
The constantly increasing complexity in automotive development requires data models,

processes, and tools to address and handle this complexity by the documentation of information

artifacts and their relationships to create traceability. Particularly, electrics/electronics (E/E)

development including software and the corresponding information artifacts which are exchanged

between engineering partners and have a high reciprocal dependency are crucial for traceability.

The developed data model addresses peculiarities of model-based systems engineering (MBSE) in

alignment with product data management (PDM). The process model implements enhanced

alignment during systems engineering through automized synchronization of changes across IT

systems and a consensus mechanism to identify discrepancies as early as possible.

As a technological solution, the Blockchain technology is implemented and serves as a product

lifecycle management (PLM) backbone intermediating among multiple engineering partners’ IT

systems. Connecting the corresponding IT systems and tools within a company as well as

providing interfaces to external engineering partners, the PLM Blockchain backbone fosters

internal and external traceability.
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Abstract 

The constantly increasing complexity in automotive development requires data models, 

processes, and tools to address and handle this complexity by the documentation of 

information artifacts and their relationships to create traceability. This challenge exists 

both within the OEM’s development organization as well as for each supplier. 

Particularly, electrics/electronics (E/E) development including software and the 

corresponding information artifacts which are exchanged between engineering partners 

and have a high reciprocal dependency are crucial for traceability. 

Derived from these challenges, this dissertation has the objectives of the 

conceptualization and prototypical implementation of a solution framework that 

addresses internal traceability, i.e., within a company’s IT systems, and external 

traceability, i.e., among multiple engineering partners. For this purpose, three distinct 

enablers for a framework for traceability are identified: i) data model, ii) process model, 

iii) technology. 

Given the current state of science and technology, the enablers are assessed by means 

of the derived requirements. Therefore, the proposed solution framework also composes 

these three enablers. 

The developed data model addresses peculiarities of model-based systems engineering 

(MBSE) in alignment with product data management (PDM) for early automotive E/E 

development and thereby fosters predominantly internal traceability but also external. 

Moreover, the data model includes universal identifiers for the promotion of external 

traceability and proposes a data integration mechanism for the exchange and 

synchronization of relevant data. 

The process model implements enhanced alignment during systems engineering 

through automized synchronization of changes across IT systems and a consensus 

mechanism to identify discrepancies as early as possible. This mainly addresses 

external traceability among engineering partners. 

As a technological solution, the Blockchain technology is implemented and serves as a 

product lifecycle management (PLM) backbone which intermediates between multiple 

engineering partners’ IT systems. Connecting the corresponding IT systems and tools 
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within a company as well as providing interfaces to external engineering partners, the 

PLM Blockchain backbone fosters internal and external traceability. 

As this technological approach using the Blockchain technology for engineering IT in 

automotive engineering collaborations is completely new, the evaluation of the solution 

framework was conducted with an existing development use case as well as a potential 

future scenario. Conclusively, the elaborated solution framework addresses the 

research objectives adequately. Limitations are discussed and serve as basis for 

prospective work. 
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Title and summary in Dutch 

EEN RAAMWERK OM DE TRACEERBAARHEID VAN E/E-ARTEFACTEN TIJDENS 

DE ONTWIKKELING VAN AUTO'S TE BEVORDEREN IN HET LICHT VAN 

MODELGEBASEERDE SYSTEMEN ENGINEERING BINNEN GEDISTRIBUEERDE 

ENGINEERING-SAMENWERKING DOOR MIDDEL VAN DE BLOCKCHAIN 

De complexiteit in de ontwikkeling van auto’s neemt voortdurend toe, en dat vereist 

gegevensmodellen, processen en hulpmiddelen om deze complexiteit aan te pakken en 

te verwerken. Dit gebeurt door het documenteren van informatieartefacten en hun 

relaties om traceerbaarheid te creëren. Deze uitdaging bestaat zowel binnen de 

ontwikkelingsorganisatie van de OEM als voor elke leverancier. Vooral de ontwikkeling 

van elektronica/elektronica (E/E) is cruciaal voor de traceerbaarheid. Onder deze E/E-

artefacten vallen software en de bijbehorende informatieartefacten die worden 

uitgewisseld tussen engineeringpartners en een hoge wederzijdse afhankelijkheid 

hebben. 

Deze uitdagingen leiden tot de doelstellingen van dit proefschrift: de conceptualisering 

en prototypische implementatie van een oplossingsraamwerk dat werkt aan interne 

traceerbaarheid (binnen de IT-systemen van een bedrijf) en externe traceerbaarheid 

(onder meerdere engineeringpartners). Voor deze doelen worden drie verschillende 

enablers geïdentificeerd voor een raamwerk voor traceerbaarheid: i) gegevensmodel, 

II) procesmodel, III) technologie. 

De enablers worden beoordeeld aan de hand van de eisen die zijn afgeleid uit de huidige 

stand van wetenschap en technologie. Het voorgestelde oplossingskader vormt daarom 

ook deze drie mogelijkheden. 

Het ontwikkelde datamodel richt zich op de specifieke kenmerken van model-based 

systems engineering (MBSE) in overeenstemming met product data management 

(PDM), voor de vroege ontwikkeling van E/E in de automobielindustrie. Het bevordert 

daardoor voornamelijk interne traceerbaarheid, maar ook externe. Bovendien bevat het 

gegevensmodel universele identificatoren voor de bevordering van externe 

traceerbaarheid. Daarnaast stelt het model een mechanisme voor, voor data-integratie 

voor de uitwisseling en synchronisatie van relevante data. 
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Het procesmodel implementeert verbeterde afstemming tijdens systeemontwikkeling. 

Dit gebeurt door geautomatiseerde synchronisatie van veranderingen in IT-systemen 

en een consensusmechanisme om afwijkingen zo vroeg mogelijk te identificeren. Dit 

betreft vooral de externe traceerbaarheid onder engineeringpartners. 

Als technologische oplossing wordt de blockchain-technologie geïmplementeerd. Deze 

fungeert als een PLM-ruggengraat (Product Lifecycle Management) die de IT-systemen 

van meerdere engineeringpartners bemiddelt. De PLM blockchain backbone bevordert 

de interne en externe traceerbaarheid door de overeenkomstige IT-systemen en -tools 

binnen een bedrijf te verbinden en interfaces te bieden aan externe engineeringpartners. 

Deze technologische aanpak, waarbij de blockchain-technologie wordt gebruikt voor 

engineering-IT in samenwerking met automotive engineering, is volledig nieuw. Daarom 

werd de evaluatie van het oplossingskader uitgevoerd met een bestaande 

ontwikkelingsgebruiksscenario en een potentieel toekomstig scenario. Het uitgewerkte 

oplossingskader richt zich op afdoende wijze op de onderzoeksdoelstellingen. 

Beperkingen worden besproken en dienen als basis voor toekomstig werk. 
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1 Introduction 

1.1 Initial situation 

INDUSTRIES WITH COMPLEX PRODUCTS 

GERICKE et al. (2013) show that projects of complex products1, such as aerospace, 

motor vehicles and software, have a higher coverage of all related lifecycle phases and 

their processes within them, such as all related quality processes needed to meet 

regulatory specifications etc. This can be argued by the tremendous risk a company 

engages in with the development of a complex product and the complexity of products 

themselves. On the other hand, companies building less complex products can skip 

certain aspects of processes, for instance when a few disciplines or organizational 

entities are involved during development (GERICKE et al., 2013: 7). Hence, for complex 

products most lifecycle phases and processes are relevant and therefore the seamless 

integration of those is necessary for efficiency and quality. 

Particularly in aerospace, products have a lifecycle of over 50 years whereas a 

spaceship’s or plane’s applications only are used for about three years. This implies a 

constant adaption of applications, re-design, and re-development in collaboration with 

many disciplines, departments, suppliers, and external engineering partners 

(SINDERMANN, 2014: pp. 345–346; LOTAR INTERNATIONAL: LONG TERM ARCHIVING AND 

RETRIEVAL). In the automotive industry, lifecycles of products are within circa five to 

seven years, which is a lot shorter. However, automobiles are considered more and 

more to be consumer goods that have to adapt quickly to technological changes 

demanded by the customers. For that purpose, automobiles undergo frequent minor or 

major alterations to meet the market demand and to include improvements or 

technological novelties. 

 
1 Products or systems are called complex or synonymously complicated. However, those terms have to 
be distinguished. HABERFELLNER (2012) defines complexity of systems according to the amount, variety, 
or size of elements on one axis and the dynamic and volatility of elements’ interfaces on the other. A 
simple system consists of little elements that have little dynamic or little intense relations, i.e., parts have 
little interfaces to other parts and these interfaces are mostly constant. Systems with many elements are 
called massive networked complicated systems. Systems with a high dynamic or volatility are called 
dynamic complicated systems. Complex systems have a high dynamic or volatility of elements’ interfaces 
as well as a high amount, variety, or size of elements. Complex systems cannot be described, understood, 
or modeled entirely, whereas with complicated systems this might be, at least partially, feasible 
(HABERFELLNER, 2012: pp. 40–41; SCHUH, 2005: pp. 5–7). For more information about complexity in 
products and systems, please refer to ULRICH and PROBST (1988); LINDEMANN et al. (2009); LINDEMANN 
(2009); SCHUH (2005); DAENZER and HUBER (2002). 
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In comparison to other industries which produce complex products, such as truck or 

machineries, commercial aircrafts, or ships, the automotive industry produces the most 

units per day. In contrast, automobiles are not as big as most products of the other 

mentioned industries and hence the number of parts used is significantly smaller than 

for a ship, for example. With respect to variability, i.e., the possible combinations of 

different parts for one final product, for instance another engine or color for the same 

automobile model, the automotive industry has succeeded in standardization of 

platforms and common parts. Consequently, the variability in the automotive industry is 

not as high as for instance in the commercial aircraft industry (cf. Figure 1-1) 

(KATZENBACH, 2015b: p. 47). Yet, customers demand a highly configurable product, 

especially in the luxurious automotive segment. Thus, automotive manufacturers offer 

a high variability to satisfy this demand. 

A relatively complex industry, such as aerospace with its small production quantities, 

does not have as much variability in its products as the automotive industry. Also, the 

consumer electronics industry does not offer such a high variability of one product as 

the automotive industry, albeit a high quantity of products is produced. Consumer 

electronic products often are less complex than automobiles or spaceships because 

they are made for mass production, therefore mostly have limited fields of application 

and shorter lifecycles. The automotive industry is an intermediary regarding complex 

products and high production quantities in comparison to aerospace and consumer 

electronics. However, in variability of products the automotive industry excels compared 

to these other industries (cf. Figure 1-2) (in alignment to KATZENBACH, 2015b: p. 48). 

Due to a relatively intermediate complexity, based upon the amount and type of 

interfaces as well as the art and number of elements (cf. Footnote 1), but with a relatively 

high production output and also a significant variability, the automotive industry can be 

considered as one of the most challenging industries. This is in regards to the 

development and production of its products. Particularly, the congruency of complexity, 

quantity, and variability of automobiles yields a special foundation for the assessment 

of the accompanying development processes in a company and between different 

companies contributing to an automobile. The increasing importance of 

electric/electronics in automobiles and resulting challenges in the development of 

complex systems further accentuate this stance, as it will be discussed in the next 

section. 
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Figure 1-1: Comparison of production quantity, variability of possible combinations, and number of 

parts used for a final product for different industries (cf. SIEMENS PLM, n.a. according to KATZENBACH, 

2015b: p. 47). 

 

Figure 1-2: Comparison of products’ complexity, their variability, and the quantity of production units 

for different industries (cf. REUSCHER, n.a. according to KATZENBACH, 2015b: p. 48). 

VICISSITUDES OF THE AUTOMOTIVE INDUSTRY 

In the last decades, a change from seller to a buyer market and resulting 

individualization of products shaped product variety in order to satisfy the different 

demands of customers. This is also true for the automotive market where automotive 
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manufacturers court customers with many possible combinations and hence 

individualization (BURMANN and KOTHES, 2014: p. 3). This results in a huge amount of 

variants (BURMANN and KOTHES, 2014: pp. 8–10; KATZENBACH, 2015a: p. 609). Of a total 

of 1.1 million Mercedes-Benz A-class models produced within two years, only two 

automobiles have been identical (SCHLOTT, 2005: p. 38). Today, even without color 

combinations, 25,000 possible variants of one automobile model are common and for a 

door panel there exist 18,000 possibilities (EHRLENSPIEL and MEERKAMM, 2017: p. 864; 

SCHLOTT, 2005: p. 38). An increase in parts variety and product variety results in a 

complexity of products, which has to be handled organizationally as well as 

technologically. 

Currently, the automotive industry faces profound vicissitudes based upon topics such 

as connectivity, autonomous driving, car sharing, and electric drive systems (DAIMLER 

AG, 2017: p. 24). Expectations by customers to connect their smartphone to their car 

and also control it partially, induce this change. Additionally, especially in major cities, a 

trend towards car sharing instead of purchasing an own car occurs. This is again 

induced by changing customer demands. This can be considered as a further pull factor 

in the view of automotive manufacturers. Opposing, there exist push factors. For 

instance, most major original equipment manufacturers (OEMs) pursue a strategy 

towards autonomous driving using assistance systems. This technology is becoming 

more mature and enables new business segments, e.g., robot taxis. Implementation of 

(partial) electric driving in vehicles is based on, one the one hand, a more efficient 

battery and power train technology. On the other hand, regulatory requirements foster 

electric vehicles. Amalgamation of push and pull factors yield new technological 

solutions in an automobile in the realm of electrics/electronics (E/E), i.e., actuators, 

sensors, electronic control units (ECUs), and software, in order to address these new 

requirements. Due to new functionalities more likely being implemented software-based 

and this software being more easily altered, the volatility as well as overall variance of 

the current state of construction of a vehicle can increase tremendously (TRIPPNER et 

al., 2015: p. 557; BEIHOFF et al., 2014: p. 12). BENDER (2005) states that 90 percent of 

innovations in manufacturing engineering are realized by information technology (IT) 

and therefore software can be considered as a business enabler (BENDER, 2005: pp. 7–

8). In the automotive industry, software and electronics even constitute up to 90% of all 

innovations (BEECK, 2007: p. 205; BEUTNER et al., 2013: p. 19). A modern car from the 

year 2012 has about 100 million lines of code and therefore more code than a F-35 
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fighter jet from 2013 with ca. 24 million lines of code (NEWCOMB, 2012; AXE, 2012). 

Accordingly, on the one hand, software facilitates myriad of new product functionalities 

and hence increases functional complexity of products. On the other hand, a shift of 

variance from hardware to software partially reduces complexity of development and 

production of products (EIGNER et al., 2014: p. 2; BEECK, 2007: p. 205). Managing the 

vicious cycle of changeability and understandability is a challenge when designing 

products, particularly systems. Flexibility in dealing with changing information artifacts 

is needed, whereas this flexibility itself induces complexity in the development process 

(POMBERGER and PREE, 2004: p. 85; NEUMEYER et al., 2017: p. 29). 

This vicissitude from hardware to software and their conjunction, so-called mechatronic 

products2, has direct impact for automotive development. To enable new functionalities 

and hence address the arising complexity, the quantity of ECUs and communication 

busses within an automobile’s E/E architecture rose intensely. In a modern luxury 

automobile, ECUs increased about 260% and communication busses 500% in the years 

from 1995 to 2013 (LANKENAU and HEBER, 2017: p. 4), as depicted in Figure 1-3. This 

steady augmentation of ECUs originates from the approach that for each new feature 

added, an additional ECU is added to the current E/E architecture, particularly in comfort 

electronics. However, in the power train domain a converse evolution is visible with more 

performant ECUs instead of quantitatively more due to a higher integration of 

functionalities in the power train domain (FROST & SULLIVAN, 2018: p. 10; BORGEEST, 

2014: 90). As a fully autonomous automobile will require 40 to 120 ECUs solely to 

compute all autonomous applications and will generate approximately four terra bytes 

of data per day, there is a tendency for the automobile E/E architecture’s complexity to 

rise (FROST & SULLIVAN, 2018: p. 10). FROST & SULLIVAN (2018) estimate that the average 

total amount of ECUs accumulates up to 178 in autonomous vehicles in Europe and 

North America in 2017 (FROST & SULLIVAN, 2018: p. 36). 

 

 
2 Mechatronic products today comprise mechanics, electronics, and informatics (software) and will be 

delineated in more detail in Chapter 2.2.2 (EIGNER et al., 2014: p. 43). 
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Figure 1-3: Increasing complexity in a luxury automobile’s E/E architecture represented by the growth 

of the total number of ECUs and communication busses (LANKENAU and HEBER, 2017: p. 4). 

Rampant product recalls of automobiles imply that the increased complexity of an 

automobile’s E/E architecture is not yet appropriately managed (BERTSCHE et al., 2009: 

p. 5; RITTBERG, 2014: p. 63). Moreover, software already causes 15 percent of 

automobile recalls (HALVORSON, 2016). Not only does the customer demand a 

functioning automobile, regulations and laws also require high quality assurance, 

especially for safety-relevant applications (BEECK, 2007: p. 205; INTERNATIONAL 

ORGANIZATION FOR STANDARDIZATION, 2011b: p. V; LÄMMER and THEISS, 2015: p. 463). 

Due to an increased demand for variety, product variety grows, and therefore parts 

variety, and order variety augment. Hence, a higher variety in suppliers can result 

because the more diversified products are, the more knowledge is needed which cannot 

always be provided by the OEMs (EHRLENSPIEL and MEERKAMM, 2017: pp. 863–868). An 

OEM alone cannot master such a complexity. Consequently, there exists a long tradition 

of supplier and engineering partner relationships with the OEMs in the automotive 

industry. In the last years, suppliers evolved from engineering partners to the developer 

or provider of entire systems. In this role, the engineering partners develop, produce, 

and deliver particular systems and the OEM sometimes only executes integration and 

assembly (KATZENBACH, 2015a: p. 610). However, the inclusion of new and more 

intertwined partners all over the world increases process and work organization 

complexity. This demands an organizational paradigm shift and hence yields a higher 

demand for reconciliation (EIGNER et al., 2014: p. 3; KATZENBACH, 2015a: pp. 607, 611). 
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1.2 Problem statement and delineation 

1.2.1 Traceability of information artifacts to address increasing 

complexity in automotive E/E architecture 

In order to address all vicissitudes of the automotive industry, from more product 

variance to innovations in E/E and their impact on the E/E architecture of an automobile, 

an automobile developing and producing company has to take measures. These 

measures could be to connect information artifacts. Also, their connections to distinct 

entities of a product, i.e., a configuration, and their changes across the lifecycle within a 

company. This is called traceability (EIGNER et al., 2014: p. 274). 

A high variance of products is already established during development and it is much 

more costly to address issues and changes later in the product lifecycle (EIGNER and 

STELZER, 2009: p. 16). During development, 70% of total product costs are determined 

which will become effective to 94% in later lifecycles (VEREIN DEUTSCHER INGENIEURE, 

1987: p. 3). Hence, the focus of this work will lie on the early development phases in 

order to address complexity there, where it has the highest impact on costs 

(EHRLENSPIEL et al., 2014: p. 15). There exists a plethora of methodologies3 to support 

the product development process and to foster traceability mostly for one specific 

discipline but sometimes also for different disciplines, processes, and lifecycle phases 

(cf. EIGNER et al., 2014: pp. 15–52). A particular methodology for the development of 

mechatronic products, i.e., multidisciplinary products, is model-based systems 

engineering (MBSE). By means of digital and development-specific system models, an 

integration of information artifacts as well as modeling along the product development 

process occurs. The issue of integration and alignment of specific information artifacts 

during the development process can be alleviated in the early stages by such modeling 

approaches. For that purpose, correlations between system requirements, functions, 

behavior, and structure are defined explicitly (EIGNER et al., 2014: pp. 45, 77). The goal 

is to make documented information available to all different domains and organizational 

entities in a company. Product data management (PDM) particularly for development, 

and product lifecycle management (PLM), already exist for some decades and take a 

pivotal role in information and configuration management within companies during the 

 
3 A methodology can be considered as a collection of related processes, methods, and tools (ESTEFAN, 
2008: p. 10; EHRLENSPIEL and MEERKAMM, 2017: p. 173). For further definitions of method and 
methodology, please refer to EHRLENSPIEL and MEERKAMM (2017), EIGNER (2014d) and Chapter 2. 
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development and for the entire lifecycle, respectively. Moreover, PDM/PLM systems 

often provide application programming interfaces (APIs) for external engineering 

partners (cf. EIGNER and STELZER, 2009: pp. 27-42). However, the documents stored in 

PDM systems often do not represent connections and relations between information 

artifacts described in these documents or this information cannot be made visible 

without the distinct authoring tool (GILZ, 2014: p. 3). Thus, the more formalized approach 

of MBSE and its conceptual system design aligned to product data models and their 

management over the lifecycle is a solution approach which fosters traceability from the 

very start of the development process with the documentation of requirements (cf. GILZ, 

2014: pp. 3-7). 

As stated in Chapter 1.1, complex products often are developed conjointly between 

OEMs and engineering partners. Within such engineering collaborations, traceability of 

information artifacts, their respective changes, and configurations in a worldwide-

distributed engineering and supply chain by means of potent IT technologies is crucial. 

Therefore, PLM concepts are prerequisites. Those PLM concepts foster ubiquitous 

information management (KATZENBACH, 2015a: p. 611; BEIER, 2014: p. 37). In order to 

understand better the connection of the mentioned complex single artifacts, it is helpful 

to map their interdependencies explicitly. Particularly, the heterogeneous methods of 

different disciplines require traceability of information artifacts. Hence, traceability is not 

autotelic but rather supports the comprehensive disciplinary understanding of systems 

of a product. Therefore, traceability is required by many norms and standards 

addressing both qualitative and statutory requirements towards traceability (cf. Chapter 

2.1.1) (BEIER, 2014: p. 37; STARK, 2015: p. 45). 

In this context, it can be distinguished between traceability within a company, i.e., 

internally, and externally, i.e., in the above-mentioned engineering collaborations. The 

former addresses the connection of information artifacts of diverse disciplines which 

develop parallelly or sequentially a product. The latter focuses on how to integrate 

information artifacts across many engineering partners that all face the challenges of 

internal traceability, too. This duality of internal and external traceability will be 

elaborated in more detail in the following chapter and generally occurs in all engineering 

collaborations for all involved partners, not only in the automotive but also in other 

industries (vide supra). 
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1.2.2 Current deficiency in research 

INTERNAL TRACEABILITY 

As already addressed above, complexity requires, inter alia, traceability in IT systems. 

MBSE and PDM/PLM are methods to provide traceability in specific disciplines and 

phases of the product lifecycle. MBSE fosters traceability commonly in the early phases 

of the lifecycle, PDM/PLM usually starting in the middle and extending towards the end. 

However, systems engineering4 is not stringently executed beyond the early product 

development phase. Hence, subsequent processes cannot use the information created 

during systems engineering. Consequently, data from manufacturing, support, and after 

sales cannot be used to enhance the product. Integration of MBSE into PDM/PLM 

requires plenty of alignment of different functionalities, such as to handle product lines, 

variability, design, simulation, and configuration5. However, this alignment is not yet fully 

achieved. This lack of alignment, preferably in one integrated platform, would address 

the increasing complexity and foster traceability (GRIEVES, 2012: pp. 236–241; PAVALKIS, 

2016: pp. 2, 14; BIAHMOU, 2015b: pp. 225, 228, 231). GILZ (2014) addressed some of 

this alignment by the methodical integration of a functional product description. Though, 

some open points remain, for instance, the specific configuration management, specific 

workflows, organizational roles, as well as the application on the property level for 

electrics/electronics computer-aided design (E-CAD) and inclusion of software models 

(GILZ, 2014: pp. 183–184). Further research focused on the incremental integration of 

different stages of expansion of the model-based development process into the PLM 

according to the respective use case and how this integration of system models in the 

PLM environment could look like. Moreover, different possibilities of how IT systems 

could be linked in order to achieve this integration for the connection of MBSE and 

PDM/PLM were assessed and how the connection on data model level could look like. 

Restrictions of this joint research project so far is the lack of industrial application and 

the refinement of some aspects such as which is the optimal solution approach to 

document metadata in system models and distinct traceability schemes (LINDEMANN and 

KRASTEL, 2017: p. 150; KIRSCH et al., 2017b: pp. 161–162; MÜLLER and KIRSCH, 2017: 

pp. 178–179; MECPRO² ABSCHLUSSBERICHT, 2016d: p. 28; MÜLLER and HAßE, 2017a: p. 

185, 2017b: p. 228; BEIER, 2014: p. 256). Furthermore, the missing documentation of 

 
4 For the definition of systems engineering and the distinction to model-based systems engineering, 
please refer to Chapter 2.4. 
5 For more details please refer to Chapter 2.3 and 2.4 and PAVALKIS (2016). 
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dependencies caused by low transparency about changes and their impacts requires 

the explicit modeling of information artifacts within a system and across organization 

structures (KÖNIGS et al., 2012: pp. 926, 927, 930). 

The availability of once created information artifacts to the other downstream or parallel 

processes in the development process is threefold6. Horizontal integration requires the 

integration of information artifacts along the development process regarding milestones 

and procedural sequence. Vertical integration shall ensure that information artifacts are 

modeled gradually with increasing level of detail. Interdisciplinary integration aims at 

integrated information artifacts of different disciplines, such as mechanics, E/E, and 

software. These diverse integration approaches foster traceability and still have to be 

fully achieved (TRIPPNER et al., 2015: p. 560).  

EXTERNAL TRACEABILITY 

Particularly, the exchange of system models beyond a company’s boundaries is crucial 

for traceability as well as to reduce reconciliation and is not yet fully supported. Also, 

conventions of how the composition of system models in engineering collaborations and 

its processes could look like and whether libraries of system models across companies 

would support this, are still open issues. Research with scope on enabling technologies 

for engineering collaboration identify a high necessity for more flexible and more efficient 

solutions to transfer data amongst multiple engineering partners (STIEFEL, 2011: pp. 

280–283; MECPRO² ABSCHLUSSBERICHT, 2016d: p. 28). Hence, the implementation of 

common system models and joint development processes could reduce reconciliation 

and error proneness and thus foster external traceability. However, so far, there do not 

exist sufficient traceability schemes for OEM and supplier communication, i.e. the 

transmission of supplier-specific traces of information artifacts in the context of the 

OEM’s product (BEIER, 2014: pp. 80-81, 256). A better integration of IT systems and 

data models reduces coordination, especially in case of highly integrated system 

suppliers (KATZENBACH, 2015a: pp. 610–611, 632–633). Communication between 

departments, organizations, and suppliers involved in development increases and yields 

errors based on missing traceability (KÖNIGS et al., 2012: 926–927, 939). 

Another aspect of external traceability, besides the reduction of reconciliation and 

coordination in engineering collaborations, is the transparent and safe documentation 

of changes made during development between multiple engineering partners. In this 

 
6 The fourth dimension “modern workplace” is not in scope here (cf. TRIPPNER et al., 2015: p. 560). 
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context, transparent means that changes during product development are visible in due 

course to all parties involved. Safe means that changes are documented and stored with 

legal protection for the obligation to prove the accuracy of components developed and 

delivered as well as failure tolerant. This means that all data is available to all parties at 

any time regardless of whether one server is offline. KATZENBACH (2015a), LÄMMER and 

THEISS (2015), and STJEPANDIĆ et al. (2015a) highlight the dangers of sharing intellectual 

property (IP) in engineering collaborations due to constant exchange of data between 

partners who could later become harsh competitors (STJEPANDIĆ et al., 2015a: pp. 521, 

526; LÄMMER and THEISS, 2015: pp. 464, 474; KATZENBACH, 2015a: pp. 611–612). 

STIEFEL (2011) proposes a peer-to-peer network approach to address traceability 

between multiple development partners. In a peer-to-peer network, the failure of a node 

is possible. If each engineering partner only hosts their own data in order to better 

protect IP and reduce bandwidth by not exchanging all data, the failure of one IT system 

or node induces the loss or unavailability of data7 (STIEFEL, 2011: pp. 51, 281). In order 

to avoid this scenario, a central node for data hosting would be necessary again what, 

in turn, contradicts the protection of IP and the need for tamper-proof documentation. 

Moreover, immediate transparency about change activities would alleviate exhausting 

communication and data search in today’s distributed engineering collaboration using 

different data formats which is not yet fully addressed by recent concepts (BIAHMOU, 

2015b: pp. 222–223; KÖNIGS et al., 2012: p. 926). 

Due to more intertwined engineering collaboration (cf. Chapter 1.1), a simple connection 

of IT systems with engineering partners by means of standardized APIs also enables 

external traceability (LÄMMER and THEISS, 2015: p. 464). This is also required by the 

Code of PLM openness (CPO)8 and serves as the fundamentals for a joint PLM concept 

(BIAHMOU, 2015a: pp. 790–791; DEUTSCHES INSTITUT FÜR NORMUNG E. V., 2018c: pp. 5–

7; KATZENBACH, 2015a: p. 611). This conceptual framework is normative and hence the 

actual implementation and execution of norms required by the CPO is incumbent on the 

company aligning with it. In collaborations with non-trustworthy partners, i.e., potential 

future competitors or ad hoc contributors, a sub-collaboration in a separate network 

alleviates onboarding of engineering partners. Additionally, many partners can suggest 

new product models and engineering approaches by joining the standardized 

 
7 Cf. Chapter 2.7.3 for more information about peer-to-peer networks. 
8 Code of PLM openness (CPO) is an initiative by the prostep ivip association focusing on interoperability, 
infrastructure, extensibility, interfaces, standards, architecture, and partnership in engineering 
collaboration (cf. DEUTSCHES INSTITUT FÜR NORMUNG E. V., 2018a, 2018b, 2018c). 
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engineering network (STIEFEL, 2011: pp. 106–108, 150). This alleviated connection of 

engineering partners fosters traceability by an easy, system-based exchange of data 

instead of data sent by email or spreadsheets. Reasons for this could be a long and 

tedious IT connection process or no connection at all due to costs. STIEFEL (2011) 

describes a framework for a peer-to-peer engineering collaboration network based upon 

the necessity of flexible and efficient solutions for collaborative engineering. However, 

this described network is not reliable enough in the sense that peers might fail and hence 

data is not available9. Also, standardized inclusion of new peers, i.e. engineering 

partners, is complex and, depending on the chosen overlay-network, centralized peers 

have to hold data (STIEFEL, 2011: pp. 149–160). 

The research deficiency is illustrated generically in the problem space in Figure 1-4 

where the entire product lifecycle is depicted at the top, underneath the V-model of 

development (cf. Chapter 2.2.2), and at the bottom the contemporary heterogeneous IT 

tool and system landscape of bigger enterprises. Information artifacts are created in 

each IT tool, often are domain-specific and, if not standardized, hardly can be connected 

with or transferred to another data model of other tools or systems. However, this 

connection of information artifacts is necessary due to the increasing complexity in 

automotive E/E development (vide supra) in order to align development results across 

disciplines as well as to track errors and changes in other phases of the lifecycle. This 

issue of traceability is augmented if there are multiple engineering partners and 

suppliers developing jointly for one final product. In such a case, the standardized 

exchange of data is crucial. 

 
9 Please refer to Chapter 2.7.3 and STIEFEL (2011) for more information about peer-to-peer networks. 
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Figure 1-4: The problem space of automotive E/E development in a heterogeneous IT tool and system 

landscape (in alignment to HEBER et al., 2018: p. 8; HEBER and GROLL, 2018a: p. 281). 
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1.3 Objectives of this thesis 

Taking into account the issues previously stated and the current deficiency in research, 

the objectives of this work is to describe the traceability in automotive E/E engineering 

collaboration generically, i.e., for all OEM-supplier-relations. Therefore, focus will be on: 

1. Internal traceability i.e., within a company’s IT systems: 

a. Alignment of MBSE and PDM for E/E; 

2. External traceability, i.e., among multiple engineering partners: 

a. Reduction of reconciliation; 

b. Transparent and safe product changes; 

c. Alleviated connection of engineering partners. 

The objectives are depicted schematically in Figure 1-5, where a generic system 

development process in automotive E/E engineering collaboration is shown. This 

generic process was described and analyzed with engineers and for the tool responsible 

persons from all different domains. The three different swim lanes describe the 

engineering collaboration partners, i.e., the OEM and suppliers for mechanical, E/E, and 

software parts. The development process is subdivided according to the requirements, 

functional, logical, and physical (RFLP) approach10. At the beginning (R-phase), the 

Engineer A, responsible for the product, e.g., an electronic control unit (ECU) at the 

OEM, formulates the requirements and sends them to the suppliers. The suppliers then, 

each separately, develop their subcomponents without standardized or only partially 

standardized and IT-supported exchange of data in the progress of development within 

the separate steps of RFLP, each with more details. Moreover, the OEM internally 

develops and integrates the E/E system or parts of it. However, the OEM also faces 

disruptions between IT systems of different domains, such as mechanics, E/E, and 

software. The whole E/E system with all its subcomponents will be integrated for testing 

purposes in the software or hardware in the loop (SiL/HiL). Therefore, data models have 

to be exchanged or suppliers have to get access to the OEM’s IT systems. Often only 

then are errors identified due to a lack of traceability and transparency during the early 

development process. Then, the OEM will report the errors and resulting adaptions to 

the suppliers and a further reconciliation cycle starts. However, testing is not in scope 

of this work which will mainly focus on the early phase of development. The potentials 

for improvement and the objectives of this thesis are highlighted in yellow. The goal is 

 
10 See Chapter 2.4 for more information about the RFLP approach. 
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to make development faster, more effective and efficient by an increased traceability 

internally as well as externally. 

 

Figure 1-5: Generic system development process in automotive E/E development with multiple 

engineering collaboration partners. The objectives are marked yellow as potentials for improvement 

(cf. SCHÄUFFELE and ZURAWKA, 2016: p. 199). 
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1.4 Design research, research methodology, and structure of this 

thesis 

Natural science and the thereof descended behavioral science can be considered as 

descriptive sciences, testing hypothesis with collected data and deducing theories. In 

contrast, design research focuses on problem-solving where the “goal is to produce an 

artifact which must be built and then evaluated” (HEVNER and CHATTERJEE, 2010: p. 5). 

SIMON and LAIRD (2019) denominate the latter, design research and science of 

engineering, as science of the artificial in contrast to science of the existing, which would 

be the natural sciences11 (SIMON and LAIRD, 2019: pp. 4–5; HENSELER, 2021: pp. 27–

28). 

“Designers, are exploring concrete integrations of knowledge that will combine theory 

with practice for new productive purposes” (BUCHANAN, 1992: p. 6). Hereby, designers, 

such as engineers, deal with wicked problems and try to solve them. Immanent to wicked 

problems is their non-linear analysis, incomplete requirements specification, confusion, 

conflicting stakeholders, unclear consequences within the system, and lack of an own 

subject matter other than what the designer envisions12 (CHURCHMAN, 1967: p. 141; 

BUCHANAN, 1992: pp. 15–16). Distinguishing the subject matter between a general and 

particular level, the designer generates a working hypothesis of the appropriate scope 

of its humanmade application or product on the general level. This can be considered 

as the artificial (vide supra). However, “design is fundamentally concerned with the 

particular, and there is no science of the particular” (BUCHANAN, 1992: p. 17). According 

to BUCHANAN (1992), the particular work of designers begins with a so-called quasi-

subject matter or placement. This is the basis in design thinking in which the designer 

creates a working hypothesis using placements. Science and design thinking are 

congruent in regard to that placements in design thinking are what constitutes in science 

a subject matter. Hence, design can be considered as an integrative discipline 

(BUCHANAN, 1992: pp. 17–18). CROSS (2006) also states that design science can be 

considered as a scientific activity itself with an “explicitly organised [sic], rational and 

wholly systematic approach to design” (CROSS, 2006: p. 98). In contrast, science of 

 
11 For an overview, what constitutes the science of the existing, e.g., physics, economics, etc., and the 
science of the artificial, e.g., engineering, medicine, etc., please refer to HENSELER (2015); HENSELER 
(2021). For the connection of behavioral and design research and testing thereof, please refer to 
HENSELER (2017). 
12 For further definitions and properties of wicked problems, please refer to RITTEL and WEBBER (1973). 
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design concerns itself with the improvement of understanding of design by means of 

scientific methods (CROSS, 2006: pp. 98–99). 

Furthermore, design activities postulate a future solution, i.e., a reality that does not yet 

exist. This future solution could be a composite of existing solution fragments which 

combined yield a surplus benefit. This is called emergence (HENSELER, 2015: pp. 16–

17). Composition and assembly constitute emergence from a design perspective 

(NELSON and STOLTERMAN, 2003: p. 93). 

Given the explorative, problem-solving, wicked, artificial, and emergent nature of this 

work and its underlying scope with the aim of creating, by composition and assembly, 

and evaluating a novel solution approach, a general design research approach will be 

followed to structure and conduct this work. This will be presented in the following. 

