
An Analysis-Driven Rapid Design Process for Cyber-Physical Systems

By

Zsolt Lattmann

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

August, 2016

Nashville, Tennessee

Approved:

Gábor Karsai, Ph.D.

Theodore Bapty, Ph.D.

Gautam Biswas, Ph.D.

Xenofon Koutsoukos, Ph.D.

Sandeep Neema, Ph.D.

János Sztipanovits, Ph.D.

Copyright c© 2016 by Zsolt Lattmann
All Rights Reserved

ii

ACKNOWLEDGMENTS

First and foremost I wish to thank my advisor, Prof. Gábor Karsai, for his scientific advice
and knowledge and many insightful discussions and suggestions. He helped me to formulate
the thesis topic and guided me over almost four years of development. His questions were
always the most difficult ones, and they guided me towards research challenges, answers,
and solutions. He helped me learn how to clearly and precisely communicate my ideas.
He is the person who reads every single word on a page, even the fine print, and asks
questions about every figure and diagram. His thorough work advocates excellence and the
highest quality work based on all available information and time constraints. He clearly
had a positive influence on my personality and professional career. He taught me how to
effectively manage my time and be more productive; as a result, over the years at Vanderbilt
University I have rarely missed deadlines, or even requested a deadline extension. I appreciate
all his contributions of time, ideas, and funding to make my Ph.D. experience productive
and stimulating. I am also thankful for the excellent example he has provided as a successful
mentor, scientist, and professor.

I would like to thank James Klingler for helping me with his proofreading and continuous
feedback on technical content and suggesting how to rephrase and reorganize certain portions
of this thesis to make it easier to read and understand. Even when I was losing my motivation
he encouraged me to improve the quality this document. As I learn more and more about
writing, I realize how much I do not know. I truly believe that James has just started me
on a journey to improving my writing skills even further. Thank you, James.

My thesis committee has given me exceptional input through all these years. Thank
you to Prof. János Sztipanovits, Prof. Xenofon Koutsoukos, Prof. Gautam Biswas, Prof.
Sandeep Neema, and Prof. Ted Bapty. I would like to thank all of my committee members
for their valuable feedback, which has greatly improved the quality and clarity of this thesis
and helped me define the scope of this research. Prof. Sandeep Neema and Prof. Ted Bapty
provided me with the opportunity to be a contributor to the Defense Advanced Research
Projects Agency (DARPA) Adaptive Vehicle Make (AVM) program and several projects
including the META project. They have supported several students and researchers to
achieve the goals of the META project. Our META group got extremely valuable feedback
from our collaborators and beta testers about the ideas implemented in the OpenMETA
tools.

The members of the META group have contributed immensely to my personal and pro-
fessional time at Vanderbilt University. This group has been a source of friendships as well
as good advice and collaboration. The work presented in this thesis is a work of the META

iii

group and several other teams. In particular, I would like to thank: Adam Nagel for his help
with the design of the dynamics portion of the integration language Cyber-Physical Modeling
Language (CyPhyML) and component specification; Patrik Meijer for his help in redesigning
and reimplementing certain pieces of the OpenMETA tools and make it a more robust tool
in general; Kevin Smyth for all the pair programming, debugging difficult problems, and
sharing his programming experience; and the entire META development team.

Lastly, I would like to thank my family for all their love and encouragement. For my
parents who raised me with a love of science and technology. I am grateful for all the support
they gave me over the past decades. They always helped me to make my decisions which I
greatly appreciate. Thank you.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xi

Chapter

I. Introduction . 1

Challenges . 1
Problem Description . 2
Thesis Goals . 3
Thesis Outline . 3

II. Background . 4

Cyber-Physical Systems . 5
Existing Design Processes . 6

Layered Design . 6
Component-Based Design . 6
V-model . 7
Model-Based Development . 8
Virtual integration . 9
Platform-Based Design . 9
Contract-Based Design . 10
Summary . 11
Evaluation . 12

Model-Based Systems Engineering . 12
Domain-Specific Languages . 14
Unified Modeling Language . 14
Systems Modeling Language . 15
Evaluation . 16

Model Interfaces and Composition . 17
Bond Graphs . 17
Modelica . 19
Evaluation . 21

Requirements . 22
Requirement and design trade-offs . 24
Simulation-Driven Design . 25

v

Multidisciplinary Design Analysis and Optimization . 27
Lessons learned . 28

III. High-level Design Flow . 30

Model Integration Platform . 31
Tool Integration Platform . 32
Execution Integration Platform . 33
Visualization Integration Platform . 34

IV. Heterogeneous component models . 36

Problem Statement . 36
Challenges . 37
Component and design models . 37

Solution . 37
Evaluation . 40

Example for model integration . 41
Solution . 42
Evaluation . 46

V. Analysis templates and model execution framework . 48

Problem Statement . 48
Challenges . 48
Solution . 49

Analysis template models . 49
Parametric exploration models . 50
Tool integration and analysis package execution . 52
Project artifacts and analysis result management . 53

Evaluation . 54

VI. Analysis-driven Rapid Design Process . 55

Problem Statement . 55
Challenges . 55
Solution . 55
Evaluation . 57

Oscillator . 58
Ground vehicle driveline . 72

Potential Other Applications . 80

VII. Conclusion . 82

Lessons learned . 82
Results . 83

vi

Open research challenges . 84

Appendix

A. Relevant publications . 85

Heterogeneous component models . 85
Analysis templates and model execution framework . 86
Analysis-driven Rapid Design Process . 86

B. Other publications . 88

C. Simulation error log for oscillator design . 89

D. Design space results for Oscillator . 90

REFERENCES . 93

vii

LIST OF TABLES

Table Page

1. Bond graph variables for physical domains . 18

2. Oscillator: Requirements . 61

3. Oscillator: Resistor alternatives . 61

4. Oscillator: Capacitor alternatives . 61

5. Oscillator: Transistor parameters . 62

6. Oscillator: Transistor alternatives [33] . 62

7. Oscillator: Scoring weights . 66

8. Oscillator: Design time . 72

9. Vehicle driveline: Engine alternatives (23/25) [83] . 75

10. Vehicle driveline: Transmission alternatives (6/8) [83] . 76

11. Vehicle driveline: Requirements for design problem [83] . 80

viii

LIST OF FIGURES

Figure Page

1. V-model [133] . 7

2. Platform-Based Design’s general framework [75] . 9

3. SysML taxonomy diagram . 15

4. Example Modelica model . 21

5. ModelicaML for SysML taxonomy diagram. 23

6. Workflow and integration platforms for the design process . 31

7. Component class diagram . 38

8. CyPhy Component model and existing external models . 38

9. AVM Component Model for Caterpillar C9 Diesel Engine [105] 39

10. Design space class diagram . 40

11. Schematic diagram of a simple electro-mechanical system [84] 42

12. Composition diagram and simulation results [84] . 43

13. Component model using Bond Graph or Modelica [84] . 44

14. Analysis template class diagram . 50

15. Parametric exploration class diagram . 51

16. Tool integration class diagram . 52

17. Project data structure class diagram . 53

18. Analysis-driven Rapid Design Process: design flow . 56

19. Oscillator example: Modelica.Electrical.Spice3.Examples.Oscillator [6] . . . 58

20. Oscillator example: simulation results . 59

21. Oscillator: Analysis template . 64

22. Oscillator: Design space . 65

ix

23. Oscillator: Parallel axis plot colored by ranking . 66

24. Oscillator: Parallel axis plot colored by requirements . 67

25. Oscillator: Probabilistic Certificate of Correctness model . 68

26. Oscillator: Failed Probabilistic Certificate of Correctness configurations 68

27. Oscillator: Probabilistic Certificate of Correctness (PCC) results for cfg39, cfg72,
cfg3, and cfg45 . 69

28. Oscillator: Overlaid simulation results . 69

29. Oscillator: Design of Experiment model . 70

30. Oscillator: Design of Experiment results for rise time (cfg39 and cfg45) 70

31. Vehicle driveline: Full Speed Forward Test Bench [83] . 74

32. Vehicle driveline: Physical limit violations [83] . 77

33. Vehicle driveline: Parametric Design Space Exploration Models [83] 78

34. Vehicle driveline: Results of Parametric Exploration over a discrete design space
[83] . 79

x

LIST OF ABBREVIATIONS

AADL Architecture Analysis and Design Language 8

ARDP Analysis-driven Rapid Design Process 3, 55–58, 60, 71–73, 77, 80, 82–85

AVM Adaptive Vehicle Make iii, 1, 2, 32, 33, 39, 43, 82

BPMN Business Process Modeling Notation 22

CAD Computer-Aided Design 26, 32, 33, 39, 50

CBD Contract-Based Design 10–12, 17

CFD Computational Fluid Dynamics 33, 50

CPS Cyber-Physical System 1–3, 5, 12, 17, 21, 28, 38, 41, 48, 51, 55, 57, 80–83

CyPhyML Cyber-Physical Modeling Language iv, 30, 37–39, 43, 44, 46, 82

DAE Differential Algebraic Equation 20

DARPA Defense Advanced Research Projects Agency iii, 1, 82

DASSL differential/algebraic system solver 59

DBD Dysfunctional Behavior Database 27

DC direct current 20

DESERT Design Space Exploration and Refinement Tool 40, 64, 65

DoE Design of Experiment 32, 51, 60, 67, 70, 71, 78, 81

DSL Domain-Specific Language 14

DSML Domain-Specific Modeling Language 43

eCar electric car 25, 26

ECU Engine Control Unit 6

EPA US Environmental Protection Agency 22

EPS Electric Power System 58

FEA Finite Element Analysis 26–28, 33, 39, 49, 50, 57

FMEA Failure Modes and Effects Analysis 27

xi

GME Generic Modeling Environment 43

GPL General-Purpose Language 14

HBGL Hybrid Bond Graph Language 44

KCL Kirchhoff’s Current Law 20

LOC Lines-Of-Code 5

MBD Model-Based Development 8, 10, 25

MBSE Model-Based Systems Engineering 3, 5, 12, 13, 16, 21, 24, 25, 28, 30, 36, 37, 53, 56

MCS Monte Carlo Simulation 52

MDAO Multidisciplinary Design Analysis and Optimization 3, 27, 28, 33–35

MoC Model of Computation 4

ModelicaML Modelica Modeling Language 22, 23

MPP Most Probable Point Method 52

MSL Modelica Standard Library 20, 58, 71

OCL Object Constraint Language 40

ODE Ordinary Differential Equation 18, 47

OMG Object Management Group 14

OS Operating System 6

PBD Platform-Based Design 9–11, 16, 20

PCC Probabilistic Certificate of Correctness 32, 51, 52, 60, 67–69, 71, 77, 78, 81

PCE Polynomial Chaos Expansion 52

QoS Quality of Service 14

RML Requirements Modeling Language 24

SCAP Sequential Causality Assignment Propagation 18

SCR Software Cost Reduction 23

SD System Dynamics 57

xii

SDD Simulation-Driven Design 3, 25, 27

SoC system-on-chip 10, 14

SPD Sequenced Parametric Diagram 26

SysML Systems Modeling Language 8, 14–16, 22–28

TGG Triple Graph Grammar 26

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 35, 65

TS Taylor Series Approximation 52

UBML Uniform Behavior Modeling Language 26, 28

UDR Univariate Dimension Reduction Method 52

UI User Interface 22

UML Unified Modeling Language 8, 14, 15, 22, 37, 39, 49, 50, 53

XMI XML Metadata Interchange 15

XML Extensible Markup Language 15

xiii

CHAPTER I

INTRODUCTION

Product design has become increasingly complex in recent decades. Several design meth-
ods and processes have been developed to reduce the design complexity to a manageable
level. These methods and approaches include: layered design, component-based design, the
v-model, model-based development, virtual integration, platform-based design, and contract-
based design. Model-based systems engineering leverages these methods to manage de-
sign complexity and to reduce development time and costs. In contrast to the traditional
document-centric design process, model-based design approaches maintain traceability and
dependency among artifacts in the form of relationships between models. The building
blocks of a model-based engineering tool are models that represent the requirements, system
components, and subsystems. Using model-based systems engineering tools has become an
accepted practice in the industry.

Challenges

Most of these design methods and processes were primarily developed for either software
or hardware development. However, in Cyber-Physical Systems, computational elements are
tightly integrated with physical processes and physical components. Computational elements
often interact with the physical system through a distributed network [87, 88, 131]. Physical
systems are acausal systems, which means that they do not have predefined inputs and
outputs by nature. For a specific operating mode of the system, inputs and outputs can be
derived, but it is a cumbersome process for a large complex system. One challenge is how
to effectively co-design physical and software components.

Customer expectations for product cycles are getting shorter [91]. Large software com-
panies create software releases continuously [116]; sometimes more than one new release
is published within a day. In software development, software releases and deployment are
highly automated and often follow an iterative design process with continuous integration
systems that run automated tests. By decreasing the design cycle time and thereby increas-
ing the number of design iterations within a given period of time, designers can be more
confident that any potential problems will be discovered. The design process for complex
Cyber-Physical Systems (CPSs) has not reached such a fast pace yet. In 2010, the Defense
Advanced Research Projects Agency (DARPA) initiated the Adaptive Vehicle Make (AVM)

1

program to develop a fully integrated design process for complex CPSs [44]. The overall
goal of the AVM program was to speed up the development time by 5x for complex CPSs.
Designing complex CPSs involves a large number of discipline-specific models and analysis
tools. Miscommunication between models and analysis tools has negative impacts on the
development time and cost. Therefore, design processes for CPSs must be orchestrated in
a modeling environment where this communication is captured from the early stages of the
design process to the manufacturing of the system.

There are hundreds of distinct tools used in the automotive and aerospace industry to
analyze different aspects of a complex system design. These tools include both in-house, i.e.,
internally developed and maintained, (70%) and commercial off-the-self tools (30%), which
shows that there is no single tool that can deal with all aspects of a complex design problem
[146]. An adequate model of Cyber-Physical Systems must: (1) capture domain interactions
(e.g., electrical power and mechanical systems), (2) incorporate multiple aspects and domain
models for each component, (3) support a wide variety of analysis techniques, (4) enable the
reuse of existing models from libraries, and (5) extract sufficient information from model
libraries to support architecture exploration for product families.

Problem Description

Consider the modeling of CPSs with heterogeneous component models and their interac-
tions: each component model may consist of several domain-specific models that are related
to each other. There are many relationships between those domain-specific models including
physical or parametric relationships. Our goal is to develop concepts to capture integrated
domain-specific models and their relationships for CPSs in a Model Integration Platform.
When the domain-specific models are composed, a Tool Integration Platform will address
how to operate domain-specific tools to facilitate domain-specific analyses driven by the com-
posed domain-specific models. Usually, there is a large number of domain-specific analyses
involved in a complex CPSs design problem. The required time to perform each execution
can vary anywhere between a few seconds to several hours depending on the tool and the
models. The challenge is further compounded when these analyses must be performed for
multiple design variations or in an optimization loop. An Execution Integration Platform
will address how to arrange large-scale analysis of models by the parallel execution of all
independent analyses. Because the analysis can take several hours, even using parallel exe-
cution, a Visualization Integration Platform will address how to collect and visualize partial
datasets as individual analyses are completed, before the full result set is available. We will
develop a design process that presents how to use these four platforms to reduce overall
design time.

2

Thesis Goals

We will contribute to three platforms to improve efficiency and quality of a design process
focusing on high-level design of CPSs: a Model Integration Platform, a Tool Integration
Platform, and an Execution Integration Platform. The Model Integration Platform will
(a) use heterogeneous component models, (b) keep the multi-domain models consistent, (c)
track model dependencies, and (d) facilitate importing models from existing libraries. The
Tool Integration Platform will accommodate a variety of analysis tools with flexibility to
add new tools in the future. The Execution Integration Platform will provide an analysis
tool independent framework for analysis execution and organization of analysis results. In
addition to these platform contributions, we will prototype an analysis-driven rapid iterative
design process as part of this research.

Thesis Outline

This thesis is organized as follows: Chapter II gives an overview on Cyber-Physical Sys-
tems (CPSs), existing design processes, Model-Based Systems Engineering (MBSE), model
interfaces and composition, requirement specification, Simulation-Driven Design (SDD), and
Multidisciplinary Design Analysis and Optimization (MDAO); finally, it concludes with the
lessons learned. In Chapter III the high-level design flow is presented along with four integra-
tion platforms: (a) the Model Integration Platform, (b) the Tool Integration Platform, (c)
the Execution Integration Platform, and (d) the Visualization Integration Platform. Chap-
ter IV discusses heterogeneous component models in detail. Chapter V presents the analysis
templates and model execution framework. Chapter VI shows how the above-described con-
cepts enable an Analysis-driven Rapid Design Process (ARDP) that was utilized on two use
cases: (a) an oscillator design and (b) a ground vehicle driveline design. Finally, Chapter VII
concludes this thesis.

3

CHAPTER II

BACKGROUND

In this chapter we present a summary of all relevant background information related to
the scope of our research. A few key concepts are defined below that are used in this chapter:

Component is a design entity that represents a physical object, a hardware piece, or a
software piece. Each component has interfaces that are used to communicate with
other components and the environment.

Abstraction is an information reduction and conceptualization process with a set of as-
sumptions for a software component, a hardware component, or a physical component.

Model views and model aspects consider a model with multiple interdependent repre-
sentations of the same software component, hardware component, or physical compo-
nent.

Heterogeneous models are models using (i) different modeling aspects, e.g., computa-
tional, behavioral, and structural; or (ii) different modeling domains, e.g., electrical,
mechanical, etc.; or (iii) different Model of Computation (MoC), e.g., continuous time,
discrete event, etc.

Multi-domain models are models that capture multiple physical domains and their in-
teractions for the same component, e.g., an electrical component generates heat or an
electrical component is temperature dependent.

Design is a collection of many interconnected components.

Design space is a collection of design alternatives or family of designs, where the alterna-
tives differ from each other either in architecture or in design parameters.

Discrete design space considers only design alternatives from a design space where there
is an architecture difference, or for a given architecture, alternative component options
are available for substitution.

Parametric design space often assumes a fixed architecture choice and considers contin-
uous parameter variations of components, subsystems, or both.

4

Virtual integration is a process in which models are composed and evaluated to predict
the expected output of the system.

Cyber-Physical Systems (CPSs)

Cyber-Physical Systems (CPSs) are complex multi-domain systems that include highly
interconnected and interdependent computational and physical components. CPSs orches-
trate networked computational resources with physical systems [87, 88, 89, 131, 147]. Exam-
ples for CPSs are: avionics, transportation air traffic control, automotive, building systems,
telecommunication systems, military systems (e.g., satellites), power generation and distribu-
tion, and factory automation. In CPSs there are several challenges to be solved which involve
scheduling problems, capturing software and hardware interactions, representing physical in-
teractions, and solving control problems.

For instance, in the power generation and distribution domain, one challenge is how to
couple and operate green energy and continuous energy sources in the same network. Green
energy is usually available based on a state of the environment, e.g., direct sunlight to solar
panels, or wind rotating wind turbines. Another challenge is that the power demand is
increasing and decreasing based on the time of the day, but the produced green energy is
often not stored, therefore, it must be consumed.

Another example is the automotive domain: a premium car today contains at least 80
computers including: Engine Control Unit, Transmission Control Unit, Automatic Braking
System, Air Conditioning system, entertainment system, navigation system, etc. All com-
puters are connected to the car’s system bus; currently, the controller area network (CAN)
bus is the standard (in the near future the standard will be FlexRay). There are around 100
million Lines-Of-Code (LOC) for such a car.

These systems often contain multiple domains and their interactions such as electro-
mechanical or electro-hydraulics. Physical interactions are replaced by software interactions,
which are more flexible, but it is harder to understand and model them. Physical systems are
increasingly segregated by software components, e.g., fly-by-wire systems in avionics. This
trend increases the demand on Model-Based Systems Engineering to succeed with providing
comprehensive and complete tool sets and design processes that are capable of representing
and analyzing complex CPSs.

5

Existing Design Processes

Layered Design

A design process using layered design defines abstraction levels for software products [91].
Every abstraction level is associated with different design activities. These abstraction levels
help to decompose and compartmentalize a complex design problem into smaller units. The
layered design process can have many abstraction levels, which are called layers. A lower-
level layer does not belong to a higher-level layer, rather it is used by the higher-lever layer.
As a result, a layered design has a compound relationship of the uses form instead of the
part of form between layers. By defining multiple layers for an application domain problem,
the various design concerns are separated. Each layer is built on top of another layer. A
lower-level layer encapsulates design concerns and implementations and hides them from
the higher-level layers. This layered design approach was adapted for various application
domains including automobile and avionic domains.

For example, in the automobile domain the AUTOSAR [9] standard was developed to
define several abstraction layers: the Microcontroller Abstraction Layer, the Engine Control
Unit (ECU) and Complex Drivers Layer, the Services Layer, and the Application Layer. The
software components implemented in the Application Layer communicate directly with the
Operating System (OS) and Services Layer; whereas the lowest level, the Microcontroller
Abstraction Layer, encapsulates the actual microcontroller implementation. In the avionics
domain, similar abstraction layers are defined by the ARINC standards [5].

One of the challenges in layered design is to define a set of abstraction layers for a domain
problem which provide sufficient information and encapsulation for the higher-level layers,
while the number of implementation options remains broad.

Component-Based Design

In component-based design, designs are composed of multiple design entities called com-
ponents [38]. Each component has a set of interfaces that are used in the composition, where
each component interface may be connected to one or many other component interfaces.
Components encapsulate the implementation, which makes them highly reusable through-
out the design process. Having components defined can significantly accelerate the design
process, because the components can be developed and implemented in parallel. Defin-
ing components on different levels of the design containment is called hierarchical system
decomposition; this reduces the complexity of the design problem [121].

6

Figure 1: V-model [133]

There are two major challenges with component-based design: (a) how to specify compo-
nent interfaces to be rich enough to cover all phases of the entire design process and (b) how
to capture a family of designs with various alternative component and architecture options
possibly representing product variations and product families.

V-model

The V-model is a product development process primarily developed for software applica-
tions. Originally, the V-model was published in 1997 in the Development Standards for IT
Systems of the Federal Republic of Germany document [41]. The V-Model became a stan-
dard for all civil and military federal agencies in Germany. The objectives of the V-Model
are: minimization of project risks, improvement and guarantee of quality, reduction of total
cost, and improvement of communication between stakeholders. Since the initial develop-
ment of the standard, the V-model was adapted for other application domains including
aircraft design and software design. The V-model is named after its V-shape diagram, as
shown in Figure 1, which splits the development process into two major phases: (a) a design
phase and (b) an integration phase. [49]

The design phase starts with the analysis of the product-level requirements, which is fol-
lowed by the development of a functional architecture diagram. The functional architecture
diagram is divided into individual domains such as mechanical, electrical, digital hardware,
software, etc. After the individual domain-specific components and subsystems are designed
and tested, they are integrated at the subsystem level followed by the system-level integration
across multiple domains according to the logical architecture diagram. Product integration,

7

validation, and product certification against product level requirements are the final steps
in the integration phase of the V-model.

The V-model reaches its limitations as systems become more and more complex, in
particular when they involve several domains along with cross-domain interactions and in-
terdependencies. Because the domains are kept in separate models and there are no direct
linkages between the different domain representations, the subsystem- and system-level in-
tegrations are tedious. After the system is physically integrated, it may fail to meet product
level requirements. Such failures are identified too late in the design process, and they ne-
cessitate model updates or in a worst case scenario in a complete redesign of the system. All
the aforementioned shortcomings of the V-model inject costly unpredictable delays in the
entire product development process.

Model-Based Development

In Model-Based Development (MBD), models are used to capture and organize informa-
tion for products to be designed [122, 139]. A collection of models is a full representation of
a system design. Models and their relationships are explicit representations of traceability
and dependency of design artifacts. The MBD design process captures requirements from
the early stages of the design activity in the form of models. It is a common practice in MBD
to use code generation tools to facilitate virtual integration and to automate portions of the
subsystem- and system-level integration as well as verify the design against the specified
design requirements. The MBD design process inspired system engineers to create different
modeling languages such as the Architecture Analysis and Design Language (AADL) [46]
for performance critical system design, the Unified Modeling Language (UML) is a general
purpose modeling language for the software engineering field, and the Systems Modeling
Language (SysML) for system-level modeling.

Using system-level modeling languages does not solve the entire product design problem.
Therefore, application and domain-specific tools must be used in conjunction with system-
and architecture-level modeling languages and tools. Tool-specific models are developed for
different aspects (views). For instance, MATLAB-Simulink [96] is often used for controller
and control-flow modeling; 20-Sim [1], Bond Graphs [74], MATLAB-SimScape [94], Catia
[143], and Modelica [7] are used for physical system modeling. Automatic code generation
for simulation and behavior analysis is possible, which helps to verify the design against the
requirements and validate the models against empirical data.

The drawback to having tool-specific models is that it increases the risk of inconsistency
between different aspects (views) of the same design entity.

8

Figure 2: Platform-Based Design’s general framework [75]

Virtual integration

Historically, systems integration (e.g., V-model integration phase) is a challenging task
because after the system prototype is physically integrated and realized, it still may fail to
meet system requirements. Virtual integration addresses this challenge by composing models
of components and subsystems, resulting in a fully-composed system model. We can then
perform analyses on this virtual prototype to verify the predicted behavior of the system.
Virtual integration minimizes the risk in the integration phase of the V-model, because the
designed subsystems can be virtually composed and analyzed at the system level according
to the system architecture diagram. As a result, this process reduces the number of physical
prototypes required to test the system.

As we discussed before, a complex system design often involves several domains including
multiple physical domains such as electrical, hydraulic, one- and multi-dimensional mechan-
ical, and thermal. Therefore, the modeling tools should support heterogeneous component
models and modeling their interactions. For instance, Ptolemy [24] addressed heterogeneous
component modeling and composition with different semantics. Modelica [7] and SimScape
supports physical modeling and simulation at an advanced level including multi-body dy-
namics and hardware-in-the-loop simulations.

