
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2014

Algorithmic Aspects of Some Problems in
Computational Biology
Md. Shafiul Alam
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Part of the Computer Sciences Commons

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Alam, Md. Shafiul, "Algorithmic Aspects of Some Problems in Computational Biology" (2014). Electronic Theses and Dissertations.
Paper 5046.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.uwindsor.ca%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5046?utm_source=scholar.uwindsor.ca%2Fetd%2F5046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Algorithmic Aspects of Some Problems

in Computational Biology

by

Md. Shafiul Alam

A Dissertation

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy at the

University of Windsor

Windsor, Ontario, Canada

c©2014 Md. Shafiul Alam

Algorithmic Aspects of Some Problems in Computational Biology

by

Md. Shafiul Alam

APPROVED BY:

D. Rappaport, External Examiner

Queen’s University

R. Barron

Department of Mathematics & Statistics

A. Jaekel

School of Computer Science

A. Ngom

School of Computer Science

A. Mukhopadhyay, Advisor

School of Computer Science

05 December, 2013

Declaration of Co-Authorship / Previous

Publication

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint research, as fol-

lows: This thesis incorporates the outcome of a joint research undertaken in collaboration

with Dr. A. Sarker under the supervision of my thesis supervisor Professor A. Mukhopad-

hyay. The collaboration is covered in Chapter 3 of the thesis. In that investigation the

key ideas, primary contributions, etc. were performed by myself working under my thesis

superviosr Professor A. Mukhopdhyay. The contribution of co-author Dr. A. Sarker was

primarily a theorem for determing the total number of layer graphs for a cycle. But the

theorem is not included in this dissertation. It is used to confirm the total number of layer

graphs for different cycles.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that

I have properly acknowledged the contribution of other researchers to my thesis, and have

obtained written permission from each of the co-author(s) to include the above material(s)

in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

iii

II. Declaration of Previous Publication

This thesis includes some materials from 2 original papers that have been previously pub-

lished /submitted for publication in peer reviewed conferences/journals, as follows:

Thesis Chapter Publication Title/Full Citation Publication Status

Chapter 3 Alam, M. S., Mukhopadhyay, A. and Sarker,
A. (2009). Generalized jewels and the point
placement problem. In Proceedings of the 21st
Canadian Conference on Computational Geom-
etry, University of British Columbia, Vancouver,
Canada, August 17-18, 2009, 45-48.

Published

Chapter 3 Alam, M. S. and Mukhopadhyay, A. (2010) A
new algorithm and improved lower bound for
point placement on a line in two rounds. In
Proceedings of the 22nd Canadian Conference on
Computational Geometry, 2010 (CCCG 2010),
University of Manitoba, Winnipeg, MB, Canada,
August 9 -11, 2010, 229-232.

Published

I certify that I have obtained a written permission from the copyright owner(s) to include

the above published material(s) in my thesis. I certify that the above material describes

work completed during my registration as graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations,

or any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such material(s)

iv

in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other university or institution.

v

Abstract

Given a sequence of pairs of numbers (ai, li), i = 1, 2, ..., n, with li > 0, and another pair

of numbers L and U , the length-constrained maximum density segment problem is to find

a subsequence [ai, aj] whose density
∑j

s=i as/
∑j

s=i ls is the maximum under the constraint

L 6
∑j

s=i ls 6 U . It has application to DNA sequence analysis in Computational Biology,

particularly in the determination of the percentage of CG contents in a DNA sequence. A

linear time geometric algorithm is presented that is more powerful than the existing linear

time algorithms.

The method is extended to solve the k length-constrained maximum density segments

problem in O(nk), O((n + k) lg2(U − L)) and O(n(U − L)) time when k ∈ O(lg2(U − L)),

k ∈ ω(lg2(U−L))∩o(n(U−L)/ lg2(U−L)) and k ∈ Ω(n(U−L)/lg2(U−L))∩O(n(U−L))

respectively. Previously, there was no known algorithm with non-trivial time complexity for

this problem. We present a linear time algorithm to solve the length-constrained maximum

sum segment problem. It is extended to solve the k length-constrained maximum sum

segments problem in O(n + k) time. The algorithms are extended to solve the problem of

finding all the length-constrained segments satisfying user specified sum or density lower

bound in O(n+ h) time, where h is the size of the output.

The point placement problem is to determine the positions of a linear set of points

uniquely up to translation and reflection from the fewest possible distance queries between

vi

pairs of points. The motivation comes from a problem known as the restriction site mapping.

If the points are necessarily distinct the lower bound and the upper bound for 2 rounds

are 17n/16 and 4n/3 + O(
√
n) respectively, where n is the number of points. We present

2-round algorithms with queries 10n/7 + O(1), 4n/3 + O(1) and 9n/7 + O(1) respectively.

The lower bound for 2 rounds is improved from 17n/16 to 9n/8.

We also present a modification of a geometric method called MSPocket for detection of

ligand binding sites on protein surfaces. Experimentation using 48 benchmark dataset of

bound protein structures shows that the success rate of our method is slightly better than

that of MSPocket.

vii

Dedication

Dedicated to my parents Md. Khorshed Alam and Rokeya Begum, my son Md. Ashraful

Alam, and my daughters Shaima Alam and Tasnim Alam.

viii

Acknowledgements

I would like to express my gratitude and sincere thanks to my supervisor Dr. A.

Mukhopadhyay, Professor, School of Computer Science, University of Windsor for his con-

tinuous guidance, valuable advices and patience throughout the creation of this dissertation

and throughout my doctoral studies at the University of Windsor. Without his help I could

not have completed this work. I would also like to express my gratitude to Dr. R. M.

Barron, Professor, Department of Mathematics & Statistics, University of Windsor, Dr. D.

Rappaport, Professor, School of Computing, Queen’s University, Dr. A. Ngom, Associate

Professor, School of Computer Science, University of Windsor and Dr. A. Jaekel, Professor,

School of Computer Science, University of Windsor for their time and valuable suggestions.

I would like to thank my wife Amena Akter, my son Md. Ashraful Alam, and my

daughters Shaima Alam and Tasnim Alam for their love, understanding and cooperation.

ix

Contents

Declaration of Co-Authorship / Previous Publication iii

Abstract vi

Dedication viii

Acknowledgements ix

1 Introduction 1

1.1 The Problems of This Study . 1

1.1.1 Sequence Analysis . 5

1.1.2 Point Placement Problem . 6

1.1.3 Ligand Binding . 8

1.2 Contributions . 8

1.3 Structure of the Thesis . 9

2 Maximum Density Segment 11

2.1 Introduction . 11

x

2.2 Kim’s Algorithm for Maximum Density Segment 19

2.3 Algorithm for Maximum Density Segment 21

2.3.1 The LR pass . 22

2.3.2 The RL pass . 26

2.3.3 The Algorithm . 31

2.3.4 Analysis . 34

2.3.5 Improved Algorithm . 34

2.3.6 Implementation . 36

2.3.7 Non-uniform Length . 37

2.3.8 Extension to Higher Dimensions . 38

2.4 k Maximum Density Segments . 39

2.4.1 Algorithm for k ∈ O(lg2(U − L)) . 39

2.4.2 Algorithm for k ∈ ω(lg2(U − L)) ∩ o(n(U − L)/ lg2(U − L)) 40

2.4.3 Algorithm for k ∈ Ω(n(U − L)/lg2(U − L)) ∩O(n(U − L)) 59

2.5 Maximum Sum Segment . 60

2.6 k Maximum Sum Segments . 65

2.7 Finding All the Segments with Some Content Requirement 69

2.7.1 Finding All the Segments Satisfying a Sum Lower Bound 70

2.7.2 Finding All the Segments Satisfying a Density Lower Bound 71

2.8 Summary . 71

xi

3 Point Placement Problem: Improved Algorithms 73

3.1 Introduction . 73

3.1.1 The Problem . 73

3.1.2 Motivation . 79

3.1.3 Prior Work . 81

3.1.4 Contribution . 82

3.2 Generalized Jewels . 83

3.2.1 4:4 and 5:4 Jewels . 86

3.3 Algorithm Based on a 5:5 Jewel . 90

3.3.1 Replacing |XC| 6= |AB| . 93

3.3.2 Replacing |XC| 6= |Y B| . 93

3.3.3 Replacing |Y C| 6= |AB| . 96

3.3.4 Rigidity Conditions . 100

3.3.5 Algorithm . 102

3.4 Algorithm Based on a 6 : 6 Jewel . 106

3.4.1 Replacing Conditions . 108

3.4.2 Rigidity Conditions . 118

3.4.3 Algorithm . 121

3.5 Lower Bound for Two Rounds . 130

3.6 Summary . 138

xii

4 Improved Algorithm and Lower Bound for Point Placement Problem 139

4.1 Introduction . 139

4.2 A 2-round Algorithm Based on a 3-path Graph 139

4.2.1 Replacing Conditions . 146

4.2.2 Rigidity Conditions . 155

4.2.3 Algorithm . 157

4.3 An Improved Lower Bound for Two Rounds 166

4.4 Summary . 186

5 Detection of Potential Ligand Binding Sites 187

5.1 Introduction . 187

5.2 Prior Work . 188

5.3 Contribution . 193

5.3.1 Experimental Results . 193

5.4 Summary . 194

6 Conclusions 195

Bibliography 198

Vita Auctoris 210

xiii

Chapter 1

Introduction

1.1 The Problems of This Study

Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA) and protein are the three essential

macromolecules of all living cells. DNA is made of nucleotides (Figure 1.1). It does not

usually exist as a single molecule in living organisms. Instead, it exists in pair, which are

held together tightly in the form of a double helix.

A nucleotide consists of a sugar, a phosphate group and one of a set of 4 nucleobases.

The nucleobase is attached to the sugar. The nucleobases are adenine, cytosine, guanine

and thymine (or uracil). They are represented by the four letters A, C, G and T (or U).

The nucleotides are linked in a chain to form the DNA. Consequently, DNA can be specified

as a sequence of nucleobases. In fact, it is written as a sequence of letters representing the

nucleobases. It is called the primary structure of DNA. DNA has secondary and tertiary

structures as well. DNA contains information which is used by a living cell to manufacture

proteins. A triplet of consecutive nucleobases corresponds to a specific amino acid. The

triplet is called a codon. More than one codon can correspond to an amino acid; but one

1

codon can correspond to exactly one amino acid. The sequence of nucleobases of a DNA is

translated into a sequence of amino acids.

Figure 1.1: DNA molecular structure [Figure from Wikipedia:
http://upload.wikimedia.org/wikipedia/commons/e/e4/DNA˙chemical˙structure.svg
].

Different composition of DNA sequence is associated with different properties of DNA.

For example, genes are found in most of the cases in GC-richest regions of a DNA sequence.

DNA sequences are analyzed to find biologically significant regions. In this dissertation we

propose some algorithms for sequence analysis.

2

Molecules are three-dimensional entities. Their functions often depend on their three-

dimensional structures. The energy associated with each set of possible atomic positions

create intramolecular motions in large and complicated molecules such as proteins. The

set of all conformations generated by the intramolecular motion is called the conforma-

tional space of the molecule. The difference between the energies of two conformations is

due to various nonbonded interactions. The relation between those interactions and the

conformational state is very important in molecular biology.

It is essential to determine the conformational space of a molecule from experimental

data about its conformational state. The data are obtained by x-ray crystallography, nuclear

magnetic resonance (NMR) spectroscopy, etc. While x-ray crystallography can produce the

conformational space effectively, there are problems with this technique. For example,

many macromolecules does not form good crystals. Much of the experimental data, about

the conformational state of molecules, obtained by other methods, and the majority of

energy functions can be expressed in terms of intermolecular distances. The conformational

space can be described in terms of interatomic distances. The approach that determines

the conformational space from the intermolecular distance data and chirality constraints is

called distance geometry approach [25, 42]. Distance geometry can also be used to evaluate

the effectiveness of other methods for determining molecular conformation space.

When the distances lie in between prescribed bounds the problem is called a bound

embedding problem, otherwise it is called a distance embedding problem which is a spe-

3

cial case of the bound embedding problem. The one-dimensional version of the distance

embedding problem without chirality constraint is the point placement problem on a line.

A polypeptide is a linked chain of amino acids. A protein consists of one or more

polypeptides. Usually a protein folds into globular or fibrous form that facilitates a biological

function 1.2. Proteins participate in almost all functions of a cell. Many proteins are

enzymes and work as a catalytic agent in metabolism. Proteins also perform mechanical

functions, cell signaling, immune responses, etc. Proteins can also work together to perform

a task. Functions of proteins are the results of their interactions with other molecules. The

interactions usually occur in the concave regions on the surface of a protein.

Like other molecular surfaces, protein surface is the solvent excluded surface, called

Connolly surface. It is a purely geometric feature. Connolly [24] proposed a purely geometric

method to compute it. Sanner et al. [60] proposed an improved method to calculate it. His

method is also based on geometry. Consequently, geometry plays a major role in making

a pocket suitable for ligand binding site. Among the best performing methods are those

methods that uses purely geometric features of the pocket to predict the ligand binding

site. We study one such method called MSPocket [75].

Geometry is involved in all the problems, directly or indirectly (by transformation into

a geometric problem), that we study in this dissertation. Techniques of computational

geometry can play a big role in solving these problems and other problems in structural

biology involving geometry. The problems are described in the following subsections.

4

Figure 1.2: Myoglobin protein [Figure from Wikipedia:
http://en.wikipedia.org/wiki/Protein].

1.1.1 Sequence Analysis

Let A be a sequence (ai, li) (i = 1, ..., n) of n ordered pairs of real numbers ai (i = 1, ..., n)

called values and positive real numbers li > 0 (i = 1, ..., n) called lengths, and L and U be

two positive real parameters 0 < L ≤ U . A segment, denoted by A[i, j], 1 ≤ i ≤ j ≤ n,

of A is a consecutive subsequence of A between the indices i and j. The length l[i, j],

sum s[i, j] and density d[i, j] of a segment A[i, j] are l[i, j] =
∑j

t=i lt, s[i, j] =
∑j

t=i at and

5

d[i, j] =
∑j

t=i at∑j
t=i lt

respectively. A[i, j] is feasible if L ≤ l[i, j] ≤ U . The length-constrained

maximum sum segment problem is to find a feasible segment of maximum sum. The k

length-constrained maximum sum segments problem is to find k feasible segments such that

their sums are the k largest. The length-constrained maximum density segment problem is

to find a feasible segment of maximum density. The k length-constrained maximum density

segments problem is to find k feasible segments such that their densities are the k largest.

We present algorithms for length-constrained maximum sum segment and maximum

density segment problems, in particular, and the problems of finding length-constrained

heaviest segments, in general, for a sequence of real numbers. The length-constrained max-

imum density segment problem and the k length-constrained maximum density segments

problem have been transformed into geometric slope selection problems.

The algorithms have potential applications in different areas of biomolecular sequence

analysis, including finding CG-rich regions, TA and CG-deficient regions, CpG islands and

regions rich in periodical three-base patterns, post processing sequence alignment, anno-

tating multiple sequence alignments, and computing length constrained ungapped local

alignment. They have applications in other areas also, such as pattern recognition, digital

image processing and data mining [1, 34, 35].

1.1.2 Point Placement Problem

The point placement problem is to determine the positions of a set of n distinct points,

P = {p1, p2, p3, . . . , pn}, on a line uniquely, up to translation and reflection, from the fewest

6

possible distance queries between pairs of points. This problem is closely related to the

restriction site mapping problem in DNA sequence and turnpike problem in computational

geometry. In the latter problems, the points are deduced from a set of interpoint distances

between unlabeled points. While the distances in point placement problem are between

labeled points. The point placement problem has application in the graph embedding

problem.

The higher dimensional version of the point placement problem has application in the

area of molecular conformation. In both the cases the interpoint distances of labeled points

are specified. The molecular configuration of a rigid molecule is unique upto translation. It

is not unique upto reflection. The same interatomic distances of a molecule can also occur in

its mirror images. So, in order to uniquely determine the configuration of a rigid molecule,

one needs to specify the interatomic distances and the chirality of a single asymmetric

centre. This problem is called a distance embedding problem. On the other hand, solution

to the three-dimensional version of the point placement problem is unique upto translation

and reflection. So, the distances can uniquely determine the positions. If the distances

are the interatomic distances of a rigid molecule, then the solution to the point placement

problem will be the configuration of either the molecule or its mirror image.

If the molecule is mobile then the distances lie in between prescribed bounds. For

this case the inputs are the lower and upper bounds on the interatomic distances and the

chirality of quadruples of atoms. The problem is to determine the conformation space of

7

the molecule. This problem is called a bound embedding problem.

1.1.3 Ligand Binding

Molecular surface is a 3D Euclidean surface. Ligand binding sites are situated at dents on

this surface. Consequently, geometry plays a major role in making a pocket suitable for

ligand binding site. Among the best performing methods for predicting ligand binding site

are those methods that uses purely geometric features of the pocket.

1.2 Contributions

The main contributions of this dissertation are described below:

• Sequence analysis problems: For the maximum sum segment problem with non-

uniform length there is an algorithm with time and space complexities in O(n). An

algorithm with time complexity in O(n) and space complexity in O(U−Llmin
) is presented

in this dissertation. For the maximum density segment problem with non-uniform

length there is a combinatorial solution with time complexity in O(n) and space com-

plexity in O(U
lmin

). We present a simple geometric algorithm with the same time

complexity and O(min{U−Llmin
, L
lmin
}) space complexity.

The algorithms are extended to respectively solve the k length-constrained maximum

sum segments problem in O(n + k) time, and the k length-constrained maximum

density segments problem in O(nk), O((n + k)(lg(U − L))2) and O(n(U − L)) time

when k ∈ O(lg2(U − L)), k ∈ ω(lg2(U − L)) ∩ o(n(U − L)/ lg2(U − L)) and k ∈

8

Ω(n(U −L)/lg2(U −L))∩O(n(U −L)) respectively. They are extended to find all the

length-constrained segments satisfying user specified sum or density lower bound in

O(n+h) time, where h is the size of the output. Previously, there was no known linear

time algorithm for these problems. We indicate the extensions of our algorithms to

higher dimensions.

• Point placement problem: A 2-round algorithm is presented which solves the point

placement problem with 9n/7 + O(1) queries, where n is the number of points. The

lower bound on 2-round algorithms is improved from 17n/16 to 9n/8. This improves

the current best results for 2-round algorithm reported in [20].

• Ligand binding: We study a geometric method called MSPocket [75] for the detection

of ligand binding site. It is one of the few best performing method for predicting ligand

binding site. In this dissertation MSPocket is modified by replacing one constraint.

Experiment on a set of 48 benchmark dataset of bound proteins shows that our method

has a slightly better success rate than that of MSPocket.

1.3 Structure of the Thesis

Chapter 2 deals with the problems of maximum sum/density segment problems, k-maximum

sum/density segment problems and segments satisfying sum/density requirement problems.

In Chapters 3 and 4 we present some improved algorithms and an improved lower bound

for the point placement problem. Chapter 5 presents the study of ligand binding. Results

9

are summarized in Chapter 6.

10

Chapter 2

Maximum Density Segment

2.1 Introduction

Let A be a sequence (ai, li) (i = 1, ..., n) of n ordered pairs of real numbers ai (i = 1, ..., n)

called values and positive real numbers li > 0 (i = 1, ..., n) called lengths, and L and U be

two positive real parameters 0 < L ≤ U . A segment, denoted byA[i, j], 1 ≤ i ≤ j ≤ n, ofA is

a consecutive subsequence of A between the indices i and j. The length l[i, j], sum s[i, j] and

density d[i, j] of a segment A[i, j] are l[i, j] =
∑j

t=i lt, s[i, j] =
∑j

t=i at and d[i, j] =
∑j

t=i at∑j
t=i lt

respectively. A feasible segment of A is a segment A[i, j] such that L ≤ l[i, j] ≤ U . The

prefix sums of the sequence are defined as s0 = 0 and si = a1 + a2 + . . .+ ai for i = 1, ..., n.

si (i = 1, ..., n) can be computed in linear time by noting that si = si−1 + ai. Once si’s are

known, s[i, j] (1 ≤ i ≤ j ≤ n) can be computed in constant time since s[i, j] = sj − si−1.

In this chapter we study some problems concerning the determination of length-constrained

heaviest segments in a sequence of real numbers. The problems are formally described be-

low:

11

Definition 2.1.1 Let A be a sequence of pairs of real numbers (ai, li), i = 1, 2, . . . , n,

with li > 0, and L and U be a pair of real numbers with L ≤ U . (a) The length-constrained

maximum sum segment problem is to find a segment A[i, j] whose sum s[i, j] is the maximum

under the constraint L 6 l[i, j] 6 U . (b) The length-constrained maximum density segment

problem is to find a segment A[i, j] whose density d[i, j] is the maximum under the constraint

L 6 l[i, j] 6 U .

The maximum sum segment problem, with uniform length (li = 1 for all i) and no

restriction on segment length, was first studied by Grenander [39]. This problem arose while

researching in the area of pattern recognition in digitized images. The original problem, as

proposed by Grenander, was in 2-dimensions. In that setting the maximum sum subarray

was an estimator for the maximum likelihood of a pattern in a digital image. He also

simplified the problem to 1-dimension. The problem also has applications in other areas

such as graphics, data mining [1, 34, 35] and bioinformatics [7]. An optimal linear time

algorithm for the problem proposed by Kadane is described by Bentley [9] and Gries [40]. Its

space complexity is O(1). The two-dimensional version of the problem is to find a connected

rectangular submatrix of maximum sum from a two-dimensional rectangular input matrix of

real numbers [9]. Here the lengths are uniform, i.e., li = 1 for all i, and there is no restriction

on the size of the submatrix. The problem has been extended to higher dimensions [70]. In

higher dimensions the problem is called the maximum sum subarray problem. The higher

dimensional problem has applications in the area of data mining (for dimensions less than

12

4) and Monte-Carlo simulation (dimensions being high) [70]. It can be solved by reducing

it to 1-dimensional problems [10, 70]. For a 2-dimensional m × n matrix there are O(m2)

column intervals. Each of them is solved using Kadane’s linear time algorithm for maximum

sum segment problem. Hence, its time complexity is O(m2n) [10, 70]. For this case, i.e.,

2-dimensions with uniform length and no restriction on length, there is a better algorithm

based on a distance matrix multiplication technique [70, 69]. Its running time is subcubic.

Huang [44] introduced the restriction of length cutoff L in the setting of biomolecular

sequence analysis to avoid reporting extremely short segments. He gave a linear time

algorithm for computing the maximum sum segment of length at least L, but no restriction

on the upper bound of its length, i.e., U = n. He had observed that the segments reported

by the algorithm are usually much larger than L. From this observation Lin et al. [50]

argued that the segments reported by the method may contain some poor and irrelevant

segments. To avoid this they introduced the restriction of upper bound U on the length

of the segment. They proposed a linear time algorithm for the problem when there is only

the upper bound U on the length of the segment, but no lower bound, i.e., L = 0. They

combined that algorithm with Huang’s [44] technique to develop a linear time algorithm for

arbitrary L and U . Its space requirement is also linear. Fan et al. [31] gave an O(n) time

and O(U) space algorithm for the problem for the case of uniform length. In this chapter,

we present an algorithm for this general problem with time complexity in O(n) and space

complexity in O(U − L). It can be modified in a straightforward way to solve the problem

13

with non-uniform length in O(n) time and O(U−Llmin
) space. We indicate the extension of this

algorithm to solve the problem in higher dimensions by using the technique of reducing the

problem to 1-dimension [10, 70].

The k maximum sum segments problem was introduced by Bae and Takaoka [8]. There

was no restriction on the segment length. A natural extension of this problem is the k

length-constrained maximal sum segments problem. The problem is defined as follows:

Definition 2.1.2 Given a sequence A of real numbers ai, i = 1, 2, . . . , n, a pair of real

numbers L 6 U and an integer k such that 1 6 k 6 (n−U+1)(U−L+1)+1
2(U−L)(U−L+1),

the k length-constrained maximum sum segments problem is to find k segments of A of

length at least L and at most U such that their sums are the k largest among all the possible

segments of A of length at least L and at most U .

When there is no restriction on segment length, i.e., L = 0 and U = n, Cheng et

al. [18, 19] gave an O(n+ k log(min{n, k})) time algorithm, and Brodal and Jorgensen [13]

gave an optimal O(n+k) time algorithm for this. The latter algorithm constructs a partially

persistent [29] binary maximum heap that implicitly contains all the
(
n
2

)
+n number of sums

for all possible segments in O(n) time. The heap is a modified version of the self-adjusting

heap of Sleator and Tarjan [64]. The k maximum sums are selected from the heap using

the linear time heap selection algorithm of Frederickson [33]. Brodal and Jorgensen [13]

extended their algorithm to higher dimension by using the technique of reducing the prob-

lem to 1-dimension [10, 70]. Liu and Chao [51] gave an O(n + k) time and O(n) space

14

algorithm for the k length-constrained maximum sum segments problem. Combining with

the technique of Brodal and Jorgensen [13] we extend our algorithm for the maximum sum

segment problem to solve the k length-constrained (i.e., arbitrary L and U) maximum sum

segments problem. Its time and space complexities are in O(n + k) and O(U − L + k)

respectively.

For the maximum density segment problem, when the lengths are uniform and there

is no restriction on the segment length, the maximum element in the sequence will be the

solution and it can be found in a straight forward way in n − 1 comparisons and O(1)

space. When U = L the problem is trivially solvable in O(n) time since there are n−U + 1

feasible segments. When the lengths are uniform, U 6= L and no upper bound (U ≥ n−L),

Huang [44] showed that the length of the maximum density segment is at most 2L− 1. So,

this case is equivalent to the case when U = 2L− 1 and can be solved in O(nL) using brute

force method since the number of feasible segments is O(nL). For this case, Lin et al. [50]

gave an O(n logL) time algorithm by using a method of right skew decomposition of the

sequence. When the lengths are uniform, and U and L are arbitrary, Goldwasser et al. [37]

gave an O(n) time algorithm. For the general case, where the lengths are not uniform and

U and L are arbitrary, Goldwasser et al. [38] extended the right skew decomposition method

of Lin et al. [50] to develop an O(n)-time and space algorithm. A combinatorial solution

with time-complexity in O(n) and space complexity in O(U) was proposed by [21, 22].

The algorithm works in an online manner. In the same paper it was pointed out that the

15

linearity claim of a geometric approach by Kim [46] is flawed. Lee et al. [48] fixed the flaw

of Kim’s algorithm by exploiting the property of decomposability of tangent query. Its time

and space complexities are in O(n). In this chapter, we present a simple modification to

Kim’s algorithm to address the flaw, while retaining the simplicity, elegance and linearity

of his geometric approach. Our algorithm’s time and space complexities are in O(n) and

O(min{U − L,L}) respectively, and it works in an online manner. 1

The k maximum sum segments problem was introduced by Bae and Takaoka [8]. A

natural extension of this problem is the k length-constrained maximal density segments

problem. The problem is defined as follows:

Definition 2.1.3 Given a sequence A of real numbers ai, i = 1, 2, . . . , n, a pair of real

numbers L 6 U and an integer k such that 1 6 k 6 (n−U+1)(U−L+1)+1
2(U−L)(U−L+1),

the k length-constrained maximum density segments problem is to find k segments of A of

length at least L and at most U such that their densities are the k largest among all the

possible segments of A of length at least L and at most U .

We extend our algorithm to solve the k length-constrained maximum density segments

problem in O(nk), O((n+ k)(lg(U −L))2) and O(n(U −L)) time when k ∈ O(lg2(U −L)),

k ∈ ω(lg2(U−L))∩o(n(U−L)/ lg2(U−L)) and k ∈ Ω(n(U−L)/lg2(U−L))∩O(n(U−L))

respectively.

Huang [44] introduced the problem of finding segments of a sequence satisfying a sum
1The algorithm was presented at the 20th Annual Fall Workshop on Computational Geometry 2010 [4].

16

requirement. The content requirement is expressed as the count of equal length oligomers

in biomolecular sequence. We shall call this problem as the required sum segments problem.

A natural extension of this is the required density segments problem. The problems are

defined as follows:

Definition 2.1.4 Let A be a sequence of real numbers ai, i = 1, 2, . . . , n, σ and δ be a pair

of real numbers, and L and U be another pair of real numbers with L 6 U . (a) The length

constrained segments satisfying a sum lower bound problem is to find all the segments A[i, j]

such that s[i, j] ≥ σ. (b) The length constrained segments satisfying a density lower bound

problem is to find all the segments A[i, j] such that d[i, j] ≥ δ.

For the former problem when there is only a lower bound on the length of the sequence

and no upper bound on its length, Huang [44] gave a linear time algorithm for a related

problem using dynamic programming technique. His algorithm finds all the optimal seg-

ments of length at least L satisfying a sum lower bound. Modifying the technique of Liu

and Chao [51], we solve both the length-constrained segments satisfying a sum lower bound

problem and the length-constrained segments satisfying a density lower bound problem in

O(n+ h) time and O(U −L+ h) space, where h is the size of the output. Previously, there

was no known algorithm with non-trivial result for these problems.

All of our algorithms can be used to solve the corresponding higher dimensional problems

by reducing them to 1-dimensional problems in the way described in [10, 70]. They can also

be extended to solve the problems with non-uniform length. We note that for k maximum

17

sum segments problem there is another version of the problem where there is no restriction

on the segment length (i.e., L = 0 and U = n) but the segments are not allowed to

overlap. For this case there are linear time algorithms for 1-dimension [16, 17, 59]. In this

dissertation, we shall not pursue this line. In all of our algorithms in this dissertation, the

segments are allowed to overlap.

According to [55, 68], the compositional heterogeneity of a genomic sequence is strongly

correlated to its CG content regardless of the size of the genome. It is also found that

gene length [30], gene density [76], patterns of codon usage [61], distribution of different

types of repetitive elements [30, 66], number of isochores [11], length of isochores [55] and

recombination rate within chromosomes [36] are related to CG content. The algorithms can

be used directly to find length-constrained CG-rich regions with the maximum sum and

average or with some user specified content requirement in a DNA sequence.

The nucleotide composition of a newly determined DNA sequence is analyzed to locate

its biologically meaningful segments including finding CG-rich regions [32, 41], TA and CG-

deficient regions [56], CpG islands [41], regions rich in periodical three-base pattern [62, 71],

post processing sequence alignment [74], annotating multiple sequence alignments [68] and

computing length-constrained ungapped local alignment [6]. Our algorithms have potential

applications in those areas.

In Section 2.2 we briefly describe Kim’s [46] algorithm for the maximum density seg-

ment problem. Our algorithms for the maximum density, k maximum density segments,

18

maximum sum segments and k maximum sum segments of a sequence are presented in

Sections 2.3, 2.4, 2.5 and 2.6 respectively. Section 2.7 describes our algorithms for finding

all the segments of a sequence having sum or density bounded below by some user specified

value. Concluding remarks are given in Section 2.8.

2.2 Kim’s Algorithm for Maximum Density Segment

We describe Kim’s [46] algorithm for the maximum density segment problem using uni-

form length. He reduced the problem to a geometric one thus. The element indices and

corresponding prefix sums give n + 1 points in the plane p0 = (0, s0), p1 = (1, s1), p2 =

(2, s2), . . . , pn = (n, sn), sorted by their x-coordinates. The density of a segment A[i, j] can

then be interpreted as the slope of the line segment through the points (i − 1, si−1) and

(j, sj). The problem then is to find pi and pj such that pipj has the largest slope.

Without any restriction on the segment length, the maximum density segment problem

is solved by computing the largest slope defined by a pair of the above points. We can use

any of a number of O(n log n) slope selection algorithms for this problem ([23] or [45] for

example). The constraints on the segment length add a new dimension to the problem.

For a given right endpoint pj , the set of candidate left endpoints pi has i in the index-

window Ij = [0, j − L] when L 6 j < U and in Ij = [j − U, j − L] when j > U . If we

maintain the lower convex hull of the points in this index-window, then the largest slope is

found by drawing a tangent from pj to a point pt on this lower hull. The maximum density

19

segment for a fixed j is then at+1, at+2, . . . , aj . As j goes from L to n the maximum of all

slopes found gives the desired maximum density segment.

Based on the above formulation, Kim proposed an algorithm that claimed to be able to

perform all the dynamic updates to the lower convex hull as the index-window moves from

the left to the right in O(n) amortized time. This claim is inaccurate. Figure 2.1 shows the

lower convex hull (lch, for short) of the points inside the index-window I(j), where px, pz

and py are the leftmost, bottommost and rightmost points on the lch. Kim maintains the

portion of lch from py to pz in one array and the portion of the lch from px to pz in another

array.

px

pz

py

Ij

Figure 2.1: The lower convex hull of the points in the index-window Ij

Now, it is crucial to the correctness of Kim’s algorithm that, as the window Ij slides

to the right the algorithm remains updated about the new value of pz. Kim’s algorithm

correctly updates pz, except in the case shown in Figure 2.2.

In this case, as the window slides to the next position the hull update cannot be done

in O(1) time as Figure 2.3 shows.

20

px(= pz)

Ij

py

Figure 2.2: The problem case for Kim’s algorithm

px(= pz)

Ij

py

px+1

Figure 2.3: pz may need to be recomputed

2.3 Algorithm for Maximum Density Segment

First, we describe our algorithm for the case of uniform length, i.e., li = 1 for i = 1, ..., n.

The main idea underlying the new algorithm is to consider the right end point pj (for

j = L,L + 1, . . . , n) of all the feasible segments pipj in batches of a fixed size. For each

pj , instead of computing a single lower convex hull of the feasible set of left end points pi,

we compute two lower convex hulls - a left one and a right one that start at 2 adjacent

points pm−1 and pm, j − U < m 6 j − L (Figure 2.4). The right lower hulls are computed

incrementally in a left-to-right (LR) pass for a batched set pj , and the left hulls in a right-to-

left (RL) pass for the same batched set. Thus, the problem that arises in Kim’s algorithm

21

from the dynamic convex hull update as a result of deletion on the left is avoided. The

correctness of this scheme follows from the following observation for the property of a set:

pm pj

pj−U

pj−L

pm−1

Figure 2.4: Incremental left and right lower convex hulls

Observation 1 For a point pj , U 6 j 6 n, let Gj be the set of the candidate left end points

pi of all feasible segments. If Gj1 and Gj2 are any 2 subsets of Gj such that Gj = Gj1 ∪Gj2,

then

max
pi∈Gj

slope(pipj) = max{max
pi∈Gj

1

slope(pipj), max
pi∈Gj

2

slope(pipj)}.

We consider the right end points pj , j > U , in batches of size U − L + 1. The details

of the LR and RL passes for a batch of points pj , j ∈ [k, k + U − L], k > U , are described

below. For each pass, we first describe the algorithm informally, and then follow it up with

a formal description.

2.3.1 The LR pass

In this pass, we consider the right end points pj , j ∈ [k, k+U−L], in left-to-right fashion. For

each new right end point pj , j ∈ [k, k+U −L], we incrementally compute the lower convex

hull Hr = LCH({pk−L, pk−L+1, . . . , pj−L}). In other words, for each pj , Hr is updated by

insertion of a new point pj−L on the right end of it. Following Kim [46], we maintain 2

22

parameters to aid the incremental computation: a tangent line l to the current hull Hr with

the maximum slope found so far, and the point of contact α of l with the current hull Hr.

We always represent l by a pair of points. The slope of l is the current maximum density

for this batch of pj .

Initially, Hr = {pk−L}, l = pk−Lpk and α = pk−L. For the current right end point pj ,

j ∈ [k, k + U − L − 1], let Hr, l and α be as shown in Figure 2.5. For the next right end

point pj+1, we update Hr, l and α. Hr is updated by inserting the point pj+1−L on the

right, i.e., Hr = LCH(Hr ∪{pj+1−L}). The updated Hr is traversed counterclockwise from

α (or from the newly inserted hull point pj+1−L - if α is deleted from Hr) to find the new

tangent line l having the maximum slope found so far, and the new point of contact α on

Hr with the updated l. There are 4 cases as follows:

pk−L

α

l

pj−L

pj

Hr

Figure 2.5: LR pass: The lower hull, l and α for the right end point pj, j ∈ [k, k+U−L−1]

Case 1: Both pj+1−L and pj+1 are above l (Figure 2.6).

Hr is updated. Hr is traversed counterclockwise from α to the point of contact of the

23

tangent from pj+1 to this new Hr, while these tangent and point of contact are set to

be the new l and α respectively.

pk−L

α

l

pj+1−L

pj+1

pj−L

pj

Hr

Figure 2.6: LR pass: Both pj+1−L and pj+1 are above l

Case 2: pj+1−L is above, and pj+1 is on or below l (Figure 2.7).

Hr is updated. However, α and l remain unchanged.

pk−L

α

l

pj+1−L

pj

pj−L

pj+1

Hr

Figure 2.7: LR pass: pj+1−L is above, while pj+1 is on or below l

Case 3: pj+1−L is on or below l (Figure 2.8).

Hr is updated. Let l′ be a line through pj+1−L and parallel to l. Let pj+1 be above

24

l′; reset l = pj+1−Lpj+1 and α = pj+1−L.

pk−L

α

l′

pj−L

pj+1−L

pj+1

l

pj

Hr

Figure 2.8: LR pass: pj+1−L is on or below l, and pj+1 is above l′

Case 4: pj+1−L is on or below l, and pj+1 is on or below l′ (Figure 2.9).