RESEARCH METHODOLOGIES 

The design research methodology (DRM) by BLESSING and CHAKRABARTI (2009) is a 

widely accepted research approach for supporting mainly engineering and industrial 

design research in order to ameliorate the design process. Here, design is defined as 

activities aligned to the development of a product from the initial requirements via a 

solution idea or technology, to the full documentation needed (BLESSING and 

CHAKRABARTI, 2009: pp. 1–2). The DRM can be considered as a distinct activity of design 

research rather than “a framework in which multidisciplinary methodological approaches 

are facilitated” (ECKERT et al., 2003: p. 254). The DRM strives to structure design 

research for the purpose of generating: a clear goal, methods, and tools as solutions for 

distinct problems that actually exist. The definition of success criteria is a very rigid 

concept for the definition of goals. This stems from the fact that DRM was designed to 

ameliorate industrial practice. In contrast, the eight fold model of design research by 

ECKERT et al. (2003) is a more agenda-driven framework for design research wherein 

the eight different research steps are more generic and allow for the inclusion of several 

research projects, such as PhD studies (ECKERT et al., 2003: pp. 253–255; BRAUN, 2013: 

pp. 129–130). Due to the DRM emphasizing a more industrial application and also aims 

at individual projects being executed towards practical outcome (ECKERT et al., 2003: p. 

254), the DRM will be used as a blueprint for this thesis where suitable. However, the 

DRM will not be executed stoically step by step13. The DRM framework is presented in 

 
13 Please refer to BLESSING and CHAKRABARTI (2009) and ECKERT et al. (2003) for an overview of more 
research methodologies regarding the design phase in engineering development. 
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Figure 1-6. Here, each stage’s deliverables are used iteratively as input for the previous 

stages. 

 

Figure 1-6: Framework of the design research methodology (DRM) including stages, basic means, 

and deliverables (in alignment to BLESSING and CHAKRABARTI, 2009: p. 39). 

APPROACH FOR THE ASSESSMENT OF THE CURRENT STATE OF SCIENCE AND TECHNOLOGY 

There exist distinct methods for development of E/E components in MBSE, the 

documentation of these components in IT systems along their lifecycle, engineering 

collaboration, and technologies connecting all these different domains. Hence, the 

research approach requires a precise assessment of each domain with respect to 

elements which could integrate them. Literature proposes certain elements for this 

purpose.  

PAVALKIS (2016) suggests that a solution approach to connect MBSE with PLM should 

follow the three steps of agreement of a metadata model, identification of a process, 

and then selection of the technology (PAVALKIS, 2016: pp. 2466–2467). As crucial for the 

management of data and information streams within PLM, FELDHUSEN and GEBHARDT 

(2008) identify the structure of a standard product (a data model), the structure of a 

standard process, and a knowledge repository, i.e. a specific technology that contains 

and connects this information (FELDHUSEN and GEBHARDT, 2008: pp. 73–74). PFENNING 

(2017) also suggests a central link repository to connect MBSE and PLM data 

(PFENNING, 2017: pp. 156 ff.). This can be extended with a cooperation model (KÖNIGS, 

2013: p. 40). STÖCKERT (2011) emphasizes the necessity that interfaces in distributed 

engineering processes have to be assessed according to objects (data model), 
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processes, and tools (technology)14 (STÖCKERT, 2011: pp. 102–103). A more technical 

view focusing on communication between models assesses languages and data 

representations (data model), ontologies (data model), tool, and interfaces (technology) 

(FISHER et al., 2014: p. 224). For the template-based systems engineering and based 

upon the systematics of product development, prerequisites are a model for the 

description of technical systems, a method to handle models efficiently, and a tool which 

implements both (KÖNIGS, 2013: p. 7). ESTEFAN (2008) differentiates the diverse aspects 

of MBSE accordingly (ESTEFAN, 2008: p. 9): i) process, ii) method, and iii) tool15. STARK 

(2016) mentions in his PLM grid the aspects which have to be addressed for the 

management of a product across its lifecycle and handle the inherent complexity and 

difficulty. Processes, methods, and tools as well as their interfaces are also part of the 

PLM grid. Additionally, STARK (2016) mentions on a lower level of granularity product 

data, such as CAD models and master data, as part of the grid (STARK, 2016: pp. 5–6). 

This work focuses more on fostering traceability on the lower implementation level, i.e., 

a technical level. Therefore, the first step is to connect different IT tools by a defined 

technology. Afterwards, aligning the semantic level, which is the data model, between 

different IT tools has to be done. Then, a process model defines at which point in time 

which data shall be created and exchanged given the correct technology.  

To subsume the above-mentioned approaches, which all aim at fostering traceability 

throughout the development by means of data, processual, and technological support, 

the current state of science in Chapter 2 will be assessed using a threefold approach (in 

alignment to ESTEFAN, 2008: p. 9; KÖNIGS, 2013: p. 7; GILZ, 2014: p. 8): 

1. Data model: For the connection of different disciplines working in different IT tools 

and systems, a joint data model serves as a connecting factor and bridges the 

gap between MBSE and PDM. It is crucial for the exchange of data in an 

engineering collaboration and hence a key ingredient of traceability. 

2. Process model: If many parties are involved in the development, it has to be 

defined at which step which data has to be handed over to whom in order to 

enable and maintain traceability. 

 
14 Here, the fourth element would be people (STÖCKERT, 2011: pp. 102–103). However, this would be 
included in the fourth element environment in ESTEFAN (2008) and hence is not in scope (cf. Footnote 15). 
15 The fourth element in ESTEFAN (2008) would be environment but it will not be considered here 
separately due to limitations of the scope and a vast variety of degrees of freedom this would induce, for 
instance social, organizational, cultural, or personal aspects.  
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3. Technology: A technology enabling the connection of MBSE and PDM, 

developing disciplines and their idiosyncrasies, alleviating the integration of 

engineering partners, and connecting heterogeneous IT systems on a technical 

level, is fundamental for intra- and inter-company traceability.  

Figure 1-7 depicts the tripartite enabling elements, also called enablers, for traceability, 

data model, process model, and technology, by which each aspect of the current state 

of science and technology will be assessed in order to ensure that the aspired solution 

will suffice the postulated objectives. The centered triangle contains the main aspects 

of the problem space that are in scope., i.e., the early phase of automotive development, 

focus E/E, within engineering collaborations and shall be enabled by the surrounding 

elements which foster traceability. 

 

Figure 1-7: The problem space of this work (blue) and the enablers data model, process model, and 

technology. 

STRUCTURE OF THIS THESIS 

For the purpose of achieving the research objectives, this thesis is built according a 

structure which addresses all relevant aspects. In Chapter 2, the current state of science 

and technology will be elicited. Therefore, traceability, product development processes, 

PDM/PLM, MBSE, automotive E/E, engineering collaborations, data base solutions, and 

ontologies each are defined, investigated, and assessed by means of the enablers (vide 

supra) how they foster traceability. Chapter 3 derives requirements for a solution 

approach based upon the state of science and technology in Chapter 2. Moreover, the 
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fulfillment of these requirements by existing enablers will be assessed and the necessity 

for improvement will be derived. In Chapter 4, the synthesis of a solution framework 

according the enablers will be developed. The prototypical implementation of the 

solution framework will be presented in Chapter 5. A subsequent evaluation of the 

solution framework and accordingly selected use cases will be described in Chapter 6. 

This work will be finalized by a summary and an outlook in Chapter 7. This structure is 

shown in Figure 1-8. The deductive approach to assess the applicability of the solution 

framework will be discussed in more detail in Chapter 6.4. 

 

Figure 1-8: Structure and approach of the thesis. 
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2 Current state of science and technology, definitions, and 

general terms 

This chapter depicts the current state of science and technology with respect to the 

fundamental theoretical frameworks and methods which later are necessary to build the 

own solution framework upon. As depicted in Chapter 1, the early phase of automotive 

E/E development is a complex endeavor and traceability within a company’s IT 

landscape with external engineering partners is crucial more than ever. Against this 

background, all fundamentals within the scope of an early automotive E/E product 

development with external, distributed engineering partners will be stated in this chapter. 

The focus particularly lies on traceability and how it can be achieved within multiple 

disciplines. 

The approach of this chapter follows a deductive approach (“cone logic”), where 

applicable. This means to start with the more generic, high-level theory and later 

advancing to the more idiosyncratic, specialized details (cf. Figure 1-8). To encompass 

the recent and relevant developments in each theory, at the start of each chapter the 

definitions, norms, and standards are described. Then, the decisive methods of the 

respective disciplines are elaborated on or the specific phenotypes and processes 

relevant to the later work are explained. Finally, traceability in each theory is assessed: 

How can traceability be achieved in the particular discipline, and what fosters traceability 

in it? 

INITIAL TERMINOLOGY 

The term method indicates a description of a rule-based and systematic approach in 

accordance of which certain tasks have to be executed to achieve a given goal 

(LINDEMANN, 2009: p. 57). A method is part of a methodology (cf. EHRLENSPIEL and 

MEERKAMM, 2017: p. 173; HEYN, 1999 according to EVERSHEIM and SCHUH, 2005: p. 17). 

A method has a prescriptive character, i.e., it is an instruction. In distinction to a process 

model, which describes what has to be done according to which steps, a method 

describes in what manner (how) something has to be done and subsumes different 

techniques in order to perform a task (EIGNER et al., 2014: p. 47; LINDEMANN, 2009: p. 

58; ESTEFAN, 2008: pp. 9–10). In this context, a process is defined as “a logical sequence 

of tasks performed to achieve a particular objective” (ESTEFAN, 2008: p. 9). By usage of 

an instrument or tool, the efficiency of a task can be enhanced by supporting the what 
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and how. Consequently, a methodology combines related processes, methods, and 

tools16 (cf. MARTIN (1996) according to ESTEFAN, 2008: pp. 9–10). 

2.1 Traceability 

2.1.1 Definitions, norms, and standards 

Traceability is required by ISO 9001:2015 “Quality management systems – 

Requirements” to ensure quality across a product’s lifecycle which is controlled by 

dedicated management systems. Within this norm, traceability is required explicitly for 

production and service provision in case the organization wants to identify uniquely its 

outputs and, for that purpose, the organization shall preserve documentation that is 

necessary to foster traceability (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 

2015a: p. 41). 

Traceability in systems and software engineering is defined as the  

1. “discernible association among two or more logical entities, such as 

requirements, system elements, verifications, or tasks” (INTERNATIONAL 

ORGANIZATION FOR STANDARDIZATION, 2017b: p. 478); 

2. “degree to which a relationship can be established between two or more products 

of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another” (INTERNATIONAL 

ORGANIZATION FOR STANDARDIZATION, 2017b: p. 478).  

Here in this work, the terms logical entities and products are denoted as (information) 

artifacts in order to confine from the association between products and entities to ECUs 

or automobiles. GOTEL et al. (2012) specify traceability of or within software and systems 

generally as: “Traceability is simply the potential to relate data that is stored within 

artifacts of some kind, along with the ability to examine this relationship” (GOTEL et al., 

2012: p. 4). Hence, traceability thereby is an attribute of one or more artifacts (GOTEL et 

al., 2012: p. 9). Here, GOTEL et al. (2012) also use the generic term of artifacts to 

describe generic units of data. Likewise, other studies use the term artifact as an entity 

of which a system can be composed (WINKLER and PILGRIM, 2009: p. 531; BROY, 2013: 

p. 83). A trace artifact, i.e., a traceable unit of data such as requirements, data model 

 
16 Some authors deviate from the given definition of methodology. For instance, the SPES methodology 
POHL et al. (2012) does neither include a defined process nor an IT tool. However, as SPES methodology 
is a fixed term, it will be used accordingly. For more information about the SPES methodology, please 
refer to Chapter 2.4.2. 
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classes, or even persons, can be either a source artifact or a target artifact. Source 

artifacts are called accordingly because they depict the artifact from which the trace 

originates. In contrast, target artifacts denominate the destination. The connection or 

association between source and target artifacts is referred to as trace link and can have 

a primary direction, i.e. from the source to the target artifact, and a reverse direction 

(GOTEL et al., 2012: pp. 5-6). This is depicted in Figure 2-1. An operationalized trace link 

with a primary direction can, for instance, be the triple “A implements B”17. Conversely, 

the reverse direction of a trace link could have the semantics “B is implemented by A” 

(note the passive voice) (GOTEL et al., 2012: p. 6). This already shows that trace links 

can have different types with different syntax (structure) or semantics (purpose), such 

as implements, tests, refines, or replaces.  

 

Figure 2-1: Association between source artifact and target artifact by means of a trace link (in 

alignment to GOTEL et al., 2012: p. 6). 

Vertical traceability addresses the connections of different parts or components of the 

artifact, e.g., if the final product is denoted as the main artifact and has sub-components 

that evolve during the development process. In contrast, horizontal traceability captures 

the relations of these components across associated artifacts, for instance if a software 

belongs to an ECU (PFLEEGER and BOHNER, 1990: p. 323). However, literature disagrees 

upon the definitions of vertical and horizontal traceability (KÖNIGS et al., 2012: pp. 929–

930). Here, the definition of PFLEEGER and BOHNER (1990) will be used as it aligns with 

the V-model of development (cf. Figure 2-9) where on one level, i.e. horizontally, 

different domains develop associated components simultaneously in time. The vertical 

axis also depicts a consecutive sequence of more and more detailed artifacts of one 

component or system. Connection of the consecutive development artifacts would 

induce vertical traceability; connection of the simultaneously developed artifacts of 

different domains would constitute horizontal traceability. 

Many roles during the development process are confronted with a need for traceability. 

Due to this importance of traceability (cf. Chapter 1.2), there are plenty of norms and 

 
17 For more information regarding triples, please refer to Chapter 2.8. 



Current state of science and technology, definitions, and general terms 25 

 

modeling guidelines from different disciplines that demand associations between 

information artifacts (BEIER, 2014: p. 37; ARKLEY, 2007: pp. 16–17). Moreover, in 

requirements traceability, a subset of requirements engineering, as well as traceability 

in general, research flourished. This is due to the necessity to trace and ultimately test 

requirements appropriately for the purpose of increasing quality of the final product18 

(ARKLEY, 2007: p. 11). 

For the purpose of managing traceability effectively and efficiently, it is crucial to provide 

appropriate means and tools to engineers to handle all relations between artifacts. Even 

for a medium-sized automobile with an already reduced effort of 65% due to a previous 

exclusion of relations on a higher aggregation level, about 700 million relations should 

be investigated for thorough documentation (KÖNIGS, 2013: p. 37). There exists a 

plethora of methods to manage and visualize traceability of complex engineering data 

during the product design phase. This will be shown in the next chapter. 

2.1.2 Methods 

One can distinguish between different representation techniques for traceability, such 

as matrices, cross referencing, entity relational models, or graph-based visualization 

(WIERINGA, 1995: pp. 12–13; ARKLEY, 2007: p. 21; WINKLER and PILGRIM, 2009: p. 542; 

KÖNIGS et al., 2012: p. 929). 

MATRICES 

A traceability matrix displays all information artifacts and which artifacts have an 

association with each other through trace links. Rows and columns of the matrix contain 

traceable items and do not have to be identical (GOTEL et al., 2012: p. 7; WIERINGA, 

1995: p. 12). A special form of traceability matrices is dependency structure matrices 

(DSM). These matrices also are used in systems engineering. The DSM depict the 

connections between different development levels, such as which system requirement 

is satisfied by which system function and further executed by which component (GILZ, 

2014: pp. 42-43, 95). It can be further differentiated between intra-domain matrices 

depicting vertical traceability, such as the DSM, and inter-domain matrices capturing 

 
18 Requirements engineering, requirements management, and requirements traceability will not be in 
scope of this work explicitly. However, general concepts of traceability are used for requirements 
traceability as well as for other disciplines. Please refer to RAMESH and JARKE (2001), TORKAR et al. (2012), 
and ARKLEY (2007) for details about requirements traceability. 
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horizontal traceability, and further combinations of those19 (LINDEMANN et al., 2009: pp. 

49–50). 

CROSS REFERENCING 

A cross reference can range from a trivial “see system specification version 2.3, section 

4.8 interfaces”, via links within one document or tool, to outgoing and incoming 

hyperlinks stored in an artifact’s metadata. The surrounding context of the reference 

contains the semantics of the link. Given new languages and modeling methods, cross 

referencing augments in application (WINKLER and PILGRIM, 2009: pp. 542–543; 

WIERINGA, 1995: p. 13; ARKLEY, 2007: p. 22). 

GRAPH-BASED 

Whenever traceability links are understood as edges and information artifacts as nodes, 

such a traceability model can be represented similar to data models with a graph-based 

notation. This representation can include more information and hence increase 

interpretability. For instance, edges can have different meaning and nodes can also 

include metadata for the description of each artifact. Traceability matrices can be 

depicted as graphs20 (WINKLER and PILGRIM, 2009: p. 543; KÖNIGS, 2013: p. 50; 

WIERINGA, 1995: p. 12). 

The three different methods for traceability representation are depicted in Figure 2-2 (in 

alignment to WINKLER and PILGRIM, 2009: p. 542). 

 

Figure 2-2: Different methods for traceability representation: (a) Traceability matrix, (b) cross 

referencing, (c) graph-based representation (in alignment to WINKLER and PILGRIM, 2009: p. 542). 

 
19 Please refer to LINDEMANN et al. (2009), KÖNIGS (2013), and BEIER (2014) for an extensive overview of 
matrices to depict and manage traceability and dependencies. 
20 For an overview of different graph-based methods, please refer to SCHWARZ et al. (2010) and HERMAN 
et al. (2000). 
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2.1.3 Traceability in the context of automotive development 

DATA MODEL 

As described above, the necessity for traceability becomes more prominent in 

automotive development where many sub-systems have to realize multiple functions. 

Graph-based models can be implemented in any database technology and are often 

used in industry. Implementing a centrally managed data model connecting all different 

domains, their proprietary IT tools, and data models to foster traceability is also an issue 

for automotive development21 (WIERINGA, 1995: p. 12; BROODNEY et al., 2013: pp. 1176–

1178; FIGGE, 2014: p. 33). How traceability through programming of domain-specific 

data models is enabled, will be explained in each of the following chapters and hence 

will not be outlined further at this point. 

PROCESS MODEL 

A huge impediment for integrated data models that allow traceability are decoupled 

activities in processes. Particularly defined processes can describe which information 

artifact or relation has to be documented at which development step in order to foster 

traceability. For that purpose, traceability process models depict all those relevant 

activities. FISHER et al. (2014) present a method for managing data models of systems 

engineering (cf. Chapter 2.4) in development scenarios. These are not specific to 

automotive development but are used to align the create, read, update, and delete 

(CRUD) operations amongst heterogeneous data models within the used tools and 

databases of the network. A joint management of activities, such as configurations, 

including versions, variants, and baselines (cf. Chapter 2.3) of models, enables 

traceability (FISHER et al., 2014: p. 214; GOTEL et al., 2012: pp. 10–11; KAUFMANN and 

SCHULER, 2017: p. 347). Each development domain has its own process models which 

have to be aligned with the process models of upstream, downstream, and parallel 

development domains and again their process models so as to allow traceability. This 

will be discussed in more detail in the following chapters. 

TECHNOLOGY 

There exist several tools that foster traceability and are applied to different domains of 

automotive development. The software METUS by ID-Consult GmbH enables the 

documentation of relations between requirements, functions, sub-functions, 

 
21 Please refer to HAUSMANN (2010), SUTINEN et al. (2000), and SUTINEN et al. (2002) for more information 
about integrated data models which foster traceability during the product development. 
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components, modules, configurations, and suppliers. However, neither is it possible for 

relation types, i.e., edges, to be differentiated nor modeling up to the level of parameters. 

METUS also can be integrated into a PLM system. ToolNet by EADS and 

DaimlerChrysler was designed to manage traceability between different CAx tools 

centrally in a separate database on a qualitative level without parameters. The reuse 

and efficient handling of traceability relations in large companies is not within the scope 

of this tool. LOOMEO by Teseon GmbH mainly focuses on handling different types of 

traceability matrices. The software is non-integrative and hence requires copied data 

from other IT tools and systems. Therefore, traceability between data models from 

authoring tools, such as CAx, and PDM systems cannot be guaranteed22 (KÖNIGS, 2013: 

pp. 49–51; BEIER, 2014: pp. 55–57, 71–72). Above-mentioned are IT tools that visualize 

and manage traceability. Additionally, technology enabling traceability can also be found 

on a lower level of the IT infrastructure, such as special databases, interfaces, and 

networks. An elaboration will follow in the subsequent chapters. 

2.2 Product development process 

2.2.1 Definitions, norms, and standards 

Most established process models for mechanics focus on the product development 

process in four major phases (EIGNER et al., 2014: p. 16): i) Clarification of requirements 

and tasks, planning; ii) Conceptual design; iii) Designing; iv) Elaboration, detailing. 

In general, these phases apply to all sorts of products and their corresponding product 

development processes, regardless of their distinct domain, e.g., mechanics, software, 

or E/E. However, different literature includes or excludes different product lifecycle 

phases from the product development process (BURR, 2008: p. 35; STEPHAN, 2013: p. 

6). In this elaboration, the above-mentioned view, limited to the actual requirements, 

conceptual design or the concept phase, design phase, and elaboration as well as 

detailing phase will be applied. Here, the product development process is considered a 

section of the product lifecycle and excludes, for instance, the strategy phase, ramp-up 

for production, production itself, aftersales and recycling (STEPHAN, 2013: p. 7; BURR, 

2008: pp. 35–36). The product development process can also be distinguished from the 

product creation process as the product creation process also includes production 

planning and production (MÜLLER et al., 2012: p. 173; VEREIN DEUTSCHER INGENIEURE, 

 
22 For more information about traceability tools, please refer to KÖNIGS et al. (2012) and FIGGE (2014). 
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2014: pp. 5–6). Product lifecycle management spans over the entire product lifecycle 

and will be discussed further in Chapter 2.3. The distinction between product 

development and product creation in regards to the entire product lifecycle is illustrated 

in Figure 2-3 (in alignment to VEREIN DEUTSCHER INGENIEURE, 2014: pp. 5–6; MÜLLER et 

al., 2012: p. 173): 

 

Figure 2-3: The main phases of a product lifecycle in differentiation to product development and to 

product creation (in alignment to VEREIN DEUTSCHER INGENIEURE, 2014: pp. 5–6; MÜLLER et al., 2012: 

p. 173). 

The process of product development has significantly changed in the last few decades 

due to a parallelization, distribution, and interconnectedness of projects, product, and 

processes around the world; both intra-company and inter-company. The first evolution 

of product development is called serial engineering. Each phase of product development 

used the predecessor’s output as input consecutively. Product development took place 

mainly in one company. The next evolution is called simultaneous engineering. Here, 

phases of product development, such as product design and production planning or 

purchasing of machinery, overlap. This is achieved by a better integration, 

organizationally as well as with computer-aided engineering (CAE). By those means, 

time to production can be reduced. This helps to address the requirements of markets 

and customers faster. Simultaneous engineering commonly describes product 

development within one company. Cross enterprise engineering is the latest evolution 

of product development where product development as well as production planning are 

interconnected between different locations of one company across the world as well as 

between separated companies. This means that a multidimensional collaboration and 

cooperation within a company and in the context of supplier and customer relationships 

takes place. This collaboration is neither limited by a company’s boundaries, nor limited 

to one domain of product development, i.e., mechanics, E/E, and software. 

Collaborations can span over all product lifecycle phases (EIGNER and STELZER, 2009: 

pp. 18–20; STEPHAN, 2013: pp. 10–11). The evolution of the product development 
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process in the last few decades is depicted in Figure 2-4 (in alignment to STEPHAN, 2013: 

p. 11; EIGNER and STELZER, 2009: p. 19). 

 

Figure 2-4: Evolution of the product development process over time (in alignment to EIGNER and 

STELZER, 2009: p. 19; STEPHAN, 2013: p. 11). 

Due to the increasing interaction and connection between producers, international 

engineering locations, and suppliers across the world, requirements towards IT solutions 

have increased to address: 

• The integration of IT solutions across the entire product lifecycle, i.e., from the 

first idea and conceptual solution until recycling. The integration of IT solutions 

across the product lifecycle has to be granted by means of APIs23 or functional 

interfaces, for instance STEP AP 24224 or JT25. In practice this means the 

 
23 An example for a normative approach for APIs gives INTERNATIONAL ORGANIZATION FOR 

STANDARDIZATION (2011a). 
24 STEP AP 242: Standard for the exchange of product data application protocol 242 for managed model-
based 3D engineering of the ISO standard 10303 (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 
2014). For more details on data exchange standards, please refer to Chapter 2.6.1. 
25 JT: Jupiter tessellation is a standard primarily used for the exchange of 3D data. Due to the JT standard 
is not as performant regarding data exchange as STEP and is limited to 3D data (KATZENBACH et al., 
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integration of a plethora of domain-specific IT solutions that are scattered across 

the product lifecycle. 

• The federation of IT solutions in a decentral and distributed working company 

and, in the context with the supply chain, also beyond a company’s boundaries. 

Federation of data and processes is required by the distribution across the entire 

product lifecycle, interdisciplinarity, as well as the increasing connected and 

interlinked development and production partnerships. Distribution can occur: i) 

within a company, e.g., between many locations and across several phases of 

the lifecycle; ii) between companies of a joint network of suppliers; and iii) 

between companies in a customer/supplier relationship (EIGNER and STELZER, 

2009: pp. 20–21). 

The integration of different IT solutions, i.e., systems and tools, across the product 

lifecycle will be discussed in more detail in Chapter 2.3.1. 

Interdisciplinarity, as one requirement for the federation of IT solutions, describes the 

cooperation of different disciplines or domains. This interdisciplinary development will 

be elaborated further in Chapter 2.2.2. 

2.2.2 Processes and methods for product development 

In order to develop products, different phases in a product lifecycle have to be passed 

through (cf. Chapter 2.2.1). Scientists from different disciplines suggested for many 

years methods and process models to support the product development process. 

Mostly, these methods and process models have to be considered as procedural 

guidelines in which different phases of the product development process are defined as 

best practices and are traversed once or repetitively. Additionally, development results 

or deliverables of each phase in the process model are stipulated (EIGNER, 2014d: p. 

15). Moreover, process models help the users to verify in which step they are currently 

within a process and which step has to be executed next. Reflection of one’s own 

proceedings by means of the process model also helps the engineer to control their 

actions (PONN and LINDEMANN, 2011: p. 17). There has to be a distinction between 

domain- or discipline-specific26 methods and process models. These disciplines are the 

 
2015: p. 301), the JT standard is not in scope of this work. For more information, please refer to 
KATZENBACH et al. (2015). 
26 In the context of product development, domain and discipline, i.e., mechanics, E/E, software, systems 
engineering, are used synonymously in this work. 
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development of mechanics or hardware, E/E, software, and mechatronics as a 

combination of all of the afore mentioned. 

MECHANICS 

The guideline VDI 2221 (VEREIN DEUTSCHER INGENIEURE, 1993) classifies the general 

approach of development and design beginning with the task of development until 

completion of design in seven distinct steps. Here, the focal point is on the deliverables, 

i.e., the result documents or development results, which each single step yields as a 

work result. The deliverables, for instance could be a requirements list, functional 

structure, or principle solution, which depict representations or partial models, 

respectively, of the product with increasing degree of detail and concretion. The 

representation of the process model in the guideline VDI 2221 conveys a very sequential 

character. However, the necessity of recesses in the sense of iterations also is 

emphasized (PONN and LINDEMANN, 2011: pp. 17–18). The workflow with its steps and 

deliverables in the context of the four major development phases, is presented in Figure 

2-5 (in alignment to PONN and LINDEMANN, 2011: p. 18; VEREIN DEUTSCHER INGENIEURE, 

1993: p. 9; STEPHAN, 2013: p. 26; EIGNER et al., 2014: p. 16)27.  

ELECTRICS/ELECTRONICS 

In E/E development, a diversity in development methods is more prevalent due to 

multiple reasons. On the one hand, E/E is a vast discipline concerning electrical 

installations, plant construction, automotive, aerospace, conductor boards, chips, 

microprocessors, flash memory, schematics, etc. On the other hand, there is a 

fundamentally different approach by engineers in E/E in contrast to mechanics. In E/E, 

there exists a design level of the schematical draft (circuit design) before the geometrical 

design (layout). Additionally, there is a rapid technological change particularly in the field 

of the circuit design as well as the evolution in automation technology with respect to 

logical and physical design and verification (EIGNER, 2014d: p. 21, cf. WEHN, 2013 

according to EIGNER, 2014d: p. 21). It is noteworthy that for some methods of E/E 

development a step called “behavior” occurs. This step depicts the behavior of 

algorithms, registers, Boolean algebra and differential equations in E/E hardware 

 
27 For further methods of development in mechanics, please refer to PONN and LINDEMANN (2011), 
FELDHUSEN and GROTE (2013), EVERSHEIM and SCHUH (2005), WINZER (2016), and EIGNER et al. (2014). 
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(EIGNER, 2014d: pp. 26–27). The development level “behavior” or “function” is highly 

important in a model-based approach for systems development (cf. Chapter 2.4)28. 

 

Figure 2-5: General process model for product development and design (in alignment to PONN and 

LINDEMANN, 2011: p. 18; VEREIN DEUTSCHER INGENIEURE, 1993: p. 9; STEPHAN, 2013: p. 26; EIGNER, 

2014d: p. 16). 

SOFTWARE 

Software development has always been severely affected by fast changing customer 

requirements, and need to implement those new demands quickly into products. 

Usually, to mitigate development risks and to realize the demanded quick 

implementation, new software is built on basis of existing software components. Hence, 

fast reactions to new market demands were feasible and existing knowledge could be 

reused (FELDHUSEN et al., 2013: p. 808). In software development, this reuse is achieved 

using previously developed software components (BROWN, 2000: p. 8). As requirements 

became ever more volatile and had to be implemented faster, methods evolved likewise. 

 
28 For more information on recent methods in the field of (virtual) product development and design 
techniques please refer to STELZER (2014) and BEUTNER et al.(2013). 
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So-called ponderous or heavy process models are strictly phase-oriented models and 

are very formalized with respect to processes and the amount of associated 

(intermediate) results and (intermediate) products, respectively. Prominent phenotypes 

of the ponderous process models in software development are the classical sequential 

process model, the waterfall model, and the V-model. In contrast, the lightweight 

process models, also called agile process models, are more flexible, less formalized, 

iterative process models, e.g., eXtreme programming. Scrum and the spiral model can 

be considered as intermediate process models according to the above-introduced 

classification. In agile software development methods, complete specifications at the 

beginning of a project often are not available and are not considered to be important 

because they are assumed to change throughout the process anyway. To compensate 

the absence of neatly documented specifications, constant exchange between team 

members is crucial (cf. Figure 1-5) (POMBERGER and PREE, 2004: p. 45; STEPHAN, 2013: 

p. 32). The most prominent software development processes and methods will be 

described in the following, starting with the classical and advancing to the agile ones 

bearing in mind that some methods cannot be classified clearly. 

The phase model describes the typical activities in software development, which is 

divided into four major phases and their immanent questions. The fundamental 

approach it is presented here (EIGNER et al., 2012a: pp. 161–162; EIGNER, 2014d: pp. 

32–34): 

1. Requirements analysis: The goal is to have completed as many as possible 

complete of the requirements. 

2. System design: The software-oriented system design aims at describing an 

abstract solution plan for the problem. Based upon the requirements analysis, it 

is noted of which components the system is composed. 

3. Detailed design: Itemization of the plan for the problem solution from the system 

design is in scope of this step. 

4. Encoding and integration: The last phase’s scope is the implementation of the 

complete solution. 

The realized partial solutions of individual components will be integrated into an overall 

solution (EIGNER et al., 2012a: pp. 161–162; EIGNER, 2014d: pp. 32–34). The major 

phases of the phase model of software development, as described above, have an 
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apparent resemblance with the process steps of model-based systems engineering in 

Chapter 2.4 and are depicted in Figure 2-6. 

 

Figure 2-6: Phase model of software development (in alignment to BOEHM, 1979: p. 4; EIGNER et al., 

2012a: p. 162; EIGNER, 2014d: p. 33). 

The waterfall process model of software development is based on the assumption that 

a phase is not passed through anymore after its finalization. This implies that a phase 

shall not be started before the preceding phase has been terminated. This means that 

after finalization of the requirements analysis, in Figure 2-6 phase 1, requirements have 

to be specified faultless. Due to a high degree of volatility within the specification of 

requirements, in practice, the waterfall model proves to be improper. With this 

fundament, further iterative process models have evolved. A very famous one is the 

“spiral model of software development and enhancement” by BOEHM (1988). The spiral 

model aims at representation and mitigation of development risk in the software 

development process by depicting each development round (analysis, evaluation, 

development and tests, planning) as one round in a spiral, visualizing increasing cost 

and complexity (EIGNER, 2014d: pp. 34–36). The documents and product model of 

software development is based on the fundamental work of BOEHM (1979), who 

introduced a V-shaped view on the software development process, and this was 

extended and adapted frequently. This so-called V-model also was adopted by the 

VEREIN DEUTSCHER INGENIEURE (2004b) and adjusted to the development of mechatronic 

products (EIGNER et al., 2012a: p. 162). Therefore, the V-model will be discussed in 

more detail in the next section MECHATRONICS.  

Against this background, agile methods for software development were created and first 

adopted by the software community, and to an increasing degree later on, by 

commercial software development (FELDHUSEN et al., 2013: p. 808). Most of these agile 

software development methods are based upon the agile manifesto and its twelve 
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principles29 (BECK et al., 2001). An agile approach is commonly characterized by the 

separation of the project into several stages of configuration or iterations of the product, 

respectively. The focus is on the main criteria in order to quickly serve customer’s 

demands30 (FELDHUSEN and GROTE, 2013: p. 809).  

MECHATRONICS  

In 1969, Ko Kikuchi coined the term mechatronics, a combination of mechanics and 

electronics. Hereby, he meant the increased electrical and electrotechnical functionality 

of mechanical components and devices. Software only became relevant later, as 

depicted in Figure 2-7 (COMERFORD, 1994: p. 46; HARASHIMA et al., 1996: p. 1; STEPHAN, 

2013: p. 16; EIGNER, 2014d: p. 42). 

 

Figure 2-7: Alteration of the term “mechatronics” (in alignment to EIGNER et al., 2012a: p. 34; STEPHAN, 

2013: p. 17; GROLL and HEBER, 2016: p. 291; EIGNER, 2014d: p. 43; BERTSCHE et al., 2009: p. 3). 

Mechatronic systems consist of a mechanical basic system, sensors, actuators, and 

information processing (cf. Figure 2-8). Hence, all different domains discussed above, 

mechanics, E/E, and software, are present. The initial goal of a mechatronic system is 

to improve the functionality and behavior of the underlying mechanical basic system by 

means of sensors that register information of the environment and the system itself. This 

information is manipulated in processors which trigger the optimal reactions by means 

of actors in the respective context. Through intelligent software, mechatronic systems 

nowadays are capable of adapting themselves to changes in the environment, detect 

critical operational states, and optimize processes (VEREIN DEUTSCHER INGENIEURE, 

2004b: p. 10). 

 
29 Please refer to BECK et al. (2001) for all twelve principles. 
30 For further literature regarding software development and a more detailed view on the above-mentioned 
process models please refer to EIGNER et al. (2012a), EIGNER (2014d), POMBERGER and PREE (2004), 
STEPHAN (2013), DÖRN (2018). 
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Figure 2-8: Basic structure of a mechatronic system (in alignment to VEREIN DEUTSCHER INGENIEURE, 

2004b: p. 14; PONN and LINDEMANN, 2011: p. 12; STEPHAN, 2013: p. 18). 

TOMIZUKA (2000) extends the mechatronic system by “complex-decision making in the 

design, manufacture and operation of industrial products and processes” (TOMIZUKA, 

2000: p. 1). However, the guideline VDI 2206 “Design methodology for mechatronic 

systems” limits the scope of mechatronics to the definition: “[Mechatronics is] the 

synergetic integration of mechanical engineering with electronic and intelligent computer 

control in the design and manufacturing of industrial products and processes”31 

(HARASHIMA et al., 1996: pp. 1–2; VEREIN DEUTSCHER INGENIEURE, 2004b: p. 14). 

There exists a plethora of different process models and methods to develop mechatronic 

products or systems (VEREIN DEUTSCHER INGENIEURE, 2004b: p. 14; STEPHAN, 2013: p. 

21; EIGNER, 2014d: p. 44). 

The V-model, designed as a process model for software development, which was 

frequently extended and adapted further, became a widely used process model for the 

development of mechatronic systems. The most common V-model for mechatronic 

systems is in the guideline VDI 2206 (VEREIN DEUTSCHER INGENIEURE, 2004b). BENDER 

(2005) extended the V-model further by including three levels, namely the system level, 

subsystem level, and component level in the development process of mechatronic 

systems (BENDER, 2005: p. 45). If the automotive industry is in scope, then, additionally, 

the fourth level “vehicle level” as an overall system for other mechatronic systems is 

appended at the beginning and the end of the development cycle. The left wing of the 

V-model describes the interdisciplinary system development. The four different levels of 

the mechatronic system – vehicle, system, subsystem, component – each address 

differently the granularity of system description. Aligned are description elements – 

 
31 Due to three involved disciplines, complex products, and a long evolution of mechatronic systems, there 
exist a myriad of definitions. Please refer to VEREIN DEUTSCHER INGENIEURE (2004b), EIGNER et al. (2014), 
STEPHAN (2013), and EIGNER et al. (2012a) for an overview. 
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requirement, function, element of the logical architecture, physical element (RFLP32). 

