104 research outputs found

    Leveraging Circular Economy through a Methodology for Smart Service Systems Engineering

    Get PDF
    Product Service Systems (PSS) and Smart Services are powerful means for deploying Circular Economy (CE) goals in industrial practices, through dematerialization, extension of product lifetime and efficiency increase by digitization. Within this article, approaches from PSS design, Smart Service design and Model-based Systems Engineering (MBSE) are combined to form a Methodology for Smart Service Architecture Definition (MESSIAH). First, analyses of present system modelling procedures and systems modelling notations in terms of their suitability for Smart Service development are presented. The results indicate that current notations and tools do not entirely fit the requirements of Smart Service development, but that they can be adapted in order to do so. The developed methodology includes a modelling language system, the MESSIAH Blueprinting framework, a systematic procedure and MESSIAH CE, which is specifically designed for addressing CE strategies and practices. The methodology was validated on the example of a Smart Sustainable Street Light System for Cycling Security (SHEILA). MESSIAH proved useful to help Smart Service design teams develop service-driven and robust Smart Services. By applying MESSIAH CE, a sustainable Smart Service, which addresses CE goals, has been developed

    Functional modelling of complex multi‑disciplinary systems using the enhanced sequence diagram

    Get PDF
    YesThis paper introduces an Enhanced Sequence Diagram (ESD) as the basis for a structured framework for the functional analysis of complex multidisciplinary systems. The ESD extends the conventional sequence diagrams (SD) by introducing a rigorous functional flow-based modelling schemata to provide an enhanced basis for model-based functional requirements and architecture analysis in the early systems design stages. The proposed ESD heuristics include the representation of transactional and transformative functions required to deliver the use case sequence, and fork and join nodes to facilitate analysis of combining and bifurcating operations on flows. A case study of a personal mobility device is used to illustrate the deployment of the ESD methodology in relation to three common product development scenarios: (i) reverse engineering, (ii) the introduction of a specific technology to an existent system; and (iii) the introduction of a new feature as user-centric innovation for an existing system, at a logical design level, without reference to any solution. The case study analysis provides further insights into the effectiveness of the ESD to support function modelling and functional requirements capture, and architecture development. The significance of this paper is that it establishes a rigorous ESD-based functional analysis methodology to guide the practitioner with its deployment, facilitating its impact to both the engineering design and systems engineering communities, as well as the design practice in the industry

    Functional modelling of complex multi‑disciplinary systems using the enhanced sequence diagram

    Get PDF
    YesThis paper introduces an Enhanced Sequence Diagram (ESD) as the basis for a structured framework for the functional analysis of complex multidisciplinary systems. The ESD extends the conventional sequence diagrams (SD) by introducing a rigorous functional flow-based modelling schemata to provide an enhanced basis for model-based functional requirements and architecture analysis in the early systems design stages. The proposed ESD heuristics include the representation of transactional and transformative functions required to deliver the use case sequence, and fork and join nodes to facilitate analysis of combining and bifurcating operations on flows. A case study of a personal mobility device is used to illustrate the deployment of the ESD methodology in relation to three common product development scenarios: (i) reverse engineering, (ii) the introduction of a specific technology to an existent system; and (iii) the introduction of a new feature as user-centric innovation for an existing system, at a logical design level, without reference to any solution. The case study analysis provides further insights into the effectiveness of the ESD to support function modelling and functional requirements capture, and architecture development. The significance of this paper is that it establishes a rigorous ESD-based functional analysis methodology to guide the practitioner with its deployment, facilitating its impact to both the engineering design and systems engineering communities, as well as the design practice in the industry

    An Ontology-Based Expert System for the Systematic Design of Humanoid Robots

    Get PDF
    Die Entwicklung humanoider Roboter ist eine zeitaufwendige, komplexe und herausfordernde Aufgabe. Daher stellt diese Thesis einen neuen, systematischen Ansatz vor, der es erlaubt, Expertenwissen zum Entwurf humanoider Roboter zu konservieren, um damit zukünftige Entwicklungen zu unterstützen. Der Ansatz kann in drei aufeinanderfolgende Schritte unterteilt werden. Im ersten Schritt wird Wissen zum Entwurf humanoider Roboter durch die Entwicklung von Roboterkomponenten und die Analyse verwandter Arbeiten gewonnen. Dieses Wissen wird im zweiten Schritt formalisiert und in Form einer ontologischen Wissensbasis gespeichert. Im letzten Schritt wird diese Wissensbasis von einem Expertensystem verwendet, um Lösungsvorschläge zum Entwurf von Roboterkomponenten auf Grundlage von Benutzeranforderungen zu generieren. Der Ansatz wird anhand von Fallstudien zu Komponenten des humanoiden Roboters ARMAR-6 evaluiert: Sensor-Aktor-Controller-Einheiten für Robotergelenke und Roboterhände

    An Analysis-Driven Rapid Design Process for Cyber-Physical Systems

    Get PDF
    • …
    corecore