Platform-Based Design

Platform-Based Design (PBD) is an integration-oriented design approach for developing
complex products based upon a software or a hardware platform [10, 75]. The software or
hardware platform provides a platform-specific abstraction layer for the designers to develop
platform-specific applications. A common semantic domain, often called the system platform,

9

is presented in the middle of Figure 2 [75]. The application space is mapped to the system
platform by a top-down refinement process and the architecture space is exported to the
system platform by a bottom-up exposure.

PBD emphasizes the reuse of platform-specific components and is intended to reduce
development costs, risks, and time by using virtual integration [10]. It incorporates the
advantages of four design methods: (1) Component-Based Design, (2) virtual integration, (3)
layered design, and (4) Model-Based Development. By combining these four design methods,
PBD reduces the design complexity by hierarchical system decomposition and definitions
of platform-specific abstraction layers. In addition to the decomposition techniques, PBD
also supports multi-layer optimization through multiple viewpoints, whereas other design
processes do not. The PBD concepts have been successfully applied in several different
domains including: automotive, building automation, printers, wireless networks, network
processors, system-on-chip (SoC) and electronic design. One key difference between the
layered design process and PBD is that layered design predefines the abstraction layers for
any design problem within the domain, but PBD leaves the abstraction layer definitions to
the particular application or design platform.

Each design platform consists of three key elements: (a) a component library, (b) models
of components, and (c) connectivity and composition rules between components. The models
of components may be mathematical models at different levels of abstraction or placeholders
to indicate customization. By adding platform-specific constraints to the composition of
components, a family of designs is represented which satisfy those constraints. A platform
instance is called an architecture, which is defined by the composition of platform compo-
nents. An architecture captures how the system does what it is supposed to do and fulfills
all platform-specific constraints.

Contract-Based Design

Contract-Based Design (CBD) augments Platform-Based Design with contracts, where a
contract is defined for each component with a set of assumptions and promises [22, 133]. The
assumptions are defined only for ports that are controlled by the environment. The promises
are defined only for ports that are controlled by the component. There are two types of
contracts: horizontal and vertical. Horizontal contracts are defined among subsystems on
the same level of abstraction, and are used for virtual integration testing. Vertical contracts
are used across design layers, when each component can be further refined or decomposed
in the design process.

10

Assumptions are frequently categorized into strong and weak assumptions. Examples
for strong assumptions are: meeting a standard or being part of vertical contracts for com-
position. Violation of vertical contracts means incompatibility across design layers in the
decomposition hierarchy. Weak assumptions are desired properties of the system such as
cost, manufacturing lead time, etc. When a design becomes invalid and fails to meet the
contracts, it is possible to backtrack the contract assertion to the higher-level contracts by
maintaining dependency between contracts. In such cases, weak assumptions can be relaxed
(e.g. rebudgeting) to fulfill all contracts.

CBD augments PBD with contracts; these contracts assist with determining whether the
architecture composition is valid or not. CBD considers only component choices from the
component library that result in legal composition during architecture exploration.

Summary

In this section we presented existing design processes and methods. The goals of each
design method are to reduce design complexity and development time. Design complexity is
reduced by defining abstraction layers or decomposing the design problem based on contain-
ment. Development time is often reduced by using components or models as design entities.
Components and models represent the designed product with an explicit representation of
traceability and dependency of the design artifacts. These components and models are highly
reusable in the design, even across multiple subsystems. Components and models can be
virtually integrated using composition which reduces the number of physical prototypes that
must be built and tested.

When the design product is based on a specific platform, a platform-specific abstraction
is provided for the designers to build their platform-specific components and products. The
platform can be either a software platform, a hardware platform, or both. The platform-
specific components and the platform itself can have a set of assumptions and promises.
The set of assumptions and promises for a given component is a contract. Contract-Based
Design defines the types and the composition of contracts. Contracts can be used to verify
the correctness of the virtual integration. If there is an assertion on a system-level contract,
it is possible to trace back to a lower-level component in the hierarchy that caused the
assertion.

11

Evaluation

The design processes outlined above were mainly developed for software design, where
models and components have inputs and outputs. This means that the direction of infor-
mation flow between components (i.e., causality) is explicitly defined in the system by the
designers.

In complex Cyber-Physical System design, components often span multiple domains in-
cluding behavioral, structural, and computational. This requires a design process that ac-
commodates multiple views of component models. The different views are often dependent
on each other. The design process must support acausal (i.e., bidirectional) interfaces. De-
pending on the operation mode of the system, the inputs and outputs may change. Consider
a hybrid car: when the car accelerates the batteries provide electrical energy to the mechan-
ical system; when the car applies the brakes the mechanical system charges the batteries.

In Contract-Based Design the promises are defined only for ports that are controlled by
the environment; this design approach is not directly applicable for physical system modeling
where the inputs and the outputs can change. For CBD to be applicable, each operation
mode of the system must first be elaborated. Unfortunately, elaborating all operation modes
of complex CPSs results in a large combinatorial space, which is difficult to manage and
simultaneously increases model complexity. One of the goals of many design processes is to
reduce complexity.

The aforementioned design methods give no or minimal support for architecture and
parametric design space exploration which highly limits designers in finding the optimal
solution for their problem. It is important that any evaluation method used in the design
process (e.g., evaluation of contract assertions) can also be applied in parametric design
space exploration (e.g., in a design optimization).

Model-Based Systems Engineering

Model-Based Systems Engineering (MBSE) is a systems engineering methodology that
captures views and analyses for a product design at the system level. The system-level
views are the collection of virtually integrated models that represent the integrated system
[47, 139, 141].

In traditional engineering design, several documents are developed: requirement docu-
ments, conceptual design documents, detailed design documents, etc. Unfortunately, there
is an inherent dependency across all aforementioned documents. In this document-centric
approach, the documents are the primary artifacts in the design process. The relationships
between such documents are often poorly maintained. However, MBSE organizes the doc-
uments and their dependencies by associating them to models. These models become the

12

primary artifacts in the design process and are stored in a model database. The models refer
to each other explicitly and the relationship between models yields the relationships between
documents. When a document is changed it results in a model change. By this model change
all relevant linked models and other documents can be identified and updated.

The goal of Model-Based Systems Engineering is to improve efficiency and quality of the
design process and semantic interoperability. However, several obstacles remain in achieving
that goal [120].

Obstacles to improving efficiency

Manually developing models is labor intensive and expensive. MBSE tools should leverage
and accommodate pre-existing models and model libraries. Complex design problems often
involve the usage of several heterogeneous model libraries and analysis tools. Setup of
analyses is time-consuming and cumbersome due to the lack of the interoperability of the
models. Having heterogeneous analysis tools implies having heterogeneous models, which
leads to multiple views (aspects, concerns) of the same model. Manually maintaining the
dependencies between model views of the same system is error-prone. Even if the models
are stored in a centralized place, there are recurring activities, e.g., writing design reports,
which can negatively impact the efficiency unless some or full automation is provided by the
MBSE tools.

Obstacles to improving quality

The different models and model views must be kept synchronized with each other to
ensure model consistency. Assume that a model has at least two views: a behavioral and
a structural view. Some of the model parameters are shared between the different views.
Changing such interdependent parameter values must result in a change in both analysis-
specific behavioral and structural models.

Many MBSE tools provide hierarchical modeling, which aids to group information and
knowledge that people can easily process in every level of the hierarchy. In complex system
designs, multiple teams are involved in the entire design process, where each team may
include several people. Hierarchical modeling improves and clarifies communication between
people and teams. Different people and design teams have different objectives, beliefs, and
preferences which form the basis of their design decisions. Those divergent design decisions
may lead to irrational designs.

13

Domain-Specific Languages (DSLs)

A General-Purpose Language (GPL) is usually a general purpose programming language
which is applicable in a wide variety of application domains. This is in contrast to Domain-
Specific Languages (DSLs), which are specifically built for a given domain and provide
domain-specific abstraction through the use of terms and concepts from a specific domain
[150, 51]. Oftentimes, several custom tools are developed in conjunction with the DSL.
Generally, these tools are called interpreters that act on the domain-specific models, and
generators (i.e., compilers) that translate the domain-specific models into source code or
another model representation.

Each DSL consists of one or more concrete syntax definitions and one abstract syntax
definition. The concrete syntax is used to visualize, manage, and edit domain-specific models;
it can be graphical, textual, tabular, or a mix of those. The abstract syntax of a DSL is
defined in a meta-model, which enforces the static or structural semantics of the domain.
The meta-model contains type definitions, composition rules, and constraints. However, the
execution or behavioral semantics of a DSL are defined and realized by an execution engine.
Different partitions of the DSL can have different behavioral semantics and could require
multiple execution engines to realize them. DSLs are developed for a variety of engineers,
and not just software engineers, depending on the application domain [150].

Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a graphical modeling language developed by
the Object Management Group (OMG) [50, 98, 115]. UML is used to model software ap-
plication structure, behavior, and architecture. Different application domains may require
more specific concepts than what UML specifies. UML profiles are extensions to UML that
define stereotypes using domain-specific concepts; these stereotypes can be used to build
domain-specific models. UML profiles have been developed and maintained for commonly
used application domains. For example, a few domain- or application-specific profiles are:
UML Profile for Software Radio, UML Profile for Modeling Quality of Service (QoS) and
Fault Tolerance Characteristics and Mechanisms, UML Profile for system-on-chip (SoC), and
UML Testing Profile. The first version of the UML Profile for Systems Engineering (SysML)
was developed by systems engineers in 2005, who aimed to model systems engineering ap-
plications including physical and computational parts.

14

SysML
Diagram

Requirement
Diagram

Behavior
Diagram

Sequence
Diagram

Activity
Diagram

State Machine
Diagram

Use Case
Diagram

Structure
Diagram

Internal Block
Diagram

Composite Diagram in UML

Block Definition
Diagram

Class Diagram in UML

Package
Diagram

Parametric
Diagram

Same as UML 2

Modified from UML 2

New diagram type

Figure 3: SysML taxonomy diagram

Systems Modeling Language (SysML)

The Systems Modeling Language (SysML) is a general purpose graphical modeling lan-
guage for systems engineering applications [52, 141, 152]. SysML extends and modifies a
subset of the UML 2.0 as shown in Figure 3. The UML Activity Diagram contains some
extensions and restrictions in the SysML profile. The Block Definition Diagram is similar to
the UML Class Diagram and the Internal Block Diagram is similar to the UML Composite
Structure Diagram; both have some extensions and restrictions as described in the SysML
specification [114].

The new diagram types (i.e., extensions) are: the Requirement Diagram and the Paramet-
ric Diagram. Each SysML and UML model can be serialized into XMLMetadata Interchange
(XMI) format for model exchange between different SysML or UML tools, respectively.

The block definition diagram and the internal block diagram provide support for nested
and typed ports. The nested and typed ports enable reusable blocks and clearly defined
interfaces for composition. SysML defines two kinds of ports: one that exposes its own
features called full ports and another one that exposes ports or features of its parent called
proxy ports. Another modification is the support of flow properties in block diagrams. The
flow properties can define the kind of items that flow through the ports, for instance: data,
material, or energy. Each block can define a set of flow properties that are associated with
ports. Definition of flow properties for ports is essential for physical system modeling and
developing interconnectable components. In older versions of SysML (before version 1.3),
flow ports served the same purpose; the newer versions of the SysML specification describe
how to migrate the old models, because the flow ports are marked as deprecated elements.

SysML supports text-based requirements modeling and organization using requirement
diagrams. The requirement diagram supports hierarchical decomposition or grouping of the

15

requirements. Each requirement may specify a function or a performance goal that the
system must perform or achieve, respectively. The requirement block can be related to other
blocks and elements in the SysML model using the copy, derived, satisfy, verify, refine, and
trace relationships.

The parametric diagram is a specialization of the internal block diagram. Each parametric
diagram may contain one or more constraint properties and their parameters. In addition to
the internal block diagram restrictions, all properties must be bound to either a constraint
parameter or contain a property that is bound to one. Internal block diagrams are similar
to the placeholders in the PBD. A parametric block diagram with constraints and bound
property values is similar to a platform instance in the Platform-Based Design.

Several extensions have been developed for SysML including a collaborative web-based
SysML editor with limited authoring capabilities [21]. Other SysML-based tools and exten-
sions are described in detail in the Simulation-Driven Design section.

Evaluation

Domain-Specific Languages provide strong type checking for model composition using
domain-specific concepts and terms. SysML provides a general-purpose Model-Based Sys-
tems Engineering modeling language with built-in model traceability and dependency, but
it lacks structural semantics and domain-specific concepts. Domain-specific concepts can be
added to SysML by defining SysML profiles. Many application domains have been developed
as SysML profiles because the SysML specification [114] does not define any semantics for
general SysML models. However, when a SysML profile is used and connections or objects
are created the structural semantics are not strictly enforced at the time of modeling. Con-
sider a SysML profile defined for a domain which contains mechanical and electrical port
types. A designer is allowed to connect a mechanical port to an electrical port, but that
connection makes the entire model invalid, because the model cannot be physically realized.
Such modeling errors might be revealed too late in the design process which could increase
the design time and costs.

Model-Based Systems Engineering tools must support: (a) importing existing multi-
domain component libraries for each aspect of the component including physical behavior,
structural, and computational; (b) strong type checking for composition (i.e., structural
semantics) which makes the models correct by construction; (c) seamless integration with
existing analysis tools for automated analysis execution; and (d) iterative model develop-
ment.

16

Model Interfaces and Composition

Models interact with other models or the environment through model interfaces. Models
are composed into larger entities by connecting one or more model interfaces together. The
interfaces are used to exchange data, material, or energy between components or to establish
a structural relationship between components [42]. Strongly-typed interfaces improve model
clarity and eliminate composition mistakes, e.g., connecting a data interface to an energy
flow interface. The interfaces can be divided into two main categories: causal and acausal.
Causal interfaces define the direction of information flow through the interfaces; hence, they
are either inputs or outputs. When causal interfaces are composed, there are strict rules
describing how inputs and outputs can be connected. Acausal interfaces do not predefine
the direction of the energy flow; the direction is usually determined by the composition or
the operating mode of the system. If the operating mode changes during the analysis of the
system, the inputs and outputs might need to be changed for certain interfaces.

In Contract-Based Design, contracts are associated with component models, where each
contract is given as a set of promises and assumptions defined on input and output in-
terfaces, respectively. If the environment fulfills the specified assumptions, then the model
promises certain properties or behavior. The assumption/promise approach is also called the
assume/guarantee, or assumption/commitment approach. This paradigm has been applied
in a number of approaches including software specification, system specification, and logical
proofs of system-level properties. These component-based contract specifications have been
generalized to architectural contracts for discrete event systems and state machines [22].
It is important to note that both discrete event systems and state machines have causal
interfaces.

Contract specifications can be used for CPSs as presented in [133, 112]. In CPSs, con-
tracts are always specified in the computational blocks or they are defined on the boundary
of the physical system. The physical system model interacts with computational blocks
through causal interfaces using sensors and actuators. Contracts are never specified on
acausal interfaces inside a physical system model or between physical component models.

Physical system models require acausal interfaces for efficient modeling and design. Sev-
eral modeling languages support acausal or equation-based modeling such as Bond Graphs
[74], Modelica [7, 53, 149], and SimScape Language [95].

Bond Graphs

The Bond Graph notation is a graphical modeling language for physical systems based
on power and energy flow. The Bond Graph elements are domain independent, which aims
to bridge the communication gap between different domain experts. In other words, if a

17

mechanical engineer and an electrical engineer are both familiar with Bond Graphs, they
can model electro-mechanical systems including mechanical systems or electrical circuits,
respectively. When they share the models with each other, both of them can interpret the
behavior of entire system including cross-domain interactions. This property of Bond Graphs
provides reusability and cross-domain interoperability.

Basic Bond Graphs contain three kinds of elements: one-port elements, two-port ele-
ments, and multi-port elements called junctions. The ports of the elements are connected
together and the connections are called bonds and are represented with a half-arrow. The
direction of the half-arrow denotes the assumed positive direction of the power flow between
the adjacent elements. Each bond represents an effort and a flow variable, which are domain
dependent as shown in Table 1. The product of the effort and flow variables is power, which
corresponds to the energy flow between the adjacent elements.

Physical
Domain Effort Symbol Unit Flow Symbol Unit

General e f
Mechanical
translational force F N linear velocity v m/s

Mechanical
rotational torque τ Nm angular velocity ω rad/s

Electrical voltage V or u V current I or i A
Hydraulic pressure P Pa volumetric flow rate Q m3/s
Thermal temperature T ◦C entropy flow rate S W/◦C

Table 1: Bond graph variables for physical domains

Even though the bonds are directional, Bond Graph is an acausal modeling paradigm,
which means that there are no dedicated input and output variables in the system. Inputs
and outputs depend on the graph and the composition of the elements. Causality is assigned
to each bond based on a given set of rules for each element using the Sequential Causality
Assignment Propagation (SCAP) algorithm [74]. Every valid Bond Graph can be directly
translated into a set of Ordinary Differential Equations (ODEs) after the causality is assigned.
The acausal modeling eliminates the need of rewriting the ODEs if the system topology
changes, because the new set of ODEs can be automatically derived based on the new
system’s topology.

Bond Graphs are often used to model existing system dynamics to better understand,
track, trace, and analyze fault propagation in physical systems [20, 45, 101, 102]. Bond
Graphs are also frequently used for modeling and simulation of mechatronic systems [18].
The Bond Graph methodology [19] was augmented with multi-bond graphs to facilitate the

18

modeling of complex multi-body dynamics [30]. In addition to the modeling and simulation
of the mechatronic systems, the control of mechatronic systems is presented in [74].

Bond Graphs do not support hierarchical modeling, which can lead into diagrams with
hundreds of elements and connections on the same diagram for a large scale complex system.
Even though Bond Graph supports acausal models, it is challenging to compose Bond Graphs
with other acausal (or equation-based) modeling languages such as Modelica. Designers
like to reuse the existing model libraries even if they are built within a different modeling
language. Basic Bond Graph modeling evolved to model complex multi-body dynamics
[30], but complexity of the diagrams significantly increases, which reduces productivity and
efficiency. To overcome the increasing model complexity, a Bond Graph library was developed
for Modelica [29]. The Bond Graph library leverages the hierarchical decomposition feature
of Modelica to manage design complexity at different levels of the hierarchy.

Bond Graphs have been applied to other domains. For example, the Modelica Bond
Graph library is used to create the system dynamics model of a servo-positioning system;
the power flow information is used to monitor the effectiveness of a control system [97]. The
method compares the efficiency of controllers with different topologies, where one controller
is a linear controller and the other one uses a non-linear anti-backlash element. A Modelica
based simulation tool, Dymola, is used to generate the simulation results, which allows us to
compare the efficiency of the two controllers in a quantitative way by using an energy-based
control evaluation method. This approach helps control engineers to quantify the quality of
a particular control design and compare different designs.

Modelica

Modelica is an equation-based unified object-oriented modeling language for systems
modeling defined by the Modelica Language Specification [7]. The Modelica language is
domain independent, but domain-specific libraries and concepts have been developed [53,
149]. In fact, a Modelica Standard Library is provided, which is built on the Modelica
language, and provides domain-specific ports and elements for several physical domains such
as electrical, mechanical rotational, mechanical translational, fluid, magnetic, thermal, etc.
In Modelica everything is a class, and there are specialized classes which pose additional
restrictions on the containment or the structure of the class. A few commonly used and
important class types: type, record, connector, model, block, function, and package.

The type is used to specialize variables by restricting the causality (input or output),
the size (e.g., 1-dimensional or 3-dimensional), and the unit (e.g., acceleration in m/s). The
record is used to group multiple type definitions. For instance, different fluid types have
different values for density, dynamic viscosity, kinematic viscosity, conductivity, etc. If all of

19

those properties are grouped into a record it is easy to create several fluid type specifications
like water, air, or carbon dioxide by providing the expected values.

The connector class type defines pairs of potential and flow variables as acausal ports.
The flow variables are marked with a keyword called flow, whereas the potential variables
are not marked explicitly. For instance, in the electrical domain the potential variable is the
voltage and the flow variable is the current. This is similar to the Bond Graphs as discussed
in the previous section. Connectors are connected with the connect statement. When the
Modelica code is translated to a set of Differential Algebraic Equations (DAEs) the connect
statements are resolved into multiple equations. For instance, in the electrical domain the
set of connected connectors will be resolved to and obey Kirchhoff’s Current Law (KCL).

The model and block are structurally similar except the block classes cannot contain
any connectors (i.e., acausal interfaces). The function class cannot have any connectors
and equations, it can only have inputs, outputs, parameters, and algorithms. All of the
aforementioned elements can be organized into packages.

Modelica supports abstract classes by using the partial keyword and inheritance by using
the extend keyword. Each class can be marked as partial, which means the class itself
cannot be instantiated, because it does not contain the full definition yet. Each class can be
extended (or derived) from another class that has at least the same class restrictions. For
instance, a model can be extended from a block, but a block cannot be extended from a
model. In addition to abstract classes and inheritance, templates and constraining classes
on templates are also supported. The replaceable keyword identifies placeholders in the
model similar to the placeholders in Platform-Based Design, where each placeholder can be
constrained by an other class. When the placeholder is replaced with a class, that class must
be the constraining class or any of its subtype.

Even though Modelica is a textual language and the Modelica code is stored as a text file
with a .mo file extension, the Modelica Specification allows to store graphical information
including locations and icons as annotations as well as tool-specific annotations. Modelica is
a language and there are existing Modelica tools that can interpret the Modelica code and
execute Modelica simulation models. The Modelica tools often contain a graphical editor
and always contain at least one DAE solver. There are open-source Modelica simulation
environments such as JModelica.org [100], and OpenModelica [117]. There are commercial
Modelica simulation environments such as Dymola [144], MapleSim [93], Wolfram System-
Modeler [154], SimulationX [70], and CyModelica [35].

Figure 4 depicts a Modelica model from the Modelica Standard Library (MSL) called
Modelica.Electrical.Machines.Examples.DCMachines.DCPM_Cooling. The system con-
tains a direct current (DC) motor with a cooling system, where the mechanical load of the

20

Figure 4: Example Modelica model

motor is pulse modulated. Even this simple system contains four different physical domains:
electrical, mechanical rotational, thermal, and fluid. Each domain can be easily identified in
the diagram, because the connectors are strongly typed and have different visual representa-
tions in each domain. These diagrams help to increase productivity and model clarity, and
result in minimizing miscommunication between subject matter experts.

Evaluation

Strongly-typed causal and acausal interfaces are essential parts of Model-Based Systems
Engineering for Cyber-Physical System design. They assist the designers with developing
models that are correct by construction. For example, in Modelica it is not possible to
connect an electrical pin to a mechanical flange (such a connection would result in compile
time error and some editors prohibit such a connection in the graphical user interface).
Another example is the fluid port connections: two fluid ports can be connected because they
are structurally compatible, but the Modelica compiler also checks if the defined medium type

21

matches on each connected port. This means that the system model will not be interpreted
and simulated unless it is semantically correct.

Having well-defined domain-specific interfaces helps with building model libraries around
partial (i.e., placeholder) models, which define the interface of a specific component while
leaving the implementation undefined. These placeholders make architecture and design
space exploration easier. The component placeholders can be easily substituted with any
compatible component. With this flexibility, highly reusable and extensible component li-
braries, component interfaces, and architecture templates can be developed.

Requirements

Requirements are expected properties of the system and they are typically testable
[126, 140]. There are two main categories of requirements: (a) functional requirements
and (b) non-functional requirements. Functional requirements describe specific behavior or
functionality of the system, i.e., what the system should do. Examples for functional require-
ments are: the system must minimize injuries upon collision or the system must transport
people and objects from A to B. Non-functional requirements describe the desired opera-
tions of the system, i.e., how the system works or operates. Examples for non-functional
requirements are: the safety system must be deployed when a collision is detected or the fuel
consumption must be greater than 30 MPG over the highway US Environmental Protection
Agency (EPA) drive cycle profile.

Several tools have been developed to model requirements such as Blueprint [17], Enter-
prise Architect [90], HP Quality Center [119], IBM Rational DOORS [64], IBM Rational
DOORS Next Generation [65], Jira [8], PTC Integrity [129], Mingle [155], etc. The require-
ments management tools allow designers to store and retrieve design requirements written
in a textual form as well as relate requirements to each other or group multiple requirements
together. Some of these requirement management tools are coupled with requirement devel-
opment, project management, (automated) testing, User Interface (UI) mockup, or visual
modeling capabilities. Visual modeling is often provided as graphical models such as UML,
Business Process Modeling Notation (BPMN) [113], or SysML models.

SysML provides a first class concept to support requirements in the form of requirement
diagrams as presented in the previous section. Even though requirements are organized in
models and several relationships can be established between the model entities, the require-
ments are still stored as textual artifacts without any execution semantics. To evaluate the
requirements, execution semantics must be defined for the models or specific diagram types.

For instance, the Modelica Modeling Language (ModelicaML) [127] extends SysML with
two new diagram types and modifies three existing SysML diagram types. These extensions

22

SysML
Diagram

Requirement
Diagram

Behavior
Diagram

Equation
Diagram

Sequence
Diagram

Activity
Diagram

State Machine
Diagram

Use Case
Diagram

Structure
Diagram

Internal Block
Diagram

Composite Diagram in UML

Block Definition
Diagram

Class Diagram in UML

Package
Diagram

Parametric
Diagram

Simulation
Diagram

Same as SysML

Modified from SysML

New diagram type

Figure 5: ModelicaML for SysML taxonomy diagram

and modifications facilitate the execution and evaluation of requirements for physical sys-
tems. Figure 5 depicts the ModelicaML taxonomy that includes the equation diagram and
the simulation diagram in addition to the SysML taxonomy.

