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A Framework for Routing and Congestion Control for Multicast
Information Flows

Abstract
We propose a new multicast routing and scheduling algorithm called multipurpose multicast routing and
scheduling algorithm (MMRS). The routing policy load balances among various possible routes between the
source and the destinations, basing its decisions on the message queue lengths at the source node. The
scheduling is such that the flow of a session depends on the congestion of the next hop links. MMRS is
throughput optimal. In addition, it has several other attractive features. It is computationally simple and can be
implemented in a distributed, asynchronous manner. It has several parameters which can be suitably modified
to control the end-to-end delay and packet loss in a topology-specific manner. These parameters can be
adjusted to offer limited priorities to some desired sessions. MMRS is expected to play a significant role in
end-to-end congestion control in the multicast scenario.
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A Framework for Routing and Congestion Control
for Multicast Information Flows

Saswati Sarkar, Member, IEEE,and Leandros Tassiulas

Abstract—We propose a new multicast routing and scheduling
algorithm called multipurpose multicast routing and scheduling al-
gorithm (MMRS). The routing policy load balances among various
possible routes between the source and the destinations, basing its
decisions on the message queue lengths at the source node. The
scheduling is such that the flow of a session depends on the con-
gestion of the next hop links. MMRS is throughput optimal. In ad-
dition, it has several other attractive features. It is computation-
ally simple and can be implemented in a distributed, asynchronous
manner. It has several parameters which can be suitably modified
to control the end-to-end delay and packet loss in a topology-spe-
cific manner. These parameters can be adjusted to offer limited
priorities to some desired sessions. MMRS is expected to play a
significant role in end-to-end congestion control in the multicast
scenario.

Index Terms—Multicast, routing, scheduling, stability, through-
put.

I. INTRODUCTION

M ULTICASTING provides an efficient way of transmit-
ting data from a sender to a group of receivers. A single

source node or a group of source nodes sends identical mes-
sages simultaneously to multiple destination nodes. Unicast and
broadcast to the entire network are special cases of multicast.
Multicast applications include collaborative applications like
audio or video teleconferencing, video-on-demand services,
distributed databases, distribution of software, financial infor-
mation, electronic newspapers, billing records, medical images,
weather maps, experimental data, and distributed interactive
simulation (DIS) activities such as tank battle simulations.
Currently, several distributed systems such as the V System
[3] and the Andrew distributed computing environment [27],
popular protocol suites like Sun’s broadcast Remote Procedure
Cell (RPC) service [24] and IBM’s NetBIOS [12] all use
multicasting [5]. Multicasting has been used primarily in the
Internet, but future asynchronous transmission mode (ATM)
networks are likely to deploy multicasting on a large scale,
particularly in applications like broadcast video, videoconfer-
encing, multiparty telephony, and workgroup applications [4].
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There may be more than one possible route between a source
and a group of destinations. More than one multicast session
may share the same link. This gives rise to the fundamental
issues of routing and scheduling in multicast communication.
Until now, scheduling in multicast networks has primarily been
best effort service. With increase in traffic, congestion control
and class based scheduling would be required to improve per-
formance. MMRS uses a scheduling policy which can be tuned
to distinguish among various classes.

A significant amount of research has been directed toward
multicast routing. Tree construction is the commonly used
approach in solving the multicast routing problem. Multicast
trees minimize data replication; messages need only be repli-
cated at the forking nodes. This differs from the multicast
attained through multiple unicasts where every unicast requires
a copy of the message. Multiple unicasts may result in many
copies of the same message traversing the same network links
and thus waste network resources. Multicast trees can be
broadly classified into shortest path trees (SPTs), also known
as source-based trees and group shared trees [35]. SPT is
currently used in distance-vector multicast routing protocol
(DVMRP) [5] for Internet multicast traffic on the virtual
multicast backbone (Mbone) network [8], [11] and multicast
extensions for open shortest path first OSPF(MOSPF) [20].
The core-based tree (CBT) [1] uses a group shared tree also
known as the center-based tree. Recently, some hybrid routing
protocols like the protocol-independent multicast (PIM) [6] and
the multicast Internet protocol (MIP) [21] have been proposed.
These allow the system to switch modes between SPT and
group shared trees.

None of these routing policies support more than one tree per
source–destination pair at a time. Thus, only a single route is de-
termined depending upon the topology and then the messages
are sent along the same route till the topology or the destina-
tion group changes. PIM and MIP allow the system to switch to
a different tree mode, but not on a very dynamic basis. For ex-
ample, PIM supports center-based trees for low data rate sources
or sparse multicast groups and allows receivers to switch over
to an SPT mode when low delay is important or the multicast
group is densely populated. When the switchover takes place,
the CBT is modified to replace the core-based routes by the
shortest path routes between a source and some destinations.
Thus, these protocols do not provide forload balancing, i.e.,
having more than one possible tree simultaneously and allowing
the system to dynamically choose among them, the routing deci-
sions being taken not too infrequently. Load balancing can meet
very effectively the technical challenge of minimizing the link
loads given some network load and thus serve as an important
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weapon for congestion control. This would increase throughput
and decrease delay and message loss in the network. Congestion
control is critically important in various real-time resource-ex-
pensive applications in internet and various data applications
and other services like local-area netsork (LAN) emulation in
ATM ABR services.

Load balancing may cause out-of-order delivery of messages.
Some applications do not need ordered delivery of messages,
e.g., many audio and video conferencing applications like vic
[17], vat [33], nv [9], rat [10], and freephone [2] (audio packets
are reordered in the application play out buffer) and workspace
applications like Wb [36]. Application-level protocols can be
used to enforce a particular delivery order, if necessary. How-
ever, ATM applications need ordered delivery. So load balancing
can be done per session. Besides, out-of-order delivery can be
reduced by choosing large routing decision intervals, depending
upon the requirement of the application. Load balancing would
increase the number of routing table entries in the routers be-
cause more than one routing tree may be used simultaneously;
however, the network can choose the number of simultaneously
active trees depending upon the router memories and a tradeoff
can be reached.

To do load balancing effectively, the network needs to route a
message through a tree selected judiciously amongst many pos-
sible trees. The usual approach is to choose the least total-cost
tree among all possible trees between a source and a group of
destinations. The tree cost is usually the sum of the link costs
and the link costs may be a measure of a number of possible pa-
rameters, e.g., actual or anticipated congestion, error rate, prop-
agation delay, etc. Therefore, computation of a good or rather
near-optimal route based on the total tree cost at reasonably reg-
ular intervals is computationally expensive if the set of possible
trees is even a moderately large subset of all possible trees.

We propose a novel routing and scheduling policy which
retains the benefits of load balancing, yet overcomes the above
difficulty. We call this policy the Multipurpose Multicast
Routing and Schedulingpolicy (MMRS). The routing scheme
takes routing decisions at possibly random, but bounded
intervals and bases the decisiononly on the message queue
lengths of the different possible trees at the source node. It
takes routing decisions in favor of the tree with the least queue
length or rather the least scaled queue length at the source node.
The scheduling policy has been so chosen that this quantity
represents the congestion state of the tree. At any link, the
scheduling policy gives priority to those sessions which have
the congestion1 at the downstream2 buffers less than that at the
upstream buffer, and does not serve any session at a link if all
the sessions have the downstream buffers more congested than
the corresponding upstream buffer at the link. Thus, any down-
stream congestion is eventually reflected at the source node.
The source node will soon have a large message queue for
the tree and the routing policy would route messages through
other trees with less message queue length at the source node

1Intuitively, congestion at a buffer depends on the queue length at the buffer.
More technically, it is some quantity which our scheduling policy uses. We de-
scribe our scheduling policy more rigorously later.

2“Downstream” here means destination of a link and “upstream” means
source of a link.

and hence better congestion state throughout. This attains load
balancing without any intensive computation based on the state
of the entire tree.

