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A Framework for Routing and Congestion Control for Multicast
Information Flows

Abstract

We propose a new multicast routing and scheduling algorithm called multipurpose multicast routing and
scheduling algorithm (MMRS). The routing policy load balances among various possible routes between the
source and the destinations, basing its decisions on the message queue lengths at the source node. The
scheduling is such that the flow of a session depends on the congestion of the next hop links. MMRS is
throughput optimal. In addition, it has several other attractive features. It is computationally simple and can be
implemented in a distributed, asynchronous manner. It has several parameters which can be suitably modified
to control the end-to-end delay and packet loss in a topology-specific manner. These parameters can be
adjusted to offer limited priorities to some desired sessions. MMRS is expected to play a significant role in
end-to-end congestion control in the multicast scenario.
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A Framework for Routing and Congestion Control
for Multicast Information Flows

Saswati SarkaMember, IEEEand Leandros Tassiulas

Abstract—\We propose a new multicast routing and scheduling ~ There may be more than one possible route between a source
algorithm called multipurpose multicast routing and schedulingal- - and a group of destinations. More than one multicast session

gorithm (MMRS). The routing policy load balances among various 4y share the same link. This gives rise to the fundamental
possible routes between the source and the destinations, basing its

decisions on the message queue lengths at the source node. Thl§su,es of routing gndlsched_uling in multicast communication.
scheduling is such that the flow of a session depends on the con-Until now, scheduling in multicast networks has primarily been

gestion of the next hop links. MMRS is throughput optimal. Inad-  best effort service. With increase in traffic, congestion control
dition, it has several other attractive features. It is computation- gnd class based Schedu“ng would be required to improve per-

ally simple and can be implemented in a distributed, asynchronous formance. MMRS uses a scheduling policy which can be tuned
manner. It has several parameters which can be suitably modified - . -
to distinguish among various classes.

to control the end-to-end delay and packet loss in a topology-spe- A )
cific manner. These parameters can be adjusted to offer limited A significant amount of research has been directed toward

priorities to some desired sessions. MMRS is expected to play amulticast routing. Tree construction is the commonly used
signific_amt role in end-to-end congestion control in the multicast approach in solving the multicast routing problem. Multicast
scenario. . . . N trees minimize data replication; messages need only be repli-
Index Terms—Multicast, routing, scheduling, stability, through-  cated at the forking nodes. This differs from the multicast
put. attained through multiple unicasts where every unicast requires
a copy of the message. Multiple unicasts may result in many
|. INTRODUCTION copies of the same message traversing the same network links
. . .. and thus waste network resources. Multicast trees can be
?LTIdC'i‘SfTING prov:jdest an eff|C|entf way o f trarl\sm_n- roadly classified into shortest path trees (SPTs), also known
Ing data from a sender 1o a group OT recevers. A SINGIG, o\ rce-pased trees and group shared trees [35]. SPT is

source node or a group of source nodes sends identical rently used in distance-vector multicast routing protocol

sages simultaneously to multiple destination nodes. Unicast E)Q/MRP) [5] for Internet multicast traffic on the virtual

broa_dcast to the e.ntire. network are specjal cases Of. multi_c hlticast backbone (Mbone) network [8], [11] and multicast
Mult_lcast a_ppllcatlons mclude_ coIIal_:)oratlve applications I.'k%xtensions for open shortest path first OSPF(MOSPF) [20].
audio or video teleconferencing, video-on-demand Services, . .. o pased tree (CBT) [1] uses a group shared tree also
distributed databases, distribution of software, financial infof., |\ "~ < the center-based tree Recently, some hybrid routing
mation, electronic newspapers, billing records, medical imag Totocols like the protocol-independent multicast (PIM) [6] and

weather maps, experimental data, and distributed interac € multicast Internet protocol (MIP) [21] have been proposed.

simulation (DIS) activities such as tank battle simulationﬁ.hese allow the system to switch modes between SPT and
Currently, several distributed systems such as the V Syst %up shared trees

[3] and the Andrew distributed computing environment [27T; . -
. : , None of these routing policies support more than one tree per
popular protocol suites like Sun’s broadcast Remote Procedure S ; . . :
. \ source—destination pair at atime. Thus, only a single route is de-

Cell (RPC) service [24] and IBM’'s NetBIOS [12] all use . .

. . . . T termined depending upon the topology and then the messages
multicasting [5]. Multicasting has been used primarily in the ; .

e sent along the same route till the topology or the destina-

Internet, but future asynchronous transmission mode (AT |§)n group changes. PIM and MIP allow the system to switch to

networks are likely to deploy multicasting on a large scale, . . :
. . . ) . . a different tree mode, but not on a very dynamic basis. For ex-
particularly in applications like broadcast video, videoconfer-
) . oo ample, PIM supports center-based trees for low data rate sources
encing, multiparty telephony, and workgroup applications [4]. : . )
or sparse multicast groups and allows receivers to switch over

to an SPT mode when low delay is important or the multicast

Manuscript received February 22, 1999; revised March 13, 2002. The w 'foup is densely populated. When the switchover takes place

of S. Sarkar was supported in part by the National Science Foundation unfler . -
Grant ANI01-06984. The material in this paper was presented in part at |E CBT is modified to replace the core-based routes by the

INFOCOM 99, New York, April 1999. shortest path routes between a source and some destinations.
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L. Tassiulas is with the Department of Electrical and Computer Engineerillﬂ_flvmg more than one pOSSIbIe tree S|mU|taneOUS|y and allowmg
and Institute for Systems Research, University of Maryland, College Park, Mbe system to dynamically choose among them, the routing deci-

20742 USA (e-mail: leandros@isr.umd.edu). __sions being taken not too infrequently. Load balancing can meet
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works. very effectively the technical challenge of minimizing the link
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weapon for congestion control. This would increase throughparnd hence better congestion state throughout. This attains load
and decrease delay and message loss in the network. Congedtadancing without any intensive computation based on the state
control is critically important in various real-time resource-exsf the entire tree.
pensive applications in internet and various data applicationdVIMRS has various parameters. If the parameters are properly
and other services like local-area netsork (LAN) emulation ithosen, the scheduling policy becomes computationally simply
ATM ABR services. and needs only local informatidrand not the state of the en-
Load balancing may cause out-of-order delivery of messagtiee network. The parameters can be further adjusted to obtain
Some applications do not need ordered delivery of messages;-delay and low-message-loss characteristics. The parame-
e.g., many audio and video conferencing applications like viers can be modified suitably to give limited priority to selected
[17], vat [33], nv [9], rat [10], and freephone [2] (audio packetfiows. We discuss these in detail later. Finally, we would like
are reordered in the application play out buffer) and workspatepoint out another significant advantage of MMRS. Since the
applications like Wb [36]. Application-level protocols can benessage queue lengths at the source reflect the congestion status
used to enforce a particular delivery order, if necessary. Howf the possible routes and hence that of the session, end-to-end
ever, ATM applications need ordered delivery. So load balancingngestion control measures may be based on this observation.
can be done per session. Besides, out-of-order delivery canTheis, the message queue lengths at the source of the session
reduced by choosing large routing decision intervals, dependigige implicit feedback about the congestion state of the paths
upon the requirement of the application. Load balancing wouldllowed. This is a significant advantage for multicast applica-
increase the number of routing table entries in the routers limns because explicit end-to-end feedbacks often lead to feed-
cause more than one routing tree may be used simultaneoubbgkimplosion Thus, MMRS has various convenient features
however, the network can choose the number of simultaneousligich render it attractive from the implementational point of
active trees depending upon the router memories and a tradedfv.
can be reached. MMRS attains maximum possible throughput in an arbitrary
To do load balancing effectively, the network needs to routeaulticast network. MMRS retains this throughput optimality
message through a tree selected judiciously amongst many pen if the routing and the scheduling decisions are not taken
sible trees. The usual approach is to choose the least total-aary slot but at bounded intervals. Also, as we point out later,
tree among all possible trees between a source and a grouMMRS is flexible and can be tuned to suit the hardware/soft-
destinations. The tree cost is usually the sum of the link costgire limitations of many real-life multicast networks.
and the link costs may be a measure of a number of possible paFhe rest of the paper is organized as follows. We describe the
rameters, e.g., actual or anticipated congestion, error rate, propHticast network model in Section II. Section Il describes the
agation delay, etc. Therefore, computation of a good or rathggneral routing, scheduling and congestion control problem in
near-optimal route based on the total tree cost at reasonably magdticast networks. Section IV describes MMRS in detail. We
ular intervals is computationally expensive if the set of possibtiiscuss some interesting aspects of MMRS in Section V. We
trees is even a moderately large subset of all possible trees. describe our stability criterion for any network in Section VI
We propose a novel routing and scheduling policy whicand prove the maximum throughput property of MMRS in Sec-
retains the benefits of load balancing, yet overcomes the abdiam VII. We prove a necessary condition for stability in a mul-
difficulty. We call this policy the Multipurpose Multicast ticast network in Section VIII.
Routing and Schedulingolicy (MMRS). The routing scheme
takes routing decisions at possibly random, but bounded II. MULTICAST TRANSPORTNETWORK MODEL
intervals and bases the decisionly on the message queue

lengths of the different possible trees at the source node. It The nework is modeled by an arbitrary topology directed

takes routing decisions in favor of the tree with the least quegéa%]c’;] wherefcz v, db; )- kSe"[;/ re||oresents the set og nodfes d
length or rather the least scaled queue length at the source n rg the set of directed links. A multicast session is identifie

The scheduling policy has been so chosen that this quan J?]e p::\:(v ), W?ertev ('js ctjhc? s?urie nOdz of t?_ﬁ Si;g'on
represents the congestion state of the tree. At any link, il IS the group of intended destination nodes. Thererare

\;r%ulticast session@y, /1), ..., (vn, Un). AcollectionZ,, of

scheduling policy gives priority to those sessions which have . ; . o .
the congestiohat the downstreatrbuffers less than that at the eligible multicast trees is prespecified as the trees through which
ssiom traffic can be transportedi/,,| = M,,. Themth tree in

upstream buffer, and does not serve any session at a link if be d ibed b dicat p

the sessions have the downstream buffers more congested ant € 1esfcr| de yanin t'(:afTortlvng? (() e’ﬂf € E),

the corresponding upstream buffer at the link. Thus, any do eret. = 1if edgee is a part ofI7* and. = 0 otherwise.
@ 1 illustrates the model.

stream congestion is eventually reflected at the source no
'e do not impose any particular structurefn 7,, can con-

The source node will soon have a large message queue fo L of all directed t bet dth  of desti
the tree and the routing policy would route messages thrmﬂﬁ or all directed trees between soutgeand the Set of dest-

other trees with less message queue length at the source %tonsU However, this generates huge routing table entries at
e routers in a virtual circuit-like scenario. This is because the
Iintuitively, congestion at a buffer depends on the queue length at the buffer.
More technically, it is some quantity which our scheduling policy uses. We de-3gyy scheduling policy requires the knowledge of the queue lengths at both
scribe our scheduling policy more rigorously later. source and destination of a link whereas the scheduler generally resides at the
2Downstream” here means destination of a link and “upstream” meassurce. We assume that the destination communicates this information to the
source of a link. source. We discuss this in detail later.
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whether this condition guarantees stability in any arbitrary net-
work. A major contribution of this paper is to prove that it is
indeed so, that is, if we allocate the resources as per MMRS, the
necessary condition for system stability with strict inequality,
turns out to be sufficient as well. It is in this sense that MMRS
maximizes throughput. We investigate this issue later.