Modelica supports object-oriented equation-based modeling of system designs. However,
the Modelica language itself lacks first class requirement support, thus ModelicaML was de-
veloped as a profile for SysML. ModelicaML augments SysML with an equation diagram that
contains Modelica equations, which represent the model behavior, therefore it is a subclass of
the behavior diagram. The simulation diagram defines an experiment for a referenced Mod-
elica model including parameters for the included Modelica model, and storing simulation
results called simResults for plotting and requirement evaluation. One or more requirements
can be referenced from the simulation diagram, which are linked to the simulation results
through the satisfy relationship.

Formal notation of requirements is used along with automated tools to produce high-
quality requirement specifications. One formal notation of requirements is called Software
Cost Reduction (SCR) [59], which was developed to concisely and unambiguously specify
software requirements for real-time embedded systems. The SCR method uses tables to cap-
ture, relate, and organize design requirements that can be used to define design requirement
specifications. If requirements are defined using formal notation (e.g., SCR) then require-
ment analysis can be performed including automated consistency checking of requirement
specifications [58]. The automated consistency checker is used to check the specification in
an application-independent way for reachability, coverage, syntax, and type correctness. The
formal requirement specification is executed symbolically to verify that it represents design-
ers or customers intent. An SCR* toolset for specifying requirements was developed [57]
and applied in developing high assurance avionics systems [16]. Other research describes the

23

benefits of formal Requirements Modeling Language (RML): develop and present require-
ments as models using object-centered representation and reasoning with models through
consistency checking or simulation [55].

Requirement and design trade-offs

When a set of requirements is defined, there is often more than one potential design
which fulfills all design requirements. In such cases, design trade-off studies are performed
to compare the different design alternatives with respect to the design requirements. Design
trade-off studies appear during multiple phases in the design process including: (a) during
the conceptual design phase and (b) during the detailed design phase. In the conceptual
design phase, there are design trade-off studies between different architectures, which require
minimal computational resources compared to detailed analysis, because most of the time
surrogate models are used for each architecture option. In traditional design processes often
a single architecture is selected, which eliminates all other architecture options. Then the
selected architecture is fully developed to a detailed design. Detailed designs are subject
to further design trade-off studies by changing design parameters or features and evaluating
robustness properties of the system. Regardless of the parameter variations, the architecture
remains intact at this phase of the design process.

MBSE tools can be used to model design alternatives and variations of products. A
SysML-based design chain information modeling technique is presented in [157] for variety
management in production reconfiguration. They consider a switchgear enclosure produc-
tion process: a SysML model is developed to perform structural, behavior, constraint, and
requirements analysis for reconfiguration of the process. The generic design structure con-
tains: (1) product structure, (2) variety feature, and (3) configuration constraint. A product
structure represents a single architecture choice, which is shared by all variants from a prod-
uct family. The variety features include color, material, and thickness of the switchgear
enclosure. The configuration constraint specifies a set of rules that must be held by the final
product. One example is the material compatibility: the material of the top, bottom, and
vertical brackets must be the same. Another example is the color compatibility: the color
of the top, bottom, and vertical brackets must be the same. Even though variety is allowed
in the product family, all design requirements and configuration constraints must be met by
any design configuration.

If developing or virtual prototyping of multiple design alternatives is unreasonable, for
instance due to cost or time, then certain key decisions must be made in advance. Designers
need to make decisions regarding technologies, architectures, design solutions, or products to
use based on the functional and non-functional design requirements. A method for analyzing

24

requirement trade-offs in the absence of numerical data is presented in [43]. Using the
proposed algorithm to generate all consequences of alternatives, the Even Swaps Multi-
Criteria Decision Analysis method can be used to guide stakeholders to the best solution.
Each requirement is mapped to one or multiple goals and a satisfaction value is defined for
each alternative. The satisfaction value is a number between 0 and 5 and is defined by the
stakeholders. The goals (Gn), design alternatives (Am), and satisfaction levels Sat(Gn, Am)

are summarized in a table for each pair of alternatives. Based on the algorithm a series
of questions is asked to the stakeholders; for example, if we reduce Sat(G4, A1) to 0 from
5, how much improvement would you expect in Sat(G1, A1)? The goal of the questions is
to bring all alternatives to the same satisfaction level for a specific goal, after which that
particular goal can be removed from the table. The questions are asked until there is only
one goal remaining, probably the most dominant one. Finally, the design alternatives are
ordered based on the resulting satisfaction levels.

Simulation-Driven Design

Simulation-Driven Design (SDD) is a design process where design decisions are mainly
based on computer-based modeling and simulation of the performance behavior of the de-
signed product in all phases of the design process [134, 135, 139]. SDD is based on Model-
Based Development (MBD) with simulation support to allow validation of various architec-
ture options even in the early phases of the design process. One key difference between SDD
and MBD is that in SDD certain models or model types must be executable by one or more
simulation tools, where the execution semantics are well-defined by the simulation tool(s).
Therefore, SDD enables designers to make design decisions based on how each decision will
impact the performance behavior of the designed product. SDD considers the impact on
performance, which helps to reduce the number of prototypes to build, resulting in reduced
development and product costs. Using simulation techniques may also increase product
quality during the different design phases. This design process often requires a tight inter-
connection among various tools used during a design process such as product management
tools, simulation tools, requirement management tools, etc.

SDD has been adopted by different MBSE tools such as SysML. A Simulation-Driven
Design using SysML is presented in [123], where parametric SysML diagrams are instantiated
with values; and solutions can be derived by solving the equations of the composed system.

An analysis of a complex system for electrical mobility using a model-based engineering
approach focusing on simulation is presented in [151] using a hypothetical electric car (eCar)
example. The SysML4Modelica profile is used to model the eCar system, which consists of
three heterogeneous domains: software, electrical, and mechanical domains. The question

25

to be answered: is a 1- or a 2-motor eCar concept more advantageous? To answer that
question, the SysML4Modelica based eCar model, including all domain models, is translated
to a Modelica model to perform the simulation and evaluate both architectures. According
to the simulation results the 2-motor concept is 5 − 7% more efficient than the 1-motor
concept. When such a question is asked there always should be a quantifiable evaluation
criteria: in this case the requirement was the minimum charge of the battery must be at least
90%. The requirement is also translated to the Modelica model as a state machine, which
evaluates the requirement during the simulation and indicates whether the requirement is
violated or not.

A system-level model integration of design and simulation is presented for mechatronic
systems based on SysML in [26]. Light-weight extensions were added to SysML to repre-
sent SysML-based hybrid system dynamic behavior models such as controllers or computa-
tion blocks and physical dynamics. One extension is called Sequenced Parametric Diagram
(SPD), which is an extension of the SysML parametric diagram to describe hybrid dynamic
behavior. The other extension defines stereotypes associated with specific SimScape seman-
tics: e.g., sensor, physical, actuator, hybrid, scope, and simulation. The SysML models
are transformed to Simulink Stateflow and SimScape for simulation purposes. The bidirec-
tional transformation between SysML models and Simulink Stateflow and SimScape models
is implemented using Triple Graph Grammar (TGG) method [76].

The previous extensions to SysML have been improved and generalized. A SysML-based
uniform behavior modeling and automated mapping of design and simulation model for
complex mechatronics is developed as a SysML profile called Uniform Behavior Modeling
Language (UBML) [25]. UBML unifies modeling concepts from Simulink SimScape and
Modelica models and adds them as extensions to SysML. One of the key concepts is the sim-
ulation diagram, which is used to define a simulation for a design including the simulation
parameters (such as start time and stop time) and stimulus to the system. The simula-
tion diagram can be translated to either Simulink Stateflow and SimScape or a Modelica
simulation tool called MapleSim [93].

Simulation-Based Design using SysML is also applied in the solid modeling and analysis
domain [124]. SysML block diagrams can be linked to Computer-Aided Design (CAD) parts,
which can be parameterized in a parametric diagram by defining associations between the
different component ports. The parameters are three dimensional positional constraints and
sizes such as height, width, and length that are defined between the different geometric parts.
Constraints are modeled as SysML constraint blocks with constraining equations between
the inputs and outputs. These parametric diagrams are defined for CAD models and Finite
Element Analysis (FEA) models. FEA models are used for detailed thermal and structural

26

analysis, e.g., finding the maximum load which the part or assembly can withstand without
deformation. The parametric diagrams that parameterize existing FEA models are called
analysis templates.

In addition to SDD and analysis related extensions, failure modeling concepts can also
be used in SysML using the Dysfunctional Behavior Database (DBD) extensions for SysML.
DBD has been added to support reliability studies of complex physical systems using rapid
failure mode identification during the Failure Modes and Effects Analysis (FMEA) process
[37]

Multidisciplinary Design Analysis and Optimization

Multidisciplinary Design Analysis and Optimization (MDAO) techniques are used to find
the best and optimal solution from all design alternatives, which can be viewed as the second
phase of the design trade-off studies [34, 78, 137, 138]. These analysis and optimization
techniques are applied after the number of possible design architectures are pruned to a
manageable set of alternatives. MDAO automates running the analysis (e.g., simulation)
to explore the parametric design spaces given a set of constraints and bounds on the input
parameters. A set of input parameters for a given execution is called an input vector. The
automation of the analysis processes is critical, because each analysis must be executed
multiple times with a different input vector for each iteration. The input vector is defined
by the selected analysis or optimization method. For example, the input vector can change
material properties, loads, manufacturing tolerances, or operating conditions of the design.
The analysis results are collected and presented to the designers to help to make design
decisions. These analysis results are also used to understand the robustness of each design,
generate a surrogate model, or find an optimal input vector for the design problem (e.g.,
best material). This method involves iteration over a continuous parametric space, resulting
in a high demand on computational resources.

There are several existing MDAO tools (e.g., OpenMDAO [31, 54, 56], ModelCenter [92],
Dakota [79], Optimica [4], iSight [145], etc.) that provide the aforementioned capabilities or
the subset of them. OpenMDAO [31] is a high-performance computing platform for system
analysis and Multidisciplinary Design Analysis and Optimization. It provides a library of
solvers and optimizers including design-of-experiment drivers, surrogate model generators,
gradient-free optimization methods, and gradient-based optimization methods. The solvers
and optimizers can execute the analyses in parallel locally or on a cluster of computers.

An object-oriented and executable SysML framework is presented for rapid model devel-
opment [11]. This framework uses a web-based technology to support collaborative authoring

27

of SysML models and it utilizes OpenMDAO to facilitate the execution of the SysML models
for MDAO problems.

Lessons learned

Creating Model-Based Systems Engineering (MBSE) tools for complex CPS design in-
volves several challenges [146, 148]. As we have seen, existing and current product design
processes fail to address the challenges of capturing and evaluating requirements, integrating
heterogeneous methods from different disciplines, integrating multiple analysis models with
tightly- or loosely-coupled executions. Unfortunately, some of the design processes strictly
focus on a single discipline or analysis tool, often on simulation-based analyses. However,
other important aspects exist in a complex design project, such as fault modeling and analy-
sis, manufacturing process modeling and analysis, or the use of formal verification methods.
This implies that there is no single MBSE tool that can accommodate all aspects of a complex
CPS design problem. Each discipline-specific tool must be used within the scope for which it
was designed. Many of these tools must communicate through a common platform and share
some aspects of their models and tool-specific settings or configurations. Creating analysis
definitions for analysis tools often requires subject-matter expertise, but existing analysis
definitions can be reused for different design problems from the same application domain.
This is possible by bringing tool-specific concepts to a higher level of abstraction, opening
the space to a new group of designers who have limited or zero subject-matter expertise.
By advocating model reuse across multiple tools, existing labor intensive work is leveraged
and development time is reduced. For example, a solid model can have multiple fidelity
levels, and can be reused by multiple analysis tools: computing the center of gravity, run-
ning a structural or thermal Finite Element Analysis (FEA), or analyzing manufacturability
properties.

As we presented in the previous sections, many extensions have been added to SysML. For
example, the Uniform Behavior Modeling Language attempts to bring modeling concepts to
SysML from Modelica and SimScape to represent behavior of system dynamics. Even though
a mapping between Modelica and SimScape concepts is presented in the paper, the SysML
model has only some correspondence to the transformed simulation models. The mapping
between Modelica and SimScape models is possible, but at a very high level of abstraction.
Both Modelica and SimScape provide an object-oriented equation-based modeling language
and component libraries for various application domains such as mechanical, electrical, etc.
If the mapping is at the component library level with elements like motor, reducer, ball
screw, mass, sensor, gain, adder, etc., then it is possible to transform UBML models to both
Modelica and SimScape. However, there are two important conditions that must be met:

28

the structural semantics and the execution semantics must be the same between Modelica
and SimScape for the used elements. In addition to mapping the component libraries, the
parameters and units of the components must also be mapped. Each tool differs in how
they represent more complex domains like multi-body dynamics or fluid. There is no gen-
eral one-to-one mapping between the Modelica language and the SimScape language. For
example, in Modelica, there is a Modelica.Mechanics.MultiBody.World component that
defines gravity, gravity type, gravity field constant; in SimScape, the analog is achieved by
connecting the World Frame block and the Mechanism Configuration block. MATLAB pro-
vides Simulink and Stateflow which are rich toolboxes used for controller modeling, whereas
Modelica has only minimal support for controller modeling. The preferred industry practice
is to use Simulink for controller design.

29

CHAPTER III

HIGH-LEVEL DESIGN FLOW

This chapter presents an overview of the key concepts of our high-level design flow.
Reusable design processes and methodologies should be independent of both the target ap-
plication domain and of the Model-Based Systems Engineering tool. The presented key
concepts are independent from any implementation, but our implementation is referenced
where applicable. To facilitate an extensible rapid design environment, four layers are iden-
tified as integration platforms to address different concerns in the design process: (1) Model
Integration Platform, (2) Tool Integration Platform, (3) Execution Integration Platform, and
(4) Visualization Integration Platform. Each integration platform has a set of domain inde-
pendent and a set of domain dependent aspects. The domain dependent aspects capture the
structural or behavioral semantics of each domain, whereas the domain independent aspects
capture concepts or utilize tools regardless of which domain is used. Certain domain inde-
pendent concepts are mapped to multiple domains to provide consistency across domains.
For example, the model parameters are defined once and they could parameterize multiple
domain models. Another example: a domain model can be reused for multiple analyses such
as dynamic simulations and formal verification.

The Model Integration Platform is used to develop system models that comply with se-
mantically rigorous model integration languages and defines the semantic concepts required
for multi-domain and multi-disciplinary design. In the OpenMETA tools [69], the Model In-
tegration Platform is primarily facilitated by a model integration language called the Cyber-
Physical Modeling Language (CyPhyML). These models are used by the Tool Integration
Platform. The Tool Integration Platform provides a set of tools that (a) preserves rele-
vant portions of external models that are required for integration and (b) generates analysis
packages for the Execution Integration Platform. These tools work on models defined in the
Model Integration Platform and in external model-based engineering tools. The Execution
Integration Platform provides a model-based engineering tool-independent way to execute
the analysis packages. The executed analysis packages create analysis results in a form that
the Visualization Integration Platform can visualize. Designers use the Visualization Integra-
tion Platform capabilities to analyze their multi-domain and multi-disciplinary designs and
design families and to perform design trade-off studies. Each integration platform, shown in
Figure 6, is presented in detail in the following sections.

30

Model Integration Platform

Components
Existing

external

models
Designs

Design families

Design architectures

Analysis templates

Executable requirements

Parametric design space

exploration

Tool Integration Platform

Execution Integration Platform

Visualization Integration Platform

Domain Model

Importers

Component

Exporter

Design

Composer

Domain

Model 1

Domain

Model 2

Domain

Model 3

Domain

Model X
Analysis specifications …

Analysis package execution manager

Analysis

Tool 1

Analysis

Tool 2

Analysis

Tool 3

Analysis

Tool X
…

Multidisciplinary Analysis

and Optimization Tool

Local and/or cloud-based data storage for analysis results (e.g., simulation traces, verification results) and evaluated requirements

Compare design

families
Design rankings

Requirement

verification

Surrogate model

visualization

Figure 6: Workflow and integration platforms for the design process

Model Integration Platform

The Model Integration Platform defines the semantic concepts required for multi-domain
and multi-disciplinary design. Figure 6 depicts the key concepts, the logical relationships
between them, and the interaction between the Tool Integration Platform software com-
ponents. The key concepts are: (1) external models, (2) component models, (3) design
models, (4) design family models or design architecture models, (5) analysis templates or
executable requirement models, and (6) parametric design space exploration models. The
Tool Integration Platform is used to import existing domain-specific models as external
models. External models capture information about interfaces required for composition of
various domain models. External models from different domains are kept inside component
models and the external model interfaces are mapped to the component model interfaces
to enable composition of component models. By composing component models we form a
design model that provides a full representation of the system within its boundaries. A single
design model is often called a single point design or seed design. The design family models
represent multiple design models, often called a discrete design space, where the selection of
component models and architecture variations are not yet fixed. Therefore, a single design
model is a subset of a design family model. Because the design and design family models do

31

not encapsulate the environment of the system, often they cannot be analyzed or evaluated
against a set of requirements unless they are put into a context. Analysis templates or ex-
ecutable requirement models define the context for a system in which it can be evaluated.
The analysis templates are directly linked to the requirements of the system or subsystem
and are tied to a domain-specific analysis tool that performs the evaluation of the system
model. If an analysis template is built for a design model, it becomes reusable on design
family models as long as the design family model has identical interfaces with the design
model. This approach allows designers to reuse their models and analysis setup over several
design points. The analysis templates have an interface with input parameters and gener-
ated outputs. Parametric design space exploration models are defined to further explore the
overall design space. These models contain a driver model which represents an optimizer,
a Design of Experiment (DoE) study, or a Probabilistic Certificate of Correctness (PCC)
[61] study. A driver model selects the method used to explore the parametric design space
by generating a set of input parameters for an existing analysis template model. A PCC
driver generates the input parameters based on probability density functions. These input
parameters and their ranges are specified in the driver model, and associated with one or
multiple environment, system, subsystem, or component parameters.

Tool Integration Platform

The Tool Integration Platform provides a set of translations between models defined
in the Model Integration Platform and in external model-based engineering tools. These
translations either extract relevant information from models built in model-based engineer-
ing tools and relate that information with models in the Model Integration Platform or the
translations (model transformations) generate analysis packages for the Execution Integra-
tion Platform. Figure 6 depicts the key functions, logical relationships between them, and
the interaction between the Tool Integration Platform and the other two platforms (i.e.,
Model Integration Platform and Tool Integration Platform). The key functions are: (1)
domain model importers, (2) component model exporter, (3) design composer, (4) domain
model exporters, and (5) analysis specification exporter.

Domain model importers read existing domain models (e.g., Modelica or Computer-Aided
Design (CAD) models), import relevant information to the Model Integration Platform in
the form of external models, and associate them with component models.

The component model exporter exports the component models to an interchangeable for-
mat (e.g., AVM Component model [104, 105]) to represent all domain models and component-
level interfaces including parameters and properties of the component.

32

The design composer exports design and design family structures into an interchange-
able format (e.g., AVM Design model [104]) that contains information about components,
subsystems, and the composition of component models and subsystems. The Design Com-
poser discovers all component models within designs and design families and invokes the
Component Exporter for each included component model.

For each domain a separate domain model exporter is implemented or an existing domain
model exporter is reused if the analysis tool requires similar artifacts from the analysis
templates. For example, formal verification tools can take Modelica models as inputs along
with information about what properties must be verified. If a Modelica model exporter
already exists, then the formal verification tools can leverage the output of that exporter.
As another example, Computational Fluid Dynamics (CFD) or Finite Element Analysis
(FEA) tools require the composed geometric model to perform the analysis. If a CAD model
exporter already exists, then the CFD or FEA tools can leverage the output of that exporter.
Therefore, these domain model exporters should be created in a way that they can reuse
each other’s functionality.

In order to execute the generated models an analysis specification must define the exe-
cution steps. An analysis specification is always exported for each analysis template and for
each parametric design space exploration model. The exported composed domain models
along with the analysis specifications form an analysis package. This analysis package is
provided to the Execution Integration Platform for execution. The use of the Model Integra-
tion Platform and analysis templates makes it possible to automatically generate analysis
packages for entire design families.

Execution Integration Platform

The Execution Integration Platform provides a model-based engineering tool-independent
way to execute the analysis packages. Figure 6 depicts the key functions, logical relation-
ships between them, and the interaction between the Execution Integration Platform and the
other two platforms (i.e., Tool Integration Platform and Visualization Integration Platform).
The key functions are: (1) analysis package execution manager, (2) analysis tools, (3) Mul-
tidisciplinary Design Analysis and Optimization (MDAO) tool, and (4) local or cloud-based
data storage for analysis results.

The analysis package execution manager is a batch job executor that takes analysis
packages as its inputs and schedules individual jobs to execute them. The jobs are executed
either locally or remotely depending on how the execution manager is configured.

The analysis packages may require one or more analysis tools installed on the remote
machines; the execution manager must verify that the remote machine has the appropriate

33

tools. The analysis tool and platform requirements are set when the analysis packages are
posted to the execution manager. After the execution is finished, with either a success or a
failure, the analysis results are retrieved for the user. For remotely executed analysis jobs
the results are saved in a cloud-based data storage.

The MDAO tool could be treated as another analysis tool, but often times it requires
more computational resources than are available in a single computer. MDAO tools are com-
putational intensive tasks, when the analysis tools are executed several hundred or thousand
times. Because each analysis tool has a different result format, post processing functions are
created to map the raw data to system or subsystem level requirements. The final results
are stored in the structured analysis specification document. All the generated results are
available for the Visualization Integration Platform for further evaluation.

Visualization Integration Platform

The Visualization Integration Platform takes a set of executed analysis packages from the
Execution Integration Platform along with their results and provides several visualization
techniques to guide the designers to improve their designs and make design decisions. In
the OpenMETA tools, the Visualization Integration Platform is implemented by the Project
Analyzer. Figure 6 depicts the key visualization techniques: (1) requirement analysis, (2)
comparing designs and design families, (3) design ranking, and (4) surrogate model visual-
ization with prediction profiler and 3D constraint plots.

Each design problem defines a set of requirements and these requirements are often
defined in a textual form. The textual requirements are (manually) translated to a struc-
tured form that allows mapping of requirement values to analysis template results. The
Visualization Integration Platform provides requirement verification tools to visualize the
evaluated requirements for individual design candidates and for entire design families. For
instance, the parallel axis plot is a common way to analyze multivariate data and visualize
high-dimensional geometry (examples are shown in Chapter VI along with two use cases).

If two design candidates meet all the requirements, additional visualization tools may
be required to further compare these candidates. For each design or pair of designs the
component selection or architecture choices are visualized in a table. Another visualization
technique shows clusters in the overall design space based on selected components. The
numerical outputs of the design candidates are shown on parallel axis plots or a comparison
table. When there are more than a few outputs, it becomes challenging to pick which design
is the best. Some designs perform better in one aspect, others perform better in other
aspects.

34

The Visualization Integration Platform uses the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) analysis to create a relative ranking of the designs.
TOPSIS is a multi-criteria decision analysis method [62, 63, 158], which is used to rank
designs based on the geometric distance from the positive ideal solution and the negative
ideal solution. This way each design candidate gets a single numerical value between 0 and
1 based on the user specified weights on the analysis outputs, where 1 means the most ideal
solution and 0 means the least preferred solution. Because a single value is assigned to each
design a simple ordered list of designs can be produced to guide the designers to pick the
best design candidate(s).

When a few possible design candidates are identified by using the design ranking, further
design analysis might be required. Even if a design meets all requirements under normal
operating conditions, it can be sensitive to changes in the environment or on uncertainty of
the component properties (e.g., manufacturing tolerances). Therefore, MDAO tools are used
to evaluate the parametric design space that captures such variations. The MDAO tools
can produce a surrogate model, which serves two purposes: (a) analyze the sensitivity of the
design around the optimal operational conditions and (b) execute the surrogate model instead
of the analysis within the valid parametric space. The Visualization Integration Platform
visualizes the generated surrogate models using a prediction profiler or as 3D constraint
plots. Within the valid parametric design space the analysis outputs can be predicted with
a given set of inputs without executing the analysis.

35

CHAPTER IV

Heterogeneous component models

Problem Statement

The goal of Model-Based Systems Engineering (MBSE) is to improve the efficiency and
the quality of the design process, which can be partially achieved by: (a) using heterogeneous
component models, (b) keeping the multiple domain models consistent, (c) establishing and
tracking model dependencies, and (d) importing existing model libraries into MBSE tools.

Creating well-defined component interfaces and capturing multiple domain models (views,
concerns) for each component helps to identify and track cross-domain interactions. Using
component interfaces provides component- and subsystem-level reusability and continuous
refinement of the design within an iterative design process.

Domain models can represent multiple views of a component such as behavioral, struc-
tural, or manufacturing (e.g., the lead time or the required manufacturing process). Compo-
nents capture and encapsulate the dependencies between those views. Consider a parametric
gear component where the radius of the gear can be changed within a range. When the gear
radius changes, it must affect the behavioral, the structural, and the manufacturing view
of the component. Depending on the gear radius: (a) the dynamic behavior of the system
changes, (b) the gear claims more or less space in 3D and affects the location of the adjacent
components and the overall weight of the design, and (c) the gear may require a different
manufacturing process.

Developing model libraries is a costly, labor intensive, and time consuming process.
Therefore, designers prefer to use their existing model libraries for designing new systems. A
few new models might be developed for the new system, but most of the models are reused.
Several analysis tools provide libraries of components as part of their software distribution.
In addition to the built-in libraries, open-source and commercial packages are developed
for those domain-specific tools. Designers prefer to develop, test, debug, and validate their
libraries using the domain-specific tools.

