72 research outputs found

    Razumikhin and Krasovskii stability of impulsive stochastic delay systems via uniformly stable function method

    Get PDF
    This paper generalizes Razumikhin-type theorem and Krasovskii stability theorem of impulsive stochastic delay systems. By proposing uniformly stable function (USF) in the form of impulse as a new tool, some properties about USF and some novel pth moment decay theorems are derived. Based on these new theorems, the stability theorems of impulsive stochastic linear delay system are acquired via the Razumikhin method and the Krasovskii method. The obtained results enhance the elasticity of the impulsive gain by comparing the previous results. Finally, numerical examples are given to demonstrate the effectiveness of theoretical results

    On Input-to-State Stability of Impulsive Stochastic Systems with Time Delays

    Get PDF
    This paper is concerned with pth moment input-to-state stability (p-ISS) and stochastic input-to-state stability (SISS) of impulsive stochastic systems with time delays. Razumikhin-type theorems ensuring p-ISS/SISS are established for the mentioned systems with external input affecting both the continuous and the discrete dynamics. It is shown that when the impulse-free delayed stochastic dynamics are p-ISS/SISS but the impulses are destabilizing, the p-ISS/SISS property of the impulsive stochastic systems can be preserved if the length of the impulsive interval is large enough. In particular, if the impulse-free delayed stochastic dynamics are p-ISS/SISS and the discrete dynamics are marginally stable for the zero input, the impulsive stochastic system is p-ISS/SISS regardless of how often or how seldom the impulses occur. To overcome the difficulties caused by the coexistence of time delays, impulses, and stochastic effects, Razumikhin techniques and piecewise continuous Lyapunov functions as well as stochastic analysis techniques are involved together. An example is provided to illustrate the effectiveness and advantages of our results

    On Stability and Stabilization of Hybrid Systems

    Get PDF
    The thesis addresses the stability, input-to-state stability (ISS), and stabilization problems for deterministic and stochastic hybrid systems with and without time delay. The stabilization problem is achieved by reliable, state feedback controllers, i.e., controllers experience possible faulty in actuators and/or sensors. The contribution of this thesis is presented in three main parts. Firstly, a class of switched systems with time-varying norm-bounded parametric uncertainties in the system states and an external time-varying, bounded input is addressed. The problems of ISS and stabilization by a robust reliable HH_{\infty} control are established by using multiple Lyapunov function technique along with the average dwell-time approach. Then, these results are further extended to include time delay in the system states, and delay systems subject to impulsive effects. In the latter two results, Razumikhin technique in which Lyapunov function, but not functional, is used to investigate the qualitative properties. Secondly, the problem of designing a decentralized, robust reliable control for deterministic impulsive large-scale systems with admissible uncertainties in the system states to guarantee exponential stability is investigated. Then, reliable observers are also considered to estimate the states of the same system. Furthermore, a time-delayed large-scale impulsive system undergoing stochastic noise is addressed and the problems of stability and stabilization are investigated. The stabilization is achieved by two approaches, namely a set of decentralized reliable controllers, and impulses. Thirdly, a class of switched singularly perturbed systems (or systems with different time scales) is also considered. Due to the dominant behaviour of the slow subsystem, the stabilization of the full system is achieved through the slow subsystem. This approach results in reducing some unnecessary sufficient conditions on the fast subsystem. In fact, the singular system is viewed as a large-scale system that is decomposed into isolated, low order subsystems, slow and fast, and the rest is treated as interconnection. Multiple Lyapunov functions and average dwell-time switching signal approach are used to establish the stability and stabilization. Moreover, switched singularly perturbed systems with time-delay in the slow system are considered

    Razumikhin-type theorem for stochastic functional differential systems via vector Lyapunov function

    Get PDF
    This paper is concerned with input-to-state stability of SFDSs. By using stochastic analysis techniques, Razumikhin techniques and vector Lyapunov function method, vector Razumikhin-type theorem has been established on input-to-state stability for SFDSs. Novel sufficient criteria on the pth moment exponential input-to-state stability are obtained by the established vector Razumikhin-type theorem. When input is zero, an improved criterion on exponential stability is obtained. Two examples are provided to demonstrate validity of the obtained results

    Persistence, extinction and practical exponential stability of impulsive stochastic competition models with varying delays

    Get PDF
    This paper studies the persistence, extinction and practical exponential stability of impulsive stochastic competition models with time-varying delays. The existence of the global positive solutions is investigated by the relationship between the solutions of the original system and the equivalent system, and the sufficient conditions of system persistence and extinction are given. Moreover, our study shows the following facts: (1) The impulsive perturbation does not affect the practical exponential stability under the condition of bounded pulse intensity. (2) In solving the stability of non-Markovian processes, it can be transformed into solving the stability of Markovian processes by applying Razumikhin inequality. (3) In some cases, a non-Markovian process can produce Markovian effects. Finally, numerical simulations obtained the importance and validity of the theoretical results for the existence of practical exponential stability through the relationship between parameters, pulse intensity and noise intensity