Hr is updated. Set l to l′ and α = pj+1−L.

pk−L

α

l′

pj−L

pj+1−L

pj+1

pj

Hr

l

Figure 2.9: LR pass: pj+1−L is on or below l, and pj+1 is on or below l′

Each point in the left window {pk−L, pk+1−L, . . . , pk+U−2L} is added to an Hr once, and

deleted at most once from a subsequent Hr. For a new point pj , if α does not move right,

the cost of computation is constant and is charged to the point pj−L that is added to the

25

hull. We note that α never moves clockwise. Now we consider the case in which α move

counterclockwise. Each point on Hr is accessed at most once during the recomputation

of α, since it never moves clockwise. The cost of recomputing α is charged to the points

passed over as we move counterclockwise on the updated Hr from the current α, and the

cost of deleting the points on Hr on the left of α are charged to them. Thus, each point pi

in the left window is charged at most 3 times: 2 times for insertion into and deletion from

Hr and once for being passed over by α.

Since α never moves backward in this pass, we do not need to maintain the part of Hr

that lies on the left of α. The algorithm for the LR pass, called MDS-LRPASS, is given in

Algorithm 1.

We note that at the end of traversal of Hr in step 2.1.2.1, if an edge of Hr coincides

with the new tangent line, we select the right end point of that edge as the point of contact

pi.

2.3.2 The RL pass

This pass needs more careful handling. In this pass, we consider the right end points pj , j ∈

[k, k+U−L−1], in right-to-left fashion. For each new right end point pj , j ∈ [k, k+U−L−1],

we incrementally compute the lower convex hull Hl = LCH({pj−U , pj−U+1, . . . , pk−L−1}).

In other words, for each pj , Hl is updated by insertion of a new point pj−U on the left

end of it. As in LR pass, we maintain 2 parameters to aid the incremental computation: a

tangent line l to the current hull Hl with the maximum slope found so far, and the point

26

Algorithm 1 Algorithm for LR Pass

1: procedure MDS-LRPASS(s, L, U, k)
Input: s is the array of prefix sum for the input sequence. L and U are respectively
lower and upper bounds. k is the index of the first element of the current batch of right
end elements.
Output: Maximum density segment l in LR pass for the current batch of elements.

2: Hr ← LCH({pk−L}) . pi is the point (i, si). Hr is the lch.
3: α← pk−L . α is the left end point of the current maximum slope line segment.
4: l← αpk . l is the current maximum slope line segment. It is stored as a pair of

points.
5: for j ← k + 1 to k + U − L do
6: if pj−L is above l then
7: Hr ← LCH(Hr ∪ {pj−L})
8: if pj is above l then . l and α are not updated if pj is on or below l.
9: Starting from α, traverse Hr counterclockwise to find the new point of

contact pi on it with the tangent line passing through pj , and delete from Hr those
points that are passed over by α.

10: α← pi
11: l← αpj
12: end if
13: else . pj−L is on or below l
14: Hr ← {pj−L}
15: α← pj−L
16: Set l to the line parallel to l and passing through α
17: if pj is above l then . l is not updated further if pj is on or below l
18: l← αpj
19: end if
20: end if
21: end for
22: return l
23: end procedure

27

of contact α of l with the current hull Hl. We always represent l by a pair of points. The

slope of l is the current maximum density for this batch of pj .

Initially, Hl = {pk−L−1}, l = pk−L−1pk+U−L−1 and α = pk−L−1. For the current right

end point pj , j ∈ [k + 1, k + U − L − 1], let Hl, l and α be as shown in Figure 2.10. For

the next right end point pj−1, we update Hl, l and α. Hl is updated by inserting the

point pj−1−U on the left, i.e., Hl = LCH({pj−1−U} ∪ Hl). The updated Hl is traversed

counterclockwise from α (or from the newly inserted hull point pj−1−U - if α is deleted from

Hl) to find the new tangent line l having the maximum slope found so far, and the new

point of contact α on Hl with the updated l. Again, there are 4 cases as follows:

pk−L

α

l

pk−L−1

pj

pj−U

Figure 2.10: RL pass: The lower hull, l and α for the right end point pj, j ∈ [k+ 1, k+U −
L− 1]

Case 1: pj−1−U is on or above l, and pj−1 is above l (Figure 2.11).

Hl is updated. We traverse Hl counterclockwise from α to find a tangent to it from

pj−1. We reset l to this tangent line and α to the point of contact between updated l

and Hl.

28

pk−L

α

l

pj−1

pk−L−1

pj

pj−U

pj−1−U

Figure 2.11: RL pass: pj−1−U on or above l, and pj−1 is above l

Case 2: pj−1−U is on or above l, and pj−1 is on or below l (Figure 2.12).

Hl is updated. However, α and l remain unchanged.

pk−L

α

l

pj−1

pk−L−1

pj

pj−U

pj−1−U

Figure 2.12: RL pass: pj−1−U is on or above l and pj−1 is on or below l

Case 3: pj−1−U is below l (Figure 2.13).

Hl is updated. Let l′ be a line through pj−1−U and parallel to l. Let pj−1 be above l′.

There will be only one point, viz., pj−1−U , on the updated Hl that is on the left side of

α. We traverse the updated Hl from pj−1−U counterclockwise from α to the point of

contact of the tangent from pj−1 to the new Hl, while α and l are updated to the new

29

tangent and the point of contact respectively. In this case, on the left of α at most

one point, viz., the newly added point pj−1−U , is checked to find α. Consequently, α

can move left by at most one point.

pk−L

pj−1−U

α

l

pj−1

l′

pk−L−1

pj

pj−U

Figure 2.13: RL pass: pj−1−U is below l and pj−1 is above l′

Case 4: pj−1−U is below l, and pj−1 is on or below l′ (Figure 2.14).

Hl is updated as in Case 3. We reset l to l′ and α to pj−1−U .

pk−L

pj−1−U

α

l

pj−1

l′

pk−L−1

pj

pj−U

Figure 2.14: RL pass: pj−1−U is below l and pj−1 is on or below l′

Time complexity analysis for this pass is exactly the same as that for the LR pass,

except that for a new point pj , α may move clockwise on Hl exactly by one position. If it

30

does move clockwise, then it moves to pj−U . This cost is charged to the new point pj−U in

the left window. Thus, each point pi in the left window is charged at most 4 times: 2 times

for insertion into and deletion from Hl, once when α moves clockwise to it and once when

α passes over it.

We note that once α moves clockwise and passes over a point pi on Hl, it never moves

back to that point again, or to any point lying on its left in the current Hl. Consequently,

those points cannot be in contention for α anymore. We delete them from current Hl and

do not consider them for future Hl. The algorithm for the RL pass, called MDS-RLPASS,

is given in Algorithm 2.

We note that at the end of traversal of Hr in steps 2.1.1 and 2.2.4.1, if an edge of Hr

coincides with the new tangent line, we select the right end point of that edge as the point

of contact α.

2.3.3 The Algorithm

For the first batch of U − L + 1 points pj , j ∈ [L,U], we make an LR pass only. For the

remaining points at the end, right end points are pj , j ∈ [k, n]. First, we make an LR pass

with pi, i ∈ [k − L+ 1, n− L+ 1] and LCH({pk−L, pk−L+1, . . . , pn−L}). Next, we make an

RL pass as follows: Left end points are pi, i ∈ [k−U + 1, k−L]. Construct LCH Hl for the

left end points pk−L−1, pk−L−2, . . . , pn−U . Draw tangent from pn to this hull. The tangent

line is l and the point of contact is α. Delete from Hl the points that are on the right side

of α. Now we make RL pass starting from right end point pn−1 and left end point pn−U−1.

31

Algorithm 2 Algorithm for RL pass

1: procedure MDS-RLPASS(s, L, U, k)
Input: s is the array of prefix sum for the input sequence. L and U are respectively
lower and upper bounds. k is the index of the first element of the current batch of right
end elements.
Output: Maximum density segment l in RL pass for the current batch of elements.

2: Hl ← LCH({pk−L−1}) . pi is the point (i, si). Hl is the lch.
3: α← pk−L−1 . α is the left end point of the current maximum slope line segment.
4: l← αpk+U−L−1 . l is the current maximum slope line segment. It is stored as a

pair of points.
5: for j ← k + U − L− 2 to k do
6: if pj−U is on or above l, and pj is above l then . If pj−U is on or above l, and
pj is on or below l, then none of Hl, l and α is updated

7: Starting from α, traverse Hl counterclockwise to find the new point of contact
pi on it with the tangent line passing through pj , and delete from Hl those points that
are passed over by α

8: α← pi
9: l← αpj

10: else . pj−U is below l
11: Hl ← LCH({pj−U} ∪Hl)
12: α← pj−U
13: Set l to the line parallel to l and passing through α
14: if pj is above l then . If pj is on or below updated l, then none of α and l

is updated again
15: Starting from α, traverse Hl counterclockwise to find the new point of

contact pi on it with the tangent line passing through pj , and delete from Hl those
points that are passed over by α

16: α← pi
17: l← αpj
18: end if
19: end if
20: end for
21: return l
22: end procedure

32

It stops when j = k and i = k − U . We call this algorithm as MDS-RIGHTRESIDUAL.

The algorithms for maximum density segment, called MDS, is given in Algorithm 3.

Algorithm 3 Algorithm for maximum density segment problem

1: procedure MDS(A,L,U)
input: A is the input sequence. L and U are respectively lower and upper bounds.
Output: Maximum density segment l of A.

2: n← |A| . n is the number of elements in A
3: s0 ← 0 . s is the array of prefix sum for the input sequence A.
4: for i = 1, i← i+ 1 till k 6 n do
5: s0 ← si +A[i]
6: end for
7: l← MDS-LRPASS(s, L, U, L) . l is the current maximum density line segment. It

is stored as a pair of points.
8: b← U − L+ 1
9: for k = U + 1, k ← k + b till k 6 n do . One iteration for each batch of
U − L+ 1 elements and final iteration for the batch of residual elements (if any). Exit
when k > n

10: l′ ← MDS-RLPASS(s, L, U, k) . l′ is the maximum slope line segment returned
by MDS-RLPASS

11: if slope(l) < slope(l′) then
12: l← l′

13: end if
14: l′ ← MDS-LRPASS(s, L, U, k) . l′ is the maximum slope line segment returned

by MDS-LRPASS
15: if slope(l) < slope(l′) then
16: l← l′

17: end if
18: if k − s < n then
19: l′ ← MDS-RIGHTRESIDUAL(s, L, U, k − b, n) . l′ is the maximum slope

line segment returned by MDS-RIGHTRESIDUAL
20: if slope(l) < slope(l′) then
21: l← l′

22: end if
23: end if
24: end for
25: return l
26: end procedure

33

2.3.4 Analysis

Each batch of U − L + 1 points in the left index window is considered at most twice by

MDS algorithm: once for an LR pass of a batch of U − L + 1 right end points and once

for an RL pass of a batch of U − L right end points. As mentioned above the cost charged

to each of these left end points are constant for each pass. Each of the right end points is

accessed at most twice and that cost is charged to the respective point. Consequently, the

time complexity is in O(n). Thus, we have the following theorem:

Theorem 1 Given a sequence A of n real numbers and two real numbers L and U with

1 6 L 6 U 6 n, MDS algorithm finds the maximum density segment of A from among all

the segments of A of length at least L and at most U in O(n) time and O(U − L) space in

an online manner.

2.3.5 Improved Algorithm

The MDS algorithm works for all L and U with 0 6 L 6 U 6 n. Huang [44] proved the

following result:

Observation 2 If R ⊂ A is a maximum density segment of length at least 2L, then R can

be obtained by merging 2 adjacent segments of length at least L with the highest densities.

We prove a similar result below:

Lemma 2 Let A be a sequence of length n, and L be a positive number such that L 6 n.

34

One of the maximum density segments of A of length at least L must be of length at most

2L− 1.

Proof. Let R = A[i, j] be a maximum density segment of length l > 2L. Let ρ denotes the

density function. Let ρ(R) = d. We shall show that there is a subsegment R′ ⊂ R of length

at least L such that ρ(R′) > d.

Let us consider the subsegment R1 = A[i, i + L− 1] of R of length L. Let ρ(R1) = d1.

If d1 > d, then R1 is the required subsegment R′ and we are done.

Otherwise, we consider R2 = R − R1. Let ρ(R2) = d2. Since |R| > 2L, we have

|R2| = l − L > 2L− L = L and

d2 =
ld− Ld1

l − L = d+
L(d− d1)
l − L > d, since d > d1 and l > L

Therefore, R2 is the required subsegment R′. �

When U > 2L, for a right end point pj we do not need to consider the left end points pi

such that i 6 j − 2L by the above lemma. For this case, we improve our above algorithm

by restricting the size of the batch of right end points pj to L. If the batch consists of pj ,

j ∈ [k, k + L], the set of left end points are pi, where i ∈ [k − L, k] for the LR pass and

i ∈ [k−2L,L] for the RL pass. The improved algorithm, called MDS-IMPROVED, is given

in Algorithm 4.

We have the following theorem:

Theorem 3 Given a sequence A of n real numbers and two real numbers L and U with

35

Algorithm 4 Improved algorithm for maximum density segment problem

1: procedure MDS-IMPROVED(A,L,U)
Input: A is the input sequence. L and U are respectively lower and upper bounds.
Output: Maximum density segment l of A.

2: if U > 2L− 1 then
3: U ← 2L− 1 . If U is larger than 2L− 1, reset it to 2L− 1.
4: end if
5: l← MDS(A,L,U) . Solve the problem by MDS.
6: return l
7: end procedure

1 6 L 6 U 6 n, MDS-IMPROVED algorithm finds the maximum density segment of A

from among all the segments of A of length at least L and at most U in O(n) time and

O(min{U − L,L}) space in an online manner.

2.3.6 Implementation

In the implementation of our algorithms described above, no division is needed except once

such as for reporting the final result of maximum density for the whole problem. We always

represent the tangent line l by the pair of points pi and pj through which it passes. To

represent the line l′ passing through a point p′i and parallel to l, we determine the translation

that translates pi to p′i, and make the same translation to pj to find the point p′j . Then the

line l′ is represented by the pair of points p′i and p′j . We do not need to maintain the slope

µ. Instead we compare the slopes of a pair of line segments. To compare the slopes of 2

line segments, all we need to do is to determine if it is a left turn or a right turn. This can

be done without division.

Our algorithm and Chung and Lu’s [22] algorithm’s run time have been compared us-

ing random number sequence data and real DNA sequence data (see Tables 2.1 and 2.2

36

Table 2.1: Comparison with random numbers
N L U Our (millisec) Chung (millisec) Chung/Our
50,000 200 500 9.1 8.1 0.89
50,000 5,200 20,500 7.6 7.1 0.94
50,000 8,200 32,500 6.5 6.7 1.03
10,000,000 2,500 25,000 185 154 0.83
10,000,000 12,500 125,000 176 154 0.88
10,000,000 62,500 625,000 145 147 1.02

Table 2.2: Comparison with real DNA sequence data
N L U Our (millisec) Chung (millisec) Chung/Our
10,000 80 640 1.6 1.0 0.63
10,000 320 2560 1.4 1.2 0.860.94
10,000 1,280 10,240 1.5 1.0 0.67
450,000 200 2,000 68 55 0.81
450,000 2,000 200,000 60 53 0.88
450,000 40,000 400,000 59 53 0.90

respectively). It is found that our algorithm performs better when the difference between

U and L is very large in comparison to the number of inputs N , except for one case of DNA

sequence data. In other cases Chung and Lu’s algorithm performs better.

2.3.7 Non-uniform Length

The above algorithm for uniform length can be extended to solve the general problem

where the lengths li, i = 1, ..., n, are arbitrary. For this we define the cumulative lengths

Li, i = 0, ..., n, as L0 = 0 and Li = l1 + ... + li, for i = 1, ..., n. Then the density µi,j of a

segment A[i, j] can be written as

µi,j =
sj − si−1

Lj − Li−1
.

For each element ai, i = 1, ..., n, in the sequence A we get the point (Li, si), i = 1, ..., n,

37

in the plane. We have the initial point (L0, s0) = (0, 0). Then the problem to find the

feasible segments with the maximum density is reduced to finding the feasible pairs of points

with the maximum slope. And this can be solved by a simple modification to our above

algorithm for uniform lengths. The only difference is that the abscissas of the consecutive

points (Li, si) and (Li+1, si+1) are li+1 distance away instead of unit distance away. Its time

and space complexity will be O(n) and O(U−Llmin
) respectively. Thus, we have the following

theorem:

Theorem 4 Given a sequence A of n pairs of real numbers (ai, li), i = 1, ..., n, and two real

numbers L and U with 1 6 L 6 U 6 n, our geometric algorithm as described above finds

the maximum density segment of A from among all the segments of A of length at least L

and at most U in O(n) time and O(U−Llmin
) space in an online manner.

2.3.8 Extension to Higher Dimensions

Using the method of [10, 70] the 2-dimensional problem is reduced to
(
m
2

)
+m 1-dimensional

problems for an m × n input matrix. We solve each of them using the above algorithm.

The time complexity will be O(m2n).

Theorem 5 Given a 2-dimensional m× n matrix A of pairs of real numbers (aij , lij), i =

1, ...,m; j = 1, ..., n, and two real numbers L and U with 1 6 L 6 U 6 n, there exists an

algorithm to find the maximum density subarray of A from among all the subarrays of A of

length at least L and at most U in O(m2n) time and O(mU) space.

38

Proof. Similar to the proof of Theorem 3 of Brodal and Jorgensen [13] and is omitted. �

The above algorithm can be extended to any dimension d in a straight forward way.

Theorem 6 Given a d-dimensional n1 × n2 × ... × nd matrix A of pairs of real numbers

and two real numbers L and U with 1 6 L 6 U 6 n, there exists an algorithm to find the

maximum density subarray of A from among all the subarrays of A of length at least L and

at most U in O(n1Πd
i=2n

2
i) time and O(UΠd

i=2ni) space.

Proof. Similar to the proof of Theorem 4 of Brodal and Jorgensen [13] and is omitted. �

To avoid being repetitive, we note that the algorithms described in the following sections

can all be extended to higher dimensions using the same reduction technique.

2.4 k Maximum Density Segments

2.4.1 Algorithm for k ∈ O(lg2(U − L))

Let us assume that k ∈ O(lg2(U − L)). The above MDS algorithm is repeated k times for

each batch of U − L + 1 points to find at least k maximum density segments with right

end points in the batch. In each iteration the maximum density segment for the iteration

is found. Keeping the left end point of the maximum density segment found in the current

iteration fixed, all the feasible segments with right end point within the current batch of

U − L + 1 points are selected and the left end point is deleted at the end of the iteration.

The algorithm for a batch of U − L + 1 points is described in Algorithm 5. We call this

algorithm as KMDS-SMALLK. X and Y are the sets of respectively 2U − 2L + 1 and

39

U −L+ 1 number of left and right end points of MDS algorithm. D is the set of k number

of candidate maximum density segments found so far.

Algorithm 5 Algorithm for k-maximum density segment problem when k ∈ O(lg2(U −L))

1: procedure KMDS-SMALLK(X,Y, L, U,D, k)
Input: X and Y are the sets of left and right end points respectively. L and U are
lower and upper bounds respectively. k is the required number of maximum density
segments.
Output: The set D of k number of candidate maximum density segments and corre-
sponding densities found so far.

2: for i = 1 to k do
3: Find the maximum density segment from among the feasible segments with left

end points in X and right end points in Y using the MDS algorithm (Algorithm 3).
4: Let x be the left end point of this segment. For all feasible segments with left

end point x, i.e., (x, y′), y′ ∈ Y , insert (x, y′, d(x, y′)) in D.
5: From D select the k maximum density segments using a linear time selection

algorithm [12] and update D with these k elements.
6: Delete x from X.
7: end for
8: return D
9: end procedure

Clearly, each iteration costs O(U − L) time. k iterations in a pass cost O(k(U − L))

time. The total cost per right end point is in O(k). Thus, we have the following theorem:

Theorem 7 Given a sequence A of n real numbers, two integers L and U with 1 6 L 6

U 6 n, and an integer k ∈ O(lg2(U − L)), MDS-SMALLK algorithm finds the k maximum

density segments of A from among all the segments of A of length at least L and at most

U in O(kn) time and O(U − L) space in an online manner.

2.4.2 Algorithm for k ∈ ω(lg2(U − L)) ∩ o(n(U − L)/ lg2(U − L))

For k ∈ ω(lg2(U − L)) ∩ o(n(U − L)/ lg2(U − L)) we present an improved algorithm. For

simplicity, we assume that the sequence elements are of unit length, i.e., li = 1, i = 1, ...n.

40

As before, for each batch of U − L + 1 points we make LR and RL passes to consider all

the feasible segments with right points in the batch. But the segments are processed in

a different way. Let the batch of right end points be in the index window [b, b + U − L].

In the LR pass the left end points of all the feasible segments are in the index window

[b−U +1, b−L+1], and in RL pass they are in [b−L+2, b+U −2L+1]. Then the LR and

RL passes will consider all the feasible segments with right end points in the index window

[b, b+ U − L]. The LR and RL passes are similar. We describe LR pass for the batch.

Grouping the feasible segments

Here we describe the grouping of feasible segments for the LR pass. A group of feasible

segments is represented by the pair Il × Ir where Il and Ir are the index windows for

respectively the consecutive left end points and the consecutive right end points according

to the x-coordinate such that all the combinations of segments with left end points in Il

and right end points in Ir are feasible. The main advantage of this grouping is that for each

right end point pj with j ∈ Ir, all the segments pipj with i ∈ Il is a feasible segment. All

the segments represented by a group Il × Ir will be processed in one batch. Processing of

a group of feasible segments will be described next. We shall call Il the left index window

and Ir the right index window.

For example, in Figure 2.15 the large square identifies a group of 64 segments which will

be represented by [b − U + 8, b − U + 15] × [b, b + 7]. We do not construct the segments

explicitly, just identify the pair of index windows.

41

b

b + 1

b + 2

b + 3

b + 4

b + 5

b + 6

b + 7

b + 8

b + 9

b + 10

b + 11

b + 12

b + 13

b + 14

b− U + 1 b− U + 3 b− U + 5 b− U + 7 b− U + 9 b− U + 11 b− U + 13 b− U + 15

Figure 2.15: Grouping of feasible segments

We scan Il in left-to-right fashion. First, for the single right end point pb, we make

a group of all the feasible segments with the single left end point pb−U+1. The group of

feasible segments is [b− U + 1, b− U + 1]× [b, b] (Figure 2.15).

Next, we make the following 2 groups of feasible segments: [b−U+2, b−U+3]× [b, b+1]

and [b − U + 3, b − U + 3] × [b + 2, b + 2]. This completes scanning 2 more left end points

pi ∈ [pb−U+2, pb−U+3]. After this scan all the feasible segments with consecutive 3 left end

points starting from pb−U+1 and consecutive 3 right end points starting from pb have been

completely grouped.

42

Next, we make the following 4 groups of feasible segments: [b−U+4, b−U+7]×[b, b+3],

[b−U + 5, b−U + 5]× [b+ 4, b+ 4], [b−U + 6, b−U + 7]× [b+ 4, b+ 5] and [b−U + 7, b−

U + 7]× [b+ 6, b+ 6]. This completes scanning 4 more left end points pi ∈ [pb−U+2, pb−U+3].

After this scan all the feasible segments with consecutive 7 left end points starting from

pb−U+1 and consecutive 7 right end points starting from pb have been completely grouped.

At the end of the i-th step we have grouped all the combinations of segments generated

by 2i − 1 consecutive right end points and the same number of consecutive left end points

such that they are feasible. We note that for each of the groups of feasible segments

generated by the above algorithm, the left and right index windows have the same length,

and that the length of the index windows are in powers of 2. For simplicity, let us assume

that U − L+ 1 = 2s − 1 for some positive integer s. After s steps all the feasible segments

with consecutive 2s− 1 left end points starting from pb−U+1 and ending at pb−L+1, and the

same number of consecutive right end points starting from pb and ending at pb+U−L have

been completely grouped. Thus, all the feasible segments corresponding to the LR pass

have been completely grouped. We note that all the Gis are mutually disjoint in the sense

that no pair of Gis have any common segment.

Lemma 8 The above algorithm constructs groups of feasible segments Gi, i = 1, ..., U−L+1

such that ∪U−L+1
i=1 Gi is the set of all feasible segments in the LR pass and all the Gis are

mutually disjoint.

The two characteristics of Gis mentioned in Lemma 8 ensures that the segments in each

43

group can be processed independently of the other groups and that we need to process the

Gis only.

In the above grouping procedure we do not consider the segments, but their indices. It

will take constant time to construct a group. For 2s − 1 right end points, 2s − 1 groups of

feasible segments will be created.

From Figure 2.15 we see that the above grouping can be done by the recursive algorithm

KMDS-GROUPING in Algorithm 6. The inputs ls, rs and m are respectively the starting

indices of left and right windows, and the length of them.

Algorithm 6 Algorithm for grouping points

1: procedure KMDS-GROUPING(ls, rs,m)
Input: ls and rs and m are the starting indices of left and right windows respectively.
m is the length of them.
Output: The set of pairs of left and right intervals for the indices of the input sequences.
For each pair length of left and right intervals are the same and are of the form 2i where
i is an integer.

2: if m > 1 then
3: m′ ← m+1

2
4: return KMDS-GROUPING(ls, rs,m′ − 1) ∪ {([ls + m′ − 1, ls + m− 1], [rs, rs +
m′ − 1])}∪ KMDS-GROUPING(ls +m′, rs +m′,m′ − 1)

5: else
6: return {([ls, ls], [rs, rs])}
7: end if
8: end procedure

Grouping in the RL pass will be similar. Thus, we have the following lemma:

Lemma 9 All the groups Gi for each of LR and RL passes can be created in O(U − L)

time and space.

44

Organizing the points

Now we describe the processing of a group of feasible segments. Let G = Il × Ir be a

group of feasible segments where |Il| = |Ir| = m = 2t for some positive integer t. Then

|G| = |Il| × |Ir| = 22t. Let Q and R be the sets of points having index windows Il and Ir

respectively. Then |Q| = |R| = m = 2t.

First, we organize the points in Q. We use Overmars and van Leeuwen’s [57] algorithm,

with a simple modification, to construct the lch (lower convex hull) of Q by composition.

In our computation Q will not change. We do not need insertion or deletion operation for

the convex hull.

By construction of the geometric problem all the points are already sorted by x-

coordinates, and are vertically separated (i.e., no pair of points lie on the same vertical

line). In fact, all the n input points are separated by unit distance in x-coordinate, and

consequently all the points of Q are separated by unit distance in x-coordinates.

The convex hull is constructed iteratively. In the first iteration, we construct 2t−1 lchs

of 2 consecutive points each. In the 2nd iteration, we construct 2t−2 lchs of 22 consecutive

points each by composing pairs of adjacent constituent lchs of 2 consecutive points each. In

the 3rd iteration, we construct 2t−3 lchs of 23 consecutive points each by composing pairs

of adjacent constituent lchs of 22 consecutive points each. We continue this for t iterations.

The information of all of these constituent lchs as well as the lch of Q is stored in a balanced

binary search tree, say C. This tree will be called LCH Tree. Its leaf vertices represent

45

the points of Q. Direct parents of the leaves represent the next higher level of lchs. Direct

parents of these parents represent the next higher level of lchs and so on. The root represent

the lch of Q. We denote the lch of Q by H1 and a lch at i-th level and j-th position from

left by H i
j .

First, we describe a naive algorithm for finding the k-maximum density segments. In

Overmars and Leeuwen’s [57] algorithm each vertex u of C is associated with a concatenable

queue [2] to store the information about a portion of the lch of all the points stored in the

leaves of the subtree rooted at u. This was necessary to update C after each insertion and

deletion. But we do not insert or delete any points in Q. Once constructed we do not need

to modify C. With each vertex u ∈ C, we associate an array Qu instead of a concatenable

queue. Qu stores the same information as the concatenable queue, viz., the left or right

part of the contour of the lch, of the points at the leaves of the subtree rooted at u, that is

not a part of the contour of the lch associated with the father of (u). Contents of a vertex

c of C are as follows:

1. f(c) - a pointer to the father of c (if any).

2. lchild(c) - a pointer to the left child of c.

3. rchild(c) - a pointer to the right child of c.

4. Qc - an array containing the lch of the set of points in the subtree of c.

5. bl - left end point of the bridge.

46

6. br - right end point of the bridge.

The time for the construction of the arrays at any level of C from its immediate lower

level is bounded by O(m) and there are lgm levels in the tree. Thus, we have the following

Lemma which is similar to Proposition 4.1 of Overmars and Leeuwen [57]:

Lemma 10 The tree C for a set of m points can be constructed in O(m lgm) time and

O(m) space.

Proof. Similar to the proof of Corollary 3.3 and Proposition 4.1 of Overmars and

Leeuwen [57] and is omitted. �

The time needed for the construction of the convex hull is blown up by a factor of lgm.

But it will help searching the k maximum density segments efficiently.

Searching

Now we describe searching for k maximum density segments for the group of segments in G.

Let us assume that the LCH Tree C of all levels of lchs of Q have already been constructed.

For a right end point pj ∈ R, the maximum density segment is found by drawing tangent

to the top most level lch H1 (Figure 2.16). For simplicity, we assume that there is only

one point of contact always. But this assumption is not essential for the method being

described in the following. Because, if there are multiple points of contact, say s number of

points of contact pi, pi′ , pi′′ , ... etc., then all of them will correspond to the same density.

If necessary, all of them will be selected first at no extra cost. Only then, the search needs

47

to find another segment of lower density by following all of pi, pi′ , pi′′ , ..., . If this total cost

is averaged over the pis, then it will be the same as that of following each of some s points

with different tangents separately.

Let the single point of contact be pj1 (pj−L−12 in Figure 2.16). We want to find the next

maximum density segment with the same right end point pj . Let the left end point of this

segment be pj2 (pj−L−11 in Figure 2.16). We need to find it. Clearly, it lies either on the

contour of, or interior to H1. It will be:

• either, one of the 2-adjacent points pj′1 and pj′′1 of pj1 (one on the left and the other

on the right of pj1) on H1;

• or, interior to H1 and its x-coordinate lies between the x-coordinates of pj′1 and pj′′2 ,

i.e., xj′1 < xj2 < xj′′1 .

We search neighbourhood of pj1 by successively reducing the size of the neighbourhood

until we reach 2 adjacent points with x-coordinates xj1 − 1 and xj1 + 1.

By construction, the contour of lower hull H1 consists of a portion of the contour of

each of H2
1 and H2

2 . They are joined by an edge, called bridge [57], between the 2 nearest

end points of those portions. So, pj1 must lie either on H2
1 or on H2

2 . Let it lie on H2
2 .

By construction of H, any pair of lchs at the same level are mutually disjoint, H i
j1
∩H i

j2
=

φ for all j1 and j2 with j1 6= j2. Since pj1 lies on the contour of H2
2 , pj2 can either be the

point of contact of tangent from pj to H2
1 , or on the contour or interior of H2

2 . To find

48

pj

pj−L+1

pj−L

pj−L−1

pj−L−2

pj−L−3

pj−L−4

pj−L−5

pj−L−6

pj−L−7

pj−L−14

pj−L−8

pj−L−9

pj−L−10

pj−L−11

pj−L−12

pj−L−13

Figure 2.16: Finding the next point w.r.t. right end point pj

the point of contact with H2
1 , the contour of H2

1 can be searched in O(lgm) time using

binary search on the array associated with the corresponding vertex c2
1 in C. The second

case is the same as the initial problem except for the lch changed from H1 to H2
2 . Thus,

the problem is solved recursively. There are lgm recursions. In each recursion the tangent

point to the contour of one lch is found by using binary search on the array of points of the

contour. Total time for searching pj2 is O(lg2m).

For each point pj ∈ R, we find the length constrained maximum density segment with

pj as the right end point. This is done in O(lgm) time by drawing tangent from pj to the

top level lch H1 (stored at the root of C). The tangent point is found by using a binary

search of the array associated with the root of C. For each pj a vertex vj1 is constructed

for the maximum density segment w.r.t. pj . Since the tangents to H1 from multiple points

in R may have the same point of contact, the same point in H1 may be left end points for

multiple vertices vj1 , vk1 , ..., etc., having distinct right end points pj , pk, ..., etc. respectively.

49

A maximum heap T is constructed using vj1 , j ∈ Ir, as its vertices and the density of

a segment as the order of the heap (Figure 2.17). The heap is initially constructed as a

balanced binary search tree with the exception that each vertex has a null middle children.

The middle children will point to an implicit heap that will be initialized and expanded as

needed.

vj1

vk1 vl1

Figure 2.17: Search tree

From the heap the k maximum density elements are selected by using Frederickson’s [33]

heap selection algorithm. A middle child will be explicitly constructed only when Fredrick-

son’s [33] algorithm reaches there. Each of these vertices will have a maximum of lgm

number of children. A child vertex will be created for each vertex of C that is visited dur-

ing search. After the initial construction of T , we will never create a left child or a right

child of any of its initial vertices.

Let t be any vertex of T . Let pi and pj be the left and right end points corresponding

to t. Let pi be the tangent point on the lch Hq
r . Then t will contain a pointer to cqr, where

cqr represents the lch Hq
r . For each vertex uj1 of T , j ∈ Ir, all the vertices of its middle

50

subtrees as well as itself represent the segments for which right end points are the same

point pj . Contents of a vertex t of T are as follows:

1. f(t) - a pointer to the father of t (if any).

2. lchild(t) - a pointer to the left child of t.

3. rchild(t) - a pointer to the right child of t.

4. c(t) - a pointer to the vertex c of C, where by searching the lch at c the search has

selected pi as the left end point of a segment

5. pj - right end point of a segment.

6. pi - left end point of a segment with right end point pj . As mentioned before, its value

is selected by searching the vertex pointed by c(t).

7. ρ - slope of pipj .

Let Fredrickson’s [33] algorithm wants to access the children of a vertex v of T . Accessing

the left and right children is straightforward. To access the middle children, it creates them

first. Let v corresponds to the tangent point on Hq
r w.r.t. pj . First, we search for the

next maximum density segment w.r.t. pj . We search for the tangent point on lchs at lower

levels than Hq
r . The search is conducted by the recursive algorithm discussed above. A

child vertex of v is created for the tangent point on each of the lower level lchs from pj .

51

Then Fredrickson’s [33] algorithm searches those vertices. The algorithm selects k maximum

density segments in this way. The time at each vertex is blown up by a factor of lg2m.

We call the naive algorithm for expanding T as EXPAND. It is formally given in Algo-

rithm 7. For each vertex c in C we store the entire lch of the set of points in its subtree

in its associated array Qc. We do not need C∗. Each vertex t of T has a pointer tc to an

associated vertex c in C. EXPAND is called when Frederickson’s [33] algorithm wants to

access the children of t. It is not called from t if tc points to a leaf vertex in C. EXPAND

calls the algorithm CONTACTPOINT in Algorithm 8 to find the tangent point on a hull

from a right end point.

Lemma 11 The naive algorithms described above selects the k-maximum density segments

correctly.

Proof. We need to show that: (i) there is no duplication of vertices in expanded T , (ii) the

expanded T is a max heap and (iii) no vertex of the k-maximum density segment vertices

are missed by Fredrickson’s [33] selection algorithm.

During construction of T , the roots of Tj have been inserted in T in maximum heap

order, and by construction, there is no duplicate root vertices Tjs in T .

Now we consider the vertices that are expanded as Fredrickson’s [33] algorithm wants

to access them. These vertices are expanded from the roots of Tj . Let us consider a tree

rooted at Tj wrt a right end point pj . We shall show that for each point pi, only one vertex

of Tj is associated with it. Let a vertex associated with pi in Tj be tji . We shall show that

52

Algorithm 7 Algorithm for expanding the search tree

1: procedure EXPAND(t, c)
Input: t is a vertex of search tree T . c is a vertex of LCH Tree C.
Output: NULL

. When Frederickson’s [33] algorithm wants to access the children of t,
this algorithm creates the children of t. t has a pointer to c. c stores the entire lch of
the set of points in its subtree.

2: create a child vertex t′ of t
3: pj(t′ ← pj(t)
4: if lchild(c) is a leaf of C then
5: Create a child vertex t′′ of t
6: pj(t′′ ← pj(t)
7: c(t′)← lchild(c)
8: c(t′′)← rchild(c)
9: pi(t′)← pi(lchild(c))

10: pi(t′′)← pi(rchild(c))
11: d(t′)← slope(pi(t′)pj(t))
12: d(t′′)← slope(pi(t′′)pj(t))
13: else
14: if x(t) > xbl(c) then
15: c(t′)← lchild(c)
16: CONTACTPOINT(t′, lchild(c), bl(c))
17: EXPAND(t, rchild(c))
18: else
19: c(t′)← rchild(c)
20: CONTACTPOINT(t′, rchild(c), br(c))
21: EXPAND(t, lchild(c))
22: end if
23: end if
24: end procedure

Algorithm 8 Algorithm for finding the tangent point on a lch.

1: procedure CONTACTPOINT(t′, c′, b)
Input: t′ is a vertex of search tree T . c′ is a vertex of LCH Tree C. b is the end point
of bridge.
Output: NULL

2: binary search Q
′
c to find the point of contact p′i on the left over part of Hc′ in Qc

′

from pj(t′)
3: if slope(p′ipj) < slope(b, pj) then
4: p′i ← b
5: end if
6: pi(t′)← p′i
7: d(t′)← slope(pi(t′)pj(t′))
8: end procedure

53

no other vertex in the tree Tj can be associated with tji .