When a new Model-Based Systems Engineering tool is used, it is important to consider
whether existing model libraries can be used or if designers should create new libraries from
scratch. To ease the friction in tool adoption, the following question must be addressed:
how to facilitate the mapping between existing model libraries and the Model Integration

36

Platform for both causal and acausal models. The model libraries can contain a set of
components (i.e., building blocks), designs, or test cases for the components.

Challenges

A wide variety of Model-Based Systems Engineering (MBSE) tools are used in product
designs and frequently models are created in distinct tools. These models are often organized
into model libraries, which leads to a research challenge: how to facilitate the mapping
between existing model libraries and a Model-Based Systems Engineering tool for both causal
and acausal models?

After the aforementioned mapping is established another research challenge arises: how
to define reuseable multi-aspect and multi-view component and design models, where com-
ponent models and design models can be reused for designing product families?

Consider dynamic simulation models implemented using different acausal modeling lan-
guages: e.g., Bond Graph and Modelica. When libraries of components are developed in
both languages, it is more convenient to use the libraries as-is rather than migrating an en-
tire library of components to another modeling language. Our goal is to develop a modeling
language that supports heterogeneous dynamics model composition that addresses how to
reuse existing Bond Graph and Modelica models within the same modeling environment.

Component and design models

Solution

Our solution described below contributes to the Tool Integration Platform and imple-
ments concepts from the Model Integration Platform including: (a) referencing existing
external models, (b) component models, (c) design models, and (d) design family mod-
els. The full specification of our implementation is represented by a meta-model called the
Cyber-Physical Modeling Language (CyPhyML); the formal semantics are defined by using
the FORMULA framework [71, 72] and presented in [105, 136]. In this section we present
the key concepts of our solution as a UML class diagram shown in Figure 7. We use the
UML class diagrams to illustrate the key concepts, relationships, and attributes.

CyPhyML is a model integration language that helps to integrate models from external
tools. Figure 8 shows that the component models encapsulate domain models that refer to
existing external models built in external tools. These existing external models may represent
physical entities, software, or a cyber-physical component that contains both. The domain
models refer to an external resource (the model contained in another tool), and capture the

37

Figure 7: Component class diagram

Figure 8: CyPhy Component model and existing external models

interfaces of that model, which are required for model composition. The implementations
of the existing external models are not replicated in these domain models, but rather the
domain models link and track the external model dependencies. In CyPhyML, there are
four different domains: (1) dynamical (e.g., Modelica, Bond Graph, or SimScape), (2) com-
putational (e.g., Simulink StateFlow), (3) structural (e.g., PTC Creo part or assembly), and
(4) manufacturing (e.g., lead time of the component, required manufacturing process). Each
domain model has a set of interfaces that include domain-specific ports and domain model
parameters. The domain-specific interfaces are mapped to the generic component-level inter-
faces called ports. Some interfaces are causal (Parameter and Causal) and some are acausal
(Structural and Acausal). In this chapter we present an example for model integration,
where the causal and acausal interfaces and their interactions are explained in detail.

Component models represent Cyber-Physical System (CPS) components that capture
and encapsulate one or multiple domain models. Domain model interfaces are extracted
from external models by domain model importers. A domain model importer builds an
external model within a CyPhy Component model and it is part of the Tool Integration
Platform. The extracted interface information and the external domain model are associated

38

Caterpillar C9 Diesel Engine : AVM Component

High-Fidelity Modelica Dynamics Model

Rotational
Power Port

Signal Port

Low-Fidelity Modelica Dynamics Model

Rotational
Power Port

Signal Port

Bond Graph Dynamics Model

Rotational
Power Port

Signal Port

Detailed Geometry Model (CAD)

Structural
Interface

Structural
Interface

FEA-Ready CAD Model

Structural
Interface

Structural
Interface

Throttle
Signal
Port

mapPower Out
Rotational
Power Port

map

Mount
Structural
Interface

map

Be ll Housing
Structural
Interface

map

Weight
680 kg

Length
1245 mm

Number of Cylinders
6

Maximum Power
330 kW

Height
1070 mm

Width
894.08 mm

Maximum RPM
2300 rpm

Minimum RPM
600 rpm

Dynamics

Detailed Geometry

FEA Geometry

Parameter/Property
Interfaces
- characterize
- configure

Signal Interfaces
- causal/directional
- logical connection
- no power transfer

Power Interfaces
- acausal
- physical phen.
(torque/angle)
- power flow

Structural Interfaces
- named datums
- surface/axis/point
- mapped to CAD

Figure 9: AVM Component Model for Caterpillar C9 Diesel Engine [105]

with these component models. Each component model has a set of causal and acausal
interfaces that participate in the composition. Component-level parameters are used to
keep the independent domain model parameters consistent by direct connections between
the component-level and the domain-level parameters. In CyPhyML, a component model
is called a CyPhy Component. CyPhy Component models are packaged with all domain
models and a component descriptor, which forms an AVM Component model. Figure 9
gives a conceptual view of an example of an AVM Component for a Caterpillar C9 diesel
engine. This example highlights the four interface types and contains: (a) a set of component
parameters (e.g., weight, height, maximum power), (b) three different dynamics models (a
high-fidelity Modelica model, a low-fidelity Modelica model, and a Bond Graph model),
and (c) two CAD models (a detailed geometry and a simplified CAD model for FEA). The
composition of several component models forms a design model.

Figure 10 shows the design model and the discrete design space model as a UML class
diagram. A design model is called a Configuration in the UML class diagram; it is called a
CyPhy Component Assembly in CyPhyML. A Configuration defines a set of components and
their interconnections, which is the full representation of a system. A set of Configurations
is represented as a discrete design space model, which can be used to model product families.
There are two types of design spaces: (1) parametric design space and (2) discrete design
space. The parametric design space is discussed in detail in Chapter V. The discrete design

39

Figure 10: Design space class diagram

space represents finite number of designs (i.e., configurations) and it is often called a combi-
natorial design space [110]. All possible configurations can be generated by enumerating over
the choices in the design space. This discrete design space contains two kinds of choices: (1)
component choices and (2) alternative topologies (i.e., variation of interconnections between
components). The discrete design space is recursive and hierarchical. In other words, design
spaces can contain other design spaces. In the OpenMETA tools, the discrete design space
and its tool support are facilitated by the Design Space Exploration and Refinement Tool
(DESERT) [23, 107, 108, 110, 111, 156].

Figure 10 shows the key discrete design space concepts. Each design space has a type; it
is either compound (i.e., mandatory model), alternative (i.e., select exactly one component
or model from a valid set), or optional (i.e., select at most one component or model). By
adding more and more component choices to alternative or optional containers, the size of
the design space grows quickly. To keep the design space to a manageable size, three types
of constraints [110] can be added: (a) visual constraints (e.g., to express symmetry in the
design), (b) constraints expressed using the Object Constraint Language (OCL), and (c)
property constraints (e.g., cumulative cost of components cannot exceed a certain value).
Applying these constraints will eliminate configurations that would violate the constraints.

The interfaces of the design space models are identical to the interfaces of the component
models. This provides continuous design refinement, where components can be elaborated
into subsystems and design spaces. As a result, component and design space models are
reusable and interchangeable. The design space models generate many configurations, where
each configuration is a full specification of a design with a selected set of component choices,
interactions, and topology.

Evaluation

In this chapter we presented our contribution to the Model Integration Platform and
Tool Integration Platform that addresses the challenge of creating heterogeneous component
models. Our solution is extensible for other domain models (e.g., circuit design) and has

40

been demonstrated in extensions performed by other researchers using the OpenMETA tools
[99]. The domain extensions will affect the component model specification, but the design
space models and tools remain intact. Our approach is applicable if there is an existing
library of composable models and the hierarchical decomposition of the designed system is
identical for all domains. In the following section, we present a detailed example for model
integration that considers causal and acausal interfaces and multiple modeling languages
such as Modelica and Bond Graphs.

Example for model integration

In order to describe the composition of CPS, we must clarify the concept of causality.
Component models are composed by connections between their interfaces (i.e., ports). These
connections represent relationships between the connected interfaces. This relationship is
either a causal or an acausal relationship. The relationship is considered causal if it is a
cause-effect (i.e., y := x) relationship between the interfaces. In other words, the value of x
always determines the value of y, but y does not determine the value of x. The relationship
is considered acausal if there is a constraint (i.e., x = y or x + y = 0) relationship between
the interfaces. In other words, for all instants of time, either x is the same as y, or the sum
of x and y is 0, but there is no causal relationship defined. A more precise definition can
be found in [153]. Typically, computational systems are causal, while physical systems are
acausal.

Using causal models (e.g., signal data flows) to represent interactions between components
that share physical variables can be complex. Typically, acausal physics models have power
ports, which represent a simultaneous, bidirectional energy exchange between components
[80, 118]. A well-formed model in an acausal framework represents a well-formed set of
dynamic equations. Acausal models typically must interface with causal models to represent
the integration of a controller function into a physical system. This requires carefully directed
variable sharing between cyber and physical system components (e.g., through sensors and
actuators).

Our solution is presented in the context of a simple electro-mechanical system. Some
dynamic system components are created using Bond Graphs, others are created using Mod-
elica. Both types of components are used in the integrated system model that describes the
system behavior. The component models are connected through ports using acausal connec-
tions. Because the components can have either Bond Graph or Modelica models, a tool has
to be selected to execute the integrated system model. We selected the Modelica language
and a Modelica tool as our simulation execution environment.

41

Solution

We present the syntax and semantics of such an integration language and its component-
based design, where components can embed models from different tools, formalisms, and
paradigms such as Bond Graphs and Modelica models. Our framework is built around a
common set of interface concepts to support heterogeneous composition and interchange-
ability among modeling paradigms.

In order to drive our focus, we needed a component-based modeling framework of such
systems, where component models were coming from different tools. We illustrate this
through a case study using a simple electro-mechanical system. A schematic of the system is
shown in Figure 11. The system is modeled using Modelica models and the simulation can
be executed using a Modelica tool. The example uses three different domains: (i) electrical
(stepV oltage, resistor, inductor and emf), (ii) mechanical rotational (emf , inertia, damper
and idealRollingWheel), and (iii) mechanical translational (idealRollingWheel and mass).

Figure 11: Schematic diagram of a simple electro-mechanical system [84]

To model further components of the same system (e.g. resistor and idealRollingWheel),
we would like to use the formalisms of another modeling paradigm, namely Bond Graphs. In
order to support this setting in a design environment, we need the following: (i) a common,
consistent modeling framework that can interface to models that are based on various for-
malisms and paradigms, (ii) a composition approach that is able to integrate and simulate
the system as a whole, and (iii) the ability to adapt the system models to widely used tools
in order to able to simulate the composed system.

In the following, we illustrate the objective with an example for the expected solution.
Regarding the case study, this means that we create the same system along with its con-
nections shown in Figure 12. The puzzle pieces represent components, which are Modelica
models. The expected solution along with its simulation results is shown in Figure 12. The
plot shows the simulation results of: (1) the angular velocity of the inertia, (2) the force
on the translational interface of the idealRollingWheel, and (3) the current on the positive
electrical pin of the resistor.

42

Figure 12: Composition diagram and simulation results [84]

We have changed the underlying model types from Modelica to Bond Graphs for the
resistor and the idealRollingWheel components. The generated simulation results are
identical with respect to the variables mentioned above and as it is shown in Figure 12.
We used a simple example, where the models of the components are easy to develop either
using Modelica or Bond Graphs. A more practical example is a drive train model, where the
engine and transmission components can be modeled using Modelica, and the final drive and
the load components can be modeled as Bond Graphs. The integration language supports
heterogeneous composition of components implemented using Bond Graphs and Modelica.
Thus, it should characterize interfaces in terms of the commonalities between the supported
modeling paradigms. We will present the integration language and its semantics.

We chose a Domain-Specific Modeling Language (DSML) to implement the integration
language. DSMLs are flexible to support iterative refinement and can capture multiple
paradigms as well as complex electro-mechanical system domains. We used the Generic
Modeling Environment (GME) [68], a meta-programmable editor, for creating this domain-
specific integration language [68]. For the Adaptive Vehicle Make (AVM) program [44], a
Cyber-Physical Modeling Language (CyPhyML) was created for a diverse set of design tasks.
This section describes the subset of an early version of the CyPhyML meta-model (language)
and explains in detail the concepts relevant to the behavior of dynamic systems.

CyPhyML has different modeling aspects and one of them is the dynamics aspect of
components. In CyPhyML components different behavior models can provide a common set
of interfaces, and can be composed through them. Also, the modeling framework supports
hierarchical composition of reusable CyPhyML components.

A Component in CyPhyML is an atomic building block. A CyPhyML component is
defined by its interfaces: (1) parameters, (2) signal ports, (3) power ports, and (4) struc-
tural ports. Because the ports are strongly typed, connections are only allowed between
port pairs of the same type. This rule, implemented by the modeling environment, forces
the designers to build such models that always comply with the structural semantics of Cy-
PhyML. Connections defined for parameters and signal ports always represent causal (i.e.,

43

cause-effect) relationships, whereas connections defined for power ports and structural ports
always represent an acausal (i.e., constraint) relationship. Each CyPhyML component in-
cludes a behavior model, a mathematical abstraction of a real-world physical system which
represents the component’s dynamic behavior. A behavior model can be specified using
the Hybrid Bond Graph Language (HBGL) or Modelica. HBGL models can be developed
within a component using CyPhyML, while Modelica models are incorporated by referring
to an external Modelica model. These references in CyPhyML replicate the parameters,
signal ports, and power ports of Modelica models, but do not include the internals or Mod-
elica code. These external models may come from the Modelica Standard Library or from
a user-defined library. All domain model interfaces should be mapped to the CyPhyML

Figure 13: Component model using Bond Graph or Modelica [84]

component interfaces shown in Figure 13. Figure 13 depicts two components representing
the same behavior: the component on the left uses HBGL and the component on the right
uses Modelica.

CyPhyML components use their own interface definition to support composition be-
tween components and to provide common structure among different modeling paradigms.
Figure 13 shows an example for the mapping between the CyPhyML component-level inter-
faces and domain model interfaces. The mapping is defined by a connection C(A,B), where
C represents the connection; A is the source element; and B is the destination element. The
mapping and the connections, which are described below are only the internal connections
that wire the component up to its interfaces. Examples are given for Figure 13. The seman-
tics of the connections are as follows. For parameters (real numbers), C(A,B) means B := A

(e.g., Eq. 1) during the model instantiation. This mapping represents a causal assignment
between A and B, where A drives B. For signal ports, C(A,B) means the signal value of B
is equal to the signal value of A during the entire simulation. It is also a causal connection
and A drives B.

BondGraph.R := R

ModelicaModel .R := R
(1)

44

While power ports are acausal connections and they contain multiple variables at the same
time, the mapping needs to be defined through equations using variables of the power ports.
A Modelica electrical pin maps to a CyPhy electrical power port: C(A,B) is going to be
resolved as Eq. 2 (e.g. Eq. 3).

A.voltage = B .voltage

A.current + B .current = 0
(2)

ModelicaModel .p.v = positive.voltage

ModelicaModel .p.i + positive.current = 0
(3)

A Bond Graph electrical port maps to a CyPhy electrical power port: C(A,B) is going to
be resolved as shown in Eq. 4 (e.g. Eq. 5).

A.effort = B .voltage

A.flow + B .current = 0
(4)

BondGraph.positive.effort = positive.voltage

BondGraph.positive.flow + positive.current = 0
(5)

A Modelica mechanical translational flange maps to a CyPhy translational power port:
C(A,B) is going to be resolved as shown in Eq. 6.

A.position = B .position

A.force + B .force = 0
(6)

Bond graph mechanical translational port maps to CyPhy translational power port: C(A,B)

is going to be resolved as shown in Eq. 7.

A.flow = der(B .position)

A.effort + B .force = 0
(7)

A Modelica mechanical rotational flange maps to a CyPhy rotational power port: C(A,B)

is going to be resolved as shown in Eq. 8.

A.angle = B .angle

A.torque + B .torque = 0
(8)

45

A Bond Graph mechanical rotational port maps to a CyPhy rotational power port: C(A,B)

is going to be resolved as shown in Eq. 9.

A.flow = der(B .angle)

A.effort + B .torque = 0
(9)

In this section we presented an example for model integration. We considered using Bond
Graph and Modelica models from existing model libraries and developed a design model for a
simple electro-mechanical system. An evaluation of our approach and its possible extensions
are provided in the section below.

Evaluation

We chose to use Modelica, which supports acausal modeling, open-source libraries, and
has some open-source tools/solvers which can execute the simulations of the composed system
models. These tools support optimization techniques and solve the initialization problem
for the dependent state variables. The modeling approach described below supports acausal
system capture via Modelica Standard Library power ports, with Modelica Standard Library
semantics as well as Bond Graphs.

One of the target languages of CyPhyML is Modelica, which means that a translator can
generate equations or instances of library elements that use equations (e.g. a Bond Graph
library) as well as connect statements for connections. The translator uses interfaces from
Modelica Standard Library 3.2 and elements from the Bond Graph library for Modelica if
bond graphs are present in the model. Modelica does not have any notion of CyPhyML
elements, and the translator works from a semantically rich domain to a semantically poor
domain.

After the CyPhyML models have been translated into Modelica models, the hierarchical
structure of the generated models resembles the original CyPhyML model’s hierarchy. This
helps users to navigate their model the same way they do in CyPhyML. The variable tree
structure of simulation results look the same, and it is easy to find the appropriate subsystems
and plot variables using any Modelica tool.

CyPhyML uses Test Benches to define a simulation or test case for a system. In general,
a system itself is not enough to perform a simulation; it requires a context, which contains
test drivers and/or environments that interact with the system. Test Benches are described
in [85] and are out of the scope of this paper, but were used to generate the simulation results
for the examples.

46

Our approach is not limited to Modelica; because Bond Graphs are the full representa-
tion of the dynamics behavior of the components, a set of Ordinary Differential Equations
(ODEs) can be derived for each component. For instance, SimScape supports equation-
based component models, therefore in our modeling environment one could use SimScape
and Simulink models from MATLAB in combination with Bond Graph component models.
In this case Bond Graph elements and the composed system model must be converted to
SimScape equations and constructs to represent the system behavior.

47

CHAPTER V

Analysis templates and model execution framework

Problem Statement

Design requirements are often defined in a textual form in the early stages of any de-
sign process. Mapping requirements to executable model representations makes requirement
evaluation possible. The evaluation of the requirements for complex Cyber-Physical Systems
(CPSs) often involves multiple domain-specific analysis tools and analysis types. The anal-
ysis types may include dynamic system analyses (including simulations), manufacturability
analyses [48], structural analyses, reliability analyses [39, 60, 132], probabilistic verification
[61, 103], or formal verification [39, 77, 86]. The different analyses could be interdependent,
where the results of one analysis are required as inputs for another analysis.

Consider a family of designs: the same set of requirements must be evaluated. A family
of designs may have component variations or architecture variations. These design varia-
tions can be explored and realized by combinatorial design space exploration using static
constraints. When the design variations are identified the requirements must be evaluated
for each design.

As computational resources become more and more available for engineers, support for
executing analyses on cloud-based platforms should also be utilized. Depending on the
complexity of the design and on the analysis type the appropriate execution platform can
be selected.

Challenges

Evaluation of requirements involves the use of one or more analysis tools. A technical
challenge is how to design the analysis templates in a way that they can be reused for
design families and in a parametric design space exploration and optimization without any
modification.

Consider a family of designs: the same set of requirements must be evaluated. A family
of designs may have component variations or architecture variations. These design varia-
tions can be explored by combinatorial design space exploration and pruned by using static
constraints. When the design variations are identified the requirements must be evaluated
for each design. This presents a research challenge: how to define the analysis templates

48

such that the templates developed for a single design are also applicable and reusable for a
family of designs?

The Model Integration Platform defines the modeling concepts and their relationships.
Two types of models are executable, but they must first be translated to an executable
form for the analysis tools. The Tool Integration Platform contains a set of domain model
composers for each aspect of the model. It also includes a generic model transformation
tool, which translates analysis templates and parametric design space exploration models
to executable analysis packages. To create these analysis packages there are two challenges
to solve: (a) how to arrange the analysis packages to facilitate both local and cloud-based
analysis execution using heterogeneous analysis tools; and (b) how to keep the concepts and
implementation extensible to accommodate custom analysis tools in the future?

Solution

In this section we present our solution for: (a) analysis templates, (b) parametric explo-
ration models, (c) tool integration and analysis package execution, and (d) project artifacts
and analysis results management. Our solution described below contributes to the partial or
full implementation of all four platforms: (1) the Model Integration Platform, (2) the Tool
Integration Platform, (3) the Execution Integration Platform, and (4) the Visualization In-
tegration Platform.

Analysis template models

The Model Integration Platform defines analysis template models (i.e., analysis templates
or executable requirements) that are executable models used to evaluate one or more require-
ments. In our OpenMETA implementation the analysis templates are called CyPhy Test
Benches. The UML class diagram for analysis template models is shown in Figure 14. Each
analysis template model contains a top level system under test model that refers to a design
model or design space model subject to test. Because the design and design space models
can have the same interfaces, they are interchangeable. In other words, an analysis template
built for a single configuration (i.e., design model) can be reused as-is for an entire design
space; and the configuration substitution and execution is fully automated. This design
model must be put into a context in which the system is evaluated. The context is provided
by test driver models, which represent stimuli to, loads for, or the environment of the system.
Sometimes the test subject is a single component of the system. For instance, a structural
FEA is only performed on certain key components. In such cases, component references are
defined in the analysis template that refer to components within the designed system model.

49

Figure 14: Analysis template class diagram

Each analysis template defines a workflow that contains one or more model generation tools
(i.e., model transformations), which are used to create an analysis package from the analysis
template model. These model generation or transformation tools are implemented in the
Tool Integration Platform. The analysis package is an executable domain-specific model for
an external engineering tool (e.g., Modelica, Simulink, CFD, FEA, HybridSal).

Each analysis template defines a set of inputs (parameters) and outputs (metrics). The
inputs of the analysis template can change the parameters of context model, system, sub-
system, or components. The outputs of the analysis template are directly associated with
requirements, which makes it possible to evaluate requirements. Parameters and metrics are
the interfaces of the analysis templates. The set of analysis templates model is an acyclic
directed graph for the analysis templates, which are used to group analysis templates. This
concept is specifically required when some domain analyses are dependent on other ones. For
instance, a dynamic simulation model (e.g., Modelica) requires the mass of the design, which
can be evaluated by another analysis on the 3D geometric model (e.g., CAD model). The
metrics from one analysis can directly parameterize other analyses. Independent analysis
templates are often grouped based on requirement groups, hard and soft requirements, or
the involved computational resources.

Parametric exploration models

Parametric design space exploration is a process where the space of parameters of the
system is sampled and the corresponding system behavior is analyzed for each sample point.
Parametric exploration models are executable models that facilitate parametric design space
exploration. A UML class diagram is shown in Figure 15. The parametric design space

50

Figure 15: Parametric exploration class diagram

exploration is performed on the contained analysis template model. The analysis templates
are used as-is without any changes and they can refer to a discrete design space.

Each parametric exploration model contains a driver, which is one of the following: (a) a
Design of Experiment (DoE) driver, (b) an optimizer driver, or (c) a Probabilistic Certificate
of Correctness (PCC) driver. Each driver generates a set of input values for the analysis
template as parameters according to an algorithm, which depends on the driver type and
the selected method. The outputs (i.e., metrics) of the analysis template are constrained,
observed, analyzed, and recorded by the driver models. The specification of the DoE driver
and optimizer driver types and methods are defined in the OpenMDAO (version 0.8.1 [32])
documentation. The PCC driver is custom driver implemented as an OpenMDAO driver
component.

The DoE driver is used to explore the parametric design space within a specified range.
It generates multiple input parameter sets for the analysis template and records the outputs.
The DoE driver can be configured to create a surrogate model for the analysis template. A
surrogate model is a simplified model that substitutes the system model with a representation
of the system behavior in a valid parametric range. A surrogate model is often used when
a detailed model exists but its execution takes excessive time. This surrogate model is
packaged with the analysis results in the analysis package and visualized by the Visualization
Integration Platform.

The optimizer driver executes a multi-objective optimization using the analysis template
with a set of design variables and objectives. The optimizer driver model defines the design
variables and their ranges in which the optimization takes place. These design variables define
which parameters are used from the analysis templates. The objectives define which metrics
are maximized and which ones are minimized during the multi-objective optimization.

Designing complex CPSs requires a design process that supports maximizing the proba-
bility of meeting the design requirements. The Probabilistic Certificate of Correctness (PCC)
method, as presented in [61], is used to analyze the design configurations to decide which
configurations have the highest probability to meet the requirements. The PCC driver model
utilizes uncertainty propagation methods to compute the PCC value for each output (i.e.,

51

Figure 16: Tool integration class diagram

metric). The PCC driver model defines the probability density function for the inputs (i.e.,
parameters) of the analysis template. The supported density functions are: (1) beta distri-
bution, (2) log normal distribution, (3) normal distribution, and (4) uniform distribution.
These input values are sampled according to the driver method and the probability density
function. The supported uncertainty propagation methods are: (1) Monte Carlo Simulation
(MCS), (2) Taylor Series Approximation (TS), (3) Most Probable Point Method (MPP),
(4) Univariate Dimension Reduction Method (UDR), and (5) Polynomial Chaos Expansion
(PCE). A detailed description of each method is presented in [61]. The output values of the
system must be in between the minimum and maximum values that are defined by the PCC
driver model. For each output a target PCC value is defined, which specifies the accept-
able probability for the output value to fall in between the minimum and maximum value.
In order to compare configurations effectively, a joint PCC value is computed, which is a
real number between 0 and 1. The results of the uncertainty propagation are probability
density functions for each output (i.e., metric). In addition to the uncertainty propagation,
sensitivity analysis is also supported by the PCC driver model.