MMRS has various parameters. If the parameters are properly
chosen, the scheduling policy becomes computationally simply
and needs only local information3 and not the state of the en-
tire network. The parameters can be further adjusted to obtain
low-delay and low-message-loss characteristics. The parame-
ters can be modified suitably to give limited priority to selected
flows. We discuss these in detail later. Finally, we would like
to point out another significant advantage of MMRS. Since the
message queue lengths at the source reflect the congestion status
of the possible routes and hence that of the session, end-to-end
congestion control measures may be based on this observation.
Thus, the message queue lengths at the source of the session
give implicit feedback about the congestion state of the paths
followed. This is a significant advantage for multicast applica-
tions because explicit end-to-end feedbacks often lead to feed-
back implosion. Thus, MMRS has various convenient features
which render it attractive from the implementational point of
view.

MMRS attains maximum possible throughput in an arbitrary
multicast network. MMRS retains this throughput optimality
even if the routing and the scheduling decisions are not taken
every slot but at bounded intervals. Also, as we point out later,
MMRS is flexible and can be tuned to suit the hardware/soft-
ware limitations of many real-life multicast networks.

The rest of the paper is organized as follows. We describe the
multicast network model in Section II. Section III describes the
general routing, scheduling and congestion control problem in
multicast networks. Section IV describes MMRS in detail. We
discuss some interesting aspects of MMRS in Section V. We
describe our stability criterion for any network in Section VI
and prove the maximum throughput property of MMRS in Sec-
tion VII. We prove a necessary condition for stability in a mul-
ticast network in Section VIII.

II. M ULTICAST TRANSPORTNETWORK MODEL

The network is modeled by an arbitrary topology directed
graph , where . Set represents the set of nodes
and the set of directed links. A multicast session is identified
by the pair , where is the source node of the session
and is the group of intended destination nodes. There are
multicast sessions . A collection of
eligible multicast trees is prespecified as the trees through which
session traffic can be transported, . The th tree in

can be described by an indicator vector, ,
where if edge is a part of and otherwise.
Fig. 1 illustrates the model.

We do not impose any particular structure on; can con-
sist of all directed trees between sourceand the set of desti-
nations . However, this generates huge routing table entries at
the routers in a virtual circuit-like scenario. This is because the

3Our scheduling policy requires the knowledge of the queue lengths at both
source and destination of a link whereas the scheduler generally resides at the
source. We assume that the destination communicates this information to the
source. We discuss this in detail later.
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Fig. 1. There are two multicast sessions, sessions 1 and 2. Session 1 has
(v ; U ) = (4; f2; 5; 9g) and session 2 has(v ; U ) = (7; f3; 6; 8g).
Here,T = fT ; T g, T = fT ; T g.

T = f(4; 2); (4; 5); (5; 9)g
T = f(4; 1); (1; 2); (4; 6); (6; 5); (6; 8); (8; 9)g
T = f(7; 8); (7; 6); (6; 3)g
T = f(7; 8); (8; 6); (6; 3)g

where(v ; v ) represents the directed edge fromv to v . Note that neither
T norT contains all possible trees for the respective sessions, e.g.,

T = f(4; 3); (3; 1); (1; 2); (4; 6); (6; 5), (6; 8); (8; 9)g
can also carry session 1 traffic but is not included inT . The indicator vector
for T is (1; 1; 1; 0; . . . ; 0), if (4; 2); (4; 5); (5; 9) correspond to the first
three edges.

total number of possible multicast trees is considerably large,
and in a virtual circuit-like scenario the packets contain only
route identifiers and the routers need to maintain the lookup ta-
bles for these identifiers. Therefore, it is realistic to assume that

will be a proper subset of the set of all directed trees. The
actual size of this subset should depend on the available router
memories. In a datagram-like scenario, packets contain the en-
tire path to be followed in the header and the routers need only
have entries regarding the currently active trees. Thus, a memory
constraint may not force to be a proper subset of the set of
all directed trees. However, there may be other constraints, e.g.,
all multicast trees may not satisfy the requirements of a session

, e.g., session may demand certain quality of service guaran-
tees in terms of end-to-end delay bounds and delay jitters. For
instance, during a teleconference it is important that all partici-
pants hear the speaker around the same time, else the communi-
cation lacks the feeling of an interactive face-to-face discussion
[22]. In high-speed environments, the end-to-end delays depend
primarily on the propagation delays, and this rules out certain
trees. Therefore, can consist of those trees which satisfy the
requirements of session, or a proper subset thereof.

Intuitively, the necessary condition for system stability is that
the sum of the traffic arrival rates in all the trees of the same or
different sessions passing through a linkdoes not exceed the
link capacity, i.e.,

(capacity condition)

where is the traffic arrival rate in the th tree of the th
session, is the indicator vector for the th tree of the th
session, and is the capacity of theth link. It is not obvious

whether this condition guarantees stability in any arbitrary net-
work. A major contribution of this paper is to prove that it is
indeed so, that is, if we allocate the resources as per MMRS, the
necessary condition for system stability with strict inequality,
turns out to be sufficient as well. It is in this sense that MMRS
maximizes throughput. We investigate this issue later.

III. ROUTING, SCHEDULING, AND CONGESTIONCONTROL IN

MULTICAST NETWORKS

Session traffic can reach the destinations through one of
the many possible trees in , e.g., incoming session 1 traffic
can reach its destination via trees and in Fig. 1. The re-
source-allocation policy decides the appropriate tree. It should
load balance, that is, respond to congestion in the currently ac-
tive trees and route incoming traffic to relatively lightly loaded
trees. It is also expected to compute the congestion status of the
trees efficiently. This is not likely to be the case if the decision
is based on any suitably defined weight of the entire tree as per
the discussion in Section I.

In general, the trees of the same or different sessions would
overlap on the links and at most one of them can be served at one
time, e.g., trees and overlap on link in Fig. 1. There-
fore, the resource-allocation policy also decides the trees that
should be scheduled in the links. Intuitively, it should “spread
out” the congestion in the network, i.e., if an upstream node of a
session is heavily congested, while the downstream node is not,
then traffic from that session should be served on the link. This
would decrease the congestion in the heavily loaded upstream
node at the expense of increasing the congestion at the lightly
loaded downstream node.

Another interesting question worth investigating is how often
the routing and scheduling decisions should be taken. These de-
cisions can be taken at intervals of fixed or bounded length. Size
of the decision intervals may or may not depend on the queue
lengths at the nodes.

To the best of our knowledge, there does not exist any gen-
eralized routing and scheduling policy which effectively ad-
dresses the above issues in multicast networks. Some of these
issues have been addressed in the unicast scenario in [30]. How-
ever, multicast networks are inherently different from unicast
networks because of “traffic multiplication.” The same unit of
traffic is transmitted from a multicast node across various links.
Thus, the traffic flow rate in the network exceeds the arrival rate.
The issue of routing is also different in the unicast context. We
will discuss the policy we propose in the perspective of existing
work in the unicast and broadcast context in Section IX.

The MMRS addresses all of the above issues in a flexible
manner. We describe MMRS in the following section. MMRS
consists of various parameters which can be adjusted to suit the
requirements of various networks. Thus MMRS may also be
thought of as a class of routing and scheduling policies rather
than a single policy.