We note that a vertex is created in T wrt only a point of contact on an lch. Let tji is

created wrt the point of contact ph on the lch Hα.

By construction, tji must have been created only when ph is found as the point of contact

with the highest level super hull among all the super hulls of ph, for which ph is the point

of contact. So, Hα is the highest level super hull among all the super hulls of ph for which

ph is the point of contact.

Again, we note that when a vertex tjβ wrt point of contact pi on lch Hβ is expanded,

a child vertex of tjβ is created for each subhull [down to the single point subhull (that is

associated with a leaf vertex of C)] of Hβ (on which pjβ does not lie). In other words, when

a vertex tjβ wrt a point of contact pjı on lch Hβ is expanded, a child vertex of tjβ is created

for each subhull [down to the single point subhull (that is associated with a leaf vertex of

C)] of Hβ, whose brother subhull’s contour contains the point pβ.

Thus, pα can be created only as a unique child vertex of tjβ. Therefore, tjα is unique only

if tjβ is unique. By induction on parent vertex and the fact that Tj is a tree, it follows that

tjα is unique.

Since Hα is a subhull of Hβ, and ph and pi are points of contact of the tangents from

pj to Hα and Hβ respectively, we have slope(phpj) 6 slope(pipj). So, max heap order is

preserved for creating tjα as a child of tjβ.

To prove (iii) we assume that Fredrickson’s [33] algorithm has expanded the tree T j

54

completely. Let ph be an arbitrary left end point. We shall show that there exists a vertex

in T j .

Let Hα be the highest level superhull of ph among all the super hulls of ph which have

ph as the point of contact of the tangent from pj . Following the argument similar to the

above we can show that a vertex wrt ph must have been created in T j , if there exists a

vertex tjβ in T j wrt to the point of contact pi of the tangent from pj to the highest level

super hull of pi, among all the super hulls of pi which have pi as the point of contact of the

tangent from pj to them. The result follows by induction and the fact that each point has

a super hull and that all the super hulls are composed hierarchically into the single highest

level super hull H. �

Lemma 12 After constructing the LCH Tree C of a group G of size m, the k maximum

density segments can be found from G in O(k lg2m) time.

From Lemmas 10 and 12 we have:

Lemma 13 For a group G of size m, the k maximum density segments can be found in

O(m lgm+ k lg2m) time and m lgm space.

Let U − L + 1 = 2s − 1. There will be U−L+2
2i+1 groups of size 2i − 1. Total cost for the

construction of lchs for the LR pass is

s−1∑
i=0

U − L+ 2
2i+1

O(2i lg 2i) = O((U − L) lg2(U − L))

55

To find the k maximum density segments for the LR pass the heap T is constructed

from all the groups. Then Fredrickson’s [33] algorithm is used to search the k maximum

density segments from it. The CH Trees of the groups are searched as described above. For

each pass of each batch, the k maximum density segments are updated using a linear time

selection algorithm [12]. If k > θ(U − L) a single heap T is constructed for all the passes

and all the batch. There will be (U − L) lg(U − L) vertices in the tree. Fredrickson’s [33]

algorithm is used to search the k maximum density segments from it as before. We have

the following theorem:

Theorem 14 For k ∈ ω(lg2(U − L)) ∩ o(n(U − L)/ lg2(U − L)), there exists an algorithm

for solving the k maximum density segments problem in O((n+ k) lg2(U − L)) time.

We now improve the above algorithms for expanding T . Its asymptotic time complexity

remains the same though. Each vertex vji of T is associated with a binary search tree C∗j

which contains a copy of all the search paths in C that have been traversed to date w.r.t.

pj . Let v be any vertex of T . Let pi and pj be the left and right end points corresponding

to v. Let pi be the tangent point on the lch Hq
r . Then v will contain a pointer to cqr and

c∗qr , where cqr represents the lch Hq
r and C∗qr is its corresponding vertex in C∗.

For each vertex vj1 of T , j ∈ Ir, all the vertices of its middle subtrees as well as itself

represent the segments for which right end points are the same point pj . All these vertices

are associated with the same binary search tree C∗j .

For each vertex vji of T , the keys at each vertex of associated tree C∗ stores the informa-

56

tion of the points that have already been selected as a left end point for a maximum density

segment. This indicates that the points have been removed from contention w.r.t. pj . But

no point is deleted from the arrays associated with the vertices of C, because those points

may be in contention w.r.t. right end points other than pj . Since the points of any lch H i
j

that are selected as left end points for maximum density segments must be consecutive on

H i
j , we store only the indices of Qij corresponding to the left end and the right points of

this sequence of points as keys in the corresponding vertex of C∗j . Let the names of these

keys be left and right.

For a point pj ∈ R, as the search for a maximum density segment goes down a path in

C from the root towards a leaf and finds a maximum density segment at a vertex u in C, a

similar path from the root of C∗ as well as the bordering vertices are created or updated in

C∗, if needed. The point selected from u is removed from contention for pj and is recorded

accordingly in the corresponding vertex in C∗ by updating either left or right. When a new

vertex of C∗ is created and no point is removed from contention from the corresponding

hull, left and right are set to zero. Clearly, time for updating C∗ is O(lgm).

For searching on or interior to a lch Hα, we always look for 3 adjacent points on it. Let

the 3 points on it be p1
j , p

2
j and p3

j in order of increasing x-coordinates. The x-coordinate

of the next maximum density segment must lie on or between the x-coordinates of p1
j and

p3
j . If we do not need to go into its interior, then we find the tangent point to it from pj .

The tangent point is obviously p2
j .

57

Now consider the case when we need to go into its interior of Hα. If p2
j is not one of

the 2 bridge points on Hα, then those 3 points must lie on one of the 2 constituent lchs of

Hα. We search that lch and the problem is the same as the original problem except for the

change in lch.

Otherwise, let 1 point lies on the constituent lch Hα
1 on the left and the rest 2 points lie

on the constituent lch Hα
2 on the right. For Hα

1 we find the tangent point p4
j on the left over

portion of it from pj using binary search on the array Qα1 (which stores the leftover portion

on the right of the lch) associated to cα1 that represents Hα
1 . Then the tangent point on will

be the one between P 1
j and p4

j with the maximum slope. Corresponding to that tangent

point we create a vertex in each of C∗ and T .

For Hα
2 , the two points are p2

j on the left and p3
j on the right. The point p5

j that is

adjacent to p1
j on the left on Hα

2 is the right most point on the remaining portion of Hα
2 .

Consequently, it must be the current last point in the associated array cαj . We select that

point from the associated array cα2 . Corresponding to p5
j on Hα

2 , we create a vertex in each

of C∗ and T . Now the 3 adjacent points on Hα
2 are p5

j , p
2
j and p3

j in left-to-right order and

the problem is similar to the original problem except for the change in lch and the 3 points.

The computation will by symmetric if one point lies on Hα
2 and the rest 2 lies on Hα

1 .

The above algorithms can be easily modified, in a way similar to that in Section 2.3.7 for

length constrained maximum density segment problem with non-uniform length, to solve

the problem with non-uniform length. The algorithm is efficient when k ∈ ω(lg2(U −L)) ∩

58

o(n(U −L)/ lg2(U −L)). When k ∈ Ω(n(U −L)/lg2(U −L))∩O(n(U −L)) any brute force

algorithm will be optimal as long as the selection is done in linear time in the number of

feasible segments. We describe a brute force algorithm in the following subsection.

2.4.3 Algorithm for k ∈ Ω(n(U − L)/lg2(U − L)) ∩O(n(U − L))

For k ∈ Ω(n(U −L)/lg2(U −L))∩O(n(U −L)) a brute force algorithm as described in the

following is optimal in time. From O(n(U−L)) number of all the possible feasible segments,

k maximum density segments are selected using linear time selection algorithm [12]. Its

time complexity is clearly O(n(U − L)). To minimize space usage the sequence is scanned

from left to right. For each element aj ∈ A all the feasible segments A[i, j] with right

end element being aj are considered. The segments are inserted into a set D of candidate

maximum density segments. As soon as k new segments are inserted into D, k number of

maximum density segments are selected from it using linear time selection algorithm [12],

and D is updated with these k maximum density segments. Its time complexity is clearly

O(n(U − L)). We have the following theorem:

Theorem 15 Given a sequence A of n real numbers, two integers L and U with 1 6 L 6

U 6 n, and one integer k ∈ Ω(n(U − L)/lg2(U − L)) ∩ O(n(U − L)), the above algorithm

finds the k maximum density segments of A from among all the segments of A of length at

least L and at most U in O(n(U − L)) time and O(k) space in an online manner.

59

2.5 Maximum Sum Segment

As before we solve the problem in batch mode with U − L+ 1 elements in each batch. For

each batch of elements we consider all the feasible segments with right end element in the

batch. Analogous to Observation 1 for the maximum density segment problem, we have the

following observation:

Observation 3 For an element aj , U 6 j 6 n, let Gj be the set of the candidate left

end elements ai of all feasible segments. If Gj1 and Gj2 are any 2 subsets of Gj such that

Gj = Gj1 ∪Gj2, then

max
ai∈Gj

j∑
t=i

at = max{max
ai∈Gj

1

j∑
t=i

at, max
ai∈Gj

2

j∑
t=i

at}.

For each batch of U − L+ 1 number of right end elements we make 2 passes as before.

Let the batch of elements be ab, ..., ab+U−L, where b = U,U + (U − L+ 1), U + 2(U − L+

1), ..., U + bn−U+1
U−L+1c(U − L+ 1), b ≥ U .

First, we consider LR pass for the batch. For each right end element aj ∈ A[b, b+U−L]

the feasible segments are A[b− L+ 1, j], A[b− L+ 2, j], ..., A[j − L+ 1, j]. The set of sums

of these segments is represented by QjLR and is defined as:

QjLR = {(i, j, s[i, j])|i = b− L+ 1, b− L+ 2..., j − L+ 1; s[i, j] =
j∑
t=i

at}.

60

It can be incrementally defined as:

QjLR = {(j − L+ 1, j, s[j − L+ 1, j])} ∪ {(i, j, s+ aj)|(i, j − 1, s) ∈ Qj−1
LR }. (2.1)

The setQjLR is constructed fromQj−1
LR by adding aj to each element ofQj−1

LR and inserting

an additional element. Since adding a constant number does not change the relative order

of a set of numbers, the same element will be the maximum element for the set before and

after the addition. We have

maxQjLR = max{maxQj−1
LR + aj , s[j − L+ 1, j]}

If we denote the maximum of QjLR by M j
LR, j = b, ..., b + U − L, then the above relation

becomes

M j
LR = max{M j−1

LR + aj , s[j − L+ 1, j]}

To find the maximum value M j
LR for QjLR we need the information about the maximum

element M j−1
LR of Qj−1

LR . The algorithm, called MSS-LR, is given in Algorithm 9.

Lemma 16 Given a sequence A of n real numbers and two real numbers L and U with

1 6 L 6 U 6 n, MSS-LR finds the maximum sum segment of A from among all the

segments of A of length at least L and at most U in LR pass for a batch of right end

elements of size U − L+ 1 in O(U − L) time and O(U − L) space.

Proof. The array s of input prefix sum is computed in the preprocessing step in O(U −L)

61

Algorithm 9 Algorithm for LR pass for maximum sum segment problem

1: procedure MSS-LR(A, s, L, U, b)
Input: A is the input sequence, s is the array of prefix sum of A, and L and U are
respectively lower and upper bounds. b is the index of the first right end element of the
current batch of right end elements.
Output: Maximum sum M , and indices l and r of left and right elements of the
maximum sum segement in LR pass for the current batch of right end elements.

2: M ← s[b]− s[b− L] . M is the current maximum sum.
3: l← b− L
4: r ← b
5: for t← b+ 1 to b+ U − L do
6: if A[t] > 0 then
7: M ←M +A[t]
8: r ← t
9: end if

10: if M < s[t]− s[t− L] then
11: l← t− L
12: r ← t
13: M ← s[t]− s[t− L]
14: end if
15: end for
16: return (M, l, r)
17: end procedure

time. Line 2 of MSS-LR initializes the maximum sum M in constant time. For each right

end element at, M is updated in lines 7-8 and/or 11-13 correctly in constant time. Thus,

total time for the batch of U − L+ 1 right end elements is O(U − L).

Updating in lines 7-8 corresponds to all the feasible segments with right end element

at except the segment A[t − L + 1, t]. Updating in lines 11-13 corresponds to the segment

A[t − L + 1, t]. Thus, the algorithm correctly finds the maximum sum segment among all

the feasible segments in LR pass with a batch of U − L+ 1 right end elements. �

Now we consider RL pass for the batch. For each right end element aj ∈ A[b, b+U −L]

the feasible segments are A[i, j], i = b−L+ 1, b−L, ..., j −U + 1. The set of sums of these

62

segments is represented by QjLR and is defined as:

QjRL = {(i, j, s[i, j]|i = j − U + 1, j − U + 2, ..., b− U + 1; s[i, j] =
j∑
t=i

at}.

It can be incrementally defined as:

QjRL = {(j − U + 1, j, s[j − U + 1, j])} ∪ {(i, j, s− aj+1)|(i, j + 1, s) ∈ Qj+1
RL }. (2.2)

The set QjRL is constructed from Qj+1
RL by subtracting aj+1 from each element of Qj+1

RL

and inserting an additional element. Since subtracting a constant number does not change

the relative order of a set of numbers, the same element will be the maximum element for

the set before and after the subtraction. We have

maxQjRL = max{maxQj+1
RL − aj+1, s[j − U + 1, j]}

If we denote the maximum of QjRL by M j
RL, j = b + U − L, ..., b, then the above relation

becomes

M j
RL = max{M j+1

RL − aj+1, s[j − U + 1, j]}

To find the maximum value M j
RL for QjRL we need the information about the maximum

element M j+1
RL of Qj+1

RL . The algorithm, called MSS-RL, is given in Algorithm 10.

Lemma 17 Given a sequence A of n real numbers and two real numbers L and U with

1 6 L 6 U 6 n, MSS-RL finds the maximum sum segment of A from among all the

63

Algorithm 10 Algorithm for RL pass for maximum sum segment problem

1: procedure MSS-RL(A, s, L, U, b)
Input: A is the input sequence, s is the array of prefix sum of A, and L and U are
respectively lower and upper bounds. b is the index of the first right end element of the
current batch of right end elements.
Output: Maximum sum M , and indices l and r of left and right elements of the
maximum sum segement in RL pass for the current batch of right end elements.

2: M ← s[b+ U − L]− s[b− L+ 1] . M is the current maximum sum.
3: l← b− L+ 1
4: r ← b+ U − L
5: for t← b+ U − L− 1 to b do
6: if A[t] < 0 then
7: M ←M −A[t]
8: r ← t
9: end if

10: if M < s[t]− s[t− U + 1] then
11: l← t− U + 1
12: r ← t
13: M ← s[t]− s[t− U + 1]
14: end if
15: end for
16: return (M, l, r)
17: end procedure

segments of A of length at least L and at most U in RL pass for a batch of right end

elements of size U − L+ 1 in O(U − L) time and O(U − L) space.

Proof. Similar to the proof of Lemma 16. �

By Lemmas 16 - 17 and Observation 3 we have

Theorem 18 Given a sequence A of n real numbers and two real numbers L and U with

1 6 L 6 U 6 n, our algorithm as described above finds the maximum sum segment of A

from among all the segments of A of length at least L and at most U in O(n) time and

O(U − L) space in online manner.

64

2.6 k Maximum Sum Segments

We use a simple modification of Brodal and Jorgensen’s [13] method to solve the k Maximum

Sum Segments problem. As before we solve the problem in batch mode with U − L + 1

elements in each batch. For each batch of elements we consider all the feasible segments

with right end elements in the batch. So, for each batch of U − L + 1 right end points we

make 2 passes as before. For each pass we shall use Brodal and Jorgensen [13] algorithm

to construct a partially persistent [29] max-heap ordered binary tree using vertex copying

technique. The heap implicitly contains all the feasible segments with their respective

sums. The heap is a modified version of the self adjusting heap (skew heap) of Sleator

and Tarjan [64] such that it supports insertions in amortized constant time. Brodal and

Jorgensen [13] called it Iheap. It will take O(U − L) time and space to build it. From the

heap the k maximum sum elements are selected by using Frederickson’s [33] binary heap

selection algorithm. It will take O(k) time. For each pass of each batch of U − L− 1 right

end elements we update the k maximum sum segments by using a linear time selection

algorithm [12].

First, we consider LR pass for the batch. For each right end element aj ∈ A[b, b+U−L]

the set QjLR of sums of all the feasible segments are incrementally defined in equation (2.1).

To avoid adding aj to each element of Qj−1
LR explicitly we represent the set of sums QjLR

implicitly by a pair 〈Hj
LR, j〉, where Hj

LR contains left end indices and j is the right end

index of the segments whose sums constitute QjLR. Here Hj
LR is a version of a partially

65

persistent Iheap representing all the segments whose sums constitute the set QjLR. The right

end index for the heap can be inserted to all the vertices of the heap by setting corresponding

value of j. Then the set of sums QjLR can be computed using the prefix sums as follows:

QjLR = {(sj − st−1)|t ∈ Hj
LR}. The pair 〈Hj

LR, j〉 is incrementally defined as follows:

〈Hb
LR, b〉 = 〈{b− L+ 1}, b〉,

〈Hj+1
LR , j + 1〉 = 〈Hj

LR ∪ {j − L+ 2}, j + 1〉.

where j = b, b+ 1, ..., b+ U − L− 1.

To construct 〈Hj+1
LR , j + 1〉 from 〈Hj

LR, j〉 a vertex with key value j − L + 1 is inserted

into Hj
LR. Since the new version of the heap is constructed using partial persistence, Hj

LR

remains intact after this insertion. To evaluate the sum for a vertex in the version Hj+1
LR of

the Iheap the right end index j + 1 of all the segments in Hj+1
LR are found from the access

pointer to this version. Then the sum is evaluated by subtracting the corresponding prefix

sums. Since the relative order of the sums in QjLR does not change in Qj+1
LR and since only

one new element is inserted into Qj+1
LR , the time to construct Hj+1

LR from Hj
LR is to insert the

new element in Hj
LR. Figure 2.18 shows a partially persistent Iheap and its access pointers

corresponding to the LR-pass of the sequence (2, 5, -6, 3, -5, 2, 7, 3, 2, 4, -16, 6) with L = 7

and U = 12. The copy pointers, the inverse pointers and the version stamps of the vertices

are not shown. The heap is constructed using vertex-copying technique.

From the heap the k largest sums are selected by using Frederickson’s [33] binary heap

66

A

D

E

F

4

5

A

2

B

C

3

1 1

2

3

4

4 5

6

8

6

12111097

2

1 3 4 5 6

Figure 2.18: Partially persistent Iheap and its access pointers corresponding to the LR
pass of the sequence (2, 5,−6, 3,−5, 2, 7, 3, 2, 4,−16, 6) with L = 7 and U = 12. The copy
pointers, the inverse pointers and the version stamps of the vertices are not shown.

selection algorithm. The algorithm visits vertices in top-down fashion. Before any vertex

in a heap Hj
LR is visited by the algorithm it is explicitly constructed and the newly con-

structed vertex is visited. The right end element index j is moved downward and sum for

the vertex is evaluated as the selection algorithm moves downward. For example, when

Fredrickson’s [33] algorithm follows the access pointer corresponding to the 8th element a8

(j = 8) (Figure 2.18), the root A2 of the 2nd version Iheap H2 is explicitly created. In this

vertex the corresponding values of i and j, i.e., 1 and 8 respectively, are stored as keys.

The sum s[1, 8], i.e., 11, is stored as another key. If the search follows the right child of this

vertex, i.e., A2 of version 2, then another vertex B2 is created as a right child of A2. In this

67

vertex 2 and 8 are stored as keys for the values of i and j respectively, and 9 is stored as a

key for the value of the sum s[2, 8]. B2 will be a leaf of H since B is a leaf in version 2.

A complete heap H is constructed on top of all the heaps Hj , j = b, ..., b+ U − L [13],

where the key values of all the top U − L vertices have been set to ∞. Frederickson’s [33]

algorithm starts from the root of H and selects U −L+ k largest sum vertices in H. From

them k largest sum elements are selected using linear time selection algorithm [12].

Now we consider RL pass for the batch. This pass is similar to the LR pass except that

the set QjRL of sums of all the feasible segments are defined in equation (2) and that QjRL

is implicitly defined as follows:

〈Hb+U−L−1
RL , b+ U − L− 1〉 = 〈{b− L}, b+ U − L− 1〉,

〈Hj−1
RL , j − 1〉 = 〈Hj

RL ∪ {j − U + 1}, j − 1〉.

where j = b+U −L− 1, b+U −L− 2, ..., b+ 1. Here Hj
RL contains all the left end indices

and j is the right end index of all the segments whose sums constitute QjRL.

For each pass of every batch of points the k maximum sum segments are updated using

linear time selection algorithm [12] to provide the solution at the end. Thus, we have the

following theorem:

Theorem 19 Given a sequence A of n real numbers, two integers L and U with 1 6 L 6

U 6 n, and one integer k 6 U − L, there exists an algorithm to find the k maximum sum

segments of A from among all the segments of A of length at least L and at most U in O(n)

68

time and O(U) space.

When k > U − L we use the above algorithm for each group of d k
U−L+1e number of

batches of U − L + 1 consecutive elements of the sequence. For simplicity, let us assume

that n = U + md k
U−L+1e(U − L + 1), where m is an integer. We include all the feasible

segments corresponding to the right end elements aj ∈ A[L,U] in the first group. For

a group, we insert into H all the feasible segments with right end points in that group.

Select the k maximum sum segments from the heap using Frederickson’s heap selection

algorithm [33]. The set of k maximum sum segments is updated using linear time selection

algorithm [12]. Thus, we have the following theorem:

Theorem 20 Given a sequence A of n real numbers, two real numbers L and U with

1 6 L 6 U 6 n, and one integer k > U − L, there exists an algorithm to find the k

maximum sum segments of A from among all the segments of A of length at least L and at

most U in O(n+ k) time and O(k) space.

2.7 Finding All the Segments with Some Content Require-

ment

In genomic sequence analysis at times it is necessary to find all the segments in a sequence

with some user specified minimum sum or density requirements [44].

69

2.7.1 Finding All the Segments Satisfying a Sum Lower Bound

Let σ be some user specified lower bound for sum. We use the algorithm in Section 4.1

to construct partially persistent Iheap [13] and select largest value vertices from it using

Frederickson’s heap selection algorithm [33]. The only change is that vertices are selected

from the heap in iteration. In t-th iteration 2t largest value vertices are selected and their

minimum sum is found. The iteration stops when the minimum sum in an iteration is less

than σ. Then all the segments with sum at least σ are reported.

Constructing the heap takes O(U − L) time. Let hb be the size of the output from the

b-th batch and 2s−1 ≤ hb < 2s, for some s ∈ I+. There will be s number of iterations of the

selection algorithm. The b-th iteration takes O(2b) time. Total time over all the iterations

is O(
∑s

t=1 2t) = O(2t+1) = O(hb), where s is the number of iterations. Total time for b-th

batch with U − L+ 1 number of elements in the batch is O(U − L+ hb). For n inputs the

time will be O(n+ h), where h is the total number of outputs.

Theorem 21 Given a sequence A of n real numbers, two integers L and U with 1 6 L 6

U 6 n, and one real number σ, All the segments of A of length at least L and at most U

and sum at least σ can be found in O(n + h) time and O(U − L + h) space in an online

manner, where h is the number of output.

70

2.7.2 Finding All the Segments Satisfying a Density Lower Bound

Following Liu and Chao [51] we transfer the problem to the problem of finding segments

satisfying a lower bound of 0 for sum. Let δ be some user specified lower bound for the

density. A segment A[i, j] has density of at least δ iff
∑j

t=i(at − δlt) ≥ 0, i.e., iff the

sequence segment (ai−δli, ai+1−δli+1, ..., aj−δlj) has sum of at least 0. Then the modified

problem is to find the length constrained segments of the sequence A′ = ((a′t, lt)|a′t =

at − δlt, (at, lt) ∈ A) such that the sum is non-negative. Let us consider a batch of points

(a′k, lk), (a
′
k+1, lk+1), ..., (a′l, ll) such that L ≤∑l

t=k ≤ U −L. The new problem is solved by

the algorithm of Section 2.7.1.

Theorem 22 Given a sequence A of n real numbers, two integers L and U with 1 6 L 6

U 6 n, and one real number δ, all the segments of A of length at least L and at most U

and density at least δ can be found in O(n+ h) time and O(U − L+ h) space in an online

manner, where h is the number of output.

2.8 Summary

In this chapter, some problems concerning the search for the interesting regions in a se-

quence are considered. We have presented linear time algorithms for both the problems

of length-constrained maximum sum segments and length-constrained maximum density

segments. The algorithms have been extended to find the k length-constrained maximum

sum segments and k length-constrained maximum density segments problems. They have

71

also been extended to find all the segments satisfying a user specified sum or density lower

bound in linear time. We indicate the extensions of our algorithms to higher dimensions.

Our algorithms facilitate efficient solutions for all these problems in higher dimensions.

All the algorithms can be extended in a straightforward way to solve the problems with

non-uniform length.

The algorithms have applications in several areas of biomolecular sequence analysis

including finding CG-rich regions, TA and CG-deficient regions, regions rich in periodi-

cal three-base pattern, post processing sequence alignment, annotating multiple sequence

alignments and computing length constrained ungapped local alignment.

It would be interesting to study if there is any linear time algorithm for the k length-

constrained maximum density segments problem. It can also be investigated to find more

efficient algorithms for the problems in higher dimensions. It remains open to improve the

trivial lower bounds for these cases.

72

Chapter 3

Point Placement Problem:

Improved Algorithms

3.1 Introduction

3.1.1 The Problem

Let P = {p1, p2, ..., pn} be a set of n distinct points on a line L. In this chapter, we address

the problem of determining a unique placement (up to translation and reflection) of the pi’s

on L, by querying distances between some pairs of points pi and pj , 1 ≤ i, j ≤ n.

The resulting queries can be represented by a point placement graph (ppg, for short),

G = (V,E), where V and E are the sets of vertices and edges respectively such that each

point pi ∈ P is represented as a vertex vi ∈ V and each edge e ∈ E joins a pair of vertices vi

and vj in V if the distance between the corresponding two points pi and pj on L is known.

Each edge e ∈ E is assigned the length that is equal to the distance between its adjacent

vertices. We shall use pi to denote a point on L as well as a vertex of G.

A ppg G is line rigid or just rigid if its vertices have a unique placement on a line. Thus,

the original problem reduces to the construction of a rigid ppg. The density ρ of a ppg G is

73

defined as ρ(G) = |E|
|V | .

Let us take some simple examples to illustrate the ideas involved. Suppose we have just

3 points {p1, p2, p3} on a line whose positions we want to know. Three different ppgs, up to

relabelling, are possible (omitting the trivial case when E = ∅) as shown in Figure 3.1 below.

Figure 3.1(a) corresponds to the situation when the distance between a pair of points, say

p1 and p2, is known. For Figure 3.1(b), the distances between 2 pairs of points, say {p1, p2}

and {p2, p3}, are known. Figure 3.1(c) is the ppg when all the pairwise distances are known.

p2

p3

(c)

p1

p2

p3

(b)

p1

p2

p3

(a)

p1

Figure 3.1: Some point placement graphs for 3 points

Clearly, for the ppg of Figure 3.1(a) a unique placement is not possible since the point

p3 can be anywhere relative to p1 and p2. The same is true of Figure 3.1(b): say, we place

p1 and p2 first, but then the position of p3 relative to p2 is ambiguous. However, a unique

placement is possible for the triangular ppg of Figure 3.1(c) as long as the length of one

edge is the sum of or absolute difference between the lengths of the other two. Thus, if we

first place p1 and then place p2 to p1’s right, p3 will be placed between p1 and p2 if the

sum of its distances from p1 and p2 is |p1p2|, and to the left of p1 or to the right of p2 if

the absolute difference between the distances is equal to |p1p2|. In other words, the ppg of

Figure 3.1(c) is rigid.

74

The last case suggests a simple algorithm using triangle as the basic component of a ppg

for the unique placement of n points. Query the distance between two points, say p1 and

p2. The position of each of the remaining points pi, i ≥ 3 is determined by querying the

distances from pi to p1 and p2; pi lies between p1 and p2 if the sum of the distances is equal

to |p1p2|, and to the left of p1 or to the right of p2 if the difference between the distances is

equal to |p1p2|. The corresponding ppg shown in Figure 3.2 is then rigid. The number of

queries made is 2n− 3, which is of the form αn+β. Here α(= 2) represents the asymptotic

density of the ppg which is the limit of the number of edges per vertex as the number of

vertices n goes to ∞. However, the density of the triangle ppg is 1.

p1 p2

p3

p4

pn

Figure 3.2: Query graph using triangles

The principal goal is to make α as small as possible. With this in mind, let us look at

the more complicated and illuminating case when we have 4 points. Many different ppg’s

are possible. We can dispense with those that have fewer than 4 edges since in these cases

a unique placement is clearly not possible. Figure 3.3 below shows the possible ppg’s, up to

relabelling, with 4 and 5 edges.

The ppg of Figure 3.3(a) is not rigid, for while the triangle formed by p1, p2 and p3 is

75

p4

p2 p2

p1 p1

p3 p3

(b) (c)

p4p1 p4

p2

p3

(a)

Figure 3.3: Some point placement graphs for 4 points

rigid, the point p4 can be placed to the left or right of p3, making the placement non-unique.

The ppg of Figure 3.3(b) is interesting in that if the two pairs of opposite edges are equal

then there is no unique placement. This is easily seen by drawing the ppg as a rectangle

as shown in Figure 3.4(a) below and then giving a horizontal right shear to the top edge

p2p3 so that p2 and p3 lie on the same line as p1 and p4, giving us the linear configuration

shown in Figure 3.4(b). A horizontal left shear produces the linear configuration shown in

Figure 3.4(c), which cannot be obtained from the linear configuration of Figure 3.4(b) by

translation and/or reflection.

p1 p4p2 p3

(b)(a)

p1

p2 p3

p4 p1 p4p2 p3

(c)

Figure 3.4: Point placement graph in the shape of a quadrilateral (a) with opposite edges
being equal have 2 placements as shown in (b) and (c)

The ppg of Figure 3.3(c) is rigid since we have 2 triangles attached to the edge p1p3, each

of which is rigid. Thus, it is the ppg of Figure 3.3(b) for which we have a structural rigidity

condition, namely, |p1p2| 6= |p3p4| or |p2p3| 6= |p1p4| [20]. This means that if we want to

76

extend our previous algorithm for the unique placement of n points, by first placing two

vertices, say, p1 and p2 on L and then building rigid quadrilaterals by querying distances

from p1 and p2 with respect to two new vertices at a time, we must make sure that we meet

the structural condition on the rigidity of each new quadrilateral.

If we try to construct a quadrilateral ppg (Figure 3.3(b)) in one round, its edges may

not satisfy its rigidity condition, because all its 4 edges are connected and we cannot choose

a suitable length for an edge to satisfy the rigidity condition on it. Suppose we want to

satisfy the rigidity condition |p2p3| 6= |p1p4|. This is possible if the edges p2p3 and p1p4 are

not paired. Then we will have options for choosing some suitable length for either p2p3 or

p1p4. Suppose we want to provide this option for p2p3. Then for each p1p4 we must have

candidate edges for p2p3. If we do not query p3p4 in the first round, then p2p3 and p1p4

are not paired, and it is possible to provide candidate edges for p2p3 after the first round

of query. It is to be noted that the quadrilateral will be rigid irrespective of the lengths of

the edges p1p2 or p3p4. So, there is no problem in querying for the length of the edge p1p4

in the second round.

So, we need to query the lengths of the edges in 2 rounds to build a rigid ppg using

quadrilateral as the basic component. After the first round of query, we can select p2p3

with a suitable length and can check that the rigidity condition on it is satisfied.

Here is a 2-round algorithm due to Damaschke [26]. Let the number of points be

n = 2b + 4, where b is a positive integer. In the first round, we make 2b + 3 distance

77

queries represented by the edges in the graph in Figure 3.5. There are b leaf children pi

(i = 3, ..., b+ 2) rooted at p1 and b+ 2 leaf children pj (j = b+ 3, ..., 2b+ 4) rooted at p2.

p1
p2

b leaves b + 2 leaves
pi pj

Figure 3.5: Query graph for first round in a 2-round algorithm using quadrilaterals

In the second round, for each edge p1pi (i = 3, ..., b+ 2) we find an edge p2pj rooted at

p2 satisfying the rigidity condition |p1pi| 6= |p2pj |. We can ensure this condition by having

2 extra edges at p2, in view of the following basic observation [27]:

Observation 4 At most two equal length edges can be incident to any vertex in a ppg.

By Observation 4, there are at most 2 edges p2pj such that |p1pi| = |p2pj |. So, for each

edge p1pi, an edge p2pj will always be found such that |p1pi| 6= |p2pj |. Then in the second

round of query, for each i (i = 3, ..., b+2), we query the distance pipj to form a quadrilateral

p1pipjp2. It will be rigid since |p1pi| 6= |p2pj |. It will fix the positions of pi and pj relative

to p1 and p2. For each of the 2 unused leaves pj , the distance p1pj is queried in the second

round to form the triangle p1pjp2. It will fix the position of pj relative to p1 and p2.

The number of queries made over the two rounds to construct this rigid ppg is 3b + 5,

i.e., 3n/2 − 1. There are two noteworthy points: (a) the value of asymptotic density α is

reduced from 2 for the first algorithm to 3/2 for the second, and (b) there is a price for this

- we have to query the edges in two rounds. It is interesting to note that the density of the

78

quadrilateral ppg is 1, but it is not intrinsically rigid.

What if the number of points is greater than 6 but odd? Let n = 2b + 5, where b is a

positive integer. We make an unique placement of the first 2b+ 4 vertices using the above

algorithm, and query the distances of the last odd vertex from any two vertices. Distance

queries for this vertex can be made in either of the 2 rounds.

3.1.2 Motivation

The motivation for studying this problem stems from the fact that it arises in diverse areas

of research such as computational biology, learning theory, computational geometry, etc.

In learning theory [26] this problem is one of learning a set of points on a line non-

adaptively, when learning has to proceed based on a fixed set of given distances, or adap-

tively when learning proceeds in rounds, with the edges queried in one round depending on

those queried in the previous rounds.

The version of this problem studied in computational geometry is known as the turnpike

problem. The description is as follows. On an expressway stretching from town A to town B

there are several gas exits; the distances between all pairs of exits are known. The problem

is to determine the geometric locations of these exits. This problem was first studied by

Skiena et al. [63] who proposed a practical heuristic for the reconstruction. A polynomial

time algorithm was given by Daurat et al. [28].

In computational biology, it appears in the guise of the restriction site mapping problem.

Biologists discovered that certain restriction enzymes cleave a DNA sequence at specific

79

sites known as restriction sites. For example, it was discovered by Smith and Wilcox

[65] that the restriction enzyme Hind II cleaves DNA sequences at the restriction sites

GTGCAC or GTTAAC. In lab experiments, by means of fluorescent in situ hybridization

(FISH experiments), biologists are able to measure the lengths of such cleaved DNA strings.

Given the distances (measured by the number of intervening nucleotides) between all pairs

of restriction sites, the task is to determine the exact locations of the restriction sites.

The turnpike problem and the restriction mapping problem are identical, except for the

unit of distance involved; in both of these we seek to fit a set of points to a given set of

interpoint distances. As is well-known, the solution may not be unique and the running

time is polynomial in the number of points. While the point placement problem, prima

facie, bears a resemblance to these two problems it is different in its formulation - we are

allowed to make pairwise distance queries among a distinct set of labeled points. It turns

out that it is possible to determine a unique placement of the points up to translation and

reflection in time that is linear in the number of points.

The 3-dimensional version of this problem has application in the area of molecular

conformation. Often, the experimental data about the conformational state of molecules

are available in terms of interatomic distances. Majority of energy functions can also be

expressed in terms of interatomic distances. The problem is to determine the conformational

space of a molecule from these distance data and chirality constraints.

80

3.1.3 Prior Work

Early research on this problem was reported in [58, 53]. In this chapter, our first principal

reference is [26], where it was shown that both the jewel and K2,3 are rigid, and also how to

build large rigid ppg of density 8/5 out of the jewel. A jewel is a graph with the set of vertices

{X,Y, Z,A,B, P,Q} and the set of edges {Y Z,XA,AY, Y B,BX,XP, PZ,ZQ,QX} (see

Figure 3.6). A K2,3 is a graph with the set of vertices {X,Y, Z,A,B} and the set of

edges {XA,Y A,ZA,XB, Y B,ZB}. In a subsequent paper, Damaschke [27] proposed a

randomized 2-round strategy that needs (1 + o(1))n distance queries with high probability

and also showed that this is not possible with 2-round deterministic strategies.

X

B

A

Z

P

Q

Y

Figure 3.6: A jewel

Our second principal reference is the work of Chin et al. [20] who improved many of

the results of [26]. Their principal contributions are the 2-round and 3-round construction

of rigid graphs of density 4/3 and 5/4 using respectively 5-cycle and 6-cycle as the basic

component, and a lower bound on the number of queries necessary in any 2-round algorithm.