Tool integration and analysis package execution

In this section we present our solution for tool integration and analysis package execution.
The Tool Integration Platform bridges the gap between the Model Integration Platform and
Execution Integration Platform. The Tool Integration Platform has two main aspects: (1)
extracting models from external model based system engineering tools and (2) generating
analysis packages from executable analysis models through model transformations. Each
aspect and domain of the design model is associated with one or more model transforma-
tions. These model transformations are implemented to work with individual configurations
and generate executable models from analysis templates. In order to reuse these model

52

Figure 17: Project data structure class diagram

transformations, a Master Interpreter is created that handles analysis templates specified
for design spaces and creates analysis packages from the extracted domain models by using
the domain model transformations. Figure 16 depicts the UML class diagram for this tool
integration. The model transformation workflow is implemented by the Master Interpreter
in the OpenMETA tools. This model transformation workflow requires a few key concepts
to be defined: (a) the workflow, (b) the analysis model, and (c) the execution engine.

A workflow defines a set of model generation steps and execution steps to generate the
analysis packages and execute the analyses (e.g., simulation or verification), respectively. It
refers to an analysis model, which can be: an analysis template, a parametric exploration,
or a set of analysis templates for a configuration or a design space. This means that each
analysis model can be defined for a design space and the model transformation workflow (i.e.,
Master Interpreter) will transform all configurations for individual analysis packages. When
analysis packages are generated, the model transformation workflow creates an execution
job and posts it to the execution engine. Execution engine is a software that executes the
analysis packages. The execution engine must have all the required analysis tools installed
and deployed. The execution engine is a part of the Execution Integration Platform and in
the OpenMETA tools it is called the Job Manager. The Job Manager supports local and
cloud-based analysis package execution to utilize all available resources.

Project artifacts and analysis result management

Product design involves the management of design artifacts and analysis results. In
Model-Based Systems Engineering (MBSE), the primary artifacts are models, which are
stored in a model database. Figure 17 shows a UML class diagram that represents how our
project artifacts are organized. The project manifest is the entry point of the project data
that stores project-level properties such as the file name of the project or the last modified
date. The project manifest captures: design space models, configurations, a single results

53

object, requirements, and component models. For each configuration and analysis template
pair, an analysis package is generated that maintains the dependency to the configuration and
to the selected analysis tool. The analysis package indicates the analysis status: unexecuted,
failed, or succeeded. In addition to this high-level information, it contains a list of execution
steps and a list of limit violations. Limit checking objects are defined in the domain models
to identify limit violations that often represent physical limits of the component (e.g., the
maximum torque on a physical part cannot exceed a certain value.)

Because each analysis package refers to an analysis template, they indirectly refer to
one or more requirements. The Visualization Integration Platform uses this project data
structure to discover and visualize the analysis results, configurations, and requirements
about the designed system. The visualization of the results is implemented by the Project
Analyzer in the OpenMETA tools.

Evaluation

In this chapter we contributed to all four platforms that we presented in Chapter III.
Our solution supports executable requirements for designs and design spaces in the form
of analysis template models. The analysis template models can be reused for parametric
design space exploration and for grouping analyses into a set of analysis templates. Analysis
templates, parametric exploration models, and sets of analysis templates are translated to
executable analysis packages. Analysis packages are executed by an execution engine pro-
vided by the Execution Integration Platform. The generated analysis packages and analysis
results are organized and structured for the Visualization Integration Platform.

54

CHAPTER VI

Analysis-driven Rapid Design Process

Problem Statement

In addition to the reusable analysis templates and execution framework, the requirement
trade-offs must be evaluated rapidly for several possible design candidates in an iterative
design process. The Analysis-driven Rapid Design Process (ARDP) combines the analysis
templates with discrete and parametric design space exploration. The discrete design space
exploration provides architecture and component choices with static constraints; whereas the
parametric design space exploration allows designers to sweep component, design, or envi-
ronment parameters to generate a surrogate model, perform sensitivity analyses, or optimize
the final design candidates. A surrogate model is a simplified model that substitutes the
system model with a representation of the system behavior in a valid parametric range. A
surrogate model is often used when a detailed model exists but its execution takes excessive
time. Existing analysis templates should be reusable without extra effort from the designers
in both discrete and parametric design spaces. As a result of implementing this ARDP the
design time will be significantly reduced as described in the evaluation section below.

Challenges

Designing products often involves a high dimensional design space, which creates several
challenges: (a) how to eliminate the unfeasible portion of the design space effectively, (b)
how to capture constraints and apply them incrementally on the design space, and (c) how
to determine which analysis will yield the most significant design space reduction. Hard
and soft requirements are evaluated by various analysis types: how to group these analyses?
The analyses for CPS design are similar concepts to unit and functional tests in software
development (e.g., test-driven development). In software development the tests are often run
automatically by a continuous integration system to easily identify problems in all design
phases. This leads to a research challenge: how to reduce development time for CPS design,
and effectively use computational resources without eliminating possible design solutions?

Solution

In this section we present a design flow for an Analysis-driven Rapid Design Process
(ARDP) that utilizes all four platforms. Important to note that there are other possible

55

Seed design
system as Component Assembly
Test Benches for the full system
Test Benches for a subsystems
Test Benches for components

Design Space
Turn seed design into a

design space
Reuse Test Benches as
Test Bench templates

Project Analyzer
Visualization of results

Key Performance Parameters
Metrics

Requirements
Ranking (TOPSIS)

Configuration
Generate configurations

Expand Design Space
Add alternatives

Create constraints
Parameter
Property

Visual
Regular OCL

Conditional Property
Decision Group

Test benches
Run analyses

Static
CAD

Dynamics simulations
FEA
CFD

Manufacturing

Import new components
(e.g., CAD/Modelica)

Surrogate equations

Parametric Exploration
PCC

Optimization
DOE

Verification tools
QR

HybridSAL
Prismatic

Figure 18: Analysis-driven Rapid Design Process: design flow

design flows can be implemented. We assume that a library of component models, an initial
design, and simulations or analyses are given in a Model-Based Systems Engineering (MBSE)
tool. The component models are imported into the OpenMETA tools by using the domain
model importers. The initial design is used as a seed design and created in the OpenMETA
tools as a CyPhy Component Assembly. The simulation and analyses models are converted
to analysis templates called CyPhy Test Benches.

Figure 18 shows that our initial setup including all analyses can be executed on the seed
design. At this point of the design process it is irrelevant if the initial design meets the
system requirements or not. However, it is important to get a working model that can be
used to seed our discrete design space. There is automated tool support to turn the seed
design into a design space that yields a single configuration.

OpenMETA tools can be used to create new component instances if the imported com-
ponent models are parametric. These new instances can be added as component choices to
the design space to explore more configurations. In addition to these component choices,
alternative topologies can be represented by this hierarchical design space model. By imple-
menting and applying design constraints, unfeasible configurations are effectively eliminated
that would violate those constraints. These features provide management and continuous
refinement of the design space.

The existing CyPhy Test Benches can be configured to work on the entire design space as
long as the design space provides the same interfaces that the CyPhy Component Assembly

56

(seed design) provides. If the design space has the same interfaces, then each generated
configuration will have the same interfaces. This approach minimizes the effort to evaluate
the analysis templates for an entire design space by reusing the original model.

Some analysis templates may take more time to evaluate than others. It is a good practice
to group the analysis templates by execution time and requirement groups. For instance,
if our potential design space is large (e.g., contains several hundreds of configurations), it
is not preferable to start with FEA simulations that could easily take several hours per
configuration. It is better to evaluate cost, weight, or spatial dimensions (height, length,
or width); or to group the analysis templates based on hard and soft requirements. These
analyses often takes only a few seconds to a minute per configuration.

Our design environment promotes model reuse, therefore the analysis templates can be
used by formal and probabilistic verification tools as well as parametric design space explo-
ration models. All analysis results are collected and consolidated for the Project Analyzer as
shown in Figure 18. The Project Analyzer provides visualization and ranking techniques to
explore the generated results for both discrete and parametric design spaces. Based on our
design decisions, one could: (1) add or relax design space constraints and (2) add or remove
component choices and topologies from the design space to find the best configuration for
our designed product. One of the key elements in our ARDP is this built-in feedback loop
in the design flow, which makes rapid design iteration possible.

The analysis templates can also be used for unit (component) testing and integration
(design model) testing. The automated execution of analysis templates can be triggered by
changes made to CPS components and designs, which is a similar concept to continuous
integration systems in software development. These presented features make an iterative
and rapid design process possible.

Evaluation

We developed two use cases to evaluate and utilize our Analysis-driven Rapid Design
Process (ARDP): (a) an oscillator circuit design and (b) a ground vehicle driveline design.
The oscillator design represents a simplified system to show all design phases in the design
process. The ground vehicle driveline design model represents a Cyber-Physical System
(CPS) of more realistic size and scale. In the simplified case, we compare the time taken
to build and analyze the models for the system using a Modelica simulation tool and the
OpenMETA tools. The oscillator design uses only the electrical domain and a Modelica
simulation tool.

In addition to these two examples, an earlier version of the META engineering design
process was evaluated in [40] by using a sophisticated System Dynamics (SD) model, which

57

Figure 19: Oscillator example: Modelica.Electrical.Spice3.Examples.Oscillator [6]

allows the simulation of the design process. The study demonstrated a speedup factor
of 4.4 for this process compared to current practice against a benchmark case with 3,000
requirements. The results were also validated against data from the Boeing 777 Electric
Power System (EPS) design project where a speedup factor of 3.8 was achieved.

Oscillator

In this section, we present a simple electrical circuit design problem to demonstrate
and evaluate our Analysis-driven Rapid Design Process (ARDP). The purpose of this use
case is not to compare the design process with existing circuit design tools, but rather
to demonstrate each phase of this design process on a simple use case. For this use case
we selected an oscillator circuit (i.e., astable multivibrator) from the Modelica Standard
Library (MSL) as-is Modelica.Electrical.Spice3.Examples.Oscillator. Furthermore,
we highlight under what assumptions and conditions this design process is more effective
than the traditional design process. In addition to the aforementioned goals, we aim to
identify issues as early in the design process as possible.

v(t) =

0V, 0 < t < 0.5ms
8V

10mst− 0.4V, 0.5ms < t < 10.5ms

8V, 10.5ms < t

(10)

Figure 19 depicts the selected design model and its testing environment setup in Modelica.
The oscillator design contains two transistors denoted by T1 and T2, two capacitors denoted

58

Figure 20: Oscillator example: simulation results

by c = 100nF and c1 = 100nF, and four resistors: a base resistor for each transistor r1 = 22kΩ

and r2 = 22kΩ and a collector resistor for each transistor r = 1kΩ and r3 = 1kΩ. There
are four elements in the circuit diagram that are associated with the test definition: (a)
the voltage source denoted by v, (b) the two grounds denoted by ground1 and ground2 ,
and (c) the resistive load denoted by r4 = 10kΩ. The voltage source drives T1 transistor in
the oscillator with a ramp function as shown in Eq. 10. After the voltage source reaches its
maximum value 8V the output signal shape becomes periodic. The two grounds constrain the
voltage to 0V on the emitter for both transistors. The collector and emitter of T2 transistor
is connected to the resistive load.

A Modelica simulation tool called Dymola [144] was used to execute the simulation for
this model. The original simulation setup was as follows: (a) the selected solver is the
differential/algebraic system solver (DASSL) [125], (b) the start time is 0s, (c) the stop time
is 25ms, (d) the tolerance is 10−4, and (e) the number of intervals is 500. The simulation
results are shown in Figure 20, where the plot on the top depicts the voltage across the
resistive load r4.v(t) and the ramp voltage of the power source v.v(t). The plot on the

59

bottom shows the current through the resistive load r4.i(t).

v4max =
r4

r4 + r3
vmax

v4max =
10kΩ

10kΩ + 1kΩ
8V

v4max =
10kΩ

11kΩ
8V

v4max ' 7.27V

(11)

When the T2 transistor is open (i.e., OFF), there is a voltage divider for the output
voltage that determines the maximum voltage across the load v4max and maximum current
through the resistive load. According to Eq. 11 the maximum voltage Vmax = v4max is 7.27V
and as Eq. 12 shows the maximum current Imax = i4max is 727µA.

i4max =
v4max

r4

i4max '
7.27V
10kΩ

i4max ' 727µA

(12)

This initial design model is used as our seed design. In the following sections we define
a set of requirements, explore alternative options for the transistor components T1 and T2,
explore resistor alternatives for r and r2, and explore capacitor alternatives c and c1 to find
the most feasible design configurations that meet all requirements.

After selecting the feasible design candidates, we will test the robustness of the design us-
ing parametric design space exploration utilizing the Probabilistic Certificate of Correctness
(PCC) and Design of Experiment (DoE) capabilities of this Analysis-driven Rapid Design
Process. Finally, we present an evaluation on how much time it took to build and analyze
this oscillator system, compare it with using only the model-based engineering tool (i.e.,
Modelica), and conclude under what conditions this design process is more effective than the
traditional design process.

Requirements

Table 2 summarizes all of our design requirements for this oscillator design problem.
Each requirement defines a threshold and an objective value; the designed system must
pass the threshold to meet the requirement. There are three main design categories: (1)
timing properties, (2) currents, and (3) voltages. The timing properties category contains
three requirements: (1) rise time tr, (2) fall time tf , and (3) frequency f . The currents

60

Category Name Symbol Threshold Objective

Timing properties Rise time tr 280µs 240µs
Timing properties Fall time tf 15µs 13µs
Timing properties Frequency f 325Hz 450Hz

Currents Maximum Current Imax 800µA 750µA
Currents Minimum Current Imin 4µA 3µA
Voltages Maximum Voltage Vmax 7.7V 7.4V
Voltages Minimum Voltage Vmin 40mV 30mV

Table 2: Oscillator: Requirements

category has two requirements: (1) maximum current Imax and (2) minimum current Imin.
The voltages category has two requirements: (1) maximum voltage Vmax and (2) minimum
voltage Vmin. All requirements are evaluated based on the example model and the numerical
values are measured on the resistive load r4.

Alternative components

For this design problem, we consider component alternatives for the base resistors r and
r2, the capacitors c and c1, and the transistors T1 and T2, The default resistor value is 22kΩ

for r and r2 called RB; and the five resistor alternatives are shown in Table 3. The default
capacitor value is 0.12µF for c and c1 called C; and the five capacitor alternatives are shown
in Table 4.

Base Resistors (RB)
18kΩ
20kΩ
22kΩ
24kΩ
27kΩ

Table 3: Oscillator: Resistor alternatives

Capacitor (C)
0.068µF
0.082µF
0.12µF
0.15µF
0.1µF

Table 4: Oscillator: Capacitor alternatives

Table 5 lists all parameters that are considered for each transistor. The transistor alter-
natives and their parameter values are summarized in Table 6. Parameter values are rounded
to fit here by a maximum of 0.3% error and only the key parameters are shown because of
space limitations. The selected transistors cover a broader application range than what is
required for oscillator design, but the purpose of this use case is to demonstrate the design
process.

61

Symbol Unit Definition

IS A Transport saturation current
BF Ideal maximum forward beta F
BR Ideal maximum reverse beta
VA V Early voltage
RB Ω Zero bias base resistance
RC Ω Collector resistance
RE Ω Emitter resistance
TF s Ideal forward transit time
TR s Ideal reverse transit time
CJE F Zero bias B-E depletion capacitance
MJE B-E junction exponential factor
VJE V B-E built in potential
CJC F Zero bias B-C depletion capacitance
MJC B-C junction grading coefficient
VJC V B-C built in potential

Table 5: Oscillator: Transistor parameters

Type IS BF BR VA RB RC RE TF TR

2N2222 248fA 100 5 73.9V 0.13Ω 0.3Ω 0.4Ω 400ps 40ns
2N3055 4.66pA 60 2 100V 3Ω 0.44Ω 1mΩ 99.5ns 570ns
2N3904 6.734fA 140 4 74V 10Ω 1Ω 0Ω 301ps 240ns
2N4401 9.09fA 300 4 113V 1.27Ω 0.127Ω 0.32Ω 512ps 151ns
2N5179 0.069fA 282.1 1.176 100V 10Ω 4Ω 0Ω 141ps 1.59ns
2N5551 2.511fA 155 3.197 100V 10Ω 0Ω 0Ω 560ps 1.2ns
2SC4793 1.8pA 146.38 4 273V 1.7Ω 0Ω 0Ω 1.23ns 983ns
2SC5200 30.46pA 96.2 4.849 100V 20.18Ω 0Ω 0Ω 686ps 10ns
BC547A 15.3fA 180 8.628 69.7V 1Ω 0.65Ω 0.64Ω 500ps 1fs
BC550C 45fA 200 12.2 162V 167Ω 0Ω 0Ω 595ps 10ns
BC847A 10.2fA 180 4 121V 3.66Ω 0Ω 0Ω 427ps 50.3ns
MJE340 801fA 123.09 0.00419 100V 4.44mΩ 0Ω 0Ω 16.5ns 10ns

Table 6: Oscillator: Transistor alternatives [33]

62

By using the information about these alternative components we developed a component
library to capture all component alternatives. To verify that the simulation results are
sensitive to component choices a few alternative designs were manually created and simulated
using a Modelica simulation tool. As a result of having five resistor alternatives, five capacitor
alternatives, and twelve transistor alternatives our combinatorial design space yields 90, 000

possible configurations according to Eq. 13.

numberOfConfigurations = 12(T1)× 5(r)× 5(c)× 12(T2)× 5(r2)× 5(c1)

numberOfConfigurations = 90, 000
(13)

Clearly, manually exploring this design space is labor intensive, error-prone, time consum-
ing, and wasteful in terms of computational resources. The 90, 000 configurations contain
several configuration clusters that are outside of our interest. For instance, when different
transistor instances are used for T1 and T2, or when the capacitor value is different for c
and c1. However, Modelica supports replaceable model elements that can be used to over-
come this issue. Replaceable elements constrain the component choices and keep the two
transistors the same. Note that not all model-based engineering tools have such a feature.
Now consider a more complicated constraint, which is based upon parameter values from
the selected components; such a case cannot be expressed using the Modelica language. The
purpose of this use case is not to show why our design approach and tools are better than
Modelica, rather when to use Modelica only and when to use our design approach.

Discrete design space exploration

Instead of exploring the discrete design space in Modelica, the entire component library
was imported into the OpenMETA tools [69] and the design was developed according to
the original Modelica model. Using this design model an analysis template was designed
to evaluate all seven requirements of the designed system. Figure 21 depicts an executable
requirement model in the form of an analysis template. This analysis template contains a
reference to the system design, and defines the environment including test drivers and loads,
input parameters, solver settings, post processing of the raw result data, and output metrics
that are directly associated with the requirements.

It is often important to keep analyses of the results outside of the simulation model, and
process the generated time series data afterward instead of putting more calculations on the
dynamics solver. If the data processing for results analysis involves higher-order equations or
defines new variable derivatives, it could negatively impact the simulation execution time due
to the increased number of equations. Therefore, we do post processing of results outside the

63

Figure 21: Oscillator: Analysis template

simulation. For instance, if each simulation takes one extra second, simulating a design space
with 90, 000 configurations would add ∼ 25h to the total execution time. If the execution is
sequential due to limited resources, the design process would be delayed by an entire day.

When the analysis template model becomes functional and executable, our original de-
sign (i.e., seed design) can be turned into a design space. The resulting design space is
shown in Figure 22. As we discussed before, there are alternative component choices for six
components in the design. The Design Space Exploration and Refinement Tool (DESERT)
[107] allows us to prune the design space using several design constraints. In this example,
a total of five constraints are used: three visual constraints and two property constraints.
These visual constraints express the symmetric relationship between the transistors (T1, T2),
the resistors (r, r2), and capacitors (c, c1), which means that pairwise they must be the same
instance (i.e., have the same parameters). The two property constraints represent a limit on
the minimum and maximum value (Eq.14) of the RBC circuit, which is directly related to
the timing property of the oscillator.

2.2ms ≤ RBC

RBC ≤ 3ms
(14)

By applying all five constraints, the design space yields 84 viable configurations. Assum-
ing that the execution of the analysis template takes one second per configuration, these 84

configurations would take 84s (∼ 1.5min) vs ∼ 25h for all 90, 000. First, we wanted to verify
that all transistor options can be simulated without wasting computational time; the model

64

Figure 22: Oscillator: Design space

for the transistor is more complex than for the resistor and the capacitor, which could cause
solver errors. Therefore, we fixed the resistor and the capacitor choices to a single instance,
and considered only a subset of the design space with 12 transistor alternatives. Out of the
12 simulations one configuration failed with a simulation error as shown in Appendix C.

Start time = 0s unchanged−−−−−−→ 0s

Stop time = 25ms changed to−−−−−−→ 60ms

Number of intervals = 500
changed to−−−−−−→ 5000

Tolerance = 10−4 changed to−−−−−−→ 10−6

(15)

After changing the solver settings as described by Eq. 15 all 12 configurations are suc-
cessfully simulated. Next, we executed all 84 configurations for the viable design space; 4
configurations failed (cfg51, cfg53, cfg55, and cfg81) because of the solver settings. Selecting
and fine-tuning the dynamics simulation solver is outside of the scope of this thesis, but
we have learned that this Design Space Exploration and Refinement Tool can be used with
analysis templates to quickly discover such issues (e.g., modeling errors or simulation setup
errors) in the early phases of the design process.

Ranking designs by simulation results

In order to effectively compare the configurations, weights are assigned for each require-
ment, which are used in the scoring function by the TOPSIS analysis. The TOPSIS analysis

65

Symbol Metric name Min/Max Weight (0− 1)

f frequency max 0.68
tf fall time min 0.50
tr rise time min 1.00
Imin minimum current min 0.65
Imax maximum current min 0.50
Vmin minimum voltage min 0.77
Vmax maximum voltage min 0.50

Table 7: Oscillator: Scoring weights

Figure 23: Oscillator: Parallel axis plot colored by ranking

assigns a value between 0 and 1 for each configuration based on the weights shown in Table 7.
The configurations are ranked and sorted in descending order based on the scores. The de-
tailed results including component choices, requirements (Passed Objective, Passed Thresh-
old, or Failed), numerical values, and the score are shown in Appendix D. The maximum
voltage Vmax ' 7.27V and maximum current Imax ' 727µA are omitted from the results be-
cause all configurations have the same values. The minimum voltage Vmin is also omitted from
the results because it can be easily derived from the minimum current Imin. For instance,
for cfg39 Imin ' 0.969µA, which results in Vmin = Iminr4 ' 0.969µA× 10kΩ ' 9.69mV.

The numerical results are presented in Appendix D for all configurations. The Project
Analyzer provides a visualization technique to show each configuration and the associated
numerical values in a single plot called parallel axis plot. The parallel axis plot depicts four
selected axes: (a) frequency, (b) minimum current, (c) minimum voltage, and (d) rise time
for all configurations in Figure 23. The requirement threshold and objective values are shown
on each vertical axis. Each line in the plot is associated with a single configuration in the

66

Figure 24: Oscillator: Parallel axis plot colored by requirements

design space. The color of the lines varies according to the score, where red is 0 and blue
is 1. Figure 24 depicts another parallel axis plot, where each configuration is color coded
based on the requirements: (a) red means the configuration failed one or more requirements,
(b) green means the configuration passed all threshold values for all requirements, (c) blue
means the configuration passed all objective values for all requirements, and (d) gray means
some of the requirement values are not available for the configuration.

Parametric design space analysis

The numerical results presented in the previous section correspond to the nominal pa-
rameters for the components and the environment (e.g., resistive load). Even though some
configurations had higher scores than others, those configurations may not be as robust or
stable to meet the requirements if there is uncertainty on the parameter values. In order to
analyze the output changes for each configuration, two parametric design space analyses are
performed: (1) a Probabilistic Certificate of Correctness (PCC) analysis and (2) a Design of
Experiment (DoE) analysis. The PCC method, as presented in [61], is used to analyze the
design configurations to decide which configurations have the highest probability to meet the
requirements. The PCC value is a number between 0 and 1, which represents the probability
that the outputs will fall within our specified ranges.

The existing analysis template, called a Test Bench, is reused as-is in a PCC model as
shown in Figure 25. The PCC model contains two models elements: a Test Bench model and
a PCC driver model. The PCC driver records four out of seven outputs of the Test Bench
model and defines confidence intervals for them: (1) frequency (325Hz−450Hz, target value:
85%), (2) minimum current (0A−4µA, target value: 80%), (3) minimum voltage (0V−40mV,
target value: 75%), and (4) rise time (0s − 280µs, target value: 92.5%). The PCC driver

67

Figure 25: Oscillator: Probabilistic Certificate of Correctness model

Figure 26: Oscillator: Failed Probabilistic Certificate of Correctness configurations

varies two inputs with a probabilistic distribution function: (1) the maximum voltage of the
voltage source with a uniform distribution (6V − 10V) and (2) the value of resistive load
with a uniform distribution (9.5kΩ − 10.5kΩ, considering 5% resistor precision). The PCC
driver uses univariate dimension reduction method [130] for the uncertainty propagation in
the model and generates input values based on the specified distributions.

All 84 configurations are executed for the PCC model. Figure 26 depicts 10 configurations
that failed to execute successfully. The cause of the failure originated from the selected
dynamics system solver. As we mentioned before, selecting and fine-tuning the dynamics
solver is outside of the scope of this thesis. By analyzing the simulation results, cfg39
and cfg72 have the highest score in ranking, but cfg3 and cfg45 have the highest PCC
value. Figure 27 depicts the output distributions, PCC value, and complexity value for all
four configurations and four variables. Each column is associated with one configuration
in Figure 27 in the order as follows: cfg39, cfg72, cfg3, and cfg45. Each row represents

68

Figure 27: Oscillator: PCC results for cfg39, cfg72, cfg3, and cfg45

an output of the Test Bench model in the order as follows: frequency, minimum current,
minimum voltage, and rise time. Even though cfg39 and cfg72 are the best configuration
choices according to the ranking, they are not as robust as cfg3 and cfg45, which still meet
all design requirements. Figure 28 shows the overlaid time series simulation results of the
selected four configurations.