    Qualitative Studies of Nonlinear Hybrid Systems

    Get PDF
    A hybrid system is a dynamical system that exhibits both continuous and discrete dynamic behavior. Hybrid systems arise in a wide variety of important applications in diverse areas, ranging from biology to computer science to air traffic dynamics. The interaction of continuous- and discrete-time dynamics in a hybrid system often leads to very rich dynamical behavior and phenomena that are not encountered in purely continuous- or discrete-time systems. Investigating the dynamical behavior of hybrid systems is of great theoretical and practical importance. The objectives of this thesis are to develop the qualitative theory of nonlinear hybrid systems with impulses, time-delay, switching modes, and stochastic disturbances, to develop algorithms and perform analysis for hybrid systems with an emphasis on stability and control, and to apply the theory and methods to real-world application problems. Switched nonlinear systems are formulated as a family of nonlinear differential equations, called subsystems, together with a switching signal that selects the continuous dynamics among the subsystems. Uniform stability is studied emphasizing the situation where both stable and unstable subsystems are present. Uniformity of stability refers to both the initial time and a family of switching signals. Stabilization of nonlinear systems via state-dependent switching signal is investigated. Based on assumptions on a convex linear combination of the nonlinear vector fields, a generalized minimal rule is proposed to generate stabilizing switching signals that are well-defined and do not exhibit chattering or Zeno behavior. Impulsive switched systems are hybrid systems exhibiting both impulse and switching effects, and are mathematically formulated as a switched nonlinear system coupled with a sequence of nonlinear difference equations that act on the switched system at discrete times. Impulsive switching signals integrate both impulsive and switching laws that specify when and how impulses and switching occur. Invariance principles can be used to investigate asymptotic stability in the absence of a strict Lyapunov function. An invariance principle is established for impulsive switched systems under weak dwell-time signals. Applications of this invariance principle provide several asymptotic stability criteria. Input-to-state stability notions are formulated in terms of two different measures, which not only unify various stability notions under the stability theory in two measures, but also bridge this theory with the existent input/output theories for nonlinear systems. Input-to-state stability results are obtained for impulsive switched systems under generalized dwell-time signals. Hybrid time-delay systems are hybrid systems with dependence on the past states of the systems. Switched delay systems and impulsive switched systems are special classes of hybrid time-delay systems. Both invariance property and input-to-state stability are extended to cover hybrid time-delay systems. Stochastic hybrid systems are hybrid systems subject to random disturbances, and are formulated using stochastic differential equations. Focused on stochastic hybrid systems with time-delay, a fundamental theory regarding existence and uniqueness of solutions is established. Stabilization schemes for stochastic delay systems using state-dependent switching and stabilizing impulses are proposed, both emphasizing the situation where all the subsystems are unstable. Concerning general stochastic hybrid systems with time-delay, the Razumikhin technique and multiple Lyapunov functions are combined to obtain several Razumikhin-type theorems on both moment and almost sure stability of stochastic hybrid systems with time-delay. Consensus problems in networked multi-agent systems and global convergence of artificial neural networks are related to qualitative studies of hybrid systems in the sense that dynamic switching, impulsive effects, communication time-delays, and random disturbances are ubiquitous in networked systems. Consensus protocols are proposed for reaching consensus among networked agents despite switching network topologies, communication time-delays, and measurement noises. Focused on neural networks with discontinuous neuron activation functions and mixed time-delays, sufficient conditions for existence and uniqueness of equilibrium and global convergence and stability are derived using both linear matrix inequalities and M-matrix type conditions. Numerical examples and simulations are presented throughout this thesis to illustrate the theoretical results

    Neutral stochastic functional differential equations with Levy jumps under the local Lipschitz condition

    Get PDF
    In this paper, a general neutral stochastic functional differential equations with infinite delay and Lévy jumps (NSFDEwLJs) is studied. We investigate the existence and uniqueness of solutions to NSFDEwLJs at the phase space Cg under the local Carathéodory type conditions. Meanwhile, we also give the exponential estimates and almost surely asymptotic estimates of solutions to NSFDEwLJs

    Impulsive Control of Dynamical Networks

    Get PDF
    Dynamical networks (DNs) consist of a large set of interconnected nodes with each node being a fundamental unit with detailed contents. A great number of natural and man-made networks such as social networks, food networks, neural networks, WorldWideWeb, electrical power grid, etc., can be effectively modeled by DNs. The main focus of the present thesis is on delay-dependent impulsive control of DNs. To study the impulsive control problem of DNs, we firstly construct stability results for general nonlinear time-delay systems with delayed impulses by using the method of Lyapunov functionals and Razumikhin technique. Secondly, we study the consensus problem of multi-agent systems with both fixed and switching topologies. A hybrid consensus protocol is proposed to take into consideration of continuous-time communications among agents and delayed instant information exchanges on a sequence of discrete times. Then, a novel hybrid consensus protocol with dynamically changing interaction topologies is designed to take the time-delay into account in both the continuous-time communication among agents and the instant information exchange at discrete moments. We also study the consensus problem of networked multi-agent systems. Distributed delays are considered in both the agent dynamics and the proposed impulsive consensus protocols. Lastly, stabilization and synchronization problems of DNs under pinning impulsive control are studied. A pinning algorithm is incorporated with the impulsive control method. We propose a delay-dependent pinning impulsive controller to investigate the synchronization of linear delay-free DNs on time scales. Then, we apply the pinning impulsive controller proposed for the delay-free networks to stabilize time-delay DNs. Results show that the delay-dependent pinning impulsive controller can successfully stabilize and synchronize DNs with/without time-delay. Moreover, we design a type of pinning impulsive controllers that relies only on the network states at history moments (not on the states at each impulsive instant). Sufficient conditions on stabilization of time-delay networks are obtained, and results show that the proposed pinning impulsive controller can effectively stabilize the network even though only time-delay states are available to the pinning controller at each impulsive instant. We further consider the pinning impulsive controllers with both discrete and distributed time-delay effects to synchronize the drive and response systems modeled by globally Lipschitz time-delay systems. As an extension study of pinning impulsive control approach, we investigate the synchronization problem of systems and networks governed by PDEs

    On the Practical Stability of Impulsive Differential Equations with Infinite Delay in Terms of Two Measures

    Get PDF
    We consider the practical stability of impulsive differential equations with infinite delay in terms of two measures. New stability criteria are established by employing Lyapunov functions and Razumikhin technique. Moreover, an example is given to illustrate the advantage of the obtained result
    corecore