IV. M ULTIPURPOSEMULTICAST ROUTING AND SCHEDULING

POLICY (MMRS)

We first present an informal description of MMRS. It takes
routing and scheduling decisions at intervals, the intervals sat-
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Multicast Trees

(a)

Logical Buffers

(b)

Fig. 2. (a) Segments of multicast treesT ; T . TreeT passes through linksL , L , andL . TreeT passes through linksL , L , L , andL . (b) Logical
buffers at nodes 1 and 2. Here,B (t) is actuallyB (t) andB (t) is actuallyB (t). Similarly,B (t) is B (t), B (t) is B (t), B (t) is
B (t), B (t) is B (t), andB (t) is B (t).

isfy some properties to be described later. The routing decision
is to route an incoming sessionmessage to the tree which has
the shortest weighted queue length at the originat the de-
cision instant (ignoring some constant bias terms for the mo-
ment). The routing policy for session remains valid till the
next routing decision instant. The scheduling decision in a link
is to serve the tree which has the maximum difference between
the queue lengths of its upstream buffer weighted by a scale
factor and a weighted sum of the queue lengths of its down-
stream buffers, among all the trees with nonempty buffers con-
tending for service in the same outgoing link (ignoring some
bias terms for the moment), at the decision instant. The sched-
uling in a link remains the same till the next scheduling decision
instant (assuming that the scheduled tree does not empty in be-
tween). The buffers we have referred to need not bephysical
buffersbut are ratherlogical buffers. We explain our concept of
logical buffersin wht follows.

We define some notations here. Every directed edgeof
has an origin vertex and a destination vertex , e.g.,

and in Fig. 1. is the number of
session packets4 traveling through the th tree in waiting
at at the end of slot (or the beginning of slot ) for
traveling to through link . The ’s are the backlogs
of the logical buffers. Fig. 2 shows some multicast trees and the
corresponding logical buffers.

The logical buffers may not always represent separate
memory locations, particularly for the different edges with the
same origin node. The connection between the logical and the
physical buffers will be discussed at the end of this section.
For simplicity, we will refer to ’s, ,

, as , (e.g.,
denotes in Fig. 2). We assume that there are

4For simplicity, we state MMRS for slotted arrival and service, i.e., consider
packetized traffic only. It can be easily generalized to more general cases.
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logical buffers. Also, unless otherwise mentioned, buffers
indicate logical buffers.

Note that the packets in the logical buffer belong to the
same session for every slot. We denote this session by .
Also, all packets in are physically located at the same vertex

and will be transmitted through the same link . Every
buffer has a predecessor buffer in its multicast tree, except those
at the source node of a session. All packets in bufferhave al-
ready traversed its predecessor. We denote by (pre-
decessor of ). Also, a packet will move to a set of buffers
after transmission from . For example, if are in the

th tree in , and are incident from , then a
packet traversing along theth tree will have to be transmitted
across and from and, hence, must reach buffers
and at after transmission from , where

, and ,
, . Thus, for every buffer , there exists a

set of buffers, , such that any packet transmitted from buffer
reaches every buffer in , at the end of the transmission

time. If the th tree terminates at , .

Example IV.1: Refer to Fig. 2. Here, .
Also, . This is because buffers

carry session 1 packets and the other buffers carry
session 2 packets. , ,

, ,
, . All packets in tree move from at node

1 to node 2 through . All of these packets must be trans-
mitted across , , . Thus, any packet transmitted from

reaches . Thus, . Also,
, since any packet in

comes from . Similarly, . .

Every tree can be described by a sequence of logical buffers
and every buffer corresponds to a unique tree in . We
denote this tree by . The logical buffers corresponding to
different trees are mutually disjoint.

Note that, in general, it is not necessary to choose the route
immediately after packet arrival. Several routes may overlap in
the first few links, and it is possible to defer the routing decision
to the point where the routes diverge. Also, it is possible to en-
vision a policy which allows route changes even after a packet
is on its way. However, the routing policy we propose chooses
the route of a packet immediately after the packet arrival and
does not allow intermediate changes. We show that this simple
policy maximizes the overall throughput.

The routing policy can be described as follows. For sim-
plicity, let the trees be denoted by integers, i.e.,is a subset
of integers. The routing vector, is defined as

Here, all packets of sessionarriving exogeneously at time
are routed to tree . Let be the set of buffers of the

th tree of at , the source node of session, i.e.,

Consider Fig. 2. Let , be the first trees of the respective
sessions. Let node 1 be the source nodes of both sessions 1 and
2. Here, and . Set may consist of
multiple buffers, e.g., if had originated from node 2 instead

of node 1, then . When a session packet
arrives at slot , it is routed to the th tree in and
it arrives at every buffer in . We update at time
instants , i.e.,

otherwise

(1)

where ’s are constants and is any constant associated
with the th tree of the th session. Routing decisions for ses-
sion are taken at the time instants . If for
all , then the routing decision taken at is to route
a session packet arriving exogeneously at a slotin interval

, to the tree which has the shortest weighted queue
lengths at at the origin buffer . ’s are constant bias
terms added to . We will discuss the signif-
icance of ’s and ’s later.

The routing times may be as follows.
1) At fixed intervals R1
2) Of bounded difference ,

independent and identically distributed (i.i.d.)5 R2
3) Depend on the queue lengths. A routing decision will be

taken for session at if the weighted queue lengths at
the origin buffer, of the currently active tree ( th tree)
exceeds that of another tree by a certain amount, .
That is,

if there exists s.t.

R3

This means that a fresh routing decision is not taken for session
until the currently active tree is “sufficiently” congested, and

the congestion is reflected in the queue lengths at the origin. In
this case, routing decision always brings about a change in the
currently active tree.

(Note that R1 is a subset of R2, we mention it explicitly to
highlight its importance.)

Example IV.2: Refer to Fig. 2. Now let both and be
session 1 trees numbered 1 and 2, respectively. (Note that in
this case trees and must have the same source and desti-
nations. The figure only shows portions ofand , and hence
it appears that they have different destination sets.) Let node 1
be the source of session 1. Hence, , .
Let , . Let Fig. 2 show the buffers
just prior to (a routing decision instant for session 1). Here,

, . Let . For all in in-
terval , . Every session 1 packet which ar-
rives in interval is routed to tree . A fresh routing
decision is taken at . If ,

and if ,

5! �! i.i.d.8 �. We do not need! �! to be identically distributed
as! �! . We also allow dependence among the residual times! � t

and! � t, 8n ; n , where! � t < ! and! � t < ! .
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. If at then all new
packets of session 1 are routed totill the next routing deci-
sion is made, else all new packets are still routed to. Note
that always changes value at the routing decision instants,
if the routing decision intervals follow property (R3). In general,
all session 1 packets arriving in are routed to tree
iff . A fresh decision is taken at on
the basis of and .

Next, we describe the scheduling. Now, is the acti-
vation vector with components, at the th slot

if a packet from is served at

at slot

otherwise.

In other words, iff the th buffer is scheduled for
packet transmission through at the th slot. If ,
this packet reaches every buffer in, and also a destination if

is a destination of session. If , then
is in and the packet reaches its destination. We update
at time instants , . Let be the set of nonempty
buffers whose packets have to be transmitted across link
in slot . Thus,

if

if

Here,6 is the difference between the queue length of buffer
weighted by a scale factor and a weighted sum of the queue

lengths of the destination buffers of bufferat the beginning of
slot . Term can be interpreted as a dependent or a con-
stant bias added to . We indicate this by defining
as , where is defined as

and is a function from to . Typ-
ically, all ’s would be constants. We will discuss the use of

’s in Section V. Let (the
set of buffers contending for service from link). For example,

, in Example IV.1.
If ,

,

otherwise.

(2)

If ,

,

otherwise.
(3)

A packet is transmitted across link , at slot , if
, for some , such that , else the link

idles, i.e., no packet is transmitted across the link.

6We had used the term “congestion” at a buffer in Section I rather loosely. The
termc B (t) + l (t) can be thought of as a measure of “congestion” (as used
in Section I) at logical bufferB whenB is considered as the source buffer of
a link andc B (t) as the measure when it is considered as a destination buffer.

The scheduling decisions for linkare taken at the time in-
stants . The scheduling decision is to choose a buffer

which has maximum at amongst all the buffers
nonempty at and contending for service from outgoing link
. If , , then the scheduling de-

cision is to serve a packet from at each slot in the in-
terval unless becomes empty at somein the
interval . If becomes empty at somein the in-
terval , then the link idles till the next scheduling slot

. If , then the link idles during the en-
tire scheduling decision interval .