They also introduced the idea of a layer graph which is useful in finding the conditions for

rigidity of a ppg. A layer graph is defined as follows:

Definition 3.1.1 We first choose two orthogonal directions x and y (actually, any 2 non-

81

parallel directions will do). A graph G admits a layer graph drawing if the following 4

properties are satisfied:

P1 Each edge e of G is parallel to one of the two orthogonal directions x and y.

P2 The length of an edge e is the distance between the corresponding points on L.

P3 Not all edges are along the same direction (thus a layer graph has a two-dimensional

extent).

P4 When the layer graph is folded onto a line, by a rotation either to the left or to the

right about an edge of the layer graph lying on this line, no two vertices coincide.

Chin et al. [20] proved the following result about a layer graph:

Theorem 23 A ppg is rigid iff it cannot be drawn as a layer graph.

3.1.4 Contribution

In this chapter, we show how to construct in 2 rounds a rigid ppg on n points, using an

instance of a 5:5 jewel as the basic component. The number of edges queried during this

construction is 10n/7 +O(1). We extend this result to 6:6 jewels, constructing in 2 rounds

a rigid ppg with 4n/3 + O(1) queries. This improves the result in [20] for constructing a

ppg with 4n/3 + O(
√
n) queries in 2 rounds using 5-cycles. We also improve substantially

the lower bound on any 2-round algorithm from 17n/16 in [20] to 12n/11. In Chapter 4

we improve the lower bound and upper bound to 9n/8 and 9n/7 + O(1) respectively. The

results are summarized in Table 3.1.

82

Table 3.1: Comparison of results for lower bound and upper bound
No of rounds Upper bound Lower bound

Damaschke [26, 27] 1 8n/5 +O(1) 4n/3
2 3n/2 +O(1) 30n/29

Chin et al. [20] 2 4n/3 +O(
√
n) 17n/16

3 5n/4 +O(
√
n)

This dissertation 2 10n/7 +O(1) (5:5 jewel) [5] 9n/8
2 4n/3 +O(1) (6:6 jewel) [3]
2 9n/7 +O(1) (3-path)

3.2 Generalized Jewels

The examples described in Section 3.1.1 demonstrates well how small ppg’s that are inher-

ently rigid or rigid under some structural conditions can be glued together into a large rigid

ppg. In this section we introduce a type of ppg, called an m : n jewel, several copies of

which we plan to glue together to form a large rigid ppg.

A generic m : n jewel consists of an m-vertex cycle C1 and another n-vertex cycle C2

that are joined by a strut going between two vertices Y (of C1) and Z (of C2), and hinged

at a third common vertex, X (Figure 3.7). An instance of an m : n jewel is obtained by the

placement of the vertices that describe the cycles C1 and C2.

X

Y Z

C1 C2

Figure 3.7: A generic m : n jewel

To attain our goal we need to determine the structural conditions (if any) that make a

chosen instance of the m : n jewel rigid. In the next section, we obtain structural conditions

83

under which chosen instances of the m : n jewels remain rigid for small values of m and n

by drawing them as layer graphs and applying Theorem 23. Before we do that, we establish

a few useful facts about the generic m : n jewel. The first is as follows.

Theorem 24 If cycles C1 and C2, consisting of m and n vertices respectively, are rigid

then so is any m : n jewel made up of these two cycles.

Proof. Since C1 and C2 are rigid their respective vertices have unique linear layouts. Then

in order for an m : n jewel to have a layer graph drawing these placements would have to

be in the orthogonal directions x and y. Suppose the vertex Y is placed on the x-axis and

the vertex Z on the y-axis, then the edge Y Z of the m : n-jewel is not parallel to either the

x or the y direction. Hence the m : n jewel cannot be drawn as a layer graph and must,

therefore, be rigid by Theorem 23. �

As a direct consequence of the theorem we have the following corollary:

Corollary 25 If an m : n jewel has a layer graph representation then in this representation

at least one of C1 or C2 is a layer graph.

In order to obtain the structural conditions that make a cycle rigid, we draw all possible

layer graph representations of it and find the structural conditions for the rigidity of each

of these. The logical AND of all these conditions is our answer. The second corollary is

this:

84

Corollary 26 The union of the set of all the structural conditions that make C1 rigid with

those that make C2 rigid, constitute a sufficient set of structural conditions that make an

m : n jewel rigid.

We shall take this route in the next two sections to obtain the structural conditions for

the rigidity of chosen instances of the m : n jewels for some small values of m and n.

It should be noted that a cycle with a fixed set of nx x-parallel edges and thus a fixed

set of ny y-parallel edges can be drawn as a layer graph in different ways. They are all

considered to be equivalent. For example, the three layer graph drawings of a 5-cycle in

Figure 3.8 are considered to be equivalent. From now on, for an equivalent class of layer

graphs we shall draw just one of them - not all. We shall not use the term class either. By

a particular layer graph, we shall mean the class of layer graphs that are equivalent to it.

Thus, two layer graph drawings of an n-vertex cycle are distinct from each other if at least

one edge has different orientations in the two graphs.

p1 p4 p4

p2 p2 p2

p1p5

p3 p3

p4

(a)

p3

p1p5 p5

(b) (c)

Figure 3.8: Equivalent layer graphs for a class of layer graphs of a 5-cycle

As we shall resort to exhaustive enumerations of all the layer graph representations of

a cycle, the following theorem [5] is useful for checking that we have the correct number.

Theorem 27 There are 2n−1− n2−n+2
2 different layer graph representations of an n-vertex

85

cycle.

3.2.1 4:4 and 5:4 Jewels

The following observation is fundamental. A formal proof can be found in [26].

Observation 5 A 4-cycle XAY B is rigid if |XA| 6= |Y B| or |XB| 6= |Y A|.

The jewel in Figure 3.6 has two 4-cycles joined together. It is an instance of a generic

4 : 4 jewel.

To begin with, we prove the following theorem.

Theorem 28 The 4:4 jewel of Figure 3.6 is rigid.

Proof. We claim that cycles XAY B and XQZP are both rigid. Let the edge Y Z is

x-parallel. Three cases arise:

Case 1 The 4-cycle XAY B is rigid, while the 4-cycle XQZP has a layer graph represen-

tation.

Since XQZP is a 4-cycle evidently its layer graph can be a rectangle only. Let the

vertices of the rigid 4-cycle XAY B lie on the x-parallel line through Y . Then for the

rectangular layer graph XQZP the diagonally opposite vertices X and Z lie on an

x-parallel line collinear with Y Z. Consequently, XQZP cannot have a 2-dimensional

extent. This violates property P1 of a layer graph. Thus the 4-cycle XQZP cannot

be drawn as a layer graph.

86

To complete the argument assume that the vertices of the rigid 4-cycle XAY B lie on

the y-parallel line through Y . Then the only way we can draw the 4-cycle XQZP as

a layer graph such that X and Z are non-adjacent is to place one of the two vertices

P or Q at Y . As this violates property P4 that a layer graph should have, the 4-cycle

XQZP can not be drawn as a layer graph.

Thus the 4-cycle XQZP does not have a layer graph representation when the 4-cycle

XAY B is rigid.

Case 2 An identical argument as in Case 1 proves that a layer graph representation of the

4-cycle XAY B is impossible when the 4-cycle XQZP is rigid.

Case 3 Finally, assume both the 4-cycles have layer graph representations.

Evidently, each of these is a rectangle only. As X and Y are non-adjacent vertices,

they are diagonally opposite vertices of the rectangle XAY B. Likewise, X and Z are

diagonally opposite vertices of the rectangle XQZP .

The arguments adduced for Case 1 can once again be used to show that it is not

possible to draw the 4-cycle XAY B as a layer graph if X lies on the x- or y-parallel

lines passing through Y or on any of the x- or y-parallel lines passing through Z.

Assume otherwise. Now, X and Y are diagonally opposite vertices of the rectangle

XAY B while X and Z are diagonally opposite vertices of the rectangle XQZP .

Therefore a vertex of the 4-cycle XAY B must coincide with a vertex of the 4-cycle

87

XQZP on an x-parallel line collinear with Y Z. As this violates property P4 that

a layer graph should have, the cycles XQZP and XQZP cannot have simultaneous

layer graph representations.

Thus, none of the two 4-cycles of the jewel has a layer graph representation. By Theo-

rem 23 both the cycles are rigid, and by Theorem 24 the 4:4 jewel is rigid. �

Unlike the 4:4 jewel of Figure 3.6, the 5:4 jewel of Figure 3.9 is not intrinsically rigid. As

a prelude to our discussion in the following sections, it is interesting to find the structural

conditions (or simply conditions) that make it rigid.

X

A

Z

P

Q

Y

B
C

Figure 3.9: An instance of a 5 : 4 jewel

We first determine the conditions that make the cycle XABY C rigid. By Theorem 27,

there are five distinct layer graph representations of the 5-cycle XABY C, shown in Fig-

ure 3.10. As remarked earlier, each is a canonical representative of an entire class of layer

graph representations; referring to Figure 3.10(a) for example, other representations can be

obtained by varying the position of A on the supporting line of XB.

It is impossible to extend the layer graph representations of the 5-cycle XABY C shown

in Figures 3.10(a) and 3.10(b) into a layer graph representation of the entire 5:4 jewel of

Figure 3.9. without one of the vertices P or Q coinciding with one of the vertices B or C.

88

However, it is possible to extend each of the layer graph representations of Figures 3.10(c) -

3.10(e) into a layer graph representation of our 5:4 jewel. The layer graph representations of

Figures 3.10(c) - 3.10(e) can be prevented by insisting on the condition |XC| 6= |AB|, |XA| 6=

|Y B|, |Y C| 6= |AB| respectively. By Theorem 23, these collectively constitute a set of

sufficient conditions for the line rigidity of the 5-cycle XABY C.

X A B

YC

X A

B

YC

X A

BYC

X A

BY

C

X A

BY

C

(a) (b) (c) (d) (e)

Figure 3.10: Different layer graph representations of a 5-cycle

For the 4-cycle XPZQ the rigidity condition is |XP | 6= |ZQ| (Observation 5). Thus, by

Corollary 26, the set of sufficient conditions for the rigidity of the 5:4 jewel of Figure 3.9 is

{|XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB|, |XP | 6= |ZQ|}.

We note in passing that for each of the configurations in Figures 3.10(c) - 3.10(e),

we have an alternate condition that prevents its drawing as shown. Thus for example

|XA| 6= ||CY | ± |Y B|| also prevents the layer graph drawing of Figure 3.10(c). With

the help of the label mapping (X,C, Y,B,A) to (p3, p4, p5, p1, p2) we can see that this

condition encapsulates the 3 different conditions corresponding to the 3 equivalent layer

graph representations shown in Figure 3.8. In such situations, whenever possible, we choose

the simpler condition, unless the other one is more useful for the construction of a ppg.

Theorem 29 The 5:4 jewel of Figure 3.9 is rigid if its edges satisfy the set of conditions

89

{|XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB|, |XP | 6= |ZQ|}.

3.3 Algorithm Based on a 5:5 Jewel

We next consider the more complex case of the 5:5 jewel of Figure 3.11. From now on, we

will refer to it simply as the 5:5 jewel. By Theorem 27 there are exactly 5 distinct layer

graph representations of a 5-cycle (see Figure 3.10). Thus, the set of 5 distinct conditions

in Lemma 30 are sufficient to ensure the rigidity of the 5-cycle XABY C.

Lemma 30 A 5-cycle XABY C is rigid if its edges satisfy the following conditions:

|XC| 6= |Y B|, |XA| 6= |Y C|, |XC| 6= |AB|, |XA| 6= |Y B|, |Y C| 6= |AB| (3.1)

Proof. A formal proof appears in [20]. �

X

A

Z

P

Q

Y

B
C R

Figure 3.11: An instance of the 5:5 jewel

For the 5-cycle XPQZR these conditions are:

|XR| 6= |ZQ|, |XP | 6= |ZR|, |XR| 6= |PQ|, |ZR| 6= |PQ|, |XP | 6= |ZQ|.

By Corollary 4, these 10 conditions collectively constitute a sufficient set of conditions

for the line-rigidity of the 5:5 jewel.

90

Our goal is to glue several copies of the 5:5 jewel of Figure 3.11 into a large ppg, as we

did for the case of quadrilaterals in Section 3.1.1. All of these will have a common strut

Y Z. As each jewel will account for 7 new vertices in lieu of 10 new edge queries, we expect

α to be 10/7. This indeed turns out to be the case. The challenge here is to design the ppg

in such a way that the rigidity conditions are satisfied for every jewel.

The rigidity conditions for a cycle, in their current form, involve all its edges. This

requires to query the lengths of all of its edges in the first round to check if the rigidity

conditions are satisfied. This does not provide us with the flexibility of choice that we need

to meet the rigidity conditions in a 2-round algorithm. The edge lengths may not satisfy the

conditions. If any condition is not satisfied then the cycle and thus the whole jewel may not

be rigid because our set of conditions is sufficient (Theorem 24). Now, the 2-dimensional

stretch of a layer graph gives a pointer - we can avoid involving one edge of a cycle from

all the rigidity conditions for it. We shall avoid AB and PQ from the rigidity conditions

for the two 5-cycles. Then the cycles will be rigid irrespective of the lengths of those edges.

And the rigidity conditions for the cycles will involve all of their other edges. Again, in

each rigidity condition we need to have at least one edge in it for which we can choose edge

length, from among the options for edge lengths for that particular edge, that satisfies the

condition. We shall provide options for choosing each of the edges Y B and ZQ.

There will be rigidity conditions of each cycle that will not involve these edges, i.e., Y B

or ZQ. We cannot meet those rigidity conditions in a 2-round algorithm. We need to avoid

91

other edge(s) from the rigidity conditions of a cycle and/or provide options for choosing

edge(s) for a cycle. We shall avoid XC and XR from the rigidity conditions for the two

cycles. Then we shall have options for choosing edges Y C and ZR to satisfy the rigidity

conditions.

Thus, we shall avoid AB, PQ, XC and XR from the rigidity conditions. For each

5-cycle we shall replace each of its rigidity conditions that involve any of these edges. We

shall replace that condition by a set of condition(s) that prevent the cycle from being drawn

as the layer graph representation that corresponds to that condition.

Looking ahead slightly, Figure 3.18 describes the structure of our proposed ppg. It has

a pool of edges hanging from each end of the strut Y Z and a set of 2-pronged subgraphs.

The lengths of the edges of this ppg are queried in the first round. In the second round,

we join each 2-pronged subgraph to a pair of edges incident to Y and another pair of edges

incident to Z to form a 5:5 jewel, making sure that all the rigidity conditions satisfied.

Over the rest of this section we show how to replace the rigidity conditions of the 5-cycle

XABY C that involve XC and/or AB with rigidity conditions that exclude these edges.

To replace a condition we shall find another set of conditions that prevents the drawing of

the 5-cycle XABY C as a layer graph in the configuration corresponding to that condition.

For example, to replace the condition |XC| 6= |Y B|, corresponding to the layer graph of

Figure 3.10)(a), we shall find a set of conditions that prevent the drawing of the layer graph

of the 5-cycle in the configuration of Figure 3.10)(a).

92

Our first attempt will be to use other edges in the layer graph drawing corresponding to a

given rigidity condition involvingXC and/or AB. If this does not suit our purpose, the basic

strategy will be to embed the layer graph drawing corresponding to such a rigidity condition

into all possible layer graph drawings of the 5:5 jewel and derive a rigidity condition from

each such embedding.

The rigidity conditions that we will consider for replacement are:

|XC| 6= |Y B|, |XC| 6= |AB|, |Y C| 6= |AB|

3.3.1 Replacing |XC| 6= |AB|

This condition has been derived from the layer graph drawing shown in Figure 3.10(c). This

figure shows that an alternate rigidity condition is

|XA| 6= ||Y B| ± |Y C||, (3.2)

which we use to replace |XC| 6= |AB|.

3.3.2 Replacing |XC| 6= |Y B|

This rigidity condition corresponds to the layer graph drawing of Figure 3.10(a). ||XA| ±

|AB|| 6= |Y C| is an alternate rigidity condition corresponding to the layer graph drawing

in Figure 3.10a) of the 5-cycle XABY C. However, it involves the edge AB that we wish

to avoid. We shall find an alternate set of rigidity conditions. For this, we find all possible

layer graph drawings of the 5:5 jewel in which the layer graph of Figure 3.10(a) is embedded.

Then we find conditions which prohibit those layer graph drawings. Consequently, those

93

conditions will replace |XC| 6= |Y B|, because there will be no layer graph for the 5:5 jewel in

which the layer graph of Figure 3.10(a) is embedded. We shall follow this method whenever

we cannot use any rigidity condition for a 5-cycle XABY C or XPQZR that involves some

edges of the corresponding cycle only. We have the following lemma for the replacement of

the current condition:

Lemma 31 The 5-cycle XABY C of the 5:5 jewel of Figure 3.11 cannot be drawn as the

layer graph of Figure 3.10(a) if the edges of the jewel satisfy the following conditions:

{|ZR| 6= |Y B|, |ZR| 6= |Y C|} (3.3)

Proof. We argue below that there are exactly 4 possible layer graph drawings of the 5:5

jewel in which the layer graph of Figure 3.10(a) lies embedded. Two cases arise depending

on the orientations of Y Z:

• Y Z is horizontal (Figure 3.12)

Z is necessarily distinct from C, while Y Z and Y B are mutually perpendicular. Con-

sider the edges on the path XRZ of the 5:5 jewel. If XR were vertical, then ZR would

have to be horizontal, forcing R to coincide with C. Thus, XR must be horizontal

and consequently, RZ must be vertical.

Next, we consider the edges on the path XPQZ. XP can be horizontal or vertical.

If XP is horizontal then PQ must be vertical, else Q and R will coincide. This forces

94

QZ to be horizontal giving us the layer graph of Figure 3.12(a).

If XP is vertical, then PQ must be horizontal; otherwise, Q will coincide with C.

This forces QZ to be vertical, giving us the layer graph of Figure 3.12(b).

In these layer graphs, the edges Y C and Y Z are on a horizontal line CY Z, and are

parallel to XR. The vertical edges XC and ZR connect the parallel edges. So, we

must have |XC| = |ZR|. Thus, these layer graphs are not possible if |ZR| 6= |Y B|.

X A B

YC Z

R

Q

P

(a) (b)

X A B

YC

P

Z

R

Q

Figure 3.12: Replacing the condition |XC| 6= |Y B| when Y B and Y Z are mutually perpen-
dicular

• Y Z is vertical (Figure 3.13)

Identical arguments as adduced for the case when Y Z was assumed horizontal, gives

us the layer graph drawings of Figure 3.13(a) and Figure 3.13(b).

For both the configurations of Figure 3.13 the edges XC and XR are on a vertical

line XRC, while the edges Y B and Y Z are on a vertical line BZY . The edge Y C

is horizontal and connects those two parallel lines. The edge ZR is horizontal and

connects the two vertical lines XRC and BZY . So, we must have |ZR| = |Y C|.

Thus, these layer graphs are not possible if |ZR| 6= |Y C|.

It follows that there is no layer graph for the 5:5 jewel in which the layer graph in

95

Figure 3.10(a) of the 5-cycle XABY C is embedded if the edges of the jewel satisfy

Eq. 3.3. Hence, the 5-cycle XABY C of the 5:5 jewel of Figure 3.11 cannot be drawn

as the layer graph of Figure 3.10(a) if the edges of the jewel satisfy the conditions in

Eq. 3.3.

�

X A B

YC

ZR

QP

(a) (b)

X A B

YC

P

ZR
Q

Figure 3.13: Replacing the condition |XC| 6= |Y B| when Y B and Y Z are collinear

3.3.3 Replacing |Y C| 6= |AB|

This rigidity condition corresponds to the layer graph drawing of Figure 3.10(e). We argue

below that there are exactly 12 possible layer graph drawings of the 5:5 jewel in which the

layer graph of Figure 3.10(e) lies embedded. There are 2 main cases to consider.

• Y Z is vertical and Y B is orthogonal to it:

The path XRZ is made up of a vertical segment XR, followed by a horizontal segment

ZR, else R will coincide with C. If we consider the path XPQ, by a similar argument

when XP is horizontal PQ must be vertical. If QZ were vertical, then P would have

to coincide with C. Thus, QZ is horizontal. This gives us the layer graph drawing of

Figure 3.14(a).

96

If XP is vertical, we can argue similarly as in the last paragraph that PQ must be

horizontal and QZ vertical. This gives us the layer graph drawing of Figure 3.14(b).

X A

BY

C

Z R

P

(a)

Q

X A

BY

C

Z R

Q P

(b)

Figure 3.14: Replacing the condition |Y C| 6= |AB| when Y Z and Y B are perpendicular to
each other. There is only one position for R.

{|Y B| 6= ||XA| ± |XC||} is an alternate rigidity condition for the 5-cycle XABY C

with the layer graph drawing as in (Figure 3.10(e)). This condition however involves

the edge XC that we wish to avoid. For both the layer graph drawings of Figure 3.14,

Y B and Y Z being mutually perpendicular, the edges Y C and Y Z are on a line CY Z,

and they are parallel to XR. So, we must have |XC| = |ZR|. Using this, we get the

replacement rigidity condition {|Y B| 6= ||XA| ± |ZR||}.

• Y B and Y Z are collinear:

3 subcases arise depending upon the orientations of ZR and XR.

– ZR is perpendicular to Y B and Y Z, and XR is perpendicular to ZR (Fig-

ure 3.15):

In this case there are 4 distinct placements of the edges XP , PQ and QZ giving

97

rise to 4 distinct layer graph drawings of the 5:5 jewel (Figure 3.15(a)-(d)).

In all the 4 layer graph drawings the edges Y Z and XR are horizontal and

collinear, while the edge ZR is vertical and connects those two parallel edges.

The edges Y B and XA are horizontal and collinear, while the edge AB is vertical

and connects those two parallel edges. Y Z and Y B are collinear, and so are XR

and XA. Therefore, we must have |AB| = |ZR| and the replacement rigidity

condition for this subcase is |Y C| 6= |ZR|.

X A

BY

C

Q Z

R

P

X A

BY

C

P Q

Z

R

(a)

X A

BY

C

Q Z

R

P

X A

BY

C

Q

P

Z

R

(c) (d)

(b)

Figure 3.15: Replacing the condition |Y C| 6= |AB| when Y B and Y Z are collinear, ZR is
perpendicular to BY Z and XR is perpendicular to ZR

– ZR is perpendicular to Y B and Y Z, and XR and ZR are collinear:

In this case XP , PQ and QZ can be placed in 2 distinct configurations (Fig-

ure 3.16). In these configurations of the jewel the 5-cycle XABY C cannot be

drawn as a layer graph in the present configuration if ||XA| ± |XC|| 6= |Y B|. In

both the configurations of the layer graph of the jewel Y C and XRZ are parallel,

98

and both of XC and Y Z connect them. We must have |XC| = |Y Z|. We can

rewrite the condition as ||XA| ± |Y Z|| 6= |Y B| for this subcase.

X A

BY

C P

QZ

R

X A

BY

C

P

Q

Z

R

(a) (b)

Figure 3.16: Replacing the condition |Y C| 6= |AB| when Y B and Y Z are collinear, and ZR
and XR are perpendicular to BY Z

– ZR is collinear with Y B and Y Z (Figure 3.17):

In this case, XR is necessarily perpendicular to ZR, while XP , PQ and QZ can

be in 4 distinct configurations. In all of these, the 5-cycle XABY C cannot be

drawn as a layer graph in the present configuration if ||XA| ± |XC|| 6= |Y B|.

Since |XC| = ||Y Z| ± |ZR|| in all 4 layer graphs, the condition can be replaced

by ||XA| ± |Y Z| ± |ZR|| 6= |Y B| for this subcase.

Thus, we have the following lemma.

Lemma 32 The 5-cycle XABY C of the 5:5 jewel of Figure 3.11 cannot be drawn as a layer

graph in the configuration of Figure 3.10(e) if the edges of the jewel satisfy the following

conditions:

|Y B| 6= ||XA|±|ZR||, |Y C| 6= |ZR|, ||XA|±|Y Z|| 6= |Y B|, ||XA|±|Y Z|±|ZR|| 6= |Y B|.

99

X A

Y

C P

Z B

Q

(a)

R

X A

Y

C

Z B

P Q

R

X A

Y

C Q

Z B

P

R

X A

Y

C

Z BQ

P

R

(c)

(b)

(d)

Figure 3.17: Replacing the condition |Y C| 6= |AB| when Y B and Y Z are collinear and ZR
is collinear with them. XR can only be perpendicular to ZR.

3.3.4 Rigidity Conditions

From (1), (2), Lemma 31 and Lemma 32, we have the following result for the line-rigidity

of the 5-cycle XABY C of the 5:5 jewel:

Lemma 33 The 5-cycle XABY C of the 5:5 jewel XABY CPQZR of Figure 3.11 is rigid

if the edges of the jewel satisfy the following set of conditions:

{|ZR| 6= |Y B|, |ZR| 6= |Y C|, |XA| 6= |Y C|, |XA| 6= ||Y B| ± |Y C||, |XA| 6= |Y B|,

|ZR| 6= ||Y B| ± |XA||, |ZR| 6= ||Y B| ± |XA| ± |Y Z||, |Y B| 6= ||XA| ± |Y Z||}.

We thus have an amplified set of sufficient conditions to satisfy.

Similarly, we have the following result for the line-rigidity of the other 5-cycle XPQZR

of the 5:5 jewel:

100

Lemma 34 The 5-cycle XPQZR of the 5:5 jewel XABY CPQZR of Figure 3.11 is rigid

if the edges of the jewel satisfy the following set of conditions:

{|Y C| 6= |ZQ|, |Y C| 6= |ZR|, |XP | 6= |ZR|, |XP | 6= ||ZQ| ± |ZR||, |XP | 6= |ZQ|,

|Y C| 6= ||ZQ| ± |XP ||, |Y C| 6= ||ZQ| ± |XP | ± |Y Z||, |ZQ| 6= ||XP | ± |Y Z||}.

By Corollary 4, the union of the two sets of conditions in Lemmas 33 and 34 constitutes

a set of sufficient conditions for the line rigidity of the 5:5 jewel of Figure 3.11. Taking care

of one overlapping condition between the two sets of 8 conditions, we have 15 distinct

conditions for the line-rigidity of the 5:5 jewel and hence the following lemma.

Lemma 35 The 5:5 jewel XABY CPQZR of Figure 3.11 is rigid if its edges satisfy the

following set of conditions:

1. |Y B| /∈ {|XA|, ||XA| ± |Y Z||},

2. |Y C| /∈ {|XA|, ||Y B| ± |XA||},

3. |ZQ| /∈ {|XP |, |Y C|, ||XP | ± |Y Z||, ||Y C| ± |XP ||, ||Y C| ± |XP | ± |Y Z||},

4. |ZR| /∈ {|XP |, |Y B|, |Y C|, ||Y B| ± |XA||, ||Y B| ± |XA| ± |Y Z||, ||ZQ| ± |XP ||}.

In the next section we show how to construct a composite ppg made up of 5:5 jewels

such that all the 15 rigidity conditions listed above are satisfied for each one of these.

101

3.3.5 Algorithm

We use a pair of vertices {Y, Z} as reference vertices. We query the edge length |Y Z| and

the pairwise distances of some other suitable vertices in the first round. All the vertices

will be placed relative to Y and Z. Now we consider the second round. We select vertices

in groups of 7 vertices each in such a way that the pairwise distances of the union of each

group of vertices {X,A,B,C, P,Q,R} and {Y,Z} satisfy the conditions in Lemma 35. Then

we query the remaining necessary pairwise distances of the union to form a 5:5 jewel. The

jewel will be rigid by Lemma 35 irrespective of the lengths of the edges AB,CX,PQ and

RX, since no condition of the lemma involves any of these edges. The unused vertices are

made rigid by using triangle as the ppg.

Algorithm 3.1. First a bit of nomenclature. To indicate the affiliations of the vertices

X,A,B,C, P,Q,R to different copies of a 5:5 jewel, we use the following indexing scheme:

X → Xi, A→ Ai, B → Bj , C → Bk, P → Pi, Q→ Qm and R→ Ql.

Let the number of points be n = 7b + 30, where b is a positive integer. In the first

round, we make 6b+29 distance queries represented by the edges in the graph in Figure 4.7.

There are 2b + 6 leaf children Bj(j = 1, ..., 2b + 6) rooted at Y and 2b + 22 leaf children

Ql(l = 1, ..., 2b+ 22) rooted at Z. The remaining 3b vertices are organized into groups of 3

as (Ai, Xi, Pi) (i = 1, ..., b) and the distances |AiXi| and |XiPi|, (i = 1, ..., b) are queried.

In the second round, for each 2-link (AiXi, XiPi) we find a pair of edges Y Bj and Y Bk,

rooted at Y satisfying Conditions 1 and 2 of Lemma 35; next, we find a pair of edges ZQm

102

...

Y Z

Bj Bk Ql Qm

Xi

Ai Pi

b 2-links
...

2b + 6 leaves 2b + 22 leaves

...... ...

Figure 3.18: Queries in the first round for 2-round algorithm using 5:5 jewel as the basic
component

and ZQl, rooted at Z satisfying Conditions 3 and 4 of Lemma 35.

Then for each i, (i = 1, ..., b), we query the distances |AiBj |, |XiBk|, |XiQl| and |PiQm|

to form a 5:5 jewel XiAiBjY BkPiQmZQl. Its edges will satisfy all the rigidity conditions

of Lemma 35.

For each of the 6 unused leaves Bj of the tree rooted at Y , we query the distance |BjZ|

to form the triangle Y BjZ. Likewise, for each of the 22 unused leaves Ql of the tree rooted

at Z we query the distance |QlY | to form the triangle Y QlZ. �

The following theorem establishes the correctness of our algorithm.

Theorem 36 The ppg constructed by Algorithm 3.1 is rigid.

Proof. Let us consider an arbitrary 2-link (PiXi, XiAi). We show that the 5:5 jewel con-

structed by Algorithm 1 using the edges of this 2-link is rigid.

Let us consider the selection of the edge Y Bj for the jewel in the second round. From

103

Condition 1 of Lemma 35, |Y Bj | cannot be equal to |XiAi|, ||XiAi|+|Y Z|| or ||XiAi|−|Y Z||.

By Observation 4 there can be at most 2 edges rooted at Y that are equal to a given length.

Hence there are at most 6 edges rooted at Y that do not qualify to be chosen as Y Bj . By

adding 6 extra leaves at Y we provide the room needed to choose Y Bj for each of the 2-links

(PiXi, XiAi) with i = 1, ..., b, so that the rigidity conditions on this edge are satisfied.

An identical argument shows that the 6 additional leaves at Y enables us to choose Y Bk

in the second round so that the rigidity conditions on this edge are satisfied for each of the

2-links (PiXi, XiAi) with i = 1, ..., b.

Consider next the selection of the edge ZQm for the jewel in the second round. From

Condition 3 of Lemma 35, |ZQm| cannot be equal to |XiPi|, |Y Bk|, |XiPi|+ |Y Z|, ||XiPi|−

|Y Z||, |Y Bk| + |Y Z|, ||Y Bk| − |Y Z||, |XiPi| + |Y Bk| + |Y Z|, ||XiPi| − |Y Bk| + |Y Z||,

||XiPi|+ |Y Bk| − |Y Z||, ||XiPi| − |Y Bk| − |Y Z||. Again from Observation 1 it follows that

there are at most 20 edges rooted at Y that do not qualify to be chosen as ZQm. Adding 22

extra leaves at Z provides us with the room needed to choose ZQm for each of the 2-links

(PiXi, XiAi) with i = 1, ..., b, so that the rigidity conditions on this edge are satisfied.

There will be at most 20 edges ZQm rooted at Z that do not satisfy the conditions

on it as stated in Lemma 35 (by Observation 4). In addition to the 2b edges necessary

to construct the b jewels there are 22 extra edges rooted at Z. So, for each set of 2-link

(PiXi, XiAi) and 3-link (BjY,BkY, Y Z) with i = 1, ..., b (BjY depends on PiXi and XiAi,

and BkY depends on PiXi, XiAi and BjY), we can always find an edge Y Qm that satisfies

104

the condition on it as stated in Lemma 35.

Finally, consider the second-round selection of the edge ZQl for the jewel. From Condi-

tion 4 of Lemma 35 there are 11 rigidity conditions on |ZQl|, and hence by Observation 4

will be at most 22 edges ZQl rooted at Z are not eligible to be chosen. In addition to the 2b

edges necessary to construct the b jewels there are 22 extra edges rooted at Z. So, for each

set of 2-link (PiXi, XiAi) and 4-link (BjY,BkY, Y Z,ZQm) with i = 1, ..., b the 22 extra

edges rooted at Z provide us with the latitude to find an edge ZQl always that satisfies the

rigidity conditions on it.

So, for each 2-link (AiXi, XiPi) we can always find edges Y Bj , Y Bk, ZQl and ZQm for

the 5:5 jewel of Figure 3.11 such that the conditions for rigidity (Lemma 35) are satisfied.

Each of the b 5:5 jewels of Figure 3.11 with Y Z as an edge is constructed in the second

round by satisfying the rigidity conditions of Lemma 35. So, they are rigid and, for each

i, (i = 1, ..., b), the positions of Xi, Ai, Bj , Bk, Pi, Qm and Ql are fixed relative to Y and Z.

Each of the remaining 6 leaves of Y forms a triangle (Y Bj , BjZ,ZY) with Y Z as an edge.

So, their positions are fixed relative to Y and Z. Each of the remaining 22 leaves of Z forms

a triangle (ZQl, QlY, Y Z) with Y Z as an edge. So, their positions are fixed relative to Y

and Z.

Hence, the whole ppg is rigid. �

Theorem 37 10n/7+99/7 queries are sufficient to place n distinct points on a line in two

rounds.

105

Proof. We need 6b+ 29 queries in the first round and 4b+ 28 queries in the second round.

In total 10b + 57 pairwise distances are to be queried for the placement of 7b + 30 points.

We have 10b+ 57 = 10/7 ∗ (7b+ 30)− 300/7 + 57 = 10n/7 + 99/7. �

It is worth noting that our algorithm needs at least 37 points to work. When we have

fewer points we can switch to the quadrilateral algorithm, described in the Introduction.

The 2-round 5-cycle algorithm of Chin et al. [20] a total of 4/3n+ 34/3
√
n queries for the

placement of n points. Thus our 5:5 jewel algorithm does better when n ≤ 4076. This

provides the motivation for considering 6:6 jewels, which we do next.

3.4 Algorithm Based on a 6 : 6 Jewel

The principal ideas underlying this algorithm are similar to the algorithm based on 5:5

jewel of the last section. So we will skip the repetitive details when there is no scope for

confusion.

Figure 3.19 shows the ppg for an instance of the 6:6 jewel that we shall use in the

construction of our composite ppg. For brevity we will refer to left cycle as C1 and the right

cycle as C2, and by 6:6 jewel we will mean the instance shown.

X

B

C R

Q

A P

Y

D S

Z

Figure 3.19: A 6 : 6 jewel

By Theorem 27, the 6-cycle XABY CD has 16 different layer graph representations

106

(Figure 3.20), giving us the following 16 conditions for its line-rigidity. The layer graphs

can be grouped into 4 groups depending on the number of edges on each side:

1. |Y C| 6= |XD|, |Y B| 6= |CD|, |Y C| 6= |AB|, |Y B| 6= |XA|, |XD| 6= |AB|, |XA| 6= |CD|,

2. |Y B| 6= |XD|, |AB| 6= |CD|, |Y C| 6= |XA|,

3. |Y B| 6= ||Y C|± |XD||, |Y C| 6= ||XA|± |XD||, |Y B| 6= ||XD|± |CD||, |Y B| 6= ||XA|±

|XD||, |Y B| 6= ||Y C| ± |XA||, |XA| 6= ||Y C| ± |CD||,

4. |XA| 6= ||Y B| ± |CD||.

X A Y

CD

D B

YC

C A

BY

Y X

AB XA

(a) (b) (c) (d) (e)

DX

B

(f)

X A B

YD

D A

BC

C X

ABY

X B

CD

Y

X A

YC

D

(g) (h) (i) (j) (k)

C X

BYC

(l)

Y D

X

AB

B C

XA

A Y

DX

D

C

A

BY

X

(m) (n) (o)

X A XD DC CYB D B Y CA

(p)

D

X

Y

D A

B A

D

C Y

C

B

Figure 3.20: Different layer graph representations of a 6-cycle

Similarly, we have another set of 16 conditions for the line-rigidity of the cycle C2, viz.,

1. |ZR| 6= |XS|, |ZQ| 6= |RS|, |ZR| 6= |PQ|, |ZQ| 6= |XP |, |XS| 6= |PQ|, |XP | 6= |SR|,

2. |ZQ| 6= |XS|, |ZR| 6= |XP |, |PQ| 6= |RS|,

107

3. |ZQ| 6= ||ZR| ± |XS||, |ZR| 6= ||XP | ± |XS||, |ZQ| 6= ||XS| ± |RS||, |ZQ| 6= ||XP | ±

|XS||, |ZQ| 6= ||ZR| ± |XP ||, |XP | 6= ||ZR| ± |RS||,

4. |XP | 6= ||ZQ| ± |RS||.

