄ \ {s̄3, t̄3}. Find pairwise distinct neighbours s̄′2 and t̄′2 of s̄2 and t̄2, respectively, in A1,
and a path L̄2 := s̄2− t̄2 in S1 that contains a subpath s̄′2− t̄′2 in A1 (using the connectivity of A1). Let
{ŝ3} := V (M3)∩V (RF ). Using the 3-connectivity of RF link the pair {ŝ3, t̄3} in RF through a path L̄3.
Since Corollary 11.1.4 ensures that any separator of size three in a 3-cube must be independent, we can
find an L̄1 := s1 − t̄1 in R that is disjoint from s2 and V (M3) ∩ V (R); the set V (M3) ∩ V (R) has either
cardinality one or contains an edge. Extend the linkage {L̄1, L̄2, L̄3} to a required Y -linkage.

Assume that there is no such path M3. In this case, the neighbours of s̄3 in F1 are s1, t̄1, s̄2 from
R and t̄2 from RF . Use Lemma 11.3.4, to find a neighbour s̄′3 of s̄3 in A1 and a neighbour t̄′3 either
of t̄3, if t̄3 6= so1, or of a neighbour u of t̄3 in RF (different from t̄2), if t̄3 = so1. Let B3 be the path of
length at most two from t̄3 to A1: B3 := t̄3t̄

′
3 if t̄3 6= so1 and B3 := t̄3ut̄

′
3 if t̄3 = so1. Find a path L̄3

in S1 between s̄3 and t̄3 that contains a subpath in A1 between s̄′3 and t̄′3; here use the connectivity of
A1 (Proposition 10.2.2). We next find a path M2 in F1 from s̄2 to RF that is of length at most two
and is disjoint from V (B3) ∪ {s1, t̄1, t̄3}. There are exactly four disjoint such s̄2 − RF paths of length
at most two, one through each of the neighbours of s̄2 in F1. One such path is s̄2s̄3t̄2. Among the
remaining three s̄2 − RF paths, since none of them contains s1 or t̄1 and since |V (B3) ∩ V (RF )| ≤ 2,
the existence of a path M2 is ensured. Let ŝ2 := V (M2) ∩ V (RF ). Find a path L̄′2 := ŝ2 − t̄2 in RF
that is disjoint from V (B3), using the 3-connectivity of RF . Let L̄2 := s̄2M2ŝ2L̄

′
2t̄2. Since the vertices

in V (M2)∩ V (R)∪ {s̄3} cannot separate s1 from t̄1 in R (Corollary 11.1.4), find a path L̄1 := s1 − t̄1 in
R disjoint from V (M2) ∩ V (R) ∪ {s̄3}; the set V (M2) has cardinality one or contains one edge. Extend
the linkage {L̄1, L̄2, L̄3} to a required Y -linkage.

Subcase C. The vertex opposite to s1 in F1 coincides with t̄1.

If all the four neighbours of t̄1 in F1 belong to X̄, we have what we dubbed Configuration C.2 in
Case 1 of Theorem 11.3.5. We deal with Configuration C.2 here as we did then. For the details please
refer to the proof of (C.2) in Theorem 11.3.5.

Hence we may suppose that the vertex opposite to s1 in F1 coincides with t̄1 and that t̄1 has a
neighbour t̄′1 not in X̄. We reason as in Subcases A and B. We give the details for the sake of completeness.

Let R denote the 3-face in F1 containing both s1 and t̄′1; distR(s1, t̄
′
1) = 3. Let RF be the 3-face of

F1 disjoint from R. Let J1 be the other facet in S1 containing R and let RJ be the 3-face of J1 disjoint
from R.

Suppose R contains a pair {s̄i, t̄i} (i = 2, 3), say (s̄2, t̄2). There are at most five terminals
in R. Since the smallest face in R containing s1 and t̄′1 is 3-dimensional, the pairs {πJ1

RJ
(s1), πJ1

RJ
(t̄′1)}

and {πJ1
RJ

(s̄2), πJ1
RJ

(t̄2)} do not lie in Configuration F in RJ , and so they can be linked therein through
disjoint paths L̄′1 and L̄′2 thanks to Proposition 9.0.5. Let L̄1 := s1π

J1
RJ

(s1)L̄′1πJ1
RJ

(t̄′1)t̄′1t̄1 and L̄2 :=
s̄2π

J1
RJ

(s2)L̄′2πJ1
RJ

(t̄2)t̄2. From the 3-connectivity of RF follows the existence of a path L̄′3 in RF between
πF1
RF

(s̄3) and πF1
RF

(t̄3) that avoids t̄1; note that s̄3 may coincide with πF1
RF

(s̄3), and so may t̄3 with πF1
RF

(t̄3).
Let L̄3 := s̄3π

F1
RF

(s̄3)L̄′3πF1
RF

(t̄3)t̄3. The linkage {L̄1, L̄2, L̄3} can be naturally extended to a Ȳ -linkage,
which in turn can be extended to a Y -linkage.