The component level is dedicated to discipline specific itemization (mechanics, E/E, 

software). The right wing of the V-model describes the steps for system integration and 

testing by means of virtual, hybrid, or physical tests. On each level horizontally from the 

right to the left wing, there is validation of requirements and specifications as described 

in previous phases33. The V-model by BENDER (2005) allows for an iterative proceeding, 

similar the V-model in the guideline VDI 2206 (STEPHAN, 2013: pp. 44–46; VEREIN 

DEUTSCHER INGENIEURE, 2004b: pp. 26–31; ZAFIROV, 2014: pp. 85–87; PEARCE and 

HAUSE, 2012: p. 10). The V-model as described is depicted in Figure 2-9. It serves as 

fundament for model-based systems engineering in Chapter 2.4. 

 

Figure 2-9: The V-model of mechatronic system development (in alignment to VEREIN DEUTSCHER 

INGENIEURE, 2004b: p. 29; BENDER, 2005: p. 45; GROLL and HEBER, 2016: p. 291; EIGNER et al., 2012b: 

p. 1670; ZAFIROV, 2014: p. 87). 

 
32 Cf. Chapter 2.4, HORVATH (2017), and HORVÁTH and RUDAS (2015) for more information about the RFLP 
approach. 
33 Cybertronic systems consist of at least two cybertronic elements. A cybertronic element is, in turn, a 
mechatronic system with the ability for communication in open networks and the be part of a cybertronic 
system. Hence, simplified, cybertronic systems are mechatronic systems that are enabled to 
communicate via open networks for the purpose of joint cooperation (CADET and MEISSNER, 2017: pp. 19–
20; ZAFIROV and ROUBANOV, 2014: p. 139). Cybertronic systems are not in scope of this elaboration. 
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2.2.3 Idiosyncrasies of automotive electric/electronic product 

development 

As depicted in Figure 1-3, complexity in automotive development steadily increased in 

recent years. It can be distinguished between a risen complexity concerning the product, 

i.e., technical complexity, as well as complexity regarding the development process, i.e., 

organizational complexity. The number of E/E components, such as ECUs, actuators, 

and sensors, has increased. Due to this, the total length of automotive wiring harness 

has augmented drastically. Organizational complexity in automotive E/E development 

stems from the fact that an automobile is a complex product including multiple involved 

development domains that are highly integrated and interactive (cf. Chapter 1). 

Engineers in these development domains use different tools, processes, methods, and 

even specific vocabulary (BIAHMOU, 2015b: p. 222). 

In order to alleviate and address technical and organizational complexity, the application 

of auxiliary means is indispensable. In E/E development, there has to be a distinction 

between three different classifications of development objects which differ by their 

degree of granularity. A high-level development object means a low level of granularity 

and vice versa. These classifications are relevant for specific IT tools and the field of 

application of computational E/E development, i.e., electrics/electronics computer aided 

design (E-CAD). These three levels of development objects align to the definition of 

mechatronic systems (cf. Figure 2-8). Hence, E/E design, conductor plate design, and 

chip design are the three relevant levels for E/E development. Inherent to these levels 

are different approaches, methods, and IT tools (ZAFIROV and ROUBANOV, 2014: pp. 

138–141). Mastering this complexity, cost pressure, a desire to offer automobiles 

worldwide, and legal regulations, amongst others, forced automotive manufacturers and 

suppliers eventually to pursue standardized solutions for E/E development. This 

included communication bus systems, common software platforms for ECUs, and 

protocols for data exchange (ZIMMERMANN and SCHMIDGALL, 2014: p. 1; ROBERT BOSCH 

GMBH, 2014: p. 11). Additionally, in the automobile industry there is an increasing 

variance of variants. Simultaneously, there is a decreasing quantity per variant, 

economic necessity to develop these variants on common platforms, shorter lifecycles, 

and a high volatility in E/E and software due to a high demand from customers for new 

features (cf. Chapter 1). This also contributes to a relatively high and continuously 

increasing complexity in automotive E/E development (EIGNER and STELZER, 2009: pp. 

11–13; HARMS, 2009: p. 39). 
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As an automotive manufacturer seldom is the producer of integrated circuits and 

conductor plates, the main task for engineers in E/E development for an automobile is 

the design of electrical wiring that is necessary, in order to display all connectors and 

pins of an ECU, as well as which communications messages are transported on which 

bus system (cf. Chapter 2.5). For that purpose, collaborative engineering (cf. Chapter 

2.6) by usage of team data management (TDM) (cf. Chapter 2.3) is necessary to 

integrate different E/E development disciplines, different organizational departments, 

and development activities scattered around the globe. The fundamentals for 

engineering collaboration concerning IT architectures will be given in Chapter 2.3. The 

technical complexity of joint development by means of MBSE will be described in 

Chapter 2.4. A closer look will be taken on automotive E/E in Chapter 2.5, and a concise 

overview with of engineering collaboration in Chapter 2.6 in order to address 

organizational complexity. 

2.2.4 Traceability in the context of product development 

Product development is a challenging endeavor and differs from discipline to discipline 

by processes, methods, organization, data models, and IT tools. This makes the 

identification of traceable artifacts difficult so as to enable and foster traceability. 

DATA MODEL 

During product development, data models are created which can be modeled 

accordingly to implement traceability in product data across IT tools and IT databases 

throughout the entire lifecycle. Traceability in product development has a crucial 

significance and realization of it is decisive in modern development of complex, 

interdisciplinary products and processes. Additionally, the work results and deliverables 

of those processes have to be capable of being integrated and machine-readable across 

different IT tools, disciplines, and IT databases. This can be achieved by one or many 

collective data models for mechatronic systems. Depicting traceability in engineering is 

often done using graph-based modeling and graph theory34. 

PROCESS MODEL 

Product development occurs in an early phase of the product lifecycle where changes 

in the design of a product does not yet affect costs as severely as in later phases (EIGNER 

and STELZER, 2009: pp. 15–16). However, if changes have to be made in later phases 

 
34 Please refer to ZAWIŚLAK and RYSIŃSKI (2017) for more information about graph-based modeling in 
engineering. 
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of the product lifecycle, as well as during the product development itself, ramifications 

with other (sub-)products have to be traceable. Furthermore, processes of different 

disciplines involved, as depicted in Figure 2-9, have to be aligned. This means that the 

organizational structure intra- and inter-company shall foster collaboration in 

development. When changes during development occur, the processes have to 

propagate them to all affected domains and relevant engineering partners. 

TECHNOLOGY 

Above it was mentioned that a distributed product development process states high 

requirements on the integration of IT solutions, i.e., the technology that enables 

distributed engineering collaboration. Often, the dedicated development tools for a 

specific domain offer very good traceability within their tool platform. This means, that 

information artifacts can be easily traced within a software development platform and 

across single instances of development platforms or tools of one vendor. However, 

some vendors use proprietary data formats and interfaces which impedes traceability in 

product development and engineering collaboration. For the development of 3D 

mechanical parts (CAD), the tool CATIA by Dassault Systèmes and NX by Siemens 

shall be mentioned, inter alia35. However, as the focus of this elaboration is on E/E and 

software development as well as MBSE, only these specific tools will be highlighted 

further (please refer to Chapters 2.4 and 2.5). 

2.3 Product data management and product lifecycle management 

2.3.1 Definitions, norms, and standards 

Already during the years of 1980, the first PDM IT systems were available. At that time, 

the focus of those IT systems was to provide an instrument for document management 

in CAD and enterprise resource planning (ERP). PDM is defined as the management of 

a product and process model with the aim to create distinct and reproducible product 

configurations (EIGNER and STELZER, 2009: p. 34). However, the typical area of 

application was restricted to department-specific activities of development and design 

(EIGNER and STELZER, 2009: p. 27). Consequentially, through usage of PDM across the 

entire product lifecycle, different specifications of product structures occurred inevitably 

along the individual product lifecycle phases. According to EIGNER and STELZER (2009), 

 
35 Please refer to SENDLER (2009), VAJNA (2009), and KÖNIGS (2013) for more information about CAD 
development tools. 
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the product lifecycle phases are depicted in Figure 2-10 (EIGNER and STELZER, 2009: 

pp. 16, 20, 28). 

 

Figure 2-10: Product lifecycle phases (in alignment to EIGNER and STELZER, 2009: pp. 16, 20, 28). 

In contrast, STARK (2016) only defines five phases of a generic product lifecycle. Those 

are Imagine, Define, Realize, Support/Use, and Retire/Dispose which can be considered 

as superordinate categories of the above mentioned phases (STARK, 2016: pp. 3–4). 

The product model within the definition of PDM aims at the digital reproducibility of 

products and the information which is relevant for the lifecycle. A process and its model 

delineate the technical and organizational sequence of business. If one combines the 

functions of the product and process model, this yields the configuration model. The 

configuration model integrates all relevant information with regard to content, status, or 

version (EIGNER and STELZER, 2009: pp. 26–30). Configurations, their models, and their 

management will be discussed in Chapter 2.3.2. Configuration management is also one 

of the core functionalities of PDM systems. However, sometimes it is not fully 

implemented36 (EIGNER and STELZER, 2009: p. 35).  

Definitions of the functionalities of PDM systems, their names, and their location in one 

or more different IT systems differ (STARK, 2016: p. 233). STARK (2016) also gives an 

overview of eight more generic components of a PDM system that mainly align with the 

above mentioned (STARK, 2016: pp. 233–243). 

In order to integrate data from PDM systems universally, i.e., along all lifecycle phases, 

across all organizational divisions, and all domains involved with the product, for 

instance development, production, after sales, the PLM concept was introduced. 

Moreover, legal requirements towards reproducibility and traceability demanded a 

higher degree of integration of all IT systems along the product lifecycle. By means of a 

continuous configuration management, PDM becomes the backbone of a complete 

lifecycle management. There is a plethora of names and definitions for this, yet PLM 

became accepted and prevails. What all definitions of PLM have in common is that the 

 
36 Please refer to EIGNER and STELZER, 2009: pp. 35–36 for more information about the common 
functionalities of a PDM system. 
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scope of PLM in comparison with PDM is a broader application. Also, a higher degree 

of integration of multiple IT systems across all phases of the product lifecycle and the 

process of the supply chain is part of PLM. This is to manage all parts and products and 

the entire portfolio of a company (EIGNER and STELZER, 2009: pp. 36–37; STARK, 2016: 

p. 2). The PLM concept combines functionalities to manage or execute for instance 

objectives and metrics, management and organization, people, methods, facilities and 

equipment, other PLM applications, PDM system, product data, processes, products, 

and the lifecycle37 (STARK, 2016: p. 5). The distinction of PDM and PLM, their allocation 

within the product lifecycle, and major stakeholders and their corresponding IT systems 

are displayed in Figure 2-11 (in alignment to EIGNER and STELZER, 2009: p. 37; EIGNER 

et al., 2014: p. 270). 

 

Figure 2-11: Location of PDM and PLM with respect to the product lifecycle (in alignment to EIGNER 

and STELZER, 2009: p. 37; EIGNER, 2014b: p. 270). 

As stated above, IT systems executing PLM functionalities often serve as an 

integrational solution in terms of processes, data models, methods, organizational 

aspects, etc. in the interaction with multiple other IT systems across the entire product 

lifecycle in a company’s IT infrastructure. Hence, these IT systems used for PLM often 

are referred to as so-called engineering backbones or PLM backbones. This 

denomination shall reflect the functional, technical, and process-related connection a 

company-wide PLM system toolchain enables (EIGNER and STELZER, 2009: pp. 43–44; 

MÜLLER et al., 2017: p. 193; EIGNER, 2014b: p. 280). 

 
37 For more information regarding functionalities of a PLM system, please refer to STARK (2016), EIGNER 
and STELZER (2009), KIRSCH et al. (2017a), BUHL et al. (2001). 
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In a typical four-layered PLM architecture (cf. Figure 2-12), as encountered in 

automotive, aerospace, and high-tech industries, the PLM backbone is situated between 

the ERP layer and the TDM layer (EIGNER et al., 2014: p. 280). As the functionalities of 

PLM systems also comprise PDM functionalities or systems (cf. Figure 2-11), hereafter, 

PDM/PLM will be used together where a separation of terms is not necessary, e.g., in 

case when the management of bill of materials (BOMs), technical master data, change, 

release, and configuration management is considered which is also part of the PLM 

backbone (cf. EIGNER and STELZER, 2009: p. 44). Also, focus in this work is on the early 

engineering phase where PDM functionalities and processes dominate as downstream 

processes for PLM sometimes have not started yet. 

At the very bottom of the four-layered PLM architecture in a company’s IT landscape, 

there usually are the domain-specific authoring systems. In the case of simultaneous 

engineering, those authoring systems can be used in parallel as well as sequentially. 

Data is created within the authoring tools, e.g., data such as CAD models, schematic 

layouts, source code, calculations, simulations, etc. Examples for domain-specific 

authoring systems can be for the support of requirements management, M-CAD, E-

CAD, computer aided software engineering (CASE), CAE, as well es Microsoft Office 

programs and project management tools (EIGNER and STELZER, 2009: p. 43; EIGNER et 

al., 2014: p. 280). 

 

Figure 2-12: Typical four-layered PLM architecture with a central PLM backbone (in alignment to 

EIGNER and STELZER, 2009: p. 43; EIGNER, 2014b: p. 280). 
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The next layer manages the created data close to the authoring systems. Tools and 

systems installed at this layer commonly are referred to as TDM tools or systems and 

handle data in the native format of the authoring systems. Separation of disciplines, 

product lines, and organizational entities by means of this layer contributes to the 

reduction of overall complexity of big, worldwide operating companies’ IT landscapes. 

In the development phase, TDM systems can be local PDM systems. If authoring 

systems are simple, the TDM layer can be omitted and authoring systems are connected 

directly to the PLM system. Often, TDM and authoring systems are combined by tool 

vendors (EIGNER et al., 2014: p. 280; EIGNER and STELZER, 2009: pp. 43–44). 

The PLM backbone is the next layer. The PLM backbone usually comprises of multiple 

IT systems and includes the mechatronic product structure and all corresponding 

documents, which are commonly available in neutral data formats to improve transfer of 

those across all tethered IT systems. Most importantly, the PLM backbone includes the 

configuration and change management and by that, is the actual PLM solution layer. 

Additionally, further central processes, for instance release management, visualization, 

and archiving, usually are implemented in this layer. This guarantees a worldwide 

access to all technical master and structural data with all configurations. From this layer 

occurs the transfer of information which is relevant for production to the plant-specific 

ERP systems (EIGNER et al., 2014: p. 280; EIGNER and STELZER, 2009: p. 44). 

The uppermost layer commonly is an ERP, supply chain management (SCM), 

production planning system (PPS), or customer relationship management (CRM) 

system. There, the logistical and production-related parts of change and configuration 

management are executed. Plants often have their own local ERP and PPS systems to 

adapt flexibly to local production conditions (EIGNER et al., 2014: p. 280; EIGNER and 

STELZER, 2009: p. 44). 

As stated above, configuration management is essential to the PLM backbone systems 

as a solution layer to connect product structures and documents in a native data format 

across many IT systems and along the product lifecycle. Therefore, the following chapter 

will scrutinize configuration management further. 

2.3.2 Configuration management 

A configuration is defined in ISO 10007:2017 as “interrelated functional and physical 

characteristics of a product or service” and is delineated in the configuration information, 

which are “requirements for product or service design, realization, verification, operation 
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and support” (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2017a: p. 1; 

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1983: p. 13). This norm aligns to 

ISO 9001:2015 in which traceability is required to “control the unique identification of the 

outputs” (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015a: p. 41) and to meet 

traceability requirements and product identification (INTERNATIONAL ORGANIZATION FOR 

STANDARDIZATION, 2015a: p. 60). Hence, a configuration is a description of a product or 

output at a certain point in time or in a defined status of delivery, respectively, and 

includes all relevant information, such as the product structure including software 

components in the form of bills of materials (EIGNER and STELZER, 2009: p. 113). 

Accordingly, configuration management (CM) is a discipline, which has the scope to 

track and monitor a product’s functional and physical characteristics across its lifecycle. 

CM serves to establish integrity, reproducibility, traceability, availability, and consistency 

of configuration items (CIs), can be considered as the logical consequence of an 

integrated implemented product and process management, and is essential to systems 

and software engineering38 (GRANDE, 2013: pp. 8–10; SCHULTE et al., 2017d: p. 326; 

EIGNER and STELZER, 2009: pp. 33, 112–113; INTERNATIONAL ORGANIZATION FOR 

STANDARDIZATION, 2017a: V; INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 

2012: VIII; FELDHUSEN and GROTE, 2013: pp. 792 ff.; EIGNER and STELZER, 2009: p. 115; 

SCHULTE et al., 2017d: p. 328; WALLMÜLLER, 2011: pp. 339–340). The CMII Standard for 

Enterprise-Wide Configuration Management and Integrated Process Excellence (CMII) 

strives for an efficient CM process as well as for integrated process excellence. CMII is 

an incremental approach for the improvement of business processes (MECPRO² 

ABSCHLUSSBERICHT, 2016c: p. 170; INSTITUTE OF CONFIGURATION MANAGEMENT AND CMII 

RESEARCH INSTITUTE, 2014: pp. 2, 10). In comparison with a change process in software 

development, the CMII, aiming at mechanical development, can be considered rather 

cumbersome. This is due to many different roles, workflows, and a change review board 

are involved (PFENNING, 2017: pp. 29–30). This is in contrast to objective 2.a. which 

postulates the reduction of reconciliation, to have earlier and faster reconciliation of 

changes. 

Additionally to manage changes to a configuration, it is decisive to align specific versions 

and their appurtenant configurations (INTERNATIONAL ORGANIZATION FOR 

 
38 For further classification of configuration items, such as technical, contractual, and serialized 
configuration items, please refer to EIGNER and STELZER (2009) and EIGNER et al. (2014). Here in this 
elaboration, the above-mentioned, generic definition of configuration item is used. 
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STANDARDIZATION, 2003: p. 14). Hence, version control or version management is part 

of CM. Also, CM can be considered as a superordinate concept for or advancement of 

release and change management, as well as build, baseline, version including variant, 

and audit management (KIRSCH et al., 2017d: p. 334; GRANDE, 2013: pp. 14–16; EIGNER 

and STELZER, 2009: p. 112). A configuration baseline is a “frozen”, dedicated state of 

product description in development status that is used for an internal or external 

transition39. The five major components of CM are displayed in Figure 2-13. Moreover, 

configuration management supports the intra- and interdisciplinary collaboration and 

builds a foundation for communication between design engineers and all other involved 

parties in the engineering process (WATTS, 2011: p. 4). 

 

Figure 2-13: The five major aspects of configuration management (in alignment to GRANDE, 2013: p. 

16; INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015c: p. 40; KIRSCH et al., 2017a: p. 157). 

Change, version, and variant management will be described in more detail as they are 

relevant for understanding of the solution framework and its building blocks.  

CHANGE MANAGEMENT 

Change management results from necessary fixes or new requirements to optimize the 

product with the purpose of evaluation and decision, whether changes should be 

included and if so, which artifacts will be affected at which costs and expenditure of time 

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2017b: p. 66; GRANDE, 2013: p. 15; 

EIGNER, 2014c: pp. 253, 255). Sub-steps of change management also prevail outside of 

a company, e.g., at a supplier or engineering partner, if this particular change requires 

a consensus (STARK, 2016: p. 330; EIGNER, 2014c: 253).  

 
39 Please refer to EIGNER (2014c) and GRANDE (2013) for more information regarding baselines. 
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According to a taxonomy40, there exists at each point in time one or more assemblies of 

items, i.e., configurations of a product, that are effective (EIGNER, 2014c: pp. 256, 259, 

260). This so-called effectivity is a major part not only of change management but also 

of CM. Effectivity in the context of CM describes a validity period of a configuration or 

the over the time changing product status, respectively, and can be modeled by an CI 

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2012b: p. 97; EIGNER, 2014c: pp. 

262–263; ŞENALTUN and CANGELIR, 2012: p. 371). Effectivity enables the distinct 

identification of a product and documentation configuration that can be restored in a 

system at any point in time in order to foster traceability (EIGNER, 2014c: p. 263). An 

example for effectivity is shown in Figure 2-14.  

 

Figure 2-14: Effectivity in configuration and change management (in alignment to EIGNER and 

STELZER, 2009: p. 118; EIGNER, 2014c: p. 263). 

VERSION MANAGEMENT 

Version management enables capture of all changes to objects in a lifecycle in its 

various different versions and, if necessary, to reproduce them (GRANDE, 2013: p. 15; 

KIRSCH et al., 2017d: p. 334). In software configuration and its version management 

 
40 A taxonomy is a directed model, i.e., terms at the top commonly are generic terms for or aggregations 
of terms at the bottom, that hierarchically orders terms and hence describes relations between 
superordinate and subordinate terms (DORSCHEL, 2015: p. 317). For more information, please refer to 
Chapter 2.8. 
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there has to be a distinction between central (using centralized server to store version 

database) and distributed (storing repository of version database at client) version 

control systems (SCHULTE et al., 2017d: p. 326; GIFT and SHAND, 2009: p. 2). For the 

sake of completeness, the local version control on only one computer is mentioned here. 

This yields six different variations of version control systems (in alignment to KEYDEL 

and MEDING, 2008: pp. 230–231; CHACON and STRAUB, 2014: pp. 1–4; GIFT and SHAND, 

2009: pp. 2–3): 

1. Sole local version control system: This is the classical local version control 

system on one computer, which is very error prone and has its limitations in 

collaboration. 

2. No local client and no common file system: The simplest variation for distributed 

development is to access a file server remotely, perform a check-out of a file, 

transfer it to your local computer, modify the software, transmit it back to the file 

server, and then, at last, check the altered software in again. 

3. No local client but a common file system: This variation is a so-called centralized 

version control system where a version database is stored centrally at a file 

server and each computer or user transfers single files back and forth. 

4. A local client but no common file system: Only very few version control systems’ 

clients are capable of retrieving data from a server directly over the internet, e.g., 

with a network protocol or file transfer protocol and without proprietary software 

also on the file server side. Hence, this scenario is seldom used. 

5. A local client and a common file system: Here, the client accesses the software 

repository of a common file system on the central file server. This facilitates 

providers of version control software implementation on local computers and file 

servers and fosters distributed software development and its version control. A 

major downside of this variation with a centralized version control system is the 

single point of failure with respect to the central file server that stores the only 

version database. In case of downtime of the file server or a corrupted database, 

further development might temporarily not be possible. 

6. Distributed version control system: This variation recently prevails most often. 

Here, clients do not only check out the latest files, but they completely mirror the 

entire version database repository of the server. This makes the entire version 

control system resistant towards server failure, compromised data, and errors in 

the version database. Hence, those advantages are used by the today’s most 
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popular distributed version control systems, for instance Git (KEYDEL and MEDING, 

2008: pp. 230–231; CHACON and STRAUB, 2014: pp. 1–4; GIFT and SHAND, 2009: 

pp. 2–3).  

The six different variations of version control in software development are displayed in 

Figure 2-1541. The insights from variation 6 are particularly relevant for distributed 

engineering collaborations (cf. Chapter 2.6) and the underlying data bases (cf. Chapter 

2.7). 

 

Figure 2-15: Different variations of version control in software development (in alignment to KEYDEL 

and MEDING, 2008: pp. 230–231; CHACON and STRAUB, 2014: pp. 1–4; GIFT and SHAND, 2009: pp. 2–

3; GRANDE, 2013: p. 106). 

 
41 For more information about version control in software development, please refer to CHACON and 
STRAUB (2014) and BRICOGNE et al. (2012). 
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VARIANT MANAGEMENT 

As stated above, variant management can be considered part of version management 

within configuration management. A variant is a version of a product that is intended to 

coexist with other versions (BRUEGGE and DUTOIT, 2010: p. 562). Variant management 

is in the discrepancy between the economic necessity of as much common parts for 

many similar products as possible on the one hand and the desire to meet customers’ 

requirements on the other (FELDHUSEN and GROTE, 2013: pp. 793–794; AVAK, 2006: p. 

22). 

There is an outer variance, which is noticeable as product variance by the customer. 

Conversely, the inner variance is the needed or used variance of parts, assemblies, and 

products as well as processes and resources for the realization of the outer variance by 

means of variation points (SCHULTE et al., 2017c: p. 262; KIRSCH et al., 2017a: p. 157; 

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015b: p. 6). 

A reference or template product, i.e., a so-called “150% product” based upon a 

company’s knowledge repository, marketing, product management, or strategy, often 

builds the basis or “platform” for the deduction of variants which are built from standard 

components, options, and individual solutions for customers42 (FELDHUSEN and GROTE, 

2013: pp. 795–796; POHL et al., 2012: 170). The “150% product” describes all elements 

of a platform (main configuration) or, in other words, includes all standard features 

whereas only a subset of 100% of elements is used for one variant (CHADZYNSKI, 2022a: 

p. 309, 2022b). 

The connection between configuration, version, and variant is displayed in Figure 2-16 

using an example from the automotive industry showing coexisting variants and 

consecutive versions43. 

 
42 For more information about variant management, development of the reference product structure for 
reference variants for a product group, an implementation approach according the reference product 
structure, and its processes, please refer to FELDHUSEN and GROTE (2013). AVAK (2006), HARMS (2009), 
HASS (2003), WOSS (1997), and BRUEGGE and DUTOIT (2010) give more details on variant management. 
POHL et al. (2005) and DALGARNO and BEUCHE (2007) show the distinction of problem space and solution 
space for each domain engineering and application engineering, where variability occurs, and is 
managed. Variant management drivers, complexity, cost, and examples from automotive industry are 
presented in ELMARAGHY et al. (2013). 
43 Also cf. SCHÄUFFELE and ZURAWKA, 2016: p. 199. 
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Figure 2-16: Connection between configuration, coexisting variants, and sequential versions. 

2.3.3 Traceability in the context of PDM/PLM 

When considering PDM and PLM, traceability is the fundament in today’s product 

development and lifecycle for complex products in the realm of E/E and mechatronics. 

DATA MODEL 

Due to different disciplines develop and process data in a PDM/PLM IT landscape, a 

common language, i.e., a shared data model for the main business objects, is crucial. 

There exist different peculiarities of which data is stored where. For instance, a PLM 

system can hold all technical data, or only construction data, or intermediate data 

handling in reciprocity with an ERP system. The extent of PLM functionalities define 

where and how the different model structures and BOM, e.g., CAD model structure, the 

engineering BOM (E-BOM), and the manufacturing BOM (M-BOM), are handled (EIGNER 

and STELZER, 2009: pp. 301–309). Standardized data exchange formats as well as 

standardized APIs are key for a PDM/PLM integrated network (SINDERMANN, 2014: pp. 

327–347). 

PROCESS MODEL 

As PDM and PLM are management methods to administrate product data, distinct 

process models are inherent. Without these process models, for example configuration 

management and all its subprocesses where certain items of a product are managed in 

order to monitor their characteristics (cf. Chapter 2.3.2), traceability would not be 
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feasible. Particularly, traceability would not be feasible for complex products in 

distributed engineering with multiple parties involved. Hence, the capability of 

configuration management and its appurtenant aspects (cf. Figure 2-13) has to be 

ensured in the context of PDM/PLM processes to foster traceability. 

TECHNOLOGY 

An interconnected and linked technology, i.e., IT systems, authoring tools, and TDMs in 

the context of PDM/PLM, is decisive. As described in Chapter 2.3.1, PLM backbone 

systems between the IT systems in product development and further downstream 

processes serves as a pivotal integration point with dedicated APIs for different data 

and process models in discipline-specific IT systems and tools. TRIPPNER et al. (2015) 

show the complexity in IT architecture at BMW AG. Figure 2-12 and STARK (2015) show 

the complexity generically (STARK, 2015: pp. 184–185). Standardized and open APIs 

and the reduction of IT systems are the main approaches in industry to manage or 

master this kind of complexity (PROBST, 2010: p. 13; EIGNER et al., 2016b: p. 59; BITZER 

et al., 2018: p. 351). Additionally, especially with respect to software development but 

also generally for distributed engineering and the respective PDM/PLM systems, it is 

decisive to have a jointly accessible version control system (cf. Figure 2-15). KÖNIGS et 

al. (2012) mention popular PDM/PLM IT systems which provide basic means to 

establish traceability of information artifacts. V6 by Dassault Systèmes offers the RFLP 

approach44 to foster traceability by means of trace links across all development phases 

that are stored in one single PDM system (KÖNIGS, 2013: pp. 45–46; KÖNIGS et al., 2012: 

p. 930; SENDLER, 2009: p. 153). Dassault Systèmes’ 3DEXPERIENCE platform is the 

successor of V6 and also combines all relevant PDM/PLM functionalities and, 

additionally, provides the open services for lifecycle collaboration (OSLC)45 (DASSAULT 

SYSTÈMES, 2014, 2018a: pp. 11–12, 2018b: p. 6, 2020). The IT system Teamcenter by 

Siemens provides interconnected PDM/PLM functionalities to enable traceability across 

development phases and domains using URL hyperlinks. However, OSLC only is 

supported partially (KÖNIGS, 2013: p. 48; KÖNIGS et al., 2012: p. 930; SIEMENS INDUSTRY 

SOFTWARE INC., 2019, 2020a, 2020b; SENDLER, 2009: pp. 189–190; PROSTEP IVIP E.V., 

2020b). PTC’s Windchill PDMLink is an extensive PDM/PLM tool, offering OSLC link 

creation as well as OSLC link inclusion in its latest version, handling of system elements 

within the BOM, and fosters traceability via trace links between parts in PDMLink and 

 
44 Cf. Chapter 2.4 for more information about the RFLP approach. 
45 Please refer to Chapter 2.8 for more information about OSLC. 
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model system blocks in Windchill Modeler46 (SODIUS CORP., 2020; PTC INC., 2020a, 

2020c; OLLERTON, 2016: p. 4). The Aras Innovator, a PDM/PLM platform by Aras, 

applies the RFLP approach (REARDON, 2016; PFENNING, 2017: p. 94). In combination 

with an adapter, OSLC can be used together with Aras Innovator (PROSTEP INC.). 

2.4 Model-based systems engineering 

2.4.1 Definitions, norms, and standards 

A system constitutes of a quantity of elements or sub-systems with specific properties 

that are linked to each other. System boundaries and the environment confine a system 

and, in case of an open system, the system interacts with its boundaries and 

environment (EHRLENSPIEL and MEERKAMM, 2017: p. 28). A system’s elements interact 

and are organized to achieve a purpose (INTERNATIONAL ORGANIZATION FOR 

STANDARDIZATION, 2017b: p. 449). Systems often are depicted using an architecture 

description. An architecture in the system’s context describes general properties of a 

system through its elements, their relationships, and embedded in its environment 

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011f: p. 2). 

In order to develop systems, MBSE enhances previous methods by the creation of a 

system model in the early concept phase. Here, collaboration between involved 

disciplines shall not occur via documents, as in systems engineering47, but rather by 

means of centrally available and up to date, semantically rich models. Hence, MBSE is 

the formalized application of model creation to support activities of requirements 

engineering, development, verification and validation48 of a system, from the conceptual 

design phase throughout later phases in the lifecycle49,50 (TECHNICAL OPERATIONS 

INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING, 2007: p. 15; ZAFIROV, 2014: p. 81). 

According to IEEE COMPUTER SOCIETY (2007), the basic building blocks of a system are 

 
46 For more information about PTC’s Windchill Modeler, please refer to Chapter 2.4.3. 
47 For an overview of the transition form systems engineering as document-based discipline to model-
based systems engineering as model-driven discipline please refer to ESTEFAN (2008), TECHNICAL 

OPERATIONS INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING (2007), WALDEN et al. (2015), BUEDE 
(2009), and NASA (2007). 
48 The purpose of verification is to provide an objective confirmation that specifications are met, i.e., that 
the “product is built correctly”. Validation on the other hand means that it has to be clarified whether a 
product in use meets the customer’s requirements, i.e., that the “right product was built” (BOEHM, 1979: 
p. 3; INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015c: pp. 70–75). 
49 An engineering process is model-based when its description is based upon a formal language. A formal 
language is an abstract language with focus on the mathematical or physical application, such as a 
programming language (EIGNER, 2014a: p. 7). 
50 The conceptual design phase is located at the phase “concept” in the product lifecycle (cf. Figure 2-3). 
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elements of the product hierarchy as well as of the lifecycle processes (IEEE COMPUTER 

SOCIETY, 2007: p. 4). A system can be divided further into the so-called system 

breakdown structure, which reflects the three major phases of systems development: i) 

system definition, ii) preliminary design, iii) detailed design (cf. Figure 2-17) (IEEE 

COMPUTER SOCIETY, 2007: pp. 17–18). 

 

Figure 2-17: System breakdown structure (in alignment to IEEE COMPUTER SOCIETY, 2007: pp. 4, 18). 

By implementation of a central system model that connects all the other discipline-

specific models, for instance simulation, CASE, E-CAD, and M-CAD models, MBSE 

improves complexity management, collaboration, quality, productivity, and reuse, 

amongst others. The central system model and its connection to the discipline-specific 

models is depicted in Figure 2-18. Due to a model only being a partial representation of 

reality, it can only contain aspects that are relevant for its purpose, whether synthesis 

or analysis51. Therefore, the content of the system model, its application along the 

development process, and which languages and IT tools that will be used, are focal 

questions (ZAFIROV, 2014: pp. 82–83). Different methods for MBSE define different 

artifacts, different steps, and modeling approaches. These will be discussed in the next 

chapter52. 

 
51 Synthesis describes the conception of new solutions including the specification of new goals. Contrarily, 
the identification or prediction of actual behavior based on these specifications by means of tests or 
simulations are inherent to analysis (ZAFIROV, 2014: p. 80). 
52 Please refer to FRIEDENTHAL et al. (2012) for an overview of a partial systems engineering standards 
taxonomy including further standards, architecture frameworks, modeling methods, and interchange 
standards. 
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Figure 2-18: Model-based systems engineering with a central system model (in alignment to ZAFIROV, 

2014: p. 82; FRIEDENTHAL et al., 2012: p. 18). 

MBSE commonly consists of an underlying method of how the modeling has to be 

executed, a modeling language, and a tool in which the method according to the syntax 

and semantics of the language that has been applied. Those three parts of MBSE have 

in common that the system model is crucial, as depicted in Figure 2-19 (in alignment to 

ALT, 2012: p. 9; EIGNER et al., 2018: p. 382; EIGNER et al., 2016a: p. 167). 

 

Figure 2-19: The three modules of MBSE with the system model as its central artifact (in alignment 

to ALT, 2012: p. 9; EIGNER et al., 2018: p. 382; EIGNER et al., 2016a: p. 167). 

The most prominent modeling language is systems modeling language (SysML)53. 

MBSE methods using SysML, and current IT tools which support the introduced 

methods and apply SysML are presented in the next chapter. 

2.4.2 Methods and languages 

LANGUAGE 

MBSE is an approach which uses a formal language to describe connections and 

creates connections between different disciplines. There are several languages used to 

graphically model systems. However, SysML, a successor of unified modeling language 

(UML), evolved to an industry standard and is wide spread (ALBERS and ZINGEL, 2013: 

p. 82; KLEINER and KRAMER, 2013: p. 102; ZAFIROV, 2014: p. 89). SysML provides 

 
53 SysML is standardized by the Object Management Group (OMG). Please refer to OMG (2015) for a 
holistic overview of SysML and its components. 
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structure diagrams (block definition, internal block), parametric diagrams, package 

diagrams, behavior diagrams (activity, use case, state machine, sequence), structure 

and behavior models, and cross-sectional diagrams (requirement, stereotype, data 

exchange formats) (WEILKIENS, 2008: pp. 226–227; KÖNIGS, 2013: p. 28; ZAFIROV, 2014: 

p. 90; FRIEDENTHAL et al., 2012: pp. 17, 30; KORDON, 2013: p. 49). An exemplary 

depiction of the diagrams in SysML (lite) language features and some highlights for each 

type of diagram are displayed in Figure 2-2054 (in alignment to FRIEDENTHAL et al., 2012: 

p. 33). 

 

Figure 2-20: Overview of SysML (lite) language features (in alignment to FRIEDENTHAL et al., 2012: p. 

33). 

METHODS 

As depicted in Figure 2-9, the RFLP (requirements engineering, functional design, 

logical design, physical design) approach describes the systematic product 

development process for systems in alignment with the V-model. Commonly, PLM 

systems support the RFLP breakdown structure. It is also the most mature systems 

engineering metamodel in PLM. Hence, compatibility on this metalevel of data between 

 
54 SysML lite is a simplified subset of the SysML notation and only used here for exemplary reasons (cf. 
FRIEDENTHAL et al., 2012: pp. 31 ff.) 
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MBSE authoring tools and PDM/PLM systems is often provided, although some MBSE 

methods define the RFLP approach differently55 (KLEINER and KRAMER, 2013: p. 95; 

PAVALKIS, 2016: pp. 2466–2469, 2479; ZAFIROV, 2014: p. 88; HORVATH et al., 2015: p. 