By Corollary 26, the conjunction of these two sets of conditions constitutes a set of

sufficient conditions for the line-rigidity of the 6:6 jewel above.

3.4.1 Replacing Conditions

We would like to make the 6:6 jewel rigid irrespective of the lengths of the edges AB,CD,PQ

and RS, as this allows us to query the remaining edges in such a way that the rigidity

conditions are satisfied. Towards this goal, we reformulate 16 conditions (8 from each cycle)

involving these edges with alternate sets of conditions, satisfying which we also satisfy the

replaced ones.

We use the left cycle, C1 = XABY CD, as a running example to demonstrate these

replacements.

Replacing |AB| 6= |CD|:

The layer graph for the 6-cycle C1 corresponding to this condition is shown in Figure 3.20(h).

From the figure it is evident that we can replace this with the condition

||Y B| ± |Y C|| 6= ||XA| ± |XD|| (3.4)

since this will also prevent the layer graph drawing of the cycle as in Figure 3.20(h).

108

Replacing |XA| 6= |CD|:

The layer graph of C1 corresponding to this condition is shown in Figure 3.20(f). To replace

this condition we follow a similar strategy as for the 5:5 jewel, except for a small twist: we

draw all possible layer graphs of the 6:6 jewel, excluding the chain XSRZ, in which the

layer graph of Figure 3.20(f) is embedded. The condition |XA| 6= |CD| is then amplified

into the set of conditions that prevent the drawing of the layer graph representation of the

6-cycle corresponding to this condition (Figure 3.20(f)). Two cases arise, depending on

whether Y Z is horizontal or vertical.

• Y Z is horizontal:

Here Z and X have different x and y coordinates. XP , PQ and QZ can have 4

different orientations as shown in Figures 3.21(a) - 3.21(d). The following conditions

will prevent the layer graph drawings of the 6-cycle XABY CD in Figure 3.20(f), when

Y Z is horizontal: |ZQ| 6= ||XA| ± |XP || (Figure 3.21(a)), ||Y C| ± |Y Z|| 6= ||XD| ±

|XP || (Figure 3.21(b)), |ZQ| 6= |XA| (Figure 3.21(c)) and ||ZQ| ± |Y C| ± |Y Z|| 6=

||XD| ± |XP || (Figure 3.21(d)).

• Y Z is vertical and |Y Z| = |XA|:

In this case only one layer graph is possible as shown in Figure 3.22. We can replace

|XA| 6= |CD| with |Y Z| 6= |XA|. This will prevent the layer graph drawing of the

6-cycle XABY CD in Figure 3.20(f) when Y Z is vertical and |Y Z| = |XA|.

109

X

CA B Y

D

Q
P

Z

X

CA B Y

D

Z

P

Q

X

CA B Y

D

Z

Q P X

CA B Y

D

Z

P

Q

(a) (b)

(c) (d)

Figure 3.21: Replacing condition |XA| 6= |CD| when Y Z is horizontal

ZX D

A B Y C

P Q

Figure 3.22: Replacing condition |XA| 6= |CD| when Y Z is vertical and |Y Z| = |XA|

• Y Z is vertical and |Y Z| 6= |XA|:

Here Z and X have different x and y coordinates. XP , PQ and QZ can have 6

different orientations as shown in Figure 3.23(a) - 3.23(f). These layer graphs give

rise to the following set of conditions that prevents the layer graph drawing of the

6-cycle XABY CD as in Figure 3.20(f), when Y Z is vertical and |Y Z| 6= |XA|:

||ZQ| ± |Y Z|| 6= |XA| (Figure 3.23(a)), |Y C| 6= ||XD| ± |XP || (Figure 3.23(b)),

||ZQ| ± |Y Z|| 6= ||XA| ± |XP || (Figure 3.23(c)), ||ZQ| ± |Y C|| 6= ||XD| ± |XP ||

(Figure 3.23(d)), ||ZQ| ± |Y C|| 6= |XD| (Figure 3.23(e)) and |Y Z| 6= ||XA| ± |XP ||

(Figure 3.23(f)).

110

P

CA B Y

D

(a)

Z

X

CA B Y

D

(b)

Z

X

CA B Y

D

(c)

Z

X

CA B Y

D

(d)

Z

X

CA B Y

D

(e)

Z

X

CA B Y

D

(f)

Z

X Q

Q

P

P Q

P

Q

P

PQ
Q

Figure 3.23: Replacing condition |XA| 6= |CD| when Y Z is vertical and |Y Z| 6= |XA|

Thus, we have the following lemma, the proof of which is similar to the proof of

Lemma 31 and is omitted:

Lemma 38 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as

a layer graph in the configuration of Figure 3.20(f) if the edges of the jewel satisfy the

following conditions:

{|ZQ| 6= ||XA| ± |XP ||, ||Y C| ± |Y Z|| 6= ||XD| ± |XP ||, |ZQ| 6= |XA|, ||ZQ| ±

|Y C| ± |Y Z|| 6= ||XD| ± |XP ||, |Y Z| 6= |XA|, ||ZQ| ± |Y Z|| 6= |XA|, |Y C| 6= ||XD| ±

|XP ||, ||ZQ| ± |Y Z|| 6= ||XA| ± |XP ||, ||ZQ| ± |Y C|| 6= ||XD| ± |XP ||, ||ZQ| ± |Y C|| 6=

|XD|, |Y Z| 6= ||XA| ± |XP ||}.

Replacing |XD| 6= |AB|:

The layer graph of the 6-cycle corresponding to this condition is as shown in Figure 3.20(e).

This layer graph is the same as that in Figure 3.20(f) if we interchange A with D and B

111

with C. By this interchange of the labels in Lemma 38 we have the following lemma for the

replacement of condition:

Lemma 39 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as

a layer graph in the configuration of Figure 3.20(e) if the edges of the jewel satisfy the

following conditions:

{|ZQ| 6= ||XD| ± |XP ||, |Y B| 6= ||Y Z| ± |XA| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ±

|XA| ± |XP ||, |ZQ| 6= |XD|, |Y Z| 6= |XD|, |ZQ| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6=

||Y B| ± |XA||, |Y Z| 6= ||XD| ± |XP ||, |ZQ| 6= ||Y B| ± |XA| ± |XP ||, |ZQ| 6= ||Y Z| ±

|XD||, |Y B| 6= ||XA| ± |XP ||}.

Replacing |Y C| 6= |AB|:

The layer graph of the 6-cycle corresponding to this condition is as shown in Figure 3.20(c).

Figure 3.24 shows all the possible layer graphs of the 6:6 jewel, excluding the chain XSRZ,

in which the layer graph of Figure 3.20(c) is embedded (different configurations for P and Q

are combined in the same figure). From Figure 3.24 we see that the condition |Y C| 6= |AB|

can be replaced by the following conditions:

• |ZQ| 6= ||Y C| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6= |XP |, |ZQ| 6= ||Y B| ±

|Y Z| ± |XA| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XA| ± |XP || (Figure 3.24(a)),

• |Y B| 6= ||Y Z| ± |XA|| (Figure 3.24(b)) and

112

• |ZQ| 6= ||Y B| ± |XA||, |Y C| 6= ||Y Z| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XP ||, |ZQ| 6=

||Y B| ± |XA| ± |XP || (Figure 3.24(c)).

Y C

D

X

AB

C

D

X

AB

Z

Q

Q P/Q

P

P
P/Q Z

Y Y C

D

X

AB

Z

P/Q P

Q

Q

P

(a) (b) (c)

Figure 3.24: Replacing condition |Y C| 6= |AB|

Thus, we have the following lemma, the proof of which is similar to the proof of

Lemma 31 and is omitted:

Lemma 40 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as

a layer graph in the configuration of Figure 3.20(c) if the edges of the jewel satisfy the

following conditions:

{|ZQ| 6= ||Y C| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6= |XP |, |ZQ| 6= ||Y B| ±

|Y Z| ± |XA| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XA| ± |XP ||, |Y B| 6= ||Y Z| ±

|XA||, |ZQ| 6= ||Y B|±|XA||, |Y C| 6= ||Y Z|±|XP ||, |ZQ| 6= ||Y C|±|Y Z|±|XP ||, |ZQ| 6=

||Y B| ± |XA| ± |XP ||}.

Replacing |Y B| 6= |CD|:

The layer graph of the 6-cycle corresponding to this condition is as shown in Figure 3.20(b).

This layer graph is the same as that in Figure 3.20(c) if we interchange A with D and B

113

with C. By this interchange of the labels in Lemma 40 we have the following lemma for the

replacement of this condition:

Lemma 41 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as

a layer graph in the configuration of Figure 3.20(b) if the edges of the jewel satisfy the

following conditions:

{|ZQ| 6= ||Y B| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XD||, |Y B| 6= |XP |, |ZQ| 6= ||Y C| ±

|Y Z| ± |XD| ± |XP ||, |ZQ| 6= |Y B|, |Y C| 6= ||Y Z| ± |XD| ± |XP ||, |Y C| 6= ||Y Z| ±

|XD||, |ZQ| 6= ||Y C|±|XD||, |Y B| 6= ||Y Z|±|XP ||, |ZQ| 6= ||Y B|±|Y Z|±|XP ||, |ZQ| 6=

||Y C| ± |XD| ± |XP ||}.

Replacing |Y C| 6= ||XA| ± |CD||:

The layer graph of the 6-cycle corresponding to this condition is as shown in Figure 3.20(o).

Figure 3.25 shows all the possible layer graphs of the 6:6 jewel, excluding the chain XSRZ,

in which the layer graph of Figure 3.20(o) is embedded. From Figure 3.25 we see that the

condition |Y C| 6= ||XA| ± |CD|| can be replaced by the following conditions:

• |ZQ| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= |XA|, |Y Z| 6= ||XD| ± |XP ||, |ZQ| 6= ||XA| ±

|XP || (Figure 3.25(a)),

• |ZQ| 6= ||Y Z| ± |XA| ± |XP ||, |ZQ| 6= |XD|, |Y Z| 6= ||XA| ± |XP ||,

|ZQ| 6= ||XD| ± |XP || (Figure 3.25(b)).

114

Y

X

Z P/QQ

P
A

B

DC

PQ

DC

B

A

Z Q

PQ

P/Q P

Y

X

(a) (b)

Figure 3.25: Replacing condition |Y C| 6= ||XA| ± |CD||

Thus, we have the following lemma, the proof of which is similar to the proof of

Lemma 31 and is omitted.

Lemma 42 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as

a layer graph in the configuration of Figure 3.20(o) if the edges of the jewel satisfy the

following conditions:

{|ZQ| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= |XA|, |Y Z| 6= ||XD| ± |XP ||, |ZQ| 6= ||XA| ±

|XP ||, |ZQ| 6= ||Y Z| ± |XA| ± |XP ||, |ZQ| 6= |XD|, |Y Z| 6= ||XA| ± |XP ||, |ZQ| 6=

||XD| ± |XP ||}.

Replacing |Y B| 6= ||XD| ± |CD||:

The layer graph of the 6-cycle corresponding to this condition is as shown in Figure 3.20(l).

Figure 3.26 shows all the possible layer graphs of the 6:6 jewel, excluding the chain XSRZ,

in which the layer graph of Figure 3.20(l) is embedded. From Figure 3.26 we see that the

condition |Y B| 6= ||XD| ± |CD|| can be replaced by the following conditions:

• |ZQ| 6= ||Y B| ± |Y Z| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XP ||, |ZQ| 6= ||Y C| ±

115

|XP || (Figure 3.26(a));

• |ZQ| 6= ||Y C| ± |Y Z| ± |XP ||, |ZQ| 6= |Y B|, |Y C| 6= ||Y Z| ± |XP ||, |ZQ| 6= ||Y B| ±

|XP || (Figure 3.26(b)).

X

Y Y

X
B

C

D

A

Z

Q

P/Q

P

P

Q

B A

C

D

P

P

Z

Q

Q

P/Q

(a) (b)

Figure 3.26: Replacing condition |Y B| 6= ||XD| ± |CD||

Thus, we have the following lemma, the proof of which is similar to the proof of

Lemma 31 and is omitted.

Lemma 43 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as a

layer graph in the configuration of Figure 3.20(l) if the edges of the jewel satisfy the following

conditions:

{|ZQ| 6= ||Y B| ± |Y Z| ± |XP ||, |ZQ| 6= |Y C|, |Y B| 6= ||Y Z| ± |XP ||, |ZQ| 6= ||Y C| ±

|XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XP ||, |ZQ| 6= |Y B|, |Y C| 6= ||Y Z| ± |XP ||, |ZQ| 6=

||Y B| ± |XP ||}.

Replacing |Y B| 6= ||XA| ± |CD||

The layer graph of the 6-cycle corresponding to this condition is as shown in Figure 3.20(p).

Figure 3.27 shows all the possible layer graphs of the 6:6 jewel, excluding the chain XSRZ,

116

in which the layer graph of Figure 3.20(p) is embedded. From Figure 3.27 we see that the

condition |Y B| 6= ||XA| ± |CD|| can be replaced by the following conditions:

• |ZQ| 6= ||Y C| ± |XD| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6= ||XD| ± |XP ||,

|ZQ| 6= ||Y B| ± |Y Z| ± |XA| ± |XP ||, |ZQ| 6= ||Y C| ± |XD||, |Y B| 6= ||Y Z| ± |XA| ±

|XP || (Figure 3.27(a));

• |Y B| 6= ||Y Z| ± |XA|| (Figure 3.27(b));

• |Y C| 6= ||Y Z| ± |XD|| (Figure 3.27(c));

• |Y B| 6= ||XA| ± |XP ||, |ZQ| 6= ||Y C| ± |XD||, |ZQ| 6= ||Y B| ± |XA| ± |XP ||, |ZQ| 6=

||Y B| ± |XA||, |Y C| 6= ||Y Z| ± |XD| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XD| ± |XP ||

(Figure 3.27(d)).

Y C

D

X

AB

Z P/Q

PQ

Q

P

Z

Z

Z

P/Q

Q

Q

P

P/Q

P

Y C

DX

AB

Y C

DX

AB

Y C

DX

AB

P/Q

(a) (b)

(c) (d)

Figure 3.27: Replacing condition |Y B| 6= ||XA| ± |CD||

117

Thus, we have the following lemma, the proof of which is similar to the proof of

Lemma 31 and is omitted.

Lemma 44 The 6-cycle XABY CD of the 6:6 jewel of Figure 3.19 cannot be drawn as

a layer graph in the configuration of Figure 3.20(p) if the edges of the jewel satisfy the

following conditions:

{|ZQ| 6= ||Y C| ± |XD| ± |XP ||, |ZQ| 6= ||Y B| ± |Y Z| ± |XA||, |Y C| 6= ||XD| ±

|XP ||, |ZQ| 6= ||Y B|±|Y Z|±|XA|±|XP ||, |ZQ| 6= ||Y C|±|XD||, |Y B| 6= ||Y Z|±|XA|±

|XP ||, |Y B| 6= ||Y Z| ± |XA||, |Y C| 6= ||Y Z| ± |XD||, |Y B| 6= ||XA| ± |XP ||, |ZQ| 6=

||Y C| ± |XD||, |ZQ| 6= ||Y B| ± |XA| ± |XP ||, |ZQ| 6= ||Y B| ± |XA||, |Y C| 6= ||Y Z| ±

|XD| ± |XP ||, |ZQ| 6= ||Y C| ± |Y Z| ± |XD| ± |XP ||}.

3.4.2 Rigidity Conditions

From Eqs. (4)-(5) and Lemmas 38 - 44 we have the following lemma for the line-rigidity of

the 6-cycle XABY CD of the 6:6 jewel of Figure 3.19:

Lemma 45 The 6-cycle XABY CD of the 6:6 jewel XABY CDPQZRS of Figure 3.19 is

rigid if the edges of the jewel satisfy the following conditions:

1. |Y Z| /∈ {|XA|, |XD|, ||XA| ± |XP ||, ||XD| ± |XP ||};

2. |Y B| /∈ {|XA|, |XD|, |XP |, ||XA| ± |XD||, ||XA| ± |XP ||, ||XA| ± |Y Z||, ||XP | ±

|Y Z||, ||XA| ± |XP | ± |Y Z||};

118

3. |ZQ| /∈ {|XA|, |XD|, |Y B|, ||XA| ± |XP ||, ||XD| ± |XP ||, ||XA| ± |Y Z||, ||Y B| ±

|XA||, ||XD|±|Y Z||, ||Y B|±|XP ||, ||XA|±|XP |±|Y Z||, ||XD|±|XP |±|Y Z||, ||Y B|±

|XA|±|XP ||, ||Y B|±|XA|±|Y Z||, ||Y B|±|XP |±|Y Z||, ||Y B|±|XA|±|XP |±|Y Z||};

4. |Y C| /∈ {|XD|, |XA|, |XP |, |ZQ|, ||ZQ|± |XD||, ||ZQ|± |XP ||, ||Y B|± |XA||, ||Y B|±

|XD||, ||XA| ± |XD||, ||XD| ± |XP ||, ||XD| ± |Y Z||, ||XP | ± |Y Z||, ||XD| ± |XP | ±

|Y Z||, ||ZQ| ± |XD| ± |XP ||, ||ZQ| ± |XD| ± |Y Z||, ||ZQ| ± |XP | ± |Y Z||, ||ZQ| ±

|XD| ± |XP | ± |Y Z||}.

Similarly, we have the following lemma for the line-rigidity of the other 6-cycle

XPQZRS of the 6:6 jewel:

Lemma 46 The 6-cycle XPQZRS of the 6:6 jewel XABY CDPQZRS of Figure 3.19 is

rigid if the edges of the jewel satisfy the following conditions:

1. |Y Z| /∈ {|XP |, |XS|, ||XA| ± |XP ||, ||XA| ± |XS||};

2. |Y B| /∈ {|XP |, |XS|, ||XA|±|XP ||, ||XP |±|Y Z||, ||XS|±|Y Z||, ||XA|±|XS||, ||XA|±

|XP | ± |Y Z||, ||XA| ± |XS| ± |Y Z||};

3. |ZQ| /∈ {|XA|, |XS|, |Y B|, |XP |, ||XA|± |XP ||, ||XA|± |Y Z||, ||Y B|± |XA||, ||Y B|±

|XP ||, ||XP |±|XS||, ||XP |±|Y Z||, ||XA|±|XP |±|Y Z||, ||Y B|±|XA|±|XP ||, ||Y B|±

|XA| ± |Y Z||, ||Y B| ± |XP | ± |Y Z||, ||Y B| ± |XA| ± |XP | ± |Y Z||};

4. |ZR| /∈ {|XS|, |XP |, |XA|, |Y B|, ||ZQ| ± |XP ||, ||ZQ| ± |XS||, ||XP | ± |XS||, ||Y B| ±

119

|XS||, ||XA| ± |XS||, ||XA| ± |Y Z||, ||Y B| ± |XA||, ||XS| ± |Y Z||, ||XA| ± |XS| ±

|Y Z||, ||Y B| ± |XA| ± |XS||, ||Y B| ± |XS| ± |Y Z||, ||Y B| ± |XA| ± |Y Z||, ||Y B| ±

|XA| ± |XS| ± |Y Z||}.

By Corollary 26, the union of the two sets of conditions in Lemmas 45 and 46 constitutes

a set of sufficient conditions for the line-rigidity of the 6:6 jewel of Figure 3.19. Taking care

of overlapping conditions between the two sets of conditions, we have 74 distinct conditions

for the line-rigidity of the 6:6 jewel and hence the following lemma:

Lemma 47 The 6:6 jewel XABY CDPQZRS of Figure 3.19 is rigid if its edges satisfy

the following conditions:

1. |Y Z| /∈ {|XA|, |XD|, |XP |, |XS|, ||XA| ± |XP ||, ||XD| ± |XP ||, ||XA| ± |XS||};

2. |Y B| /∈ {|XA|, |XD|, |XP |, |XS|, ||XA|±|XD||, ||XA|±|XP ||, ||XA|±|Y Z||, ||XP |±

|Y Z||, ||XS| ± |Y Z||, ||XA| ± |XS||, ||XA| ± |XP | ± |Y Z||, ||XA| ± |XS| ± |Y Z||};

3. |ZQ| /∈ {|XA|, |XS|, |XD|, |Y B|, |XP |, ||XA| ± |XP ||, ||XD| ± |XP ||, ||XA| ±

|Y Z||, ||Y B|±|XA||, ||XD|±|Y Z||, ||Y B|±|XP ||, ||XP |±|XS||, ||XP |±|Y Z||, ||XA|±

|XP |±|Y Z||, ||XD|±|XP |±|Y Z||, ||Y B|±|XA|±|XP ||, ||Y B|±|XA|±|Y Z||, ||Y B|±

|XP | ± |Y Z||, ||Y B| ± |XA| ± |XP | ± |Y Z||};

4. |Y C| /∈ {|XD|, |XA|, |XP |, |ZQ|, ||Y B|±|XA||, ||Y B|±|XD||, ||XA|±|XD||, ||XD|±

|XP ||, ||XD| ± |Y Z||, ||XP | ± |Y Z||, ||ZQ| ± |XD||, ||ZQ| ± |XP ||, ||Y B| ± |XA| ±

120

|XD||, ||XD| ± |XP | ± |Y Z||, ||ZQ| ± |XD| ± |XP ||, ||ZQ| ± |XD| ± |Y Z||, ||ZQ| ±

|XP | ± |Y Z||, ||ZQ| ± |XD| ± |XP | ± |Y Z||};

5. |ZR| /∈ {|XS|, |XP |, |XA|, |Y B|, ||ZQ| ± |XP ||, ||ZQ| ± |XS||, ||XP | ± |XS||, ||Y B| ±

|XS||, ||XA| ± |XS||, ||XA| ± |Y Z||, ||Y B| ± |XA||, ||XS| ± |Y Z||, ||ZQ| ± |XP | ±

|XS||, ||XA| ± |XS| ± |Y Z||, ||Y B| ± |XA| ± |XS||, ||Y B| ± |XS| ± |Y Z||, ||Y B| ±

|XA| ± |Y Z||, ||Y B| ± |XA| ± |XS| ± |Y Z||}.

In the next section we show how a composite ppg can be constructed by satisfying all

the 74 conditions for each such jewel.

3.4.3 Algorithm

It is interesting to note that the substitution mechanism has generated rigidity conditions

on the strut Y Z (Condition 1 of Lemma 47). This implies that, unlike the case for a 5:5

jewel, we will need a pool of vertices S for which the pairwise distances of all the pairs

of points corresponding to the vertices in S are known after the first round of query, and

from which we choose the end vertices Y and Z of a strut Y Z in order to meet the rigidity

conditions on Y Z. We make the vertices in S rigid in the first round. Then the pairwise

distances of all the pairs of points corresponding to the vertices in S are known after the

first round of query. We make the remaining 9 vertices of each 6:6 jewel rigid in the second

round.

We have to choose the size of S carefully. Since there are 10 conditions on the length of

121

an Y Z, from Observation 4 it follows that there must be at most 21 edges incident to the

end vertex Y , when we are looking for the other end vertex Z of a strut.

However, if we use |S| = 22 for the selection of Z for a particular Y , it may happen that

all the 6:6 jewels get attached to the same vertex Z ∈ S. This hinders our goal of obtaining

a better value for α than previously known.

We need to attach 6:6 jewels evenly to all the vertices in S so that the same number of

edges can be attached to each of them in the first round, and all of those edges, except for

a constant number, are used to attach 6:6 jewels. In other words, we need to attach the 6:6

jewels to the vertices in S in such a way that the numbers of 6:6 jewels attached to any two

vertices differ by at most a constant number.

To specify the number of basic components attached to a vertex in a rigid set S in the

first round we use the term valence. We denote the set of rigid vertices in round 1 with

valence d as Sd.

Now we describe our algorithm to select a pair of vertices Y and Z in S to attach 6:6

jewels. To attach a 6:6 jewel we always select a vertex in S with the lowest valence as

the first vertex (say, Y). Of the remaining vertices in S, at most 20 vertices may not be

acceptable for Z, because of the conditions on Y Z (Condition 1 of Lemma 47). From among

the rest |S| − 1 vertices in S that satisfy the conditions on Y Z, we select the one that has

the lowest valence, as Z. This method is followed to attach each 6:6 jewel to the vertices in

S, while the 6:6 jewels are attached sequentially.

122

The following lemma tells us how big S must be.

Lemma 48 A set S of 42 vertices is sufficient to ensure that the valences of two vertices

in S differ by at most 1.

Proof. Initially, all the vertices in S have valence 0, i.e., |S0| = 42 and |Si| = 0 for each i.

Our algorithm selects pairs of vertices (Y,Z) in S0 to attach 6:6 jewels. To select a pair of

vertices (Y,Z) in S0 by satisfying 10 different length restrictions (Condition 1 of Lemma 47)

in all, we need a buffer of vertices in S0 of size at least 20. Thus, our algorithm selects 11

pairs of vertices (Y,Z) from S0. This way our algorithm attaches the first 11 6:6 jewels to

22 vertices in S0. Then, we have |S0| = 20 and |S1| = 22.

Next, for each new 6:6 jewel our algorithm selects at least 1 vertex (as Y , say) from S0

until it is empty. The valence of this vertex will be raised to 1. If the second vertex is not

found in S0, it will be selected from S1, raising its valence to 2. Now, we have |S0| = 0,

|S1| ≥ 22 and the rest vertices are in S2.

We note that when both the vertices of a pair are chosen from S0 then |S1| is increased

by 2. Consequently, |S1| remains even. Now we consider the case when only one vertex is

chosen from S0. Since |S1| ≥ 22, we can choose the other vertex from S1. This increases

|S1| by 1 and decreases it by 1 at the same time. Thus, in both the cases |S1| will always

be an even number.

If |S1| > 20 we choose pairs of vertices for Y and Z from S1 until |S1| = 20. Eventually,

we have |S0| = 0, |S1| = 20 and |S2| = 22. Thus, at some point of time all the vertices in S

123

have at most 2 consecutive valences, viz., 1 and 2. At any point of time before that, they

may have at most 3 consecutive valences, viz., 0 - 2.

We shall show that our algorithm attach the 6:6 jewels in such a way that at any point

of time the vertices in S will have at most 3 consecutive valences, and that at some point

of time they will have at most 2 consecutive valences only. For this we use induction to

show that if we start with vertices in S in the state of a valence distribution (Sd, Sd+1), and

attach the basic components according to our algorithm, then at some point of time the

state of the valences will be (Sd+1, Sd+2). We assume that |Sd| = 20 and |Sd+1| = 22.

We attach 6:6 jewels until |Sd| = 0. For each new 6:6 jewel we choose at least 1 vertex

from Sd and at most 1 vertex from Sd+1 with a total of 2 vertices to form a 6:6 jewel. Then

we have |Sd+1| ≥ 22. The rest vertices are of valence d+ 2. We argue as above to show that

|Sd+1| will always be even.

If |Sd+1| > 20, then for each new 6:6 jewel our algorithm uses a pair of vertices in Sd+1

as in the initial round above until |Sd+1 = 20|. The rest 22 will be of valence d+2. Now the

situation is the same as it was at the start of induction except that the levels of valences

have been increased by 1. �

The set S of 42 vertices can be set as the vertices of 8 4:4 jewels hanging from a common

strut. Since each 4:4 jewel is rigid so is this configuration. edges of this ppg.

From Condition 2 of Lemma 47 we see that we need 48 extra edges for the selection of an

Y B that satisfies all the conditions on it as stated in the lemma. Similarly, by Conditions

124

3, 4 and 5 of Lemma 47 we need 98 extra edges for ZQ, 96 extra edges for Y C and 96

extra edges for ZR respectively. Thus, 98 extra edges at Y and Z will suffice to satisfy all

the conditions on these edges. In addition to these extra 98 edges we need 2 more edges to

accommodate the difference of 1 6:6 jewel that can be attached to them. Thus, we need a

total of 100 extra edges at each of the 42 vertices of S.

The main idea underlying the algorithm below is to construct multiple copies of a 6:6

jewel over two rounds to ensure their rigidity. We use the set of vertices S as reference

vertices. Any set of 42 vertices is chosen as S. The pair of vertices {Y, Z} that make up

the strut Y Z (see Figure 3.19) of a 6:6 jewel, is chosen from the set S. As part of the first

round, a rigid layout of S is fixed by attaching eight 4:4 jewels of Figure 3.6 from a common

strut. The common strut of the 4:4 jewels joins two vertices of S. Pairwise distances of

some other suitable vertices are also queried in the first round.

Now we consider the second round. Let S′ = V r S be the complement of S. In the

second round, the positions of all the vertices of S′ are fixed relative to the vertices in S

by first selecting groups of 9 vertices each from S′ and placing them relative to a pair of

vertices {Y, Z} of S. For this, we select a vertex Y ∈ S which has the lowest valence of 6:6

jewel of Figure 3.19 and a 5-link (X,A,D, P, S). Then we select a vertex Z ∈ S such that it

has the lowest valence of 6:6 jewel of Figure 3.19 and that |Y Z| satisfies all the conditions

of rigidity on it as stated in Condition 1 of Lemma 47. Thereafter, the vertices B,C,Q and

R of S′ are selected such that the conditions of rigidity on |Y B|, |ZQ|, |Y C| and |ZR| as

125

stated in respectively Conditions 2, 3, 4 and 5 of Lemma 47 are satisfied. Then we query

the remaining necessary pairwise edge distances |AB|, |CD|, |PQ| and |RS| of the group to

form a 6:6 jewel. The jewel will be rigid by Lemma 47 irrespective of the lengths of the

edges AB,CD,PQ and RS, since no condition of the lemma involves any of these edges.

The unused vertices of S′ are made rigid by using 4-cycle as the ppg.

Algorithm 3.2. As in Algorithm 3.1, we use the following indexing scheme: X → Xi,

A → Ai, B → Bj , C → Bk, D → Di, P → Pi, Q → Qm, R → Ql, S → Si, Y → Yu and

Z → Yv.

Let the total number of points be n. We attach b 6:6 jewels (Figure 3.19) to each of 20

fixed vertices in S and b+ 1 to the remaining 22. This gives us a total of 21b+ 11 jewels.

In the first round, we make distance queries represented by the edges of the graph

in Figure 3.28. All the vertices Yu (u = 1, ..., 42) (or, Yv, v = 1, ..., 42) in the subgraph

enclosed by the rectangle are made line rigid in the first round by using the 4:4 jewel of

Figure 3.6 as the ppg. There are 8 4:4 jewels (Figure 3.6) attached to a common strut,

42 vertices and 65 edges in the subgraph. There are 2b + 100 leaf children rooted at each

of the vertices Yu (u = 1, ..., 42) (or, Yv, v = 1, ..., 42) to attach b or b + 1 6:6 jewels

(Figure 3.19). Since there will be 21b+ 11 6:6 jewels we have 21b+ 11 groups of 5 vertices

(Ai, Di, Si, Pi, Xi) (i = 1, ..., 21b + 11). We query the distances |AiXi|, |DiXi|, |SiXi| and

|PiXi|, (i = 1, ..., 21b+ 11) in the first round. We will make a total of 168b+ 4309 pairwise

distance queries in the first round for the placement of n = 189b+ 4297 points.

126

Ai Pi

21b + 11 4-links

...

Di Si

Yu

Bj Bk

Rigid subgraph of 42 vertices whose positions are fixed
in the 1st round using 4:4 jewel as the basic component

... ...

Yv

Ql Qm

... ...

2b + 100 leaves 2b + 100 leaves

Xi

Figure 3.28: Queries in the first round for 2-round algorithm using 6:6 jewel as the basic
component

In the second round, for each 4-link (Ai, Di, Si, Pi, Xi), i = 1, ..., 21b+ 11, we construct

a 6:6 jewel (Figure 3.19), satisfying all its rigidity conditions as in Lemma 47. For each

such 4-link we select a vertex Yu, from the subgraph of 42 fixed vertices Yu/Yv(u, v =

1, ..., 42;u 6= v), that has the lowest valency of 6:6 jewel of Figure 3.19. Since all the 42

vertices Yu, u = 1, ..., 42, are fixed in the first round, for any pair of such fixed vertices

(Yu, Yv)(u, v = 1, ...42;u 6= v) we can find the distance |YuYv|. So, for each pair of vertices

(Yu, Yv)(u, v = 1, ..., 42;u 6= v), we shall use (Yu, Yv) as an edge in the construction of the

6:6 jewel of Figure 3.19. Now from the subgraph of 42 fixed vertices we select another vertex

Yv(v 6= u) such that the length |YuYv| satisfies all the conditions of rigidity on it as stated

in Condition 1 of Lemma 47 and that it has the lowest valency of 6:6 jewel of Figure 3.19

among all such qualifying vertices. We note that we can always find such vertex Yv, because

there will be at most 20 edges YuYv whose length do not satisfy the rigidity conditions on

it (Condition 1 of Lemma 47) whereas we have 41 vertices for choosing the vertex Yv.

127

Then we find an edge YuBj rooted at Yu satisfying the conditions of rigidity on it

as stated in Condition 2 of Lemma 47, then we find another edge YvQm rooted at Yv

satisfying the conditions of rigidity on it as stated in Condition 3 of Lemma 47, then we

find another edge YuBk rooted at Yu satisfying the rigidity conditions on it as stated in

Condition 4 of Lemma 47 and, finally, we find another edge YvQl rooted at Yv satisfying

the rigidity conditions on it as stated in Condition 5 of Lemma 47. Then for each i, (i =

1, ..., 21b+11), we query the distances |AiBj |, |DiBk|, |SiQl| and |PiQm| to form a 6:6 jewel

XiAiBjYuBkDiPiQmYvQlSi. Its edges will satisfy all the rigidity conditions of Lemma 47.

Thus, all the 21b+11 4-links will be consumed to construct 21b+11 jewels. For this 84b+44

edges will be queried.

There will be unused leaves Bj (or Ql) numbering 100 for each of 20 fixed vertices Yu

(u = 1, ..., 42) (or, Yv, v = 1, ..., 42) and 98 for each of 22 fixed vertices Yu (u = 1, ..., 42) (or,

Yv, v = 1, ..., 42). The total number of such unused vertices is 4156. We use a 4-cycle ppg to

fix them in the second round. As before, for each pair of vertices (Yu, Yv)(u, v = 1, ..., 42;u 6=

v), we shall use YuYv as an edge in the construction of the 4-cycle. For each unused vertex

Bj rooted at Yu we find another vertex Ql rooted at Yv such that |YuBj | 6= |YvQl|. Then

the 4-cycle BjYuYvQl will be rigid (Observation 2). Then we query the distance |BjQl| to

complete the 4-cycle.

Note that we can always find a vertex like Ql. For after repeated selection of such

matching pairs of edges there may remain at most 2 edges YuBj rooted at Yu of length

128

equal to that of the same number of edges rooted at Yv (Observation 4). In such a situation

we switch the matching to match such edges rooted at Yu with edges other than those same

length edge/s rooted at Yv - this is always possible because there are at most 2 edges rooted

at Yv that have the same length (Observation 4).

For 4156 unused vertices (after the construction of the 6:6 jewel) there will be 2078

4-cycles, and 2078 edges will be queried to complete the 4-cycles. The total number of

queries in the second round will be (84b+ 44) + 2078, i.e., 84b+ 2122.

Theorem 49 The ppg constructed by Algorithm 3.2 is rigid.

Proof. The proof is similar to that of Theorem 36 for the line rigidity of the ppg constructed

by Algorithm 3.1. �

The number of queries in the first and second rounds are 168b + 4309 and 84b + 2122

respectively. Thus, in 2 rounds a total of 252b+ 6431 pairwise distances are to be queried

for the placement of 189b+ 4297 points. It is interesting to note that our algorithm would

need at least 4486 points to work, which makes it reasonably practical. When we have fewer

points we can use Algorithm 3.1 instead.

Now, 252b+ 6431 = (252/189) ∗ (189b+ 4297)− (4/3) ∗ 4297 + 6431 = 4n/3 + (19293−

17188)/3 = 4n/3 + 2105/3. Thus, we have the following theorem:

Theorem 50 4n/3 + 2105/3 queries are sufficient to place n distinct points on a line in

two rounds.

129

A consequence of the last theorem is that our 6:6 jewel algorithm is better than the

5-cycle algorithm of Chin et al. [20] for n ≥ 11851.

3.5 Lower Bound for Two Rounds

In this section we revisit the adversarial argument given by [20] to establish a lower bound on

2-round algorithms. We show that a deeper analysis improves the lower bound substantially.

Let A denote any 2-round algorithm and B an adversary. The latter sets edge lengths

for ppg in each of the 2 rounds and returns the distance between any two points queried by

A. B can also assign value to the distance between a pair of points not queried by A. While

A’s goal is to make as few distance queries as possible, B tries to maximize the density of

the ppg.

In the first round, A queries the distances between pairs of vertices corresponding to the

edges E1 of the ppg, G1 = (V,E1). In response, B returns queried edge-lengths consistent

with the following 3-part strategy. We call a vertex of degree at least 3 in a ppg G as a

heavy vertex in G.

S1. B fixes the layout of all heavy vertices in G1 and sets the lengths of the edges in G1

incident to these vertices.

S2. For each vertex of degree 2 in G1 that is connected to a vertex of degree 1 in G1, the

length of one of the two edges incident to the degree 2 vertex is set to a fixed value

c > 0.