Suppose that the ridge R contains no pair {s̄i, t̄i} (i = 2, 3) and that the ridge RF contains
a pair {s̄i, t̄i} (i = 2, 3), say {s̄2, t̄2}. Then, there are at most five terminals in RF . If there are at most
four terminals in RF , the 3-connectivity of RF ensures the existence of an X̄-valid path L̄2 := s̄2 − t̄2 in
RF ; if there are exactly five terminals in RF , applying Lemma 11.1.7 to the polytope F1 and its facet RF
gives either an X̄-valid path L̄2 := s̄2 − t̄2 or an X̄-valid path L̄3 := s̄3 − t̄3 in RF . As a result, without
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loss of generality, we can assume there is an X̄-valid path L̄2 := s̄2 = t̄2 in RF . Then, with the help of
Lemma 11.3.4, find pairwise distinct neighbours s̄′3 and t̄′3 in A1 of s̄3 and t̄3, respectively, and a path L̄3
in S1 between s̄3 and t̄3 that contains a subpath in A1 between s̄′3 and t̄′3; here use the connectivity of
A1 (Proposition 10.2.2). In addition, let L̄1 be a path in F1 between s1 and t̄1 that uses a subpath in R
between s1 and t̄′1; here use the 3-connectivity of R to avoid any terminal in R. The linkage {L̄1, L̄2, L̄3}
can be naturally extended to a Y -linkage.

Assume neither R nor RF1 contains a pair {s̄i, t̄i} (i = 2, 3). Without loss of generality, we can
assume s̄2, s̄3 ∈ R and t̄2, t̄3 ∈ RF .

For some i = 2, 3, there exists a path Mi in F1 from s̄i to RF that is of length at most two and
is disjoint from t̄′1 and X̄ \ {s̄i, t̄i}. Suppose there is no such s̄3 − RF path. Then the neighbours of
s̄3 in F1 would be s1, t̄

′
1, s̄2 from R and t̄2 from RF . But, since there are exactly four s̄2 − RF paths

of length at most two in F1 and since the vertex s̄2 could not be adjacent to {s1, t̄
′
1}, the existence of

such an s̄2 −RF path would be guaranteed. Hence assume the existence of such a path M3 := s̄3 −RF .
Let ŝ3 := V (M3) ∩ V (RF ). Find an X̄-valid path L̄′3 := ŝ3 − t̄3 in RF using its 3-connectivity. Let
L̄3 := s̄3M3ŝ3L̄

′
3t̄3. Then find pairwise distinct neighbours s̄′2 and t̄′2 of s̄2 and t̄2, respectively, in A1,

and a path L̄2 := s̄2 − t̄2 in S1 that contains a subpath s̄′2 − t̄′2 in A1 (using the connectivity of A1).
Since Corollary 11.1.4 ensures that any separator of size three in a 3-cube must be independent, we can
find an L̄′1 := s1 − t̄′1 in R that is disjoint from s̄2 and V (M3) ∩ V (R); the set V (M3) ∩ V (R) has either
cardinality one or contains an edge. Let L̄1 := s1L̄

′
1t̄
′
1t̄1. Extend the linkage {L̄1, L̄2, L̄3} to a required

Y -linkage.

And finally, the proof of the proposition is complete and so is the proof of Theorem 11.3.5.

11.4 Strong Linkedness of Cubical Polytopes

The property of strong linkedness, see Theorems 11.1.10 and 11.1.11, also holds for cubical polytopes.

Theorem 11.4.1 (Strong linkedness of cubical polytopes). For every d 6= 3, a cubical d-polytope is
strongly b(d+ 1)/2c-linked.

Proof. Let P be a cubical d-polytope. For odd d Theorems 11.3.5 and 11.4.1 are equivalent. So assume
d = 2k. Let X be a set of d + 1 vertices in P . Arbitrarily pair 2k vertices in X to obtain Y :=
{{s1, t1}, . . . , {sk, tk}}. Let x be the vertex of X not paired in Y . We find a Y -linkage {L1, . . . , Lk}
where each path Li joins the pair {si, ti} and avoids the vertex x.

Using the d-connectivity of G(P ) and Menger’s theorem, bring the d = 2k terminals in X \ {x} to
the link of x in the boundary complex of P through 2k disjoint paths Lsi and Lti for i ∈ [1, k]. Let
s′i := V (Lsi) ∩ link(x) and t′i := V (Lti) ∩ link(x) for i ∈ [1, k]. Thanks to Proposition 9.0.11, the link
of x is combinatorially equivalent to a cubical (d− 1)-polytope, which is d/2-linked by Theorem 11.3.5.
Using the d/2-linkedness of link(x), find disjoint paths L′i := s′i − t′i in link(x). Observe that all these
k paths {L′1, . . . , L′k} avoid x. Extend each path L′i with Lsi and Lti to form a path Li := si − ti for
i ∈ [1, k]. The paths {L1, . . . , Lk} forms the desired Y -linkage.
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