85; ZAFIROV, 2017: pp. 31–32). 

Due to SysML being considered as the de facto standard modeling language for MBSE 

(vide supra), only MBSE methods using SysML are in scope of this work. In alignment 

to EIGNER et al. (2016a), MECPRO² ABSCHLUSSBERICHT (2016b) and DICKOPF et al. (2017), 

the following MBSE methods use SysML56: 

Alt, Oliver (ALT (2012)) 

This method focusses on the model-based top-down description of technical systems 

starting at the requirements and use cases. Chains of effects following input, processing, 

and output are established. Allocation relations span connections between different 

levels of abstraction. 

FAS method (LAMM and WEILKIENS (2010)) 

The functional architectures for systems (FAS) method deduces a functional systems 

architecture from use cases and detailed activities. A functional architecture already on 

a system level shall enable a preferably solution-neutral and hence technology-

independent depiction. 

FAS4M (GRUNDEL et al. (2014)) 

This method extends the FAS method towards mechanics. FAS4M (functional 

architecture of systems for mechanical engineers) aims at the connection of abstract 

functional models with shape describing CAD models by using SysML as a fundament 

for further depictions of the distinct mechanical characteristics at the logical level. 

Harmony SE (HOFFMANN (2011)) 

This method provides an integrated development process for systems and software by 

a combination of the Harmony software engineering and systems engineering 

processes. Iterative and incremental steps in the requirements phase, system function 

analysis, and design synthesis are based upon use cases. 

 

 
55 For more information, please also refer to LOPER (2015). 
56 The method CONSENS is not in scope due to its proprietary modeling language and SysML is only 
included by means of an additional profile (IWANEK et al., 2013: pp. 337–346; DICKOPF et al., 2017: p. 67). 
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Holt and Perry (HOLT and PERRY (2008)) 

This method’s foundation is the elements ontology, MBSE framework, and viewpoints. 

The ontology describes concepts, terms, and relations in the system’s context. The 

framework defines the application of the ontology by viewpoints. Viewpoints delineate 

extracts of a system that refer to a specific part of the ontology57. 

OOSEM (FRIEDENTHAL et al. (2012)) 

The object-oriented systems engineering method (OOSEM) supports the specification, 

analysis, design process, and verification of a system. This method again is a top-down 

approach and aims at an easily adaptable model-based systems architecture. 

SE-VPE (GILZ (2014)) 

This method focuses on the model-based functional and logical breakdown (cf. Figure 

2-17) in an early phase of development derived from the requirements. In doing so, 

vertical and horizontal traceability58 is ensured. Very important in this method is the 

ability to transfer elements of the generated system elements to a system lifecycle 

management IT system. 

SPES (POHL et al. (2012)) 

The software platform embedded systems (SPES) methodology59 combines different 

modeling approaches from diverse disciplines. It uses abstraction layers to further 

increase the level of detail. Viewpoints are implemented to distinguish between different 

aspects of different stakeholders. Viewpoints are similar to the RFLP approach: 

requirements, functional, logical, and technical viewpoint. 

SYSMOD (WEILKIENS (2008)) 

The method system modeling process (SYSMOD) serves as a tool kit to model systems 

without a predetermined sequence of activities. It supports modeling of requirements as 

 
57 A view is defined as a “collection of entities and assigned attributes (domains) assembled for some 
purpose” (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2017b: p. 502). Consecutively, a viewpoint 
on a system is defined as a “form of abstraction achieved using a selected set of architectural concepts 
and structuring rules, in order to focus on particular concerns within as system” (INTERNATIONAL 

ORGANIZATION FOR STANDARDIZATION, 2017b: p. 502). Please refer to INTERNATIONAL ORGANIZATION FOR 

STANDARDIZATION (2017b) and POHL et al. (2012) for more definitions on views and viewpoints. 
58 Vertical traceability means the connection of precedent and subsequent phases of the systems 
development. Horizontal traceability is enabled by linking different disciplines in one phase of 
development. Cf. also Chapter 2.1 for further definitions of vertical and horizontal traceability. 
59 Please refer to Footnote 16 (p. 23) for an explanation why the SPES methodology is called like this. 
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well as the functional and physical structure of complex systems (in alignment to 

DICKOPF et al., 2017: pp. 66–68). 

2.4.3 Traceability in the context of MBSE 

Traceability should be intrinsic to all MBSE methods between domains involved, e.g., 

mechanics (CAD), E/E (E-CAD and CASE), and simulations, in the early systems 

engineering process because MBSE methods claim to model relations explicitly. Hence, 

MBSE methods enable traceability in the first place. Therefore, this chapter will focus 

on how MBSE methods foster traceability with further downstream processes in the 

development phase as well as with supplementary processes of documentation 

(PDM/PLM). Further upstream processes and methods, such as Modelica, Matlab, 

Simulink, functional mock-up unit/interface (FMU/FMI) are not in scope as they also 

often occur in separate author tools. 

DATA MODEL 

Within the discipline of MBSE and each MBSE method, traceability is fostered by the 

system model and explicit modeling of relations between artifacts, their values, etc. (cf. 

Figure 2-20). However, due to MBSE occurs in the early development phase, these 

relations and connections to downstream processes and disciplines are not yet fully 

implemented. For that purpose, WEILKIENS et al. (2016) included a criterion “connectivity” 

into their “framework for the evaluation of MBSE methodologies for practitioners” to 

assess this essential feature of MBSE tools. In this study it is assessed whether 

information can be exchanged easily with other tools, which standard API are provided 

or can be added, and if open protocols are used for import and export. The criterion 

“connectivity“ is weighted with the highest possible value, indicating its relevance for the 

assessment in practice (WEILKIENS et al., 2016: pp. 2–3). 

Hence, a lot of research focuses on enabling traceability of relations created in early 

development between many different disciplines and providing this information to 

subsequent processes and disciplines throughout the product lifecycle. Figure 2-21 

shows a schematic representation of different hierarchical product descriptions in 

different phases of the lifecycle and the aim to foster traceability between the product 

descriptions and between lifecycle phases by means of linkage of information artifacts 

that refer to artifacts of other phases (in alignment to MÜLLER and KIRSCH, 2017: p. 179). 

However, the requirements phase is not in scope of this work and is displayed here for 

mere exemplary reasons. BIAHMOU (2015b) emphasizes the necessity of traceability of 
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changes on the different abstraction levels of development, i.e., functional, logical, and 

physical, by means of a common metadata model of the system. This could be achieved 

by the central systems model within MBSE (BIAHMOU, 2015b: pp. 222, 231). Additionally, 

an integrated, ontology-based (meta) data model enhances connections and traceability 

between different disciplines in MBSE and between MBSE and PDM/PLM (HOOSHMAND 

et al., 2018: pp. 106, 108; HOOSHMAND et al., 2016: pp. 246, 253). 

 

Figure 2-21: Example of three different product descriptions in hierarchical representation in different 

phases of the lifecycle and the aim to foster traceability by connection of information artifacts (in 

alignment to MÜLLER and KIRSCH, 2017: p. 179). 

For the purpose of link creation between the phases of MBSE and PDM/PLM, the distinct 

data models have to be aligned. Due to a fundamentally different approach in generating 

data models in the involved disciplines and their IT tools and systems which grew over 

decades or are relatively novel, alignment of data models is a major endeavor. On data 

level, there are three different variations of how to generate this alignment of data 

models (in alignment to MÜLLER and KIRSCH, 2017: pp. 178–180; HEBER and GROLL, 

2018b: p. 127): 

1. Equivalent information artifacts are used within the data model structure of MBSE 

and PDM/PLM that are identical except in regards to their name. By this, 

asynchrony of content and metadata is ensured, for instance to describe different 

lifecycles, due to metadata being able to diverge. Hence, lifecycle information as 

well as rights and roles can deviate. The connection is achieved via a global 

connection and enables traceability. Regular synchronization of information 

artifacts is necessary. 
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2. Globally valid information artifacts with the same name are used for the data 

models of both disciplines. Therefore, lifecycle information as well as rights and 

roles cannot deviate. 

3. If PDM/PLM information artifacts include a link in their metadata to artifacts of 

MBSE, then this is called linked information artifacts. Links can be URL, such as 

the OSLC approach, where one information artifact can merely hold 

metainformation and a link, while the other includes all relevant properties. 

Lifecycles and rights and roles should be identical. 

Which variation of data model alignment in the form of information artifact connection is 

superior or optimal is a moot point. This is because it depends on many factors such as 

which IT systems prevail, how the data models are implemented, and how 

responsibilities as well as rights and roles are shaped (MÜLLER and KIRSCH, 2017: pp. 

178–180). Table 2-1 illustrates the three options of data model alignment. 

Table 2-1: Three alternatives of data model alignment between MBSE and PDM/PLM (in alignment 

to MÜLLER and KIRSCH, 2017: p. 179; HEBER and GROLL, 2018b: p. 127). 

 

To store and manage links, a central link repository is suggested as OSLC does not 

support a centralized management of links. The advantage of a central link repository 

can be that there is the update of links and prevention of broken links, in case of altered 

resources. In some cases, the PLM system itself can function as a central link repository 

(PFENNING, 2017: pp. 105, 118, 156). However, for distributed engineering 

collaborations such a centrally managed link repository might hold some impediments 

regarding data sovereignty, trustworthiness, availability, etc. (cf. Chapter 2.7). 

Depending on which variation of data model alignment is chosen and hence how 

integrated lifecycles of the different disciplines have to be, it might be necessary to 

introduce a common variability or variant management (cf. Chapter 2.3.2). This has to 

be based upon a joint data model. If variability is present, a system model alone is not 

capable of completely ensuring traceability due to variability or variant management is 
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interdisciplinary and hence different data models of different disciplines have to be 

aligned. There are many variability concepts, standalone, embedded, or enabling 

techniques. However, in practice this still remains an issue at which level of granularity 

to install variability management (DUMITRESCU et al., 2014: pp. 130–131; BIAHMOU, 

2015b: 231). A configuration item (CI) and a linkable item (LI) as distinct metadata 

allocated to the actual information artifact can create different configurations/variants of 

multiple items by links. This allows for a separation of disciplines’ lifecycles and yet 

linking them together with a joint CI in a light weighted manner, such as the variation of 

linked information artifacts in Table 2-1 (SCHULTE et al., 2017a: pp. 88, 91; SCHULTE et 

al., 2017b: pp. 179–180; SCHULTE et al., 2017d: pp. 328–329, 331). This approach of a 

separate information artifact to handle variability in MBSE in order to foster traceability 

by alignment of MBSE and PDM/PLM data models is in line with the orthogonal 

variability model (OVM). In OVM, the variability of a software product line is modeled 

explicitly in a separate model as metadata and can connect various different models. 

(SCHULTE et al., 2017c: pp. 263–264; SCHULTE et al., 2017a: 90; POHL et al., 2005: pp. 

72 ff.). 

PROCESS MODEL 

GILZ (2014) describes in the SE-VPE method an approach how a change workflow for 

the lifecycle of system elements by means of a voting mechanism is shaped. In the 

process, engineers can vote if changes affecting their systems or components are valid 

(compatible change) or not (incompatible). A majority accepting the change, promotes 

the system element in scope along its release lifecycle in the PLM backbone: 

preliminary, in review, released, in change, superseded. Change management can also 

occur in MBSE authoring tools or TDMs, but the focus here is on the change process 

on PDM/PLM level. In order to avoid broken links between information artifacts of MBSE 

and PDM/PLM when a change request is released, links and relations have to be 

maintained. Floating relations, conversely to fixed ones, always point to the latest 

version of a connected information artifact. By those means, explicit maintenance of 

linked relations between information artifacts in different data models can be 

circumvented. A floating relation automatically creates a modified copy whenever an 

artifact changes and links it with the previously related artifact. GILZ (2014) suggests not 

to transfer unreleased MBSE information from the specific authoring tools or TDMs to 

the PLM backbone and rather only transfer released information (cf. Figure 2-12). The 

release generates a version number and a unique identifier in the PLM backbone. By 
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mapping version numbers after a change occurred, SysML models in the MBSE TDM 

or authoring tool are kept updated (GILZ, 2014: pp. 115–123, 145-151). For regulatory 

purposes as well as traceability, storage of baselines of configurations of information 

artifacts as well as their links is necessary (PFENNING, 2017: pp. 160–161). Additionally, 

the integration between these MBSE information artifacts and processes with 

organizational processes is required (BRETZ et al., 2016: p. 8). 

TECHNOLOGY 

Some MBSE authoring tools are able to provide a hierarchical structure of model-based 

systems that is called containment tree. This hierarchical structure can be transferred to 

a PDM/PLM structure. However, today this still often requires proprietary APIs (KIRSCH 

et al., 2017b: pp. 161–167). Often, the replacement of the entire IT landscape to 

implement a holistic, model-driven set of IT tools and systems is not feasible for 

companies. For that purpose, a federative, integrated, and interdisciplinary backbone 

concept with links connecting different IT tools and systems could be an alternative 

(EIGNER et al., 2016b: pp. 59–61). IBM’s Engineering Systems Design Rhapsody - Model 

Manager (Rational Rhapsody) is part of IBM’s Jazz platform and uses SysML, which 

connects requirements, simulation, as well as PDM/PLM via OSLC, if applicable (BRUSA 

et al., 2018: pp. 335–336; IBM CORPORATION, 2020a, 2020b). The Windchill Modeler 

(Integrity Modeler) by PTC also supports the integration via OSLC and can describe 

models using SysML. Moreover, it also offers direct OSLC integration to PTC’s own 

PDM tool, PDMLink (cf. Chapter 2.3.3) (BRUSA et al., 2018: pp. 336–337; PTC INC., 

2019: p. 4, 2020b; OLLERTON, 2016: p. 4; NORFOLK, 2015: pp. 12–13). Sparx Systems’ 

Enterprise Architect (EA) enables graphical depiction by usage of SysML. EA serves as 

an OSLC provider only. This means, that artifacts in EA can be addressed by their 

distinct URL for CRUD operations (cf. Chapter 2.1.3) using HTTP commands (SPARX 

SYSTEMS PTY LTD., 2020b, 2020a). SysML also is supported by NoMagic’s (acquired by 

Dassault Systèmes) Cameo Systems Modeler and by the installation of additional 

plugins, OSLC resources can be used. However, only using an additional IT tool called 

DataHub, the Cameo Systems Modeler can handle OSLC links60 (NO MAGIC, 2015: 48 

ff., 2020a, 2020b). 

 
60 iQUAVIS by ISID can be considered a niche product and hence is not in scope here (HEIHOFF-SCHWEDE 
et al., 2017: p. 43). Capella by Eclipse PolarSys does not use SysML as modeling language and hence 
also is not in scope here (ECLIPSE FOUNDATION, 2020). 
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2.5 Automotive electrics and electronics including software 

2.5.1 Definitions, norms, and standards 

A vast quantity of electrical systems in an automobile address different requirements. 

Powertrain, comfort, security, and infotainment partially evolved independently and use 

their dedicated technologies of communication, actuators, and sensors (REIF, 2016: p. 

2). There prevail many standards for E/E. Some examples of ISO norms for 

communication bus systems are given in REIF, 2014: p. 1461. Generically, ECUs consist 

of an input, e.g., plug with pins, which are connected with sensors that deliver input 

signals. Those signals are processed internally by means of a microcontroller and 

memory. The output signal addresses actuators according the calculated results. 

Communication interfaces build the connection to the communication bus systems and 

enable message delivery between different components (ECUs) in one or different 

systems (REIF, 2014: p. 136). 

Software often already is embedded in ECUs (embedded system) as part of measuring, 

steering, and control functions as well as for communication. Hence, software also is 

considered to be part of E/E in this work as it is done in BORGEEST (2014) (cf. BORGEEST, 

2014: pp. 213 ff.). The automotive software process improvement and capability 

determination (ASPICE), derived from ISO/IEC 15504 (SPICE), assesses the capability 

of development processes and their output of suppliers for ECUs according given criteria 

(MECPRO² ABSCHLUSSBERICHT, 2016c: pp. 65–66). ASPICE uses process performance 

indicators, such as best practices and work products, for such an assessment. 

Traceability is demanded normatively by explicitly stating that traceability between 

system artifacts shall be established, e.g., as a result of system integration tests (VDA 

QUALITY MANAGEMENT CENTER, 2017: pp. 21, 43). Hence, ASPICE is not suitable to 

implement traceability but rather request and assess it. 

2.5.2 Architecture, communication, hardware, and software 

The physical E/E architecture of an automobile consists of ECUs, actors, and sensors 

which are connected via cables, plugs, and pins62. An automotive E/E architecture with 

 
61 Please refer to REIF (2014), particularly Chapters 1 and 2, and Chapter 2.5.2 here in this work for further 
E/E definitions and standards such as ISO/OSI reference model, communication principles, bus 
topologies, software, etc. 
62 The power supply by means of a vehicle electrical system to transmit energy for electrical consumption 
is not in scope here. 
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focus on communication consists of (communication) bus systems. It enables the 

transport of messages (layer 3 and 4 of the OSI layer model) by means of transfer of 

bits (layer 1 and 2)63. 

There exist various communication bus systems in the automotive industry. However, 

former automobile manufacturer-specific bus systems were superseded by 

standardized solutions, such as the controller area network (CAN) or local 

interconnected network (LIN). Whereas the LIN bus as a cheap alternative is used for 

instance for switches with a low data rate, CAN, FlexRay, media oriented systems 

transport (MOST), or ethernet, amongst others, were developed for different 

requirements such as higher data rates, sequential communication times per peer on 

the bus, fault tolerance, star, bus, or ring topologies (cf. ZIMMERMANN and SCHMIDGALL, 

2014: p. 8; REIF, 2014: pp. 7, 14; SCHÄUFFELE and ZURAWKA, 2016: p. 124). Multiple 

communication bus systems which use different technologies are linked together by 

central or decentral gateways. Commonly, functional systems, such as powertrain or 

infotainment, share their bus system with the same technology.  

The complexity in the automotive E/E architecture tremendously increased in the last 

decades (cf. Figure 1-3). The usage of different technologies for communication busses 

and hence the yielding complexity from this approach is one reason for efforts of 

standardization and actions to cope with this complexity. Additionally, many solutions 

reflect organizational structures of automotive manufacturers and their suppliers. 

Historically, engine, gear unit, chassis, and body are developed in different departments. 

Striving for an optimal solution for the respective department itself and then handling the 

integration of the interfaces is a common phenomenon. Those isolated applications 

hinder the transdisciplinary integration of functions, which is the reality in today’s 

automotive development. A high reuse of bus systems due to cost reasons enforces 

upward compatibility. Hence, new technologies do not fully replace older solutions and 

ECUs have to provide all different kinds of connectors and the integration during 

distributed development becomes more and more complex (REIF, 2014: p. 34; 

ZIMMERMANN and SCHMIDGALL, 2014: pp. 9–11; BOSCHERT and ROSEN, 2016: p. 62). 

 
63 For more information on the different layers of the ISO standard including the open system 
interconnection (OSI) model, please refer to ZIMMERMANN and SCHMIDGALL (2014), BORGEEST (2014), 
REIF (2014), VAJNA (2009), and PETERSON and DAVIE (2012). 
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HARDWARE 

Although actuators and sensors play an important role in a modern automobile, e.g., for 

autonomous driving, here the focus regarding hardware will be on the ECUs due to their 

relevant role as interface components in E/E systems. Hence during development, 

different departments intra- and inter-company have to align their interface 

specifications for ECUs. Often, actuators and sensors are highly standardized and 

match the ECU they are connected to (REIF, 2016: p. 7). 

SOFTWARE 

Usually, software has to be changed more frequently during its application than other 

products. This might be due to newly added software that has to be integrated or 

processes in which the software supports have changed. One approach to alleviate the 

number of changes necessary is the parametrization of software to give software 

components yet another degree of freedom in customization without the need to alter 

huge parts of it. For that purpose, configuration parameters are stored in parametrization 

files64 (POMBERGER and PREE, 2004: p. 85). An automotive example would be the 

parametrization of the same engine ECU for two different power levels where the 

parametrization file stores different characteristic curves, injection masses, air volume, 

etc. Additionally, ECUs commonly have a bootloader software and a firmware 

(STRINGHAM, 2010: p. 6). 

Many functionalities in modern automobiles are enabled by software. Therefore, 

automobile manufacturers recognized the exigency of standardization for software. The 

automotive open system architecture (AUTOSAR) standard addresses this complexity 

by the development and implementation of standard software components suitable for 

reuse and exchange. This is accomplished by designing hardware-independent 

application software (OEM-specific) and hardware-oriented basic software (OEM-

independent) connected by a flexible runtime environment. By those means, software 

can be developed without specific knowledge of the planned hardware and software 

components can be implemented flexibly on different ECUs. During development, the 

system configuration, i.e., network topology, is described explicitly from communication 

bus systems up to the communication matrix of single channels65 (WINNER et al., 2015: 

pp. 106–115). The AUTOSAR adaptive platform enhances the classical AUTOSAR by 

 
64 See Chapter 2.3.2 for more information about software parametrization and its use for the configuration 
of software. 
65 See Chapter 2.5.3 for more information on the (network) communication matrix or network 
communication description. 
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offering functional clusters with services and APIs as interfaces which are linked 

dynamically during runtime. A virtual function bus connects joint functions across 

ECUs66 (AUTOSAR, 2019; REIF, 2014: p. 58). 

2.5.3 Traceability in the context of automotive E/E and software 

DATA MODEL 

Besides the requirements towards traceability in the E/E development for hardware and 

software, the above-mentioned communication matrix or network communication 

description (NCD) describes dependencies on the signal level. There is no standardized 

format of what the NCD has to compose. Sometimes the NCD names the signals on a 

communication bus in its rows and further attributes in its columns. Also, the NCD can 

have ECU names in rows and columns indicating which ECU consumes or provides 

which signal (BORGEEST, 2014: 131–132; WINNER et al., 2015: p. 115; ZIMMERMANN and 

SCHMIDGALL, 2014: pp. 416–417). Hence, the NCD is one possibility to foster traceability 

in the context of automotive E/E by the possibility of the creation of a machine-readable 

file that indicates physical connections (hardware) among ECUs as well as their 

communication by means of messages (software). 

PROCESS MODEL 

As stated above, the complexity in automotive E/E, hardware and software, becomes 

hard to handle. This is particularly relevant when it comes to safety-relevant functions. 

Therefore, norms address this issue. The norm ISO 2626 for road vehicles, one of the 

most important norms for automotive E/E, requires functional safety for systems with 

E/E components. The norm stipulates different analysis, required documentation of 

product information during the development process along nested V-models. 

Traceability has to be documented and maintained explicitly for safety-relevant relations 

between systems and elements on hardware and software level. Changes during the 

development as well as during configuration management have to be traceable 

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011c: p. 9, 2011d: p. 10, 2011e: 

pp. 8, 11, 14, 37; KÖNIGS, 2013: p. 27; BORGEEST, 2014: pp. 332 ff.). 

TECHNOLOGY 

Usually, automotive E/E architectures are developed discretely, i.e., not car-specific, 

and if a development project for an automobile model line starts, the desired E/E 

 
66 For more information on the AUTOSAR (adaptive) standard, please refer to AUTOSAR (2019), REIF 
(2014), ZIMMERMANN and SCHMIDGALL (2014), and WINNER et al. (2015). 
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architecture will be adapted to the automotive platform in scope. Without computer-

aided modeling of harnesses, E/E architectures, and their message transmission, 

modern E/E development would not be practicable. Therefore, there prevail plenty IT 

tools to support the development process. Often, engineering disciplines are separated 

into the design of communication busses and message transmission, E/E architecture 

design, harness wiring layout, etc. Examples for common IT tools are PREEVision, 

CANoe and CANape by Vector Informatics. PREEVision is a widely used E/E 

development tool for the communication bus design in the automotive sector. It uses a 

centralized approach for an IT collaboration platform. The integration of automotive E/E 

hardware and closely related software development, particularly among IT tools of the 

same vendor, is relatively high. However, traceability with other disciplines or direct 

integration of E/E hardware or software into a BOM in a PDM/PLM system are currently 

scarce67 (cf. ZIMMERMANN and SCHMIDGALL, 2014: pp. 415–433; BECK et al., 2016: pp. 

6–7). 

With respect to software development and its decisive version control, particularly in 

distributed development scenarios, the open-source tool Git is acknowledged widely. 

Git holds a complete replication of databases from the server at each client (cf. Chapter 

2.3.2 and Figure 2-15) (CHACON and STRAUB, 2014: p. 4; GIT, 2020b). Atlassian’s tool 

Bitbucket for the management of Git-code extends the sole software version control by 

means of project planning, testing and deployment, as well as collaboration. Hence, 

Bitbucket is in scope here instead of the stand-alone Git68 (ATLASSIAN, 2020a, 2020b, 

2020c). 

2.6 Distributed engineering collaboration 

2.6.1 Definitions, norms, and standards 

Due to ever shorter innovation cycles, companies see themselves urged to decrease 

the duration of development projects. An approach to do so is the parallelization of 

processes so as to reduce engineering time and enhance quality of results, i.e. 

simultaneous engineering (cf. Figure 2-4) (EVERSHEIM and SCHUH, 2005: p. 8). A high 

 
67 For further information about software development tools and the necessary version control, please 
refer to Chapter 2.3. 
68 Here, Apache Subersion (SVN) by CollabNet is not in scope due to a centralized approach for a version 
control system and hence differences in performance and fault tolerance towards Git in a distributed 
engineering network approach (cf. Chapter 2.3.2 and Figure 2-15) (CHACON and STRAUB, 2014: p. 3; GIT, 
2020a). 



70 Distributed engineering collaboration 

 

interdependency with suppliers already in the early development phase, increased 

globalization, and more product knowledge at the supplier, demands automotive 

manufacturers to execute this simultaneous engineering across their suppliers. By this 

so-called cross-enterprise engineering, frontloading and handling of complexity is 

fostered (cf. Figure 2-4) (STEPHAN, 2013: pp. 67–68; EIGNER and STELZER, 2009: pp. 14–

15, 18; KATZENBACH, 2015a: p. 611). The necessity resulting from cross-enterprise 

engineering to be in a position to manage distributed and federative information and 

processes requires solutions across companies. Engineering collaboration denominates 

solution approaches for distributed development by means of product data exchange or 

direct collaboration in virtual project rooms (EIGNER and STELZER, 2009: pp. 182–183; 

EIGNER et al., 2012a: p. 27). Collaboration is understood as a process where companies 

share information, resources, and responsibilities in order to strive for a joint goal. For 

that purpose, short-term virtual enterprises can be founded to achieve a common project 

(BORSATO and PERUZZINI, 2015: pp. 168–169; WOGNUM and CURRAN, 2013: p. 6). 

Moreover, a company has to collaborate with external sources of knowledge, such as 

start-ups, to promote open innovation (WOGNUM and CURRAN, 2013: p. 7). Additionally, 

relationships in engineering collaboration are temporary, limited to a project and a 

current partner can become tomorrow’s competitor. A flexible IT infrastructure is needed 

to address this volatility as well as the protection of intellectual property (IP). Moreover, 

mechanisms to protect IP, such as watermarking, are enforced to confront this insecurity 

and mistrust69 (LIESE et al., 2013: pp. 270-272, 277; cf. HEYN, 1999 according to 

STEPHAN, 2013: p. 69). 

For engineering collaboration, the exchange of data is mandatory (cf. Chapter 2.1.1). 

For that purpose, many standards for the exchange of data have been established. The 

most prominent standards in the realm of PDM/PLM are: 

• Extensible markup language (XML) metadata interchange (XMI) which extends 

XML by means of inclusion of metaobjects. 

• ISO 10303 STEP and here particularly AP 242 (cf. Footnote 24 on p. 30) that 

describes 3D engineering data whereas AP 233 focuses on systems 

engineering70. 

 
69 Please refer to STJEPANDIĆ et al. (2015b) for more information on engineering collaboration, concurrent 
engineering, and further forms of joint development. 
70 For more information about ISO 10303 AP 233, please refer to GILZ (2014), KÖNIGS (2013), and 
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2012a). 
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• OSLC aims at defining specifications to foster integration of IT tools during 

development and uses web technologies, such as uniform resource identifiers 

(URI), resource description framework (RDF), and representational state transfer 

(REST)71 (STIEFEL, 2011: pp. 40–42; GILZ, 2014: p. 34; KÖNIGS, 2013: pp. 26–27; 

KATZENBACH, 2015a: pp. 627–632). 

Engineering collaboration platforms, i.e., dedicated IT systems and tools to exchange 

engineering data in engineering relationships, shall include aspects for communication, 

product data, processes, and organization that are relevant for collaborations72 

(KATZENBACH, 2015b: p. 189; STIEFEL, 2011: p. 30). 

2.6.2 Phenotypes 

Engineering collaboration transformed itself in alignment to the transformation of the 

OEMs’ and suppliers’ relationships. Traditionally, an OEM had centralistic purchasing 

and each supplier developed and delivered a specific product which the OEM integrated 

into its final product. Later, as products became more complex, different tiers of 

suppliers formed, each tier specialized in one activity, such as engineering of 

components and single parts, sub-systems and modules, or entire systems. Today most 

prevalent is the engineering and supplier structure, which is separated out by 

production, developing systems, and integrating systems for an OEM. Already today 

there are engineering and supply networks that are highly integrated and connected. 

System integrators and system specialists offer standard systems to OEMs which adapt 

these systems according their own preferences. Moreover, OEMs and the other 

suppliers develop highly innovative components and systems together to share costs, 

profits, risks, and opportunities. Therefore, the sole OEM-supplier relationship changed 

to joint engineering partners, mostly for dedicated projects or products such as 

autonomous driving. This relationship can extend to virtual enterprises amongst different 

OEMs, their engineering partners, and suppliers (DAIMLER AG, 2018; FELDHUSEN and 

GROTE, 2013: pp. 6-8, 31–33; EIGNER and STELZER, 2009: pp. 14–17; LIESE et al., 2013: 

p. 270). This vicissitude is depicted in Figure 2-22 (in alignment to FELDHUSEN and 

GROTE, 2013: p. 7; EIGNER and STELZER, 2009: p. 15; STEPHAN, 2013: p. 71). 

 
71 See Chapter 2.8 and KATZENBACH (2015a), GILZ (2014), STIEFEL (2011), and KÖNIGS (2013) for more 
information about these standards. 
72 Please refer to EIGNER and STELZER (2009) and STIEFEL (2011) for more details about different IT 
systems for engineering collaboration and how they are connected. 
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Figure 2-22: Transformation of supplier structures across time (in alignment to FELDHUSEN and 

GROTE, 2013: p. 7; EIGNER and STELZER, 2009: p. 15; STEPHAN, 2013: p. 71; KATZENBACH, 2015a: p. 

626). 

STIEFEL (2011) differentiates between product data-oriented, project-oriented, and 

process-oriented collaboration (cf. KRAUSE et al., 2007 according to STIEFEL, 2011: pp. 

21–26). Product data-oriented collaboration is defined according to the necessary 

exchange of engineering data between partners in an engineering collaboration in order 

to make this data available at the right point in time and at the right venue. The data 

exchange occurs by means of transfer of neutral data formats, e.g., STEP, between 

different PDM systems. These aspects are aligned to the Sections Data Model and 

Technology in Chapter 2.6.3. Project-oriented collaborations focus on coordination of 

schedules, controlling, planning, etc. and are not within the scope of this work. An intra-

company development process characterizes process-oriented collaborations. The goal 

is to align process steps in each phase of the development process between the 

involved engineering partners in order to increase traceability and velocity, as well as to 
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reduce manual work and errors (STIEFEL, 2011: pp. 21–26). The process aspects of 

engineering collaboration contribute to the Section Process Model in Chapter 2.6.3. 

Another relatively young form of engineering collaborations are start-ups, developing 

products jointly with incumbent OEMs or their suppliers and integrating their products in 

automobiles in an early stage or later as a service. Often, start-ups and emergent new 

entrants into the automotive market deliver software or other E/E components to OEMs 

and suppliers. Hence, OEMs heavily invest into start-ups associated with products for 

the automotive industry (KAAS et al., 2016: pp. 13–14; KÄSSER et al., 2017: p. 4; 

HOLLAND-LETZ et al., 2019: pp. 1–3; WIEHMEIER, 2017: p. 1; GLASNER, 2018: pp. 1–6; 

KRIEG et al., 2018: pp. 15–16). In regards to this connection, alignment of development 

processes, product lifecycles, and production pace are challenging. Additionally, sharing 

IP with start-ups in a secure manner is, likewise to traditional engineering collaborations, 

crucial (STAREPRAVO, 2019: p. 6). 

2.6.3 Traceability in the context of engineering collaboration 

DATA MODEL 

In engineering collaboration, the data exchange according to a collective data model is 

crucial for traceability and reduces manual rework or intensive API programming and 

maintenance. Hence, standards for the exchange of data (cf. Chapter 2.2.1) in a multiple 

partners engineering collaboration facilitates automized data exchange. Thus, APIs do 

not have to be adapted frequently whenever new suppliers or collaboration partners 

enter the joint development. If the data model within each IT tool or system already 

matches data exchange standards or these tools and systems provide accordingly 

standardized APIs, then the adaptation effort for each participant is minimized. 

Otherwise, authoring tools often provide converters to convert the proprietary data 

format into a neutral data format, e.g., in the case of CAD models into JT. Only 

collaboration partners that have IT tools including a converter or are already capable of 

handling native data can participate in the engineering collaboration (EIGNER and 

STELZER, 2009: p. 186). In order to share knowledge in an engineering collaboration, a 

common taxonomy for the description of product data models is necessary. For that 

purpose, ontologies are used (STIEFEL, 2011: p. 36; VACHER et al., 2007: pp. 314–316). 

This will be discussed in Chapter 2.8. 
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PROCESS MODEL 

Usually, engineering partners only exchange data at distinct milestones during the 

development process. This approach has disadvantages, namely that product data 

often is not up-to-date, reactions to constructive or technological changes of product 

models occur too late, and therefore this yields unnecessary changes, long development 

cycles, incomplete traceability, and high costs (STIEFEL, 2011: p. 27; FERREIRA et al., 

2017: pp. 1478–1480; SCHÄUFFELE and ZURAWKA, 2016: p. 199). Usually, PDM/PLM 

systems have strong workflows implemented. The alignment of these workflows across 

multiple PDM/PLM systems as well as authoring tools of many engineering partners is 

essential. Today, this is often done with emails as a reminder for the partner that the 

previous engineer finished their task and the consecutive task can start (EIGNER and 

STELZER, 2009: p. 189). 

TECHNOLOGY 

OEMs and suppliers use up to eight different tools within one process phase during 

development. Hence, traceability and re-use of engineering data is necessary (BEIER, 

2014: p. 31; SCHÄUFFELE and ZURAWKA, 2016: pp. 198–200). Moreover, many systems 

induce incompatibility of data types and hence released data which is often held 

redundantly at distinct collaboration partners, leading to errors and delays (STIEFEL, 

2011: p. 22). Some vendors specialize in offering engineering collaboration IT platforms 

for the connection of PDM/PLM systems of the major automotive OEMs, SAP systems, 

authoring tools, simulation software, requirements management, etc. The example of 

OpenPDM by PROSTEP further offers APIs to a data exchange platform to transfer 

huge amounts of data, for instance, with suppliers who do not have direct connectors to 

OpenPDM. A high degree of collaboration for the maintenance and development of 

OpenPDM is required due to the definition of data models, APIs, process models, 

amongst other things (STIEFEL, 2011: p. 31). OpenPDM is a mere integrational 

facilitation platform in which you cannot manage information artifacts directly to the 

extent of a proper PDM/PLM IT system (PROSTEP IVIP E.V., 2020a). 

2.7 Data base solutions 

Particularly in Chapters 2.2, 2.3, 2.6, and in Figure 2-12, the importance of compatible 

IT systems for traceability in engineering activities and their accompanying 

documentation within a company and in engineering collaborations, was highlighted. In 

this chapter, different technologies for those IT systems or data bases will be examined. 
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This is in order to assess the adequacy of different types of data bases for fostering 

traceability during development within one and across multiple companies. 

2.7.1 Definitions, norms, and standards 

A data base is a collection of data which have logical relations among one another and 

are administered by one’s own data base management system (DBMS). The DBMS has 

one or many logical external APIs which allow users and IT tools to access the data in 

the data base by translation of logical to physical access (SCHICKER, 2017: p. 3). Above, 

the distinction between the logical and physical layers of IT systems or data bases has 

not been made. Hence, below a data base or IT system will be considered to include 

both layers as well as the DBMS73. 

In the following, different types of data bases will be discussed in order to assess their 

aptitude to foster traceability in distributed engineering collaborations. 