I1l. ROUTING, SCHEDULING, AND CONGESTIONCONTROL IN
MULTICAST NETWORKS

Sessiom traffic can reach the destinations through one of
the many possible trees if,, e.g., incoming session 1 traffic
can reach its destination via tre&s and?; in Fig. 1. The re-
source-allocation policy decides the appropriate tree. It should
load balancethat is, respond to congestion in the currently ac-

, _ _ _ ~ tive trees and route incoming traffic to relatively lightly loaded
E? é;l‘) T:hezi a{’g g”og}rr)‘“e"tr']%azgssseizsn'oz”i' a;is_sé?:)si "’ng {é zesgs}'g’.” 1iP8ds. Itis also expected to compute the congestion status of the
Here,T, = {T1, T}, T, = {T5, T1}. o R trees efficiently. This is not likely to be the case if the decision

Ty ={(4,2), (4, 5), (5, 9)} , is based on any suitably defined weight of the entire tree as per

? Z }Ef ;3 El’ é; Eé g; (6,5), (6,8), (8, 9)} the discussion in Section I.

= 7,8),(7,0), . .

T, = {(7,8), (8,6), (6,3)} In general, the trees of the same or different sessions would
where(vy, v2) represents the directed edge fremto v2. Note that neither overlap on the links and at most one of them can be served at one
7. nor 7 contains all possible trees for the respective sessions, e.g., time, e.g., tree®} andZ’; overlap on link(7, 8) in Fig. 1. There-

Ts ={(4,3), (3, 1), (1, 2), (4,6), (6, 5),(6, 8), (8, 9)} T oen : . ' A

can also carry session 1 traffic but is not includedfin The indicator vector fore, the resource-allocation policy also decides the trees that
for Ty is (1,1, 1,0,...,0),if (4, 2), (4, 5), (5, 9) correspond to the first should be scheduled in the links. Intuitively, it should “spread
three edges. out” the congestion in the network, i.e., if an upstream node of a

] ) ) . session is heavily congested, while the downstream node is not,
total number of possible multicast trees is considerably larggen traffic from that session should be served on the link. This
and in a virtual circuit-like scenario the packets contain onlyoy|d decrease the congestion in the heavily loaded upstream
route identifiers and the routers need to maintain the lookup {&sde at the expense of increasing the congestion at the lightly
bles for these identifiers. Therefore, it is realistic to assume thghded downstream node.
7,, will be a proper subset of the set of all directed trees. The Another interesting question worth investigating is how often
actual size of this subset should depend on the available roy{et routing and scheduling decisions should be taken. These de-
memories. In a datagram-like scenario, packets contain the gRjons can be taken atintervals of fixed or bounded length. Size
tire path to be followed in the header and the routers need olyinhe decision intervals may or may not depend on the queue
have entries regarding the currently active trees. Thus, a memRiYgths at the nodes.
cons_traint may not forc&,, to be a proper subset of the_ set of 1o the best of our knowledge, there does not exist any gen-
all dlreqted trees. However, th(_are may be qther constraints, €dalized routing and scheduling policy which effectively ad-
all multicast trees may not satisfy the requirements of a sessiffasses the above issues in multicast networks. Some of these
n, e.g., session may demand certain quality of service guarangsyes have been addressed in the unicast scenario in [30]. How-
tees in terms of end-to-end delay bounds and delay jitters. RRfr multicast networks are inherently different from unicast
instance, during a teleconference it is mp_ortant that all part"HEt_vvorks because of “traffic multiplication.” The same unit of
pants hear the speaker around the same time, else the commygtfic s transmitted from a multicast node across various links.
cation lacks the feeling of an interactive face-to-face discussigfys, the traffic flow rate in the network exceeds the arrival rate.
[22]. In high-speed environments, the end-to-end delays depefith issue of routing is also different in the unicast context. We
primarily on the propagation delays, and this rules out certajf)| giscuss the policy we propose in the perspective of existing
trees. ThereforeZ,, can consist of those trees which satisfy thgork in the unicast and broadcast context in Section 1X.
requirements of session or a proper subset thereof. The MMRS addresses all of the above issues in a flexible

Intuitively, the necessary condition for system stability is thghsnner. We describe MMRS in the following section. MMRS
the sum of the traffic arrival rates in all the trees of the same @gnsists of various parameters which can be adjusted to suit the
different sessions passing through a lindoes not exceed the requirements of various networks. Thus MMRS may also be

link capacity, i.e., thought of as a class of routing and scheduling policies rather
N M, than a single policy.
Z Z a7 < (Cy, ..., Cig) (capacity condition)
n=1 m=1 V. MULTIPURPOSEMULTICAST ROUTING AND SCHEDULING

wherea" is the traffic arrival rate in thenth tree of thenth PoLicy (MMRS)
session;{" is the indicator vector for the:th tree of thenth We first present an informal description of MMRS. It takes
session, and’. is the capacity of theth link. It is not obvious routing and scheduling decisions at intervals, the intervals sat-
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Node 3

Multicast Trees

(@)

Link L ,

Link L ,

Link L,

Node 1

Link L,

Node 2

Logical Buffers
(b)

Fig. 2. (a) Segments of multicast tre€s, 7. TreeT; passes through link&,, L., andLs. TreeT, passes through link&,, L., L3, andL,. (b) Logical
buffers at nodes 1 and 2. HetB; (1) is actuallyBr, 1, (t) and B (t) is actually Bz, 21, (t). Similarly, Bs(t) is Bryor,(t), Ba(t) is Bry11,(t), Bs(t) is
BT11L3 (t), Bﬁ(t) is .BTZQL3 (t), andB7(t) is .BTZQL4 (t)

isfy some properties to be described later. The routing decisionWe define some notations here. Every directed edgeG
is to route an incoming sessienrmessage to the tree which hadas an origin vertex(e¢) and a destination vertex(e), e.g.,
the shortest weighted queue length at the origirat the de- o(e;) = 1 andd(e;) = 2in Fig. 1. B, (¢) is the number of
cision instant (ignoring some constant bias terms for the msessiom packets traveling through thenth tree inZ,, waiting
ment). The routing policy for sessionremains valid till the ato(e) at the end of slot (or the beginning of slot + 1) for
next routing decision instant. The scheduling decision in a lirtkaveling tod(e) through linke. The B,,,,,.’s are the backlogs
is to serve the tree which has the maximum difference betweafithe logical buffers. Fig. 2 shows some multicast trees and the
the queue lengths of its upstream buffer weighted by a scalerresponding logical buffers.
factor and a weighted sum of the queue lengths of its down-The logical buffers may not always represent separate
stream buffers, among all the trees with nonempty buffers camemory locations, particularly for the different edges with the
tending for service in the same outgoing link (ignoring someame origin node. The connection between the logical and the
bias terms for the moment), at the decision instant. The schethysical buffers will be discussed at the end of this section.
uling in a link remains the same till the next scheduling decisidfor simplicity, we will refer toB,,,,.(t)'s, m = 1, ..., M,
instant (assuming that the scheduled tree does notempty inbec E, n = 1,..., N as By(¢), B2(t), ..., Bu(t) (.9,
tween). The buffers we have referred to need nophsgsical B;(¢) denotesBr, 11, (¢) in Fig. 2). We assume that there are
buffersbut are rathelogical buffers We explain our conceptof ,_ . . o )

For simplicity, we state MMRS for slotted arrival and service, i.e., consider

|Og'ca| buffersin wht follows. packetized traffic only. It can be easily generalized to more general cases.
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M logical buffers. Also, unless otherwise mentioned, buffers node 1, therD,; = {B4, Bs}. When a session packet
indicate logical buffers. arrives at slot + 1, itis routed to theZ}, (¢ + 1)th tree in7,, and

Note that the packets in the logical buffB; belong to the it arrives at every buffer 0z, (;41),. We updatel;, (¢) at time
same session for every slhtWe denote this session byfi). instantsw?, i.e.,

Also, all packets inB; are physically located at the same vertex
u(2) and will be transmitted through the same liglk). Every arg min << > cpBa (t)) —|—Cm,,> ,
buffer has a predecessor buffer in its multicast tree, except th%ﬁ t41)= 1<m<Mn \\ BL€O,.,, 1)

at the source node of a session. All packets in bufehave al- t+1e{wr}e,
ready traversed its predecesd®y. We denotej by p(i) (pre-

. T,.(t otherwise
decessor of). Also, a packet will move to a set of buffers , n(®); . :
after transmission fronB;. For example, ifey, e, are in the wherec;’s are constants and,,,, is any constant associated

mth tree in7, ), ande;, e are incident fromi(c(i)), then a with themth tree of thenth session. Routing decisions for ses-

packet traversing along theth tree will have to be transmitted sionn are taken at the time instan{s;'};2, . If G, = 0 for

across; ande; fromd(e(¢)) and, hence, must reach buffés all m < L, thelr(l tthe routing decision ta:(en?mbslf _|ts] fcotrouttle
andB,, atd(c(i)) after transmission fronB;, wherep(j,) — a sessiom packet arriving exogeneously at a stah interva

. . . ) . . . . now™ ), to the tree which has the shortest weighted queue
plia) = i,n(ir) = n(ja) = n(i) andu(jy) = u(jr) = die(i)), [ ) ! . : i
c(j1) = e, 1 € {1, 2} Thus, for every buffei;, there exists a lengths atw} at the origin bufferu,. Cy,,,’s are constant bias

set of buffers Z;, such that any packet transmitted from buffeleMs addedt® 5 o cBi(t). We will discuss the signif-

B, reaches every buffer i;, at the end of the transmission'©2N¢€ ofe;'s and 'S later.

. : ) The routing timeqw!*} may be as follows.
time. If themth tree terminates 1), Z; = ¢. . ; ¢
I " ! al(c(i)) ¢ 1) At fixed intervalswy’, | — wy' = 1;.. R1

Example IV.1: Refer to Fig. 2. Herep(1)=n(4)=n(5)=1. 2) Of bounded difference < w?,, —w! < T}, Wl — W]
Also, n(2) =n(3) =n(6) = n(7) = 2. This is because buffersindependent and identically distributed (i.i&d.) R2
By, By, B; carry session 1 packets and the other buffers carry3) Depend on the queue lengths. A routing decision will be
session 2 packets(1) = u(2) = 1, u(3) = --- = u(7) =2, taken for sessiom att + 1 if the weighted queue lengths at
e(1) = e(2) = L1, ¢e(3) = e(4) = Lo, e(5) = e(6) = the origin buffer,u, of the currently active tre€el{,(¢)th tree)
L3, e(7) = Ly. All packets in treel’, move fromB. at node exceeds that of another tree by a certain ameynto,, > 0.
1 to node 2 through’;. All of these packets must be trans-Thatis,t + 1 € {w™}°2;
mitted across., Lz, Ly. Thus, any packet transmitted from. .
By reachesBs, Be, Br. Thus, Z = {Bs, B, Bs}. Also, | ere existsn € My st
p(3) = p(6) = p(7) = 2, since any packet itBs, Bg, By
comes fromB,. Similarly,p(4) = p(5) = 1. Z; = {B4, B;}.

