129 research outputs found

    Wireless multicasting under probabilistic node failures: a heuristic approach

    Get PDF
    The minimum power multicast (MPM) problem is a well-known optimization problem in wireless networks. The aim of the MPM problem is to assign transmission powers to the nodes of a wireless sensor network in such a way that multi-hop communication between a source node and a set of destination nodes is guaranteed, while the total transmission power expenditure over the network is minimized. Several extensions to the basic problem have been proposed, in order to obtain more realistic mathematical models. In this paper we deal with the probabilistic minimum power multicast (PMPM) problem, where node failure probabilities are considered and a global reliability level of the transmission is required. Since the so far available exact approach can handle only small-sized instances of the PMPM problem, in this paper we focus on the study of a heuristic approach. A heuristic algorithm for the PMPM problem is presented, together with a fast method for the reliability calculation based on previously unexplored combinatorial properties of the model. Computational experiments are finally discusse

    Multicast problems in telecommunication networks

    Get PDF

    A framework for routing and congestion control for multicast information flows

    Full text link

    A Framework for Routing and Congestion Control for Multicast Information Flows

    Get PDF
    We propose a new multicast routing and scheduling algorithm called multipurpose multicast routing and scheduling algorithm (MMRS). The routing policy load balances among various possible routes between the source and the destinations, basing its decisions on the message queue lengths at the source node. The scheduling is such that the flow of a session depends on the congestion of the next hop links. MMRS is throughput optimal. In addition, it has several other attractive features. It is computationally simple and can be implemented in a distributed, asynchronous manner. It has several parameters which can be suitably modified to control the end-to-end delay and packet loss in a topology-specific manner. These parameters can be adjusted to offer limited priorities to some desired sessions. MMRS is expected to play a significant role in end-to-end congestion control in the multicast scenario
    corecore