The PCC model can be easily extended to consider parametric variations and uncertainty
for each resistor and capacitor component in the design. By executing that modified model
we can determine if we can use resistors with a 5% tolerance, or if it is necessary to use 1%

components.

Figure 28: Oscillator: Overlaid simulation results

69

Figure 29: Oscillator: Design of Experiment model

Figure 30: Oscillator: Design of Experiment results for rise time (cfg39 and cfg45)

The highest ranking design is cfg39 and the most robust design is cfg45. On these
two configurations another parametric design space analysis is performed. The exact same
analysis template (i.e., Test Bench) is used to set up a Design of Experiment (DoE) model to
create a parameter study. Figure 29 depicts the DoE model, where the value of the resistive
load and the maximum voltage of the voltage source are sampled within the parametric space
by the selected DoE method called full factorial. The full factorial driver uses 5 levels, i.e., 5
samples per input, which is a total of 25 samples per configuration. In addition to the DoE
driver a surrogate model is generated using the response surface methodology. Figure 30
shows the resulting response surfaces for cfg39 and cfg45. The 3D plots correspond to the
variations made to the resistive load and to the maximum voltage on the voltage source, and
shows the results for rise time on the vertical axis.

70

Evaluation

In order to evaluate our design process, the time to perform the key activities involved
are measured and presented in Table 8. By using this Analysis-driven Rapid Design Process
(ARDP) along with the design flow, as presented in this chapter, it took approximately
10 hours and 22 minutes to design this oscillator circuit. The design activities include: (a)
creating the requirements, (b) building a component library, (c) exploring possible design
alternatives and component choices, and (d) analyzing the robustness and sensitivity of the
design. Because we selected an example circuit from the Modelica Standard Library (MSL),
the initial design structure (i.e., seed design) was given. Even for this simple example most
of the time is spent on creating the component library (∼ 19%) and creating the design
space with constraints (∼ 19%).

If this design task were performed using Modelica alone, some of the steps we took
would be identical (e.g., creating a requirement specification, creating a component library).
However, other steps (e.g., exploring the discrete design space manually) would have taken
far more time, depending on the scale or the complexity of the design. For instance, handling
complex design constraints. Modelica supports replaceable packages, which can be used to
ensure that the same component instance is selected for the transistor, the resistor, and
the capacitor pairs, but the constraint on RBC for timing cannot be expressed by using
the Modelica language. Therefore, the configurations in the design space must be manually
created, assuming no other external tools are used (such a tool may need to be developed
specifically for the task). Using a manual process it takes approximately 15 min to set up
one configuration in Modelica, execute the simulation, and extract and organize the results.
For 84 configurations, it means 84 × 15min = 1260min = 21h. OpenMDAO [31] is used to
define the PCC and DoE analyses. Assuming an OpenMDAO wrapper exists for Modelica,
to set up and run all analyses takes 3 h using parallel execution. By adding the individual
activities together 30min + 2h + 84 × 15h + 3 h = 26.5h is required to design and analyze
the same system, which is ∼ 2.47 times slower than our design process.

However, if there is only a single design with no alternative choices and configurations
then the total time is 30min+1×15min+30 min = 1.25h (no component library and only one
configuration is considered). In this case, our design process is ∼ 8.29 times slower than the
traditional design process. In both cases, the initial design is given and it would add the same
constant time to both processes. We only evaluated and analyzed the additional activity,
which is significantly different in both processes. Our experiment shows that the traditional
design process is preferred and more effective if there are: (a) one or a few design variations
considered, (b) one or a few alternative components considered without any constraints,
and (c) a single analysis tool is used. However, we can conclude that our Analysis-driven

71

Activity Required time

Created a requirement specification 30min
Built a component library for transistors 2h

Imported the components into CyPhy 15min
Created resistor and capacitor components in CyPhy 30min
Created the design in CyPhy 15min
Imported the test components in CyPhy 5min
Created the Test Bench in CyPhy 35min
Debuged the generated model to get it working 1h
Implemented post processing scripts 1h

Created a design space with constraints (90, 000/84) 2h
Executed 12 designs, one failed, changed solver settings 2min
Executed 84 designs, two failed, changed solver settings 10min
Analyzed the results, set metric weights 10min

Created a PCC model for the design space 30min
Created a DoE model for the design space 30min

Executed PCC over the entire design space 84 cfgs 45min
Executed DoE for 8 cfgs 5min

Total time 10h 22min
Design time (∼ 88.42%) 9h 10min
Execution time (∼ 11.58%) 1h 12min

Table 8: Oscillator: Design time

Rapid Design Process (ARDP) is preferred and more effective if there are: (a) several (e.g.,
tens or hundreds) of possible design variations, (b) several alternative components (i.e., a
large component library) are considered with design constraints, and (c) multiple (possibly
interdependent) analysis tools are used.

Ground vehicle driveline

Our case study is the design of a ground vehicle driveline, subject to a set of system-
level requirements. The following sections walk through the stages of an Analysis-driven
Rapid Design Process (ARDP) for this driveline example to find the best possible design
point (i.e., prototype) with respect to the defined requirements. This case study does not

72

explore alternative architectures (e.g., hybrid driveline), but our example can easily be ex-
tended to include such alternatives, because the tools used herein already provide support
for representing alternative design architectures. Alternative architectures would consider
topologically different designs, where the variations are not only in the component choices,
but also in the interactions between components.

Requirements

The driveline model has 19 automotive performance requirements that are divided into
five subcategories: Speed, Acceleration, Range, Temperature/Cooling, and Fuel Economy. To
illustrate the Analysis-driven Rapid Design Process, we consider 11 of the 19 requirements.
The Speed requirement category contains five maximum speed requirements (forward speed,
hill climb on different surfaces, and reverse speed) and two average speed requirements, one
using a drive cycle defined from the US06 Supplemental FTP Driving Schedule [3].

Each requirement has a threshold and an objective value. The threshold is the pass/fail
mark, and the objective represents the ideal outcome. A score can be assigned to each
metric by comparing it to the threshold and objective; exceeding the objective will not
necessarily have increased benefit. A design’s overall (weighted) score is computed based
on the requirement structure and analysis results, and represents the quality of the design,
which facilitates the quantitative comparison of different design variations.

Analysis templates

Analysis templates, called CyPhy Test Benches in the OpenMETA tools [13, 69], are
the executable versions of the requirements. Figure 31 depicts a CyPhy Test Bench model
containing a driveline design, test components, environmental conditions, driver profile, four
parameters (i.e., inputs), and five metrics (i.e., outputs). This Test Bench evaluates five
of the requirements for a driveline design point. In order to evaluate other requirements,
additional Test Benches are implemented in the OpenMETA tools; the collection of Test
Benches that captures the entire set of requirements is defined as a Set of Test Benches
(SoT). By executing the SoT model, all requirements are evaluated for a single point design.

Single Design Point (architecture seed design)

A seed design is built as a Component Assembly in CyPhy, and it is used to hash out
the initial component choices and the general architecture of the design. The architecture
consists of a cooling system, software controllers (Engine Control Unit and Transmission
Control Unit), left-hand and right-hand side drive (each includes a drive shaft and a final

73

Figure 31: Vehicle driveline: Full Speed Forward Test Bench [83]

drive), two surrogate fluid models (air path and fluid sink), a battery, a fuel tank, an engine,
and a transmission. The Engine Control Unit (ECU) and Transmission Control Unit (TCU)
software Components are implemented using the Cyber Composition Language [109] and
corresponding C++ code is generated for simulation purposes.

The key components from the Speed and Acceleration requirements category point of
view are the engine and the transmission components. We focus only on these two key
components to improve the performance characteristics of the driveline design in order to
meet all requirements. The seed design has a Deutz BFM1015M (290HP) engine and an
Allison X200 4A (4 forward gears) transmission. It is also possible to consider different
engine and transmission alternatives by using the OpenMETA tools and programmatically
turning the seed design (i.e., single design point) into a discrete design space.

Discrete Design Space

The discrete design space resulting from the single design point has the exact same
hierarchical decomposition structure. The discrete design space for the driveline model shows
that for the engine and the transmission, designers can consider alternative components. In
other words, different engine and transmission component models can be added and all
possible design points are encoded by this design space. Table 9 and Table 10 summarize
some of the engine and transmission options, respectively, and their important parameters
that we considered based on publicly available data sheets from the manufacturers’ websites
[2, 28, 66, 67, 142]. The highlighted transmission and engine instances were used in the
original seed design.

74

Supplier Type HP

Caterpillar C9 280kW 375
Caterpillar C11 313kW 420
Caterpillar C15 444kW 595
Caterpillar C18 597kW 800
Caterpillar C27 597kW 800
Caterpillar C32 709kW 950

MTU MT883 644kW 864
MTU 6V199 261kW 350
MTU 6V199 335kW 455
MTU 6V199 430kW 585
MTU 8V199 530kW 720
MTU 8V199 603kW 820
MTU 8VMT881 736kW 1000
MTU 12VMT883 1103kW 1500
MTU 6R106Euro3 240kW 325
Deutz BF6M1015M group A 290

Deutz BF6M1015MC group A 385
Deutz TCD2015V6M group A 440
Deutz TCD2015V8M group A 600

Cummins QSM 350HP FR20019 350
Cummins QSM 400HP FR20003 400
Cummins QSX 400HP FR10581 400
Cummins QSX 500HP FR10583 500

Table 9: Vehicle driveline: Engine alternatives (23/25) [83]

The discrete design space contains 25 engine alternatives and 8 transmission alternatives
yielding 200 configurations. Clearly, adding alternative components for every design con-
tainer will quickly explode the number of possible configurations. As a direct result of the
large number of configurations, the time required for executing all Test Benches (8 in this
example, but there could be many more) over the entire design space becomes computation-
ally expensive and thereby increases the design time. Elaborating all possible configurations
is not scalable and is unnecessary, because there are many engine/transmission combinations
that cannot be physically realized. Using design space constraints (symbolic expressions over

75

Supplier Type
Minimum

HP

Maximum

HP

of forward

gears

of reverse

gears

Allison X200-4A 206.36 344.38 4 1

Allison X200-4B 239.86 399.32 4 2
Allison XT1410-4 473.02 787.92 3 1
Allison XT1410-5A 473.02 787.92 3 1
Allison XTG411-2A 213.06 355.1 4 2
Allison XTG411-4 340.36 566.82 4 2

Table 10: Vehicle driveline: Transmission alternatives (6/8) [83]

the design variables that must be true for all feasible designs) we can prune the combinatorial
design space to a smaller set of designs which allows us to elaborate and analyze only the
viable configurations. Rapidly eliminating non-viable configurations is a powerful technique,
and saves precious time and computational resources, which facilitates our rapid design pro-
cess. For the driveline model we used two property constraints: the engine output power
rating must be within the range of the transmission’s minimum and maximum input power
rating. For instance, according to the data sheets, Caterpillar C15 444kW engine from Table
9 can only be used with one of two transmissions: Allison XT1410-4 and XT1410-5A from
Table 10, because the engine’s output power is 595 HP, which exceeds all other transmissions’
maximum input power rating.

The next step of this design process is to evaluate all requirements for every viable
generated design point. Eight CyPhy Test Benches already exist for the original seed design.
The OpenMETA tools support the reuse of these Test Benches for an entire design space by
changing the top level system under test object in every Test Bench to point to the newly
created Design Space container. This approach produces reusable analysis templates (Test
Bench models) for any design point within the discrete design space as long as the system
under test component has the same interface. A Set of Test Benches can also be used with
a discrete design space to execute all Test Benches from a single entry-point.

Once all Test Bench results are available, the Project Analyzer helps designers to under-
stand which designs meet the requirements and which ones do not (and by how much). One
of the visualization techniques is the parallel axis plot as shown on Figure 32, where each
design is represented by a single line and each line is color-coded. The color-coding is either
based on Component-level limit violations (see Figure 32), or whether the requirements are
met or not, or ranking. On each vertical axis the threshold values (red) and the objective
values (green) are marked for each metric.

76

Figure 32: Vehicle driveline: Physical limit violations [83]

All of these capabilities guide the designers to make decisions about which design points
should be considered for further and more detailed analyses. In our use case we selected
configurations 2, 4, 7, 30, and 43 for parametric design exploration. Note: the original seed
design is configuration 41. Performing these analyses during the design process, before all
design details have been finalized, facilitates the Analysis-driven Rapid Design Process.

Parametric Design Space

In the previous section the discrete design space exploration was presented in the context
of the driveline model. The OpenMETA tools support parametric design space exploration
through the Parametric Exploration models. In most cases, parametric analyses take sig-
nificantly more time than discrete, because all Test Benches are executed multiple times
for a single design point. These parametric analyses are used to assess the robustness of
the designs and to generate surrogate models for the Test Benches. For instance, even if a
design meets all requirements using the mean values of component parameters and environ-
ment conditions, it is important to see the impact on the metric values (i.e., output of the
Test Benches) if parameters (i.e., inputs of the Test Benches) have variations or if they can
change within a certain range during normal operating conditions.

System Robustness Analysis

A Probabilistic Certificate of Correctness (PCC) [61] parametric driver is set up for the
Full Speed Forward Test Bench as shown in Figure 33. The grade and the mass parameters
are defined as probability density functions (pdf), where the grade has a uniform distribution
between a minimum and a maximum value and the mass has a normal distribution with a
mean and a variance. Generated results show the impact on the outputs (acceleration to
20km

h , average speed, and vehicle speed) of the Test Bench. The minimum values and the

77

Figure 33: Vehicle driveline: Parametric Design Space Exploration Models [83]

acceptable PCC target values are defined in the parametric exploration model by the user
and they are visualized on the plots by the Project Analyzer. The PCC value for each output
is the area below the output pdfs within the minimum and maximum range.

PCC experiments can be defined for multiple Test Benches as shown in Figure 33, which
means a system robustness analysis is performed for multiple requirements. For each Test
Bench one “joint” PCC value is computed based on the individual PCC values for each metric
[61]. The joint PCC is always a real number with a value between 0 and 1.

The Parametric Design Exploration using PCC drivers could be applied for an entire
discrete design space, but these analyses would consume valuable resources to (unnecessarily)
perform in-depth analyses on design configurations which do not satisfy design requirements.
Based on initial high-level system analyses, we have chosen only three Test Benches and five
promising configurations (2, 4, 7, 30, and 43) to further analyze using PCC. The Project
Analyzer visualizes the PCC results for multiple Test Benches and configurations in the form
of a heat map. Figure 34 depicts the robustness of each design point with respect to each
Test Bench. Based on this figure, configuration 30 has the highest accumulated PCC value
across all three selected Test Benches, therefore configuration 30 is the most robust design
in this set.

Surrogate Model and Prediction Profiler

The OpenMETA tools [69] support surrogate model generation from a parametric ex-
ploration model that contains a parameter study (i.e., Design of Experiment (DoE)) driver.
Generating surrogate models is computationally intensive, but after a surrogate model is
generated, interactive 2D and 3D plots can be generated for the users to predict the metrics
within the parametric space where the surrogate model is valid.

Configuration 30 was selected based on the system robustness analysis (i.e., the PCC
experiments). For configuration 30, a surrogate model was created by the OpenMETA tools.
The resulting surrogate model can be saved in two different forms: (a) an exported binary

78

Figure 34: Vehicle driveline: Results of Parametric Exploration over a discrete design space [83]

Python pickle object that can be loaded and analyzed later and (b) a set of polynomial
equations that are used to approximate Test Bench outputs. In the Project Analyzer, pa-
rameters can be selected and metrics are shown with respect to parameter variations within
the validity of the surrogate model. Furthermore, the prediction profiler estimates both the
0 → 20km

h acceleration time and the maximum vehicle speed based on the selected input
parameters (e.g., the coefficient of rolling resistance (Crr) and the frontal area of the vehi-
cle). For each pair of input parameters, a 3D response surface is plotted where metrics (e.g.,
0 → 40km

h acceleration time) are shown as 3D surfaces w.r.t. the inputs (e.g., the coefficient
of rolling resistance and the frontal area of the vehicle). Designers can choose which param-
eters (inputs) and metrics (outputs) are plotted using the Project Analyzer based on the
available variables from the defined Test Bench analysis templates.

Results

The original driveline design point (seed design) does not meet the requirements as shown
in Table 11. This driveline seed design is turned into a design space and alternative engine
and transmission components are added. The discrete design space generates 200 possible
configurations, and after constraints are implemented 67 viable configurations remain in the
pruned design space.

The 67 viable configurations are analyzed to evaluate all requirements across the discrete
design space. Many design points meet all requirements, and 5 of them are selected for further
parametric design space analysis to determine system robustness. Finally, configuration 30 is
chosen to generate a surrogate model for the driveline design problem. The surrogate model is
used to predict the key performance parameters of the system under varying (environmental)

79

Metric Threshold
Seed

design

(cfg. 41)

Final

design

(cfg. 30)

Speed Category km
h

km
h

km
h

Max Full Speed Forward min 70 69.1 (F) 76.9 (P)
Max Hill Climb Soil min 24 8.72 (F) 24.1 (P)
Max Hill Climb Sand min 10 0 (F) 13.3 (P)

Max Hill Climb Concrete min 30 30.2 (P) 37.1 (P)
Avg Speed Highway min 40 57.8 (P) 61.4 (P)
Avg Speed Forward min 40 37.9 (F) 43.8 (P)
Max Speed Reverse min 19 20 (P) 21.5 (P)

Acceleration Category s s s

0 → 20km
h max 13 14.6 (F) 12.3 (P)

0 → 40km
h max 22 22.1 (F) 19.5 (P)

Reverse 0 → 10km
h max 8 8.7 (F) 7.62 (P)

Hill Climb 0 → 20km
h max 80 81.2 (F) 74.2 (P)

Table 11: Vehicle driveline: Requirements for design problem [83]

conditions. Table 11 shows that all requirements are met for the final driveline design
(configuration 30).

Additional case studies are presented [13, 15] including vehicle design challenges and an
excavator model.

Potential Other Applications

Our approach to multi-domain system design can be applied to a wide range of prob-
lems, notably the design of electronic devices such as modular smartphones [14]. Smartphone
design must address cost, weight, spatial, performance, power, software, and thermal require-
ments, among others. A single analysis tool cannot easily evaluate, track, and balance all
these factors; our rapid process can leverage multiple existing tools and to efficiently pro-
duce an architectural prototype. As new and improved Components (e.g., batteries, image
sensors, wireless communication modules, etc.) become available, the effect on the overall
design’s performance can easily be assessed.

Our Analysis-driven Rapid Design Process (ARDP) could be used for Cyber-Physical
System (CPS) component library development. Analysis template models are created for

80

component unit testing; for every change a set of analyses is automatically executed for all
component instances. This could potentially shorten the development time of CPS compo-
nent libraries. Component libraries often contain parametric component models, for instance
a parametric resistor model. As new component instances become available, the existing
component library can be tested with all new instance parameters to verify that the para-
metric component models support the new instances. In addition to this unit testing, the
component models from the library could be used to create one or more system models, and
automated integration testing could be performed in several design contexts. As experimen-
tal data becomes available automated validation of the component library models can be
created in the form of analysis template models.

Another possible application is stress testing the component library and the analysis
templates within the expected parametric ranges. The expected parametric ranges for the
components and analysis templates could be defined in parametric exploration models. By
specifying a parametric exploration driver component (e.g., DoE or PCC) simulation or
analysis setup issues can be easily discovered in the early stages of the design process as we
presented it in one of our use case (oscillator design).

Finally, product lines can be often modeled with a discrete design space and discrete
choices of components and topologies. The benefit of utilizing the discrete design space
capabilities are: (a) constraints can be grouped and applied for each product line, (b) a
single model can hold all viable configurations (i.e., product line variants), and (c) all analysis
templates can be reused for all product lines.

81

CHAPTER VII

CONCLUSION

The Defense Advanced Research Projects Agency (DARPA) created an Adaptive Vehicle
Make (AVM) program portfolio, which defined several projects to reduce the design and
manufacturing time and to democratize the engineering design processes. The overall topic is
necessarily broad because it includes: design, verification, validation, and manufacturing. To
address all of these topics, the projects required expertise from different universities, research
institutions, and companies. It was a collaborative effort to work on the individual projects
and integrate the outcomes into the AVM portfolio. In these projects, it is difficult to pinpoint
individual contributions. We made significant contributions to the topics summarized below.

Contribution 1 Designed and implemented the dynamics aspect of the CyPhyML model
integration language, which supports heterogeneous component models [27, 84, 85,
106]. Defined the dynamics concepts for the AVM component model specification to
support model interoperability between tools [105].

Contribution 2 Defined executable analysis template models to evaluate requirements,
composition of interdependent analysis template models, and parametric design space
exploration models to perform system robustness studies [60, 86, 132].

Contribution 3 Implemented model composers for several analysis tools including Model-
ica and OpenMDAO [82, 107].

Contribution 4 Defined four integration platforms, the conceptualization of the integration
architecture, and implemented prototypes of the key concepts and functions of the
integration architecture [73, 81].

Contribution 5 Defined and evaluated an Analysis-driven Rapid Design Process (ARDP)
for Cyber-Physical Systems (CPSs) [83].

Lessons learned

Product design has become increasingly complex in recent decades. Several design meth-
ods and processes have been developed to reduce the design complexity to a manageable
level. These methods and approaches include: layered design, component-based design, the

82

v-model, model-based development, virtual integration, platform-based design, and contract-
based design. Model-based systems engineering leverages these methods to manage de-
sign complexity and to reduce development time and costs. In contrast to the traditional
document-centric design process, model-based design approaches maintain traceability and
dependency among design artifacts in the form of relationships between models. The building
blocks of a model-based engineering tool are models that represent the requirements, system
components, and subsystems. Using model-based systems engineering tools has become an
accepted practice.

Most of these design methods and processes were primarily developed for either software
or hardware development. However, in Cyber-Physical Systems (CPSs), computational el-
ements are tightly integrated with physical processes and physical components. Compu-
tational elements often interact with the physical system through a distributed network.
Physical systems are acausal systems, which means that they do not have predefined inputs
and outputs by nature. For a specific operating mode of the system, inputs and outputs can
be derived, but it is a cumbersome process for a large complex system.

There are hundreds of distinct tools used in the automotive and aerospace industry to
analyze different aspects of a complex system design. These tools include both in-house, i.e.,
internally developed and maintained, (70%) and commercial off-the-self tools (30%), which
shows that there is no single tool that can deal with all aspects of a complex design prob-
lem. An adequate model of Cyber-Physical Systems must: (1) capture domain interactions
(e.g., electrical power and mechanical systems), (2) incorporate multiple aspects and domain
models for each component, (3) support a wide variety of analysis techniques, (4) enable the
reuse of existing models from libraries, and (5) extract sufficient information from model
libraries to support architecture exploration for product families.

Results

We presented the key concepts and functions of an Analysis-driven Rapid Design Process
(ARDP) for Cyber-Physical Systems (CPSs) to address all aforementioned challenges. We
defined and contributed to three platforms to improve efficiency and quality of the design
process: a Model Integration Platform, Tool Integration Platform, and Execution Integra-
tion Platform. The Model Integration Platform (a) uses heterogeneous component models,
(b) keeps the multi-domain models consistent, (c) tracks model dependencies, and (d) facili-
tates importing from existing model libraries. The Tool Integration Platform accommodates
a variety of analysis tools with the flexibility to add new tools in the future. The Execution

83

Integration Platform provides an analysis tool independent framework for analysis execu-
tion and organization of analysis results. In addition to several platform contributions, we
proposed a design flow to achieve an analysis-driven rapid iterative design process.

Finally, we demonstrated and evaluated this design flow utilizing two case studies: (a) an
oscillator circuit design and (b) a ground vehicle driveline design. In both cases, we assumed
that component model libraries exist and the models are composable. We compared our
design process to the traditional design process for the oscillator circuit design. The result of
that comparison showed us that our design process can be faster or slower depending on the
product to be designed. When we used a single analysis tool (e.g., Modelica) and a single
design was considered without any component or topology variations our design process
was ∼ 8.29 times slower than the traditional design process. However, if we considered
several component alternatives and used design constraints our design process was ∼ 2.47

times faster than the traditional design process with 84 configurations in the design space.
Designers can benefit from our Analysis-driven Rapid Design Process (ARDP) when: (a)
several component choices are available, (b) design families or configurable product lines are
considered, (c) multiple interdependent analysis tools are used to evaluate requirements, and
(d) multiple domain models must be kept consistent.

Open research challenges

Our work leads to several other research challenges: (1) how to capture the relationship
between the discrete and parametric design space, (2) how to support multi-fidelity models
on the component-level and subsystem-level, (3) how to guide designers with the selection
of multi-fidelity models for components and subsystems, (4) how to address the hierarchical
decomposition if each domain requires a different system hierarchy, and (5) how to incorpo-
rate product life cycle management tools to this design process? Addressing these research
challenges could significantly improve the effectiveness of our Analysis-driven Rapid Design
Process (ARDP).