CT,,,(t)n'i‘ Z csz(t) >< Z csz(t)>+Crnn+Qn

Every tree can be described by a sequence of logical buffers B.€0m, 1y B,€O,...
and every bufferB; corresponds to a unique treeTp;). We R3

denote this tree byn(¢). The logical buffers corresponding to__ , L :
different trees are mutually disjoint. This means that a fresh routing decision is not taken for session

Note that, in general, it is not necessary to choose the roﬂi’témt” the currently active tree is “sufficiently” congested, and

immediately after packet arrival. Several routes may overlaptﬁﬂe congestion is reflected in the queue lengths at the origin. In

the first few links, and it is possible to defer the routing decisioti!S CaSe, routing decision always brings about a change in the

to the point where the routes diverge. Also, it is possible to efUrrently active tree. . "

vision a policy which allows route changes even after a packet(NOt€ that R1 is a subset of R2, we mention it explicitly to

is on its way. However, the routing policy we propose choos8$nlight its importance.)

the route of a packet immediately after the packet arrival andExample 1V.2: Refer to Fig. 2. Now let botl; and7; be

does not allow intermediate changes. We show that this simglgssion 1 trees numbered 1 and 2, respectively. (Note that in

policy maximizes the overall throughput. this case tree$; andZ> must have the same source and desti-
The routing policy can be described as follows. For sinhations. The figure only shows portionsBfand7:, and hence

plicity, let the trees be denoted by integers, i, is a subset it appears that they have different destination sets.) Let node 1

of integers. The routing vectdr,(¢) is defined as be the source of session 1. Hen€g; = {B;}, 02 = {Bs}.

L) = (Tu(t), ..., Tn (D)), 1< To(t) < M. !_et 1= ¢ = 1, Cyy = Ca =0. L_et Fig. 2 show 'Fhe buffers
Here, all packets of sessianarriving exogeneously at time Just plrlor tow, (a r°“‘”}9 decision instant for sessuIJIn 1) Here,
are routed to tre@,(¢). Let O, be the set of buffers of the | 1(wlb _11) =9 ?Q(twb—_ll)E: h.Letg < li Forkatt 'ﬂ.'?{
mth tree of7,, atv,,, the source node of sessiani.e., (.erva'[w.,/, Wept), 1 it 3 = - EVETY SessIon L packetwhich ar-

rives in intervallw;, w;,, ) is routed to tred?. A fresh routing

Opmn = {Bizn(i) = n, m(i) = m, u(i) = v, }. decision is taken abl, ;. If By(wl,; — 1) > Ba(wl, — 1),
Consider Fig. 2. Lefl3, 7> be the first trees of the respectivel:(¢) = 2 andTi(t) = 1if Bi(w, — 1) < Ba(wiyy — 1),

sessions. Let node 1 be the source nodes of both sessions 1 and . n o I L
. _ . Wy —w,1i.d. V. We donotneed,”}, —w. to be identically distributed
2.Here0Oy; = {B1}andO;, = {Bz}. SetO,,,,, may consist of asw'?, —w,". We also allow dependence among the residual tinjés — ¢

multiple buffers, e.g., iff; had originated from node 2 insteacandw2, —t, ¥ n1, ns, wherew <t < wi't, andw!? <t < wl'?,.
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wiy <t < wh, IfTi(t) = 2att = wl; thenallnew  The scheduling decisions for linkare taken at the time in-
packets of session 1 are routedZfotill the next routing deci- stants{$2¢}°°,. The scheduling decision is to choose a buffer
sion is made, else all new packets are still route@itoNote B; which has maximunD; + [; at{2, amongst all the buffers
that73 (¢) always changes value at the routing decision instantgynempty at2, and contending for service from outgoing link
if the routing decision intervals follow property (R3). Ingenerak. If D;(Q¢) + [;(2¢) > 0, ¢ € S., then the scheduling de-
all session 1 packets arrivingfi; , w!,,) are routed to tre@;  cision is to serve a packet from; at each slot in the in-

iff c;g+C11 < th+021 A fresh decision is taken a;t}+1 on terval [, Qf, ) unlessB; becomes empty at sontein the
the basis ot; B (wl,; — 1)+ Ciy andey Ba(wly; — 1)+ Cor.  interval (€2, ¢, ;). If B; becomes empty at sonten the in-

. terval(Q¢, Q¢ ), thenthe link idles till the next scheduling slot
Next, we des.crr]'zbwe the scheduling. ﬁgmit 1|) ISthe acti- o if Dy(Q) +1,(2) < 0, then the link idles during the en-
vation vector wit components, at the4- 1th slot tire scheduling decision intervi¢, Q¢ ).

1, if a packet fromB; is served at(¢) Like the routing timeqw? }, the scheduling time§2¢ } may
Ei(t+1) = atslott + 1 be as follows.
0 therwi 1) Atfixed intervalsQy, , — €y =15. S1
,  OIerwise. 2) Of bounded dlﬁereanLH O <T5,Q7,,—Q7 1.1.d.S2
In other words E; (¢ + 1) = 1 iff the 4th buffer is scheduled for ~ 3) Depend on th; +I;s,i€ S.. S3

packet transmission througky) at the(¢+ 1)th slot. If Z; # ¢,
this packet reaches every bufferif, and also a destination if
d(e(i)) is a destination of session If Z; = ¢, thend(e(¥))
is in U,,(;y and the packet reaches its destination. We upfate pe(t) = arg max (D;(t) + [;(2))
at time instant€2¢, ¢ € E. Let P.(t) be the set of nonempty el
buffers whose packets have to be transmitted acrose lins A scheduling decision is taken for linkat the beginning of slot
in slott. Thus,P.(t + 1) = {B;: e(i) = e, B;(t) > 0} t + 1 if any of the following conditions is satisfied.

) a) Currently scheduled buffer hak +1; sufﬁciently less than

Di(t+1) =aBi(t) - Z abi(t),  t=1.... M  hat of some other contending buffé & 1)(t) =

Je(t) = argmax E;(t)
1S,

By€Z;
sc(t+1) =arg g X 1)(li(t+1)+Di(t+1)), Dj.iy(t+ 1)+l +1)
i Bi el (t+
it P (t 1 1) 7£ ¢ S Dpe(t-l—l)(t + 1) + lpe(t—l—l)(t + 1) — Gel- S3a
se(t+1) =—1 if P(t+1) = ¢. b) The D; + I; of the currently scheduled buffer becomes
¢ ’ ¢ sufficiently negativeE;_,(t) = 1
Hereé D;(t) is the difference between the queue length of buffer
( ) q 9 Dje(t)(t + 1) + lje(t)(t + 1) < —Gea. S3b

1 weighted by a scale factor and a weighted sum of the queue
lengths of the destination buffers of bufteat the beginning of  ¢) The link is currently idle but thé); 4-1; of some nonempty
slot £. Term!; can be interpreted as A dependent or a con- buffer which can possibly be served by the link becomes suffi-
stant bias added t®;. We indicate this by defining;(t + 1) ciently positive
asl;(t+1) = g B(t)), where B(t) is defined asB(t) =
(Bl((t), ), BM!(] ;) (a?l’)ldgz is anISIC)tIOI’] fromRM to R(. %yp- Ejcwy()) =0 Dperny(t+D)+p 41 (E+1) Z o5 S3¢
icaﬂy, allgi(g)'s would be constants. We will discuss the use af,;, <., <.s are prespecified positive real numbers. Again, in-
g;(b)’s in Section V. LetS, = {i: e(i) = ¢, 1 < i < M} (the formally this means that a scheduling decision is not taken for a
set of buffers contending for service from link For example, link till the last scheduling decision becomes “too bad” for the
Sr, = {1, 2}, Sr, = {7} in Example IV.1. current state of the network.

Ift+1e{Q}2,,ie€ s, (Note that S1 is a subset of S2.)

1, i = st + 1), We explain the scheduling policy with an example.

E(t+1)= L(t+1)+Di(t+1) >0 ) ExampleT IV.3: Let Fig. 2 show th'e buffers just prior @/
(a scheduling decision instant for link; ).

0, otherwise.
Bk —1)=g

fFt+1¢{Q}2, icS.

B(QFr —1)=h
E(t), DB;t) >0, 1 ;
Ei(t+1)2{ ®) ®) _ ©) Byt —1)=j+1
0, otherwise. Bu(@" — 1) =p+1
A packet is transmitted across linki) € E, at slott + 1, if Bs(QF — 1) =g+1
E;(t +1) = 1, for someB;, such that(i) = ¢, else the link Be(Ql _
. . . : . (-1 =1+1
idles, i.e., no packet is transmitted across the link. v
B7(QL ! ) m + 1.

8We had used the term “congestion” at a buffer in Section | rather loosely. The
terme; B;(t) + 1:(t) can be thought of as a measure of “congestion” (as usdcet ¢; = 1 andg; (b ) =0V, ie,l;(t) =0, forallg, ¢.
in Section 1) at logical buffeB; whenB,; is considered as the source buffer of
a link andc; B; (t) as the measure when it is considered as a destination buffer. Dl(QL‘l) =g—-p—q—2
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Dy Y =h—j—1—m—3. L,

Letp=g=j=Il=m=1,9=5h=28.Thus,

DY+ (@) =1 pointer
and

k-1 k-j
DQ(QLLI) + lQ(QLLl) =2. [T [ | JI pointer ) L,
k k-m

Thus, the scheduling decision is to serve a packet figymin
every slot till the next scheduling decision instant assumir poiter

that B, does not empty in between. B, empties in between,
then L idles till the next scheduling decision instant. Now le
g=h=1.BothD; (/) +1,(Q/1) and D> (/1) + 1(Q/)
are negative and hendg idles till the next scheduling instant, L,

independent of théD; + I;'s in between. Now let; (b) = 4,

g2(b) = 0. In both cases, the scheduling decision is to serve g 3- A physical buffer storing; packets at Node 2 of Fig. 2.

packet fromB; in every slot till the next scheduling decision in-

stantassuming th&t; does not empty in between.Ji; empties Packets reach Node 2 via tréEsand. The node can simul-

in between, then agaih; idles till the next scheduling decisiontaneously transmit d» packet intoL, and a7y packet into
instant. This change in the bias tega(b) gives limited priority Ls. Both packets reach Node 2 via link . The packets can

to session 1in linkl;. Againifp = ¢ = j = [ = m = 1, be queued at the input or at the output of the node or queued in
g=>5h=238, gi(l_;) = 0Vi butey = e = ¢; = 3 and a shared memory mode. The physical buffers are the memory
es =c3 =cg = 7 = 1, then locations which store these packets. The relation between the
I . physical buffers and the logical buffers depend upon whether
Di(@7) + (@) =3 the packets are input queued or output queued or stored in a
Dy (QF) +1,(QF) = 2. shared memory mode.

Thus, the scheduling decision is taken in favoiht e If the packets are input queued, then the packets are repli-

cated (if at all) only when they are transmitted to the output.