2.7.2 Central data bases 

The central data base is the traditional IT system. It comprises the following type of data 

bases (SCHICKER, 2017: pp. 12–16; DORSCHEL, 2015: pp. 288–293): 

• Relational data bases: They consists of tables, called relations, which also store 

the relations between different tables. Their simplicity of use and program 

contributes to their popularity.  

• Object-oriented data bases: An object can be a real or an abstract entity. Objects 

also can be stored in tables. Therefore, object-oriented data bases often are 

considered as extensions to relational data bases. Programmers and designers 

have to invest more effort in the creation of these more complex object-oriented 

data bases. 

• Hierarchical data bases: The access via the uppermost node and the successive 

descent to the node of interest makes these data bases archaic and hence 

obsolete. 

• Key/Value-oriented data bases: Those data bases gain their flexibility and 

velocity via the allocation of unique keys to values. 

 
73 Please refer to SCHICKER (2017) for a detailed overview of general capabilities of a data base. 
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• Document-oriented data bases: Similar to key/value data bases, documents 

(values) are assigned distinct names (keys). Hence, the storage of documents 

and their association with other data is feasible. 

• Column-oriented data bases: Instead of reading row by row when looking for the 

values of interest as in traditional relational data bases, the column-oriented data 

bases invert the table. This yields quicker searches due to there only being one 

column, which stores the value of interest, that has to be searched. 

• Graph-oriented data bases: Here, data is structured according to graph theory 

using nodes and edges and is particularly performant for geographical or social 

data. 

The latter four data base types are so-called NoSQL (not only structured query 

language) data bases and are often used for use cases where performance of data 

access and calculations are crucial (SCHICKER, 2017: pp. 12–16; DORSCHEL, 2015: pp. 

288–293). 

2.7.3 Decentral data bases 

An increasing amount of data, as well as access to it anytime and anywhere, demands 

more performant and flexible data bases than the relational, central data bases 

described above. Central data bases are limited in their vertical scalability, i.e., the 

increase of processors, disk storage, and main memory for the purpose of higher 

performance. For that purpose, decentral data bases were created where the data 

processing is distributed among multiple IT systems (horizontal scalability). Decentral 

data bases are defined by data which is stored at least at two computers or IT systems 

within the same network. Validity or consistency in case of redundant data are just two 

more examples of how the complexity increases with multiple IT systems handling data 

in one network. It has to be figured out which set of data is the most recent and at which 

IT system the data is. On the other hand, decentral data bases offer advantages in 

comparison to central data bases such as faster access and higher performance. This 

is also advantageous for distributed companies with, for instance, multiple plants, 

subsidiaries, or development offices. Consequently, a frequent local access to data 

across the world can be facilitated. Moreover, availability, i.e., the reciprocal of an IT 

system downtime, can be ameliorated and hence the failure of one IT system does not 

compromise the entire network. The failure of the central data base then again is its 

Achilles’ heel (SCHICKER, 2017: pp. 307–309; DORSCHEL, 2015: p. 278). DATE (1990) 
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postulates twelve principles towards decentral data bases so that decentral data bases 

appear to the user as if they would be a central data base. The most important principles 

in the context of distributed engineering collaboration and traceability for engineering 

data across the lifecycle are74 (cf. DATE, 1990 according to SCHICKER, 2017: pp. 309–

312): 

• No central administration instance, 

• Permanent availability, 

• Independent of fragmentation, 

• Independent of data replication, 

• Decentral transaction administration. 

Not all principles can be satisfied concurrently due to an immanent contradiction of some 

of them. Additionally, consistency (C), availability (A), and tolerance of network partitions 

(P) partially are disjunct and only two of them can occur simultaneously. This is called 

the CAP theorem and is important for decentral data bases in the following (SCHICKER, 

2017: pp. 312–315). 

LINKED DATA 

Linked data is characterized as a data base, multiple data bases, or IT systems which 

hold data from different domains that are integrated and linked semantically75. The world 

wide web also became a web of linked data with highly integrated semantical links 

between contents instead of solely linking documents (SAKR et al., 2018: p. 5). 

Integrated content and semantical links in the context of linked data implies specific data 

relationships and machine-processable data. Herewith, isolated data silos shall be 

overcome and an interconnection of data fosters global data integration. The World 

Wide Web Consortium (W3C) standardized all fundamental concepts of linked data 

(SAKR et al., 2018: p. 9). The four most important principles are (BERNERS-LEE, 2006; 

SAKR et al., 2018: pp. 9–10): 

• Denominate objects with uniform resource identifiers (URIs)76. 

• For transfer of data the hypertext transfer protocol (HTTP) shall be used77. 

 
74 Please refer to SCHICKER (2017) for the full list of the principles by DATE (1990). 
75 Cf. Chapter 2.8 for more information about semantics in data bases and IT. 
76 For more information, please refer to https://www.w3.org/Addressing/. 
77 For more information, please refer to https://www.w3.org/Protocols/. 
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• Data identified by URIs and transferred via HTTP shall be provided using 

standards such as the resource description framework (RDF)78. 

• The inclusion of further links to other URIs into the content shall promote the 

integration of data. 

Commonly, linked data is a static snapshot of information. So-called triples form the 

semantical interconnection of data that yields large RDF graphs. This will be explained 

further in Chapter 2.8. 

PEER-TO-PEER NETWORK WITH STRUCTURED OVERLAY NETWORK 

A peer-to-peer (P2P) network is a special kind of decentral data base where peers, i.e., 

participants, of a computer network or network of IT systems allows direct access to 

data stored at a peer’s computer or data base. Resource sharing, such as content, 

bandwidth, processing power, etc., amongst millions of nodes79 without contacting a 

centralized authority is a distinct feature of P2P networks. The absence of a central 

authority to control resources and the capability to scale up to millions of nodes makes 

a P2P network to a P2P network with an overlay network. The overlay network spans 

over the physical network of, e.g., the internet and creates the actual P2P network with 

nodes operating as hosts for their content, offering it to share their data, and often with 

their own address space. In contrast to unstructured overlay networks, structured 

overlay networks comprise a specific graph structure which allows for efficient search of 

data objects within the network. On the one hand, structured overlay networks require 

higher maintenance effort as well as induce further complexity during installation. On 

the other hand, the structured network allows for routing of queries due to nodes holding 

the information of other peers and which data they offer, so-called routing tables, which 

makes directed searches feasible. In an unstructured overlay network peers or nodes 

do not hold information of data of other peers inducing random searches, without 

specific forwarding80 (PETERSON and DAVIE, 2012: pp. 769–772; STIEFEL, 2011: pp. 43–

51). 

IDIOSYNCRASIES OF THE BLOCKCHAIN TECHNOLOGY AS A PEER-TO-PEER NETWORK 

In 2008, an unknown author with the pseudonym Satoshi Nakamoto (NAKAMOTO, 2008) 

proclaimed a digital P2P electronic cash system called Bitcoin. This uses the Blockchain 

 
78 For more information, please refer to https://www.w3.org/RDF/. 
79 Here, nodes and peers are used synonymously for computers, IT systems, or data bases in one or 
multiple networks that exchange data or have some sort of contact. 
80 Please refer to STIEFEL (2011), BOHN (2007), ÖZSU and VALDURIEZ (2011), and PETERSON and DAVIE 
(2012) for more information about peer-to-peer networks and their peculiarities. 
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technology, a special kind of a P2P network, as the fundamental technology to establish 

trust with distributed, public transactions in an otherwise centralized, restricted monetary 

system. Although all technical components of the Blockchain and Bitcoin emanate from 

academic research and literature of the 1980s and 1990s, Nakamoto’s achievement 

was the particular combination of the underlying components in a very complex manner. 

The main (business) features of the Blockchain technology are: 

1. Decentrality: The Blockchain is a distributed data base, or distributed ledger, 

holding redundant data with a P2P network of all nodes. There does not exist an 

intermediary or central authority to control transactions in the P2P network81. It is 

an unstructured P2P network due to the absence of routing tables. Searches in 

the network occur using a flooding protocol called gossip protocol, i.e., search 

requests are randomly forwarded82. Transactions are validated by means of a 

consensus mechanism employing a lot of computational power for the purpose 

of solving mathematical issues, for instance the so-called proof of work. 

2. Publicity: Each node within the network has the same state of knowledge 

regarding the transactions executed. Data is stored completely redundant, 

meaning that each (full) node holds the entire transaction history ever made. 

Each new transaction between or among nodes is spread after some time across 

the whole network in order to keep all nodes’ data bases up to date. This update 

only can be performed once the majority of nodes have agreed via a consensus 

upon the result of the mathematical problem. 

3. Irreversibility: Blocks of multiple transactions include a time stamp and the hash 

value of a cryptographical hash function of the previous block of transactions. 

This concatenation of append-only blocks yields an irreversible transaction 

history and ensures the integrity of data. Due to blocks of transactions being 

interlinked irrevocably via hashes, this technology was named chain of blocks 

 
81 BARAN (1964) distinguishes between decentralized and distributed networks. Decentralized networks 
(many connected stars) can be considered as many connected centralized networks (star) with a 
hierarchical structure whereas in distributed networks (mesh or grid) all nodes are connected, at least to 
those in proximity BARAN (1964: pp. 1–2). This definition goes in line with the above-provided descriptions 
of P2P networks with different types of overlay networks. Hence, in this work decentralized and distributed 
networks are considered to be synonymous. 
82 ERCIYES (2013) describes the flooding algorithm and its composition in more detail. 
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and later Blockchain83 (BASHIR, 2018: pp. 16–18, 24; NARAYANAN and CLARK, 

2017: pp. 1–3). 

As mentioned, blocks within the Blockchain contain transactions. These transactions 

can be of monetary nature in case of Bitcoin or merely a record of an event. A block 

does not only contain the payload, i.e., transactions, but also a block header including 

a pointer to previous block’s hash value (not in case of the so-called first genesis block), 

a nonce, time stamp, and Merkle root. This is displayed in Figure 2-23. The components 

of the Blockchain and its blocks will be shortly described in the following. 

 

Figure 2-23: Generic structure of blocks in the Blockchain (in alignment to NARAYANAN et al., 2016: p. 

33; BASHIR, 2018: p. 20). 

A cryptographic hash function calculates a fixed sized output given a string of any size. 

Knowing the result of the hash function, i.e., the hash value or just hash, does not give 

one any feasible way to become aware of the input. Using the same input and the same 

hash function always yields the same result. Hence, if a transaction in one block of the 

Blockchain would be altered, the calculated hash value would differ and not match the 

successive block, which includes the previous block’s hash value, anymore84 

(NARAYANAN et al., 2016: pp. 23, 27). Public and private keys are used to sign and verify 

transactions and are created upon entering the network (NAKAMOTO, 2008: p. 2). The 

Merkle tree is another cryptographic instrument using hash pointers to previous data. 

The hash values of transactions are paired in groups of two and two of those again serve 

 
83 If one node or a group of nodes gains more than 51% of computing power within the entire network, 
then transaction blocks indeed can be altered and hence are not irreversible anymore. However, for 
practical purposes, this scenario is not relevant due to whenever one interest group gains the majority of 
computing power, trust in the entire network will be lost and its crypto-currency will be worthless (BASHIR, 
2018: pp. 17, 177). 
84 This shows that the change of a block requires recalculating not only the altered block but all successive 
blocks as well and solve the immanent mathematical problem of finding the nonce (see next paragraph). 
As this requires a lot of computational power and now blocks are appended approximately at the same 
speed, a catch up in the sense of re-calculating the entire transaction history can be considered as 
impossible. Based upon the computational power, i.e., the hashing rate or the calculation speed of hashes 
per second, within the entire Bitcoin network and to counter technological advancement, the difficulty of 
the mathematical problem can be adapted accordingly (BASHIR, 2018: p. 172). 
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as input for a new hash value which aggregates graphically to a tree shape. This 

technique fosters traceability because all hashes can be verified and data tampering 

can be precluded85 (NARAYANAN et al., 2016: pp. 34–35; BASHIR, 2018: pp. 19, 111). 

“A nonce is a number that is generated and used only once” (BASHIR, 2018: p. 19; 

DEUTSCHES INSTITUT FÜR NORMUNG E. V., 2018d: p. 10) and provides protection against 

repetition in cryptographic operations. In the Blockchain network the nonce is used for 

the consensus algorithm, i.e., the mathematical problem nodes or so-called miners must 

solve. Consensus is essential in the Blockchain network and particularly for 

cryptocurrencies such as Bitcoin. Consensus is a necessary process for the agreement 

about a final state of data among distributed and distrusting nodes and ensures, 

amongst other, validity, fault tolerance, and integrity. For that purpose, several 

consensus mechanisms prevail that can be selected according to the specific type of 

Blockchain (see last paragraph of this subchapter). The most prominent consensus 

mechanism, due to being implemented in the Bitcoin network, is the proof of work86. 

Consensus mechanisms in distributed data bases, particularly in P2P networks, are an 

enabler to achieve traceability and integrity of data for peers who need due to, for 

instance, for legal reasons, a verified transaction history (BASHIR, 2018: pp. 35–37; SIXT, 

2017: p. 13; VEREIN DEUTSCHER INGENIEURE, 2004a: pp. 8–11). 

Smart contracts are decentralized, secure programs which denote an automatically 

executable and self-enforcing agreement. In the case of the Blockchain technology, 

smart contracts are small programs placed in the Blockchain code with a certain 

business logic agreed upon, i.e., consensus protocols for publicly specified programs 

(BASHIR, 2018: pp. 53–54, 261–262; NARAYANAN and CLARK, 2017: p. 20). In case of 

financial transactions, smart contracts could, for instance, trigger an event in the case 

of incoming payment. A smart contract can be considered an if-then-relation as known 

from programming. In automotive engineering IT, smart contracts could encompass all 

 
85 Please refer to NARAYANAN et al. (2016), BASHIR (2018), ANTONOPOULOS (2015), and ANTONOPOULOS 
(2017) for further information on public private key infrastructures, digital signatures, and Merkle trees. 
86 In the proof of work consensus mechanism, originally suggested as an anti-spam mechanism, so-called 
miners invest computational power (“work”) to seek or guess the nonce. This yields, out of the given hash 
function, a hash value small enough, i.e., with a varying number of leading zeros, to satisfy the difficulty 
level given by the Blockchain code according to the network’s immanent computing power. When the 
computing power increases, the difficulty level correlates positively and hence miners must test more 
nonces in order to get a small enough hash value. Miners are rewarded for their effort – in case of Bitcoin 
with Bitcoins. This reward incentivizes the protection of the integrity of the distributed ledger or otherwise 
double-spending and hence worthlessness would occur (NARAYANAN et al., 2016: pp. 64–65; NARAYANAN 
and CLARK (2017: pp. 11–17). For further consensus mechanism and details about the proof of work 
mechanism, please refer to BASHIR (2018), FRANCO (2015), and BOHN (2007). 
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Boolean expressions of the feasibility of components’ combinations. Hence, the entire 

configuration management could be integrated in automatically executed smart 

contracts that check whether a change of a component is compatible or not. This is not 

in scope of this work due to the tremendous complexity and will be left for future 

research87 (cf. Chapter 7.2). 

There prevail different types of Blockchains that have been developed and adapted for 

diverse purposes. The initial and most common Blockchains are public due to the aim 

for circumvention of a financial intermediary (vide supra). This kind of Blockchains is not 

possessed by anyone and anyone can set up a peer and join the network. Hence, the 

Blockchain is called unpermissioned as all peers have a copy of the ledger on their local 

nodes and via a distributed consensus mechanism the eventual content of transaction 

blocks and hence the eventual state of the Blockchain is decided upon. Conversely, a 

private, permissioned or consortium Blockchain is restricted to a dedicated circle of 

peers who have agreed to utilize this distributed ledger88. Access has to be granted and 

hence data of transactions, participants, and the network are secured amongst 

members. A consensus mechanism, such as the proof of work, is not necessary 

because the truth of the ledger also can be found using a simpler agreement protocol. 

In the case of an agreement protocol, all verifiers are known and preselected. In this 

work, consensus mechanism and agreement protocol are used synonymously due to 

both aim at the decision on the truth of data in the distributed ledger and differ only by 

the underlying mechanism to execute and achieve this. Completely private and 

proprietary Blockchains contradict the underlying principles of decentrality, publicity, and 

irreversibility. Hence, there are scarce applications for this kind of Blockchain. However, 

there might be intra-company use cases where data has to be shared and details of this 

data transfer have to be guaranteed legally or for traceability purposes (BASHIR, 2018: 

pp. 30–34; GLASER, 2017: p. 1548). 

 
87 Please refer to BASHIR (2018), PRUSTY (2017), and NARAYANAN and CLARK (2017) for further information 
about smart contracts, oracles, Ricardian contracts, and decentralized autonomous organizations (DAO). 
88 A permissioned Blockchain does not have to be private, given that a public Blockchain using an access 
control layer also can regulate participation of peers (BASHIR, 2018: p. 33). However, the introduction of 
any access control implies a certain authority deciding upon the requirements of access control etc. and 
hence a fraction of privacy is induced. Therefore, in this work, private and permissioned Blockchains are 
considered to be congruent. 



Current state of science and technology, definitions, and general terms 83 

 

2.7.4 Traceability in the context of data base solutions 

Taking into account the context of data base solutions that are assessed here, namely 

in the automotive E/E development in distributed engineering collaborations, the 

following assessment of traceability for data base solutions will also be limited to this 

scope. There also exists partial congruency with traceability in the context of PDM/PLM 

IT systems in Chapter 2.3.3 due to those systems also using one of the above-

mentioned data base solutions. 

DATA MODEL 

The data model implemented in data bases has to enable traceability of data objects 

and artifacts by offering the necessary references, dependencies, and to which model 

they belong (FELDHUSEN and GEBHARDT, 2008: pp. 79, 133). This is usually done in the 

first step, on an atomic level. An attribute is atomic if the corresponding attribute entry 

is only assigned one element. Transactions in data bases are considered atomic if either 

the entire transaction is executed completely, or not at all89 (SCHICKER, 2017: pp. 18, 

28). The next level where traceability in data models has to be ensured is the sub-

assembly or module level where one engineering discipline models its product in scope, 

such as in E/E one ECU or one software function. The overlying level of data models is 

the assembly or final product level, with multiple intermediate levels where required. A 

data model on the metalevel, where configurations and their subsets across the lifecycle 

are handled, has to be enabled in order to foster traceability in and between data base 

solutions. 

PROCESS MODEL 

Data base solutions in automotive E/E development in distributed engineering 

collaborations have to have the capability to represent the necessary process model for 

PDM/PLM (cf. Chapter 2.2) (FELDHUSEN and GEBHARDT, 2008: p. 79). Especially when 

multiple data bases are involved, the holistic integration of processes becomes 

challenging, but is crucial. 

TECHNOLOGY 

When considering a central data base, which is controlled by the OEM, data is available 

to engineering partners and suppliers either via direct access to the data base or via 

transfer of data. The technology of the data base has to ensure basic traceability 

 
89 For idiosyncrasies regarding the data model of transactions in case of the Blockchain in comparison to 
traditional transaction systems, please refer to KRUIJFF and WEIGAND (2017). 
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mechanisms. The documentation of read/write actions of dedicated users and the 

documented history of an artifact can be taken for granted nowadays. In the case of 

distributed engineering collaboration, a central data base has to provide a standardized 

API for the up- and download of data for suppliers. Hence, traceability in a central data 

base mainly depends on the data model. When decentral data bases are in scope, the 

technological aspects become more prominent. Coherence, i.e., the connection of 

related artifacts, as well as consistency, i.e., that replications of data which have the 

same version, and correctness, whereby changes of data are propagated, have to be 

ensured to foster traceability. By mastering this complexity, decentral data bases can 

perform their advantages, especially when data is replicated completely (HECKMANN et 

al., 2006: pp. 7–17; STIEFEL, 2011: pp. 57–62; JOHNSIRANI and NATARAJAN, 2015: p. 120). 

Particularly, between P2P systems where data is often replicated completely, 

interoperability is a paramount challenge. If P2P systems were standardized, migration 

and development of P2P would be facilitated and hence traceability of data due to 

standardized technology would be fostered (BOHN, 2007: p. 287). 

2.8 Ontologies 

2.8.1 Definitions, norms, and standards 

Comprehension in terms of communication based upon knowledge about the real world 

or fractions of the real world, respectively, require a common knowledge model. This 

must be understood by all participating humans and machines. The unique replication 

and illustration of the knowledge to be transferred is enabled by a knowledge model. 

For that purpose, ontologies describe the conceptional formalization of artifacts and their 

relations to each other. Ontologies represent hierarchies of terms in context-specific 

knowledge structures by means of connected, disjunct taxonomies90. Furthermore, 

categories and rules to depict immanent connections are modeled. Ontologies are 

mostly depicted as undirected graphs, in contrast to taxonomies, meaning there is no 

interpretable hierarchy from top to bottom but rather connections and relations of terms 

within in a knowledge area. A node illustrates the terms and an edge depicts the relation 

between nodes. These undirected graphs with given semantics can stand for a semantic 

net and show the meaning of the data and its relations (GAUSEMEIER et al., 2014: pp. 57, 

59–60; DORSCHEL, 2015: pp. 317–318). 

 
90 Cf. Footnote 40 on p. 48 for the definition of taxonomy. 
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So that ontologies are computer interpretable, they have to be formally specified. For 

this, there prevail a set of formal description languages which can be serialized in XML 

and hence be processed further (GAUSEMEIER et al., 2014: p. 60). The main description 

languages for ontologies will be described in the following. These standards originally 

stem from the vision of the semantic web, the extension of the world wide web by means 

of structure and meaning, which was assigned to the data. These standards become 

more and more relevant in other disciplines. This is due to most devices are connected 

to the internet today and each internet-compatible device is equipped with technology 

based upon these ontological standards (SAKR et al., 2018: pp. 1–2; GAUSEMEIER et al., 

2014: pp. 59 ff.) 

RESOURCE DESCRIPTION FRAMEWORK (RDF) 

The RDF provides a model for the representation of metadata, e.g., information about 

websites and other objects, and thus enhances automated information processing in 

internet-based information systems. For that purpose, resources are identified by an 

URI and are delineated by a triple consisting of a subject, a predicate, and an object, 

where the subject and object form the nodes and the predicate is a labeled edge 

between the nodes91. RDF is a language for knowledge representation and hence an 

ontology. RDF-scheme (RDFS) extends RDF by means of implementation of a semantic 

scheme or a vocabulary. In principle, it is feasible to exchange product models between 

different applications by means of RDFS without losing the original meaning. However, 

RDFS is not expressive enough and, therefore, the web ontology language (OWL) was 

developed (GAUSEMEIER et al., 2014: p. 60; SAKR et al., 2018: p. 4; STIEFEL, 2011: pp. 

39–40; HITZLER, 2008: pp. 35, 38). 

WEB ONTOLOGY LANGUAGE (OWL) 

In order to describe terms of one discipline and make them machine-readable, the OWL 

was developed. It depicts ontologies by means of a formal descriptive language and 

enables the publication and distribution of these ontologies. The W3C standardizes 

OWL and expands the meaning of RDF by further constructs. On the one hand, for 

instance to increase the mightiness of expression, on the other hand also to limit the 

mightiness to avoid ambiguity. OWL uses classes, properties, and individuals. Object 

properties describe relations between individuals, and datatype properties depict 

individuals’ properties. Hence, OWL provides a more enhanced framework than RDFS 

 
91 Triple graph grammars already are in scope of research for many years. For an overview and more 
technical details, please refer to SCHÜRR (1995). 
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to depict complex knowledge (GAUSEMEIER et al., 2014: pp. 60–61; STIEFEL, 2011: pp. 

39–40; SAKR et al., 2018: p. 4). 

Together, OWL and RDF/RDFS are part of the so-called semantic web stack or layer 

cake by the W3C consortium, as well as the already above-mentioned standards (cf. 

Chapter 2.7.3). The semantic web layer cake is depicted in Figure 2-24. Not all of its 

components and standards are in scope here. 

 

Figure 2-24: Semantic web layer cake (in alignment to SAKR et al., 2018: p. 4). 

OPEN SERVICE FOR LIFECYCLE COLLABORATION (OSLC) 

The open service for lifecycle collaboration (OSLC) provides a uniform infrastructure for 

interfaces between distinct systems. OSLC offers direct and neutral interfaces, i.e., data 

is directly linked and not exchanged between systems and interface descriptions are 

neutral and public. OSLC links data by means of an URI, as also depicted in Table 2-1. 

OSLC was primarily developed for application lifecycle management (ALM) but also 

gains more importance in the realm of PLM. However, due to immaturity of some 

specifications of OSLC, penetration of this integration standard in industrial practice is 

not very advanced yet. Loose coupling of heterogeneous tools and systems are prone 

to the implementation of OSLC because OSLC combines standardized interfaces with 

an overlying metadata. Internet technologies and liked data principles serve as the 

basement for OSLC. The interfaces use common HTTP commands such as get, put, 
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post, delete, etc. Representational state transfer (REST) serves as an enabler 

mechanism for distributed, loosely coupled APIs by means of stateless transactions, 

i.e., all REST messages include all information for clients and servers to understand the 

message. Therefore, messages are self-contained and neither node has to save 

information about the state. On top of this basic internet technologies, OSLC implements 

metamodels for specific domains which face a high necessity of inter-discipline 

collaboration, e.g., requirements, change, and quality management as well as ALM and 

PLM. For this purpose, OSLC also makes use of STEP AP233 (cf. Chapter 2.6.1). 

However, the OSLC PLM reference model is only a draft since 2011 (BACHELOR, 2011). 

The standardized interfaces and already partially standardized metamodels for different 

disciplines within the OSLC standard can contribute to an interoperability between IT 

systems and tools as well as their data models. Hence, OSLC fosters traceability in 

engineering from a data perspective92 (SINDERMANN, 2014: pp. 331–332; KIRSCH et al., 

2017c: p. 171; MECPRO² ABSCHLUSSBERICHT, 2016c: pp. 139–140; OASIS, 2019: pp. 4–

5; HOOSHMAND et al., 2018: p. 109; RYMAN, 2013: p. 2). OSLC does not standardize 

business processes which, in turn, have to be considered separately (PFENNING, 2017: 

p. 118). 

2.8.2 Traceability in the context of ontologies 

DATA MODEL 

SELLGREN (2009) emphasizes the importance of modeled interfaces between (3D) 

components and argues that interfaces also have to be managed as a data artifact 

likewise other components where the interface function is stored as an attribute 

(SELLGREN, 2009: pp. 8, 11). Additionally, a common metadata model with dedicated 

ontologies in RDF and OWL within collaborations enables knowledge management in 

collaborative R&D, as already described in Chapter 2.6.393 (VACHER et al., 2007: pp. 

315–317). PIMMLER, T. U., EPPINGER, S. D. (1994) suggest that for system analysis in 

system engineering, a system shall be decomposed into its physical elements and 

components (PIMMLER, T. U., EPPINGER, S. D., 1994: pp. 343–346). This also has to 

reflect in the ontologies when working across disciplines and within engineering 

collaborations. This is in order to describe variability in MBSE, for instance within the 

configuration and variant management, and to foster traceability across a 

 
92 Please refer to https://www.oasis-open.org/standards for more information about OSLC. 
93 Protégé is a well-known and widely-used tool to build and manage ontologies with standards such as 
RDF and OWL (NOY and MCGUINNESS, 2001: p. 2). 
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heterogeneous IT landscape. Therefore, a federalized IT backbone is required (cf. 

Chapters 2.2 and 2.3). For this purpose, OSLC can be considered as an enabler and it 

is sufficient to link configuration items with models and artifacts in the respective IT 

system and data model, i.e., create a specific ontology (HOOSHMAND et al., 2018: pp. 

108–109). Additionally, interfaces can be modeled explicitly using their own ontology to 

align MBSE, PDM/PLM, and simulation in engineering collaboration in order to foster 

traceability (VOSGIEN et al., 2012: pp. 612–622). 

PROCESS MODEL 

Initially, partners in an engineering collaboration have to agree upon a joint ontology 

describing the product they are all working on. This implies there is transformation of 

tacit into explicit knowledge and later modeling of this information into RDF and OWL. 

These ontologies can be updated dynamically in order to develop with the engineering 

processes (VACHER et al., 2007: pp. 315–317). Particularly when relations of different 

components or any of their properties alter, a process has to ensure that all disciplines 

or owners are notified of the change and, consequently, maintain traceability across 

disciplines and companies (SELLGREN, 2009: p. 9). For the integration of domain-specific 

data models into a system model, appropriate interfaces have to exist and a model-

based process model has to be developed (MECPRO² ABSCHLUSSBERICHT, 2016a: p. 48). 

TECHNOLOGY 

In order to enable the full possibilities of ontologies, each discipline and company within 

an engineering collaboration has to employ the same ontology and has to have access 

to changes in it. Thus, a dynamic exchange and storage of ontologies has to be assured 

by means of appropriate data bases. This can be achieved by a federative approach (cf. 

Chapter 2.6) and linking artifacts directly according to the OSLC standard (EBELING and 

EIGNER, 2018: p. 261; ALVAREZ-RODRÍGUEZ et al., 2014: pp. 995–996).  

2.9 Conclusion 

An automotive industry in vicissitude demands solutions to address the resulting product 

complexity. Therefore, early engineering methods, tools, and processes have to address 

this complexity which increases if development occurs in distributed engineering 

collaborations. One way of doing this is to foster traceability of information artifacts 

across involved domains intra-company and across participating engineering partners 

inter-company. 
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For this purpose, the current state of science and technology was assessed focusing on 

automotive E/E development and the enablers data model, process model, and 

technology. 

After defining traceability in this context, the product development processes and 

methods which are relevant for automotive development, were described. Afterwards, 

PDM/PLM set the focus on existing process and data base solutions to handle 

complexity and foster traceability during development and beyond. MBSE combines 

data models and process models for a holistic system view already in the early 

development phase. Peculiarities of automotive E/E development were described 

afterwards leading over to distributed engineering collaborations, in which E/E 

development often occurs. Highlighting technological solutions, i.e., data bases, was 

done in the following chapter. Ontologies were examined in the last chapter as the basis 

for common data models and traceability within them. 

The gained insights from each chapter with respect to traceability in each domain now 

will be transferred to the formulation of requirements for a synthesis of a solution 

framework. 
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3 Requirements for a solution framework and evaluation of 

current state 

3.1 Evaluation method 

The objectives of this research are to foster internal and external traceability in different 

facets, which can already be matched to the enablers of a solution for traceability, a data 

model, a process model, and technology, in the early automotive E/E development 

within distributed engineering collaborations, as motivated in Chapter 1.3. This is in 

order to obtain a better understanding of what the final solution comprises and what has 

to be addressed during the evaluation. This is illustrated in Table 3-1. The internal 

traceability is addressed by the alignment of MBSE and PDM for E/E. This mainly 

concerns data and process model, as not only the data model has to be aligned, but the 

development and documentation processes having to be aligned, too. Despite 

technology here focuses more on the external aspects of engineering collaboration, also 

internal traceability is in scope as it connects different IT systems and tools. The external 

traceability among multiple engineering partners is addressed in a threefold manner. 

For the purpose of the reduction of reconciliation, all three enablers have to be aligned 

to foster traceability among engineering partners due to data, processes, and 

technologies have to work hand in hand. This is to allow for transparent and safe product 

changes, where again all enablers are crucial. The same holds true for the ad hoc and 

easy connection of new engineering partners. This assessment of which objectives are 

addressed by which enablers shows the complexity as all aspects have to be considered 

during the elaboration of a potential solution framework. 

According to the tripartite enabling elements, the current state of science and technology 

was assessed in Chapter 2 at the end of each subchapter. Thereof, requirements for a 

solution will be deduced contingent on the current state of science and technology. 

These requirements will then be aligned with the research objectives motivated in 

Chapter 1.3. Then, the fulfillment of the requirements by the current state of science and 

technology will be measured qualitatively pursuant to the scale “not fulfilled” (○), 

“partially fulfilled” (◑), and “fulfilled” (●). The gray squares mean that at least one of the 

dimensions of the matrix does not apply. The evaluation method is depicted generically 

in Table 3-2. 
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Table 3-1: Assessment of objectives addressed by enablers. 

 

Table 3-2: Generic depiction of the evaluation method (in alignment to ESTEFAN, 2008: p. 10; KÖNIGS, 

2013: p. 52; GILZ, 2014: 51). 

 



92 Requirements for internal traceability 

 

3.2 Requirements for internal traceability 

A) ALIGNMENT OF MBSE AND PDM FOR E/E 

Based upon the first objective of this research, to enhance the alignment of MBSE and 

PDM for E/E, it is decisive to provide exactly the information necessary during early 

development phases. Therefore, the crucial information artifacts which are prone to 

changes in the E/E development have to be modeled already in the MBSE period and 

have to be found also in the PDM system and not only in domain-specific E/E 

development tools. Hence, the availability of relevant information artifacts has to be 

ensured across all existing IT systems and tools (cf. Chapters 2.2, 2.3, 2.4, inter alia). 

As an ECU’s pins transfer the electrical messages in the form of charges over the 

communication bus systems between other ECUs, each pin has to be modeled 

discretely. The network communication description (NCD) serves as sort of a map for 

which ECU communicates with which or which ECU needs the signal of another ECU. 

Due to the crucial importance of the knowledge of an automobile’s E/E communication 

and its inherent complexity, tracing this information during the development between 

multiple engineering partners is essential. Software realizes a lot of functionalities in a 

modern automobile, it is built across many departments and suppliers, and is 

tremendously complex. The single types of software within an ECU have to be traceable 

and hence must be modeled in a data model for MBSE and PDM. As mentioned above, 

different organizational departments in an OEM contribute to the automotive E/E 

system, using many different IT systems and tools. The smart connection of these 

systems, particularly to an IT backbone system, by a linked data approach is key for 

internal traceability. This leads to requirements 1 to 4. 

1. Requirement: The solution framework for internal traceability shall comprise 

information artifacts for ECUs’ pins (E-CAD). 

2. Requirement: The solution framework for internal traceability shall comprise 

information artifacts for NCDs, including the respective communication bus 

systems, signals, and interfaces. 

3. Requirement: The solution framework for internal traceability shall comprise 

information artifacts for ECUs’ software versions, including their parametrization 

files. 

4. Requirement: The solution framework for internal traceability shall comprise a 

linked data model in order to connect all legacy IT systems, e.g., for MBSE, E/E 

development, and PDM, with a common IT backbone data base. 
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3.3 Requirements for external traceability 

A) REDUCTION OF RECONCILIATION 

As elaborated in Chapters 1.2, 2.2, 2.3, 2.6, inter alia, a major issue for traceability with 

external engineering partners is an elevated effort for reconciliation during development. 

Hence, the reduction of effort for reconciliation is objective 2.a. It has been argued that 

there is still a plethora of deficiencies in the reconciliation process in distributed 

engineering collaborations, whether regarding data models, processes, or technologies 

(cf. entire Chapter 2). Particularly, trace links for dedicated information artifacts have to 

be available for all engineering partners (requirement 5). Additionally, a potential 

solution framework has to foster a distributed engineering collaboration and not focus 

on a centralized approach for the purpose of mitigating the bottleneck of communication 

between the OEM and suppliers (requirement 6). Requirement 7 addresses the 

necessity of a formalized consensus mechanism for the purpose of a faster decision-

making process in engineering collaborations which, in turn, fosters traceability by 

transparency of changes. This is more than the release process that commonly takes 

place at each supplier and finally at the OEM separately. The required consensus 

mechanism here aims at the affirmation of all involved engineering partners for all 

decisive changes. Thereby, components affected by changes immediately can be 

identified, reconciliation circles can be reduced or shortened, and overall traceability is 

fostered. Accompanying this, changes and consent, or dissent about those have to be 

propagated automatically and instantaneously across the involved engineering partners 

for quicker reaction and intervention of engineers regarding their affected parts as well 

as reduced effort. Hereby, not a mere transmission of the information that a change has 

occurred is in scope. More, the focus lies on the actual propagation of metadata 

regarding the latest version of a product, which of the components have altered, and the 

documentation in all affected engineering partners’ IT systems (requirement 8). 

5. Requirement: The solution framework for external traceability shall provide 

universally unique trace links to identify information artifacts across IT systems 

among multiple engineering partners. 

6. Requirement: The solution framework for external traceability shall foster 

distributed engineering collaboration with the focus on MBSE and E/E. 

7. Requirement: The solution framework for external traceability shall consist of a 

consensus mechanism for development changes. 
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8. Requirement: The solution framework for external traceability shall include an 

automatic change propagation across all involved engineering partners. 