84

APPENDIX A

RELEVANT PUBLICATIONS

Heterogeneous component models

1. Adam Nagel, Sandeep Neema, Mike Myers, Robert Owens, Zsolt Lattmann, and Dan
Finke. AVMComponent Specification version 2.5. https://github.com/metamorph-inc/
meta-core/blob/master/meta/DesignDataPackage/doc/AVM_Component_Spec.pdf,
2014. last accessed: 04/04/2016

2. Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai,
Sandeep Neema, Ted Bapty, John Batteh, Hubertus Tummescheit, and Chandrasekar
Sureshkumar. Model-based integration platform for fmi co-simulation and hetero-
geneous simulations of cyber-physical systems. In Proceedings of the 10th Interna-
tional Modelica Conference, pages 235–245, Lund University, olvegatan 20A, SE-223
62 LUND, SWEDEN, 03 2014. Modelica Association and Linoping University Elec-
tronic Press

3. Joshua D Carl, Zsolt Lattmann, and Gautam Biswas. Modeling and simulation se-
mantics for building large-scale multi-domain embedded systems. In 27th European
Conference on Modelling and Simulation, Norway, 05 2013

4. Zsolt Lattmann, Adam Nagel, Tihamer Levendovszky, Ted Bapty, Sandeep Neema, and
Gabor Karsai. Component-based modeling of dynamic systems using heterogeneous
composition. In 6th International Workshop on Multi-Paradigm Modeling, Innsbruck,
Austria, 10 2012

5. Zsolt Lattmann, Adam Nagel, Jason Scott, Kevin Smyth, Johanna Ceisel, Chris van-
Buskirk, Joseph Porter, Sandeep Neema, Ted Bapty, Dimitri Mavris, and Janos Szti-
panovits. Towards automated evaluation of vehicle dynamics in system-level designs.
In Proc. ASME International Design Engineering Technical Conf. & Computers and
Information in Engineering Conf. (IDETC/CIE 2012), Chicago, IL, USA, 08 2012

85

https://github.com/metamorph-inc/meta-core/blob/master/meta/DesignDataPackage/doc/AVM_Component_Spec.pdf
https://github.com/metamorph-inc/meta-core/blob/master/meta/DesignDataPackage/doc/AVM_Component_Spec.pdf

Analysis templates and model execution framework

1. Zsolt Lattmann, James Klingler, Patrik Meijer, Ted Bapty, Sandeep Neema, and Jason
Scott. Integration platform technology components in the meta toolchain. Technical
Report ISIS-15-110, Institute for Software Integrated Systems, Nashville, 01/2015 2015

2. Tomonori Honda, Eric Saund, Ion Matei, William Janssen, Bhaskar Saha, Daniel G.
Bobrow, Johan de Kleer, Tolga Kurtoglu, and Zsolt Lattmann. A simulation and
modeling based reliability requirement assessment methodology. In ASME 2014 Inter-
national Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Buffalo, NY, USA, 08 2014

3. Bhaskar Saha, Tomonori Honda, Ion Matei, Eric Saund, Johan de Kleer, Tolga Kur-
toglu, and Zsolt Lattmann. A model-based approach for an optimal maintenance strat-
egy. In 2nd European Conference of the PHM Society - PHME’14, Nantes, France, 07
2014

4. Zsolt Lattmann, Adrian Pop, Johan de Kleer, Peter Fritzson, Bill Janssen, Sandeep
Neema, Ted Bapty, Xenofon Koutsoukos, Matthew Klenk, Daniel Bobrow, Bhaskar
Saha, and Tolga Kurtoglu. Verification and design exploration through meta tool
integration with openmodelica. In Proceedings of the 10th International Modelica Con-
ference, pages 353–362, Lund University, olvegatan 20A, SE-223 62 LUND, SWEDEN,
03 2014. Modelica Association and Linoping University Electronic Press

5. Laszlo Juracz, Zsolt Lattmann, Tihamer Levendovszky, Graham Hemingway, Will Gag-
gioli, Tanner Netterville, Gabor Pap, Kevin Smyth, and Larry Howard. Vehicleforge:
A cloud-based infrastructure for collaborative model-based design. In Proceedings of
the 2nd International Workshop on Model-Driven Engineering for High Performance
and Cloud computing co-located with 16th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2013), volume Vol-1118, 01 2014

Analysis-driven Rapid Design Process

1. Zsolt Lattmann, James Klingler, Patrik Meijer, Jason Scott, Sandeep Neema, Ted
Bapty, and Gábor Karsai. Towards an Analysis-Driven Rapid Design Process for Cyber-
Physical Systems. 26th IEEE International Symposium on Rapid System Prototyping
(RSP), 10 2015

86

2. Zsolt Lattmann, James Klingler, Patrik Meijer, Ted Bapty, Sandeep Neema, and Jason
Scott. Meta design space exploration using dynamics. Technical Report ISIS-15-106,
Institute for Software Integrated Systems, Nashville, 01/2015 2015

3. Himanshu Neema, Zsolt Lattmann, Patrik Meijer, James Klingler, Sandeep Neema,
Ted Bapty, Janos Sztipanovits, and Gabor Karsai. Design space exploration and ma-
nipulation for cyber physical systems. In IFIP First International Workshop on De-
sign Space Exploration of Cyber-Physical Systems (IDEAL’ 2014), Berlin, Germany,
04 2014. Springer, Springer

87

APPENDIX B

OTHER PUBLICATIONS

1. Siyuan Dai, Zsolt Lattmann, and Xenofon Koutsoukos. Compositional control design
of cyber-physical systems. In Danda B Rawat, Joel Rodrigues, and Ivan Stojmenovic,
editors, Cyber Physical Systems: From Theory to Practice. CRC Press, 2015

2. Peng Zhang, Zsolt Lattmann, James Klingler, Sandeep Neema, and Ted Bapty. Visu-
alization techniques in collaborative domain-specific modeling environment. In South-
eastCon 2015, Fort Lauderdale, FL, USA, 04/2015 2015. IEEE

3. Ted Bapty, Justin Knight, Zsolt Lattmann, Sandeep Neema, and Jason Scott. Software
quality assurance for the meta toolchain. Technical Report ISIS-15-111, Institute for
Software Integrated Systems, Nashville, 01/2015 2015

4. Joseph Porter, Zsolt Lattmann, Graham Hemingway, Nagabhushan Mahadevan, Sandeep
Neema, Harmon Nine, Nicholas Kottenstette, Peter Volgyesi, Gabor Karsai, and Janos
Sztipanovits. The esmol modeling language and tools for synthesizing and simulating
real-time embedded systems. In 15th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, CA, 04 2009

88

APPENDIX C

SIMULATION ERROR LOG FOR OSCILLATOR DESIGN

Oscillator design example error message generated by the DASSL solver using Dymola.

. . . " ds in .mat" load ing (dymosim input f i l e)

. . . "Osc i l la tor_Des ign_cfg9 .mat" c r e a t i n g (s imu la t i on r e s u l t f i l e)
I n t e g r a t i on s t a r t ed at T = 0 us ing i n t e g r a t i o n method DASSL
(DAE multi−s tep s o l v e r (da s s l / d a s s l r t o f Petzo ld modi f i ed
by Dynasim))
I n t e g r a t i on terminated be f o r e reach ing "StopTime" at T = 0.0338

CPU−time f o r i n t e g r a t i o n : 0 .102 seconds
CPU−time f o r one GRID i n t e r v a l : 0 .0362 m i l l i−seconds
Number o f r e s u l t po in t s : 2817
Number o f GRID po in t s : 2817
Number o f (s u c c e s s f u l) s t ep s : 4235
Number o f F−eva lua t i on s : 19860
Number o f Jacobian−eva lua t i on s : 1427
Number o f (model) time events : 2
Number o f (U) time events : 0
Number o f s t a t e events : 0
Number o f s tep events : 0
Minimum in t e g r a t i o n s t e p s i z e : 2 .24 e−011
Maximum in t e g r a t i o n s t e p s i z e : 0 .000197
Maximum in t e g r a t i o n order : 5

Ca l l i ng te rmina l s e c t i o n
. . . " d s f i n a l . txt " c r e a t i n g (f i n a l s t a t e s)

. . . Error message from dymosim . exe
At cur r ent time T = 3.378006 e−002 the l o c a l e r r o r t e s t cannot be
s a t i s f i e d e i t h e r because a s o l u t i o n i s i n f i n i t e (i . e . uns tab le
system) , or because a component o f TolAbs i s ze ro and the
computed s o l u t i o n i s ze ro too . I n t e g r a t i on i s terminated .

89

APPENDIX D

DESIGN SPACE RESULTS FOR OSCILLATOR

Id Transistor RB C P/F f tr Imin Score
1 cfg39 2SC5200 27kΩ 0.082µF Pass O. 471Hz 180µs 0.969µA 95.23
2 cfg72 BC847A 24kΩ 0.1µF Pass O. 508Hz 216µs 1.11µA 92.58
3 cfg8 2N5551 24kΩ 0.1µF Pass O. 471Hz 216µs 1.22µA 91.27
4 cfg54 2N4401 24kΩ 0.1µF Pass O. 502Hz 204µs 1.74µA 90.71
5 cfg45 BC547A 27kΩ 0.082µF Pass T. 343Hz 180µs 1.16µA 89.55
6 cfg30 2N3904 24kΩ 0.1µF Pass O. 499Hz 204µs 2µA 89.30
7 cfg3 BC550C 27kΩ 0.082µF Pass T. 327Hz 204µs 0.465µA 89.21
8 cfg18 2N3055 27kΩ 0.082µF Pass T. 425Hz 180µs 1.98µA 89.04
9 cfg73 BC847A 27kΩ 0.082µF Pass T. 326Hz 180µs 1.11µA 88.99
10 cfg27 2SC4793 27kΩ 0.1µF Pass O. 505Hz 204µs 2.15µA 88.51
11 cfg11 2N5551 27kΩ 0.082µF Fail 324Hz 180µs 1.33µA 88.32
12 cfg41 2SC5200 27kΩ 0.1µF Pass T. 329Hz 216µs 0.972µA 88.03
13 cfg76 BC847A 20kΩ 0.12µF Pass T. 490Hz 264µs 1.11µA 87.45
14 cfg37 2SC5200 24kΩ 0.1µF Fail 306Hz 216µs 0.985µA 87.17
15 cfg38 2SC5200 22kΩ 0.12µF Pass T. 379Hz 252µs 0.969µA 86.99
16 cfg43 BC547A 24kΩ 0.1µF Fail 304Hz 216µs 1.17µA 86.71
17 cfg52 2N4401 20kΩ 0.12µF Pass T. 484Hz 252µs 1.75µA 86.66
18 cfg12 2N5551 20kΩ 0.12µF Pass T. 455Hz 264µs 1.33µA 86.54
19 cfg2 BC550C 24kΩ 0.1µF Fail 301Hz 240µs 0.460µA 86.27
20 cfg32 2N3904 27kΩ 0.082µF Pass T. 326Hz 168µs 1.99µA 86.19
21 cfg74 BC847A 27kΩ 0.1µF Fail 267Hz 204µs 1.11µA 85.98
22 cfg36 2N3904 20kΩ 0.12µF Pass T. 462Hz 252µs 2.01µA 85.62
23 cfg46 BC547A 27kΩ 0.1µF Fail 271Hz 216µs 1.15µA 85.57
24 cfg22 2SC4793 27kΩ 0.082µF Pass T. 329Hz 180µs 2.15µA 85.49
25 cfg6 BC550C 27kΩ 0.1µF Fail 268Hz 240µs 0.459µA 85.20
26 cfg10 2N5551 27kΩ 0.1µF Fail 266Hz 216µs 1.33µA 84.98
27 cfg23 2SC4793 24kΩ 0.1µF Pass T. 331Hz 204µs 2.17µA 84.82
28 cfg79 2N2222 24kΩ 0.1µF Fail 303Hz 216µs 1.86µA 84.82
29 cfg48 BC547A 20kΩ 0.12µF Fail 303Hz 252µs 1.15µA 84.56

90

Id Transistor RB C P/F f tr Imin Score
30 cfg19 2N3055 27kΩ 0.1µF Fail 305Hz 216µs 1.97µA 84.34
31 cfg20 2N3055 24kΩ 0.1µF Fail 305Hz 216µs 1.98µA 84.30
32 cfg50 BC547A 22kΩ 0.12µF Fail 288Hz 252µs 1.15µA 84.11
33 cfg42 2SC5200 20kΩ 0.12µF Fail 305Hz 264µs 0.971µA 84.10
34 cfg5 BC550C 20kΩ 0.12µF Fail 302Hz 276µs 0.464µA 83.77
35 cfg75 BC847A 22kΩ 0.12µF Fail 272Hz 252µs 1.11µA 83.71
36 cfg80 2N2222 27kΩ 0.1µF Fail 270Hz 216µs 1.85µA 83.64
37 cfg16 2N3055 22kΩ 0.12µF Pass 346Hz 252µs 1.97µA 83.41
38 cfg13 2N5551 22kΩ 0.12µF Fail 271Hz 252µs 1.34µA 83.20
39 cfg44 BC547A 24kΩ 0.12µF Fail 253Hz 252µs 1.15µA 83.06
40 cfg71 BC847A 24kΩ 0.12µF Fail 250Hz 252µs 1.11µA 83.04
41 cfg33 2N3904 27kΩ 0.1µF Fail 266Hz 216µs 1.99µA 83.03
42 cfg35 2SC5200 24kΩ 0.12µF Fail 255Hz 264µs 0.968µA 82.70
43 cfg84 2N2222 20kΩ 0.12µF Fail 303Hz 252µs 1.87µA 82.65
44 cfg9 2N5551 24kΩ 0.12µF Fail 250Hz 252µs 1.33µA 82.59
45 cfg17 2N3055 20kΩ 0.12µF Fail 304Hz 252µs 1.98µA 82.32
46 cfg4 BC550C 22kΩ 0.12µF Fail 274Hz 288µs 0.46µA 82.21
47 cfg83 2N2222 22kΩ 0.12µF Fail 286Hz 252µs 1.87µA 82.19
48 cfg26 2SC4793 20kΩ 0.12µF Fail 323Hz 252µs 2.19µA 82.05
49 cfg1 BC550C 24kΩ 0.12µF Fail 251Hz 288µs 0.459µA 81.65
50 cfg47 2N4401 24kΩ 0.12µF Fail 250Hz 252µs 1.74µA 81.56
51 cfg21 2SC4793 24kΩ 0.12µF Fail 298Hz 252µs 2.17µA 81.50
52 cfg29 2N3904 22kΩ 0.12µF Fail 272Hz 252µs 2.01µA 81.36
53 cfg78 2N2222 24kΩ 0.12µF Fail 252Hz 252µs 1.88µA 81.27
54 cfg15 2N3055 24kΩ 0.12µF Fail 255Hz 252µs 1.97µA 81.01
55 cfg25 2SC4793 22kΩ 0.12µF Fail 276Hz 252µs 2.18µA 80.89
56 cfg31 2N3904 24kΩ 0.12µF Fail 250Hz 252µs 1.99µA 80.81
57 cfg40 2SC5200 18kΩ 0.15µF Fail 311Hz 312µs 0.971µA 80.56
58 cfg28 2SC4793 18kΩ 0.15µF Fail 468Hz 312µs 2.2µA 79.68
59 cfg49 BC547A 18kΩ 0.15µF Fail 270Hz 312µs 1.14µA 79.44
60 cfg77 BC847A 18kΩ 0.15µF Fail 265Hz 312µs 1.11µA 79.38
61 cfg14 2N5551 18kΩ 0.15µF Fail 265Hz 312µs 1.36µA 78.90
62 cfg56 2N4401 18kΩ 0.15µF Fail 265Hz 312µs 1.76µA 77.97
63 cfg24 2N3055 18kΩ 0.15µF Fail 287Hz 312µs 1.97µA 77.85
64 cfg7 BC550C 18kΩ 0.15µF Fail 268Hz 348µs 0.462µA 77.77

91

Id Transistor RB C P/F f tr Imin Score
65 cfg82 2N2222 18kΩ 0.15µF Fail 268Hz 312µs 1.88µA 77.72
66 cfg34 2N3904 18kΩ 0.15µF Fail 268Hz 312µs 2.02µA 77.29
67 cfg68 2N5179 24kΩ 0.1µF Fail 408Hz 204µs 6.09µA 64.61
68 cfg66 2N5179 27kΩ 0.082µF Fail 323Hz 180µs 6.06µA 64.46
69 cfg67 2N5179 27kΩ 0.1µF Fail 265Hz 204µs 6.05µA 63.30
70 cfg60 2N5179 24kΩ 0.12µF Fail 405Hz 252µs 6.09µA 63.15
71 cfg69 2N5179 20kΩ 0.12µF Fail 397Hz 252µs 6.13µA 62.85
72 cfg65 2N5179 22kΩ 0.12µF Fail 271Hz 240µs 6.11µA 62.04
73 cfg70 2N5179 18kΩ 0.15µF Fail 265Hz 312µs 6.17µA 59.13
74 cfg58 MJE340 27kΩ 0.082µF Fail 534Hz 168µs 16.1µA 22.54
75 cfg64 MJE340 27kΩ 0.1µF Fail 367Hz 192µs 16.1µA 18.14
76 cfg57 MJE340 24kΩ 0.1µF Fail 308Hz 204µs 16.1µA 16.51
77 cfg62 MJE340 22kΩ 0.12µF Fail 430Hz 228µs 16.1µA 16.00
78 cfg63 MJE340 20kΩ 0.12µF Fail 308Hz 228µs 16.1µA 14.19
79 cfg59 MJE340 24kΩ 0.12µF Fail 256Hz 240µs 16.1µA 12.69
80 cfg61 MJE340 18kΩ 0.15µF Fail 347Hz 288µs 16.1µA 8.75

92

REFERENCES

[1] 20-Sim. 20-Sim. http://www.20sim.com. last accessed: 04/04/2016.

[2] DEUTZ AG. http://www.deutz.com. last accessed: 04/04/2016.

[3] Environmental Protection Agency. US06 or Supplemental Federal Test
Procedure. https://www.epa.gov/emission-standards-reference-guide/epa-us06-or-
supplemental-federal-test-procedure-sftp. last accessed: 04/04/2016.

[4] Johan Åkesson, K-E Årzén, Magnus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization with optimica and jmodelica. org?languages
and tools for solving large-scale dynamic optimization problems. Computers & Chem-
ical Engineering, 34(11):1737–1749, 2010.

[5] ARINC. ARINC. http://www.aeec-amc-fsemc.com/standards/index.html. last
accessed: 04/04/2016.

[6] Modelica Association. Modelica Standard Library - Version 3.2.1 (Build 4). http:
//modelica.github.io/Modelica/, September 2015. last accessed: 04/07/2016.

[7] Modelica Association et al. The Modelica Language Specification Version 3.3 Revision
1. https://modelica.org/documents/ModelicaSpec33Revision1.pdf, July 2014.
last accessed: 04/04/2016.

[8] Atlassian. JIRA. https://www.atlassian.com/software/jira/. last accessed:
04/04/2016.

[9] GbR AUTOSAR. Autosar–technical overview v2. 0.1, 2006.

[10] Brian Bailey, Grant Martin, and Thomas Anderson. Taxonomies for the Development
and Verification of digital systems. Springer Science & Business Media, 2005.

[11] Santiago Balestrini-Robinson, Dane F Freeman, and Daniel C Browne. An object-
oriented and executable sysml framework for rapid model development. Procedia Com-
puter Science, 44:423–432, 2015.

[12] Ted Bapty, Justin Knight, Zsolt Lattmann, Sandeep Neema, and Jason Scott. Software
quality assurance for the meta toolchain. Technical Report ISIS-15-111, Institute for
Software Integrated Systems, Nashville, 01/2015 2015.

[13] Ted Bapty, Sandeep Neema, and Jason Scott. Overview of the meta toolchain in the
adaptive vehicle make progam. (ISIS-15-103), 2015.

[14] Ted Bapty, Sandeep Neema, and Jason Scott. Transitioning the meta toolchain. (ISIS-
15-114), 2015.

93

http://www.20sim.com
http://www.deutz.com
http://www.aeec-amc-fsemc.com/standards/index.html
http://modelica.github.io/Modelica/
http://modelica.github.io/Modelica/
https://modelica.org/documents/ModelicaSpec33Revision1.pdf
https://www.atlassian.com/software/jira/

[15] Ted Bapty, Sandeep Neema, Jason Scott, and Scott Eisele. Case studies and use cases
in the meta toolchain. (ISIS-15-113), 2015.

[16] Bharadwaj Bharadwaj and C Heitmeyer. Developing high assurance avionics systems
with the scr requirements method. In Digital Avionics Systems Conference, 2000.
Proceedings. DASC. The 19th, volume 1, pages 1D1–1. IEEE, 2000.

[17] Blueprintsys. Blueprint. http://www.blueprintsys.com. last accessed: 04/04/2016.

[18] W Borutzky, A Orsoni, and R Zobel. Bond graph modelling and simulation of mecha-
tronic systems an introduction into the methodology. In 20th European conference on
modeling and simulation, 2006.

[19] Wolfgang Borutzky. Bond graph methodology: development and analysis of multidisci-
plinary dynamic system models. Springer Science & Business Media, 2009.

[20] Jan F Broenink. Introduction to physical systems modelling with bond graphs. SiE
Whitebook on Simulation Methodologies, pages 1–31, 1999.

[21] Daniel Browne, Robert Kempf, Aaron Hansen, Michael O’Neal, and William Yates.
Enabling systems modeling language authoring in a collaborative web-based decision
support tool. Procedia Computer Science, 16:373–382, 2013.

[22] Manfred Broy. Towards a theory of architectural contracts: - schemes and patterns of
assumption/promise based system specification. In Manfred Broy, Christian Leuxner,
and Tony Hoare, editors, Software and Systems Safety - Specification and Verifica-
tion, volume 30 of NATO Science for Peace and Security Series - D: Information and
Communication Security, pages 33–87. IOS Press, 2011.

[23] Randal E Bryant. Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on, 100(8):677–691, 1986.

[24] Joseph T Buck, Soonhoi Ha, Edward A Lee, and David G Messerschmitt. Ptolemy:
A framework for simulating and prototyping heterogeneous systems. Int. Journal of
Computer Simulation, April 1994.

[25] Yue Cao, Yusheng Liu, Hongri Fan, and Bo Fan. Sysml-based uniform behavior model-
ing and automated mapping of design and simulation model for complex mechatronics.
Computer-Aided Design, 45(3):764–776, 2013.

[26] Yue Cao, Yusheng Liu, and Christiaan JJ Paredis. System-level model integration
of design and simulation for mechatronic systems based on sysml. Mechatronics,
21(6):1063–1075, 2011.

[27] Joshua D Carl, Zsolt Lattmann, and Gautam Biswas. Modeling and simulation se-
mantics for building large-scale multi-domain embedded systems. In 27th European
Conference on Modelling and Simulation, Norway, 05 2013.

[28] Caterpillar. http://www.cat.com. last accessed: 04/04/2016.

94

http://www.blueprintsys.com
http://www.cat.com

[29] François E Cellier and Robert T McBride. Object-oriented modeling of complex phys-
ical systems using the dymola bond-graph library. SIMULATION SERIES, 35(2):157–
162, 2003.

[30] François E Cellier and Dirk Zimmer. Wrapping multi-bond graphs: a structured ap-
proach to modeling complex multi-body dynamics. In Proc. 20th European Conference
on Modeling and Simulation, pages 7–13, 2006.

[31] NASA Glenn Research Center. OpenMDAO. http://openmdao.org. last accessed:
04/04/2016.

[32] NASA Glenn Research Center. OpenMDAO Documentation v0.8.1. http://
openmdao.org/releases/0.8.1/docs/, August 2013. last accessed: 04/08/2016.

[33] Inc. CircuitLab. https://www.circuitlab.com/. last accessed: 04/04/2016.

[34] Evin J Cramer, JE Dennis, Jr, Paul D Frank, Robert Michael Lewis, and Gregory R
Shubin. Problem formulation for multidisciplinary optimization. SIAM Journal on
Optimization, 4(4):754–776, 1994.

[35] CyDesign. CyDesign Studio. http://cydesign.com. last accessed: 04/04/2016.

[36] Siyuan Dai, Zsolt Lattmann, and Xenofon Koutsoukos. Compositional control design
of cyber-physical systems. In Danda B Rawat, Joel Rodrigues, and Ivan Stojmenovic,
editors, Cyber Physical Systems: From Theory to Practice. CRC Press, 2015.

[37] Pierre David, Vincent Idasiak, and Frederic Kratz. Reliability study of complex physi-
cal systems using sysml. Reliability Engineering & System Safety, 95(4):431–450, 2010.

[38] Luca De Alfaro and Thomas A Henzinger. Interface theories for component-based
design. In Embedded Software, pages 148–165. Springer, 2001.

[39] Johan de Kleer. Injecting model-based diagnosis thinking into the design process.

[40] Olivier L de Weck. Feasibility of a 5x speedup in system development due to meta
design. In ASME 2012 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, pages 1105–1110. American
Society of Mechanical Engineers, 2012.

[41] IABG Development Standard for IT-Systems of the Federal Republic of Ger-
many. The V-Model. http://v-modell.iabg.de/v-modell-xt-html-english/
index.html, 2006. last accessed: 04/04/2016.

[42] Johan Eker, Jörn W Janneck, Edward Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, Yuhong Xiong, et al. Taming heterogeneity-the
ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[43] Golnaz Elahi and Eric Yu. Comparing alternatives for analyzing requirements trade-
offs–in the absence of numerical data. Information and Software Technology, 54(6):517–
530, 2012.

95

http://openmdao.org
http://openmdao.org/releases/0.8.1/docs/
http://openmdao.org/releases/0.8.1/docs/
https://www.circuitlab.com/
http://cydesign.com
http://v-modell.iabg.de/v-modell-xt-html-english/index.html
http://v-modell.iabg.de/v-modell-xt-html-english/index.html

[44] Paul Eremenko. Philosophical underpinnings of adaptive vehicle make. Technical
report, DARPA-BAA-12-15. Appendix 1, 2011.

[45] Philippus J Feenstra, Pieter J Mosterman, Gautam Biswas, and Peter C Breedveld.
Bond graph modeling procedures for fault detection and isolation of complex flow
processes. Simulation Series, 33(1):77–84, 2001.

[46] Peter H Feiler, David P Gluch, and John J Hudak. The architecture analysis & design
language (aadl): An introduction. Technical report, DTIC Document, 2006.

[47] Peter H Feiler, John B Goodenough, Arie Gurfinkel, Charles B Weinstock, and Lutz
Wrage. Reliability validation and improvement framework. Technical report, DTIC
Document, 2012.