Informally speakmg, MMRS attalns_ the maximum throughThere is a single physical buffer at each node for storing all
put for any arbitrary network (the precise technical statement is

given in Section VI). We prove this in Section VII. packets (one copy each) of a tree traveling through the node.

Whenever a packet arrives at a node (not necessarily e>l<JOD—On arrival, only a single copy of the packet is stored in the

geneously) the node must know the logical bufféss (or node. Replication coincides with transmission to the outputs.

B,y.’S) to which the packet belongs. This is necessary to keTh|s mode of replication is known agplication-at-sending

track of theB, (¢)’s. Thus, the packet header must contain inforﬁQAs) [4]. A packet remains in the buffer till it has been trans-

mation specifying its session and the tree it has been routedrp&ted across all the necessary links originating from the same

Every node may know the outgoing links of every tree traversi;;gzg]e' Each link uses a pointer to keeps track of the number of
e
0

. . . ; . . kets of each tree waiting for transmission. The pointer points
it. This happens if there is a connection setup phase associ : ; ) )

. S N X o . e first packet it needs to transmit and moves the pointer to
with every session initiation, like in a virtual-circuit scenario. IQhe
this case, the packet header just contains a number identify
the tree and the node determines the next hop edges of the pal
using its lookup table and the identifier in the packet header.Example IV.4: Fig. 3 shows the physical buffer at Node 2 for
The logical buffers can be uniquely identified once the next hageT; of Fig. 2. It currently has packets numberedy, ..., k.
links are known. In a datagram-like scenario, there is no coAH of them must be transmitted across lidik. Link L., main-
nection establishment process. Thus, the nodes do not netaiss a pointer at the first packet waiting for transmission, packet
sarily know the outgoing links of the trees passing through theim— 5. Link L3 has transmitted packets— j, ..., &k — 1 — 1.
The packet header must contain explicit information about thiehas to transmit packefs— [ to 4. So it maintains a pointer at
edge sequences of the tree in addition to the tree and the sestiek — /th packet. SimilarlyL, has already transmitted packets
number. Immediately after the packet arrives exogeneously itis- j, ..., k—m—1 but needs to transmit packéts - m to k. It
routed to a tree as per the last routing decision and the neces$mya pointer at thie — mth packet. Fig. 2 shows the contents of
information is incorporated in the packet header. The necesstrg separate logical buffers for this tree at Nodé32,(Bs, and
information includes the tree and the session humbers but mfay). Fig. 2 indicates that the + 1th and subsequent packets of
or may not contain the explicit tree path depending on wheth&s are still waiting at Node 1 for transmission across Lk
the nodes know the tree paths or not. to Node 2.

We end this section with a brief discussion on the relation be-

tween the physical and the logical buffers. A node is a munr')_uffer gueue lengths can be mathematically related as follows.

input multi-output multlgast_swnc_h with the ab|I|t)_/ to Serve Ex: be the set of outgoing links of treE at nodei, e.g.,
packets to several outgoing links simultaneously. Fig. 2 shows a

node, Node 2, with one incoming link and three outgoing links. 7Replication occurs only when the corresponding tree forks at the node.

th next packet when the first is transmitted. These numbers are
8[(%%isely the logical buffer queue lengtBs, .. (¢)'s.

For input queued switches, the physical and the logical
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Ero = {Ls, L3}, Ery1 = {L1}, Enyo = {Ls, L3, L4} in it takes routing and scheduling decisions based on local infor-
Fig. 2. Let physical buffet, store packets of tre& of session mation only. The routing decisions depend on the congestion at
n at node: and X, (¢) be the number of packets in the physicathe source node and do not consider the congestion in the en-
buffer » by the end of slot (or the beginning of slot + 1). tire tree. The intuition is that the queue lengths at the source
Then, X, (t) = maxccp,., Brn.(t). node reflect the congestion in the entire tree on account of the

Example IV.5: Refer to Figs. 2 and 3. Fir. 3 shows the phyﬁk_)ack-pressure-based scheduling. The scheduling decision for a

. . ; ink depends only on the queue lengths at the source and the des-

gﬁ;s?gglegusf;g?%%;idf ’pZiizltc;rJlBi E:g?eff;:c?g?ségh%nation of the link (assuming that the bias functiopéb) de-

hasl + 1 packets, and3; hasm + 1 packets (refer to Example pend only on the local queue Iengﬂ): Normally, the schedulgr

IV.4), wherej > l, S m/From Figs. 2 and 3 is Iocate_d at_the source node of the link. Therefore, congestion at
o ' ' the destination of the link must be communicated to the source
Er,o ={Ls, L3, L4} of the link. However, it is sufficient to communicate the sched-

X.(¢) = max(Bs(t), Bs(t), Br(t)) = j + 1. uling decisions of the link destination to the link source, and

then the source of the link can recursively compute the queue

Packets traveling along different trees must occupy differefaingths at the destination. Scheduling decisions can be commu-
memory locations. We assume that buffers are large and thgfgated using only a limited number of bits.

is no packet I_oss. In this case, th_ere is no esse_ntial differenc RS is computationally efficient (assuming that the bias

b_etween storl_ng the packets of different trees in the Same_feﬁctionSgi(E) are easy to compute).

different ph)_/smal buffers. Thus, we assume separate physicalymRs is adaptive as it does not assume any information
buffers for different trees at each node without any loss of gegoyt the arrival and service statistics. We have proved the
erality. throughput optimality for a class of arrival and service pro-

o If the packets are output queued, then every outgoing lifesses (Markov modulated arrival, and service duration one
has a separate physical buffer. Recall at,. (t) is the number slot for each packet). However, these assumptions are not
of sessiom, treem packets output queued at the outgoing linkequired for the implementation of the policy, and we believe
¢ of nodeo(e) at the end of slot. If physical bufferu stores the that the throughput optimality holds for more general arrival
packets output queued atthenX,,(t) = 3 B,....(t), where and service processes.
the summation is over all trees of all sessions: which pass ~ The queue lengths at the source node reflect the congestion
through linke. Note that here packets are replicated (again repfitatus in the entire tree on account of the back-pressure-based
cation occurs if the corresponding tree forks at the node) imneheduling. Thus, end-to-end congestion control schemes may
diately upon arrival and subsequently transmitted to the outgft applied based on the queue lengths at the source node, e.g.,
queue. This mode of replication is known mplication-at-re- if the queue lengths are high then the source may be asked to
ceiving(RAR) [4]. slow down. For instance, if the source is a video source, then

the quantization may be made coarse when these queue lengths

* The node may be a shared memory switch with the mematy e 5 certain threshold, and the encoding scheme can revert

fully shared between all queues. There is only a single physi¢gl, fine_grained quantization when the queue lengths fall below

buffer for each tree at each node. Replication can be RAR Ot rain threshold. Thus, the queue lengths at the source node
RAS. In the former, a multicast packet is physically replicateg, o\ ijeimplicit feedbackas to the congestion state of the net-

in front of the shared buffer, the multiple copies of the packgl,k The congestion propagates to the source node after some
are stored in the buffer, each copy of the packet is queued tillit,o bt any explicit feedback will also take time to reach the
is served by its requisite link. The RAR scheme has been u

X i - rce node, particularly if the network is large. Besides, usage
in seyeral shared-memory multicast ATM switches [13]. Let they explicit feedback often gives rise to the problenfeddback
physical bufferw store the packets at node implosionin the multicast scenario [34]. This solution of im-
Xo(t) = Z Bi(t). plicit feedback is inhereﬂtly scalable. This im.pl.icit feedback
may not be able to substitute the need for explicit feedback en-

In the | RAS ingle | ¢ th " ktirely, but can be used in conjunction, so that much more infre-
n the latter ( ), a single instance of the multicast pac Lent explicit feedback will suffice.

is stored in the buffer and is physically replicated only as it | It is not clear whether we need global information and/or in-
transmitted to the respective output link. The RAS scheme hf%

. . Pmation regarding statistics of the arrival and service for the
been recently adopted in shared-memory switches [25]. NoV\fouting and scheduling decisions, if the objective is to optimize

Xo(t) = Z max Bry,.(t) other performance considerations like delay, packet loss, etc.
Toy CCETw MMRS optimizes throughput, but we do not know whether it
optimizes other performance metrics or not. MMRS is actually
a class of policies. The exact policy depends on the choice of the
parameters. All of these individual policies attain the optimum
throughput, but the choice of the parameters is likely to have
an impact on other performance considerations. The complete
We present some attractive features of MMRS in this sectiocharacterization of the parameter values for delay and loss guar-
First, MMRS attains globally optimum throughput even thoughntees for general networks is an interesting research issue by

i u(d)=w

whereV = |JY_, 7,,, Er, is the set of outgoing links of treB
at nodew, andnr is the session corresponding to ttEe