B) TRANSPARENT AND SAFE PRODUCT CHANGES 

In addition to the reduction of reconciliation during development, changes have to be 

transparent as well as safe (cf. Chapters 1.2, 2.6, inter alia). In case that suppliers deliver 

parts and software where there might be a dispute about the actual content of such a 

delivery, the tamper-resistant documentation about the content of information artifacts 

has to be provided. Therefore, an immutable product history for purposes of liability is 

one aspect of external traceability (requirement 9). Commonly, one supplier 

synchronizes its information artifacts solely with the OEM. This hinders transparency of 

changes across other affected suppliers. Hence, requirement 10 addresses a multi-

directional synchronization of data among all involved engineering partners. A 

traceability scheme between an OEM and suppliers focuses explicitly only on the 

information artifacts’ traceability that are relevant for one supplier but embeds this also 

on suppliers’ side in the overall product structure of the OEM. Thus, information artifacts 

across all IT systems and tools on OEM’s as well as all suppliers’ sides are congruent 

and changes can be traced transparently (requirement 11). Fraud-save data becomes 

particularly relevant in the case of ad hoc contribution by start-ups. It must not be 

possible to compromise data integrity (requirement 12). In contrast to the above-

mentioned immutable product history, data integrity emphasizes all information artifacts 

in an IT system, whereas an immutable product history focuses on the traceability of 

each change. Moreover, data integrity has to be guaranteed also if another engineering 

partner hosts the data base. 

9. Requirement: The solution framework for external traceability shall contain an 

immutable product history. 

10. Requirement: The solution framework for external traceability shall allow for 

multi-directional synchronization of data among all involved engineering partners. 

11. Requirement: The solution framework for external traceability shall include a 

traceability scheme for OEM and suppliers. 

12. Requirement: The solution framework for external traceability shall foster data 

integrity among multiple engineering partners. 
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C) ALLEVIATED CONNECTION OF ENGINEERING PARTNERS 

The development of automobiles engages multiple engineering partners. As software’s 

importance increases, also new engineering partners have to have access to the joint 

development data granting quicker development and cost reduction by the increase of 

traceability, which would not be possible in case of non- to low-integrated partners (cf. 

Chapters 1.2, 2.2, 2.5, 2.6, inter alia). Requirement 13 concerns a standardized data 

model for the exchange of information artifacts. Moreover, processes have to be aligned 

between engineering partners (requirement 14). The ad hoc technical integration of new 

engineering partners can be alleviated by standardized APIs and a connection to the 

established IT infrastructure (requirement 15). Data always has to be available and 

robust towards failure of nodes or the exit of an engineering partner, i.e., a peer in the 

network. Also, data has to be traceable in the network. Requirement 16 addresses this. 

13. Requirement: The solution framework for external traceability shall include a 

standardized data model for the exchange of information artifacts. 

14. Requirement: The solution framework for external traceability shall prescribe a 

standardized development process for all engineering partners. 

15. Requirement: The solution framework for external traceability shall include 

standardized APIs and an integration into the legacy IT systems. 

16. Requirement: The solution framework for external traceability shall guarantee 

the availability of data and its robustness.  

3.4 Classification of the current state of science and technology 

For the purpose of assessment of the above-deduced requirements, the current state of 

science and technology has to be classified and pre-sorted according to the most 

relevant prevailing solutions. Due to the vast range of topics and existing data models, 

process models, and technologies, the classification in advance ensures a more focused 

assessment below. 

DATA MODELS 

ISO 10303 STEP AP 233 focuses on systems engineering data, whereas AP 242 

describes the exchange of 3D engineering data (cf. Chapter 2.6.1, GILZ, 2014: p. 139). 

Hence, AP 233 will be evaluated further on the basis of the requirements as state of the 

art regarding systems engineering and PDM data models. AUTOSAR is a standard for 

many companies for E/E and E/E-related software development and, therefore, will be 
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in scope (cf. Chapter 2.5.3). Due to OSLC aims at an improved collaboration by means 

of a joint linked data model, it will be evaluated hereinafter (cf. Chapter 2.6.1). 

PROCESS MODELS 

As the E/E development is also part of mechatronics in automotive development (cf. 

Chapter 2.2.2), the V-model of mechatronic system development (VDI 2206) as a widely 

spread development approach will be under scrutiny.  

Due to E/E being within scope of this work, it is necessary to assess MBSE methods for 

their inclusion of the physical layer, according to the RFLP approach. This is partially a 

data model concern but also mainly belongs to a process model. As these MBSE 

methods prescribe specific processes, traceability is fostered by each consecutive step. 

Stopping the development process before modeling the physical layer explicitly will 

hinder traceability with respect to automotive E/E. The evaluation of the above-

mentioned MBSE methods (cf. Chapter 2.4.2) with respect to their support of traceability 

and their inclusion of the physical layer is presented in Table 3-3.  

Table 3-3: Comparison of different MBSE methods (cf. Chapter 2.4.2 for the authors of the different 

methods) (own evaluation in alignment to HEBER and GROLL, 2018b: p. 127, 2018a: p. 284). 

 

It is noteworthy that the SE-VPE method includes a dedicated approach of how to 

transfer MBSE information artifacts to PLM (cf. Chapter 2.4.2). However, a distinct 
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integration of E/E in the physical layer lacks on lower level of detail, such as regarding 

pins. On the other hand, the SPES method has a very pronounced physical layer 

including detailed descriptions of software, hardware, and their connections on the level 

of ports and signals and, therefore, will be assessed regarding the fulfillment of the 

specified requirements. 

TECHNOLOGIES 

On the basis of a plethora of technologies, i.e., tools and IT systems for systems as well 

as E/E and SW development, traceability, PDM/PLM, and data bases, the scope has to 

be classified in advance, as mentioned at the beginning of this chapter. 

Tools which primarily focus on the visualization of traceability, such as LOOMEO, 

METUS, and ToolNet, are not in scope due to their limitations regarding the ad hoc 

management and modification of data and integration with other tools (cf. Chapter 

2.1.3). 

For PDM/PLM, 3DEXPERIENCE platform is not considered further due to Cameo 

Systems Modeler, also by Dassault Systèmes, is suboptimal regarding the ability to 

handle OSLC (cf. Chapters 2.3.3 and next paragraph). Hence, the integration between 

MBSE and PDM/PLM only can be achieved via extra tools. The partial support of OSLC 

disqualifies Teamcenter to be evaluated furthermore. The availability of OSLC, full 

PDM/PLM functionalities, and the full integration with the Windchill Modeler for MBSE 

makes Windchill PDMLink a valid candidate to come under further scrutiny (cf. Chapter 

2.3.3). As OpenPDM mainly provides features for data exchange and serves as an API 

but lacks further PDM/PLM data management possibilities, it will not be in scope any 

further as a technical solution (cf. Chapter 2.6.3). Aras Innovator can only handle OSLC 

with the help of an adapter (cf. Chapter 2.3.3). In contrast to PTC and its Windchill 

platform, the Aras company does not provide a MBSE authoring tool from the same 

vendor. Aras Innovator does not fully integrate the system model but creates a separate 

so-called system architecture model only linking user-defined elements (PFENNING, 

2020: pp. 4–5). The lack of complete integration of the MBSE and PDM data models, 

both MBSE and PDM tool do not come from one vendor, as well as non-native OSLC 

support excludes the Aras Innovator from further scrutiny in comparison to Windchill 

PDMLink. 

Regarding MBSE development tools, the Rhapsody Model Manager is not nominated 

for further assessment given that IBM does not provide any PDM/PLM tools and solely 
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relies on partners such as Dassault Systèmes or PTC (SENDLER, 2009: pp. 203–204). 

The Cameo Systems Modeler can only handle OSLC via plugins and additional tools, 

hence it is not in scope anymore. The tool Enterprise Architect (EA) only supports the 

provision of OSLC artifacts but for optimal engineering collaboration also the 

consumption would be required. Hence, EA does not qualify further. Due to OSLC 

compatibility and integration with PDMLink, the Windchill Modeler will be evaluated as 

the preferred MBSE tool (cf. Chapter 2.4.3). 

Bitbucket includes software development as well as collaboration functionalities and is 

based on the widely used Git. Therefore, Bitbucket will be under further evaluation as a 

software development tool. 

PREEVision supports MBSE as well as AUTOSAR and is very common in automotive 

E/E development. However, PREEVision does neither support a decentralized 

approach nor OSLC. Nevertheless, PREEVision is included in the further evaluation due 

to its high prevalence. 

A data base technology serves as the fundamental pivot in engineering collaborations. 

As presented in Chapter 2.7, central and decentral technologies can be differentiated. 

Due to the exchange of data in engineering collaborations is in scope, a central data 

base also is evaluated according to how it is suited to exchange data and according the 

corresponding criteria. Furthermore, decentral data bases, e.g., linked data and peer-

to-peer in different facets, are compared in Table 3-4 according to data base properties 

relevant in distributed engineering collaborations. In the case of the Blockchain 

technology, consistency of data is achieved eventually. This is due to the consensus or 

validation mechanism by multiple nodes which need a certain time for solving the 

mathematical puzzle and agree upon its result (BASHIR, 2018: p. 40). The evaluation 

reveals that the Blockchain technology might be advantageous for distributed 

engineering collaborations. 

 

 

 

 

 

 



Requirements for a solution framework and evaluation of current state 99 

 

Table 3-4: Evaluation of different types of data bases with respect to peculiarities in collaborations 

(own evaluation in alignment to STIEFEL, 2011: pp. 57–62; HECKMANN et al., 2006: pp. 7–17). 

 

3.5 Concluding evaluation of current state of science and technology 

The qualitative evaluation of the current state of science and technology is depicted in 

Table 3-5. The evaluation method has been described in Chapter 3.1. The evaluation 

has been executed given that the motivated requirements stated in Chapters 3.2 and 

3.3 have been deduced from the research objectives in Chapter 1.3 and the current 

state of science and technology in Chapter 2. The selection and classification of the 

current state of science and technology, or “state of the art” for reasons of length, was 

elaborated in Chapter 3.4. 

It is apparent that the available solutions do not fully address traceability of E/E artifacts 

during automotive development with respect to the connection of model-based systems 

engineering in distributed engineering collaborations. Some specific data models 

address the MBSE as well as E/E development to some extent. Existing processes 

partially include E/E specifics but, of course, hardly address peculiarities of distributed 

engineering. Certainly, modern IT development tools strive for traceability of information 
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artifacts in distributed engineering collaborations. However, not all tools have the 

capabilities to deal with special E/E data. Moreover, some tools use a centralized data 

base approach which might have advantages if working exclusively within one company. 

However, such a tool reaches its limits regarding data integrity or availability if external 

engineering partners want to contribute to the development. The lack of emphasis on 

collaboration-specific functionalities, such as a consensus mechanism and an automatic 

change propagation, becomes apparent. A major requirement for distributed 

engineering, also with ad hoc contributions by new partners, the immutable product 

history, is only guaranteed by the Blockchain technology as it is designed as a 

distributed ledger. 

Finally, it can be stipulated that few approaches unify a congruent intersection of the 

defined objectives and requirements regarding traceability in the early automotive E/E 

development within distributed engineering collaborations.  

Consequently, a solution approach as a framework consisting of the three enabling 

elements, data model, process model, and technology has to be conceptualized and 

evaluated for the purpose of addressing the deficiencies of the above-mentioned 

approaches and solutions. 
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Table 3-5: Evaluation of the current state of science and technology according to the defined 

requirements in alignment to the research objectives. 
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4 Synthesis of a solution framework 

In order to foster traceability in engineering collaborations it has been suggested that 

there have to be three prevailing enabling elements: data model, process model, and 

technology (cf. Chapter 1.4). Pursuant, the current state of science and technology has 

been investigated and classified according to which existing solutions shall be 

considered for a potential solution approach (cf. Chapters 2 and 3). Deduced from the 

current state of science and technology and aligned with the research objectives, the 

requirements have been elaborated. Opposing, the enablers, represented by the current 

state of science and technology, have been evaluated regarding their fulfilment by the 

research objectives, characterized by the requirements, and the potential for 

enhancement has been derived. Following this analysis, the synthesis (cf. Footnote 51 

on p. 55) strives at the description of a solution approach alleviating the above-

mentioned shortcomings by the creation of a framework consisting of the enablers and 

their operationalization on a practical level, for instance as a dedicated data model, 

process model, and IT tool or system. 

In Chapter 4.1, the data model for enhanced traceability in the early automotive E/E 

development with focus on MBSE and PDM will be elaborated. Here, the different 

aspects of the internal traceability (objective 1) between IT tools for MBSE and PDM, 

that often serves as the linchpin for successive processes, is in scope. Without the 

thorough integration of these two domains, traceability hardly can be achieved as PDM 

information artifacts are often built upon by other domains during development as well 

as downstream processes, such as production. Therefore, first the relevant information 

artifacts from a system theoretical point of view with emphasis on E/E, have to be 

defined. Secondly, the required specifics for automotive E/E development, i.e., those 

information artifacts particularly relevant for traceability in distributed engineering 

collaboration as described by requirements 1 till 4, have to be modeled and aligned with 

the information artifacts from the system theory for MBSE. Consecutively, information 

artifacts for PDM/PLM in alignment to the previously defined information artifacts from 

system theory and automotive E/E development will be elaborated. Afterwards, the 

definition of a fundamental data model and its construction as an ontology will be 

performed. Coincidingly, the data model for the final product, i.e., an automotive ECU 

including its different types of software, and the data exchange-related aspects of 
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collaboration have to be addressed. This means that not only the information artifacts 

describing the product and its distinct aspects of each development step but also the 

product documentation has to be included in the data model. Additionally, it has to be 

considered which metadata, in case of a distributed engineering approach, shall be 

transferred in order to enable a linked data approach (requirement 4). 

In a distributed engineering collaboration, the information of what someone does and 

when during development is decisive. In Chapter 4.2, a process model including these 

consecutive steps will be defined. These individual tasks must be known to each partner 

of the engineering collaboration for the purpose of a joint development of one final 

product. Subsequently, the information artifacts of each new process step have to be 

shared within the engineering collaboration’s IT network so that each partner is aware 

of the most recent status of development. This is in case of relevant changes which 

might also affect one’s own sub-product, making it possible to investigate these changes 

in a timely manner, in order to circumvent incompatibility at a later point, leading to 

further reconciliation circles and potential delays. All the relevant process steps of MBSE 

in alignment with PDM/PLM have to be outlined. This includes the initial MBSE process, 

creation of a new product in PDM, a process for the creation of a configuration and a 

variant, as well as versioning and a change management process for existing 

information artifacts. The identification of incorrect or outdated information artifacts has 

to be addressed by an inactivation or deletion process. 

Crucial for traceability within one company and between many companies, too, is an 

interconnected and integrated IT landscape. As deduced from the evaluation of the 

current state of science and technology on basis of the requirements, for a distributed 

engineering collaboration a decentral data base can be considered advantageous. 

Therefore, a fundamental IT architectural framework will be motivated. Following, this 

conceptual IT architecture has to be aligned with a generic IT architecture in automotive 

E/E development and PDM/PLM for the purpose of enabling of an integrational 

approach into existing IT landscapes, so-called “brownfield” (WADE et al., 2018: p. 1176). 

This will be explained further in Chapter 4.3. 

Chapter 4.4 will present the final framework to foster traceability of E/E information 

artifacts during automotive development in consideration of model-based systems 

engineering within distributed engineering collaboration and where the requirements are 

satisfied. 
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4.1 Definition of a data model 

The approach for the definition of a data model derived from MBSE theories and system 

models, carried over to include E/E domain-specific information artifacts and PDM-

relevant information towards the inclusion of linked data mechanisms for distributed 

engineering collaboration, integrated in a combined, shared data model is depicted in 

Figure 4-1. The individual steps, from (a) to (e) are described in the following. 

SysML serves as modeling language and hence defines the basic denominations and 

structures of the used system model (a). The reference model (b) including all relevant 

stereotypes will be based upon the SysML notation. Individual, domain-specific 

structures for different E/E aspects, functions, configurations, PDM/PLM-specifics, etc. 

will be modeled afterwards (c). Distinctive features for a data model for distributed 

engineering collaborations, for instance linked data, will be defined afterwards (d). 

Eventually, all these elements will be combined forming an integrated, linked, shared 

data model (e). 

 

Figure 4-1: Approach for the definition of a data model. 
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4.1.1 Definition of the relevant information artifacts 

GENERAL SYSTEM DEFINITION AND CONCEPTS 

In order to define the relevant information artifacts for the respective system within the 

final automobile, it has to be defined what constitutes the system and which are its 

boundaries, physical or functional connections, and interfaces within or with other 

systems. At this juncture, it can be distinguished between  

i). a functional concept,  

ii). a structural concept, and  

iii). a hierarchical concept of a system.  

These concepts are not disjunct but rather conjunct views of one system with different 

foci94 (see Figure 4-2). The functional concept depicts the system as an aggregation of 

properties and their correlation. These properties are mainly inputs and outputs and 

corresponding states of the system. This depiction is known as a “black box”. The 

relationship of elements within the system is in scope of the structural concept. Such 

elements could be different components of a system. The structural view emphasizes 

the interdependencies between parts of a system which shall not be examined in 

isolation but rather in their context. The hierarchical concept can be considered as 

cascading in the sense that elements of a system can be systems and the system itself 

again can be regarded as part of a more comprehensive system. Hence, a system is a 

model of an entity which i) possesses relations between attributes (e.g. inputs, outputs, 

states, etc.), ii) consists of concatenated parts or sub-systems, respectively, and iii) is 

confined from its environment or from a super-system (ROPOHL, 2009: pp. 75–77). 

Bearing these different representation concepts with their complementary foci in mind, 

the next section will incorporate the alternative depictions of a system by explicitly 

modeling them by means of the modeling language SysML to create a reference model 

for an automotive E/E system. 

 
94 The socio-technical dimension, wherein the technical system interacts with humans, is not in scope of 
this work (cf. ROPOHL, 2009: pp. 58, 135 ff.). 
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Figure 4-2: System concepts: i) functional, ii) structural, iii) hierarchical (in alignment to ROPOHL, 2009: 

p. 76). 

COMPOSITION OF A REFERENCE MODEL OF AN AUTOMOTIVE E/E SYSTEM 

A metamodel is a model of itself which is implemented to describe a modeling language. 

The modeling language SysML deploys this logic of a self-describing metamodel (cf. 

Chapter 2.4.2) (ALT, 2012: p. 24). For the purpose of the description of an automotive 

E/E system and due to a de facto standard in the systems development (MBSE) (cf. 

Chapter 2.4), the modeling language SysML is used to depict the reference model. The 

generic SysML taxonomy or metamodel is depicted in Figure 4-3 and consists of the 

activity diagram, sequence diagram, state machine diagram, use case diagram, block 

definition diagram, internal block diagram, package diagram, and parametric diagram. 

The foremost four diagrams are used to model the system’s behavior. The latter four 

diagrams represent the structure. Additionally, there is a diagram to model the 

requirements. Hence, each type of the nine unique diagrams considers a special aspect 

of the system. The structure diagrams are commonly used to describe the system 

architecture which primarily is in scope here (HOOSHMAND, 2015: p. 59). The arrow with 

a white triangle (“△”) in Figure 4-3 stands for a generalization of blocks95 (OMG, 2015: 

 
95 For more information about SysML notation, please refer to DORI and CRAWLEY (2016), VAN RANDEN et 
al. (2016), OMG (2015). 
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p. 38; DORI and CRAWLEY, 2016: p. 33). For conformity reasons for consecutively 

following data model descriptions, not all SysML notations are used. 

 

Figure 4-3: SysML taxonomy (in alignment to OMG, 2015: p. 187; FRIEDENTHAL et al., 2012: p. 30). 

The SPES method, which is used to model the data model for MBSE, also extends to a 

metamodel. However, the metamodel has its scope on an architectural view of a system 

and does not include the relevant specifications of automotive E/E development that are 

pivotal here. Albeit, the metamodel includes the modeling of dedicated pins as a point 

of interaction, also for communication with transmission of signals, further information 

artifacts necessary for traceability in the automotive E/E development are not explicitly 

modeled. For instance, a NCD matrix is not represented distinctly within the 

communication data; neither are the three main ECU software components bootloader, 

functional, and parametric software. The description of software remains on a higher 

granularity level and only refers to it as a system artifact, on an abstract, coarser level, 

or a rich component, on a concrete, finer level that still can be distinguished into a 

function, logical, or technical component, inter alia96 (WEBER et al., 2012: pp. 17, 27–30, 

65–67, 126–127).  

The SPES method, obviously, focuses on software-intensive systems and hence this 

approach is obvious, yet too generic for traceability discussed in this work here where 

certain information artifacts have been identified to be crucial for traceability in 

automotive E/E development in distributed engineering collaborations. Therefore, the 

elaborated data model here takes into consideration the information artifacts, which are 

not explicitly in scope of the SPES method and its architecture metamodel, and 

implements a generic data model specifically aligned to automotive E/E development. 

 
96 For more information about the SPES metamodel, please refer to WEBER et al. (2012). 
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By those means, a greater traceability particularly within the automotive E/E 

development is fostered. 

For the purpose of holistic modeling of the system architecture, system requirements, 

and system behavior for a continuous and traceable MBSE, commonly all types of 

diagrams of the SysML modeling language are necessary (HOOSHMAND, 2015: p. 60). 

However, here in this work the pivotal attention lies upon those system elements that 

are essential for traceability in engineering collaboration as well as with a later 

documentation in PDM/PLM systems. Consequently, not all diagram types will be 

implemented. 

The reference model is modeled in the package diagram which serves as an 

organizational storage location and captures all relevant model elements contained in 

the system. The package diagram again includes several packages with further 

elements (FRIEDENTHAL et al., 2012: pp. 53–55, 104-105). Figure 4-4 shows the 

reference model for a generic automotive E/E system with the relevant packages in 

scope of this work. Behavior, use cases, and requirements packages are in grey as 

these models will not be elaborated on in more depth. Due to an emphasis on 

automotive E/E, input/output (I/O) definitions and parametrics are added separately 

wherein the first encompasses model elements required for the specification of 

interfaces including ports as well as their inputs and outputs (FRIEDENTHAL et al., 2012: 

p. 55). The latter contains parametric data particularly necessary for automotive 

software development (cf. Chapter 2.5). A model library package, denoted with 

<<modelLibrary>>, includes all system elements and structural elements, respectively, 

such as hardware and software components, as well as the associated properties and 

information. These elements can be referenced and imported by other diagrams. This 

also applies to IT systems (HOOSHMAND, 2015: p. 60; FRIEDENTHAL et al., 2012: p. 369). 

The development process, which shall foster traceability in MBSE among multiple 

engineering partners, will be modeled in the package processes. Configuration 

elements can be found in the homonymous package. The symbol “⊕” in Figure 4-4 

means that the packages have a hierarchical relationship and denotes a containment 

(FRIEDENTHAL et al., 2012: p. 55). 
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Figure 4-4: Reference model for an automotive E/E system depicted as a package diagram in SysML. 

Gray packages are not in scope of this work. 

In the following sections, the building blocks for each package will be described to depict 

the reference model. Moreover, their relations will be described, too. First, the system 

structure will be modeled, then development process specifics including the viewpoints, 

which address the RFLP approach, will be considered. Afterwards, peculiarities of 

automotive E/E including I/O definitions as well as parametrics will be further detailed. 

Information artifacts for configuration management will be addressed in the following. In 

a final step, a dedicated data model for the involved IT systems will be depicted for the 

model library. The model library for structure elements does not have to be described 

separately due to all elements already being addressed in the previous packages. 

DEFINITION OF THE GENERIC STRUCTURE OF THE AUTOMOTIVE E/E SYSTEM MODEL 

The generic structure of the automotive E/E system model is depicted in Figure 4-5. For 

the purpose of visualization, in the SysML logic a so-called block definition diagram 

(bdd) is used to formalize structural relations between different blocks. A block in the 

SysML is an entity or element with distinct properties and features (FRIEDENTHAL et al., 
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2012: pp. 57, 120). The arrow with one black lozenge-shaped end (“⧫”) describes a 

compositional relationship between the “whole”, i.e., then end with the “⧫”, and the part 

of the composite, i.e., the end with the arrow (“🡢”) (OMG, 2015: p. 38). A composite 

characterizes a relationship between the child and parent, where the child cannot exist 

independently from the parent. Of course, an ECU or a communication bus can exist 

without the relation to an E/E system. However, in automotive E/E this rarely will be the 

case. Hence, for practical relevance, the relation of the E/E system with other blocks 

within the bdd will be a composition each. Further attributes and additional details are 

not yet included here. 

 

Figure 4-5: Generic structure of the automotive E/E system model. 

Figure 4-5 shows the automotive E/E system at the top level with distinct blocks that 

each is part of the structure, referenced in other packages of the reference model, and 

in the model library for structure elements. The core of an automotive E/E system builds 

one or multiple ECUs which, in turn, again consist of different hardware and numerous 

software. The E/E architecture is commonly developed independently of the car model 

line or car platform and is only adapted during the development process. The E/E 

architecture defines the overall, high-level topology of an automobile’s E/E configuration 

whereas the communication bus delineates the 1..n connected busses in a specific E/E 

system. Due to the fact that distinct functions are spread across many E/E systems and 

hence several ECUs, modeling the functional association of an E/E system is essential. 

Moreover, the E/E system can exist in multiple discrete configurations, for instance if 

certain features are enabled or if different stages of functionalities are available and 

customizable. Each block will be described separately in the following. 

DEFINITION OF THE GENERIC STRUCTURE OF THE ECU 

The ECU is embedded in the E/E system, denoted by a composite relationship in Figure 

4-6 (vide supra for nomenclature). As well as the E/E system, the ECU correlates with 
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one or many communication busses and functions. The configuration block subsumes 

the lifecycle management by means of variants and versions and will be discussed 

below. As a main criterion, the ECU commonly consists of hardware and software in 

their different characteristics. Hardware is further fragmented into its geometry for the 

purpose of calculations of the designed space contingent on the ECU’s case. The E/E-

related hardware composes of memory, a processor, and plugs serving as physical 

interfaces. The plugs again have a relation with the NCD, indicated by the symbol “🡢”, 

fostering traceability of each signal between ECUs down to the level of individual pins 

that are used to transmit the currency for the signals. Also associated with the hardware 

is its schematic in different level of granularity. 

Bootloader, functional, and parametric software commonly constitute what is called a 

software component, i.e., a given baseline of the relevant software artifacts, that is 

deployed in an ECU with a certain specification for a particular configuration of the 

automobile. 

The blocks E/E architecture, communication bus, function, and configuration will be 

discussed in the following packages of the structures of the reference model. 

 

Figure 4-6: Generic structure of the ECU. 
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DEFINITION OF THE GENERIC STRUCTURE OF THE E/E ARCHITECTURE 

The E/E architecture is developed independently of the car platform (cf. Chapter 2.5) 

and only adapted to the specific car platform and later model series in due course. This 

is done under the consideration of cost saving. Hence, in the context of a dedicated 

model series of a car platform97, the E/E architecture has a specific configuration, which 

will be depicted in consecutive packages. Often, a 150% model of the wiring of the entire 

E/E architecture is used to depict the overall concatenations of all ECUs and 

communication busses (cf. Chapter 2.3.2). The data model for the structure of the E/E 

architecture is illustrated in Figure 4-7. 

 

Figure 4-7: Generic structure of the E/E architecture. 

DEFINITION OF THE GENERIC STRUCTURE OF THE COMMUNICATION BUS 

The communication bus or busses are the backbone of communication among multiple 

ECUs. Hence, during development it is crucial to trace changes to the bus and its 

associated data defined for the exchange of messages within an engineering 

collaboration because a false specification will yield a deficiency in reliability. The 

communication bus has a simple aggregation relationship to the ECU due to the 

communication bus being able to exist without the ECU. This is particularly the case, if 

a communication bus connects many ECUs. The simple aggregation relationship is 

denoted by the symbol “♢” combined with the same arrow “🡢” as mentioned previously 

(OMG, 2015: p. 38). The NCD is a direct composite of the block communication bus due 

 
97 Analog to Figure 2-16, a Mercedes E-class denotes the car platform, whereas the model series would 
be a derived variant, such as the E-class convertible. 



Synthesis of a solution framework 113 

 

to it describing the messages on the communication bus and hence cannot exist without 

its parent. This is depicted in Figure 4-8. 

 

Figure 4-8: Generic structure of the communication bus. 

DEFINITION OF THE GENERIC STRUCTURE OF THE FUNCTION 

In the RFLP approach (cf. Chapter 2.4), functions are deduced from requirements. 

Afterwards, functions serve as a connector to the logical viewpoint and later, more 

granular, to the technical viewpoint. This breakdown on the basis of different 

aggregation levels is essential for traceability during development. Therefore, the block 

function has to be modeled explicitly for the purpose of generating data artifacts that can 

be traced by association with the E/E system and its components. 

Here in this case, one or multiple functions are modeled to have only a reference 

association to the ECU, the E/E system, and the software; as represented in Figure 4-9. 

These simple reference associations stem from the fact that functions are often spread 

across many ECUs, hardware-related, and multiple software components in case the 

function is software-based. Moreover, functions frequently are implemented in different 

E/E systems. The relation to the block Viewpoint via the E/E system ensures the 

feasibility of different views which often have some correlation to functions and 

described coherently for a specific person, such as a systems architect (FRIEDENTHAL et 

al., 2012: p. 115). 
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Figure 4-9: Generic structure of the function. 

DEFINITION OF THE GENERIC STRUCTURE OF THE CONFIGURATION AND VARIANTS 

By means of a generic configuration model, the topology of a product, the relationships 

between different components, and their association with the respective IT system, 

where the configuration will be stored and managed, will be modeled and implemented 

(cf. KÖNIGS, 2013: p. 91). 

The inclusion and alignment of both MBSE and PDM, as required to foster traceability 

in the early development phase, is modeled based upon a dedicated configuration data 

model. For that purpose, a separate or orthogonal data model for the description of 

variability in a product and resulting configurations will be defined (POHL et al., 2005: pp. 

57 ff; SCHULTE et al., 2017c: pp. 264–265). However, in contrast to POHL et al. (2005), 

the variability yielding different possible configurations will be modeled explicitly within 

the given data model, such as done by KÖNIGS (2013). This has the advantage that in 

an engineering collaboration, where data models have to be exchanged, the 

configuration data model is already included within the entire data model and is not 

implemented in a separate metamodel. This might alleviate incompatibilities as well as 

reduce issues or errors during the exchange of data among multiple engineering 

partners98. As here a separate bdd solely for the configuration, i.e., variability, is defined, 

this also can be considered as “orthogonal”. 

The definition of variants for elements of the E/E system and ECU, depicted by distinct 

blocks, can be implemented using a top-down or a bottom-up approach. The bottom-up 

approach requires the specification of discrete, variant-building attributes. In contrast, 

the top-down approach primarily addresses elements on system level and then 

 
98 Please refer to POHL et al., 2005: pp. 74 ff for disadvantages of modeling the variability model within 
the actual development models, in that case for software. 
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proceeds successively to elements on lower levels to elaborate variants (HOOSHMAND, 

2015: p. 71). Here in this work, the complete description of the E/E system and ECU, 

besides focus on E/E, is not a goal and therefore the level of granularity of attributes is 

not in scope. Hence, the top-down approach will be used to form variants for the ECU 

on closer inspection. 

The newly introduced block variation point describes the actual representation of 

variability, i.e., the possibility to vary and hence form configurations and variants, within 

the data model itself and its domain artifacts (POHL et al., 2005: 62). For instance, the 

processor or memory of an ECU are variation points. Depending on the requirements, 

the concrete instances of a processor or the size of memory represent different variants 

for this ECU within the modeled data99.  

Figure 4-10 shows the generic structure of the configuration of an E/E system including 

its relevant information artifacts. A configuration of an ECU comprises hardware and 

software and has a direct relationship with the block ECU itself. Via the ECU, a 

connection to the engineering BOM (E-BOM), manufacturing BOM (M-BOM), and their 

corresponding, but also other, IT systems is modeled. Both, hardware and software are 

combined each at a certain state of development and with specific characteristics to a 

variant. This variant, in turn, exists in a dedicated version at a given point in time (cf. 

Chapter 2.3). Such a version will be addressed if a deployment date was planned. This 

is the case when the ECU in scope will be included at the assembly line with a specific 

start date and a given end date at a dedicated plant. Additionally, an engineering change 

includes a precise version for the purpose of adaptation. A release can be considered 

as a major baseline for the entire E/E architecture that shall be built in combination at 

an explicit date. Hence, the release directly addresses an ECU’s version and is a child 

to the model series in which it shall be implemented. 

 
99 Please refer to POHL et al. (2012) for variant handling with respect to E/E and software development in 
alignment of the SPES method and the IT tool PREEvision. 
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Figure 4-10: Generic structure of the configuration. 

Subsequent to the definition of the reference model for the automotive E/E system and 

the elaboration of the concrete data models of a generic structure of the E/E system, 

ECU, E/E architecture, communication bus, function, and configuration, the description 

of process-relevant information artifacts follows. 
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DEFINITION OF PROCESS-SPECIFIC INFORMATION ARTIFACTS 

The question of which information artifacts have to be generated in order to precisely 

address the required information in an engineering collaboration at a given point in time, 

will be addressed here in this section. 

The SPES method according to POHL et al. (2012) describes an elaborated manner for 

MBSE (cf. Chapter 2.4.2). However, the detailed process steps for a distributed 

engineering collaboration framework in alignment to the SPES method will be developed 

in Chapter 4.2, due to there being no detailed process description inherent to the SPES 

method (DAUN et al., 2016: p. 3; POHL et al., 2012: p. 151). Consequently, the scope 

here in this section will be on the information artifacts defined by the SPES method. 

The SPES method focuses on model-based and continuous documentation as well as 

seamless engineering. The former focal point is achieved by metamodels which define 

structures of information artifacts. The latter focal point is enabled via formal semantics 

that clearly define the relationships between different categories of information artifacts. 

By means of model-based and seamless engineering, models additionally can be used 

for the execution of automized analysis and model transformation and not only for 

documentational purposes (POHL et al., 2012: pp. 34–35). 

By means of abstraction layers, the SPES method implements the logic of engineering 

to increase the level of detail successively when advancing in someone’s work. 

Moreover, abstraction layers can also be used as a transfer from one organizational 

department or domain to the other. Abstraction layers are not a fixed concept for 

granularity. In contrast, depending on the industry the SPES method is applied to, 

abstraction layers differ. For instance, in the automotive industry the abstraction layers 

would be supersystem, system, subsystem, and hardware/software component (POHL 

et al., 2012: pp. 35–38). 

The SPES method defines the already previously introduced viewpoints as major 

clustering objects. With each viewpoint, which itself is a work product, a different 

perspective of a system and the stakeholder’s current concern, are highlighted. For that 

purpose, the system is modeled distinctively to represent relevant information for the 

viewpoint. The requirements viewpoint serves as a basis for consecutive viewpoints as 

the satisfaction of those requirements in the following viewpoints have to adhere to the 

initial requirements. For the purpose of relating the viewpoints, functional requirements 

have to be modeled explicitly within the functional viewpoint and hence, fulfilled by a 
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user function. The user function can be distinguished from the realization function, as 

the latter is required to fulfill a user function. This means that several realization functions 

have to be implemented, commonly highly integrated, for the purpose of enabling one 

user function. Sequentially, the functional viewpoint is mapped with a logical component 

via a n:m relation, i.e., a logical component can realize multiple user functions and one 

user function can be implemented within many logical components. In the following, the 

logical and technical viewpoints have to be correlated with each other. This is achieved 

by means of the so-called deployment mapping which specifies on which hardware, e.g., 

ECUs or communication busses, which software functions of the logical viewpoint are 

implemented (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011f: p. 2; POHL et 

al., 2012: pp. 36, 40–41, 43–45). The actual interaction point on a logical and technical 

level is depicted by a pin within the SPES metamodel100 (WEBER et al., 2012: pp. 65–

66).The relation between the functional and logical viewpoints and their actual 

connection is done by linkage of a user function with a logical component as depicted in 

Figure 4-11. 

 

Figure 4-11: Connection between functional and logical viewpoints (in alignment to POHL et al., 2012: 

p. 45). 

According to the above-mentioned definition of abstraction layers and their usage within 

the SPES method in combination with the different viewpoints, further information 

artifacts can be added to the reference model and its immanent generic structures 

modeled in SysML prior to this. In this connection, the focus still excludes the explicit 

consideration of requirements (cf. Footnote 18 on p. 25). However, the requirements 

viewpoints are already included in the reference model rudimentarily (cf. Figure 4-4). 

The connection of the viewpoints with the E/E system is depicted in Figure 4-12. The 

abstraction layers are modeled in Figure 4-13. Both, the viewpoints and the abstraction 

 
100 For more information about the SPES metamodel, please refer to WEBER et al. (2012). 
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layers are linked to the E/E system as an integrated and central information artifact, 

enabling traceability across the entire data model. Each block in the depiction of the 

generic structure of the abstraction layers in Figure 4-13 can inherit the different 

viewpoints described in Figure 4-12 and hence the individual instances of the E/E 

system. This is broken down from coarse to fine and can be examined according to each 

viewpoint. This enables a holistic overview of the entire E/E (super-) system, its sub-

systems, as well as components. Moreover, explicitly modeling these dependencies 

fosters the required traceability.  

 

Figure 4-12: Generic structure of the viewpoints. 

Figure 4-14 describes the generic relationship between the different elements of the E/E 

system, from the super-system to the hardware or software component, as well as the 

relationship between the different viewpoints and their immanent modeling elements. 