[48] Daniel A Finke, Mark T Traband, Christopher B Ligetti, and David M Hadka. Com-
ponent, context and manufacturing model library (c2m2l). Technical report, DTIC
Document, 2013.

[49] Kevin Forsberg and Harold Mooz Co-Principals. 4 system engineering for faster,
cheaper, better. In INCOSE International Symposium, volume 9, pages 924–932. Wiley
Online Library, 1999.

[50] Martin Fowler. UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional, 2004.

[51] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[52] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

[53] Peter Fritzson. Principles of object-oriented modeling and simulation with Modelica
2.1. John Wiley & Sons, 2010.

[54] Justin Gray, Kenneth T Moore, and Bret A Naylor. Openmdao: An open source
framework for multidisciplinary analysis and optimization. In 13th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, Fort Worth, TX, AIAA, AIAA-
2010-9101, pages 5–7, 2010.

[55] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements model-
ing languages: Rml revisited. In Proceedings of the 16th international conference on
Software engineering, pages 135–147. IEEE Computer Society Press, 1994.

[56] Christopher Heath and Justin Gray. Openmdao: Framework for flexible multidisci-
plinary design, analysis and optimization methods. In Proceedings of the 53rd AIAA
Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 2012.

[57] Constance Heitmeyer, James Kirby, Bruce Labaw, and Ramesh Bharadwaj. Scr: A
toolset for specifying and analyzing software requirements. In Computer Aided Verifi-
cation, pages 526–531. Springer, 1998.

96

[58] Constance L Heitmeyer, Ralph D Jeffords, and Bruce G Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Software Engineering
and Methodology (TOSEM), 5(3):231–261, 1996.

[59] Kathryn L Heninger. Specifying software requirements for complex systems: New
techniques and their application. Software Engineering, IEEE Transactions on, (1):2–
13, 1980.

[60] Tomonori Honda, Eric Saund, Ion Matei, William Janssen, Bhaskar Saha, Daniel G.
Bobrow, Johan de Kleer, Tolga Kurtoglu, and Zsolt Lattmann. A simulation and
modeling based reliability requirement assessment methodology. In ASME 2014 Inter-
national Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Buffalo, NY, USA, 08 2014.

[61] Christopher Hoyle, Irem Y Tumer, Tolga Kurtoglu, and Wei Chen. Multi-stage un-
certainty quantification for verifying the correctness of complex system designs. In
ASME 2011 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, pages 1169–1178. American Society of
Mechanical Engineers, 2011.

[62] Ching-Lai Hwang, Young-Jou Lai, and Ting-Yun Liu. A new approach for multiple
objective decision making. Computers & operations research, 20(8):889–899, 1993.

[63] Ching-Lai Hwang and Kwangsun Yoon. Multiple attribute decision making: methods
and applications a state-of-the-art survey, volume 186. Springer Science & Business
Media, 2012.

[64] IBM. IBM Rational DOORS. http://www-03.ibm.com/software/products/en/
ratidoor. last accessed: 04/04/2016.

[65] IBM. IBM Rational DOORS Next Generation. http://www-03.ibm.com/software/
products/en/ratidoorng. last accessed: 04/04/2016.

[66] Allison Transmission Inc. http://www.allisontransmission.com/transmissions/
vocational-applications/defense. last accessed: 04/04/2016.

[67] Cummins Inc. http://cumminsengines.com/defense. last accessed: 04/04/2016.

[68] Vanderbilt University Institute for Software Integrated Systems. Generic Model-
ing Environment. http://www.isis.vanderbilt.edu/projects/gme. last accessed:
04/04/2016.

[69] Vanderbilt University Institute for Software Integrated Systems. OpenMETA tools.
https://vehicleforge.vf.isis.vanderbilt.edu/p/metaresources/home/. last
accessed: 04/04/2016.

[70] ITI. SimulationX. https://www.simulationx.com. last accessed: 04/04/2016.

97

http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoor
http://www-03.ibm.com/software/products/en/ratidoorng
http://www-03.ibm.com/software/products/en/ratidoorng
http://www.allisontransmission.com/transmissions/vocational-applications/defense
http://www.allisontransmission.com/transmissions/vocational-applications/defense
http://cumminsengines.com/defense
http://www.isis.vanderbilt.edu/projects/gme
https://vehicleforge.vf.isis.vanderbilt.edu/p/metaresources/home/
https://www.simulationx.com

[71] Ethan K Jackson, Eunsuk Kang, Markus Dahlweid, Dirk Seifert, and Thomas Santen.
Components, platforms and possibilities: towards generic automation for mda. In
Proceedings of the tenth ACM international conference on Embedded software, pages
39–48. ACM, 2010.

[72] Ethan K Jackson, Tihamer Levendovszky, and Daniel Balasubramanian. Reasoning
about metamodeling with formal specifications and automatic proofs. In Model Driven
Engineering Languages and Systems, pages 653–667. Springer, 2011.

[73] Laszlo Juracz, Zsolt Lattmann, Tihamer Levendovszky, Graham Hemingway, Will
Gaggioli, Tanner Netterville, Gabor Pap, Kevin Smyth, and Larry Howard. Vehi-
cleforge: A cloud-based infrastructure for collaborative model-based design. In Pro-
ceedings of the 2nd International Workshop on Model-Driven Engineering for High
Performance and Cloud computing co-located with 16th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2013), volume Vol-1118,
01 2014.

[74] Dean C Karnopp, Donald L Margolis, and Ronald C Rosenberg. System dynamics:
modeling, simulation, and control of mechatronic systems. John Wiley & Sons, 2012.

[75] Kurt Keutzer, Jan M Rabaey, A Sangiovanni-Vincentelli, et al. System-level design:
orthogonalization of concerns and platform-based design. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 19(12):1523–1543, 2000.

[76] Ekkart Kindler and Robert Wagner. Triple graph grammars: Concepts, extensions,
implementations, and application scenarios. University of Paderborn, (tr-ri-07-284),
2007.

[77] Matthew Evans Klenk, Johan de Kleer, Daniel G Bobrow, and Bill Janssen. Qualitative
reasoning with modelica models. In AAAI, pages 1084–1090, 2014.

[78] Ilan Kroo, Steve Altus, Robert Braun, Peter Gage, and Ian Sobieski. Multidisciplinary
optimization methods for aircraft preliminary design. AIAA paper, 4325:1994, 1994.

[79] Sandia National Laboratories. Dakota 6.2. https://dakota.sandia.gov, 2015. last
accessed: 04/04/2016.

[80] Zsolt Lattmann. A multi-domain functional dependency modeling tool based on ex-
tended hybrid bond graphs. M.sc, Vanderbilt University, 04 2010.

[81] Zsolt Lattmann, James Klingler, Patrik Meijer, Ted Bapty, Sandeep Neema, and Jason
Scott. Integration platform technology components in the meta toolchain. Techni-
cal Report ISIS-15-110, Institute for Software Integrated Systems, Nashville, 01/2015
2015.

[82] Zsolt Lattmann, James Klingler, Patrik Meijer, Ted Bapty, Sandeep Neema, and Jason
Scott. Meta design space exploration using dynamics. Technical Report ISIS-15-106,
Institute for Software Integrated Systems, Nashville, 01/2015 2015.

98

https://dakota.sandia.gov

[83] Zsolt Lattmann, James Klingler, Patrik Meijer, Jason Scott, Sandeep Neema, Ted
Bapty, and Gábor Karsai. Towards an Analysis-Driven Rapid Design Process for
Cyber-Physical Systems. 26th IEEE International Symposium on Rapid System Pro-
totyping (RSP), 10 2015.

[84] Zsolt Lattmann, Adam Nagel, Tihamer Levendovszky, Ted Bapty, Sandeep Neema, and
Gabor Karsai. Component-based modeling of dynamic systems using heterogeneous
composition. In 6th International Workshop on Multi-Paradigm Modeling, Innsbruck,
Austria, 10 2012.

[85] Zsolt Lattmann, Adam Nagel, Jason Scott, Kevin Smyth, Johanna Ceisel, Chris van-
Buskirk, Joseph Porter, Sandeep Neema, Ted Bapty, Dimitri Mavris, and Janos Szti-
panovits. Towards automated evaluation of vehicle dynamics in system-level designs.
In Proc. ASME International Design Engineering Technical Conf. & Computers and
Information in Engineering Conf. (IDETC/CIE 2012), Chicago, IL, USA, 08 2012.

[86] Zsolt Lattmann, Adrian Pop, Johan de Kleer, Peter Fritzson, Bill Janssen, Sandeep
Neema, Ted Bapty, Xenofon Koutsoukos, Matthew Klenk, Daniel Bobrow, Bhaskar
Saha, and Tolga Kurtoglu. Verification and design exploration through meta tool inte-
gration with openmodelica. In Proceedings of the 10th International Modelica Confer-
ence, pages 353–362, Lund University, olvegatan 20A, SE-223 62 LUND, SWEDEN,
03 2014. Modelica Association and Linoping University Electronic Press.

[87] Edward Lee et al. Cyber physical systems: Design challenges. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium on,
pages 363–369. IEEE, 2008.

[88] Edward A Lee. Cyber-physical systems-are computing foundations adequate. In Po-
sition Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap, volume 2. Citeseer, 2006.

[89] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. http://leeseshia.org, Second edition, 2015.

[90] Sparx Systems Pty Ltd. Enterprise Architect. http://www.sparxsystems.com/
products/ea/index.html. last accessed: 04/04/2016.

[91] Mark W Maier. The art of systems architecting. CRC press, 2009.

[92] Brett Malone and Michael Papay. Modelcenter: an integration environment for simu-
lation based design. In Simulation Interoperability Workshop, 1999.

[93] MapleSoft. MapleSim. http://www.maplesoft.com/products/maplesim/
whychoose.aspx. last accessed: 04/04/2016.

[94] MathWorks. SimScape. http://www.mathworks.com/help/physmod/simscape/. last
accessed: 04/04/2016.

99

http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html
http://www.maplesoft.com/products/maplesim/whychoose.aspx
http://www.maplesoft.com/products/maplesim/whychoose.aspx
http://www.mathworks.com/help/physmod/simscape/

[95] MathWorks. SimScape Language Guide. http://www.mathworks.com/help/pdf_
doc/physmod/simscape/simscape_lang.pdf. last accessed: 04/04/2016.

[96] MathWorks. Simulink. http://www.mathworks.com/products/simulink/. last ac-
cessed: 04/04/2016.

[97] Robert T McBride and François E Cellier. System efficiency measurement through
bond graph modeling. In Proc. ICBGM?05 Conference, 2005.

[98] Stephen J Mellor, Marc Balcer, and Ivar Foreword By-Jacoboson. Executable UML: A
foundation for model-driven architectures. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[99] MetaMorph Software, Inc. MetaMorphosys. http://www.metamorphsoftware.com/
metamorph-tools/. last accessed: 04/27/2016.

[100] Modelon. JModelica.org. http://www.jmodelica.org. last accessed: 04/04/2016.

[101] Pieter J Mosterman. Hybrid Dynamic Systems: A hybrid bond graph modeling paradigm
and its application in diagnosis. PhD thesis, Vanderbilt University, 1997.

[102] Amalendu Mukherjee and Arun Kumar Samantaray. Bond graph in modeling, simu-
lation and fault identification. IK International Pvt Ltd, 2006.

[103] David J Musliner and Eric Engstrom. Prismatic: Unified hierarchical probabilistic
verification tool. Technical report, DTIC Document, 2011.

[104] Adam Nagel. AVM Class Diagrams. https://github.com/metamorph-inc/
meta-core/tree/master/meta/DesignDataPackage/doc/ClassDiagrams, 2014. last
accessed: 04/04/2016.

[105] Adam Nagel, Sandeep Neema, Mike Myers, Robert Owens, Zsolt Lattmann, and
Dan Finke. AVM Component Specification version 2.5. https://github.com/
metamorph-inc/meta-core/blob/master/meta/DesignDataPackage/doc/AVM_
Component_Spec.pdf, 2014. last accessed: 04/04/2016.

[106] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai,
Sandeep Neema, Ted Bapty, John Batteh, Hubertus Tummescheit, and Chandrasekar
Sureshkumar. Model-based integration platform for fmi co-simulation and hetero-
geneous simulations of cyber-physical systems. In Proceedings of the 10th Interna-
tional Modelica Conference, pages 235–245, Lund University, olvegatan 20A, SE-223
62 LUND, SWEDEN, 03 2014. Modelica Association and Linoping University Elec-
tronic Press.

[107] Himanshu Neema, Zsolt Lattmann, Patrik Meijer, James Klingler, Sandeep Neema,
Ted Bapty, Janos Sztipanovits, and Gabor Karsai. Design space exploration and ma-
nipulation for cyber physical systems. In IFIP First International Workshop on De-
sign Space Exploration of Cyber-Physical Systems (IDEAL’ 2014), Berlin, Germany,
04 2014. Springer, Springer.

100

http://www.mathworks.com/help/pdf_doc/physmod/simscape/simscape_lang.pdf
http://www.mathworks.com/help/pdf_doc/physmod/simscape/simscape_lang.pdf
http://www.mathworks.com/products/simulink/
http://www.metamorphsoftware.com/metamorph-tools/
http://www.metamorphsoftware.com/metamorph-tools/
http://www.jmodelica.org
https://github.com/metamorph-inc/meta-core/tree/master/meta/DesignDataPackage/doc/ClassDiagrams
https://github.com/metamorph-inc/meta-core/tree/master/meta/DesignDataPackage/doc/ClassDiagrams
https://github.com/metamorph-inc/meta-core/blob/master/meta/DesignDataPackage/doc/AVM_Component_Spec.pdf
https://github.com/metamorph-inc/meta-core/blob/master/meta/DesignDataPackage/doc/AVM_Component_Spec.pdf
https://github.com/metamorph-inc/meta-core/blob/master/meta/DesignDataPackage/doc/AVM_Component_Spec.pdf

[108] Himanshu Neema, Sandeep Neema, and Ted Bapty. Architecture exploration in the
meta toolchain. (ISIS-15-105), 2015.

[109] Sandeep Neema, Ted Bapty, and Daniel Balasubramanian. Software design and im-
plementation in the meta toolchain. (ISIS-15-107), 2015.

[110] Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts. Constraint-
based design-space exploration and model synthesis. In EMSOFT 2003, LNCS 2855,
Philadelphia, PA, October 2003.

[111] Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts. Constraint-based
design-space exploration and model synthesis. In Embedded Software, pages 290–305.
Springer, 2003.

[112] Pierluigi Nuzzo. Compositional Design of Cyber-Physical Systems Using Contracts.
PhD thesis, EECS Department, University of California, Berkeley, Aug 2015.

[113] OMG. Business Process Model And Notation. http://www.omg.org/spec/BPMN/2.
0/, 2011. last accessed: 04/04/2016.

[114] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.4. http://www.
omg.org/spec/SysML/1.4/, 2015.

[115] OMG. Unified Modeling Language (UML), Version 2.5. http://www.omg.org/spec/
UML/2.5/, 2015.

[116] Tim O’reilly. What is web 2.0: Design patterns and business models for the next
generation of software. Communications & strategies, (1):17, 2007.

[117] Open Source Modelica Consortium (OSMC). OpenModelica. https://www.
openmodelica.org. last accessed: 04/04/2016.

[118] M. Otter, H. Elmqvist, and S. E. Mattsson. Multidomain Modeling with Modelica. In
Paul A. Fishwick, editor, Handbook of Dynamic System Modelling, chapter 36, pages
36.1 – 36.27. Chapman & Hall/CRC, 2007.

[119] Hewlett Packard. HP Quality Center. http://www8.hp.com/us/en/
software-solutions/quality-center-quality-management/. last accessed:
04/04/2016.

[120] C Paredis. Model-based systems engineering: A roadmap for academic research. Fron-
tiers in Model-Based Systems Engineering, Atlanta, GA, 2011.

[121] Roberto Passerone, Luca De Alfaro, Thomas A Henzinger, and Alberto L Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis: Two faces of the same
coin. In Proceedings of the 2002 IEEE/ACM international conference on Computer-
aided design, pages 132–139. ACM, 2002.

[122] Fabio Paterno. Model-based design and evaluation of interactive applications. Springer
Science & Business Media, 2012.

101

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://www.openmodelica.org
https://www.openmodelica.org
http://www8.hp.com/us/en/software-solutions/quality-center-quality-management/
http://www8.hp.com/us/en/software-solutions/quality-center-quality-management/

[123] R Peak, R Burkhart, S Friedenthal, M Wilson, M Bajaj, and I Kim. Simulation-based
design using sysml part 1: A parametrics primer. incose intl. In Symposium, San Diego,
2007.

[124] Russell S Peak, Roger M Burkhart, Sanford A Friedenthal, Miyako W Wilson, Manas
Bajaj, and Injoong Kim. 9.3. 3 simulation-based design using sysml part 2: Celebrating
diversity by example. In INCOSE International Symposium, volume 17, pages 1536–
1557. Wiley Online Library, 2007.

[125] Linda R Petzold et al. A description of dassl: A differential/algebraic system solver.
Scientific computing, 1, 1982.

[126] Klaus Pohl. Requirements engineering: fundamentals, principles, and techniques.
Springer Publishing Company, Incorporated, 2010.

[127] Adrian Pop, Vasile Băluţă, and Peter Fritzson. Eclipse support for design and require-
ments engineering based on modelicaml. SIMS 2007, page 93, 2007.

[128] Joseph Porter, Zsolt Lattmann, Graham Hemingway, Nagabhushan Mahadevan,
Sandeep Neema, Harmon Nine, Nicholas Kottenstette, Peter Volgyesi, Gabor Kar-
sai, and Janos Sztipanovits. The esmol modeling language and tools for synthesizing
and simulating real-time embedded systems. In 15th IEEE Real-Time and Embedded
Technology and Applications Symposium, San Francisco, CA, 04 2009.

[129] PTC. PTC Integrity. http://www.ptc.com/application-lifecycle-management/
integrity. last accessed: 04/04/2016.

[130] Sharif Rahman and Heqin Xu. A univariate dimension-reduction method for multi-
dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics,
19(4):393–408, 2004.

[131] Ragunathan Raj Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical
systems: the next computing revolution. In Proceedings of the 47th Design Automation
Conference, pages 731–736. ACM, 2010.

[132] Bhaskar Saha, Tomonori Honda, Ion Matei, Eric Saund, Johan de Kleer, Tolga Kur-
toglu, and Zsolt Lattmann. A model-based approach for an optimal maintenance strat-
egy. In 2nd European Conference of the PHM Society - PHME’14, Nantes, France, 07
2014.

[133] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Taming dr.
frankenstein: Contract-based design for cyber-physical systems*. European journal of
control, 18(3):217–238, 2012.

[134] Ulf Sellgren. Simulation driven design-a functional view of the design process. Licen-
tiate thesis. Royal institute of technology, Sweden, 1995.

[135] Ulf Sellgren. Simulation-driven design: motives, means, and opportunities. 1999.

102

http://www.ptc.com/application-lifecycle-management/integrity
http://www.ptc.com/application-lifecycle-management/integrity

[136] Gabor Simko. Formal Semantic Specification of Domain-Specific Modeling Languages
for Cyber-Physical Systems. PhD thesis, Vanderbilt University, 2014.

[137] Timothy W Simpson, Timothy M Mauery, John J Korte, and Farrokh Mistree. Kriging
models for global approximation in simulation-based multidisciplinary design optimiza-
tion. AIAA journal, 39(12):2233–2241, 2001.

[138] Timothy W Simpson, Vasilli Toropov, Vladimir Balabanov, and Felipe AC Viana.
Design and analysis of computer experiments in multidisciplinary design optimization:
a review of how far we have come or not. In 12th AIAA/ISSMO multidisciplinary
analysis and optimization conference, volume 5, pages 10–12, 2008.

[139] Rajarishi Sinha, Christiaan JJ Paredis, Vei-Chung Liang, and Pradeep K Khosla. Mod-
eling and simulation methods for design of engineering systems. Journal of Computing
and Information Science in Engineering, 1(1):84–91, 2001.

[140] Ian Sommerville and Pete Sawyer. Requirements engineering: a good practice guide.
John Wiley & Sons, Inc., 1997.

[141] Sara C Spangelo, David Kaslow, Chris Delp, Bjorn Cole, Louise Anderson, Elyse Fosse,
Brett Sam Gilbert, Leo Hartman, Theodore Kahn, and James Cutler. Applying model
based systems engineering (mbse) to a standard cubesat. In Aerospace Conference,
2012 IEEE, pages 1–20. IEEE, 2012.

[142] Rolls-Royce Power Systems. http://www.mtu-online.com/mtu/mtu/. last accessed:
04/04/2016.

[143] Dassault Systèmes. Catia. http://www.3ds.com/products-services/catia. last
accessed: 04/04/2016.

[144] Dassault Systèmes. Dymola. http://www.3ds.com/products-services/catia/
products/dymola. last accessed: 04/04/2016.

[145] Dassault Systèmes. iSight 5.9-2. http://www.3ds.com/products-services/
simulia/products/isight-simulia-execution-engine/. last accessed:
04/04/2016.

[146] J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos, and E. Jackson. Design tool
chain for cyber-physical systems: Lessons learned. In Design Automation Conference
(DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6, June 2015.

[147] Janos Sztipanovits. Cyber physical systems: New challenges
for model-based design, April 2008. Presented at the " From
Embedded Systems to Cyber-Physical Systems: a Review of the State-of-the-Art and
Research Needs" Workshop, St. Louis, MO.

103

http://www.mtu-online.com/mtu/mtu/
http://www.3ds.com/products-services/catia
http://www.3ds.com/products-services/catia/products/dymola
http://www.3ds.com/products-services/catia/products/dymola
http://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine/
http://www.3ds.com/products-services/simulia/products/isight-simulia-execution-engine/

[148] Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan Jackson.
Openmeta: A model-and component-based design tool chain for cyber-physical sys-
tems. In From Programs to Systems. The Systems perspective in Computing, pages
235–248. Springer, 2014.

[149] Michael Tiller. Introduction to physical modeling with Modelica, volume 615. Springer
Science & Business Media, 2012.

[150] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart CL Kats, Eelco Visser, and Guido Wachsmuth. DSL engineering: Designing,
implementing and using domain-specific languages. dslbook. org, 2013.

[151] Anjelika Votintseva, Petra Witschel, and A Goedecke. Analysis of a complex system for
electrical mobility using a model-based engineering approach focusing on simulation.
Procedia Computer Science, 6:57–62, 2011.

[152] Tim Weilkiens. Systems engineering with SysML/UML: modeling, analysis, design.
Morgan Kaufmann, 2011.

[153] J.C. Willems. The behavioral approach to open and interconnected systems. Control
Systems, IEEE, 27(6):46 –99, Dec 2007.

[154] Wolfram. SystemModeler. http://www.wolfram.com/system-modeler. last accessed:
04/04/2016.

[155] Thought Works. Mingle. https://www.thoughtworks.com/mingle/. last accessed:
04/04/2016.

[156] Ryan Wrenn, Adam Nagel, Robert Owens, Di Yao, Himanshu Neema, Feng Shi, Kevin
Smyth, Joseph Porter, Ted Bapty, Sandeep Neema, et al. Towards automated explo-
ration and assembly of vehicle design models. In ASME 2012 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, pages 1143–1152. American Society of Mechanical Engineers, 2012.

[157] Dazhong Wu, Linda L Zhang, Roger J Jiao, and Roberto F Lu. Sysml-based design
chain information modeling for variety management in production reconfiguration.
Journal of Intelligent Manufacturing, 24(3):575–596, 2013.

[158] Kwangsun Yoon. A reconciliation among discrete compromise solutions. Journal of
the Operational Research Society, pages 277–286, 1987.

[159] Peng Zhang, Zsolt Lattmann, James Klingler, Sandeep Neema, and Ted Bapty. Visu-
alization techniques in collaborative domain-specific modeling environment. In South-
eastCon 2015, Fort Lauderdale, FL, USA, 04/2015 2015. IEEE.

104

http://www.wolfram.com/system-modeler
https://www.thoughtworks.com/mingle/

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Chap. I: Introduction
	Challenges
	Problem Description
	Thesis Goals
	Thesis Outline

	Chap. II: Background
	Cyber-Physical Systems
	Existing Design Processes
	Layered Design
	Component-Based Design
	V-model
	Model-Based Development
	Virtual integration
	Platform-Based Design
	Contract-Based Design
	Summary
	Evaluation

	Model-Based Systems Engineering
	Domain-Specific Languages
	Unified Modeling Language
	Systems Modeling Language
	Evaluation

	Model Interfaces and Composition
	Bond Graphs
	Modelica
	Evaluation

	Requirements
	Requirement and design trade-offs
	Simulation-Driven Design
	Multidisciplinary Design Analysis and Optimization
	Lessons learned

	Chap. III: High-level Design Flow
	Model Integration Platform
	Tool Integration Platform
	Execution Integration Platform
	Visualization Integration Platform

	Chap. IV: Heterogeneous component models
	Problem Statement
	Challenges
	Component and design models
	Solution
	Evaluation

	Example for model integration
	Solution
	Evaluation

	Chap. V: Analysis templates and model execution framework
	Problem Statement
	Challenges
	Solution
	Analysis template models
	Parametric exploration models
	Tool integration and analysis package execution
	Project artifacts and analysis result management

	Evaluation

	Chap. VI: Analysis-driven Rapid Design Process
	Problem Statement
	Challenges
	Solution
	Evaluation
	Oscillator
	Ground vehicle driveline

	Potential Other Applications

	Chap. VII: Conclusion
	Lessons learned
	Results
	Open research challenges

	App. A: Relevant publications
	Heterogeneous component models
	Analysis templates and model execution framework
	Analysis-driven Rapid Design Process

	App. B: Other publications
	App. C: Simulation error log for oscillator design
	App. D: Design space results for Oscillator
	REFERENCES