V. DISCUSSION
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itself, and a topic for future research. However, we provide sordecision intervals is that some unnecessary decision changes
general guidelines from our initial research in this direction. are avoided, and some necessary decision changes are made.
One can use the's to give limited priority to some sessionsi.e., a fresh routing/scheduling decision is taken only when
over others without affecting the throughput. Increasing:tte the current decision becomes “unacceptably bad.” This is a
for a session over others decreases the delay of the packetsigiificant advantage when there is a cost associated with
the session at the expense of a greater delay experienced bycttenging the current routing or scheduling decision. The
packets of other sessions. Thus, one would expectfeego tradeoff between the frequency of decision changes and overall
be higher for real-time sessions like audio, video, and possildystem performance can be controlled through the parameters
for applications which fetch greater revenue. Alss,canserve g,,n = 1,..., N, andg;, ¢ = 1--- M. The disadvantage of
the same purpose, i.e., give limited priority to sessions over eabls approach is that a computation must be performed every
other. slot, whereas the computation is performed once every interval
One can use th€,,,,’s to give limited priority to some trees for queue-length-independent intervals.
of a sessiom over some other trees in the routing decision. A We have specified a general approach so far. However, ap-
multicast treen of sessiom may not be a desirable route forplication-specific modifications may be necessary in particular
a session for various reasons, e.g., it may be very long theraiages. For example, all packets of the same session must follow
incurring a large propagation delay. Typically, the network maye same route for ATM networks. In this case, the routing deci-
want to use it only when other trees of the session are signgion for a session should be taken only when the session arrives.
cantly congested. This purpose can be achieved by setting a hidie decision would be to choose from a list of potential trees for
value of C,,,,, for the tree, so tha} B,cO,. ¢; Bi(t) + Cny  the same source and destinations. Normally, there are a large
is the minimum among all trees of sessiononly when other number of sessions between the same source and destinations.
trees have high congestion. Manipulation of th's can serve So the routing decision would depend on the source congestion
the same purpose, but this affects the scheduling as well. Thethe existing sessions between the same source and destina-
choice of theC,,,,’s do not affect the scheduling decision. tions. If there is no other session between the same source and
The parameters; andgi(g) can be suitably modified to re- destination, then the routing decision would be to choose any
duce packet loss, if necessary. If memory size is small attrae among the available ones. Also, for broadcast sessions, the
node as compared to its neighbors thendf and!/;’s corre- tree must be a spanning tree, and there are efficient algorithms
sponding to the logical buffers at the node (e.qg., logical buffefsr computing the minimum-weight spanning tree, unlike that
B3, Bg, B7 correspond to Node 2 in Fig. 2) can be set highdor minimum-weight multicast trees which is an NP-complete
than the corresponding ones at the neighboring nodes. Thusblem (Steiner problem). In this case, a better strategy would
the scaled queue lengths B;(t) + I;'s) of the corresponding be to compute the minimum-weight spanning tree periodically
logical buffers would be high even if the actual queue lengtland route packets along the current minimum-weight spanning
B;(t)’s are not so high. The links bringing packets to the nodeee. The scheduling policy remains the same in all these cases.
would idle frequently and the links serving packets from the
node would idle rarely. The queue length at the node would be
small at the expense of larger queue lengths at its neighbors.
This would reduce the overall packet loss. Intuitively, the concept of stability of a queueing system is
We would like to mention in this context that the parametemssociated with the queue length process apliysical buffers
affect the relative delay and loss performances among differéhuffers corresponding to actual storage locations). Again,
sessions. However, if absolute guarantees are required, then®g¢t) is the number of packets in a physical bufieby the
mission control and quality of service negotiation must be usedd of slot¢ (or the beginning of slot + 1). We define the
in conjunction with MMRS. For example, if the arrival rates argystem to be stable if there exists a family of random vectors,
high for all sessions, then all sessions suffer large delays, ali§*#) i =0, ..., P—1,j =0,...,Q — 1, EX®9 < o0,
the system cannot offer tight delay guarantees. However, if &, 7, P, @ finite, such that{ X (¢)} 72, can be partitioned into
mission control is used to regulate the number of sessions apdsubsequencesX (tQ + 6)}:2,, 0 = 0, ..., Q — 1, and
their individual arrival rates, then this situation would not ariseX (1@ + 6) converges weakly to a random vecfofi: (7+6)%Q)
The routing and scheduling decisions can be taken evewpere(i, j) are uniquely specified given thaitial phase of
slot or at intervals. We examine the pros and cons of bathe system % is the modulo operator). Thehaseof the
approaches. Initially, assume that the decisions do not depaydtem should contain some information not contained in
on queue lengths. There is a communication and computatibe queue lengths at the physical or the logical buffers. The
overhead associated with each decision, and taking decisieract definition of the phase depends on the particular routing
at intervals means that the overhead is once per intereald scheduling policy. For example, the phase of the system
and not once every slot. Also, taking the routing decision abuld be the residual times for the next routing and scheduling
intervals reduce the out-of-order delivery at the endpoints. Thecisions for MMRS with the routing and scheduling decision
advantage of taking decisions every slot is that the decisioriervals satisfying R2 and S2, respectively. In that case, the
optimality is maintained every slot, whereas decisions devidtetial phase (phase at = 0) indicates the residual times
from the optimal ones if the decision intervals are large, arfidr the first routing and scheduling decisions, and given this
as a result there is more end-to-end delay for large decisioformation,(i, 5) should be known uniquely. If the routing and
intervals. The advantage of using queue-length-dependeaheduling decision intervals follow R1, R3, S1, and S3, then

VI. FORMAL THROUGHPUTPROPERTIES OFMMRS
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the residual times for the next routing and scheduling decisiotiee necessary condition for stability for all practical purposes.
can be determined from the logical buffer queue lengths amdchnically speaking, if an arrival rate vectes, . .., ay) sat-
hence the system does not have any pHdse= @ = 1), isfies the necessary condition for stability, then MMRS renders
i.e., {X(#)}2, converges weakly to a random vect8r with the system stable for any arrival vectar;, —«, ..., ay — ¢),

EX < co. The “initial phase” determines the random vectofor any arbitrarily smalk. Quite possibly, MMRS renders the
the queue lengths converge to (convergence in distributiosystem stable for arrival vectdr, ..., ay) itself (that is, if
The proof for Lemma 1 indicates the significance of the initiat satisfies the capacity condition with strict inequality). Thus,
phase. The intuition behind this definition is that we generalMMRS is throughput optimal for all practical purposes.
consider a system to be stable, as long as the physical buffers

do not “blow up” and this does not happenif(¢) converges VII. PROOF OFTHROUGHPUTOPTIMALITY OF MMRS

weakly to one of finitely many finite mean random vectors and

hence those systems should be considered stable. The particul);{ye make the following assumptions for the purpose of anal-

random vectorX (t) converges to (in distribution), should b@é >S<I§ :‘nrggilsail?% Sz:xlfj strr?a;:r?t;[)efd.aii(:h S“}C‘SS;S” r\]/\?r?elrt: own
uniguely determined from some initial phase of the system. 9 T packets, (1)},

The stability condition can be expressed in terms of Iogicﬁ"(? 'i tr}? nl\.lfmb(tar [(? s.essmm-p?cke.tst amwpg InIhSk,)At
buffer queue lengths as follows. Refer to the discussion at é(t). ed ."’S ”][ ’ VT IS ahp03| :llet It? egerd c:r am. t's
end of Section IV describing the relation between the physic@len loned In section Vi, €ach packet has a deterministic ser-

buffer and logical buffer queue lengths. It follows that, if therd c¢ M€ equal to one unit. Note that the dependence between
exists a family of random vector&(9) i = 0, ... P — 1 A, (t) andA,,, (¢) has not been ruled out for amy # n.. We
j =0 O —1, EB@D < o, Vi, j, P ’Q fir’1ite ana have discussed the generalizations of these assumptions toward

= o ) the end of this section.
B(t)}2 b tit d int b X .
{B(t)}i2o can be partitioned int@ subsequences Let the arrival rate vector be feasible and let MMRS be fol-

lowed. We also assume certain properties:;&$ and gf,(l?)’s.
¢; > 0Vi.g/s can be any arbitrary function fro™ to R

satisfying the following property:

20,

cb

{g(tQ+9)}§07 9:07"'7Q_1

such thatB(tQ + §) converges weakly to a random vector

M

> b (5)

=1

B G+O%Q) ie{0,...,P-1},je€{0,...,Q -1}

lim =0, Vi where cb|| =

|leb]] — o0

i, j are uniquely determined given the initial phase of the
system, then the system is stable.

Let a,, be the expected number of sessiopackets arriving
inaslot. We callay, a2, ..., ax) the arrival rate vector. Infor-
mally speaking, throughput is the traffic carried by the syste

Note that a large class gf’s satisfies the above property, e.g.,
any bounded functiop, any linear function of/b1, ..., vbas,
etc. LetA;(t) be the number of exogeneous packet arrivals at

A system is said to “carry” a traffic if it is stable under the * at slott
traffic. We denote the arrival rate vector as the throughput of the . An(t), if B; € Or, (tyn(s)
system if it is stable. If the system is not stable, then throughput Ai(t) = { 0 otherwise

becomes meaningless, and can be arbitrarily defined a8 the
vector. We call an arrival rate vector feasible if for each sessiqme routing matrixk can be represented as follows:
n the total traffica,, can be split into portions”, a* > 0,

n

m=1,..., M,,and_»" a7 = a,, whereM,, is the total -1, a=b

number of treesid,, anda*, m =1, ..., M,,n=1, ..., N Ry, = 1, a€ 7,

satisfies the capacity condition with strict inequality. Intuitively, .

a is the amount of traffic routed through treein 7,. 0, otherwise.

We assume that each packet has a deterministic service time B(t+1)=B@t)+ RE(t+1)+ At +1). (6)

equal to one slot at each link. In that case, an arrival rate vector

is feasible if Initially assume that the routing policy satisfies either R1 or
N M, R2 and the scheduling policy satisfies either S1 or S2. We will
Z Z am T < (1, 1), 4) discuss the case for other routing and scheduling policies toward

the end of this section. The residual time for the next scheduling
decision at linke, =Z.(¢) can be expressed as(t) = Q;,, —t,
7" is the indicator vector of thenth tree inZ,,. MMRS renders  where(2; < ¢ < Q7. The residual time for the next routing
the system stable for every feasible arrival rate vector. We prodecision for thenth sessiorg,, (¢) can be described & (t) =
this in the next section. wiyy —t, wherew <t < wly,;. Both¢, () and=.(t) take

We shall prove in Section VIII that the system is not stablealues in a finite set. .
if the arrival rate for session (a,,) cannot be splitin portions  LetY (¢) = (B(t), E(t), T'(t), Z(t), £(t)). The phase of the
a™ such that thes™'s satisfy the capacity condition stated insystem igZ(t), £(t)). It contains some information not ifi(#)
Section Il. This gives the necessary condition for stability. THer any¢. The main result of this section is contained in The-
condition for feasibility of an arrival rate vector is the same asrem 1 stated as follows.

n=1 m=1
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Theorem 1'There exists random vectols®:D, k. = 0, (E(t+1), £(t+1)) € Ci, j+1)%q), With probability (Wp)l It
1,..,P-1,1=0,1,...,Q—1, EB®) < such that follows that' can be partitioned int@b, ..., Xp_1, Y (t) € X;
given (2(0), 5(0)) iff (2(¢),£(t)) € Ci. SinceC;'s are closed communication

1 00 . classes and the stafé = 0 is reachable from any = B, it
B(t 1 1=0,1, ... -1 '
{BEQ+ D} zo, ' @ follows that &; consists of only one closed communication
converges weakly td3*: (“”)%Q) k l unlquely known given class accessibidrom every state and has periodicifyfor all

(2(0), 5( N, k=01, l_ 0,1,...,Q—1 <. The per|od|C|ty classes of; arex(;, oy, - - - , X(s, o—1), Where
We prove the above theorem toward the end of this SeCtIXI{t A,y 1ff (2 ( ); 5( ) €Ca,j)- Let
using Proposition 1 and Lemmas 1 and 2 stated in what follows. I(t) =1 L.
N ff (2(1), 1)) €Cum).
Proposition 1: LetY (¢) be an aperiodic discrete-time count- J(t)=m } ( (1), & )) tm

able state Markov chain with state spateand a single closed Hence the lemma is proved. 0
communication class accessible from all states. If there exists

real nonnegative funCtIOI’tSl( i), $2(7) such thaip, (¢) > 1, Proof of Theorem 1:It follows from Lemmas 1 and 2
¢2(%) finite for all 7 € X and and Proposition 1 that there exists random vecfars® 01,
EY®D < o0, k € {0, .. —-1},1e€e{0,...,Q -1}

(‘7)2 ( (t+1 )/Y )< ¢2(§)—P1(9), VGE A" such that given(= (0) ( )) {Y(tQ + i)}, converges

in distribution to a random vectory ((0): (J(O)J”)%Q)
where A is a finite subset of¥, then {(Y(t )}i2o converges E¢y (YU, JO+D%Q)) < 0. Since

weakly to a random vectdr, such thatE¢, (Y) < co.