Like the routing times , the scheduling times may
be as follows.

1) At fixed intervals . S1
2) Of bounded difference , i.i.d.S2
3) Depend on the s, . S3

A scheduling decision is taken for linkat the beginning of slot
if any of the following conditions is satisfied.

a) Currently scheduled buffer has sufficiently less than
that of some other contending buffer. ,

S3a

b) The of the currently scheduled buffer becomes
sufficiently negative.

S3b

c) The link is currently idle but the of some nonempty
buffer which can possibly be served by the link becomes suffi-
ciently positive

S3c

are prespecified positive real numbers. Again, in-
formally this means that a scheduling decision is not taken for a
link till the last scheduling decision becomes “too bad” for the
current state of the network.

(Note that S1 is a subset of S2.)
We explain the scheduling policy with an example.

Example IV.3: Let Fig. 2 show the buffers just prior to
(a scheduling decision instant for link ).

Let and , i.e., , for all .
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Let , , . Thus,

and

Thus, the scheduling decision is to serve a packet fromin
every slot till the next scheduling decision instant assuming
that does not empty in between. If empties in between,
then idles till the next scheduling decision instant. Now let

. Both and
are negative and hence idles till the next scheduling instant,
independent of the ’s in between. Now let ,

. In both cases, the scheduling decision is to serve a
packet from in every slot till the next scheduling decision in-
stant assuming that does not empty in between. If empties
in between, then again idles till the next scheduling decision
instant. This change in the bias term gives limited priority
to session 1 in link . Again if ,

, , , but and
, then

Thus, the scheduling decision is taken in favor of.

Informally speaking, MMRS attains the maximum through-
put for any arbitrary network (the precise technical statement is
given in Section VI). We prove this in Section VII.

Whenever a packet arrives at a node (not necessarily exo-
geneously) the node must know the logical buffers’s (or

’s) to which the packet belongs. This is necessary to keep
track of the ’s. Thus, the packet header must contain infor-
mation specifying its session and the tree it has been routed to.
Every node may know the outgoing links of every tree traversing
it. This happens if there is a connection setup phase associated
with every session initiation, like in a virtual-circuit scenario. In
this case, the packet header just contains a number identifying
the tree and the node determines the next hop edges of the packet
using its lookup table and the identifier in the packet header.
The logical buffers can be uniquely identified once the next hop
links are known. In a datagram-like scenario, there is no con-
nection establishment process. Thus, the nodes do not neces-
sarily know the outgoing links of the trees passing through them.
The packet header must contain explicit information about the
edge sequences of the tree in addition to the tree and the session
number. Immediately after the packet arrives exogeneously it is
routed to a tree as per the last routing decision and the necessary
information is incorporated in the packet header. The necessary
information includes the tree and the session numbers but may
or may not contain the explicit tree path depending on whether
the nodes know the tree paths or not.

We end this section with a brief discussion on the relation be-
tween the physical and the logical buffers. A node is a multi-
input multi-output multicast switch with the ability to serve
packets to several outgoing links simultaneously. Fig. 2 shows a
node, Node 2, with one incoming link and three outgoing links.

Fig. 3. A physical buffer storingT packets at Node 2 of Fig. 2.

Packets reach Node 2 via treesand . The node can simul-
taneously transmit a packet into and a packet into

. Both packets reach Node 2 via link . The packets can
be queued at the input or at the output of the node or queued in
a shared memory mode. The physical buffers are the memory
locations which store these packets. The relation between the
physical buffers and the logical buffers depend upon whether
the packets are input queued or output queued or stored in a
shared memory mode.

If the packets are input queued, then the packets are repli-
cated7 (if at all) only when they are transmitted to the output.
There is a single physical buffer at each node for storing all
packets (one copy each) of a tree traveling through the node.
Upon arrival, only a single copy of the packet is stored in the
node. Replication coincides with transmission to the outputs.
This mode of replication is known asreplication-at-sending
(RAS) [4]. A packet remains in the buffer till it has been trans-
mitted across all the necessary links originating from the same
node. Each link uses a pointer to keeps track of the number of
packets of each tree waiting for transmission. The pointer points
to the first packet it needs to transmit and moves the pointer to
the next packet when the first is transmitted. These numbers are
precisely the logical buffer queue lengths ’s.

Example IV.4: Fig. 3 shows the physical buffer at Node 2 for
tree of Fig. 2. It currently has packets numbered .
All of them must be transmitted across link . Link main-
tains a pointer at the first packet waiting for transmission, packet

. Link has transmitted packets .
It has to transmit packets to . So it maintains a pointer at
the th packet. Similarly, has already transmitted packets

but needs to transmit packets to . It
has a pointer at the th packet. Fig. 2 shows the contents of
the separate logical buffers for this tree at Node 2 (, , and

). Fig. 2 indicates that the th and subsequent packets of
are still waiting at Node 1 for transmission across Link

to Node 2.

For input queued switches, the physical and the logical
buffer queue lengths can be mathematically related as follows.
Let be the set of outgoing links of tree at node , e.g.,

7Replication occurs only when the corresponding tree forks at the node.
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, , in
Fig. 2. Let physical buffer store packets of tree of session

at node and be the number of packets in the physical
buffer by the end of slot (or the beginning of slot ).
Then, .

Example IV.5: Refer to Figs. 2 and 3. Fir. 3 shows the phys-
ical buffer storing tree , session 2 packets at Node 2. The
physical buffer has packets. has packets,
has packets, and has packets (refer to Example
IV.4), where . From Figs. 2 and 3

Packets traveling along different trees must occupy different
memory locations. We assume that buffers are large and there
is no packet loss. In this case, there is no essential difference
between storing the packets of different trees in the same or
different physical buffers. Thus, we assume separate physical
buffers for different trees at each node without any loss of gen-
erality.

If the packets are output queued, then every outgoing link
has a separate physical buffer. Recall that is the number
of session , tree packets output queued at the outgoing link

of node at the end of slot. If physical buffer stores the
packets output queued at, then , where
the summation is over all trees of all sessions which pass
through link . Note that here packets are replicated (again repli-
cation occurs if the corresponding tree forks at the node) imme-
diately upon arrival and subsequently transmitted to the output
queue. This mode of replication is known asreplication-at-re-
ceiving(RAR) [4].

The node may be a shared memory switch with the memory
fully shared between all queues. There is only a single physical
buffer for each tree at each node. Replication can be RAR or
RAS. In the former, a multicast packet is physically replicated
in front of the shared buffer, the multiple copies of the packet
are stored in the buffer, each copy of the packet is queued till it
is served by its requisite link. The RAR scheme has been used
in several shared-memory multicast ATM switches [13]. Let the
physical buffer store the packets at node

In the latter (RAS), a single instance of the multicast packet
is stored in the buffer and is physically replicated only as it is
transmitted to the respective output link. The RAS scheme has
been recently adopted in shared-memory switches [25]. Now

where , is the set of outgoing links of tree
at node , and is the session corresponding to tree.

V. DISCUSSION

We present some attractive features of MMRS in this section.
First, MMRS attains globally optimum throughput even though

it takes routing and scheduling decisions based on local infor-
mation only. The routing decisions depend on the congestion at
the source node and do not consider the congestion in the en-
tire tree. The intuition is that the queue lengths at the source
node reflect the congestion in the entire tree on account of the
back-pressure-based scheduling. The scheduling decision for a
link depends only on the queue lengths at the source and the des-
tination of the link (assuming that the bias functions de-
pend only on the local queue length). Normally, the scheduler
is located at the source node of the link. Therefore, congestion at
the destination of the link must be communicated to the source
of the link. However, it is sufficient to communicate the sched-
uling decisions of the link destination to the link source, and
then the source of the link can recursively compute the queue
lengths at the destination. Scheduling decisions can be commu-
nicated using only a limited number of bits.