According to the structure of the abstraction layers (cf. Figure 4-13), the distinct system 

elements are connected and hence traceability throughout the different layers of 

granularity is ensured. The linkage of the system elements as well as the viewpoints 

across separate abstraction layers is depicted schematically by a bright blue arrow and 

connects the vertical axis in Figure 4-14. The horizontal layers describe the commonly 

successively developed viewpoints of one system element101. The viewpoints are linked 

be referencing of specific information artifacts (cf. Figure 4-11), which are depicted by 

black arrows in Figure 4-14. Due to all viewpoints being also connected to their 

respective system element, such as the E/E system (cf. Figure 4-12), traceability is 

therefore ensured along the horizontal axis. 

 
101 Naturally, the development process is a highly iterative approach and therefore information artifacts 
and their relationships are modeled gradually. However, the main approach follows a sequential 
refinement from coarse to fine with respect to the level of granularity (cf. Chapter 2.2). 
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Figure 4-13: Generic structure of the abstraction layers. 

 

Figure 4-14: Generic relationships between different viewpoints for one system element and between 

different abstraction layers (in alignment to POHL et al., 2012: pp. 38, 45). 

By integration of the relevant information artifacts deduced from the SPES method for 

the abstraction layers and viewpoints into the overall reference model, the data model 

now fosters traceability for the early MBSE phase. The dedicated interfaces between 

the different viewpoints, in Figure 4-14 denoted for instance by “I/O channel”, will be 
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described in the following section. The description of each process step follows in 

Chapter 4.2.1. 

AUTOMOTIVE E/E DEVELOPMENT INCLUDING I/O DEFINITIONS AND PARAMETRIC SOFTWARE 

In extension to the generic structure of an ECU (Figure 4-6), the relations between 

specific information artifacts within the realm of automotive E/E development have to be 

modeled in order to foster traceability for the main characteristics, yielding a higher 

complexity in today’s automotive industry. Particularly, E/E-specific inputs and outputs 

and their form of transmission of signals as well as the medium of transmission is a 

major hurdle for traceability in an engineering collaboration. Subsequently, product 

quality is also impeded in mastering the complexity already in the IT systems (cf. 

Chapter 1). 

The SPES method stipulates so-called input/output channels for the connection of 

logical components and their subcomponents, and the achievement of communication 

between them102 (POHL et al., 2012: pp. 88–89, 92). Modeling these relations explicitly, 

physical, e.g., a communication bus, as well as digital, e.g., a signal, traceability is 

enabled. This information is carried over to the technical viewpoint. Granularity levels, 

as fine as decomposing signals into messages, frames, or even bits, is not in scope of 

this work and hence not displayed in Figure 4-15. The same applies to sensors, 

actuators, and single ports. 

The parametric software, or short parametrics, has already been modeled in the 

structure of the ECU in combination with the other major prevailing software types on 

an ECU (cf. Figure 4-6). Due to parametrics being very relevant with regards to input 

and output of an E/E system and its components, they also have been included here 

and being enriched by the connection to their signals, organized in the NCD and sent 

via the communication bus. 

The generic structure of the input and output definitions is depicted in Figure 4-15. 

Relations between the blocks pin, I/O channel, signal, NCD, and communication bus 

have been complemented given the goal of traceability, the scope, and the level of 

granularity described above. 

 
102 Dedicated input and output ports are modeled for logical components in the SPES method and then 
serve as connection point for the I/O channels (POHL et al., 2012: 92). However, this level of detail is not 
in scope of this work and hence it is refrained from modeling these ports explicitly. Additionally, the object 
mapping, mapping block, and further mapping artifacts are not in scope here due to dedicated connection 
points, such as pins, are modeled distinctly (cf. WEBER et al., 2012: pp. 73 ff; POHL et al., 2012: pp. 103 
ff). 
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Figure 4-15: Generic structure of the I/O definition. 

CONCRETIZED SPECIFICATION OF VARIANTS AND VERSIONS 

Traceability of information artifacts across the lifecycle and different domains is one 

major purpose of PDM/PLM (cf. Chapter 2.3). Hence, this also has to be considered in 

the data model. The foundation for the for PDM/PLM relevant specifications of 

information artifacts was already described in the generic structure of the configuration 

in Figure 4-10. There, the blocks Variant, Version, and further temporally structural 

blocks, such as Deployment date, Engineering change, and Release, have been 

modeled, since these are crucial for PDM/PLM in general and for automotive 

development particularly. 

Exemplary structure elements of variants of an ECU and their versions are depicted in 

Figure 4-16. There, hardware and software variants are itemized into different versions. 

Moreover, metadata for these dedicated versions has been added generically, for 

instance, identifiers are depicted as well as metadata where the different versions could 

be disjunct. Commonly, there exists a standard variant aiming at cost savings of a 

component and a high-end variant aiming at the best possible performance. With 

respect to hardware, the altering technical parts within the component are usually CPUs 
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or memory. Software components often distinguish themselves by a different 

parametrization or parametric software. This may yield a different service offered to 

other software components, or enables higher performance in combination with 

hardware parameters. Theoretically, the referenced blocks of versions could be endless 

and, here, it is only depicted generically with its first iteration. 

 

Figure 4-16: Generic structure element of potential variants of an ECU. 

Dedicated metainformation regarding PDM/PLM, configuration and change 

management will be described in Chapter 4.1.2. For this purpose, identifiers such as for 

versions, variants, smaller engineering changes, and more extensive releases will be 

defined. 

DEFINITION OF IT SYSTEMS-SPECIFIC AND COLLABORATION-SPECIFIC INFORMATION ARTIFACTS 

In Figure 4-10, the generic structure of a configuration and the necessity to link the block 

ECU to an IT system was already modeled. This is due to different IT systems being 
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used in different domains, which define and handle configurations distinctly. For the 

purpose of generating traceability across numerous IT tools and systems, this 

relationship between the ECU and IT system will be defined more accurately in the 

following. Therefore, stereotypes of IT tools and IT systems that are commonly stored 

within the model library IT systems (cf. Figure 4-4), will be associated with the block 

ECU in order to make this information artifact traceable throughout the development 

process, towards PDM/PLM, and further along the product lifecycle. HOOSHMAND (2015) 

suggests to model blocks for each IT tool and then only reference norms and standards 

as metadata within the block of the IT tool (HOOSHMAND, 2015: pp. 80–81). Given that 

the explicit representation of norms and standards is not in scope of this work, it is 

deemed to be advantageous to directly model the relationship between ECU and IT tool 

or IT system. 

In this context it is important to emphasize that not only different document types related 

to the ECU, such as a specification sheet, schematics, CAD drawing, etc. shall be linked 

to IT systems but rather the superordinate information artifact of the ECU itself. This is 

in contrast to KÖNIGS (2013), yet has the advantage that the relationship of information 

artifacts with IT systems can be identified, analyzed, and managed, regardless of the 

existence of respective documents and also aligns with the approach presented in the 

previous passage (KÖNIGS, 2013: p. 87). 

ISO 10303 STEP AP 242, as a standard for data exchange in engineering collaborations 

(cf. Chapter 2.1.1), allows for different kinds of mapping of the BOM structure, such as 

the assemblies based upon the part occurrences, the part view, or the breakdown 

structure of the system103. Here, the approach of directly linking the relevant information 

of the BOM and other IT systems with the MBSE data model will be implemented, as 

already presented in Table 2-1 and modeled by GILZ (2014) (GILZ, 2014: pp. 139–140). 

This approach ensures linking and hence traceability by usage of URIs (cf. Chapters 2.6 

and 2.8) and will be addressed in the following chapter. 

For purposes of distributed engineering collaboration, the transmission of trace links, 

which have been created between IT systems or tools at one engineering partner or the 

OEM, has to be ensured. Otherwise, only the engineering partner who created the trace 

links enables traceability within its own IT architecture while every other engineering 

 
103 Please refer to GILZ (2014) for more information about the mapping of BOMs in ISO 10303 STEP AP 
242. 
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partner has to model trace links anew. In combination with the generic structure of the 

ECU (cf. Figure 4-6), hierarchical transitivity can be achieved. By means of explicit 

modeling the ECU’s main components, the respective hierarchical transitivity can be 

transferred from one engineering partner to another. The connection of the ECU to its 

relevant IT tools and systems, in order to preserve and transmit links between 

information artifacts, is also achieved by explicit modeling (cf. BEIER, 2014: pp. 80–81). 

During development, this part of the data model also can be handed over and, therefore, 

via the block ECU, traceability including hierarchical transitivity among various 

engineering partners can be fostered. 

The modeled connection of the ECU with the main IT systems or tools is depicted 

generically in Figure 4-17. Additionally, for each IT system or tool the main, relevant 

structural aggregation model or element is referenced. For example, for MBSE the 

relevant aggregation model is the system model (cf. Chapter 2.4), and for PDM/PLM 

this would be the engineering or manufacturing BOM. 

 

Figure 4-17: Generic structure of IT systems and tools as well as their relevant structural aggregation 

models or elements. 

4.1.2 Relevant metadata for a linked data model 

In order to satisfy requirement four, including a linked data model that is decisive for 

distributed engineering collaboration into a prospective solution framework, dedicated 



126 Definition of a data model 

 

metadata for the global identification of information artifacts have to be defined (cf. 

Chapters 2.6 and 2.8). This necessity stems from the heterogeneously deployed IT 

landscape, both within a company as well as externally with other engineering partners. 

The identification, integration, and management of knowledge must be feasible. 

Therefore, all relevant product-related data has to be easily accessible and department-

overlapping. Also, the reduction of search time and processes for data management, 

maintenance, and access have to be enabled (HOOSHMAND, 2015: p. 79). For this 

purpose and analogous to the semantic web layer cake (cf. Figure 2-24), URIs, a syntax 

for data interchange, such as RDF, and a superordinate ontology, here according to 

OSLC, have to be defined. In this work, basic metadata, such as a time stamp of creation 

and modification, information artifact owner, description, etc. will not be addressed 

explicitly. 

METADATA FOR THE LOCATION AND IDENTIFICATION OF RESOURCES 

As URIs can identify objects and resources universally in a standardized manner, they 

build the foundation for a holistic data management and data exchange in distributed 

engineering collaboration across multiple domains104. The exemplary URI scheme for 

the engineering context is depicted in Source Code 4-1105. There, the first part denotes 

the scheme applied within the dedicated URI. Afterwards, the server follows. 

Subsequently, a self-defined path follows. In this case, the path aligns exemplarily with 

the generic structure of the E/E architecture as depicted in Figure 4-7. In Source Code 

4-1, Mercedes modular rear architecture 2 (mra2) denotes the car platform, 223 

resembles the model series BR223 Mercedes-Benz S-class, etherstar stands for the 

specific E/E architecture, followed by the E/E system and the included ECU. This 

information will be included in the form of metadata within the information artifacts that 

will be transferred among engineering partners. 

 

Source Code 4-1: Generic structure of the URI (in alignment to HITZLER, 2008: 27). 

 
104 Please refer to HITZLER, 2008: pp. 26 ff. for more information about URIs, their composition scheme, 
the definition and distinction between uniform resource locators (URLs) and uniform resource names 
(URNs). 
105 All source codes have been improved solely in their appearance for the purpose of better readability 
using the website https://carbon.now.sh/. 



Synthesis of a solution framework 127 

 

Additionally, universally unique identifiers (UUIDs) enable linking of data objects across 

systems by means of only one primary key (KIRSCH et al., 2017b: p. 165). UUIDs are 

mostly applied where there are no requirements for a speaking identification key and a 

sole technical mechanism of identification suffices. UUIDs are introduced additionally to 

URIs to provide an everlasting technical solution for the identification of data objects. 

Time, clock sequence, and a node identifier form a UUID106. 

METADATA FOR THE IDENTIFICATION OF INFORMATION ARTIFACTS IN PDM/PLM 

As already introduced in Figure 4-16, information artifacts in PDM/PLM require specific 

identification for traceability across the product lifecycle.  

Configurations, encompassing variants and versions, commonly are denoted using a 

self-selected scheme. Sometimes, this scheme has a speaking logic implemented. In 

Source Code 4-2 it is depicted that hardware variants are numbered consecutively 

alphanumerically with H1…Hn, where versions are numbered numerically 01…n, and 

depicted jointly this yields H1.01…Hn.n. 

 

Source Code 4-2: Generic structure of the hardware variant and version scheme. 

The same logic applies to software and the ECU as a final product, which combines 

hardware and software variants and versions, and is depicted in Source Code 4-3 and 

Source Code 4-4. 

 

Source Code 4-3: Generic structure of the software variant and version scheme. 

 
106 Please refer to LEACH et al. (2005) for the definition and specification of UUIDs by the Networking 
Working Group. 
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Source Code 4-4: Generic structure of the ECU variant and version scheme. 

As change management is also considered part of configuration management (cf. 

Chapter 2.3.2), the above-mentioned logic of IDs for versions can be applied likewise to 

the change management for the purpose of traceability of individual information artifacts 

in case of changes. Figure 4-16 already depicts the documentation of changes for each 

variant of hardware as well as software denoted by an increase of the version ID in a 

simplified manner. Commonly, it is left to the engineer to decide when to create a new 

version of a component and when to change the old one. As a rule of thumb in practice, 

the form, fit, function assumption is used. If either one of the aforementioned are 

changed, then a new version or even part number is required in order to avoid confusion 

or errors. 

METADATA FOR THE DATA EXCHANGE 

Before, metadata for the identification across IT systems and within PDM/PLM have 

been addressed. Metadata has to be exchanged for the purpose of collaborative work. 

As described in Chapter 2.8.1, RDF was designed to represent and exchange metadata 

and is an internet standard today. The RDF uses graphs for the depiction of relationships 

of information artifacts. So-called triples are used for this purpose (cf. Chapter 2.8.1). 

Nodes, i.e., the information artifacts, can have multiple triples, i.e., relations, and hence 

a graph of relations can be built. This is particularly relevant in the case where the above-

introduced SysML model cannot be implemented. This might be the case where there 

are other programming and modeling languages which prevail and the SPES method is 

not applicable. As described above, the heterogeneous IT landscape with numerous, 

domain-specific modeling languages is one major hindrance of traceability of information 

artifacts. Despite the focus in this work is on the early phase of development including 

MBSE where SysML prevails as a formal language, bridging the gap to other domains 

and their dedicated modeling languages must also be facilitated. Therefore, RDF and 

its triples are the chosen approach for a standardized connection and exchange of data 

among multiple engineering partners across the internet. 
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Figure 4-18 depicts the generic structure of an RDF triple for the relationship between 

the software SW1 of the door control module (DCM) and the ECU, the DCM itself. 

Software development and E/E development are usually executed in different IT tools. 

There, SysML might not be the standard modeling language. Hence, the RDF triple 

connecting the software and the ECU by means of is part of offers this linking 

possibility independent of any IT tool and language. The blocks for software and ECU 

in Figure 4-18 also include the URI in the form of an http link. 

 

Figure 4-18: Generic structure of an RDF triple as a graph. 

The triple in Figure 4-18 can also be depicted in source code using the Turtle syntax107. 

The graphical depiction of relationships between information artifacts facilitates humans’ 

work, whereas the depiction in source code fosters the interpretability for machines. The 

latter is depicted in Source Code 4-5108. 

 

Source Code 4-5: Generic structure of an RDF triple using Turtle syntax. 

ONTOLOGY FOR THE EXCHANGE OF RELEVANT DATA FOR PRODUCT DEVELOPMENT 

As OSLC includes dedicated identifiers for data, addresses resources in a standardized 

manner, and further offers an ontology for product development, OSLC will serve as the 

basis for the provision of an ontology. The first two included points have already been 

 
107 Please refer to HITZLER (2008) for more information about different RDF syntaxes. 
108 The RDFS, as a means of introducing a taxonomy into RDF, will not be addressed here due to OWL 
extends the content of RDFS further. However, OSLC already introduces certain ontologies specifically 
developed for the product development, sometimes described also in OWL, and is based upon RDF logic, 
too. Hence, there is no need for the dedicated specification of an additional ontology using OWL. 
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addressed above. Therefore, OSLC will be used to connect information artifacts and 

hence foster traceability (cf. Table 2-1). 

The in Chapter 4.1.1 defined information artifacts will be aligned with the OSLC 

nomenclature. Therefore, the main E/E components of the generically defined E/E 

system have to be aligned with the OSLC resources, as these resources commonly 

denote a PLM or ALM artifact, change request, or requirement (JOHNSON and SPEICHER, 

2013). The OSLC resources’ names are appended via an # to the namespace URI. The 

exemplary namespace (ns) URI in our case was already mentioned above 

(<http://daimler.engineering-mbc.com/ns/{domain}>), where domain 

denotes, e.g., engineering domains such as MBSE and PDM. A resource would be ECU. 

Resources can have property definitions and constraints. Each property can also be 

addressed as an appendix to the core’s namespace, for instance #EEcomponent. 

Moreover, appendices attached via # also denote classes (CROSSLEY, 2019). This 

generic structure of the used namespace including domains, resources, and properties 

is depicted exemplarily in Source Code 4-6. 

 

Source Code 4-6: Generic structure of the OSLC namespace, domains, resources, and properties. 

According to the above-mentioned nomenclature, the namespace in OSLC terminology 

will be aligned given the information artifacts defined in Chapter 4.1.1. This is depicted 

exemplarily in Source Code 4-7. At the beginning, the different public namespaces for 

RDF, OSLC, and DCterms109 are defined. In this example, the namespace of MBSE is 

connected to the namespace of PDM110, following the rule of subject ⇾ predicate 

⇾ object, where rdf:about resembles the subject and rdf:resource the 

object. The predicate in this example is describes. In Source Code 4-7, the 

properties DCM, Periphery-EE-System, and DCM_SW1 are defined for the distinct 

namespace denoted by opening with <oslc:property>, denoting the property’s 

name with <oslc:name>propertyname</oslc:name>, and closing the argument 

 
109 For more information about the Dublin Core (DC) Metadata Initiative’s terms, please refer to 
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/. 
110 The namespace PDM solely is used exemplarily for demonstrative purposes. 
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with </oslc:property>. Further attributes of the properties are defined as an 

example, such as for DCM how often it might occur (Zero-or-many), a specific 

definition within the namespace MBSE, what value type it is assigned, or what its full title 

is. The property is defined locally, i.e., within the own namespace and only in addition 

to standard attributes. The property Periphery-EE-System is defined within the 

OEM’s namespaces and can occur Zero-or-one times. It can be found in both 

namespaces of MBSE and PDM and hence this information artifact can be addressed out 

of a PDM IT system as well as out of a MBSE tool within the development IT architecture 

of a company. Similarly, the property DCM_SW1 is defined both within the OEM’s and 

within the supplier’s namespaces and hence enables engineering collaboration by jointly 

using the same information artifact not only across IT systems but also between and 

among companies. 

OSLC enables the connection of the definition of the reference model and generic 

structures in SysML for a product description in the early development phase with a 

standardized possibility for exchange of this development data. Hence, the intra- and 

inter-company engineering collaboration across different domains, IT systems, and 

engineering partners is enabled from the data perspective. This connection of data 

models is depicted schematically in Figure 4-19. In this figure, the OEM creates an early 

SysML data model during the early MBSE activities. For purposes of engineering 

collaboration, the Supplier 1 likewise generates a SysML data model, which is a subset 

of the entire data model found at the OEM, considering only these development parts, 

the supplier was contracted to deliver. If only considered one domain, such as MBSE, 

the data exchange between these two engineering partners could be implemented more 

easily. However, both engineering partners also have to take into account their 

respective subsequent processes, domains, and IT systems, such as PDM, which have 

to be connected to MBSE and with the other engineering partners. For this purpose, the 

data integration is implemented using separate RDF namespaces for each domain at 

each engineering partner. Of course, if the same namespaces are already implemented 

for different domains, this will facilitate data model alignment. For dedicated 

interdisciplinary, joint development activities, these RDF namespaces can then be 

addressed in an integrational routine written in OSLC, adding metadata in the form of 

attributes and values to the information artifact in focus. This allows for distinct pulls of 

all information artifacts of each RDF namespace, such as it is depicted exemplarily in 

Source Code 4-7. 
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Source Code 4-7: Example of the alignment of product development data with the OSLC framework 

(in alignment to IBM KNOWLEDGE CENTER, 2020). 

Each engineering collaboration partner has their own data within their IT systems and 

tools, MBSE as well as PDM, and additionally there are the RDF namespaces for each 
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domain and partner. Moreover, these RDF namespaces are then combined to one 

routine, specific to this development endeavor. Given this separation of configuration 

items (cf. Figure 4-10) among domains, engineering partners, as well as IT systems, 

this approach for configuration management is close to the orthogonal variability model 

(OVM), as presented in Chapter 2.4.3 (cf. POHL et al., 2005: pp. 72 ff.). A metamodel 

links domains and IT systems and therefore also engineering partners’ activities. 

 

Figure 4-19: Schematic data integration across different domains and between engineering partners. 

4.2 Definition of a process model 

The process model depicts what is done when in time (cf. Chapters 2.2 and 2.3). It shall 

describe which information artifact (what) is created at which development step (when). 

The SPES method (cf. POHL et al., 2012) with its development steps, describing which 

view and which information artifact (what) is successively modeled (when), serves as a 

fundament (cf. Chapter 2.4.2). However, the SPES method does not explicitly define a 

process for the creation of the information artifacts depicted in Chapter 4.1 (DAUN et al., 

2016: p. 3; POHL et al., 2012: p. 151). Therefore, this development process has to be 
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outlined here under the assumptions and conditions relevant for distributed engineering 

and in the context of the required information artifacts. 

Additionally, basic aspects of PDM/PLM have to be incorporated for the process model 

to foster traceability of information artifacts in a distributed systems development. 

Therefore, the PDM/PLM processes of Chapter 2.3 shall be aligned to the SPES 

method. Consequently, it is described in the next chapters how the SPES systems 

development artifacts are created and linked to their respective PDM/PLM artifacts 

(Chapter 4.2.1). For that purpose, these information artifacts are written into the PLM 

Blockchain111 and are made available to all involved engineering partners, which have 

access to the data of a particular system and its respective ECUs. This is done for all 

steps that occur in the product development within the engineering phase, i.e., all 

different use cases during engineering. Hence, the initial process describes which 

information artifacts are created just at the beginning of the development process, at the 

instant of time when a system is developed for the first time (Chapter 4.2.2). Following, 

configurations and variants have to be created and this information has to be aligned 

across IT systems, domains, and engineering partners (Chapter 4.2.3). Subsequently, 

the history of a product and its information artifacts has to be captured by the creation 

of versions and with a change management process (Chapter 4.2.4). Eventually, unused 

information artifacts shall be prevented to be reused what is demanding an inactivation 

process (Chapter 4.2.5). These use cases during product development cover the major 

processes in scope. 

As described in Chapter 2.1.3, the CRUD (create, read, update, delete) operations, 

stemming from persistent database technologies, are essential for a process model to 

foster traceability in an engineering collaboration. Due to the data model integration of 

different domains across multiple engineering partners being implemented by means of 

OSLC (cf. Chapter 4.1.2), the CRUD operations have to be aligned with the OSLC 

syntax. As OSLC uses standard http commands, post, get, put, and delete (cf. 

Chapter 2.8.1) which are the counterparts of CRUD and will be used to implement and 

execute the different use cases of the processes during engineering in the respective 

databases. 

 
111 In analogy to the PLM backbone in Chapter 2.3.1, the PLM Blockchain serves as the IT system 
connecting other authoring tools, as depicted in Figure 2-12. For more information about the PLM 
Blockchain, please refer to Chapter 4.3. 



Synthesis of a solution framework 135 

 

4.2.1 Alignment of the SPES method and PDM 

As the SPES method does not explicitly address a procedural step-by-step description 

of which information artifact has to be created in each development step (cf. Chapter 

2.4.2), Figure 4-20 depicts the here applied process when using the SPES method. This 

process is derived from POHL et al. (2012) where only dedicated information artifacts, 

which have to be created, are described but not the chronological sequence of their 

creation112. 

 

Figure 4-20: The SPES development process with its main information artifacts (in alignment to POHL 

et al., 2012: pp. 51–105). 

As already depicted in Figure 4-14 with focus on the linkage of different viewpoints and 

different abstraction layers, each system under development is developed according to 

different viewpoints and abstraction layers, given the required level of granularity. 

Commonly, the engineer starts within the requirements viewpoint by modeling different 

aspects of requirements. As the description of requirements is not in scope of this work, 

this viewpoint is depicted in a simplified manner. Hence, only the operational 

requirements model, i.e., a high-level model of distinct functions of the product and how 

they might be connected by means of interfaces as well as inputs and outputs, is 

 
112 POHL et al. (2012) only maps the different viewpoints and abstraction levels to a generic engineering 
process but without either addressing distinct information artifacts nor the level of mechatronics (POHL et 
al., 2012: pp. 151–153). 



136 Definition of a process model 

 

modeled as an information artifact within this process step. This information artifact then 

can be used to connect the consecutive, functional viewpoint. The next process step is 

the modeling of the functional black box model and already belongs to the functional 

viewpoint. In this step, each function is denoted including its inputs and outputs. The 

functional black box model consists of distinct user functions, i.e., on a higher, user-

perceived level, which are modeled separately (cf. Figure 4-11). Following, a functional 

white box model decomposes high-level user functions into functions on a technical 

level. For instance, the user function “accelerate car” is broken down into the different 

actions of actuators and sensors of the automobile’s powertrain to enable acceleration, 

e.g., the function “F1”. In turn, this function F1 has a n:m relation to logical components, 

such as the above-mentioned actuators and sensors. The logical viewpoint consists of 

the logical component architecture which again can be denominated as a functional 

black box model of logical components due to it describes the generic relation of logical 

(sub-) components by means of I/O channels. Again, technical components have a n:m 

relation to logical sub-components. The technical components within the technical 

viewpoint describe the system under development with its physical architecture 

including hardware and software, varying in level of granularity according to the given 

abstraction layer (POHL et al., 2012: p. 43).  

Given a SPES development process, as depicted in Figure 4-20, the next step will be to 

align this with the generic PDM process, its single steps, and its main information 

artifacts. As the generic PDM process stipulates the creation of PDM-specific 

information artifacts (cf. Chapter 2.3), such as BOMs and other artifacts which are 

mostly associated with the technical viewpoint, these information artifacts will be briefly 

highlighted (cf. Figure 4-10). Due to the focus of this work being on systems engineering, 

only relevant information artifacts for both, systems engineering as well as PDM, will be 

considered. Therefore, PDM also has to include these relevant information artifacts 

which traditionally is not the case (cf. Chapter 2.3). For that purpose, the different 

viewpoints with their abstraction layers can be aligned with the generic engineering 

process. The conceptual phase during engineering is addressed by the requirements 

and functional viewpoint. In the phase of basic or desing engineering, all viewpoints are 

represented and aligned. Then, the detailing is modeled in the functional, logical, and 

technical viewpoint as well as following engineering phases, such as installation & 

commissioning or production planning. This is depicted in Figure 4-21 and is also in 

alignment with Figure 2-3 and Figure 2-10. Given that the SPES method stipulates an 
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interative modeling, engineers will have to refine their models constantly by moving back 

and forth between the different engineering phases refining the distinct viewpoints as 

knowledge increases. 

 

Figure 4-21: Alignment of a generic engineering process with the SPES viewpoints (in alignment to 

POHL et al., 2012: p. 153). 

The generic alignment of the MBSE process with the PDM process, including the 

aforementioned relevant information artifacts, is depcited in Figure 4-22. Therefore, the 

information artifacts for MBSE and PDM from Chapter 4.1 have been considered. The 

E/E system serves as a starting point as well as a high level bundler for engineeing 

activities across IT sytems. Hence, its creation as a dedicated information artifact is 

relevant for both MBSE and PDM. Subsequently, the next relevant information artifact 

that is in scope is a specific function. Commonly, functional black box models etc. are 

not documented in PDM IT systems. However, not documenting any functions in PDM 

sytems, as it often is still the case today, yields to a documentational gap as ECUs can 

execute different functions of different E/E systems and thus these relationships would 

not be captured. Hence, the distinct instantiation of a function, e.g. “F1”, also has to be 

documented within the PDM sytem. In order to distinguish an ECU from its inherent 

components, which are separate information artifacts that have to be addressed during 

development, the ECU will be aligned with the logical viewpoint and within this is a 

logical component. As depicted in Figure 4-10 and Figure 4-15, the ECU data model 

stipulates the important distinction between hardware and software. This process step 

is modeled with the creation of a logical sub-component and is documented likewise on 

the PDM side. The most detailled modeling level, the technical viewpoint, aligns with the 

highest granularity also in the PDM system where, during this process step, plugs, pins, 

signals, NCDs, parametric software, etc. will be documented. 
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Figure 4-22: Alignment of the MBSE and PDM processes with their main information artifacts. 
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4.2.2 New product creation process 

The initial process designates how the development process for a newly developed E/E 

system and its components occurs. In doing so, at each process step a new information 

artifact is written into the IT systems for MBSE, PDM, both mirrored to a certain extent 

on the side of the OEM and the supplier, as well as in data integration (cf. Figure 4-19). 

For the latter, these process steps are automated.  

At the beginning, the common RDF namespaces for MBSE and PDM will be 

implemented in the data integration layer. This can be done by an initial upload of these 

RDF namespaces and the implementation of a work routine that aligns them 

automatically across connected IT systems. Considering one or many engineers on the 

OEM side responsible for modeling of an E/E system and its components in MBSE, 

denoted with “OEM MBSE”, and documenting this information in a PDM system, 

denoted with “OEM PDM”. Similarly, there are one or many engineers who model and 

document for the Supplier 1, denoted with “Supplier 1 MBSE” and “Supplier 1 PDM”. In 

the first process step it is assumed that the OEM engineer responsible for MBSE starts 

by modeling the E/E system under development. This assumption stems from the fact 

that the OEM determines the rough outlines including the requirements of an E/E 

system. Yet, also the supplier could start modeling. However, in this case it is presumed 

that the OEM has sovereignty over the E/E system and its functions and the supplier 

contributes the ECU including its hardware and software components. The OEM’s 

MBSE IT tool, which is connected to the data integration layer, automatically updates 

the respective RDF namespace in the data integration layer. Thus, these information 

artifacts are available for other IT systems within the engineering collaboration. These 

information artifacts will be synchronized with the MBSE IT tool from Supplier 1, where 

the E/E system under development will be “modeled”, i.e., the data will be transferred 

from the data integration layer to the MBSE IT tool. Instantaneously, the RDF 

namespaces for MBSE and PDM will be synchronized by means of the work routine 

implemented in the data integration layer. Then, the updated RDF namespaces for PDM 

will be synchronized with the respective PDM systems on each side of the engineering 

collaboration partners.  

The second process step starts with modeling of function F1. Of course, considering the 

MBSE modeling process, there are interim process steps as depicted in Figure 4-22 that 

are not shown here for simplicity and due to relevance for PDM. After modeling of 
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function F1, the RDF namespace for MBSE in the data integration layer will be updated 

once more. This, in turn, triggers the automatic update of the supplier’s MBSE IT tool as 

well as the alignment with the RDF namespaces for PDM. Consequently, an update of 

the PDM RDF namespaces propagates these changes to the PDM documentation of 

both the OEM’s and the Supplier 1’s PDM systems. 

As Supplier 1 takes the lead of development of the ECU and its components from the 

consecutive process step onwards, modeling takes place at first in the MBSE IT tool of 

the supplier. The propagation of changes takes place symmetrically to the process steps 

initiated by the OEM via the data integration layer, which still serves as an intermediary 

between engineering partners as well as different domains. This logic also applies to the 

following process steps for modeling the logical sub-components for hardware and 

software and the technical components, e.g., the NCD. This generic process for the 

creation of a new product is depicted in Figure 4-23. 

In order to satisfy requirement 7, that external traceability is fostered through the 

reduction of reconciliation effort by means of a consensus mechanism, the new product 

creation process also includes such a consensus mechanism for the case that a new 

information artifact will be created. Therefore, each time an engineering partner creates 

a new information artifact, the receiving engineering partner has the obligation to 

consent to or to decline the data transfer including the relevant metadata. This step is a 

manual affirmation step that, in turn, will again be transferred automatically through IT 

systems. In Figure 4-23, consensus is depicted by a green solid (manual process step) 

or dashed (automatic process step/transfer of data) arrow and check mark. Contrarily, 

decline is marked in red crosses and solid or dashed arrows. The technological aspects 

of the consensus mechanism will be described in more detail in Chapter 4.3.2, after the 

technological framework was presented. 
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Figure 4-23: Generic process for the creation of a new product. 
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4.2.3 Configuration and variant creation process 

For the creation of different configurations, and therefore distinct variants (cf. Chapter 

2.3.2), the generic process is depicted in Figure 4-24. In analogy to the process for the 

creation of a new product, the OEM starts with the modeling of the E/E system and its 

variant points and, subsequently, the supplier follows with the residual development of 

the ECU and its components. Both engineering partners follow the same interchange of 

information artifacts as well as consent or decline as before. Again, the process is 

aligned with the data model for configurations in Figure 4-10 where variant points for the 

E/E system are defined. For instance, variant points are defined for separate car lines 

using similar specifications for an E/E system or an ECU, which is slightly adapted for 

the dedicated car model. At first, the OEM models these variant points in their MBSE IT 

tools from where the information will be propagated, via the data layer updating the RDF 

namespaces for MBSE, to the supplier’s MBSE IT tools. The supplier’s consent or 

decline of this update will follow and, in turn, will automatically trigger the update of the 

RDF namespaces for PDM in case of consent. It results an automated update of the 

documentation of the E/E system with its newly created variant point in the respective 

PDM systems. 

Consecutively, the OEM models the variant point of the ECU in case Supplier 1 only 

develops this particular variant of the ECU. Otherwise, this variant point would be 

modeled by the supplier for the case that all different variants are developed by the 

supplier and hence they would be in charge of this process step. The consensus 

mechanism and the update of the RDF namespaces as well as the other IT systems 

happens likewise. 

It follows the actual modeling of the logical component, i.e., the ECU, by the supplier 

who takes over development starting with this process step. Before continuing with the 

modeling of a dedicated configuration of hardware and software components, the OEM 

has the opportunity to affirm or reject the modeling results of the logical component by 

the supplier and, given a positive outcome of the consensus mechanism, RDF 

namespaces and IT systems will be updated accordingly. For simplicity, the hardware 

and software configuration are subsumed in one modeling process step, albeit the 

modeling of hardware and software are commonly separate steps, sometimes in 

discrete tools by distinct engineers. The consensus mechanism as well as the IT system 

updates will be executed in the known procedure, followed by a variant of the ECU. 
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Again, this process step is combined for succinctness and data is updated according to 

the previously depicted process steps. 

 

Figure 4-24: Generic process for the creation of a new configuration and variant. 
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4.2.4 Version creation and change management process 

For the purpose of ensuring that a precisely defined configuration, i.e., a variant, can be 

identified and addressed in an IT system, the creation of a version and its effectivity over 

time is crucial (cf. Chapter 2.3.2 and Figure 2-14). In the definition for the version 

creation process and its change management process, the assumption is to have a 

distributed version control system, as depicted in Figure 2-15 in variation 6. This is due 

to the circumstance that the Blockchain technology is the objective of investigation which 

inherently is a distributed data base and hence is technologically closest to a distributed 

version control system. Therefore, the process has to reflect this technological premise. 

The identification of the latest version of an information artifact within an IT system is 

essential for the embodiment of the version creation process. Given that the 

relationships between versioned information artifacts also have to be managed in case 

of versioning of an element, this has to be considered when the effectivity of a 

configuration and its version is defined. These relationships can be floating or fixed. In 

case of floating relationships, they will always point automatically to the latest version of 

an information artifact. Contrarily, a fixed relationship does not update to the latest 

version in case of alteration (GILZ, 2014: p. 121). For the definition of the version creation 

process it will be assumed that the relationships are maintained in a floating manner 

and hence a manual or explicit process step for management of relationships is not 

required. This ensures traceability to the always latest information artifact as well as a 

traceable history of changes due to artifacts will not be overwritten but the old versions 

will be archived in the background instead. 

As the versioning of information artifacts commonly starts after the creation of a variant 

(cf. Figure 2-16), here the depicted process definition builds upon the variant creation 

process and presumes the existence of a variant. Thus, the process definition starts with 

the supplier creating a new version due to the OEM which already defined a variant and 

handed the development of this specific variant over to the supplier which creates 

different versions during the development process. The generic process for the creation 

of a new version is depicted in Figure 4-25. 
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Figure 4-25: Generic process for the creation of a new version as part of the change management. 

The different lifecycle states of an information artifact, for instance preliminary, in review, 

released, in change, or superseded (cf. GILZ, 2014: p. 123), are implicitly included in the 

consensus mechanism while a response is still pending. Hence, they are not addressed 

here explicitly for reasons of simplicity. 