This proposition has been stated in a manner appropriate to Y(t) = (B), B(), T(#), =(¢), £(1)
our context. It follows from a theorem in [18] which we describgiven (£(0), £(0)), {B(tQ + )32, converges in distribution

in Appendix I1. Basically, it states that if a “negative drift conto a random vectaB(9). (J()+0%Q) 1(0) € {0, ..., P—1},
dition” (stated in Lemma 2) holds, then the system is stable. .j(0) € {0, ..., @ — 1}. We used function
Lemma 1: Given(Z(0), £(0)), {Y (tQ +i)}20,i =0, ..., B v
@ — 1, is a discrete-time countable state aperiodic Markov ¢1(#) = max | 1 2A ZZ L Gl
chain with state spaoﬁ(,(o) T O+)%Q)- Here,(1(0), J(0))is ’ ’ K

uniquely known given(=(0), £(0)). Also, X(1(0), (J(0)+)%Q)
has a single closed communication class fot &b), .J(0)), .
This class is accessible from all statestiny o), (7(0)+i)%q)-

k>1,N >0 are constants;;’s are strictly positive con-
stants. Thus Eg, (V- (/O+DEQ)) - < o0 implies that
EBU©), (JO)+)7Q) « . Hence the result follows. O

We prove this lemma later in this section. ) ] o ]
If the routing policy satisfies either R1 or R2 and the sched-

Lemma 2 (Negative Drift Condition)There exists real non- u|ing po||Cy satisfies 83' then the Markov chain
negative functlons/n( i), ¢2(%) such thatp (§) = 1, ¢2(%) . . S L
finite for all 7 € X, and Y(t) = (B(1), E(1), ['(?), £(1)

E(po(Y ((t +1)Q + L))/y(tQ +14) = 7) < $2(F) — ¢1 (), represents the system. If the routing policy satisfies R3 and the
Ve A scheduling policy satisfies either S1 or S2, then the Markov

chain
where A is a finite subset oft’. . . . . .
. . . . : Y(t) = (B(t), £(t), I'(t). E(t))
emma 2 is crucial to the proof of our main result of this
section, that s, the throughput optimality of MMRS. We call thisepresents the system. Finally, if the routing policy satisfies R3
lemma the negative drift condition, because it proves that foraad the scheduling policy satisfies S3, the Markov chain
large number of’’s, the expected conditional drift of a function - ~ Lo
$2(Y) is bounded above by a functiong, (Y) with negative Y (1) = (B(®), E(®), I'(t))

values. We prove this negative drift condition in Appendix I. represents the system. In the first two cases, Lemma 1 holds

Proof of Lemma 1:Y'(¢), (Z(t), £(t)) are discrete-time With the periodicity determined by that oft) and_( ), respec-
countable state Markov chains with state spateand tively. The phase of the system is determinectby) and=(¢)
C, respectively. We assume th& can be partitioned in accordingly. In the last case, the Markovchh’(t) is aperiodic
Co, ..., Cp_1, such that theZ;’s are closed communication and has a single closed communication class accessible from all
classes of periodicity). This is a fairly general assumptionstates, i.e.q) = P = 1. Thus, Lemma 1 holds in this case as

on the structure ofC which incorporates the cases whenvell. As will be discussed in the Appendix |, Lemma 2 holds

{2.(t )}IEII, {ﬁn( )IN_’'s are mutually mdependent andin all these cases. Thus, Theorem 1 holds in all these cases as

the Z.(¢)’s and £, (¢)’s, e.g., a subset dE.(¢)'s, £.(t)'s are generallzes Also, the proof of stability for feasible arrival rate

always equal, etc. Thus;; can be partltloned in periodiCity  sp sets is accessible from a stai if Pr(Y () € §/T(0) = F) > 0, for
classe<(; ), ..., Ci, g—1), such that if = =(t), £(1)) € C(i,j), somet.
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vector holds even if the maximum number of exogeneous ar-We first introduce certain notation we use throughout. The

rivals per slot is unbounded, if the routing policy satisfies R@ector f = (f1, ..., fa) will be denoted as buffer discharge

and the scheduling policy satisfies S3 or the routing and schesctor. Avalid buffer discharge vector is one in whigh > 0,

uling decisions are taken every slot. Eicse fi < 1. SetS. as defined before to be the set of buffers
Finally, we made some statistical assumptions in the begsharing the same outgoing liekLet F" be the set of valid buffer

ning of this section. However, these assumptions are not cdischarge vectors. The vector

ical to the results. We have proved the throughput optimality of 5 — (41 alt ak ... adt L M)

: ) . g 1y oo , G5y v y ey ANy ooy A
MMRS for more generalized arrival process in technical report. . " m
will be denotedree arrival rate vectorIntuitively, a]* denotes

F{Z:] .(;I;?Sore vivse;IS\/ls;rrEg\(/j rt:::jLETaete%rrer(i)lcgrsosceliStEijg iesslonthe arrival rate to the:th tree of the:th session. However, tech-
nAr/ =1 P : ase, nically speaking we are not assuming thgt is the long-term

is the expectation ofi,,(¢) under the stationary distribution of . :
the underlying Markov proces&(t). We showed that if the ar- rate of arrival of packets to thath tree of thenth session and,

. X . .~ . infact, we do not even assume the existence of these long-term
rival rate vector(a4, ..., a,) is feasible, then a quadratic Lia- . g
. 2 ) . averages. Theee arrival rate vectoiis just a nomenclature. If
punov function ofY", S} has negative drift when averaged over . .
- . : C -~ a = (a1, as, ..., ay) is the arrival rate vector
a sufficiently long interval. As in the i.i.d. case, stability results o
follow subsequently from work relating drift analysis and sta- @) = { a: ~
bility of Markov chains. A similar approach has been adoptefclj )
in [31] while proving stability results for Markov modulated ser-
vice process. For simplicity, we omit the proof here. We believe m=1,.. M,n=1...N
that the maximum throughput property of MMRS does not de-
pend on the assumptions and holds for much more generaliara set of valid tree arrival rate vectors for the arrival rate vector

mo__ m
a, =ap, a, >0,
1

m=

rival and service processes. a, i.e., we denote a tree arrival rate vector valid, if it belongs to
A(a). Let
VIII. PROOF FORNECESSITY N M,
We proceed to prove that the system is not stable if the ar- ¢= {“: DD <, 1)}
n=1 m=1

I i it i i m
m’ :tl tf;enf,?sr :Z;;Srﬁgz;a;gft ck:):nfj?tliltt);ns?:tzg?:gescliﬁyhn ”whereT,’L" is the indicator vector for thenth tree of thenth
n paclty Session. We call an arrival rate vectorstablef CNA(a) = ¢.
S¥e shall prove that the system cannot be stable if the arrival rate

Arrival and service are slotted. Each session has its own exoggétor is unstable

neous arrival stream of packe{si, (£)}i=,, whered, (#) is the A buffer graphis a directed graph in which each node rep-

number of session packets arriving m_slot. Arrival Process | conts a logical buffer (nodarepresents buffeB;) and there
{(A1(t), ..., Ax(t)}i2, can be a stationary-ergodic process

or a probabilistic function of a finite-state irreducible aperiodig an edge from vertekto j, if B; is a destination of3;, i.e.,
: i e ) . ; € Z;. A buffer graph consists of disconnected trees. Each
discrete-time Markov proce8sAs mentioned in Section VI, we 7 € Zi grap

assume that each packet has a deterministic service time e rﬂullticast tree in the network corresponds to a unique set of dis-
: P ¥&Rnected trees in the buffer graph. Let
to one unit at each link.

We shall use the following propositions later. The first is the = min fi

i m(i)=m, n(i)=n

well-known Birkhoff ergodic theorem and the second followsg f™ is the minimum buffer discharge component among
from a trivial extension of a similar result for positive recu”enl‘hosenéorresponding to the logical buffers belonging taritte
discrete-time Markov chains [23]. multicast tree of theith session. Let

Proposition 2: If X(¢) is a stationary-ergodic random Ilp =arg min f;

process, then _ wm(@=T o
(if more than one buffer attain this minimum, the tie is broken

1 Z Xi(w)— EX = / XdPw.p.1. arbitrarily). Letor be the root node of the tree in the buffer graph
"4 containing nodé;. Let Pr be the unique directed path fram

Proposition 3: If S(¢) is a positive recurrent periodic dis-to fr in the buffer graph. Let

crete-time Markov chain, and(t) is a random process such Q(n) = {&: nodei lies onPr, T € 7 }.
thatPr(A(t) = I/S(t) = m) does not depend ohand given
S(t), A(t) is conditionally independent of all past and futur@pserve that

S(t)'s and A(t)’s, then Z %
1 & fi= I (1)
— Z Az(w) — FEA w.p.1 leQ(n) m=1
n P ZiNQ(n)=d
with EA = E(E(A(t)/S(t))), where the outer expectation is Z Ay(0) = A,(6). (8)
over the stationary distribution ¢f(¢). 1eQ(n)

9A probabilistic function of a finite-state irreducible aperiodic Markov(Ai_(t)’ as defined before, i_S the number of exogeneous packet
process can be a stationary-ergodic process as well but not necessarily so. arrivals atB; at slott.) We illustrate the concept of the buffer
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B  Buffersof T, Proof of Lemma 3:Let f € F. Leta be unstable We
B  Buffersof T introduce some notations
Usay = g}flg(aZ’ — [ a € A(a)
and
V.- min U,

af = aCA(a) aaf
V,7 is well defined as the set(a) is closed and bounded for

everya andU,, + is a continuous function @ffor everya and .
V7 > 0. Otherwise, there exists€ A(a), suchthal/,;; <
ie,ar < fm¥m,n

&1 15 B N M, N M,
Multicast Network Z Z an Ty < Z Z fr T
(a) n=1 m=1 n=1 m=1
f -------- ; Vertices in set Q < <7 Z fi, ) i 9)
--------- 1CS.
AT 12 Thus,
N My
S5 T <1, ),
n=1 m=1

Inequality (9) follows because theh component of
N M,

Z Z frnTrn

n=1 m=1
is the sum of thef]*’s of those multicast trees of the network
2 5 9 13 which pass through and every multicast tree passing through
¢ has one logical buffer which sends its traffic acresand,
finally, as per definitionf;* < f; whereB; is a buffer of the

1 e l 10: P mth tree of thenth session, i.em(i) = m, n(i) = n.
"""""""""""""""""" However, then: € C and we know that: € A(a). This
Buffer Graph contradicts the assumption thais unstable. Thus/,; > 0.
(b) Next we show that there exists a sessiosuch that
Fig. 4. (a) A network with a single session, sour6eand destinations My, -
Dy, D, and (b) the corresponding buffer graph. Logical bufféts, By, Ap — Z >0
BG, Bg7 Bll: B127 Bis Correspond to treds and Bz, B37 Bs, B77 .Bg7 m=1

By, Bis, Bi4 correspond to tre&; in the multicast network. Trees;, J, . N . - ~
in the buffer graph correspond to trée and tree/; corresponds to treg. . Let Considera which _attalnsVaf Let Uaaf be attained by trees
fs=03,f10=0.1.f;=04,i ¢ {8, 10}.Then@ = {3, 7,10, 1,4, 8}. 1i..., 1T, of sessiom. Usaj = Vay > 0. Henceal: — f1: >

0,i=1, ..., p. Ifthere does not exist a sessigisuch that

graph in Fig. 4. Note that any exogeneous arrival in the multicast Mq

network in Fig. 4 is routed to either trdg or15. If it is routed Qg = Z f{>0
to 11, it arrives at buffers3, and Bs. If it is routed to treel’, m=1

it arrives at bufferB;. Observe that) contains verticed, 3.
Thus, the total number of exogeneous arrivals of the session at

then

any slot equals that at the logical buffers corresponding t@set Z Z [ <0, Vg, a€ Aa).