MMRS is computationally efficient (assuming that the bias
functions are easy to compute).

MMRS is adaptive as it does not assume any information
about the arrival and service statistics. We have proved the
throughput optimality for a class of arrival and service pro-
cesses (Markov modulated arrival, and service duration one
slot for each packet). However, these assumptions are not
required for the implementation of the policy, and we believe
that the throughput optimality holds for more general arrival
and service processes.

The queue lengths at the source node reflect the congestion
status in the entire tree on account of the back-pressure-based
scheduling. Thus, end-to-end congestion control schemes may
be applied based on the queue lengths at the source node, e.g.,
if the queue lengths are high then the source may be asked to
slow down. For instance, if the source is a video source, then
the quantization may be made coarse when these queue lengths
exceed a certain threshold, and the encoding scheme can revert
to a fine-grained quantization when the queue lengths fall below
a certain threshold. Thus, the queue lengths at the source node
provide implicit feedbackas to the congestion state of the net-
work. The congestion propagates to the source node after some
time, but any explicit feedback will also take time to reach the
source node, particularly if the network is large. Besides, usage
of explicit feedback often gives rise to the problem offeedback
implosionin the multicast scenario [34]. This solution of im-
plicit feedback is inherently scalable. This implicit feedback
may not be able to substitute the need for explicit feedback en-
tirely, but can be used in conjunction, so that much more infre-
quent explicit feedback will suffice.

It is not clear whether we need global information and/or in-
formation regarding statistics of the arrival and service for the
routing and scheduling decisions, if the objective is to optimize
other performance considerations like delay, packet loss, etc.
MMRS optimizes throughput, but we do not know whether it
optimizes other performance metrics or not. MMRS is actually
a class of policies. The exact policy depends on the choice of the
parameters. All of these individual policies attain the optimum
throughput, but the choice of the parameters is likely to have
an impact on other performance considerations. The complete
characterization of the parameter values for delay and loss guar-
antees for general networks is an interesting research issue by
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itself, and a topic for future research. However, we provide some
general guidelines from our initial research in this direction.

One can use the ’s to give limited priority to some sessions
over others without affecting the throughput. Increasing the’s
for a session over others decreases the delay of the packets of
the session at the expense of a greater delay experienced by the
packets of other sessions. Thus, one would expect the’s to
be higher for real-time sessions like audio, video, and possibly
for applications which fetch greater revenue. Also,’s can serve
the same purpose, i.e., give limited priority to sessions over each
other.

One can use the ’s to give limited priority to some trees
of a session over some other trees in the routing decision. A
multicast tree of session may not be a desirable route for
a session for various reasons, e.g., it may be very long thereby
incurring a large propagation delay. Typically, the network may
want to use it only when other trees of the session are signifi-
cantly congested. This purpose can be achieved by setting a high
value of for the tree, so that
is the minimum among all trees of session, only when other
trees have high congestion. Manipulation of the’s can serve
the same purpose, but this affects the scheduling as well. The
choice of the ’s do not affect the scheduling decision.

The parameters and can be suitably modified to re-
duce packet loss, if necessary. If memory size is small at a
node as compared to its neighbors then the’s and ’s corre-
sponding to the logical buffers at the node (e.g., logical buffers

correspond to Node 2 in Fig. 2) can be set higher
than the corresponding ones at the neighboring nodes. Thus,
the scaled queue lengths ( ’s) of the corresponding
logical buffers would be high even if the actual queue lengths

’s are not so high. The links bringing packets to the node
would idle frequently and the links serving packets from the
node would idle rarely. The queue length at the node would be
small at the expense of larger queue lengths at its neighbors.
This would reduce the overall packet loss.

We would like to mention in this context that the parameters
affect the relative delay and loss performances among different
sessions. However, if absolute guarantees are required, then ad-
mission control and quality of service negotiation must be used
in conjunction with MMRS. For example, if the arrival rates are
high for all sessions, then all sessions suffer large delays, and
the system cannot offer tight delay guarantees. However, if ad-
mission control is used to regulate the number of sessions and
their individual arrival rates, then this situation would not arise.

The routing and scheduling decisions can be taken every
slot or at intervals. We examine the pros and cons of both
approaches. Initially, assume that the decisions do not depend
on queue lengths. There is a communication and computation
overhead associated with each decision, and taking decisions
at intervals means that the overhead is once per interval
and not once every slot. Also, taking the routing decision at
intervals reduce the out-of-order delivery at the endpoints. The
advantage of taking decisions every slot is that the decision
optimality is maintained every slot, whereas decisions deviate
from the optimal ones if the decision intervals are large, and
as a result there is more end-to-end delay for large decision
intervals. The advantage of using queue-length-dependent

decision intervals is that some unnecessary decision changes
are avoided, and some necessary decision changes are made.
i.e., a fresh routing/scheduling decision is taken only when
the current decision becomes “unacceptably bad.” This is a
significant advantage when there is a cost associated with
changing the current routing or scheduling decision. The
tradeoff between the frequency of decision changes and overall
system performance can be controlled through the parameters

, , and , . The disadvantage of
this approach is that a computation must be performed every
slot, whereas the computation is performed once every interval
for queue-length-independent intervals.

We have specified a general approach so far. However, ap-
plication-specific modifications may be necessary in particular
cases. For example, all packets of the same session must follow
the same route for ATM networks. In this case, the routing deci-
sion for a session should be taken only when the session arrives.
The decision would be to choose from a list of potential trees for
the same source and destinations. Normally, there are a large
number of sessions between the same source and destinations.
So the routing decision would depend on the source congestion
for the existing sessions between the same source and destina-
tions. If there is no other session between the same source and
destination, then the routing decision would be to choose any
tree among the available ones. Also, for broadcast sessions, the
tree must be a spanning tree, and there are efficient algorithms
for computing the minimum-weight spanning tree, unlike that
for minimum-weight multicast trees which is an NP-complete
problem (Steiner problem). In this case, a better strategy would
be to compute the minimum-weight spanning tree periodically
and route packets along the current minimum-weight spanning
tree. The scheduling policy remains the same in all these cases.

VI. FORMAL THROUGHPUTPROPERTIES OFMMRS

Intuitively, the concept of stability of a queueing system is
associated with the queue length process at thephysical buffers
(buffers corresponding to actual storage locations). Again,

is the number of packets in a physical bufferby the
end of slot (or the beginning of slot ). We define the
system to be stable if there exists a family of random vectors,

, , ,
, , finite, such that can be partitioned into

subsequences , , and
converges weakly to a random vector ,

where are uniquely specified given theinitial phaseof
the system ( is the modulo operator). Thephaseof the
system should contain some information not contained in
the queue lengths at the physical or the logical buffers. The
exact definition of the phase depends on the particular routing
and scheduling policy. For example, the phase of the system
could be the residual times for the next routing and scheduling
decisions for MMRS with the routing and scheduling decision
intervals satisfying R2 and S2, respectively. In that case, the
initial phase (phase at ) indicates the residual times
for the first routing and scheduling decisions, and given this
information, should be known uniquely. If the routing and
scheduling decision intervals follow R1, R3, S1, and S3, then
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the residual times for the next routing and scheduling decisions
can be determined from the logical buffer queue lengths and
hence the system does not have any phase ,
i.e., converges weakly to a random vector, with

. The “initial phase” determines the random vector
the queue lengths converge to (convergence in distribution).
The proof for Lemma 1 indicates the significance of the initial
phase. The intuition behind this definition is that we generally
consider a system to be stable, as long as the physical buffers
do not “blow up” and this does not happen if converges
weakly to one of finitely many finite mean random vectors and
hence those systems should be considered stable. The particular
random vector converges to (in distribution), should be
uniquely determined from some initial phase of the system.

