79,426 research outputs found

    Polyphonic music information retrieval based on multi-label cascade classification system

    Get PDF
    Recognition and separation of sounds played by various instruments is very useful in labeling audio files with semantic information. This is a non-trivial task requiring sound analysis, but the results can aid automatic indexing and browsing music data when searching for melodies played by user specified instruments. Melody match based on pitch detection technology has drawn much attention and a lot of MIR systems have been developed to fulfill this task. However, musical instrument recognition remains an unsolved problem in the domain. Numerous approaches on acoustic feature extraction have already been proposed for timbre recognition. Unfortunately, none of those monophonic timbre estimation algorithms can be successfully applied to polyphonic sounds, which are the more usual cases in the real music world. This has stimulated the research on multi-labeled instrument classification and new features development for content-based automatic music information retrieval. The original audio signals are the large volume of unstructured sequential values, which are not suitable for traditional data mining algorithms; while the acoustical features are sometime not sufficient for instrument recognition in polyphonic sounds because they are higher-level representatives of raw signal lacking details of original information. In order to capture the patterns which evolve on the time scale, new temporal features are introduced to supply more temporal information for the timbre recognition. We will introduce the multi-labeled classification system to estimate multiple timbre information from the polyphonic sound by classification based on acoustic features and short-term power spectrum matching. In order to achieve higher estimation rate, we introduced the hierarchically structured cascade classification system under the inspiration of the human perceptual process. This cascade classification system makes a first estimate on the higher level decision attribute, which stands for the musical instrument family. Then, the further estimation is done within that specific family range. Experiments showed better performance of a hierarchical system than the traditional flat classification method which directly estimates the instrument without higher level of family information analysis. Traditional hierarchical structures were constructed in human semantics, which are meaningful from human perspective but not appropriate for the cascade system. We introduce the new hierarchical instrument schema according to the clustering results of the acoustic features. This new schema better describes the similarity among different instruments or among different playing techniques of the same instrument. The classification results show the higher accuracy of cascade system with the new schema compared to the traditional schemas. The query answering system is built based on the cascade classifier

    Turning data into information: assessing and reporting GIS metadata integrity using integrated computing technologies

    Get PDF
    A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata serves as the formal framework to catalog information about a GIS data set. Metadata is independent of the encoded spatial and attribute information. GIS metadata is a subset of electronic metadata which catalogs electronic resources such as web pages and software applications. However, GIS metadata is inherently different than electronic media because each metadata file can be applied to a spatial component that is not implicit with other forms of metadata. Using open source technologies such as R, Perl and PHP, metadata information for large GIS data sets (thousands of layers) can be gleaned quickly and more efficiently than the human element. In doing so, metrics to express the integrity of both the metadata and GIS data can be captured, displayed and compared for use in the decision making process. Supervised and unsupervised techniques allow users and computer algorithms to explore unseen trends about the GIS data not obvious to the human component. The validity of these analyses was tested using a Technology Acceptance Model (TAM). Responses from 40 GIS professionals about the results of this methodology were captured to find a relationship between this technology’s Perceived Ease of Use, Perceived Usefulness, Attitude Towards Using and the Intention to Further use this technology

    Algorithmic Aspects of Some Problems in Computational Biology

    Get PDF
    Given a sequence of pairs of numbers ( a i , l i ), i = 1, 2, ..., n , with l i \u3e 0, and another pair of numbers L and U , the length-constrained maximum density segment problem is to find a subsequence [ a i , a j ]whose density is the maximum under the constraint L ≤ [Special characters omitted.] Sjs=i l s ≤ U . It has application to DNA sequence analysis in Computational Biology, particularly in the determination of the percentage of CG contents in a DNA sequence. A linear time geometric algorithm is presented that is more powerful than the existing linear time algorithms. The method is extended to solve the k length-constrained maximum density segments problem. Previously, there was no known algorithm with non-trivial time complexity for this problem. We present a linear time algorithm to solve the length-constrained maximum sum segment problem. It is extended to solve the k length-constrained maximum sum segments problem in O(n+k) time. The algorithms are extended to solve the problem of finding all the length-constrained segments satisfying user specified sum or density lower bound in O(n+h) time, where h is the size of the output. The point placement problem is to determine the positions of a linear set of points uniquely up to translation and reflection from the fewest possible distance queries between pairs of points. The motivation comes from a problem known as the restriction site mapping. We present 2-round algorithms with queries 10 n /7+ O (1), 4 n /3+ O (1) and 9 n /7+ O (1) respectively. The lower bound for 2 rounds is improved from 17 n /16 to 9 n /8. We also present a modification of a geometric method called MSPocket for detection of ligand binding sites on protein surfaces. Experimentation using 48 benchmark dataset of bound protein structures shows that the success rate of our method is slightly better than that of MSPocket. (Abstract shortened by UMI.

    Multiobjective Multiproduct Batch Plant Design Under Uncertainty

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm developed in previous works, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage
    • …
    corecore