Similarly, buffers8, 10 are the only ones ity that have none of m=1 m=1 . )

their destinations i) and fs + fio = fr, + fr It follows that there exists a trég. of thenth muIt|cast session
2 1*

of the network, such that! — fI < 0.a%,i =1,...,p
Lemma 3: If the arrival rate vector is unstable, then thergould be decreased, increasif , stil mamtammg the sum of
existse > 0, such that for every valid buffer discharge vectofne 4s equal toa,,, yet decreasing theax,,, (a™ — f™). If

f. there exists a sessior{ ) such that the process, is repeated with other sessions atta[vi&ng, we
would obtain a2’ € A(a), such thatl/,,,; < U3 = Vi3
Z fiang —« which contradicts the definition df ;.
eQn(iy) Thus,
ZinQ(n(i))=¢ M,

Inax( Z >0, forall f € F.

m=1

whereZ; is the set of destinations of buffét;.
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Fis a closed and bounded set. Note that
M, :
m 1
mr?x <an — Z i ) Z Xi(t) = : Z E;(6) <1, V.
. . . - m=1 i€S. g=1 i€S,
is a continuous function of. I;\Lence, The last inequality follows as
minmax | a, — m exists 4
tnin ms < nz::l ) S E@<1 Ve
1CSe
Let . .
M, Also, A\;(t) > 0 Thus,A(t) € F,i.e, A(t) is a valid buffer flow
€ = minmax | a, — o vector
g (-3 7). -
Since Z Bi(®)
M, i =1
max <an — Z f,?’) >0, forall f € F, ¢ > 0. 2> Z Bi()
m=1 ZEQ("(X(t)))
Thus,
M., R ¢ .
max <an - Z f:’) >e>0, forall f € F. > Z Ai(0) | - Z E;(6)
" m=1 =1\ \icQ(n(X(1)) fe@(<n(<5(<t>>>>>>
3 Z;NQn(X(t)))=0
Let n(f) be the session which attains the above maximum for (from (12))
f. Then
M < i
n(J) Z A ) t Z )\(t)
L n(A(t)) *
“n(h) Z ﬂ(f) ze>0. 6=1 ieQn(XW))
m=1 Z;NQUL(X(1)))=¢
The result follows from (7). O (from (8) and the definition oA(?))
t
Theorem 2: If the arrival rate vectoé is unstable, then Z n(A(t)) — ta, 50y Fte (from Lemma 3)
=1
Z Bi(t) —1— 0o 0 a.s.
‘ >te—t Z A 5en® | = @iyl - (13)
Proof of Theorem 2:Let the arrival rate vecto& be un-
stable. LetW C {1, ..., M} Since there are only a finite number of sessions, it follows
. . from trivial extensions of Propositions 2 and 3 to vector-valued
Z Bi(t) = Z (Bi(t -1)+ (RE(t))‘ + Ai(t)> random processes that given any- 0, there exists @, such
iew iew ! that
(from (6)) (10) W
Z (RE(t))i = Z(qzi NW| — 1)Ei(t)) - <Z An(9)> —a,| <6 as.
tEW tCW g=1
>— > E(®) (A1) wn e {1,...N},Vt > to. Letting§ = ¢/2, it follows from
iCW, Z:NW=¢ (13) that a.s.
t 5 M te
SB[ DA - D E®]] SN Bit)yzS,  Vizt.
1EW 6=1 iEW Liew, =1 2
(12) The result follows. O

The last inequality follows from recursive substitution using re- If X,,(t)’s represent the physical buffer queue lengths, then
lations (10) and (11). Note that (6) holds for any arbitrary schetifollows from the discussion in Section VI that

uling policy. HoweverE(t) is not updated as per (2) and (3) for

any arbitrary scheduling polic¥.(¢) is also not updated as per Z K Z e B (t)

(1) for any arbitrary routing policy. We do not assume these re- I

lations in this proof. whereW;, W, ... constitute a partition of1, ..., M}, W, #
Let ¢, Vi. It follows that
1< 1 M
Alt) == E(d X B;
*) t Z () Z () max; |W;| Zz::l ()
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Hence, if the arrival rate vector is unstable to implement. We also introduce the use of some scale factors
and queue-length dependent or constant-bias terms in making
Z Xu(t) =m0 00 AS. scheduling decisions. These scale factors and bias terms can be

u used to allow limited priority to sessions over one another, re-

(Theorem 2). 0 duce overall delay, packet loss, etc. Neither [29] nor [30] uses

these scale factors and bias terms.

IX. CONCLUSION APPENDIX |

As discussed in Section |, most of the existing research in PROOF OF THENEGATIVE DRIFT CONDITION (LEMMA 2)
multicast routing have advocated the use of a single multicasiye first introduce some notation&l is the set of possible
tree per session. A significant amount of research has beengityation vectorE’s. Note that
rected toward the construction and the nature of the tree, e.g.,
whether the tree should be an SPT or a CBT z_;\nd how to for_m H= {,?: ~ € {0, 1}, Z v < 1}
these trees for a source and a set of destinations. No existing ics
routing protocol provides for load balancing. With increase of ) ) )
traffic, load balancing is likely to become an important tool foph€reSe = {i: ¢(é) = ¢, 1 < @ < M} (the set of buffers
congestion control. We have assumed that the set of possifitending for service from link).

multicast trees are known for a session and have focused on load M
balancing via dynamic selection of the appropriate tree for anin- V) = Z c;:B2(t).
coming packet. The scheduling in current multicast network is i=1

still best effort service. We have proposed a scheduling basedga prove the negative drift condition (Lemma 2) using Lem-
local information. The throughput attained by existing multicaghas 4—6.

routing protocols such as DVMRP [5], CBT [1], PIM [6], MIP _ ) . ) .
[21] are not known. We have proposed a throughput optimal Lemma 4: Thgrg exists afunctiop: K — R associated with
routing and scheduling. Throughput-optimal algorithms in get2€ Markov chain¥’(¢) such that

eralized multicast networks were not known before. However, D+ 1D)TE(t+1) > max Dt +1)75 — (t)

some previous work exists for broadcast networks. A throughput yeH

optimal algorithm for broadcasts in a mesh network has begerey satisfies the property that for ady > 0, there exists a

proposed in [19]. This happens to be a special case of ougnstant.(§') such thatj(¢) < &V @), it V(t) > L(&).

Also, [32] proposes a routing policy which attains at least 50%

of the maximum possible throughput in an arbitrary broadcast-€mMma 4 states that the dot product between the vector of

network. Since unicast and broadcast are special cases of mgifférence of scaled backlogs of source and destination buffers

cast, MMRS applies to both unicast and broadcast networks(&&)) and the activation vector does not differ significantly

well. from the maximum possible value of such a dot product. The
Kumaret al. presents general techniques for analyzing perfoflifference is upper-bounded by a function associated with the

mance and stability criterion of scheduling policies in a brod§arkov chainl'() whose growth rate is less than thafioft).

class of networks in [14], [16]. Also, [15] presents a class dih€ lemma clearly holds if the bias termis({)'s) are zero,

throughput-optimal scheduling strategies for unicast network@d the scheduling decisions are taken every slot, because then

However, most of these techniques apply for networks withtAe scheduling policy activates buffers such thet)” E(t) =

single and a predetermined route for the session. Throughp@XyeH# D(¢)"7,Vt. For the more general case, the proof fol-

optimal routing and scheduling policies have been present@s from the fact that the scheduling decisions are taken not

for arbitrary unicast networks with any number of sessions R0 infrequently and when a link is scheduled, the trees with

[29], [30]. Our scheduling policy is somewhat similar to théarge difference of source destination buffer l_)acklogs are pre-

parametric back pressure policy (PBP) proposed in [30]. B[ﬁrre_d over ot.hgrs (bias terms are also taken into account while

the intricacies ofraffic multiplicationin the multicast scenario Making a decision but they are small compareti o), for large

cannot be captured by the system model introduced in [30] Bé(t))- Refer to [26] for the detailed proof.

cause as opposed to traffic from a buffeeaching one of many | emma 5: There exists a constasy for each session such

buffer in a given seR,; in the unicast scenario considered thergpat

traffic from a buffer may need to reach multiple buffers in the

multicast case. Thus, scheduling needs to be modified suitably Z ¢ Bi(t) < Z ¢ Bi(t) + en,

to take this into account. Besides, the routing policies are inhét-<97,, ¢+1n Bi€0mn

ently different in the two cases. In MMRS routing, the entire Vm, 1 <m < M,.

path which the packet follows is decided once for each packet

and immediately after its arrival and, as we have discussed bet.emma 5 states that the sum of the scaled backlogs of source

fore, this decision is computationally simple. In PBP, the routiniguffers of the currently active tree of a session is not signifi-

decision is taken freshly at every buffer. None of these decisiorantly greater than that of any other tree of the session, if at all.

determine the entire path alone, but all of these decisions curiire scaled backlogs of the source buffers of the currently active

latively determine the entire path. This makes MMRS simpléree of a session can exceed that of any other tree of the session
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by at most a constant. Clearly, this lemma holds if the routirf§ubstituting the expressions fél(t) from (6), and further sim-
decisions are taken every slot, and the bias terms are zero. Phiécation, we have

result holds in the more general case as well, because the routin

decisions are taken not too infrequently. Also, the routing del(t+1) = V(H)

cision for a session prefers the trees with small source queue (RE(t +1) +A t+1) KTK(RE (t+1)+ A(t + 1))
lengths over others (again, scale factors and constant bias terms

are taken into account). The detailed proof can be found in tech- | 5 (KTKE(t)) (RE(t F1) A+ 1))

nical report [26].

Lemma 6: Foranyt,, t, [ta—t;| < A, A anyfinite constant, B (V(t +1) V(D) /Y (t))
: , -l R T
given anyé > 0, there exists a finitd. (T, 6) such that _B <(RE(t 1)+ At + 1)) KUK

(1 =6)V () <V (ta) <1+ 62)V (t1), I V(E1)>L(A, 6). _ ) _
: (RE(t +1)+ A+ 1)) / Y(t))
Lemma 6 states that the relative difference betwiéén ) and T
V (t2) becomes negligible ds(¢, ) increases if the length of the 2E<(KTK§(t) (RE(t F1) AR+ 1))/y(t)> )
interval|ta —t, | is bounded. Intuitively, the result holds, because

there can be at most one packet departure from and bounded (16)
number of arrivals (by assumption) to any bufferin a slot. T
formal proof follows.

- ~ T
Proof of Lemma 6:Recall the definition oD),, in (24) £ <(RE(t + 1)+ A(t+ 1)) KT'K

I'V—eor some finite positive constant

\Bi(t +T) — B;(t)] < {T’ . ?’ i g"“) ) (RE(t+1)+A(t+1))/?(t)) <a, VY(). (17)
(i) i € Ongay-

This follows from the fact that there can be at most one arrivglmce’E(t +1) is uniquely known giver¥' ()
to a nonorigin buffer (buffer not at,, for somen) and at most P -
K, arrivals to a buffer at the origin node of its session, i’ <(K KB(t)) (RE(“F 1)+ At + 1))/Y( )>

one slot. At most, one packet can depart from a buffer in a slot.