130

S3. Let Pk = < p1, p2, ..., pk > (k ≥ 2) be a maximal path of degree 2 vertices pi, i =

1, . . . , k in G1. Let p0 and pk+1 be non-degree 2 vertices in G1 adjacent to p1 and pk

respectively. First B sets |pi−1pi| = |pi+1pi+2| for i = 1 (mod 3). If both p0 and pk+1

are heavy vertices in G1, then it sets |pipi+1| = |pi−1pi+2| for i = 1 (mod 3) and also

fixes the layout of the vertices pi, i = 0 (mod 3). Otherwise, if at least one of them,

say pk+1, is of degree one in G1 B sets |pkpk+1| = |pk−2pk−1|. Also, except for the

edges whose length is c, B sets the lengths of the rest of the edges to lie between 2c

and 3c.

Lemma 51 Strategies S2 and S3 of B are mutually consistent.

Proof. Consider a path Pk of degree 2 vertices in G1 such that both p0 and pk+1 have

degree 1. If k = 1, only S2 comes into play and in this case B sets |p1p2| = c. For all k ≥ 4,

B sets |p1p2| = c, |pk−1pk| = c in accordance with S2 and the lengths of all other edges in

accordance with S3. Figures 3.29(c) - 3.29(f) serve as examples of this length assignment

since for any k, the total number of edges is a multiple of 3 as in Figure 3.29(d), or a

multiple of 3 plus 1 as in Figure 3.29(e) or a multiple of 3 plus 2 as in Figure 3.29(f).

For k = 2 and k = 3 B makes the length assignments as shown Figures 3.29(a) - 3.29(b),

which are again consistent with S2 and S3.

If p0 is heavy, then B does not have to set |p1p2| to c. �

In the second round, A queries the distances between new pairs of vertices corresponding

131

p0

p1 p2

p3 p0

p1 p2

p3

p4

p0

p1 p2

p3

p4 p5

p0

p1 p2

p3

p4 p5

p6

(a) Length 2 (b) Length 3 (c) Length 4

(d) Length 5 (e) Length 6 (f) Length 7

p0

p1 p2

p3

p4 p5

p6

p7

p0

p1 p2

p3

p4 p5

p6

p7 p8

c c c

c c c

c c

c

c

c

Figure 3.29: The residual parts of maximal paths of degree 2 vertices that will satisfy S2

to the edges in E2 of the ppg G2 = (V,E1∪E2). In response, B returns queried edge lengths

consistent with the following strategy:

S4. Let Pk =< p1, p2, ..., pk > (k ≥ 2) be a maximal path of degree 2 vertices of length

at least 2 in G1. Let p0 and pk+1 be non-degree 2 vertices adjacent to p1 and pk

respectively.

If at least one of them, say pk+1, is of degree 1 in the first round and if, for some i

with i = 1 (mod 3) and i < k, no edge is connected to either pi or pi+1 in the second

round by the algorithm then B sets |pipi+1| = |pi−1pi+2| for one of those values of i in

132

the second round.

Or, if no edge is connected to either pk−1 or pk in the second round by A, then B sets

|pk−1pk| = |pk−2pk+1|.

An important observation is in order: the above strategies of B do not prevent A from

making a linear placement of the vertices of a maximal path of degree 2 vertices that joins

a heavy vertex to a vertex of degree 1 in distinct positions.

Let p0 be a heavy vertex. Consider all the maximal paths Pk of degree 2 vertices incident

to p0, whose other end is of degree 1. For each path, B computes the sum of the lengths

of all the edges in the path. Let lmax be the maximum of all the sums. B maintains an

interval of this length on either side of p0 free from the placement of the vertices that lie

on a path Pk incident to p0 whose other end is a heavy vertex. This is ensured as follows:

1. The distance between p0 and an adjacent heavy vertex is at least lmax.

2. Let Pk =< p0, p1, p2 >. In this case, B sets |p0p1| > lmax. If Pk =< p0, p1, ..., pk+1 >,

where k > 1, B sets |p0p1| = |p2p3| > lmax and |p1p2| > 2|p0p1|. This ensures that all

the vertices of the prefix segment < p0, p1, p2, p3 > of the path is at a distance farther

than lmax away from p0. Clearly the remaining vertices on Pk, however placed, will

also be at a distance farther than lmax.

The strategies adopted by B bound the lengths of maximal paths formed by degree 2

vertices in G2. The precise results are given in the next 3 lemmas.

133

Lemma 52 In G2, the length of a longest chain of consecutive edges from E1 that terminate

on a heavy vertex at each end of the chain is 4.

Proof. Let p0 and pk+1 be non degree 2 vertices adjacent to a maximal path Pk =<

p1, p2, ..., pk > (k ≥ 2) of degree 2 vertices of length k in G1.

We first consider the case when both of p0 and pk+1 are heavy vertices of G1.

Given strategy S3 of B, if for an i < k with i = 1 (mod 3) A attaches no edge to either

pi or pi+1 in the second round then their positions will be ambiguous. Thus, the lemma is

settled for this case.

Consider the case when pk+1 is of degree 1. In view of strategies S3 and S4 of B, A

must attach an edge at pi or pi+1 in the second round, for i < k and i = 1 (mod 3), to

make the placements of these vertices unambiguous. Thus, the lemma is settled for this

case also. �

Lemma 53 A maximal path Pk of degree 2 vertices in G2 that contains at least one edge

of E2 can have at most 2 consecutive edges of E1.

Proof. Let Pk(k ≥ 2) be a maximal path of degree 2 vertices in G1, and p0 and pk+1 be

non degree 2 vertices adjacent to p1 and pk respectively, where one of p0 and pk+1 be of

degree 1 in G1.

Suppose p0 is of degree 1 in G1. In view of strategy S3 of B, if no edge is connected to

either pi or pi+1 for some i = 1 (mod 3) then following strategy S4, B will set |pipi+1| =

134

|pi−1pi+2| for one of those values of i in the second round. Thus, there must be an edge

connected to either pi or pi+1 for all i = 1 (mod 3). In particular, A must add an edge to

be incident to p1 or p2 (when i = 1).

If pk+1 is of degree 1 then following strategy S3 the adversary sets |pkpk+1| = |pk−2pk−1|

in the first round. If A attaches no edge to either pk−1 or pk in the second round, then

following S4, B sets |pk−1pk| = |pk−2pk+1|. This makes the placements of the vertices pk−1

and pk will ambiguous (Observation 2). Thus A must attach an edge to pk−1 or pk to

preempt B.

Thus, for both the cases, there will be at most 2 vertices of degree at most 2 at an end

of a path of degree 2 vertices of G1, if the end vertex is of degree 1. The algorithm will

place them in the second round by introducing edge/s to one or both of them. Thus, in a

maximal path of degree 2 vertices in G2 that contains at least one edge from E2 there can

be at most 2 consecutive edges from E1. �

Lemma 54 The number of vertices in any maximal path of degree 2 vertices in G2 is at

most 3.

Proof. If a maximal path of degree 2 vertices of G2 consists of edges from E1 only then by

Lemma 52 its length is at most 3.

Now we consider maximal path of degree 2 vertices of G2 that contains at least one edge

from E2. In such a path there cannot be three consecutive edges from E1 (Lemma 53).

Suppose the number of degree 2 vertices in such a maximal path is 4. Let the vertices

135

be p1, p2, p3 and p4. Let p0 and p5 be heavy vertices adjacent to p1 and p4 respectively.

Since any maximal path of degree 2 vertices in G2 can have at most 2 consecutive edges

from E1 the edges p0p1, p1p2, p2p3, p3p4 and p4p5 can be from E1 or E2 in the following 5

combinations:

1. E2, E1, E2, E1, E1

2. E2, E1, E1, E2, E1

3. E1, E2, E1, E2, E1

4. E1, E1, E2, E2, E1

5. E1, E1, E2, E1, E1

For combination 1, B can set the length of the 2 edges in E2 so that |p0p5| = |p1p2|+|p2p3|

and |p0p1| = |p4p5| − |p3p4| (Figure 3.30). Then by Theorem 23 the 6-cycle p0p1p2p3p4p5

would not be rigid. Similarly, for the combinations 2-4 B can make the graph ambiguous.

As for combination 5, following S2 B can set |p1p2| = |p3p4| = c, and can set the length of

p2p3 in the second round in such a way that |p2p3| = |p4p5|+ |p5p0|+ |p0p1| (Figure 3.31).

The 6-cycle p0p1p2p3p4p5 would not be rigid then (Theorem 23). �

The density of a ppg, G = (V,E) is defined as the ratio |E|/n, where n = |V |. We

establish the following lower bound on the density of a ppg constructed by any 2-round

algorithm.

136

p5

p0 p1

p2

p3 p4

E2

E1

E1 E1

E2

Figure 3.30: Maximal path of degree 2 ver-
tices in G2 for the combination of edges
E2, E1, E2, E1, E1

p5

p0

p1 p2

p3p4

E1

E1

E1

E1

E2

c

c

Figure 3.31: Maximal path of degree 2
vertices in G2 for the combination of
edges E1, E1, E2, E1, E1

Theorem 55 Any deterministic 2-round algorithm for solving the 1-dimensional point

placement problem requires at least 12n/11 queries in the worst case.

Proof. Let each edge of G have weight 1, which we split evenly between the vertices in V

that define it. If wi is the accumulated weight of the i-th vertex, clearly
∑n

i=1wi = |E| so

that n ∗mini{wi} ≤ |E|. Thus mini{wi} is a lower bound on the density.

We can get a more precise estimate. Observe that a ppg has 2 types of vertices, heavy

ones (already defined before) and vertices lying on maximal paths of degree 2 vertices that

we call light vertices. If an edge joins two light vertices or two heavy vertices then the edge

weight is divided equally between the vertices. Otherwise, the light vertex gets 1/2 + g of

the weight and the heavy vertex 1/2− g of the weight , where 0 ≤ g ≤ 1/2.

The density of a heavy vertex is at least 3(1/2− g). As for light vertices, we note that

by Lemma 54 each maximal path of degree 2 vertices has length k, where k ≤ 3. The total

edge weight of such a path is 2(1/2 + g) + (k− 1). Thus, the average density of each vertex

in such a path is 1 + 2g/k. It is minimum when k = 3. Thus, the density of a light vertex

is at least 1 + 2g/3.

137

The minimum average density for all vertices in G2 is thus

max min{3/2− 3g, 1 + 2g/3} = 12/11

when g = 3/22. �

3.6 Summary

In this chapter, 2-round algorithms based on 5:5 and 6:6 jewels have been presented and

the lower bound have been improved from 17n/16 to 12n/11. The algorithms have been

implemented and they correctly found the uniqe position of points in each case. In the next

chapter, we further improve both the lower bound and the upper bound of the problem.

138

Chapter 4

Improved Algorithm and Lower

Bound for Point Placement

Problem

4.1 Introduction

In Chapter 3 we proposed a 2-round algorithm that query 4n/3 + O(1) edges to construct

rigid ppg on n points using 6:6 jewels as the basic components. In this chapter, we present

a 2-round algorithm that queries 9n/7 + O(1) edges to construct a rigid ppg on n points,

using 3 paths of degree two vertices of length 2 each with a common vertex as the basic

component, bettering a result of [20] that uses 5-cycles. More significantly, we improve the

lower bound on any 2-round algorithm to 9n/8.

4.2 A 2-round Algorithm Based on a 3-path Graph

In this section, we describe a 2-round algorithm that queries 9n/7+O(1) edges to construct

a rigid ppg on n points. We use the graph in Figure 4.1 with density 6/5 as the basic

building block. It can be construed as 3 paths p1q1r1s, p2q2r2s and p3q3r3s with a common

139

terminal vertex s. Hence we call it a 3-path graph and formally define it as G3p = (V3p, E3p)

where

V3p = {p1, q1, r1, p2, q2, r2, p3, q3, r3, s} and

E3p = {p1q1, q1r1, r1s, p2q2, q2r2, r2s, p3q3, q3r3, r3s, p1p2, p2p3, p3p1}.

p1p1

p2

p3

q1
q2 q3

r1
r2 r3

s

Figure 4.1: The 3-path graph

Since the G3p can be drawn as a layer graph (see Figure 4.4), by Theorem 23 it is not

intrinsically rigid. Indeed, there does not exist an intrinsically rigid graph of density 6/5

in view of the lower bound of 4/3 on any rigid graph with the exception of the graphs

K3,K
−
4 ,K2,3 and the jewel [26].

To find a set of conditions that make G3p rigid, first we fix the placements of p1, p2 and

p3. Next, we find conditions that make the 7-cycle (p1, q1, r1, s, r2, q2, p2) rigid. Relative to

the fixed placement of p3 and s we have a 4-cycle (p3, q3, r3, s) with a virtual edge between

s and p3. Adding a condition that makes this 4-cycle rigid to the set of rigidity conditions

of the 7-cycle, gives us a set of conditions that makes G3p rigid.

Let us describe how we construct a rigid G3p. First, we make p1, p2 and p3 rigid in the

first round query. In the second round, let us first we make the 7-cycle rigid by choosing the

edges of G3p in such a way that the rigidity conditions for it are satisfied. Then we make

140

the virtual 4-cycle rigid by choosing the edges of G3p in such a way that rigidity conditions

for this cycle are satisfied. Clearly, the G3p constructed thus will be rigid. It is evident

that this way of choosing the edges of G3p in the second round is equivalent to choosing its

edges, in the second round, by satisfying the union of the conditions for line rigidity of the

2 cycles. We shall follow the latter method.

To find the rigidity conditions for the 7-cycle, we resort to exhaustive enumerations of

all the layer graph representations of the cycle. By Theorem 27, a 7-cycle has 42 different

layer graph representations. We find conditions that prohibit the drawing of any them. By

Theorem 23, they constitute the set of conditions for the line rigidity of the 7-cycle. All

of the 42 layer graphs for a 7-cycle can be grouped into 6 groups based on the number of

edges on each side. For the 7-cycle (p1, q1, r1, s, r2, q2, p2), a representative layer graph for

each of those groups is shown in Figure 4.2.

p1 r2

q2p2

q1 r1 s p1 s

q2p2

q1 r1 p1 r1

q2p2

q1

r2

s

p1 s

r2

q1

q2

p1 r1

r2p2

q1

q2

r2

r1 p1 r1

p2

q1

q2

r2
s s

(a)
p2

(b) (c)

(d) (e) (f)

Figure 4.2: An example of each group of layer graph for the 7-cycle (p1, q1, r1, s, r2, q2, p2)

141

From these layer graphs we deduce the conditions for line rigidity of this cycle. The

result is summarized in the following lemma (Lemma 56). As an example, we consider the

group of 7 layer graphs represented by Figure 4.2(a). Each layer graph in this group has 4

edges on one side of the layer graph. The layer graphs are shown in Figure 4.3. From these

layer graphs we deduce the following rigidity conditions: |p1q1| 6= |r1s|, |q1r1| 6= |sr2|, |r1s| 6=

|r2q2|, |sr2| 6= |q2p2|, |r2q2| 6= |p2p1|, |q2p2| 6= |p1q1| and |p2p1| 6= |q1r1|.

p1 sp2 q2 r2

(a) (b) (c)
q1 r2

sr1

p1 p2 q2 r1 q2

r2s

q1 p1 p2

s p2

q2r2

r1 q1 p1

(d) (e)
r2 p1

p2q2

s r1 q1 q2 q1

p1p2

r2 s r1

(f)

r1q1

p2 r1q2 r2 s
(g)

p1 q1

Figure 4.3: A group of layer graphs for the 7-cycle (p1, q1, r1, s, r2, q2, p2) where 4 edges lie
on one edge of the layer graph

Lemma 56 A 7-cycle (p1, q1, r1, s, r2, q2, p2) is rigid if

1. |p1p2| 6= |q2r2|, |p1p2| 6= |q1r1|, |p2q2| 6= |r2s|, |p1q1| 6= |r1s|, |q2r2| 6= |r1s|, |q1r1| 6=

|r2s|, |p1q1| 6= |p2q2|.

142

2. ||p1p2|±|p2q2|| 6= |r2s|, ||p2q2|±|q2r2|| 6= |r1s|, ||p1p2|±|p1q1|±|p2q2|| 6= |r1s|, |p1q1| 6=

||r1s|±|r2s||, |p1p2| 6= ||q1r1|±|r1s||, ||p1q1|±|q1r1|| 6= |p2q2|, ||p1q1|±|p1p2|| 6= |q2r2|.

3. ||p1p2|±|p1q1|| 6= |r1s|, ||p1q1|±|q1r1|| 6= |r2s|, ||p1p2|±|p1q1|±|p2q2|| 6= |r2s|, |p2q2| 6=

||r1s|±|r2s||, |p1p2| 6= ||q2r2|±|r2s||, ||p2q2|±|q2r2|| 6= |p2q2|, ||p2q2|±|p1p2|| 6= |q1r1|.

4. |p1p2| 6= |r2s|, |p1p2| 6= |r1s|, |p2q2| 6= |r1s|, |p1q1| 6= |r2s|, ||p1q1| ± |p2q2| ± |p1p2|| 6=

||r1s| ± |r2s||, |p2q2| 6= |q1r1|, |p1q1| 6= |q2r2|.

5. |p2q2| 6= ||p1p2| ± |r1s||, |p1q1| 6= ||p1p2| ± |r2s||, |p1q1| 6= ||p1p2| ± |r1s| ± |r2s||,

|p2q2| 6= ||p1p2|± |r1s|± |r2s||, |p1q1| 6= ||q2r2|± |r2s||, |p2q2| 6= ||q1r1|± |r1s||, |p1p2| 6=

||r1s| ± |r2s||.

6. ||p1q1|±|q1r1|| 6= ||p2q2|±|r2s||, ||p2q2|±|q2r2|| 6= ||p1q1|±|r1s||, |q1r1| 6= ||p2q2|±|r2s||,

|q2r2| 6= ||p1q1| ± |r1s||, |p2q2| 6= ||p1q1| ± |r1s||, |p1q1| 6= ||p2q2| ± |r2s||, |p2q2| 6=

||p1q1| ± |r1s| ± |r2s||.

Proof. The proof is similar to the proof of the corresponding lemma for 5-cycle given by

Chin et al. [20], and is omitted. �

The above conditions involve all the edges of the 7-cycle. If we query the lengths of

all the edges of the cycle in the first round of a 2-round algorithm, the edge lengths may

not satisfy all the rigidity conditions. It is evident from the 2-dimensional stretch of layer

graph that we can avoid the length of an edge from all the conditions of rigidity for a cycle.

143

We avoid q1r1 and q3r3 from the conditions of rigidity for the 7-cycle (p1, q1, r1, s, r2, q2, p2)

and the virtual 4-cycle (p3, q3, r3, s) respectively. Then the conditions for rigidity of each of

these cycles will involve all the other edges in the corresponding cycle.

Again, for each rigidity condition we need to have at least one edge in the condition

such that we can choose an edge with suitable length, that satisfies the rigidity condition,

as that edge, from among the options for edges with different lengths for that particular

edge. Thus, we need to have choices for edge lengths of some edges so that we can avoid

some edge lengths for some edges according to the conditions for rigidity. We provide these

choices for p1q1 and p3q3.

Since the rigidity conditions will involve neither q1r1 nor q3r3, G3p will be rigid irrespec-

tive of the lengths of those edges. If we query q1r1 and q3r3 in the second round then we can

create enough choices for p1q1 and p3q3 in the first round to satisfy any rigidity condition

involving any of them.

There will be rigidity conditions for the 7-cycle that will not involve these edges, i.e.,

p1q1 and p3q3. We cannot meet those rigidity conditions in a 2-round algorithm. So, we

need to avoid some other edge(s) from the rigidity conditions of the cycle and/or provide

options for choosing some other edge(s) for the cycle. For the 7-cycle (p1, q1, r1, s, r2, q2, p2)

there will be rigidity conditions involving p2q2 and r2s, p2q2 and r1s, and all the 3 edges

p2q2, r1s and r2s. We can meet all those conditions, if we provide sufficient options for

choosing the length of p2q2. We can provide choices for edge lengths of the edge p2q2 in the

144

first round if we do not query the edge q2r2 of the 7-cycle in the first round.

Thus, we do not query the lengths of the edges q1r1, q2r2 and q3r3 in the first round.

We query them in the second round. We find a set of sufficient conditions for rigidity for

G3p that does not involve these edges. The 7-cycle have rigidity conditions involving either

q1r1 or q2r2. We replace each of its rigidity conditions that involve any of these edges.

We replace each such condition by a set of condition(s) that prevents the cycle from being

drawn as the layer graph representation that corresponds to that condition. Then we can

satisfy all the rigidity conditions irrespective of the lengths of these edges which will be

reported in the second round.

Among the 42 conditions in Lemma 56 for line rigidity of the 7-cycle, 20 conditions

involve either q1r1 or q2r2 of the 7-cycle that we want to avoid in the conditions. We replace

each of these conditions by a set of conditions that prevents the 7-cycle from being drawn

as the layer graph representation that corresponds to that condition. By Theorem 23, the

set of all these new conditions and the ones that are not replaced will constitute the rigidity

conditions for the 7-cycle. As stated before, if the 7-cycle is rigid then the (p3, q3, r3, s) will

be a 4-cycle in the second round and it can be made rigid by imposing the condition [20]:

|p3q3| 6= |r3s|. (4.1)

This condition together with the rigidity conditions for the 7-cycle will constitute the rigidity

conditions for the whole G3p.

145

In the next subsection, we show how to replace the above mentioned 20 conditions that

involve the edges q1r1 and q2r2 of the 7-cycle (p1, q1, r1, s, r2, q2, p2) with the ones that do

not involve them. To this end, for each of these conditions, first we try to find use other

edges of the cycle in the layer graph representation corresponding to that condition. If this

fails then we embed the layer graph representation corresponding to that condition into all

possible layer graph representations of the whole G3p, and derive a rigidity condition from

each such embedding.

4.2.1 Replacing Conditions

As an example of replacing conditions we shall replace the first condition, viz., |p1p2| 6=

|q2r2|.

Replacing |p1p2| 6= |q2r2|

The rigidity condition |p1p2| 6= |q2r2| corresponds to the layer graph of Figure 4.2(a). To

replace this condition we find a set of conditions that prevent the drawing of layer graph of

the 7-cycle (p1, q1, r1, s, r2, q2, p2) in the configuration of Figure 4.2(a).

Lemma 57 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graph

of Figure 4.2(a) if the edges of G3p satisfy the following set of conditions:

{|p1p3| 6= ||p3q3| ± |r3s||, |p1p3| 6= |r3s||, ||p3q3| ± |sr2|| 6= |p2q2|, ||p3q3| ± |sr2| ± |sr3|| 6=

|p2q2|}.

Proof. We consider all possible layer graphs of G3p in which the 7-cycle appears in the

146

above fixed configuration. For each such layer graph of G3p, we find the condition or set of

conditions that prevents G3p from being drawn as a layer graph of that configuration and,

a fortiori, the embedded 7-cycle (p1, q1, r1, s, r2, q2, p2) in the configuration of Figure 4.2(a).

This new set of conditions acts as a replacement for the condition |p1p2| 6= |q2r2| since that

set will prevent the drawing of the layer graph of the 7-cycle (p1, q1, r1, s, r2, q2, p2) in the

corresponding configuration in Figure 4.2(a).

Since p1, p2 and p3 are made rigid in the first round, they must lie on a line and

their positions must be unique (up to translation and reflection) after the first round.

In the present configuration of the 7-cycle (Figure 4.2(a)), p1, q1, r1, s and r2 are on

the same side of the layer graph. Since p1 and s are collinear and they lie on a line

perpendicular to the line through p1, p2 and p3, the edges p3q3, q3r3 and r3s can have 4

distinct configurations giving rise to 4 distinct layer graph representations (Figure 4.4) of

the whole G3p with the layer graph of the 7-cycle being in the configuration of Figure 4.2(a).

Thus, in order to be able to draw the layer graph of the 7-cycle (p1, q1, r1, s, r2, q2, p2) in the

configuration of Figure 4.2(a) the layer graph of the whole G3p must have one of the four

distinct configurations as shown in Figure 4.4.

First, we consider the configuration where p3q3 and r3s are horizontal, and q3r3 is vertical

(Figure 4.4a). The condition |p1p2| 6= |q2r2| prevents the 7-cycle from being drawn as a layer

graph of present configuration. However, it involves the edge q2r2 which we need to avoid.

In the present configuration of the layer graph of the G3p p1, q1, r1, s and r2 are on a line

147

which is parallel to p2q2 and q3r3. So, we must have |q2r2| = ||p2p3| ± |p3q3| ± |r3s||. Using

this the condition becomes |p1p2| 6= ||p2p3|±|p3q3|±|r3s||. Since ||p1p2|±|p2p3|| = |p1p3| the

condition reduces to |p1p3| 6= ||p3q3| ± |r3s||. If we ensure this condition then we must have

|p1p2| 6= |q2r2| in the present configuration of G3p. Thus, G3p in general and the 7-cycle in

particular cannot be drawn as a layer graph in the present configurations of the 7-cycle and

G3p.

p1 p2 p3 p3

p3
p1 p1

p1 p2

p2 p2 p3

q3

q3

q3

q3

q1 q1

q1 q1

r1 r1

r1

s s

s s

q2 q2

q2 q2

r2

r2 r2

r3 r3

r3

r3

(a) p3q3 and r3s are horizontal and q3r3

is vertical.
(b) p3q3 and q3r3 are vertical and r3s
is horizontal.

(c) p3q3 is vertical, and q3r3 and r3s are
horizontal.

(d) p3q3 and r3s are vertical, and q3r3

is horizontal.

r1

r2

Figure 4.4: Layer graphs of G3p when the layer graph of the 7-cycle (p1, q1, r1, s, r2, q2, p2)
has 4 edges p1q1, q1r1, r1s and sr2 on one side

Now we consider the case when p3q3 and q3r3 are vertical, and r3s is horizontal (Fig-

ure 4.4b). In the present configuration of the layer graph of G3p, p1, q1, r1, s and r2 are

on a line, and p3q3 and q3r3 are on a line. Those lines are parallel and they are paral-

lel to p2q2. So, we must have |q2r2| = ||p2p3| ± |r3s||. Using this the condition becomes

|p1p2| 6= ||p2p3| ± |r3s||. We have ||p1p2| ± |p2p3|| = |p1p3|. Using this the rigidity condition

148

|p1p2| 6= |q2r2| becomes |p1p3| 6= |r3s|.

Next, we consider the case when p3q3 is vertical, and q3r3 and r3s are horizontal (Fig-

ure 4.4c). The condition ||p1q1| ± |q1r1| ± |r1s| ± |sr2|| 6= |p2q2| prevents the 7-cycle from

being drawn as a layer graph of present configuration. However, it involves the edge q1r1

which we need to avoid. In the present configuration of the layer graph of G3p p1, p2 and

p3 are on a line, and q3, r3 and s are on a line. The lines are parallel. So, we must have

||p1q1| ± |q1r1| ± |r1s|| = |p3q3|. Using this the condition becomes ||p3q3| ± |sr2|| 6= |p2q2|.

Finally, we consider the case when p3q3 is vertical, q3r3 is horizontal and r3s is vertical

(Figure 4.4d). In the present configuration of the layer graph of G3p, p1, p2 and p3 are

on a line. The line is parallel to q3r3. So, we must have ||p1q1| ± |q1r1| ± |r1s| ± |sr3|| =

|p3q3|. Using this the rigidity condition ||p1q1| ± |q1r1| ± |r1s| ± |sr2|| 6= |p2q2| becomes

||p3q3| ± |sr3| ± |sr2|| 6= |p2q2|.

It follows that there is no layer graph for G3p in which the layer graph in Figure 4.2(a)

of the 7-cycle (p1, q1, r1, s, r2, q2, p2) is embedded if the edges of G3p satisfy the conditions in

the statement of this lemma. So, the 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn

as the layer graph of Figure 4.2(a) if the edges of G3p satisfy those conditions. �

Similarly, we can replace the remaining 3 conditions corresponding to the layer graphs

in group 1 and involving the edges q1r1 and q2r2. The result is summarized in the following

lemma:

Lemma 58 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graphs

149

corresponding to the conditions |p1p2| 6= |q1r1|, |q2r2| 6= |r1s| and |q1r1| 6= |r2s| if the edges

of G3p satisfy the following conditions:

1. ||p1p3| ± |r3s|| 6= |p3q3|, |r3s| 6= ||p2p3| ± |r2s| ± |p2q2||, |p3q3| 6= |r1s| and |p3q3| 6=

||r1s| ± |r3s||.

2. ||p2p3| ± |r3s|| 6= |p3q3|, |r3s| 6= ||p1p3| ± |r1s| ± |p1q1||, |p3q3| 6= |r2s| and |p3q3| 6=

||r2s| ± |r3s||.

3. ||p3q3| ± |r3s|| 6= |p2p3|, |p2p3| 6= |r2s|, |p3q3| 6= ||p1q1| ± |r1s|| and ||p3q3| ± |r3s|| 6=

||p1q1| ± |r1s||.

Proof. Similar to the proof of Lemma 57. �

Similarly, we can replace the 4 conditions corresponding to the layer graphs in group 2

and involving the edges q1r1 and q2r2. The result is summarized in the following lemma:

Lemma 59 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graphs

corresponding to the conditions ||p2q2| ± |q2r2|| 6= |r1s|, |p1p2| 6= ||q1r1| ± |r1s||, ||p1q1| ±

|q1r1|| 6= |p2q2| and ||p1q1| ± |p1p2|| 6= |q2r2| if the edges of G3p satisfy the following condi-

tions:

1. ||p3q3| ± |r3s|| 6= ||p2p3| ± |r2s||, ||p2p3| ± |r2s|| 6= |r3s|, |p3q3| 6= |r1s| and ||p3q3| 6=

|r1s| ± |r3s||.

150

2. ||p3q3|± |r3s|| 6= |p2p3|, |p2p3| 6= |r3s|, |p1q1| 6= |r1s|, |p2q2| 6= |r2s|, |p3q3| 6= |p1q1| and

||p3q3| ± |p1q1| 6= |r3s||.

3. ||p3q3| ± |r3s| ± |r1s|| 6= |p1p3|, |p2q2| 6= |r2s|, |p1p3| 6= |r1s| ± |r3s|, |p2q2| 6= |p3q3|,

|p1q1| 6= |r1s| and |p2q2| 6= ||p3q3| ± |r3s||.

4. |p3q3| ± |r3s| ± |p1q1| 6= |p1p3|, |p2q2| 6= |r2s|, |p1q1| ± |p1p3| 6= |r3s|, |p2q2| ± |r2s| 6=

|p3q3|, |p1q1| 6= |r1s| and ||p2q2| ± |r2s|| 6= ||p3q3| ± |r3s||.

Proof. Similar to the proof of Lemma 57. �

Replacing ||p2q2| ± |p1p2|| 6= |q1r1|

Now we replace the condition ||p2q2| ± |p1p2|| 6= |q1r1| of group 3. Corresponding layer

graph of the 7-cycle as well as all the possible configurations of G3p for this case are shown

in Figure 4.5. From the figure we obtain the replacement conditions as before:

p1 p2 p3

s

q1
r1

q2

r2

r3

q3/r3
r3

q3

q3

q3

Figure 4.5: 2 edges are on one side of layer graph and 3 edges are on its adjacent side

Lemma 60 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graph

of Figure 4.5 corresponding to the condition ||p2q2| ± |p1p2|| 6= |q1r1| if the edges of G3p

151

satisfy the following conditions:

|p3q3|±|r3s|±|p2q2| 6= |p2p3|, |p1q1| 6= |r1s|, |p2q2|±|p2p3| 6= |r3s|, |p1q1|±|r1s| 6= |p3q3|,

|p2q2| 6= |r2s| and |p1q1| ± |r1s| 6= |p3q3| ± |r3s|.

Proof. Similar to the proof of Lemma 57. �

Similarly, we can replace the remaining 3 conditions corresponding to the layer graphs

in group 3 and involving the edges q1r1 and q2r2. The result is summarized in the following

lemma:

Lemma 61 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graphs

corresponding to the conditions ||p1q1| ± |q1r1|| 6= |r2s|, |p1p2| 6= ||q2r2| ± |r2s|| and ||p2q2| ±

|q2r2|| 6= |p2q2| if the edges of G3p satisfy the following conditions:

1. ||p3q3| ± |r3s| ± |r2s|| 6= |p2p3|, |p1q1| 6= |r1s|, |p2p3| 6= |r2s| ± |r3s|, |p1q1| 6= |p3q3|,

|p2q2| 6= |r2s| and ||p1q1| 6= |p3q3|| ± |r3s|.

2. ||p3q3|± |r3s|| 6= |p1p3|, |p1p3| 6= |r3s|, |p2q2| 6= |r2s|, |p1q1| 6= |r1s|, |p3q3| 6= |p2q2| and

||p3q3| ± |p2q2| 6= |r3s||.

3. ||p3q3| ± |r3s|| 6= ||p1p3| ± |r1s||, |p1p3| ± |r1s| 6= |r3s|, |p3q3| 6= |r2s| and ||p3q3| 6=

|r2s| ± |r3s||.

Proof. Similar to the proof of Lemma 57. �

152

Similarly, we can replace the 2 conditions corresponding to the layer graphs in group 4

and involving the edges q1r1 and q2r2. The result is summarized in the following lemma:

Lemma 62 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graphs

corresponding to the conditions |p2q2| 6= |q1r1| and |p1q1| 6= |q2r2|. if the edges of G3p satisfy

the following conditions:

1. ||p3q3|±|r3s|±|r1s|| 6= ||p1p3|±|p1q1||, ||r3s|±|r1s|| 6= ||p1p3|±|p1q1||, |p3q3| 6= |p2q2|,

||p3q3| ± |r3s|| 6= |p2q2| and ||p1q1| ± |p1p3|| 6= |r1s|.

2. ||p3q3|±|r3s|±|r2s|| 6= ||p2p3|±|p2q2||, ||r3s|±|r2s|| 6= ||p2p3|±|p2q2||, |p3q3| 6= |p1q1|,

||p3q3| ± |r3s|| 6= |p1q1| and ||p2q2| ± |p2p3|| 6= |r2s|.

Proof. Similar to the proof of Lemma 57. �

Similarly, we can replace the 2 conditions corresponding to the layer graphs in group 5

and involving the edges q1r1 and q2r2. The result is summarized in the following lemma:

Lemma 63 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graphs

corresponding to the conditions |p1q1| 6= ||q2r2| ± |r2s|| and |p2q2| 6= ||q1r1| ± |r1s|| if the

edges of G3p satisfy the following conditions:

1. ||p2q2| ± |p3q3| ± |p2p3|| 6= |r3s|, ||p2q2| ± |p2p3|| 6= |r3s|, |p1q1| 6= |p3q3| and |p1q1| 6=

||p3q3| ± |r3s||.

153

2. ||p1q1| ± |p3q3| ± |p1p3|| 6= |r3s|, ||p1q1| ± |p1p3|| 6= |r3s|, |p2q2| 6= |p3q3| and |p2q2| 6=

||p3q3| ± |r3s||.

Proof. Similar to the proof of Lemma 57. �

Replacing ||p1q1| ± |q1r1|| 6= ||p2q2| ± |r2s||

Now we replace the condition ||p1q1| ± |q1r1|| 6= ||p2q2| ± |r2s|| of group 6. Corresponding

layer graph of the 7-cycle as well as all the possible configurations of G3p for this case are

shown in Figure 4.6. From the figure we obtain the replacement conditions as before:

p1 p2

s

q1

r1

q2r2

Figure 4.6: The layer graph is staircase shaped with p1q1 and q1r1 on one side

Lemma 64 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graph

of Figure 4.6 corresponding to the condition ||p1q1| ± |q1r1|| 6= ||p2q2| ± |r2s|| if the edges of

G3p satisfy the following conditions:

||p3q3| ± |r3s| ± |r1s|| 6= |p1p3|, ||r3s| ± |r1s|| 6= |p1p3|, |p3q3| 6= ||p2q2| ± |r2s||, |p3q3| 6=

||p2q2| ± |r2s| ± |r3s|| and |p1p3| 6= |r1s|.

Proof. Similar to the proof of Lemma 57. �

Similarly, we can replace the remaining 3 conditions corresponding to the layer graphs

in group 6 and involving the edges q1r1 and q2r2. The result is summarized in the following

154

lemma:

Lemma 65 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p cannot be drawn as the layer graphs

corresponding to the conditions ||p2q2| ± |q2r2|| 6= ||p1q1| ± |r1s||, |q1r1| 6= ||p2q2| ± |r2s|| and

|q2r2| 6= ||p1q1| ± |r1s|| if the edges of G3p satisfy the following conditions:

1. ||p1q1| ± |p1p3|| 6= ||p3q3| ± |r1s| ± |r3s||, ||p1q1| ± |p1p3|| 6= ||r1s| ± |r3s||, |p3q3| 6=

||p2q2| ± |r2s||, |p3q3| 6= ||p2q2| ± |r2s| ± |r3s|| and |p1q1| 6= ||p1p3| ± |r1s||.

2. ||p2q2| ± |p2p3|| 6= ||p3q3| ± |r2s|| ± |r3s|, ||p2q2| ± |p2p3|| 6= |r2s| ± |r3s|, |p3q3| 6=

||p1q1| ± |r1s||, |p3q3| 6= ||p1q1| ± |r1s| ± |r3s|| and |p2q2| 6= ||p2p3| ± |r2s||.