The stability condition can be expressed in terms of logical
buffer queue lengths as follows. Refer to the discussion at the
end of Section IV describing the relation between the physical
buffer and logical buffer queue lengths. It follows that, if there
exists a family of random vectors, ,

, , , , finite, and
can be partitioned into subsequences

such that converges weakly to a random vector

are uniquely determined given the initial phase of the
system, then the system is stable.

Let be the expected number of sessionpackets arriving
in a slot. We call the arrival rate vector. Infor-
mally speaking, throughput is the traffic carried by the system.
A system is said to “carry” a traffic if it is stable under the
traffic. We denote the arrival rate vector as the throughput of the
system if it is stable. If the system is not stable, then throughput
becomes meaningless, and can be arbitrarily defined as the
vector. We call an arrival rate vector feasible if for each session

the total traffic can be split into portions , ,
, and , where is the total

number of trees in and , ,
satisfies the capacity condition with strict inequality. Intuitively,

is the amount of traffic routed through treein .
We assume that each packet has a deterministic service time

equal to one slot at each link. In that case, an arrival rate vector
is feasible if

(4)

is the indicator vector of the th tree in . MMRS renders
the system stable for every feasible arrival rate vector. We prove
this in the next section.

We shall prove in Section VIII that the system is not stable
if the arrival rate for session cannot be split in portions

such that the ’s satisfy the capacity condition stated in
Section II. This gives the necessary condition for stability. The
condition for feasibility of an arrival rate vector is the same as

the necessary condition for stability for all practical purposes.
Technically speaking, if an arrival rate vector sat-
isfies the necessary condition for stability, then MMRS renders
the system stable for any arrival vector ,
for any arbitrarily small . Quite possibly, MMRS renders the
system stable for arrival vector itself (that is, if
it satisfies the capacity condition with strict inequality). Thus,
MMRS is throughput optimal for all practical purposes.

VII. PROOF OFTHROUGHPUTOPTIMALITY OF MMRS

We make the following assumptions for the purpose of anal-
ysis. Arrival and service are slotted. Each session has its own
exogeneous i.i.d. arrival stream of packets , where

is the number of session-packets arriving in slot ,
, , is a positive integer for all . As

mentioned in Section VI, each packet has a deterministic ser-
vice time equal to one unit. Note that the dependence between

and has not been ruled out for any . We
have discussed the generalizations of these assumptions toward
the end of this section.

Let the arrival rate vector be feasible and let MMRS be fol-
lowed. We also assume certain properties of’s and ’s.

. ’s can be any arbitrary function from to
satisfying the following property:

where (5)

Note that a large class of’s satisfies the above property, e.g.,
any bounded function, any linear function of ,
etc. Let be the number of exogeneous packet arrivals at

at slot

if

otherwise.

The routing matrix can be represented as follows:

otherwise.

(6)

Initially assume that the routing policy satisfies either R1 or
R2 and the scheduling policy satisfies either S1 or S2. We will
discuss the case for other routing and scheduling policies toward
the end of this section. The residual time for the next scheduling
decision at link , can be expressed as ,
where . The residual time for the next routing
decision for the th session can be described as

, where . Both and take
values in a finite set.

Let . The phase of the
system is . It contains some information not in
for any . The main result of this section is contained in The-
orem 1 stated as follows.
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Theorem 1: There exists random vectors ,
such that

given

converges weakly to , uniquely known given
,

We prove the above theorem toward the end of this section
using Proposition 1 and Lemmas 1 and 2 stated in what follows.

Proposition 1: Let be an aperiodic discrete-time count-
able state Markov chain with state space, and a single closed
communication class accessible from all states. If there exists
real nonnegative functions , such that ,

finite for all and

where is a finite subset of , then converges
weakly to a random vector , such that .

This proposition has been stated in a manner appropriate to
our context. It follows from a theorem in [18] which we describe
in Appendix II. Basically, it states that if a “negative drift con-
dition” (stated in Lemma 2) holds, then the system is stable.

Lemma 1: Given , ,
, is a discrete-time countable state aperiodic Markov

chain with state space . Here, is
uniquely known given . Also,
has a single closed communication class for all .
This class is accessible from all states in .

We prove this lemma later in this section.

Lemma 2 (Negative Drift Condition):There exists real non-
negative functions , such that ,
finite for all , and

where is a finite subset of .

Lemma 2 is crucial to the proof of our main result of this
section, that is, the throughput optimality of MMRS. We call this
lemma the negative drift condition, because it proves that for a
large number of ’s, the expected conditional drift of a function

is bounded above by a function with negative
values. We prove this negative drift condition in Appendix I.

Proof of Lemma 1: , are discrete-time
countable state Markov chains with state space and

, respectively. We assume that can be partitioned in
, such that the ’s are closed communication

classes of periodicity . This is a fairly general assumption
on the structure of , which incorporates the cases when

, ’s are mutually independent and
also holds in case of most common dependencies among
the ’s and ’s, e.g., a subset of ’s, ’s are
always equal, etc. Thus, can be partitioned in periodicity
classes , such that if ,

, with probability (w.p.) . It
follows that can be partitioned into ,
iff . Since ’s are closed communication
classes and the state is reachable from any , it
follows that consists of only one closed communication
class accessible8 from every state and has periodicityfor all
. The periodicity classes of are , where

iff . Let

iff

Hence the lemma is proved.

Proof of Theorem 1:It follows from Lemmas 1 and 2
and Proposition 1 that there exists random vectors ,

, ,
such that given , converges
in distribution to a random vector ,

. Since

given , converges in distribution
to a random vector , ,

. We used function

, are constants, ’s are strictly positive con-
stants. Thus, implies that

. Hence the result follows.

If the routing policy satisfies either R1 or R2 and the sched-
uling policy satisfies S3, then the Markov chain

represents the system. If the routing policy satisfies R3 and the
scheduling policy satisfies either S1 or S2, then the Markov
chain

represents the system. Finally, if the routing policy satisfies R3
and the scheduling policy satisfies S3, the Markov chain

represents the system. In the first two cases, Lemma 1 holds
with the periodicity determined by that of and , respec-
tively. The phase of the system is determined by and
accordingly. In the last case, the Markov chain is aperiodic
and has a single closed communication class accessible from all
states, i.e., . Thus, Lemma 1 holds in this case as
well. As will be discussed in the Appendix I, Lemma 2 holds
in all these cases. Thus, Theorem 1 holds in all these cases as
well. Hence, the proof of stability for feasible arrival rate vector
generalizes. Also, the proof of stability for feasible arrival rate

8A setS is accessible from a state~x, if Pr(~Y (t) 2 S=~Y (0) = ~x) > 0, for
somet.
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vector holds even if the maximum number of exogeneous ar-
rivals per slot is unbounded, if the routing policy satisfies R3
and the scheduling policy satisfies S3 or the routing and sched-
uling decisions are taken every slot.

Finally, we made some statistical assumptions in the begin-
ning of this section. However, these assumptions are not crit-
ical to the results. We have proved the throughput optimality of
MMRS for more generalized arrival process in technical report
[26]. There we assumed that the arrival process for session,

, is a Markov modulated process. In this case,
is the expectation of under the stationary distribution of
the underlying Markov process . We showed that if the ar-
rival rate vector is feasible, then a quadratic Lia-
punov function of has negative drift when averaged over
a sufficiently long interval. As in the i.i.d. case, stability results
follow subsequently from work relating drift analysis and sta-
bility of Markov chains. A similar approach has been adopted
in [31] while proving stability results for Markov modulated ser-
vice process. For simplicity, we omit the proof here. We believe
that the maximum throughput property of MMRS does not de-
pend on the assumptions and holds for much more general ar-
rival and service processes.

VIII. PROOF FORNECESSITY

We proceed to prove that the system is not stable if the ar-
rival rate for session , cannot be split in portions such
that the ’s satisfy the capacity condition stated in Section II.
We make the following assumptions for the purpose of analysis.
Arrival and service are slotted. Each session has its own exoge-
neous arrival stream of packets, , where is the
number of session packets arriving in slot. Arrival process

can be a stationary-ergodic process
or a probabilistic function of a finite-state irreducible aperiodic
discrete-time Markov process.9 As mentioned in Section VI, we
assume that each packet has a deterministic service time equal
to one unit at each link.