Hence)B; (t+T) — Bi(t)| < o, wheres = max; <<y K. = (KTKE(t)> (RE(t +1)+E ( )) :
Let, Y = 3V ¢. It follows that (18)
[V(t) — V(t2)] Sincel(¢ + 1) is uniquely known giverY’ (¢),
Vi(t) .
an,  if Bi € Or, (141)n()
M E A (t+1)/Y(¢ 19
25 ¢Bi(t1)olta — t1| + MY o?(t2 — #1)? ( / ) 0, otherwise. (19)
=1

<

= M KTKB(t)) RE(t+1)=-D(t+1)TE({t+1
o e (K KB@®) RE(t+1) = ~D(t + 17 Bt +1)
= , since (KTKB ) R=D(t+ 1"
<6 Vi st V(i) > L(A, ), sincelta — 1| < A. -
The result follows. O (KTKE(t)) RE(t+1) < — max Dt + D774+ 9(t)
Proof of Lemma 2:Let (from Lemma 4) (20)
M . Rf=—a (21)
e - -
$2() = z_; aiy;, p2(Y (1)) = V() where
fi=ayy) (22)
whereV (t) = 321, ¢;B2(t) and
- . [Jis  Bi€On@mg
P2(y) < o0, VYye X, Xisthe state space 6f(¢). (15) i = 0 otherwise
Now where f and a are column vectors witlf; and a,; as theith
RN P components, respectively,< i < M.
V(t) = (KB(1)" (KB(t)) If i € Opgiyni, there does not exigtsuch thatp(i) = ;.
whereK = diag(\/c1, - . -, v/en). It follows that Thus,(Rf)i=—fi=—a:. i Ongiyny, (B)i=~ fz+fp8

andn(é) =n(p(2)), m(e) =m(p(é)). TAUSfi = fp) = a,y-
V(t+1)-V(t)=(K(B(t+1)—-B)" (K(B(t+1)+B(t). Thus(Rf); =0 = —a;, if ¢ € Opiiynci)-
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If the arrival rate vector is feasible sets(B,,), and so on. This sequence is finite and would end in
N M, the B,'s for which s(B;) = Z; = ¢. Let
f Trn <1
2 fi=2 ) e Qit) =B — Y B,
B;CZ;
(see (4)), wherd"(e) = 1, if the mth tree of thenth ses-
sion passes through IinkandO otherwise. Also;y € H, iff Observe that

Ziese Vi g_ 1 and_fyi g {0, 1}. This Teans that if the_ grrlval e B () = Z O, (t).
rate vector is feasiblef = Z%H A57 for some coefficients
Ay, 5 € H,suchthad -y Ay <1, A7 20

i B; Csequence

Let the sequence have terms, X < M. Thus,

-2 BT (23)
< < 3
= emBm(t) < X 11§n%)§( Q:(t)
T ~ 5
(K7KB(1) E(At+1)/T0) S M max (aBih) = 3, alu)
N - BrLeZ;
= an Z i Bi(t) Hence,
n=l  B;COr, (t41)n emBm(t) < M max DT (t+1)% (28)
N yeH
< fieiBi(t) + ¢ (24) - V(t)
n=1B,c0, max D7 (t+1)7 > <1gu<1§w ) a0 @9
0, = O, £ = Z Ann. The last inequality follows from (27) and (28). From Lemma 4
i=l P(t) < NV, it V(t) > L)
The last inequality follows using Lemma 5 and (22) (1-X) min /¢
, 1 1<i<M "o . (30)
N=- , L(X)isaconstan
T 2 M3/2
Z > fieiBi( (KTKB( )) a depending upon\’
n=1 B;€0,,

SinceA < 1, (30) follows from Lemma 4. From inequalities

S <_ (KTKE(t))TR) 5 (26),(29), and (30)
CH N - .
from 23)) E < (K KB(t)) (RE(t+ 1)+ At + 1)) / Y(t))
> DT+ 15 < N SV@ +e,  EVE) LN, (31
e Using (16), (17), and (31)

<A Inez(D (t+1)%
=3 E(Vt—i—l /Y )§a+25—2)\’\/V(t),
for all sufficiently largeV' (¢). (32)

YCH
A<l (25) et
From (18), as well as inequalities (20), (24), and (25), we have - 2N/ V()
Y a 1, ———= 1
#1(7 (1)) = max ) B

E <(KTK§(t))T (RE(t +1)+ A+ 1))/?(@) N _
where )’ is the same as that in (30)
—(1-)) gggﬁT(H 17 +(t) +e. (26) HFB) 21, YY) e (33)
t=0t+1)Q+i—k-1
t+1)Q+i=ty+1
enBn(t) > < i ) (t) tQ+i=tg 1

1<i<M
FE (V(to +1) = Vitg-1) /?(tQ—l))

(V to_1+1) = V( tQ_l)/Y(tQ_l))
Q-

Letm = argmax;<;<ar /G Bi(t). It follows that

since /¢y, Bp(t) > % (27)

Consider a functiors: 7 — P(Z), Z is the set of logical
buffers, P(7) is the power set of, s(B;) = Z,. Consider a ( /~ )
sequence of buffers constructed as follows. The first element is + rard BVt +1) =Vt /Y (1)
B,,.. The second set of elements are those(iB,,,). The next -

set of elements consists of bufferssifB; ), for all B,’s in the E (V(tk +1) = V() /Y to- 1))

I\D
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= Z ( (t + 1) — V(t) /?(tk) = g) 2) There exists some petite s&tand some extended-valued
cx nonnegative function, satisfyingg. (o) < oo, for somez, €
- Lo X, and
-Pr (Y(tk) = y/Y(tQ_l)) (34)
- Vo (Z) < —p(Z) + bl (D), redkX
sinceY (¢) is Markovian andg_; < t; $2(%) < —91(F) + ble() ‘
where
EV({#t+1)— V(t)/Y (t)) <0, , Vo(F) = / P(Z, di)p2 (i) — ¢ (Z), e x.
if V() > max <L()\’), a;;\/ E)

Let Sy = {&: ¢2(F) < oo}. Any of these conditions imply
(see (32)). Sincéty, — to—1| < @Q (bounded), it follows from that for anyz € Sy

Lemma 6 that the above holds wlpif V (tg_1) is sufficiently o
large. Thus, every term in the summation in (34) is nonpositive 12 ) = 7 (lley — 0, asn — oo

if V(to—1) is sufficiently large. Hence, for all sufficiently largewhere Pt(z, A) = Pr(Y(t) € A/Y( 0) = @), A € B(X),

V(tg-1), using (32) and|[v||y = supy, o> [(9)], ¥(9) = | gd(v) for any signed
_ measures and any measurable funcng‘n
E (V(to +1) = V(tg-1) /Y(tQ—l)) 1) A Markov chain state spac¥ is ¢-irreducible, if there
p exists a measurg on () such that whenevep(A) > 0,
S a+2e =2 Vitg-) (35) L(Z, A) > 0, for all a‘:’(e )X, where L(Z, A) is t(he) proba-
((/)2 ( (o + 1) )/y to- 1)) b ( (to- 1)) bility that the chain reache starting from#. Clearly, if there
. exists a single closed communication clésaccessible from
=F (V(to +1) = V(tg-1) /Y(tQ71)> all other states, then the chaindsirreducible for all¢ with
©(X\S) = 0. If a chain isg-irreducible for somep, then it is
<a+42e —2X/V(tg-1) calledy-irreducible, wherep is a unique “maximal” irreducib-
23/ ) , lity measure among the's for which the chain ig-irreducible.
< ———/Vltg-1) sincex>1, X >0, 2) A setA € B(X) is calledv,-petite set ifK,(Z, B) >

for all sufficiently largeV (tg_1)  va(B), forall & € A, B € B(X), wherer, is a nontrivial
- measure oB(X’) and
= —</>1( (tQ—l)), for all sufficiently largeV (tg—1). . (X)

E(¢2(Y((t+1)Q +1)/Y (1Q + 1))
< $2(Y(tQ +0)) — $1(Y (1Q + 1)), VY (1Q +1) € A° where{a(n)} is a distribution onZ,,.. Clearly, a singletoq '}

whereA = {i: ¢o2() < 3,7 € X}. Note thatA is a finite 1S always a petite s@u(1) = 1, a(n) = 0, n # 1, 7.(4) =

set becaus¢B(tQ + i): V(tQ + i) < u} is a finite set for all F(z; 4),V A € B(X)). Petiteness of any finite set follows from

p € RandE(tQ + i), T(tQ + 1), 2(tQ + 1), £(tQ + ) take the factthatthe union of two petite sets is petite [18, Proposition

values in finite sets only 5.5.5 (ii), p. 122]. o _
3) A chain is recurrent if it i3)-irreducible and the expected
(¢2 ( ((t+1)Q + 1) )/Y (tQ+14) = y) number of visits to a sed, starting from a staté, is oo for all

< . Ve A, |Al< oo (36 reax, ar?d.f(.)r aI.IA for yvhich P(A) > 0. A chain is pqsitivg

S #2(9) = $1.(9) Y Al < o0 (36) recurrent if it isy-irreducible, recurrent and admits an invariant
Equations (15), (33), (36), and the fact thhis a finite setV 5 probability measure.
show that the functiong, , ¢» satisfies the properties mentioned Thus, a Markov chain with a single closed communication

in Lemma 2. 0 class accessible from any other staté-4sreducible. It follows
from 2) that theg, function of Proposition 1 satisfies the re-
APPENDIX I quirements of item 2) of Theorem 3, with the petite set being
JUSTIFICATION OF PROPOSITION1 the finite setA of Proposition 1 and be a real number satis-

Here we show that Proposition 1 follows from tfienorm er- fying

godic theorem of Meyn and Tweedie [18]. Tlfienorm ergodic < 1.« t+1))/ Y1) = +
theorem is stated next. geA( (¢2( )/ y) 2(9) + 417 ))

Theorem 3 [18, pp. 330-331]Let a discrete-time Markov (Note that the maximum exists finitely becausés a finite set

chain?(t) (state spac&’) be-irreducible and aperiodic, and"’md thegy, ¢» functions are_everywhere_ f|_n|te3¢2 - A It
let ¢, > 1 be a function onY’. Then the following conditions follows that any Markov chain which satisfies the requirements

are equivalent. of Proposition 1 admits an invariant probability measuregith

1) The chain is positive recurrent with invariant probabilit ((7)1(;/ (l:t)?l)'t< oo, where the expectation is taken with respect
measurer and o probability measure

L it PHE ) = w(@)
-1, otherwise.

7(p1) :/ 7(dZ)Pp1(F) < o0. g(t,ﬁ:’)(g) =
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Clearly,|gq, (%) = 1 < ¢.(&) for all t andz, i € &' Also,
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[ sumdw) = 3 1P D - o)l i
gex
. [17]
Thus, it follows from the later parts of the theorem that the se-
quence of probability measuré¢s, }, where (18]
(19]

m(A) =Pr(Y(t) € A/Y(0) =), AeB(X)

converges to w with the convergence metric being [20]

2gex
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(2]

(3]

4]

(5]

(6]

(7]

(8]
E]
[10]
[11]
[12]

(23]

(14]

m(§f) — w(%)|. Thus, Proposition 1 follows.

[21]

[22]
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