3. ||p3q3| ± |r3s| ± |r2s|| 6= |p2p3|, ||r3s| ± |r2s|| 6= |p2p3|, |p3q3| 6= ||p1q1| ± |r1s||, |p3q3| 6=

||p1q1| ± |r1s| ± |r3s|| and |p2p3| 6= |r2s|.

Proof. Similar to the proof of Lemma 57. �

4.2.2 Rigidity Conditions

From Eq. 4.1 and Lemmas 56 - 65 we have the following lemma for the rigidity of the 7-cycle

(p1, q1, r1, s, r2, q2, p2) of G3p.

Lemma 66 The 7-cycle (p1, q1, r1, s, r2, q2, p2) of G3p is rigid if the edges of G3p satisfy the

following conditions:

1. |p1p2| /∈ {|r1s|, |r2s|, ||r1s| ± |r2s||},

2. |p2p3| /∈ {|r2s|, |r3s|, ||r2s| ± |r3s||},

155

3. |p3p1| /∈ {|r3s|, |r1s|, ||r3s| ± |r1s||},

4. |p1q1| /∈ {|r1s|, |r2s|, ||r1s| ± |r2s||, ||p1p2| ± |r1s||, ||p1p2| ± |r2s||, ||p1p3| ± |r1s||,

||p1p3| ± |r3s||, ||p1p2| ± |r1s| ± |r2s||, ||p1p3| ± |r1s| ± |r3s||},

5. |p2q2| /∈ {|r1s|, |r2s|, |p1q1|, ||r1s|±|r2s||, ||p1p2|±|r1s||, ||p1p2|±|r2s||, ||p2p3|±|r2s||,

||p2p3|±|r3s||, ||p1q1|±|r1s||, ||p1q1|±|r2s||, ||p1p2|±|r1s|±|r2s||, ||p2p3|±|r2s|±|r3s||,

||p1q1| ± |r1s| ± |r2s||, ||p1q1| ± |p1p2| ± |r1s||, ||p1q1| ± |p1p2| ± |r2s||, ||p1q1| ± |p1p2| ±

|r1s| ± |r2s||},

6. |p3q3| /∈ {|r1s|, |r2s|, |r3s|, |p1q1|, |p2q2|, ||r2s| ± |r3s||, ||r3s| ± |r1s||, ||p1p3| ± |r3s||,

||p2p3| ± |r3s||, ||p1q1| ± |r1s||, ||p1q1| ± |r3s||, ||p2q2| ± |r2s||, ||p2q2| ± |r3s||, ||p1p3| ±

|r1s| ± |r3s||, ||p2p3| ± |r2s| ± |r3s||, ||p1q1| ± |r1s| ± |r3s||, ||p2q2| ± |r2s| ± |r3s||,

||p1q1| ± |p1p3| ± |r3s||, ||p2q2| ± |p2p3| ± |r3s||, ||p1q1| ± |p1p3| ± |r1s| ± |r2s||, ||p2q2| ±

|p2p3| ± |r2s| ± |r3s||}.

The union of the two sets of conditions in Eq. 4.1 and Lemma 66 constitutes a set of

sufficient conditions for the rigidity of G3p. Taking care of overlapping conditions between

the two sets of conditions, we have 55 distinct conditions for the rigidity of G3p and hence

the following lemma:

Lemma 67 The G3p having the vertices p1, p2 and p3 rigid in the first round, is rigid if

its edges satisfy the conditions mentioned in Lemma 66.

156

4.2.3 Algorithm

As mentioned before, we make triplet of vertices (p1, p2, p3) of each G3p rigid in the first

round. But we have rigidity conditions on the edges p1p2, p2p3 and p3p1 (Conditions 1-3

of Lemma 67). This implies that we need a pool of vertices, S, for which the pairwise

distances of all the pairs of points corresponding to the vertices in S are known after the

first round of query, and from which we choose the triplet of vertices (p1, p2, p3) in order

to meet the rigidity conditions on p1p2, p2p3 and p3p1. We make the vertices in S rigid in

the first round. Then the pairwise distances of all the pairs of points corresponding to the

vertices in S are known after the first round of query. We make the remaining 7 vertices of

each G3p rigid in the second round.

To select triplet of vertices in S as (p1, p2, p3) of a G3p, let us select any vertex of S as

p1. Then let us find another vertex of S, we denote it as p2, satisfying the conditions on the

length |p1p2| mentioned in Condition 1 of Lemma 67. The length of p1p2 cannot be equal

to at most 4 different lengths. By Observation 4, each length can be attained by at most

2 edges incident on p1. Thus, at most 8 edges will not satisfy the conditions on |p1p2|. We

need at least 8 extra vertices, i.e., we need to have a total of at least 9 more vertices, other

than p1, in S as candidate for p2.

After p2 is selected, let us find another vertex of S, we denote it as p3, from the remaining

vertices of S such that the conditions on |p2p3| in Condition 2 of Lemma 67 are satisfied. By

Observation 4, at most 8 edges will not satisfy the conditions on |p2p3|. This warrants the

157

set S to have at least 8 extra vertices other than p1, p2 and p3. The vertex p3 selected this

way by satisfying the conditions on p2p3 must also have to satisfy the conditions on p3p1

mentioned in Condition 3 of Lemma 67. By Observation 4, at most 8 edges will not satisfy

the conditions on |p3p1|. This warrants the set S to have at least 8 more extra vertices, i.e.,

a total of 16 extra vertices, other than p1, p2 and p3. Then it is ensured that a triplet of

vertices in S can be found as (p1, p2, p3) of a G3p.

But if S has only 19 vertices for the selection of pis it may happen that all the G3ps are

attached to the same triplets. This hinders our goal of obtaining a better value for α than

previously known. We need to attach G3ps evenly to all the vertices of S so that the same

number of edges can be attached to each of them in the first round and all of those edges,

except for a constant number, are used to attach the basic components. In other words,

we need to attach the 3-paths to the vertices in S in such a way that the numbers of G3ps

attached to any two vertices differ by at most a constant number. To specify the number of

G3ps attached to a vertex in S we shall use the term valence. We denote the set of vertices

with valence d as Sd.

Now we describe our algorithm to select triplets of vertices in S to attach G3ps. To

attach a G3p we always select a vertex in S with the lowest valence as the first vertex (say

p1). Of the remaining vertices of S, at most 8 vertices may not be acceptable for the second

vertex (say p2), because of the conditions on p1p2. From among the rest |S| − 1 vertices

that satisfy the conditions on p1p2 we select the one that has the lowest valence, as p2.

158

Of the rest |S| − 2 vertices of S, at most 16 may not be acceptable for the last vertex,

say p3, because of the conditions on p2p3 and p3p1. From among the rest vertices that

satisfy the conditions on p2p3 and p3p1 we choose the one that has the lowest valence, as

p3. This method is followed to attach each G3p to the vertices in S, while G3ps are attached

sequentially. The following lemma tells us how big S must be:

Lemma 68 A set S of 35 vertices is sufficient to ensure that the valences of any two

vertices in S differ by at most 2.

Proof. Initially, all the vertices in the pool have valence 0. To pick three vertices of

minimum valence (0 in this case) to beat 16 different length restrictions in all, we need a

buffer of size at least 16. Thus we can pick 6 triplets (p1, p2, p3) of valence 0, until the buffer

limit is reached. At the end of this cycle, 18 vertices have valence 1 and 17 vertices have

valence 0. The next cycle begins by picking pairs (p1, p2) from the pool of 17 vertices of

valence 0, as long as we have a buffer of size 8. Since we do not have enough vertices in the

buffer to ensure that the third vertex p3 is from the valence 0 pool, we might have to pick

these from the pool of valence 1 vertices. So up to 4 vertices can have valence 2. Thus, we

have |S0| ≤ 9 and |S2| ≤ 4. The rest of the vertices are of valence 1, i.e., |S1| ≥ 22.

Next we attach G3ps until |S0| ≤ 2. This will attach at most 7 G3ps. Then we have

|S0| ≤ 2 and |S2| ≤ 18, and consequently, |S1| ≥ 15. Again, we attach G3ps until |S0| = 0.

This will attach at most 2 G3ps. Then we have |S0| = 0 and |S3| ≤ 2, and consequently,

|S1 ∪S2| ≥ 33. Thus, at some point of time all the vertices in S have at most 3 consecutive

159

valences, viz., 1, 2 and 3. At any point of time before that, they may have at most 4

consecutive valences, viz., 0 - 3.

We shall show that at any point of time the vertices in S will have at most 4 consecutive

valences, and that at some point of time they will have at most 3 consecutive valences

only. For this we use induction to show that if we start with vertices in S in the state of

a valence distribution(Sd, Sd+1, Sd+2), and attach G3ps according to our algorithm, then at

some point of time the state of the valences will be (Sd+1, Sd+2, Sd+3). We assume that

|Sd ∪ Sd+1| ≤ 18. Otherwise, we attach G3ps until |Sd ∪ Sd+1| ≤ 18.

First, we consider the cases for which |Sd| ≤ 9. Then |Sd+1 ∪ Sd+2| ≥ 26 with |Sd ∪

Sd+1 ∪ Sd+2| = 35. We attach G3ps until |Sd| = 0. For each new G3p, at least 1 vertex of

Sd will be moved to Sd+1, and at most 2 vertices of Sd+2 will be moved to Sd+3. It is clear

that at most 9 G3ps will be attached, and that there will always be at least 19 vertices in

Sd ∪ Sd+1 ∪ Sd+2 until there is no vertex in Sd. We have |Sd| = 0, |Sd+1 ∪ Sd+2| ≥ 17 and

|Sd+3| ≤ 18. Thus, the valences of all the vertices will become d+ 1, d+ 2 and d+ 3.

Now we consider the worst case for which |Sd| = 18 and |Sd+1| = 0. They imply that

|Sd+2| = 17. We attach G3ps until |Sd| ≤ 10. At most 4 G3ps will be attached. We group all

the possible situations into 2 subcases. First, we consider the subcase when 2 vertices are

used from Sd for each new G3p. Exactly 4 G3ps will be attached using 8 vertices from Sd.

We have |Sd| = 10 and |Sd+1| ≥ 5 with |Sd ∪ Sd+1| ≥ 15, and |Sd+3| ≤ 4. After attachment

of 1 more G3p we have |Sd| ≤ 8 and |Sd+1| ≥ 6 with |Sd ∪ Sd+1| ≥ 14, and |Sd+3| ≤ 5.

160

Now we attach G3ps until |Sd| ≤ 5. Clearly, at most 3 G3ps will be attached, and we have

|Sd| ≤ 5 and |Sd+1| ≥ 3 with |Sd ∪ Sd+1| ≥ 8 (because at most 6 valence d + 1 vertices

will be raised to valence d + 2 vertices), and |Sd+3| ≤ 8 (because at most 3 valence d + 2

vertices will be raised to valence d+ 3 vertices). As long as there are at least 19 vertices in

Sd∪Sd+1∪Sd+2, all the 3 vertices of a new G3p will be chosen from that union. No vertices

will be used from Sd+3, and hence no vertex’s valence will be raised to d + 4. We attach

G3ps until |Sd| = 0. It is evident that at most 5 G3p will be attached, and we have |Sd| = 0,

|Sd+1 ∪ Sd+2| ≥ 17 and |Sd+3| ≤ 18.

Now we consider the other subcase which consists of the remaining possible situations.

For this case, 3 or 4 G3ps will be attached. It can be easily seen that |Sd| ≤ 9 and |Sd+1| ≥ 6

with |Sd ∪ Sd+1| ≥ 15, and |Sd+3| ≤ 3. We attach G3ps until |Sd| ≤ 6. It can be easily

checked that at most 3 G3ps will be attached, and we have |Sd| ≤ 6 and |Sd+1| ≥ 3 with

|Sd ∪ Sd+1| ≥ 9, and |Sd+3| ≤ 6. We attach G3ps until |Sd| = 0.It is evident that at most 6

G3ps will be attached, and we have |Sd| = 0, |Sd+1 ∪ Sd+2| ≥ 17 and |Sd+3| ≤ 18.

It can be easily shown that for all the other combinations of number of vertices in

valences d and d + 1 subject to a maximum of 18, all the vertices will be elevated to at

most 3 consecutive valences d+ 1, d+ 2 and d+ 3. The calculations will be similar to the

above. �

We make the above set S of 35 vertices rigid in the first round by using jewels of

Damaschke [26] as the ppg. We create 6 jewels hanging from a common strut that is

161

incident on 2 vertices of S. This will make 32 vertices rigid. For this we need to query the

lengths of 49 edge. We make the remaining 3 vertices rigid by using triangle as the ppg.

For each of these 3 vertices we query its distance from each of the pair of vertices that are

incident on the strut. There will be 6 more queries for edge lengths. Thus, we shall query

a total of 55 edges in the first round to make the 35 vertices of S rigid in that round.

The conditions on p1q1, p2q2 and p3q3 in serial numbers respectively 3, 4 and 5 of

Lemma 67 will not be satisfied by at most 40, 90 and 122 edges respectively (by Observa-

tion 4). In addition to the 122 extra edges needed at each of pi’s to satisfy the conditions on

|p1q1|, |p2q2| and |p3q3| we need 2 more extra edges incident on each of pi to accommodate

the difference of 2 between the number of basic components that can be attached to the

pi’s. Thus, we need a total of 124 extra edges incident on each of the vertices pi, i = 1, ..., 35

of S. We shall attach 3b, 3b + 1 or 3b + 2 (where b is a positive integer) number of G3ps

to each vertex in S. This requires us to have 3b + 124 edges incident on each of pi’s in S.

In the worst case there will be at most 18 vertices in S with valence 3b, no vertices in S

with valence 3b+ 1 and the remaining vertices with valence 3b+ 2. Thus, we shall be able

to construct a total of at least 35b+ 11 number of G3ps from the edges provided for piqi at

all the pi’s in S. Now we describe the algorithm to construct a composite ppg made up of

G3ps such that all the rigidity conditions listed in Lemma 67 are satisfied for each of them.

Algorithm 4.1. Let the total number of vertices be n = 245b + 4, 419, where b is a

positive integer. We attach at least 3b and at most 3b + 2 numbers of G3ps (Figure 4.1)

162

to each of 35 rigid vertices in S subject to the condition that the total number of such

components being 35b+ 11.

In the first round, we make distance queries represented by the edges of the graph in

Figure 4.7. All the vertices pi (i = 1, ..., 35) in the subgraph enclosed by the rectangle are

elements of S and are made rigid in the first round by using the jewel of [26] as the ppg.

There are 6 jewels attached to a common strut in the subgraph. Residual 3 vertices are

made rigid by using triangle as the ppg. They are attached to the common strut. There are

a total of 55 edges in the subgraph. There are b + 124 leaf children rooted at each of the

vertices pi, pj , or pk (i, j, k = 1, ..., 35) of S to attach 3b, 3b+ 1 or 3b+ 2 G3ps (Figure 4.1).

Since there will be 35b + 11 G3ps we make 35b + 11 groups of 4 vertices (ril, rjl, rkl, sl),

(l = 1, ..., 35b+ 11). We query the distances |rilsl|, |rjlsl| and |rkjsl|, (l = 1, ..., 35b+ 11) in

the first round. We will make a total of 210b+ 4, 428 pairwise distance queries in the first

round for the placement of n = 245b+ 4, 419 vertices.

Rigid subgraph of 35 vertices

...

...

... ...

sl

qil

ril rjl rkl

pi

35b + 11 3-links

3b + 124 leaves

pj pk

qjl qkl

3b + 124 leaves 3b + 124 leaves
... ...

Figure 4.7: Queries in the first round for 2-round algorithm using G3p as the basic compo-
nent

163

In the second round, for each 3-link (ril, rjl, rkl, sl), l = 1, ..., 35b + 11, we construct a

G3p (Figure 4.1), satisfying all its rigidity conditions as in Lemma 67. For each such 3-link

we select a vertex pi, from the subgraph of 35 vertices of S that has the lowest valence of

G3p of Figure 4.1. Since all the 35 vertices pi, i = 1, ..., 35, are rigid in the first round, for

any pair of such fixed vertices (pi, pj)(i, j = 1, ...35; i 6= j) we can find the distance |pipj |.

So, for each pair of vertices (pi, pj)(i, j = 1, ..., 35; i 6= j), we shall use (pi, pj) as an edge in

the construction of the G3p of Figure 4.1.

Now from the subgraph of 35 vertices of S we select another vertex pj(j 6= i) such that

the length |pipj | satisfies all the 4 conditions of rigidity on it as stated in serial number 1 of

Lemma 67 and that it has the lowest valence of G3p of Figure 4.1 among all such qualifying

vertices. We note that we can always find such vertex pj , because there will be at most 8

edges (pipj) whose lengths do not satisfy the rigidity conditions on it (Lemma 67) whereas

we have 34 more vertices for choosing the vertex pj . Similarly, from the subgraph of 35

vertices of S we select another vertex pk(k 6= i, k 6= j) such that the length |pjpk| satisfies

all the 4 conditions of rigidity on it as stated in serial number 2 of Lemma 67 and the length

|pkpi| satisfies all the 4 conditions of rigidity on it as stated in serial number 3 of Lemma 67,

and that it has the lowest valency of G3p of Figure 4.1 among all such qualifying vertices.

We note that we can always find such vertex pk, because there will be at most 16 vertices

pk such that the lengths of the edges pjpk and pkpi do not satisfy the rigidity conditions on

them (Lemma 67) whereas we have 33 more vertices for choosing the vertex pk.

164

Then we find an edge piqil rooted at pi satisfying the 20 conditions of rigidity on it as

stated in serial no. 4 of Lemma 67, then we find another edge pjqjl rooted at pj satisfying

the 45 conditions on it as stated in serial no. 5 of Lemma 67 and finally, we find another edge

pkqkl rooted at pk satisfying the 61 conditions on it as stated in serial no. 6 of Lemma 67.

Then for each l, (l = 1, ..., 35b + 11), we query the distances |qilril|, |qjlrjl| and |qklrkl|

to form a G3p with vertices pi, pj , pk, qil, qjl, qkl, ril, rjl, rkl and sl. Its edges will satisfy all

the rigidity conditions of Lemma 67. Thus, all the 35b + 11 3-links will be consumed to

construct 35b+ 11 G3ps. For this 105b+ 33 edges will be queried in the second round.

There will be unused leaves qil/qjl/qkl numbering 4,307 in total for the 35 vertices of S.

We use a 4-cycle ppg [26] to fix 4,306 of them and a triangle ppg to fix the rest 1 vertex in the

second round. As before, for each pair of vertices (pi, pj)(i, j = 1, ..., 35; i 6= j), we shall use

(pi, pj) as an edge in the construction of the 4-cycle. For each unused vertex qil rooted at pi

we find another vertex qjl rooted at pj such that |pipil| 6= |pjpjl|. Then the 4-cycle piqilqjlpj

will be rigid (Observation 5). Then we query the distance |qilqjl| in the second round to

complete the 4-cycle. Note that we can always find a vertex like qjl. For, after repeated

selection of such matching pairs of edges there may remain at most 2 edges piqil rooted at

pi of length equal to that of the same number of edges rooted at pj (Observation 4). In such

a situation we switch the matching to match such edges rooted at pi with edges other than

those same length edge(s) rooted at pj - this is always possible because there are at most

2 edges rooted at pj that have the same length (Observation 4). To make the remaining

165

1 leave vertex rigid we query in the second round its distance from any vertex of S other

than its parent vertex.

For 4,307 unused vertices (after the construction of the G3ps) 2,153 4-cycles and 1

triangle will be constructed. 2,153 edges will be queried to complete the 4-cycles and 1 edge

will be queried to construct the triangle. The total number of queries in the second round

will be (105b+ 33) + 2, 153 + 1, i.e., 105b+ 2, 187.

Theorem 69 The ppg constructed by Algorithm 4.1 is rigid.

Proof. The proof is similar to that of Theorem 36 for the line rigidity of the ppg constructed

by Algorithm 3.1. �

The number of queries in the first and second rounds are 210b+ 4, 428 and 105b+ 2, 187

respectively. Thus, in 2 rounds a total of 315b+ 6, 615 pairwise distances are to be queried

for the placement of 245b+ 4, 419 points. Now, 315b+ 6, 615 = (315/245) ∗ (245b+ 4419)−

(9/7) ∗ 4419 + 6615 = 9n/7 + (46305 − 39771)/7 = 9n/7 + 6534/7. Thus, we have the

following theorem:

Theorem 70 9n/7 + 6534/7 queries are sufficient to place n distinct points on a line in

two rounds.

4.3 An Improved Lower Bound for Two Rounds

In this section we improve the lower bound for a 2-round algorithm to 9
8 . Our argument

is adversarial as in [27, 20]. Let A denote any 2-round algorithm. We imagine that an

166

adversary B sets edge lengths for ppg in each of the 2 rounds with the intention of maximizing

its density and returns the distance between any two points queried by A. Let the set of

edges queried in the first and second round be E1 and E2 respectively. Then G1 = (V,E1)

is the query graph for the first round, while G2 = (V,E1 ∪ E2) is the ppg G.

Let < p1, p2, ..., pk > denote a path of distinct degree 2 vertices in Gi. We call it simply

as degree 2 path in Gi. We note that each vertex of a degree 2 path in Gi is of degree 2 in

Gi. Let p0 and pk+1 be the vertices adjacent to p1 and pk respectively. If both p0 and pk+1

are not of degree 2, then the path is a maximal path of degree 2 vertices in Gi, and p0 and

pk+1 are called start and end vertices respectively of the path. We call a maximal path of

degree 2 vertices in Gi simply as degree 2 maximal path in Gi. We call a vertex of degree

at least 3 in Gi as a heavy vertex in Gi. If both the start and end vertices of a degree 2

maximal path in G1 are heavy in G1 then we call the maximal path as class A path. We

define the length of a degree 2 path in a graph Gi as the number of vertices in the path in

Gi. We note that an edge has a path length of 0. We use Pk to denote a degree 2 path of

length k.

A connected subgraph H of Gi (i = 1, 2) is called a handle [27] in Gi if the lay-

out of H is ambiguous in the i-th round, though the layout of all the remaining vertices

of Gi are fixed in round i. For example, the subgraphs ({p1}, φ), ({p1, p2}, {p1p2}) and

({p1, p2, p3}, {p1p2, p2p3}) are handles in the the graphs whose layer graphs are shown in

167

Figures 4.8(a), 4.8(b) and 4.8(c) respectively1. In the rest of the discussion of this section,

handles play a critical role.

p1

p0

p2

(b)

p3

p1

p0

(a)

p1

p0

p2

(c)

p3

p4p5

l l l l l

l′

l′ l′

l′ l′′

l′′

Figure 4.8: Three different handles

Lemma 71 (a) For each handle H in G1, the algorithm must insert an edge incident to

at least one vertex of H in round 2. (b) For each potential handle H in G2, the algorithm

must insert an edge incident to at least one vertex of H in round 2.

Proof. For each of the cases (a) and (b), suppose that the algorithm does not insert any

edge at some vertices of H in round 2, then the layout of H will remain ambiguous in round

2. This contradicts the fact that G2 is rigid. �

Let us consider round 1. An algorithm constructs a G1 and submits it to B. B assigns

lengths to the edges of G1 by creating handles in G1 and scopes for potential handles in G2,

with the intention of forcing the algorithm to insert as many edges as possible in round 2;

and returns it to the algorithm. B assigns lengths to the edges according to the following

strategies. The algorithm is oblivious of the strategies.

S1. The adversary fixes the layout of all heavy vertices except the following 3 types of degree

3 vertices. Let p0 be a vertex of degree 3. The exceptions are:
1Heavy vertices are circled in the figures of this section

168

(1) The length of each of the 3 degree 2 maximal paths in G1 connected to p0 is at

most 1 and the other terminals of the path are not heavy. (Figure 4.9)

(2) The vertex p0 is connected to exactly one heavy vertex by a degree 2 maximal path

of length 1 in G1 and the length of each of the remaining 2 degree 2 maximal paths in

G1 connected to p0 is at most 1 and remaining two terminals not heavy. (Figure 4.10)

(3) The vertex p0 is adjacent either to exactly one heavy vertex in G1, or to the start

or end vertex of a class A path; and the length of each of the remaining 2 degree 2

maximal paths in G1 connected to p0 is exactly 1. (Figure 4.11)

We call the vertex p0 of exception (3) as specialOne vertex and its adjacent vertex in

G1 as specialTwo vertex if it is heavy in G1.

The motivation for these exceptions is to provide scope to create handles in round 2

where the vertex set of the handle includes the degree 3 vertex p0 or some vertices of some

degree 2 paths in G2 attached to p0. In Figures 4.9, 4.10 and 4.11 the vertex p0 is an

example of exceptions (1), (2) and (3) respectively for a degree 3 vertex whose layout is not

fixed by B in round 1. Exception (1) is used in Figures 4.19 and 4.20 to create the handle

({p1, p2}, {p1p2}) and ({p2, p3}, {p2p3}) respectively. Exception (2) is used in Figure 4.18 to

create the handles with vertex set {p′′2, p′′1, p0, p
′
1, p
′
2} and edge set {p′′2p′′1, p′′1p0, p0p

′
1, p
′
1p
′
2}.

S2. For all degree 2 vertices, if one of the incident edges is also incident on a degree 1

vertex, the adversary sets the length of one of the two incident edges to be the same,

169

p0

p1 p2

p′
1p′

2 p′′
1

Figure 4.9: The layout of heavy vertex p0 is not fixed in round 1

p0

p1 p2

p′
1 p′

2p′′
1

Figure 4.10: The layout of heavy vertex p0 is not fixed in round 1

p0

p1

p′′
2 p′

1 p′
2p′′

1

Figure 4.11: The layout of heavy vertex p0 is not fixed in round 1

say c, over all these degree 2 vertices.

The aim of this strategy is to provide scope to create a handle in each degree 2 path

of length exactly 4 in G2 having an edge in E2 (see Figure 4.12). Then by Lemma 71, the

algorithm must insert an edge at a vertex of the handle. Consequently, the path will be

divided into 2 smaller paths of degree 2 vertices.

In Figure 4.12, p1 and p′1 are degree 2 vertices in G1 and their incident edges p1p2 and

p′1p
′
2 are incident to the degree 1 vertices p2 and p′2 respectively in G1. For the degree

2 path (p1) of length 1, B sets either |p0p1| = c or |p1p2| = c in round 1 as per S2. In

Figure 4.12 B sets |p1p2| = c as per S2. Similarly, for the degree 2 path (p′1) of length 1,

B sets |p′1p′2| = c in round 1 as per S2. In round 2, if the algorithm inserts an edge p2p
′
2,

then the adversary sets |p2p
′
2| = |p1p

′
1|. This creates a handle ({p2, p

′
2}, {p2p

′
2}) in G2. By

170

Lemma 71, the algorithm must insert an additional edge at either p2 or p′2. This will split

the potential degree 2 path < p1, p2, p
′
2, p
′
1 > of length 4 in G2 into degree 2 paths, each of

length at most 2.

p2

p1

p′
2

p′
0

p0 p′
1

E2

E1 E1

E1E1

Figure 4.12: The subgraph ({p2, p
′
2}, {p2p

′
2}) is a potential handle in G2

S3. For each degree 2 maximal path Pk =< p1, p2, ..., pk >, k ≥ 2, of length at least 2 in

G1, let p0 and pk+1 be non-degree 2 vertices in G1 adjacent to p1 and pk respectively

in G1. (a) The adversary sets |pi−1pi| = |pi+1pi+2| for i = 1 (mod 3). In addition,

(b) if Pk is a class A path then B fixes the layout of pi, i = 0 (mod 3) and sets

|pipi+1| = |pi−1pi+2| for i = 1 (mod 3), with the exception that if p0 is a specialOne

vertex then B keeps option for potentially fixing p0 such that |p1p2| = |p0p3|, and

that if pk + 1 is a specialOne vertex and k + 1 = 0 (mod 3) then B keeps option for

potentially fixing pk+1 such that |pk−1pk| = |pk−2pk+1|; finally, (c) if at least one of

them, say pk+1, is of degree one the adversary sets the lengths of alternate edges equal.

Strategies S3(a) and S3(b) aim to create handles ({pi, pi+1}, {pipi+1}) for i = 1 (mod

3) in G1 in each class A path (Figure 4.13). Then by Lemma 71, the algorithm must insert

an edge at a vertex of each of the handles in round 2. The path will be divided into smaller

degree 2 paths of length at most 3. We have the following lemma:

171

pi−1

pi pi+1

pi+4pi+3

pi+2

Figure 4.13: The subgraph ({pi, pi+1}, {pipi+1}) is a handle in G1

Lemma 72 [20] For each class A path, say < p1, p2, ..., pk >, k ≥ 2, there exists at least

one edge in E2 incident to either pi or pi+1 for i = 1 (mod 3) in G2.

S4. (1) If a vertex, say p0, of degree 3 has 2 degree 2 maximal paths the other ends of

which are not attached to any heavy vertex, and if p0 is incident on only one degree

2 maximal path of length 1 of which the other end is incident on a heavy vertex, then

set the length of one of the edges of this third path as c.

(2) If 2 specialOne vertices p0 and p′0 are adjacent in G1 then set |p0p
′
0| = c. If a

specialTwo vertex p′0 of degree 3 in G1 has exactly 2 adjacent vertices of type specialOne

then B sets the length of the edge incident to p′0 and one of the specialOne vertices

adjacent to p′0 as c. Let p0 be any specialOne vertex and the 2 degree 2 paths of length

1 attached to it be < p0, p1, p2 > and < p0, p
′′
1, p
′′
2 >. Then B sets |p1p2| = |p′′1p′′2| = c.

Below we show that the application of S2 and S3 keeps edge lengths consistent:

Lemma 73 Strategies S2 and S3 of B are mutually consistent.

Proof. Consider a path Pk of degree 2 vertices in G1 such that both p0 and pk+1 have

degree 1. If k = 1, only S2 comes into play and in this case B sets |p1p2| = c. For all k ≥ 4,

172

B sets |p1p2| = c, |pk−1pk| = c in accordance with S2 and the lengths of all other edges in

accordance with S3. Figures 4.14(c)-(f) serve as examples of this length assignment since

for any k, the total number of edges is a multiple of 3 as in Figure 4.14(d), or a multiple of

3 plus 1 as in Figure 4.14(e). or a multiple of 3 plus 2 as in Figure 4.14(f). For k = 2 and

k = 3, B makes the length assignments as shown in Figures 4.14(a)-(b), which are again

consistent with S2 and S3.

If one of p0 and pk+1, say p0, is heavy, then B does not have to set |p1p2| to c. On the

other hand, if only pk+1 is heavy then the length assignment is symmetrically reversed, i.e.,

starts from pk+1. �

p0

p1
p2

p3 p0

p1 p2

p3

p4

p0

p1
p2

p3

p4 p5

p0

p1 p2

p3

p4 p5

p6

(a) Length 2 (b) Length 3 (c) Length 4

(e) Length 6 (f) Length 7

p0

p1 p2

p3

p4 p5

p6

p7

p0

p1 p2

p3

p4 p5

p6

p7 p8

c c c

c

c

c

c c

c c

c

c c c c

(d) Length 5

Figure 4.14: The residual parts of maximal paths of degree 2 vertices that will satisfy S2

Now we consider round 2. The algorithm completes the construction of G2 by disam-

173

biguating existing handles in G1 and potential handles in G2 with the insertion of edges

into G1 so that G2 becomes rigid and submits it to B; B assigns lengths to all the edges of

E2 with an intention to make G2 ambiguous and returns it to the algorithm.

For a maximal path of degree 2 vertices in G2, as a consequence of S3 there are limits

on: (1) the maximum number of edges from E1 if the path consists of edges from E1 only

(Figure 4.15 shows a degree 2 maximal path < p1, p2, p3, p4, p5, p6 > in G1 with both the

vertices p0 and p7 adjacent to start and end vertices p1 and pk+1 respectively being heavy),

and (2) the maximum number of consecutive edges from E1 if it contains at least one edge

from E2 (Figure 4.14 shows some degree 2 maximal paths in G1 with none of the end vertices

being heavy).

If both of p0 and pk+1 are heavy in G1, then B sets the above layout in such a way that

if, for any i with i = 1 (mod 3) and i < k, no edge is attached to either pi or pi+1 in the

second round their positions will be ambiguous. Thus, for this case the length of a maximal

path of degree 2 vertices in G2 containing only the edges in E1 can be at most 3.

If at least one of p0 and pk+1, say pk+1, is of degree one inG1, then B sets the above layout

in such a way that if, for any i with i = 1 (mod 2) and i < k, no edge is attached to either

pi or pi+1 in the second round, they can be made ambiguous by setting |pipi+1| = |pi−1pi+2|

in the second round. Thus, for this case the length of a maximal path of degree 2 vertices

in G2 containing only the edges in E1 can be at most 2.

If pk+1 is of degree 1 in G1 and no edge is attached to either pk−1 or pk in the second

174

round, then the positions of pk−1 and pk can be made ambiguous by setting |pk−1pk| =

|pk−2pk+1| in that round. The algorithm must attach an edge in G2 to pk−1 or pk. Still

then there will be a handle with at most 2 vertices at an end of a path of degree 2 vertices

if the end vertex is of degree 1. The algorithm must make them rigid in the second round

by attaching an edge in E2 to at least pk+1. Thus, we have the following lemma:

Lemma 74 In a degree 2 maximal path in G2 that contains at least one edge from E2,

there can be at most 2 consecutive edges from E1.

p7p0

p2

p4 p5

p6

p1

p3

Figure 4.15: < p1, p2, p3, p4, p5, p6 > is a degree 2 maximal path in G1 with both the end
vertices being heavy. In the second round, the algorithm has to introduce edges at p1 or p2

to make them unambiguous, and at p4 or p5 to make them unambiguous. This will reduce
the length of the degree 2 maximal path in G2.

The above results together with S2 and S3 imply that Theorem 54 holds for the ppg [3].

The following theorem establishes the lower bound on the density of a ppg for any 2-round

algorithm.

Theorem 75 Any deterministic 2-round algorithm for solving the 1-dimensional point

placement problem requires at least 9n/8 queries in the worst case.

Proof. We determine the average density in G2 for each type of vertices in V . For this,

we categorize the vertices in V into two types: A and B as described below. For density

175

calculation of the vertices in V , each edge in E1 and E2 is split into two fractional edges.

The two incident vertices of the edge owns the two fractions. Each of the following edges

of E1 is split into 5
8 and 3

8 fractional edges:

(1) For a degree 3 specialTwo vertex p0 in G1 that is adjacent to 2 specialOne vertices

in G1, one of the incident edges between p0 and its adjacent specialOne vertices.

(2) For a degree 3 specialTwo vertex p0 in G1 that is adjacent to 3 specialOne vertices

in G1, all the incident edges between p0 and its adjacent specialOne vertices.

(3) For a specialTwo vertex p0 of degree at least 4 in G1, each of the incident edges

between p0 and its adjacent specialOne vertices.

For each of the above 3 cases the incident specialTwo vertex p0 owns 3
8 and the incident

specialOne vertex owns 5
8 . Each of the remaining edges in E1 and E2 is divided into 2 equal

halves. Each of its 2 incident vertices owns 1/2 of the edge. If a vertex p0 is divided into 2

equal halves, each half owns one half of the total number of edges owned by p0.

A. Vertices in class A paths

For each class A path we compute the average density of its vertices (see Figure 4.16).

The density of a class A path is the ratio of the edges owned by all the vertices in the

path and the number of vertices in the path. The minimum of the densities of all the

class A paths will be the minimum density of all the vertices of type A.

For a class A path of length k, there must be at least one edge in E2 incident to

176

p0

p1 p2

p3

p4 p5

p6 p7
p8

Figure 4.16: Type A vertices are on the path < p1, p2, p3, p5, p6, p7 > of degree 2 vertices in
G1. They are enclosed by a dash dotted polygon.

a vertex in each pair of veritces (pi, pi+1) (i = 1 (mod 3)), (by Lemma 72), and

ρ = 1
k [k+bk+1

3 c× 1
2]≥ 1

k [k+[k+1
3 − 2

3]× 1
2]≥ 9

8 if k ≥ 4. For k = 2, ρ = 1
2(2+ 1

2) = 5
4 >

9
8 ,

for k = 3 ρ = 1
3(3 + 1

2) = 7
6 >

9
8 . We note that no specialOne or specialTwo vertex

is of type A, because each of them is a heavy vertex in G1 but a type A vertex is a

degree 2 vertex in G1. Thus, the minimum average density of type A vertices is 9
8 .

B. All the remaining vertices

To compute the minimum density of this type of vertices we group these vertices and

their adjacent edges into neighbourhoods of heavy vertices in G2 of this type and

evaluate the densities of these groups. Their minimum will be the minimum density

for this type of vertices.

We call each of the following two as a class B path: (1) the maximal path of degree

2 vertices in G2 that is not a part of any class A path, and (2) an edge in G2 that is

incident to at least one heavy vertex of type B. We note that all the vertices in a class

177

B path are of type B. There are 2 types of groups around the heavy vertices of type

B based on whether the heavy vertex is connected to a vertex of type A or a heavy

vertex of type B by a class B path.

Accounting for this type of vertices is as follows. (1) If class B path is attached to

two heavy vertices v1 and v2 of type B then the path (i.e., the vertices and the edges

owned by them) is divided equally, and each of the two groups around v1 and v2 own

one half of the path. (2) Now we consider the case where the two ends of a class B

path are attached to two types of vertices, say v1 of type A and v2 of type B. Clearly,

one half of the edge incident to v1 is owned by v1. All the vertices and the remaining

edges of the path are owned by the group of vertices around v2.