We shall use the following propositions later. The first is the
well-known Birkhoff ergodic theorem and the second follows
from a trivial extension of a similar result for positive recurrent
discrete-time Markov chains [23].

Proposition 2: If is a stationary-ergodic random
process, then

w.p.

Proposition 3: If is a positive recurrent periodic dis-
crete-time Markov chain, and is a random process such
that does not depend onand given

, is conditionally independent of all past and future
’s and ’s, then

w.p.

with , where the outer expectation is
over the stationary distribution of .

9A probabilistic function of a finite-state irreducible aperiodic Markov
process can be a stationary-ergodic process as well but not necessarily so.

We first introduce certain notation we use throughout. The
vector will be denoted as abuffer discharge
vector. Avalid buffer discharge vector is one in which ,

. Set as defined before to be the set of buffers
sharing the same outgoing link. Let be the set of valid buffer
discharge vectors. The vector

will be denotedtree arrival rate vector. Intuitively, denotes
the arrival rate to the th tree of the th session. However, tech-
nically speaking we are not assuming that is the long-term
rate of arrival of packets to the th tree of the th session and,
in fact, we do not even assume the existence of these long-term
averages. Thetree arrival rate vectoris just a nomenclature. If

is the arrival rate vector

is a set of valid tree arrival rate vectors for the arrival rate vector
, i.e., we denote a tree arrival rate vector valid, if it belongs to

. Let

where is the indicator vector for the th tree of the th
session. We call an arrival rate vectorunstableif .
We shall prove that the system cannot be stable if the arrival rate
vector is unstable.

A buffer graphis a directed graph in which each node rep-
resents a logical buffer (noderepresents buffer ) and there
is an edge from vertexto , if is a destination of , i.e.,

. A buffer graph consists of disconnected trees. Each
multicast tree in the network corresponds to a unique set of dis-
connected trees in the buffer graph. Let

i.e., is the minimum buffer discharge component among
those corresponding to the logical buffers belonging to theth
multicast tree of the th session. Let

(if more than one buffer attain this minimum, the tie is broken
arbitrarily). Let be the root node of the tree in the buffer graph
containing node . Let be the unique directed path from
to in the buffer graph. Let

node lies on

Observe that

(7)

(8)

( , as defined before, is the number of exogeneous packet
arrivals at at slot .) We illustrate the concept of the buffer
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Multicast Network

(a)

Buffer Graph

(b)

Fig. 4. (a) A network with a single session, sourceS and destinations
D , D and (b) the corresponding buffer graph. Logical buffersB ; B ;
B ; B ; B ; B ; B correspond to treeT andB ; B ; B ; B ; B ;
B ; B ; B correspond to treeT in the multicast network. TreesJ ; J
in the buffer graph correspond to treeT and treeJ corresponds to treeT . Let
f = 0:3,f = 0:1. f = 0:4, i =2 f8; 10g. Then,Q = f3; 7; 10; 1; 4; 8g.

graph in Fig. 4. Note that any exogeneous arrival in the multicast
network in Fig. 4 is routed to either tree or . If it is routed
to , it arrives at buffers and . If it is routed to tree
it arrives at buffer . Observe that contains vertices .
Thus, the total number of exogeneous arrivals of the session at
any slot equals that at the logical buffers corresponding to set.
Similarly, buffers are the only ones in that have none of
their destinations in and .

Lemma 3: If the arrival rate vector is unstable, then there
exists , such that for every valid buffer discharge vector,

, there exists a session such that

where is the set of destinations of buffer .

Proof of Lemma 3:Let . Let be unstable. We
introduce some notations

and

is well defined as the set is closed and bounded for
every and is a continuous function of for every and .

. Otherwise, there exists , such that ,
i.e., ,

(9)

Thus,

Inequality (9) follows because theth component of

is the sum of the ’s of those multicast trees of the network
which pass through and every multicast tree passing through

has one logical buffer which sends its traffic across, and,
finally, as per definition where is a buffer of the

th tree of the th session, i.e., .
However, then and we know that . This

contradicts the assumption thatis unstable. Thus, .
Next we show that there exists a sessionsuch that

Consider which attains . Let be attained by trees
of session . . Hence,

, . If there does not exist a sessionsuch that

then

It follows that there exists a tree of the th multicast session
of the network, such that . ,
could be decreased, increasing , still maintaining the sum of
the s equal to , yet decreasing the . If
the process, is repeated with other sessions attaining, we
would obtain a , such that
which contradicts the definition of .

Thus,

for all
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is a closed and bounded set.

is a continuous function of. Hence,

exists

Let

Since

for all

Thus,

for all

Let be the session which attains the above maximum for
. Then

The result follows from (7).

Theorem 2: If the arrival rate vector is unstable, then

a.s.

Proof of Theorem 2:Let the arrival rate vector be un-
stable. Let

(from (6)) (10)

(11)

(12)

The last inequality follows from recursive substitution using re-
lations (10) and (11). Note that (6) holds for any arbitrary sched-
uling policy. However, is not updated as per (2) and (3) for
any arbitrary scheduling policy. is also not updated as per
(1) for any arbitrary routing policy. We do not assume these re-
lations in this proof.

Let

Note that

The last inequality follows as

Also, Thus, , i.e., is a valid buffer flow
vector

(from (12))

(from (8) and the definition of )

(from Lemma 3)

(13)

Since there are only a finite number of sessions, it follows
from trivial extensions of Propositions 2 and 3 to vector-valued
random processes that given any , there exists a such
that

a.s.

, . Letting , it follows from
(13) that a.s.

The result follows.

If ’s represent the physical buffer queue lengths, then
it follows from the discussion in Section VI that

where constitute a partition of ,
, . It follows that
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Hence, if the arrival rate vector is unstable

a.s.

(Theorem 2).

IX. CONCLUSION

As discussed in Section I, most of the existing research in
multicast routing have advocated the use of a single multicast
tree per session. A significant amount of research has been di-
rected toward the construction and the nature of the tree, e.g.,
whether the tree should be an SPT or a CBT and how to form
these trees for a source and a set of destinations. No existing
routing protocol provides for load balancing. With increase of
traffic, load balancing is likely to become an important tool for
congestion control. We have assumed that the set of possible
multicast trees are known for a session and have focused on load
balancing via dynamic selection of the appropriate tree for an in-
coming packet. The scheduling in current multicast network is
still best effort service. We have proposed a scheduling based on
local information. The throughput attained by existing multicast
routing protocols such as DVMRP [5], CBT [1], PIM [6], MIP
[21] are not known. We have proposed a throughput optimal
routing and scheduling. Throughput-optimal algorithms in gen-
eralized multicast networks were not known before. However,
some previous work exists for broadcast networks. A throughput
optimal algorithm for broadcasts in a mesh network has been
proposed in [19]. This happens to be a special case of ours.
Also, [32] proposes a routing policy which attains at least 50%
of the maximum possible throughput in an arbitrary broadcast
network. Since unicast and broadcast are special cases of multi-
cast, MMRS applies to both unicast and broadcast networks as
well.