We consider the two types of groups of type B vertices separately.

(a) Group of type B vertices centered at a heavy vertex of type B in G2

that is connected to heavy vertices of type B in G2 only, by class B

paths

First, we consider group B(a) vertices that are not centered at specialOne or

specialTwo vertices. The average density of a group B(a) vertices decreases as

the length of any of the class B paths attached to the heavy vertex of the group

increases (Figure 4.17 shows a group B(a) vertices). Consequently, for a group of

vertices around a heavy vertex the contribution of average density for the group

178

from an attached path of degree 2 vertices decreases as the length of the path

increases. Thus, the density contribution from a class B path will be minimum if

the path length is the maximum. By Lemma 54 the maximum length of a path

of degree two vertices is 3. The minimum density contribution from a class B

path will be from a path of length 3.

p0

Figure 4.17: A group of vertices of type B(a) around a heavy vertex p0 in G2. They are
enclosed by a dash dotted circle. If a vertex is on the circle then its one half belongs to this
group.

There are 4 edges and 3 vertices in such a path. The density of a half of this

path is 4
2/

3
2 = 4

3 > 9
8 . So, the minimum density of one half of a class B path

is greater than 9
8 . We note that one half of a class B path is owned by a B(a)

group. Consequently, class B paths will not contribute to reduce the average

density of a B(a) group around a heavy vertex of type B to lower than 9
8 . So, we

only consider the groups around the heavy vertices of this group each of which

has the least number of class B paths attached to the heavy vertex, i.e., which

has exactly 3 class B paths attached since degree of a heavy vertex is at least 3.

Let the total number of vertices in the 3 class B paths be m. Then average

179

density for the group around the heavy vertex is d =
m+3

2
1
2
m+1

= 1 + 1
m+2 ≥ 9

8 for

m ≤ 6. Thus, for the groups with paths having total number of degree 2 vertices

at most 6 the minumum average density will be 9
8 . It remains to consider the

groups with total number of degree 2 vertices 7, 8 and 9, since there can be at

most 3 degree 2 vertices in a path by Lemma 54, and at most 9 degree 2 vertices

in the 3 paths.

For the group with 2 class B paths of length 3 and 1 class B path of length

1, placement will not be unique due to S2 and S4 (Figure 4.18). For path

< p0, p1, p2 > either |p0p1| = c or |p1p2| = c by S4. For path < p0, p
′
1, p
′
2, p
′
3, p
′
4 >,

among the edges p′1p
′
2 and p′2p

′
3 the one in E1 will have length c by S2. Similarly,

for the path < p0, p
′′
1, p
′′
2, p
′′
3, p
′′
4 > either |p′′1p′′2| = c or |p′′2p′′3| = c. One more

edge must be attached to fix the placements of the points. Then total number

of vertices for the paths at the heavy vertex p0 will be at most 5, which is less

than 6. Consequently, the density for the group around p0 will be at least 9
8 .

p0

p1 p2

p′
1 p′

2

p′
3 p′

4

p′′
2

p′′
3p′′

4

c c c

p′′
1

Figure 4.18: Heavy vertex of group B(a) with 2 paths of degree 2 vertices of length 3 and
1 path of degree 2 vertex of length 1

Next we consider the group with all the 3 paths of length 3. For this case the

placement will not be unique (Figures 4.19 and 4.20). For Figure 4.19 there

must be an edge at p1 or p2 of the path < p0, p1, p2, p3, p4 > to make p1 and p2

180

unambiguous (by Lemma 71). For Figure 4.20 there must be an edge at p2 or p3 to

make p2 and p3 unambiguous (by Lemma 71). Similarly, there must be an extra

edge for each of the other 2 paths < p0, p
′
1, p
′
2, p
′
3, p
′
4 > and < p0, p

′′
1, p
′′
2, p
′′
3, p
′′
4 >.

Thus, the reduced group consists of 3 degree 2 paths each of maximum length 2.

There will be at most 6 degree 2 vertices in the degree 2 maximal paths at the

heavy vertex p0 and the average density for the group around p0 will be at least

9
8 .

Similarly, for the group with 2 paths of length 3 and 1 path of length 2, and the

group with 1 path of length 3 and 2 paths of length 2 we can show that there

must be edges at the vertices of the paths that will make the total number of

vertices in the degree 2 paths around p0 at most 6. So, the minimum average

density for the group around p0 will be 9
8 .

p0

p1 p2

p3 p4p′
1p′

2p′
3p′

4 p′′
1p′′

2p′′
4

p′′
3

p0

p1

p2

p3

p4

p′
4

p′′
4

p′′
3

p′′
2

p′′
1

p′
1

p′
2

p′
3

(a) Point placement graph. There is no edge between the pairs of vertices (p0, p4), (p0, p
′
4)

or (p0, p
′′
4); but there may be some edges between the pairs of vertices (p4, p

′
4), (p′

4, p
′′
4)

and (p′′
4 , p4). Dotted lines are potential edges.

(b) Layer graph.

Figure 4.19: Point placement graph and layer graph of heavy vertex p0 of group B(a) with
3 degree 2 maximal paths of length 3. For a degree 2 maximal path < p1, p2, p3 > attached
to p0, there are two consecutive edges p0p1 and p1p2 in E1 at p0.

181

p′
4

p4p′′
3 p′′

2 p′
3

p3p2

p0p′
1p′

2 p′′
1

p1p′′
4

(b) Layer graph.

p0

p1

p2

p3

p4

p′
4

p′′
4

p′′
3

p′′
2

p′′
1

p′
1

p′
2

p′
3

(a) Point placement graph. There is no edge between the pairs of vertices (p0, p4), (p0, p
′
4)

or (p0, p
′′
4); but there may be some edges between the pairs of vertices (p4, p

′
4), (p′

4, p
′′
4)

and (p′′
4 , p4). Dotted lines are potential edges.

Figure 4.20: Point placement graph and layer graph of heavy vertex p0 of group B(a) with
3 degree 2 maximal paths of length 3. For a degree 2 maximal path < p1, p2, p3 > attached
to p0, there is only one consecutive edge p0p1 in E1 at p0.

Thus, the minimum of the averages for this type of group is 9
8 .

It is found above that all the type B paths attached to a degree 3 vertex v of

type B(a) cannot have the maximum possible length of 3, and that the maximum

of the total number of degree 2 vertices in the 3 type B paths attached to v is

at most 6. And for a total of at most 6 such vertices the density of the group

around v is at most 9/8.

So, we need to check the type B(a) groups around degree 4 vertices in G2. If

all the 4 type B paths attached to a degree 4 vertex v of type B(a) in G2

are of maximum possible length 3, then the density of the group around v is

ρ = 4×2
4×1 1

2
+1

= 8
7 >

9
8 . So, all the groups around degree 4 vertices of type B(a)

182

must have density greater than 9
8 , since the density of a shorter group B path

is shorter than the density of a longer group B path. Again, since a group B

path does not help reduce the density of a B(a) group, density of a B(a) group

around a B(a) vertex of degree greater than 4 must be greater than 9
8 .

It can be readily checked that the minimum densities of the groups of type B(a)

around specialOne or specialTwo vertices is 9
8 . We shall check these results for

the more restrictive case when they are of type B(b).

(b) Group of type B vertices centered at a heavy vertex of type B in G2

that is connected by at least one class B path to at least one type A

heavy vertex

First, we consider group B(a) vertices that are not centered at specialOne or

specialTwo vertices. It is shown above that class B path attached to 2 type B

heavy vertices does not contribute to reduce the average density of a group to

lower than 9
8 .

Now we consider a class B path between a type B heavy vertex and a type A

vertex. A heavy vertex of type B in G2 can be connected to a vertex of type A

by a maximal path of degree 2 vertices in G2 in two ways based on whether the

edge of the path incident on the type A vertex is in E1 or E2. If the edge is in E1

the length of the degree 2 path is 0, because type A vertices are found only in the

maximal paths of degree 2 vertices in G1 where each end of a path is connected

183

to a heavy vertex of type B in G1 by an edge from E1. For this case one half

of each end edge is counted towards the density of its adjacent vertex of type B.

Clearly, this path will not contribute to reduce the density of the corresponding

neighbourhood of type B vertices.

For the second case, i.e., if the edge is in E2, the maximum length of the maximal

path of degree 2 vertices in G2 is 2 since one end of the maximal path is connected

to a heavy vertex in G2 by an edge from E2 and since there can be at most 1

edge from E2 and at most 2 consecutive edges from E1 in a maximal path of

degree 2 vertices in G2 containing edges from E1 as well as E2 (by Lemma 74).

The minimum average density of the vertices of this path is 1
2(2 + 1

2) = 5
4 >

9
8 .

Also this path will not contribute to reduce the density of its corresponding

neighbourhood of type B vertices to lower than 9
8 .

So, we consider the heavy vertices of this group each of which has exactly 3 paths

of degree 2 vertices in G2. If the group of vertices around a heavy vertex of type

B(b) has 2 degree 2 paths of length 3 attached to heavy vertices of type B and

1 path of degree 2 vertices attached to a heavy vertex of type A by an edge

from E2 then each of the 3 paths will have an edge from E2. In a way similar

to the case of group B(a) vertices consisting of 3 degree 2 paths (Figures 4.19

and 4.20) it can be shown that the reduced group will have density of at least 9
8 .

For the group with 2 paths of length 3 being attached to heavy vertex of type B

184

and the third path of length 0 being attached to a vertex of type A by an edge

from E1, then the total number of vertices in all the 3 class B paths around the

vertex is 6. It can be shown in a way similar to the discussion of group B(a) that

such a group’s density is at least 9
8 . It can be easily checked that for all other

combinations of 3 maximal paths the minimum average density for the groups

of vertices will be at least 9
8 .

Now for the reason similar to group B(a), we consider the group of vertices

around a heavy vertex v of type B(b) where v is attached 3 degree 2 paths of

length 3 the other ends of which are adjacent to heavy vertices of type B, and 1

path of degree 2 vertices of length 2 the other end of which is incident to a heavy

vertex of type A. Density of the group around v is ρ = 3×2+2 1
2

3×1 1
2

+1×2+1
> 9

8 .

Let us consider groups of vertices of type B(b) around specialOne vertices. We

note that for a group of type B(b) around a specialOne vertex p0, either there

is a handle by strategies S1(3) and S4(2) or p0 owns 5
8 edge count of the edge

incident to p0 and its adjacent specialTwo vertex. For the former case the group

around p0 becomes smaller and the density of the reduced group is at least 9
8 .

For the latter case ρ = 2×2 1
2

+ 5
8

2×2+0+1 = 9
8 .

Now we consider the specialTwo vertex p′0 of degree 3 in G1 adjacent to p0. If

p0 is the only specialOne vertex adjacent to p′0 then either the density of the

group around p′0 is at least 9
8 or p′0 too is a specialOne vertex and a handle must

185

have been created by B according to strategies S1(3) and S4(2). The reduced

group around p′0 will have density at least 9
8 . If there are 2 specialOne vertices

adjacent to p′0 then ρ = 1×2 1
2

+ 1
2

+ 3
8

1×2+2×0+1 = 9
8 . For 3 specialOne vertices adjacent to

p′0, ρ = 3× 3
8

3×0+1 = 9
8 . It can be easily checked that if p′0 is of degree at least 4 then

the minimum density of the group around it will be at least 9
8 .

Thus, the minimum average density for all vertices in G2 will be 9
8 . �

4.4 Summary

We have presented a 2-round algorithm for the point placement problem and improved the

upper bound for a 2-round algorithm from 4n/3 + O(
√
n) to 9n/7 + O(1). Its worst-case

lower bound for 2-round algorithm is improved from the existing best 17n/16 to 9n/8.

186

Chapter 5

Detection of Potential Ligand

Binding Sites

5.1 Introduction

The biological functions of proteins are the result of their interactions with other molecules

such as other proteins, nucleic acids, substrates 1, coenzymes, etc [73]. These interactions

generally occur in the concave regions on the surfaces of proteins. The concave regions on

the outer and inner surfaces of proteins are called pockets and cavities respectively. It is

important to identify the pockets and cavities in proteins. The region of a protein that binds

to another molecule is called binding site (Figure 5.1). A ligand is a small molecule that

binds with a protein to modulate its function. The binding occurs by intermolecular forces.

Ligand binding sites are often found in the largest pockets on protein surfaces [52, 54].

Information about a ligand binding site provides valuable information about protein-ligand

docking and the structure of the ligand. This helps design small molecules which can control

protein functions [14, 67]. Comparative analysis of ligand binding sites helps to understand
1Substrates are the molecules that are bound and acted upon by enzymes.

187

the protein-ligand binding specificity [15]2.

Figure 5.1: Ligand binding site on a protein [figure of Wikipedia: http://en.wikipedia.
org/wiki/Ligand_binding]

Binding ability depends on the tertiary structure of the protein and the chemical proper-

ties of the surrounding amino acids side chains. Tertiary structure of the protein defines the

pocket. Ligand binding sites are often located at the largest pockets on the protein surface.

In this chapter, we present a modification of a geometric method called MSPocket [75] for

finding pockets on protein surface.

5.2 Prior Work

Many computational search methods have been proposed for the identification of ligand

binding sites. They can be classified into geometric approach and comprehensive approach

based on the type of information used to characterize the pocket [75]. Geometric approaches
2Specificity is the ability to identify negative results.

188

use only geometric properties of proteins. A comprehensive approach, on the other hand,

uses other properties of proteins as well, viz., evolutionary information, interaction energy,

chemical properties of proteins, etc.

According to Zhu and Pisabarro [75], among the methods in current use, the three best

ones are Fpocket [47], VICE [72] and Roll [73]. VICE [72] uses a 3D rectangular grid to

represent protein (Figure 5.2). The resolution of the grid is adjustable (1Å is appropriate

in most cases). Grid points occupied by protein atoms are assigned 0, while the rest are

assigned 1. For each of the latter grid points, the algorithm scans in 30 directions represented

by vectors of specified length and passing through the grid points. The vectors are grouped

into 3 shells. In Figure 5.2 shell 1, 2 and 3 vectors are shown in red, green and blue

respectively. For a grid point, if at least half of the scan directions are blocked then it is

inside a pocket. Figure 5.3 shows search for 3 grid points numbered 1, 2 and 3 along shell

1 vectors (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1) and (1,−1). Black vectors

are blocked by protein and are classified as blocked. Green vectors are not blocked and

have clear paths to the edges of the grid. They are classified as clear. Pink vectors are not

blocked, but they do not reach the grid edge because of finite length. They are classified as

stalled. Point 1 has more clear than blocked vectors, and is outside the pocket. Point 2 has

more blocked than clear vectors, and is inside the pocket. Point 3 is ambiguous. It needs

further examination along shell 2 vectors.

Roll [73] uses the atomic coordinates of protein. A probe of radius 2Å − 8Å (2Å is

189

Figure 5.2: Grid points and shell vectors in VICE [Figure 1(a) of [72]]

Figure 5.3: Scanning by VICE along shell 1 vectors [Figure 1(c) of [72]]

appropriate in most cases) is rolled on each slice of a 3D grid representation of a protein.

The regions between probe and the protein surface are pockets. An implementation of

Roll is called POCASA [73]. Fpocket [47] is a comprehensive approach. It uses geometric

criteria, and uses electronegativity of protein atoms for pruning. It uses geometric objects

190

alpha sphere [49] to fill the space in protein. Each alpha sphere is defined by 4 atoms.

Pockets correspond to ensembles of alpha spheres of intermediate radii. They must be

apolar also.

Zhu and Pisabarro [75] proposed MSPocket. They claim that its performance is at par

with the above 3 methods. MSPocket is a purely geometric approach to find ligand binding

site on protein solvent excluded surface (SES). It does not use cubic grid representation of

protein. So, it is not protein orientation dependent. In Section 5.3 we propose a modification

of it. Here we describe MSPocket in detail.

Input to the MSPocket algorithm is the SES of a protein which in turn is generated by

MSMS, a widely used tool for computing molecular surfaces [60]. The SES of a molecule

consists of zero or more internal components and one external component of SES of a

molecule. The components are reported as triangulated meshes. MSPocket processes only

the external component of protein SES.

Let G = (V,E) be the graph corresponding to the mesh, where V is the set of vertices

in the mesh and E is the set of edges in it. Vertex normals to the mesh are used as features

to identify pockets. For each vertex v, MSPocket calculates the average angle of deviation

θ of the normal vectors of the adjacent vertices of v with respect to the normal vector at

v, and assigns it to v. Then it selects representative vertices v′ in ascending order of θ.

When a vertex is selected its adjacent vertices are removed from contention. This reduces

the number of vertices to about 25%.

191

Let V ′ be the set of representative vertices. Then a new graph G′ = (V ′, E′) is con-

structed using V ′ as its set of vertices. Two vertices are adjacent in G′ if they are adjacent

in G, or one of them is adjacent to a neighbour of the other in G, or their neighbours are ad-

jacent in G. For each pair of vertices in G′, if their mutual distance is within some distance

cutoff dp (the authors of MSPocket used dp = 8Å), then they are called close vertex pairs

(ClsVP). Each ClsVP is a candidate for pocket vertex pair (PktVP) or protrusion vertex

pair (PtrVP). A ClsVP is selected as a PktVP if the distance between them decreases by

a value greater than 0.2r, where r is a user specified distance change ratio parameter (the

authors of MSPocket suggested r = 1.3), as the pair is moved along their normal by a

short distance (0.2Å). The vertices in a PktVP are potential pocket vertices. A PktVP

is considered as a PtrVP if their normals are inclined at an angle larger than some user

specified parameter ap (the authors of MSPocket used ap = 200◦).

Finally, pocket outlier vertices are pruned from the pocket and missed vertices at the

pocket bottom are included into the pocket using some neighbourhood conditions.

All the parameters are adjustable by the user. This makes it very flexible and can be

adjusted according to the demand of the input. The authors claim that its performance is

comparable to the existing best performing methods.

192

5.3 Contribution

In MSPocket each vertex of a ClsVP (A,B) is moved along its respective normal by a small

distance 0.2Å. Let the new positions of the pair be A′ and B′. The pair is considered

as a PktVP if dAB − dA′B′ > 0.2r, where r is a distance change ratio parameter. The

vertices in a PktVP are potential pocket vertices. The larger the value of r, the more the

vertex normals are pointing towards each other. We replace this constraint by the angles

of normals at A and B with
−→
AB and

−→
BA respectively. They are more closely related to the

angle of inclination of the two planes passing through the vertices and perpendicular to the

two vertex normals. Let the angles be θ1 and θ2 respectively. We require that θ1 < 70◦,

θ2 < 70◦ and θ1 + θ2 < θ, where θ is a parameter that depends on θ1 and θ2. The value

of θ is adjustable by users depending on the values of θ1 and θ2. In this work, we have set

its value as follows: (i) for θ1 < 70◦ and θ2 < 70◦, θ1 + θ2 < 85◦; (ii) for θ1 < 65◦ and

θ2 < 65◦, θ1 + θ2 < 90◦; (iii) for θ1 < 60◦ and θ2 < 60◦, θ1 + θ2 < 95◦; and (iv) for θ1 < 55◦

and θ2 < 55◦, θ1 + θ2 < 100◦. The remaining parameters of MSPocket are set to the same

values that are used in MSPocket. Parameter r is not used in our method. We call this

method as Modified MSP.

5.3.1 Experimental Results

We have used the same 48 bound benchmark dataset [43] that is used by MSPocket.

Table 5.1 shows the success rates of top 1 and top 3 pockets that are identified by Modified

193

Table 5.1: Comparison of success rates in detection of ligand binding sites
Method Top 1 (%) Top 3 (%)
Modified MSP 79 90
MSPocket 77 90

MSP and MSPocket. For top 1 pocket Modified MSP has a slightly better success rate

than that of MSPocket, while for top 3 pockets the success rates are the same.

5.4 Summary

We have modified MSPocket algorithm to make the angle constraint more closely related

to the concavity of the ligand binding sites. The algorithm is tested on a small dataset.

The results are encouraging. The method can be further extended and/or refined to make

it more effective.

194

Chapter 6

Conclusions

In this dissertation, we have investigated 3 problem areas of computational biology where

geometry is involved. First, we have considered the length-constrained sums/densities

of DNA sequence. An optimal algorithm has been presented for the length-constrained

maximum density segment problem. Experiments show that it runs significantly faster

than an existing optimal algorithm [21]. It has been extended to solve the k length-

constrained maximum density segments problem in O(nk), O((n + k) lg2(U − L)) and

O(n(U − L)) time when k ∈ O(lg2(U − L)), k ∈ ω(lg2(U − L)) ∩ o(n(U − L)/ lg2(U − L))

and k ∈ Ω(n(U − L)/lg2(U − L)) ∩ O(n(U − L)) respectively. Previously there was no

non-trivial solution for this problem. The method has been extended to solve also the

length-constrained maximum sum segment problem and the k length-constrained maxi-

mum sum segments problem in optimal time. We have also presented optimal algorithms

to find all the length-constrained segments satisfying a sum or density lower bound. We

have indicated the extensions of our algorithms to higher dimensions. Our algorithms facil-

itate efficient solutions for all these problems in higher dimensions. All the algorithms can

195

be extended in a straightforward way to solve the problems with non-uniform length.

It would be interesting to study if there is any linear time algorithm for the k length-

constrained maximum density segments problem. It can also be investigated to find more

efficient algorithms for the problems in higher dimensions. It remains open to improve the

trivial lower bounds for these cases.

Second, we have explored the point placement problem on a line. The 3-dimensional

version of it has application in the area of molecular conformation. 2-round algorithms

based on 5:5 and 6:6 jewels have been presented. We have presented a 2-round algorithm

based on 3-path and improved the upper bound for a 2-round algorithm from 4n/3+O(
√
n)

to 9n/7 +O(1). Worst-case lower bound for 2-round algorithm for the problem is improved

from the existing best 17n/16 to 9n/8. It is challenging to decrease the gap between the

upper and lower bounds for two rounds even further. One can consider 7:7 and 8:8 jewels as

basic component for algorithm. Improving the upper bound of 5n/4 for three rounds [20] can

also be investigated. One can study the relation between this problem and the restriction

site mapping problem. Another interesting line of work is to generalize this problem to

higher dimensions.

Third, we have studied the problem of detection of ligand binding sites on protein

surface. We have proposed a modification of a geometric method called MSPocket [75] for

detection of ligand binding sites on protein surface. We have replaced a constraint for the

angular inclination of a pair of vertices in a pocket. Experimental comparison of our method

196

with MSPocket using benchmark dataset of 48 bound protein structures shows encouraging

result. It can be investigated to extend/improve this method by incorporating interaction

energy, evolutionary information, chemical properties of proteins, etc.

197

Bibliography

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of

items in large databases. SIGMOD Rec., 22:207–216, June 1993.

[2] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer algorithms.

Addison-Wesley Series in Computer Science and Information Processing. Addison-

Wesley Pub. Co., 1974.

[3] M. S. Alam and A. Mukhopadhyay. A new algorithm and improved lower bound for

point placement on a line in two rounds. In CCCG ’10: Proceedings of the 22nd

Canadian Conference on Computational Geometry, pages 229–232, 2010.

[4] M. S. Alam and A. Mukhopadhyay. A new geometric algorithm for the maximum

density segment problem. In Proceedings of the 20th Annual Fall Workshop on Com-

putational Geometry, Stony Brook University, Stony Brook, NY, USA, Oct. 29-30,

2010.

[5] M. S. Alam, A. Mukhopadhyay, and A. Sarker. Generalized jewels and the point

placement problem. In CCCG ’09: Proceedings of the 21st Canadian Conference on

198

Computational Geometry, pages 45–48, 2009.

[6] N. N. Alexandrov and V. V. Solovyev. Statistical significance of ungapped alignments.

In Pacific Symposium on Biocomputing (PSB-98), pages 463–472. 1998.

[7] L. Allison. Longest biased interval and longest non-negative sum interval. Bioinfor-

matics, 19(10):1294–1295, 2003.

[8] S. E. Bae and T. Takaoka. Algorithms for the problem of k maximum sums and a vlsi

algorithm for the k maximum subarrays problem. In 7th International Symposium on

Parallel Architectures, Algorithms and Networks, pages 247–253, Los Alamitos, CA,

USA, 2004.

[9] J. Bentley. Programming pearls: algorithm design techniques. Commun. ACM, 27:865–

873, September 1984.

[10] J. Bentley. Programming pearls: perspective on performance. Commun. ACM,

27:1087–1092, November 1984.

[11] G. Bernardi. Isochores and the evolutionary genomics of vertebrates. Gene, 241(1):3

– 17, 2000.

[12] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for

selection. J. Comput. Syst. Sci., 7(4):448–461, 1973.

199

[13] G. S. Brodal and A. G. Jorgensen. A linear time algorithm for the k maximal sums

problem. In Proc. 32nd International Symposium on Mathematical Foundations of

Computer Science, pages 442–453. Springer Verlag, Berlin, 2007.

[14] S. J. Campbell, N. D. Gold, R. M. Jackson, and D. R. Westhead. Ligand binding:

functional site location, similarity and docking. Current Opinion in Structural Biology,

13(3):389 – 395, 2003.

[15] B. Y. Chen and B. Honig. Vasp: A volumetric analysis of surface properties yields

insights into protein-ligand binding specificity. PLoS Comput Biol, 6(8):e1000881, 08

2010.

[16] K.-Y. Chen and K.-M. Chao. On the range maximum-sum segment query problem. In

R. Fleischer and G. Trippen, editors, Proceedings of the 15th International Symposium

on Algorithms and Computation, pages 294–305. Springer Berlin / Heidelberg, 2005.

[17] K.-Y. Chen and K.-M. Chao. On the range maximum-sum segment query problem.

Discrete Applied Mathematics, 155(16):2043 – 2052, 2007.

[18] C.-H. Cheng, K.-Y. Chen, W.-C. Tien, and K.-M. Chao. Improved algorithms for the

k maximum-sums problems. In X. Deng and D.-Z. Du, editors, Proceedings of the 16th

International Symposium on Algorithms and Computation, pages 799–808. Springer

Berlin / Heidelberg, 2005.

200

[19] C.-H. Cheng, K.-Y. Chen, W.-C. Tien, and K.-M. Chao. Improved algorithms for the

k maximum-sums problems. Theoretical Computer Science, 362(1-3):162 – 170, 2006.

[20] F. Y. L. Chin, H. C. M. Leung, W.-K. Sung, and S.-M. Yiu. The point placement

problem on a line - improved bounds for pairwise distance queries. In Proceedings of

the Workshop on Algorithms in Bioinformatics, pages 372–382, 2007.

[21] K.-M. Chung and H.-I. Lu. An optimal algorithm for the maximum-density segment

problem. In G. Di Battista and U. Zwick, editors, Algorithms - ESA 2003, pages

136–147. Springer Berlin / Heidelberg, 2003.

[22] K.-M. Chung and H.-I. Lu. An optimal algorithm for the maximum-density segment

problem. SIAM J. Comput., 34(2):373–387, 2005.

[23] R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemeredi. An optimal-time algorithm for

slope selection. SIAM J. Comput., 18(4):792–810, 1989.

[24] M. L. Connolly. Analytical molecular surface calculation. Journal of Applied Crystal-

lography, 16(5):548–558, 1983.

[25] G. Crippen and T. Havel. Distance Geometry and Molecular Conformation. Research

Studies Press, Taunton, Somerset, England, 1988.

[26] P. Damaschke. Point placement on the line by distance data. Discrete Applied Math-

ematics, 127(1):53–62, 2003.

201

[27] P. Damaschke. Randomized vs. deterministic distance query strategies for point loca-

tion on the line. Discrete Applied Mathematics, 154(3):478–484, 2006.

[28] A. Daurat, Y. Gérard, and M. Nivat. The chords’ problem. Theor. Comput. Sci.,

282(2):319–336, 2002.

[29] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures

persistent. Journal of Computer and System Sciences, 38(1):86 – 124, 1989.

[30] L. Duret, D. Mouchiroud, and C. Gautier. Statistical analysis of vertebrate sequences

reveals that long genes are scarce in gc-rich isochores. Journal of Molecular Evolution,

40:308–317, 1995.

[31] T.-H. Fan, S. Lee, H.-I. Lu, T.-S. Tsou, T.-C. Wang, and A. Yao. An optimal algorithm

for maximum-sum segment and its application in bioinformatics. In O. Ibarra and

Z. Dang, editors, Implementation and Application of Automata, pages 46–66. Springer

Berlin / Heidelberg, 2003.

[32] C. Fields and C. Soderlund. gm: a practical tool for automating dna sequence analysis.

Computer Applications in the Biosciences: CABIOS, 6(3):263–270, 1990.

[33] G. N. Frederickson. An optimal algorithm for selection in a min-heap. Information

and Computation., 104(2):197–214, 1993.

202

[34] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-

dimensional optimized association rules: scheme, algorithms, and visualization. SIG-

MOD Rec., 25:13–23, 1996.

[35] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining with optimized

two-dimensional association rules. ACM Trans. Database Syst., 26:179–213, 2001.

[36] S. M. Fullerton, A. Bernardo Carvalho, and A. G. Clark. Local rates of recombination

are positively correlated with gc content in the human genome. Molecular Biology and

Evolution, 18(6):1139–1142, 2001.

[37] M. H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Fast algorithms for finding maximum-

density segments of a sequence with applications to bioinformatics. In R. Guig and

D. Gusfield, editors, Algorithms in Bioinformatics, pages 157–171. 2002.

[38] M. H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Linear-time algorithms for comput-

ing maximum-density sequence segments with bioinformatics applications. Journal of

Computer and System Sciences, 70(2):128 – 144, 2005.

[39] U. Grenander. Pattern Analysis. Springer-Verlag, New York, NY, USA, 1978.

[40] D. Gries. A note on a standard strategy for developing loop invariants and loops.

Science of Computer Programming, 2(3):207 – 214, 1982.

203

[41] R. Hardison, D. Krane, D. Vandenbergh, J.-F. Cheng, J. Mansberger, J. Taddie,

S. Schwartz, X. Huang, and W. Miller. Sequence and comparative analysis of the

rabbit [alpha]-like globin gene cluster reveals a rapid mode of evolution in a g + c-rich

region of mammalian genomes. Journal of Molecular Biology, 222(2):233 – 249, 1991.

[42] T. Havel, I. Kuntz, and G. Crippen. The theory and practice of distance geometry.

Bulletin of Mathematical Biology, 45(5):665–720, 1983.

[43] B. Huang and M. Schroeder. Ligsitecsc: predicting ligand binding sites using the

connolly surface and degree of conservation. BMC Structural Biology, 6(1):19, 2006.

[44] X. Huang. An algorithm for identifying regions of a dna sequence that satisfy a con-

tent requirement. Computer Applications in the Biosciences: CABIOS, 10(3):219–225,

1994.

[45] M. J. Katz and M. Sharir. Optimal slope selection via expanders. Inf. Process. Lett.,

47(3):115–122, 1993.

[46] S. K. Kim. Linear-time algorithm for finding a maximum-density segment of a sequence.

Inf. Process. Lett., 86(6):339–342, 2003.

[47] V. Le Guilloux, P. Schmidtke, and P. Tuffery. Fpocket: an open source platform for

ligand pocket detection. BMC Bioinformatics, 10(1):168, 2009.

204

[48] D. Lee, T.-C. Lin, and H.-I. Lu. Fast algorithms for the density finding problem.

Algorithmica, 53:298–313, 2009.

[49] J. Liang, C. Woodward, and H. Edelsbrunner. Anatomy of protein pockets and cavities:

measurement of binding site geometry and implications for ligand design. Protein

Science, 7(9):1884–1897, 2008.

[50] Y.-L. Lin, T. Jiang, and K.-M. Chao. Efficient algorithms for locating the length-

constrained heaviest segments with applications to biomolecular sequence analysis.

Journal of Computer and System Sciences, 65(3):570 – 586, 2002.

[51] H.-F. Liu and K.-M. Chao. Algorithms for finding the weight-constrained k longest

paths in a tree and the length-constrained k maximum-sum segments of a sequence.

Theoretical Computer Science, 407(1-3):349 – 358, 2008.

[52] N. London, D. Movshovitz-Attias, and O. Schueler-Furman. The structural basis of

peptide-protein binding strategies. Structure, 18(2):188–199, 2010.

[53] B. Mumey. Probe location in the presence of errors: a problem from DNA mapping.

Discrete Applied Mathematics, 104(1-3):187–201, 2000.

[54] M. Nayal and B. Honig. On the nature of cavities on protein surfaces: Application to the

identification of drug-binding sites. Proteins: Structure, Function, and Bioinformatics,

63(4):892–906, 2006.

205

[55] A. Nekrutenko and W. H. Li. Assessment of compositional heterogeneity within and

between eukaryotic genomes. Genome Res., 10(12):1986–1995, 2000.

[56] S. Ohno. Universal rule for coding sequence construction: Ta/cg deficiency-tg/ct ex-

cess. Proceedings of the National Academy of Sciences, 85(24):9630–9634, 1988.

[57] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.

Journal of Computer and System Sciences, 23(2):166 – 204, 1981.

[58] J. Redstone and W. L. Ruzzo. Algorithms for a simple point placement problem. In

CIAC’00: Proceedings of the 4th Italian Conference on Algorithms and Complexity,

pages 32–43, London, UK, 2000.

[59] W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring

subsequences. In Proceedings of the 7th International Conference on Intelligent Systems

for Molecular Biology, pages 234 – 241, 1999.

[60] M. F. Sanner, A. J. Olson, and J.-C. Spehner. Reduced surface: An efficient way to

compute molecular surfaces. Biopolymers, 38(3):305–320, 1996.

[61] P. M. Sharp, M. Averof, A. T. Lloyd, G. Matassi, and J. F. Peden. DNA sequence

evolution: the sounds of silence. Royal Society of London Philosophical Transactions

Series B, 349:241–247, 1995.

206

[62] J. C. Shepherd. Method to determine the reading frame of a protein from the

purine/pyrimidine genome sequence and its possible evolutionary justification. Pro-

ceedings of the National Academy of Sciences, 78(3):1596–1600, 1981.

[63] S. S. Skiena, W. D. Smith, and P. Lemke. Reconstructing sets from interpoint dis-

tances (extended abstract). In SCG ’90: Proceedings of the 6th Annual Symposium on

Computational Geometry, pages 332–339, New York, NY, USA, 1990.

[64] D. D. Sleator and R. E. Tarjan. Self adjusting heaps. SIAM J. Comput., 15(1):52–69,

1986.

[65] H. O. Smith and K. W. Wilcox. A restriction enzyme from hemophilus influenzae. i.

purification and general properties. Journal of Molecular Biology, 51:379–391, 1970.

[66] P. Soriano, M. Meunier-Rotival, and G. Bernardi. The distribution of interspersed

repeats is nonuniform and conserved in the mouse and human genomes. Proceedings

of the National Academy of Sciences, 80(7):1816–1820, 1983.

[67] C. Sotriffer and G. Klebe. Identification and mapping of small-molecule binding sites

in proteins: computational tools for structure-based drug design. Il Farmaco, 57(3):243

– 251, 2002.

[68] N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Goodman, W. Miller,

and R. Hardison. Comparison of five methods for finding conserved sequences in mul-

207

tiple alignments of gene regulatory regions. Nucleic Acids Research, 27(19):3899–3910,

1999.

[69] T. Takaoka. Efficient algorithms for the maximum subarray problem by distance matrix

multiplication. Electronic Notes in Theoretical Computer Science, 61:191–200, 2002.

[70] H. Tamaki and T. Tokuyama. Algorithms for the maximum subarray problem based

on matrix multiplication. In Proceedings of the 9th Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’98, pages 446–452, Philadelphia, PA, USA, 1998.

[71] E. N. Trifonov. Translation framing code and frame-monitoring mechanism as sug-

gested by the analysis of mrna and 16 s rrna nucleotide sequences. Journal of Molecular

Biology, 194(4):643 – 652, 1987.

[72] A. Tripathi and G. Kellogg. A novel and efficient tool for locating and characterizing

protein cavities and binding sites. Proteins: Structure, Function, and Bioinformatics,

78(4):825–842, 2010.

[73] J. Yu, Y. Zhou, I. Tanaka, and M. Yao. Roll: a new algorithm for the detection of

protein pockets and cavities with a rolling probe sphere. Bioinformatics, 26(1):46–52,

2010.

[74] Z. Zhang, P. Berman, T. Wiehe, and W. Miller. Post-processing long pairwise align-

ments. Bioinformatics, 15(12):1012–1019, 1999.

208

[75] H. Zhu and M. T. Pisabarro. Mspocket: an orientation-independent algorithm for the

detection of ligand binding pockets. Bioinformatics, 27(3):351–358, 2011.

[76] S. Zoubak, O. Clay, and G. Bernardi. The gene distribution of the human genome.

Gene, 174(1):95 – 102, 1996.

209

Vita Auctoris

Name: Md. Shafiul Alam

Present Address: 3459 Wells Street
Windsor, Ontario, N9C 1T6
Canada

Permanent Address: Village and Post Office - Bonkola
Upazilla - Sujanagar, District - Pabna
Bangladesh

210

	University of Windsor
	Scholarship at UWindsor
	2014

	Algorithmic Aspects of Some Problems in Computational Biology
	Md. Shafiul Alam
	Recommended Citation

	tmp.1398267844.pdf.rjZCT