Kumaret al.presents general techniques for analyzing perfor-
mance and stability criterion of scheduling policies in a broad
class of networks in [14], [16]. Also, [15] presents a class of
throughput-optimal scheduling strategies for unicast networks.
However, most of these techniques apply for networks with a
single and a predetermined route for the session. Throughput-
optimal routing and scheduling policies have been presented
for arbitrary unicast networks with any number of sessions in
[29], [30]. Our scheduling policy is somewhat similar to the
parametric back pressure policy (PBP) proposed in [30]. But
the intricacies oftraffic multiplication in the multicast scenario
cannot be captured by the system model introduced in [30] be-
cause as opposed to traffic from a bufferreaching one of many
buffer in a given set in the unicast scenario considered there,
traffic from a buffer may need to reach multiple buffers in the
multicast case. Thus, scheduling needs to be modified suitably
to take this into account. Besides, the routing policies are inher-
ently different in the two cases. In MMRS routing, the entire
path which the packet follows is decided once for each packet
and immediately after its arrival and, as we have discussed be-
fore, this decision is computationally simple. In PBP, the routing
decision is taken freshly at every buffer. None of these decisions
determine the entire path alone, but all of these decisions cumu-
latively determine the entire path. This makes MMRS simpler

to implement. We also introduce the use of some scale factors
and queue-length dependent or constant-bias terms in making
scheduling decisions. These scale factors and bias terms can be
used to allow limited priority to sessions over one another, re-
duce overall delay, packet loss, etc. Neither [29] nor [30] uses
these scale factors and bias terms.

APPENDIX I
PROOF OF THENEGATIVE DRIFT CONDITION (LEMMA 2)

We first introduce some notations. is the set of possible
activation vectors ’s. Note that

where (the set of buffers
contending for service from link).

We prove the negative drift condition (Lemma 2) using Lem-
mas 4–6.

Lemma 4: There exists a function associated with
the Markov chain such that

where satisfies the property that for any , there exists a
constant such that , if .

Lemma 4 states that the dot product between the vector of
difference of scaled backlogs of source and destination buffers

and the activation vector does not differ significantly
from the maximum possible value of such a dot product. The
difference is upper-bounded by a function associated with the
Markov chain whose growth rate is less than that of .
The lemma clearly holds if the bias terms ( ’s) are zero,
and the scheduling decisions are taken every slot, because then
the scheduling policy activates buffers such that

, . For the more general case, the proof fol-
lows from the fact that the scheduling decisions are taken not
too infrequently and when a link is scheduled, the trees with
large difference of source destination buffer backlogs are pre-
ferred over others (bias terms are also taken into account while
making a decision but they are small compared to , for large

). Refer to [26] for the detailed proof.

Lemma 5: There exists a constant for each session such
that

Lemma 5 states that the sum of the scaled backlogs of source
buffers of the currently active tree of a session is not signifi-
cantly greater than that of any other tree of the session, if at all.
The scaled backlogs of the source buffers of the currently active
tree of a session can exceed that of any other tree of the session
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by at most a constant. Clearly, this lemma holds if the routing
decisions are taken every slot, and the bias terms are zero. The
result holds in the more general case as well, because the routing
decisions are taken not too infrequently. Also, the routing de-
cision for a session prefers the trees with small source queue
lengths over others (again, scale factors and constant bias terms
are taken into account). The detailed proof can be found in tech-
nical report [26].

Lemma 6: For any , , any finite constant,
given any , there exists a finite such that

if

Lemma 6 states that the relative difference between and
becomes negligible as increases if the length of the

interval is bounded. Intuitively, the result holds, because
there can be at most one packet departure from and bounded
number of arrivals (by assumption) to any buffer in a slot. The
formal proof follows.

Proof of Lemma 6:Recall the definition of in (24)

.
(14)

This follows from the fact that there can be at most one arrival
to a nonorigin buffer (buffer not at for some ) and at most

arrivals to a buffer at the origin node of its session, in
one slot. At most, one packet can depart from a buffer in a slot.
Hence, , where .
Let, . It follows that

s.t. since

The result follows.

Proof of Lemma 2:Let

where

is the state space of (15)

Now

where It follows that

Substituting the expressions for from (6), and further sim-
plification, we have

(16)

For some finite positive constant

(17)

Since, is uniquely known given

(18)

Since is uniquely known given ,

if

otherwise.
(19)

since

(from Lemma 4) (20)

(21)

where

(22)

and

otherwise

where and are column vectors with and as the th
components, respectively, .

If , there does not exist such that .
Thus, . If , ,

and , . Thus .

Thus , if .



2706 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002

If the arrival rate vector is feasible

(see (4)), where , if the th tree of the th ses-
sion passes through link and otherwise. Also, , iff

and . This means that if the arrival
rate vector is feasible, for some coefficients

, , such that ,

(23)

(24)

The last inequality follows using Lemma 5 and (22)

(from (23))

(25)

From (18), as well as inequalities (20), (24), and (25), we have

(26)

Let . It follows that

since (27)

Consider a function , is the set of logical
buffers, is the power set of , . Consider a
sequence of buffers constructed as follows. The first element is

. The second set of elements are those in . The next
set of elements consists of buffers in , for all ’s in the

set , and so on. This sequence is finite and would end in
the ’s for which . Let

Observe that

Let the sequence have terms, . Thus,

Hence,

(28)

(29)

The last inequality follows from (27) and (28). From Lemma 4

if

is a constant

depending upon

(30)

Since , (30) follows from Lemma 4. From inequalities
(26), (29), and (30)

if (31)

Using (16), (17), and (31)

for all sufficiently large (32)

Let

where is the same as that in (30)

(33)
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(34)

since is Markovian and

if

(see (32)). Since (bounded), it follows from
Lemma 6 that the above holds w.p.if is sufficiently
large. Thus, every term in the summation in (34) is nonpositive
if is sufficiently large. Hence, for all sufficiently large

, using (32)

(35)

since

for all sufficiently large

for all sufficiently large

where . Note that is a finite
set because is a finite set for all

and , , , take
values in finite sets only

(36)

Equations (15), (33), (36), and the fact thatis a finite set
show that the functions , satisfies the properties mentioned
in Lemma 2.

APPENDIX II
JUSTIFICATION OF PROPOSITION1

Here we show that Proposition 1 follows from the-norm er-
godic theorem of Meyn and Tweedie [18]. The-norm ergodic
theorem is stated next.

Theorem 3 [18, pp. 330–331]:Let a discrete-time Markov
chain (state space ) be -irreducible and aperiodic, and
let be a function on . Then the following conditions
are equivalent.

1) The chain is positive recurrent with invariant probability
measure and

2) There exists some petite setand some extended-valued
nonnegative function satisfying , for some

, and

where

Let . Any of these conditions imply
that for any

as

where , ,
and , for any signed
measure and any measurable function.

1) A Markov chain state space is -irreducible, if there
exists a measure on such that whenever ,

, for all , where is the proba-
bility that the chain reaches starting from . Clearly, if there
exists a single closed communication classaccessible from
all other states, then the chain is-irreducible for all with

. If a chain is -irreducible for some , then it is
called -irreducible, where is a unique “maximal” irreducib-
lity measure among the’s for which the chain is -irreducible.

2) A set is called -petite set if
, for all , , where is a nontrivial

measure on and

where is a distribution on . Clearly, a singleton
is always a petite set

, . Petiteness of any finite set follows from
the fact that the union of two petite sets is petite [18, Proposition
5.5.5 (ii), p. 122].

3) A chain is recurrent if it is -irreducible and the expected
number of visits to a set , starting from a state, is for all

, and for all for which . A chain is positive
recurrent if it is -irreducible, recurrent and admits an invariant
probability measure .

Thus, a Markov chain with a single closed communication
class accessible from any other state is-irreducible. It follows
from 2) that the function of Proposition 1 satisfies the re-
quirements of item 2) of Theorem 3, with the petite set being
the finite set of Proposition 1 and be a real number satis-
fying

(Note that the maximum exists finitely becauseis a finite set
and the , functions are everywhere finite.) . It
follows that any Markov chain which satisfies the requirements
of Proposition 1 admits an invariant probability measurewith

, where the expectation is taken with respect
to probability measure

if

otherwise.
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Clearly, for all and . Also,

Thus, it follows from the later parts of the theorem that the se-
quence of probability measures , where

converges to with the convergence metric being
. Thus, Proposition 1 follows.
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