Figure 4-26 depicts the generic process for the change management, particularly the 

creation of a new version of information artifacts and how these updates are transferred 

process-relatedly across IT systems of the engineering partners. As described above, 

updated data models will always automatically refer to the latest version due to floating 

relationships and the separate lifecycle status of the information artifacts undergoing 

change are included in the consensus mechanism. Supplier 1 starts with modeling 

version 1.5, hence updating a previous version. This information will be transmitted to 

their own RDF namespace and then routed to the OEM’s MBSE tool. Preconditioned 

the affirmation of the change by the OEM, changes will be propagated to the other RDF 

namespaces and into the documentation of the PDM systems in the same manner as 
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already described above. The same process repeats for further increments of 

information artifacts’ versions.  

The process for change management, as designed here, does support the automatic 

change propagation, given a suitable data base, such as the Blockchain technology (cf. 

Chapter 4.3), which satisfies requirement 8. 

 

Figure 4-26: Generic process for the creation of new versions as part of the change management. 

4.2.5 Inactivation process 

The effectivity in configuration management, presented in Chapter 2.3.2, addresses 

timely aspects of information artifacts and their relationships between each other. For 

this purpose, obsolete information artifacts must also have the capability of being 

cancelled. This inactivation is required to prevent the usage and implementation of 

superseded information artifacts. This capability is particularly important for engineering 

collaborations due to the knowledge of a product is not concentrated within one 
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development department but dispersed across multiple different engineering partners 

who might have little to no contact.  

The inactivation of information artifacts requires the definition of an obsolete item as well 

as the investigation of affected relationships in the case of the latest version of this item 

for the assessment of compatibility. The latter step would be inherent to the generic 

process for the creation of configurations and variants, as depicted in Chapter 4.2.3. 

Furthermore, the superseded information artifact has to be tagged as obsolete. Involved 

engineering partners must have the ability to consent or reject an inactivation by means 

of a consensus mechanism, in case of concordance or discrepancies. It is assumed that 

the inactivation of one single information artifact does not inactivate the entire product 

structure, i.e., hierarchical transitivity for inactivation does not apply (cf. Chapter 4.1). 

Figure 4-27 depicts the generic process for the inactivation of a version of an information 

artifact. The inactivation of other information artifacts, for instance an entire variant, 

configuration, ECU, or E/E system, can be implemented analogously. Again, it is 

assumed that Supplier 1 is in charge of the development of the ECU and its components. 

Hence, in general it is the supplier’s duty to deactivate obsolete components and inform 

all other engineering partners that certain information artifacts shall not be used 

anymore in the ECU and the associated E/E system. Therefore, first the supplier initiates 

the inactivation of a dedicated version, here in this case version 3 of a variant, which, in 

turn, is a specific configuration of hardware and software at a given point in time within 

the MBSE IT tool (cf. Figure 4-10). Afterwards, the already above-presented updates of 

the RDF namespaces for MBSE are triggered that again transfers the request for 

inactivation to the OEM’s MBSE IT tool. The OEM now again has the opportunity to 

affirm or reject the inactivation which, in the first case, prompts the updates of the RDF 

namespaces for PDM and, consecutively, the actualization of the engineering partners’ 

PDM systems. 
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Figure 4-27: Generic process for the inactivation of a version. 

4.2.6 Processes for multiple engineering collaboration partners 

So far in this chapter, the generic engineering processes for only two partners have 

been depicted and described. This was mainly for reasons of simplicity. Of course, the 

entire framework to foster traceability within distributed engineering collaboration aims 

at the connection and inclusion of n>2 engineering partners, as it often is the case for 

modern E/E development in the automotive industry. Therefore, the generic process for 

the creation of a new configuration and variant for the involvement of three engineering 

partners, one OEM and two suppliers, is depicted exemplarily in Figure 4-28. Scaling to 

more than three engineering partners complies with the same process steps as 

presented below with only three engineering partners. Hence again for simplicity, the 

depiction is limited to the basic scenario of n=3 engineering partners. It is imaginable 

that the OEM contracts two different suppliers for the development of two ECUs for one 

E/E system or one supplier for the hardware of an ECU and one for the software. In both 

cases, all three engineering partners have to be informed about changes as early as 
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possible and shall have the possibility to confirm or reject changes for the purpose of 

fast and reliant development. This addresses requirements 7 and 8 in particular. 

Once again, it is assumed that the OEM starts modeling a dedicated variant of an E/E 

system and its corresponding variant point in their MBSE IT tool. This update of 

information artifacts is synchronized with the RDF namespaces for MBSE of which there 

are as many distinct as there are engineering partners involved in the development of 

this particular E/E system; hence here in this case there are three. All RDF namespaces 

for MBSE include the new information artifacts and trigger the data transfer to the 

connected MBSE IT tools of Supplier 1 and Supplier 2. In addition to the previous 

depicted processes with only one supplier, now also Supplier 2 has the opportunity to 

affirm or decline the variant point of the E/E system modeled by the OEM. Via the RDF 

namespaces for MBSE, the consensus or dissension of the suppliers will be transferred 

to the OEM. It follows the update of the three RDF namespaces for PDM from where 

the local PDM systems of the engineering partners are refreshed. 

The next process step for modeling a variant point for the ECU is executed similarly as 

the one before. Afterwards, Supplier 1 takes over the modeling of the logical component, 

which is the ECU. Therefore, they initially model the relevant information artifacts for the 

logical component and, in doing so, triggers the update of the RDF namespaces. From 

the RDF namespaces in the data integration layer, the information is transmitted to the 

OEM’s and Supplier 2’s MBSE IT tools. Now, in turn, the OEM and Supplier 2 have the 

duty to confirm or decline the modeling of the logical component. This data is transferred 

to Supplier 1. In the case of a consensus, the RDF namespaces for PDM will be updated 

and likewise the separate PDM systems of all three engineering partners. These 

process steps repeat themselves for the modeling of a configuration for hardware and 

software until a distinct variant of the ECU is modeled. Certainly, these process steps 

can further be evolved until a finer level of granularity, for instance for modeling versions, 

releases, or other changes. 
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Figure 4-28: Generic process for the creation of a new configuration and variant with three engineering 

partners. 
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4.3 Definition of a technology 

This framework to foster traceability of E/E information artifacts in an engineering 

collaboration during automotive development is fundamentally based upon a technology 

to connect IT tools and systems of the involved engineering partners. It was shown in 

Chapter 2.3 and Figure 2-12 that not only within one company the heterogeneous IT 

landscape is an impediment but becomes even more difficult to handle among multiple 

engineering partners (cf. Chapter 2.6 and Figure 2-22). 

As objective 1. a. of this thesis is to foster internal traceability, particularly by means of 

the alignment of MBSE and PDM for E/E, the conceptual IT tool shall serve as an 

enabler for this internal traceability, according to the PLM backbone described in 

Chapter 2.3. Additionally, external traceability (objective 2.) shall be enabled by an IT 

solution. For that purpose, the proposed technology shall include a consensus 

mechanism (requirement 7) and an automatic change propagation (requirement 8). For 

legal and compliance reasons, an immutable product history shall be enabled by the IT 

solution (requirement 9) as well as the multi-directional synchronization among 

engineering partners (requirement 10). Data integrity (requirement 12) is crucial for 

sensible development data and also has to be granted in the case of the standardized 

inclusion of IT systems of other engineering partners or of other intra-company IT 

systems (requirement 15). System downtimes (availability) and the exit of engineering 

partners (robustness) shall be addressed by the conceptual IT tool and not harm the 

engineering network (requirement 16). 

In Table 3-4, the merits of an unstructured P2P network with redundant data were 

already assessed and deemed to be the preferred form of data base. In the evaluation 

of the current state of science and technology, according to the objectives and 

requirements in Table 3-5, the Blockchain technology addressed many of the IT-related 

requirements. It was therefore chosen to serve as the basis for the conceptual IT tool in 

the context of distributed engineering collaborations in the automotive environment. 

A prerequisite for the conception of a technological solution is the definition of a 

fundamental IT architecture. This will be described in Chapter 4.3.1. There, the above-

introduced concepts for a linked data model, trace links, UUIDs, URLs, etc. are brought 

in relation to the IT architecture. The combination of the fundamental IT architecture in 

alignment to a generic IT architecture in automotive E/E development will be examined 

further. Here the focus lies on objective c., the alleviation of the connection of 
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engineering partners. Each new engineering partner must integrate the conceptual IT 

tool into their own IT architecture including all legacy IT systems. It will be shown how 

the presented technology can foster traceability not only within one company but also 

across companies. Additionally, it will be described how the consensus mechanism will 

be implemented, not only from a processual perspective (cf. Chapter 4.2) but also from 

an IT standpoint (Chapter 4.3.2). 

4.3.1 Fundamental IT architecture of the IT solution 

The fundamental IT architecture for the proposed technological solution to foster 

traceability is similar to the IT concept of a PLM backbone overstretching multiple IT 

systems and tools, as presented in Chapter 2.3 and Figure 2-12. The Blockchain 

technology serves as an equivalent for the PLM backbone in Figure 2-12 in order to 

connect different authoring tools and systems, as well as potential TDM systems of 

affiliated domains across the lifecycle113. It might also connect additional IT systems, 

such as ERP, SCM, PPS, etc. which are not within scope here. Figure 4-29 depicts the 

simplified generic IT architecture in which the so-called PLM Blockchain backbone 

enables intra- and inter-company traceability by linkage of data models, as presented in 

Chapter 4.1.  

The PLM Blockchain backbone is connected to the proprietary, domain-specific IT 

systems via standardized interfaces. The native data, such as a simulation or functional 

model written in SysML, remains at each engineering partners MBSE authoring tool. 

The same applies to native data included in, for instance, a BOM in the PDM systems. 

Only the metadata of each system is translated into RDF namespaces, integrated in 

joint work routines, and transferred to the PLM Blockchain backbone (cf. Figure 4-19). 

In the interfaces between MBSE tools or PDM systems to the Blockchain, the 

translations between the different domain-specific data models, such as SysML, and the 

RDF namespaces, are implemented. Therefore, the PLM Blockchain backbone serves 

as the data integration layer. 

 
113 For reasons of simplicity, the TDM layer is omitted here in the depiction. As the TDM systems often 
manage access rights as well as metadata, this will be relevant again for the prototypical implementation 
in Chapter 5. 
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Figure 4-29: Generic IT architecture including a PLM Blockchain backbone simplified for one OEM 

and one supplier114. 

According to the process defined in Chapter 4.2, information artifacts are then 

exchanged between the engineering partners, enabled by the IT architecture. Given the 

SPES development method, the System under development is modeled in the MBSE 

IT tool. The relevant metadata is transferred to the PLM Blockchain backbone where the 

RDF namespaces for MBSE will be updated. Corresponding with the data model (cf. 

Chapter 4.1.2), UUIDs and URIs (cf. Chapters 2.7.3 and 2.8.1) provide the basis for 

identification of information artifacts across IT systems. The header information includes 

all features for immutable, distributed, and transparent traceability within the Blockchain. 

For instance, the pointer to the previous block’s header, time stamp, etc. (cf. Figure 

2-23). These information artifacts are mirrored to the PDM system accordingly. 

Consecutively following the SPES process from the system, to function, to the logical 

component (ECU), its sub-components hardware and software, via modeling of 

interfaces to the low-level technical component, each additional information artifact’s 

metadata is written in the PLM Blockchain backbone, concatenated with the previous 

block of information, and transferred to the attached IT systems of both the OEM and 

their suppliers. This is depicted in Figure 4-30115. 

 

 
114 The symbol for the API ( ) denotes both the required API (socket notation) as well as the offering 
API (ball notation) and can be considered here in this context as a bilateral API where both connected IT 
systems require and offer an API.  
115 For the description of the Channel ECUA, please see below in paragraph Integration into generic IT 
architecture and channels. 
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Figure 4-30: Generic IT architecture including the transfer of relevant information artifacts of the E/E 

development process according to the SPES methodology. 
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The above-mentioned generic IT architecture was simplified for the purpose of 

demonstration of its basic functionalities. However, in the case of multiple engineering 

partners, each partner possesses their own PLM Blockchain backbone. This is derived 

from the requirements for an immutable product history, multi-directional 

synchronization, data integrity, data availability and robustness, in the case of volatile 

participation of engineering partners who shall to be integrated easily into the 

engineering collaboration and the legacy IT architecture by means of standardized APIs 

(cf. requirements 9, 10, 12, 15, 16). Hence, there exist as many PLM Blockchain 

backbones in the engineering collaboration network as there are engineering partners. 

The nature of the Blockchain technology implies that all different PLM Blockchain 

backbones are connected to each other to form an unstructured P2P network with 

redundant data. This generic IT architecture for multiple engineering partners is depicted 

in Figure 4-31. 

 

Figure 4-31: Generic IT architecture for multiple engineering partners with their own PLM Blockchain 

backbone. 

APPLICATION PROGRAMMING INTERFACES 

In order to connect all PLM Blockchain backbones within the engineering collaboration 

network, the unstructured P2P network builds the basic connection among nodes by 

means of the internet (HTTP, REST). On top of this, the P2P network enables 

communication among each linked node (BASHIR, 2018: pp. 49, 51). Therefore, the 

communication among the PLM Blockchain backbones, if implemented accordingly, is 

guaranteed. The inclusion of new engineering partners is facilitated by this standardized 

data integration layer and enables ad hoc participation in the development also for, e.g., 

start-ups without prior extensive adaptations of APIs. 



156 Definition of a technology 

 

The challenge for the integration of development activities in an existing IT architecture 

is the connection of many legacy IT systems to create, first, intra-company traceability, 

and further extend this traceability towards the other engineering partners. As depicted 

in Figure 4-19, the data integration is implemented using OSLC including all its 

components and standards (cf. Chapter 2.8.1). The data model, itself being used for 

enabling a traceability scheme between OEM and suppliers (requirement 11), is 

implemented as linked data using RDF in the distinct RDF namespaces and the joint 

collaborative work routine. In turn, this information can be written into the payload of the 

blocks within the Blockchain. As the semantic uses RDF, the APIs connecting the legacy 

IT systems, such as the MBSE tools and the PDM IT systems, are implemented 

according to the REST standard which is also part of OSLC. Here, the actual challenge 

is that many legacy IT systems do not support the REST standard and their APIs have 

to be first enabled in order to use it. As new IT systems are commonly already equipped 

with REST APIs, the connection of intra-company IT systems will become simpler over 

time and requirement 15 could be satisfied out of the box. 

TYPE OF BLOCKCHAIN 

As development data is sensitive, intellectual property requires a high degree of data 

protection and data integrity, the IT architecture has to reflect this requirement 

(requirement 12). This is especially the case for ad hoc engineering collaboration 

networks where partners can join just for the contribution of, for instance, one software 

component. Therefore, data has to be also robust, i.e., the exit of an engineering partner 

from the network shall not affect the availability of the relevant data. Also, data 

availability is important for distributed engineering collaboration (requirement 16). 

The Blockchain technology does innately satisfy requirements 12 and 16. However, data 

shall not be publicly available entirely, only for the associated engineering partners 

within the collaboration network. For this purpose, the Blockchain must not be a public 

or unpermissioned. Contrarily, the Blockchain has to be a private, permissioned or a 

consortium Blockchain (cf. Chapter 2.7.3). In this case, the OEM is the owner of the 

Blockchain and grants access to suppliers that will contribute to the development of the 

automobile.  
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INTEGRATION INTO GENERIC IT ARCHITECTURE AND CHANNELS 

As already depicted in Figure 4-30, some Blockchain technologies116 offer different so-

called channels. By means of distinct channels, engineering partners can transfer 

confidential data in transactions within the same Blockchain network but using separate 

Blockchains. Channels offer a separate permission level for participants of the 

Blockchain network. Hence, only permissioned engineering partners can view data in 

channels that they are a member of. Other engineering partners within the same 

engineering collaboration using the same Blockchain network cannot access 

transactions in a channel they have not been granted access to (cf. BASHIR, 2018: p. 

477). This IT architecture addresses the need-to-know principle and also corresponds 

to data integrity (requirement 12), data availability and robustness (requirement 16). 

Figure 4-32 depicts the integration of multiple PLM Blockchain backbones into a generic 

IT architecture with multiple channels in an engineering collaboration. There, the OEM 

outsourced the E/E system development to Supplier 1. Both share a channel for 

SystemA which is implemented in each engineering partner’s PLM Blockchain backbone. 

In turn, each PLM Blockchain backbone is connected to the respective MBSE tool and 

PDM system of the OEM and Supplier 1117. In this particular channel, all relevant blocks 

regarding SystemA, documenting each transaction in case of any updates of metadata 

during development, are stored and only visible to the OEM and Supplier 1. 

As Supplier 1 also contributes some component for ECUA, for instance the hardware, 

there is a separate channel for this ECU together with Supplier 2 who might be 

developing software for ECUA. Therefore, the OEM, Supplier 1 and 2 each have a 

distinct PLM Blockchain backbone building a sub-network exclusively for the 

development of ECUA. 

In case of ECUB, there are also two other suppliers who contribute components to the 

development for the OEM. Again, distinct PLM Blockchain backbones with a Channel 

ECUB are implemented for the purpose of compartmentation of data that is relevant only 

for contributing engineering partners. 

 
116 The Blockchain technology Hyperledger Fabric features such channels. The channel ID is written in 
the transaction of each block in the Blockchain (BASHIR, 2018: p. 474). See Chapter 5 for more information 
on Hyperledger Fabric. 
117 Supplier 1 and its MBSE tool and PDM system are depicted twice in Figure 4-32. This is done for 
representational reasons only. In order to have a single source of truth at each engineering partners’ site, 
the MBSE and PDM systems shall exist only once in reality. 
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Separated channels for each component which is being developed with different 

engineering partners require distinct PLM Blockchain backbones. This is so that 

traceability is not hindered by such an IT architecture due to more fragmentation as 

before. Data has to be stored in a single source of truth, i.e., domain-specific IT systems 

that are the master for a dedicated type of data, such as a MBSE tool for MBSE data 

and PDM system for PDM data. Therefore, each engineering partner has to connect 

their own legacy IT systems with the respective PLM Blockchain backbones and their 

channels used for the development of a specific component where they participate.  

As the PLM Blockchain backbone is merely a data integration layer enabling traceability 

across legacy IT systems and within engineering collaboration networks, these 

Blockchains do not serve as single sources of truth. However, all PLM Blockchain 

backbones form a joint network are linked to each other (cf. Figure 4-32). By this 

connection, the RDF namespaces dedicated to one channel and stored within the 

associated Blockchain can be synchronized and updated in case this is required and 

desired. This could be the case for the channels SystemA and ECUA due to both are 

used by the OEM and Supplier 1 for collaboration. Hence, there might be no necessity 

for separation of data due to IP. RDF namespaces and the combined work routine could 

be connected. In the case of separated channels, each engineering partner updates 

their RDF namespaces in the linked Blockchain out of their MBSE tool or PDM system 

and each channel has its own work routine, mirrored at each Blockchain, where RDF 

namespaces will be combined (cf. Chapter 4.1.2). Consequently, the PLM Blockchain 

backbones enable traceability of E/E artifacts within the engineering collaboration 

networks. The exchange of necessary information artifacts is limited to the involved 

engineering partners by means of the described, connected IT architecture. The 

Blockchain technology also supports the processual traceability through the immanent 

consensus mechanism which will be described in the following118. 

The different aspects of the inclusion of the technological solution framework into an 

existing, generic, brown-field IT architecture, for instance APIs, data models and 

synchronization of the same across IT systems, have all been described above. 

 
118 The separate depiction of the internet, the P2P network in contrast to the Blockchain network, and the 
different nodes has not been done for simplicity. In Figure 4-32, the internet is immanent as is the P2P 
network. The Blockchain network is depicted by the separate PLM Blockchain backbones. The users or 
nodes are displayed by the distinct MBSE tools and PDM systems of each engineering partner. For more 
information about the IT architecture of the Blockchain technology, please refer to BASHIR (2018). 
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Figure 4-32: Integration info generic IT architecture with multiple channels implemented by different 

suppliers. 
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4.3.2 Consensus mechanism 

The consensus mechanism implemented in the Blockchain technology facilitates 

reconciliation of engineering changes (objective 2.a., requirement 7 and 8). This is a 

bonus with respect to the above-addressed advantages of the Blockchain technology, 

satisfying the multiple requirements due to no further approval workflow that has to be 

included on this level of the IT architecture in the development process. As the OEM 

possesses the final developed product, it is in charge of the integration of components 

and legally responsible for placing the automobile on the market. Hence, the consensus 

mechanism is implemented such as that the OEM’s rejection supersedes the approval 

of suppliers (cf. Chapter 4.2). 

The most common consensus mechanism in the Blockchain technology, called proof of 

work (cf. Chapter 2.7.3), devours a lot of energy due to a mathematical problem that has 

to be solved by finding the nonce, to prove that sufficient computational resources have 

been mustered to avoid attacks on the data integrity of the Blockchain119. In contrast to 

a public Blockchain which has to be protected from hacking and attacks, the 

permissioned consortium Blockchain does not need such a security measure. Hence, 

the engaged nodes, i.e., the engineering partners, are not required to spend a high 

amount of computational power to reach a consensus about the validity of information 

artifacts shared. The prior admission of each supplier into the engineering network 

implies a scrutiny by the OEM and a contractual agreement and hence there should be 

no risk induced into the engineering network with respect to data integrity. Therefore, 

the consensus mechanism is being implemented simply by the click of a button for 

approval or rejection by the respective engineer who assesses the validity and 

correctness of data. Given certain metrics and rules, such an evaluation and approval 

process could be implemented in an automatic manner as a consensus mechanism. For 

that purpose, smart contracts could be used. However, due to the complexity of such an 

automated evaluation process for development data, smart contracts will not be 

addressed here (cf. Chapters 2.7.3 and 7.2). 

In the following, the consensus mechanism is explained in more detail, as depicted in 

Figure 4-33. In this case, the particular scenario is described as that OEM, Supplier 1, 

2, and 3 all develop together ECUA and hence are all part of the channel ECUA which is 

implemented in each of their distinct PLM Blockchain backbones. In the first step (①), 

 
119 Please refer to BASHIR (2018: pp. 35 ff.) for more details about different consensus mechanisms. 
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the OEM updates information artifacts mostly relevant to the component of ECUA that 

Supplier 1 develops, and writes this metadata into their PLM Blockchain backbone. In 

parallel, the RDF namespaces of the other suppliers will be updated preliminarily (②). 

Subsequently in step three (③), all suppliers confirm the validity and correctness of the 

received metadata. Their approval is depicted by a green check mark and is also 

transferred to all other engineering partners. The OEM stores this consensus knowing 

that they can proceed with development as planned. After this, the RDF namespaces 

will be updated permanently (cf. Chapter 4.2). 

 

Figure 4-33: Consensus mechanism: Initial creation and distribution of data by the OEM and approval 

by the engineering partners. 

Likewise, the consensus mechanism operates in the case that a supplier creates data, 

distributes it, and the other engineering partners will have to approve it. When Supplier 

2 creates metadata which may be most relevant for Supplier 3 (④), for instance if the 

I/O table is changed and Supplier 3 has to adjust their interface, this data will also be 

synchronized to the others’ PLM Blockchain backbones. The approval of the recently 

updated metadata occurs in step five (⑤). This is depicted in Figure 4-34.  
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Figure 4-34: Consensus mechanism: Creation and distribution of data by a supplier and approval by 

the engineering partners. 

There might also be the case where the synchronized metadata reveals discrepancies 

in the alignment of all the relevant components for ECUA. This situation is depicted in 

Figure 4-35. Supplier 3 updates development data relevant for Supplier 1 and submits 

their metadata to the Blockchain network (⑥). However, Supplier 1 does not agree with 

the proposal for the update of the component of ECUA. Supplier 1 rejects this update 

which will be immediately synchronized with the other engineering partners’ PLM 

Blockchain backbones (⑦). Also, the initiator of this update, Supplier 3, receives the 

rejection and hence RDF namespaces will not be updated with a valid information 

artifact. As the rejection becomes apparent immediately to the entire engineering 

collaboration network, traceability regarding changes is increased and issues can be 

addressed in due course (requirement 7 and 8). 
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Figure 4-35: Consensus mechanism: Creation and distribution of data by a supplier and rejection by 

one engineering partner. 

4.4 Solution framework and its satisfaction of requirements 

As motivated in Chapter 1.3 and 1.4, internal and external traceability of E/E artifacts 

during automotive development in consideration of MBSE within distributed engineering 

collaboration has been assessed in Chapter 2. This was then evaluated in Chapter 3 

using the three categories of enablers: data model, process model, and technology (cf. 

Figure 1-7). In Chapter 4, the synthesis of the solution approaches for each enabler has 

been conducted separately. Therefore, in this chapter the entire solution framework shall 

be described including how the framework satisfies the requirements.  

In Figure 4-36, the entire framework is depicted. On top of this, the OEM’s perspective 

is shown including the product lifecycle, highlighting the development process by a 

stylized V-model. Both IT tools and systems in scope, i.e., MBSE and PDM, are 

illustrated by database icons and the immanent peculiarities of both domains are 

presented by a schematical SysML model, as well as the effectivity of configurations 

over time. Below, the OEM’s PLM Blockchain backbone with a dedicated channel for 

ECUA serves as the data integration layer to enable internal and external traceability. 

On the bottom, the IT architecture of two suppliers is outlined. Both have their own PLM 

Blockchain backbone that are connected with the OEM’s and each other’s via the joint 

Blockchain network. Additionally, both suppliers have their own MBSE tool and PDM 

system which are, again, linked to their PLM Blockchain backbones. 
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The satisfaction of the requirements by the solution framework is depicted by circled 

numbers in Figure 4-36 which correlate with the numbered requirements in Chapters 

3.2 and 3.3. Graphically, the circled numbers have been placed there where the 

requirements were addressed by either the data model, process model, or technology. 

Certainly, there may be more points where each requirement is addressed by the 

framework but the most important ones are depicted where they can be placed logically. 

In the following, it is described how and where in the solution framework the 

requirements have been implemented. 

1. Requirement ①: The pins of an ECU are modeled explicitly in the MBSE SysML 

data model. 

2. Requirement ②: NCDs, communication bus systems, signals, and interfaces are 

modeled explicitly in the MBSE SysML data model. 

3. Requirement ③: The ECU’s software versions including parametrization files are 

modeled explicitly in the MBSE SysML data model. 

4. Requirement ④: The linked data model is implemented using UUIDs and URIs 

which can be used across all IT systems and are the pivotal identifier within work 

routines and RDF namespaces. 

5. Requirement ⑤: Trace links are implemented using http schemes that can link 

from one IT system to another and are implemented in the RDF namespaces for 

referencing. 

6. Requirement ⑥: Distributed engineering with the focus on MBSE and E/E is 

fostered by integration of data models that can be accessed by different 

engineering partners, as well as a joint IT architecture for data exchange such as 

the Blockchain technology. 

7. Requirement ⑦: The consensus mechanism is inherent to the Blockchain 

technology and allows for approval or rejection of publicized engineering changes 

documented in separate information blocks. 

8. Requirement ⑧: The automated change propagation is achieved by the P2P 

network of the Blockchain technology wherein changes in the form of new blocks 

are automatically distributed to all peers. 

9. Requirement ⑨: The immutable product history is implemented by connected 

information blocks, creating hash values of the previous blocks, that are already 

immanent to the Blockchain technology. 
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10. Requirement ⑩: Multi-directional synchronization of data is realized by the 

automatic change propagation within the Blockchain network and the updates of 

each engineering partner’s RDF namespaces. 

11. Requirement ⑪: A traceability scheme for OEM and suppliers is implemented 

using the joint RDF work routines which integrate the distinct RDF namespaces 

of each engineering partner by means of trace links, UUIDs, and URIs. 

12. Requirement ⑫: Data integrity among multiple engineering partners is reached 

by means of separate PLM Blockchain backbones for each engineering partner. 

13. Requirement ⑬: The standardized data model for data exchange is 

implemented in the RDF work routine referencing each engineering partner’s 

RDF namespaces. 

14. Requirement ⑭: The standardized development process is prescribed in 

alignment to the SPES method for MBSE and includes the consensus 

mechanism for each engineering partner. 

15. Requirement ⑮: The ad hoc integration of new engineering partners and their 

legacy IT systems as well as the OEM’s is accomplished using the standardized 

REST API included in the OSLC framework. 

16. Requirement ⑯: Availability and robustness of data results from distinct PLM 

Blockchain backbones for each engineering partner, and hence data 

redundancy. 
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Figure 4-36: Solution framework for traceability of E/E artifacts during automotive development in 

consideration of MBSE within distributed engineering collaboration by means of the Blockchain and 

the satisfaction of requirements. 
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5 Prototypical implementation 

The description of the different aspects under scrutiny, i.e., the enablers (cf. Chapters 

1.4 and 3), follows the funnel approach coming from the broadest topic, the realization 

of the basic architecture (technology), via the process model to the data model. This 

approach was chosen as the Blockchain technology already determines processual and 

data aspects which later do not have to be repeated. 

5.1 Goal and scope of the prototypical implementation 

In the Chapters 4.1, 4.2, and 4.3 the entire framework to foster E/E traceability within 

distributed engineering collaboration during automotive development, with a focus on 

MBSE and PDM, was presented. The basic solution modules of the framework comprise 

a data model connecting MBSE and PDM intra- and inter-company wide, the definition 

of a process model for engineering processes in distributed development, and the 

conceptualization of an IT solution, in this case is the PLM Blockchain backbone 

network. The assessment of this solution framework and its applicability requires an 

integrated and extensive implementation of its solution modules.  

Therefore, the goal of this implementation is the evaluation of the framework later in 

Chapter 6. Accordingly, the objectives of this thesis must be addressed, as presented 

in Chapter 1.3. The questions have to be answered whether this solution framework 

supports traceability of E/E artifacts within distributed engineering collaboration 

sufficiently? Hence, the implementation of a prototype shall address the objectives (cf. 

Chapter 3.5): 

1. a. Internal traceability by means of the alignment of MBSE and PDM for E/E 

(requirements 1 to 4 in Chapter 3.2). 

2. External traceability by means of 

a. Reduction of reconciliation (requirements 5 to 8 in Chapter 3.3). 

b. Transparent and safe product changes (requirements 9 to 12 in Chapter 

3.3). 

c. Alleviated connection of engineering partners (requirements 13 to 16 in 

Chapter 3.3). 
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As these objectives and thereof deduced requirements, according to the state of science 

and technology, serve as the leitmotif for this thesis, they also provide the basis for the 

prototypical implementation and the evaluation in Chapter 6. 

The implementation of a prototypical IT architecture, the underlying framework, and 

tools stipulates how precisely a data and a process model can be implemented. 

Consequently, the decision of which programming language will be used and which 

information artifact will be created at which point in time in this case are aligned with the 

Hyperledger Fabric platform120. 

This prototypical implementation was executed together between one OEM and two 

engineering collaboration partners as all three partners face the same challenges 

regarding internal and external traceability. Thus, albeit being a specific implementation, 

it addresses deficiencies of multiple engineering partners and, in its generic form, the 

prototypical implementation can be applied for other similar engineering collaborations 

within the automotive industry or others (cf. Chapter 7). 

The direct connection with legacy IT systems such as MBSE tools and PDM systems 

could not be implemented during this work due to the tremendous complexity this would 

have induced into the prototype development. 

5.2 Implementation of a prototypical IT framework 

In addition to Chapter 4.3, some more details regarding the technological realization of 

the prototype and its basic IT architecture have to be described.  

Due to being a standard, modular platform used for the Blockchain technology and the 

convenient inclusion of distinct channels (cf. Chapter 4.3.1), the Hyperledger Fabric 

platform is used for the prototypical implementation (cf. Footnote 116 on p. 157). 

Moreover, Hyperledger Fabric focuses on permissioned Blockchains (BASHIR, 2018: p. 

471), as this is the case here in this work for distributed engineering collaboration121. 

 
120 Commonly, the strategic level provides the basis for an operational level including, for instance, the 
product development process. Underneath, there is yet another operational level with sub-processes with, 
e.g., the design process. The lowest or PLM level constitutes of concrete IT solutions on a functional and 
system level (EIGNER and STELZER, 2009: pp. 23–24). Here in this work, the scope does not include 
strategic considerations of a company and its impact on the operational level. Therefore, due to the 
necessity to reduce complexity, it is assumed that the IT solution is also aligned with how the processes 
will be implemented. 
121 For more information about the Hyperledger Fabric platform or framework, please refer to BASHIR 
(2018: pp. 461 ff.). 
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Figure 5-1 depicts the entire network deployment for a network with four engineering 

collaboration partners. Each engineering partner has the same set of databases that are 

part of the modular platform of Fabric122. The PostgreSQL or short Postgres data base 

(DB) is an opensource, object-relational DB (SCHICKER, 2017: p. 13) and is used here to 

store cryptographic credentials about the organizations and users. As the Blockchain 

comprises of blocks which, in turn, contain transactions in the payload (cf. Figure 2-23 

and Chapter 2.7.3), these transactions can again be executed by the chain code123 and 

update the so-called world state (cf. Chapters 2.7.3 and 4.3.1). The world state is a key-

value DB and stores further information of transactions, sub-transactions and further 

automatisms, such as smart contracts. Each peer of the Blockchain network stores its 

world state, which in this case is on a CouchDB124 (BASHIR, 2018: pp. 473, 477). A 

CouchDB is a document-based DB (SCHICKER, 2017: p. 16) and in the Hyperledger 

Fabric platform connected to the peers which can execute the above-mentioned updates 

of the world state125. The actual ledger, i.e., the Blockchain with its concatenated blocks 

of transactions, is maintained on each peer’s file system, denoted by “OS” (ordering 

service) underneath the green “THINAPP” that denotes the Fabric client of each peer’s 

Blockchain node. For the purpose of the distribution of each transaction, each 

engineering partner’s (peer) nodes are connected to the “common ordering service”, 

depicted in the middle of Figure 5-1. The common ordering service receives endorsed 

transactions, orders them into a block, sorts them according the specific channel ID, and 

executes the transmission to all participating peers126 (BASHIR, 2018: pp. 481–483). 

Broadcasting of information, i.e., of the consensus mechanism as well as the in blocks 

combined transactions, is implemented using google remote procedure calls (gRPC), 

based on HTTP/2, including protocol buffers. Nodes in the Blockchain network within 

the Hyperledger Fabric platform exchange four main message types: i) discovery, ii) 

transaction, iii) synchronization, iv) consensus. The first message type is used to 

 
122 This implementation of the basic IT architecture using the Hyperledger Fabric platform can vary 
according to its modular composition and hence the chosen databases also could be substituted by others 
that serve the same purpose. 
123 Chain code is synonym for smart contracts due to its code being executed on the Blockchain (BASHIR, 
2018: 472). 
124 As described in Chapters 2.7.3 and 4.3.1, smart contracts are not in the scope of this work and hence 
the world state is just mentioned because it is a standard part of the Hyperledger Fabric platform. The 
prototype was already designed to include smart contracts for potential future use cases. 
125 Given the modular definition of the Hyperledger Fabric platform, instead of a CouchDB also other 
databases, such as LevelDB, can be implemented (BASHIR, 2018: 473). 
126 A more detailed description of each module of the Hyperledger Fabric platform is given in BASHIR 
(2018). 
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discover and identify new network nodes on launch of the network or in case of a new 

entry of a peer to it. Transaction messages include the handling of transactions in all 

their states. Updates of all the nodes and their synchronization is achieved via the 

corresponding message type. Likewise, consensus messages are defined (BASHIR, 

2018: p. 474). 

The “CA” in each peer’s network setup represents the company’s own certificate 

authority (CA) for the purpose of authorization operations and identity management 

including role assignment. Upon identification, a peer can join the network. By short-

term certificates, peers can join for one-time transactions only (BASHIR, 2018: p. 472) 

which might be the case for a one-time contribution to a source code of an ECU by, for 

instance, a start-up. 

The orange and green “APP”, or “THINAPP” respectively, denote the applications a user 

can interfere with. As the peers are the only clients within the Blockchain network, they 

only have thin applications (“THINAPP”) whereas via the common ordering service the 

entire network can be configurated (“APP”). On top of each peer’s thin app, additionally 

there is a web app coded in Java. This is for enhanced user experience for the end user, 

e.g., the engineer, and will be described in more detail in Chapter 5.2.2. 

The setup of each the Hyperledger Fabric node including all relevant data bases for 

each engineering collaboration partner was executed using Docker software for the 

creation of virtual container machines based on a Linux kernel. Each Docker image can 

be deployed on the premise of engineering partners and it contains all relevant 

information to set up the Blockchain network and participate in the development. The 

relevant code already is included in the Docker image and was coded in Java, Python, 

JSON, and GO language127. 

In Figure 5-1, each engineering partner has two peers. This stems from the fact that the 

Hyperledger Fabric platform stipulates the endorsement of transactions, i.e., the 

execution of transactions, is simulated before they are submitted (BASHIR, 2018: pp. 

481–483). For the implementation of this prototype, the setup of two peers per 

engineering partner was chosen for this reason. This process of endorsement of 

transactions will be described in more detail in Chapter 5.3. 

 
127 Please refer to RAVAL (2016), DHILLON et al. (2017), PRUSTY (2017), and BASHIR (2018) for more 
information about the architecture of a Blockchain network, Hyperledger Fabric, and Docker. 
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Figure 5-1: Network deployment of the prototypical implementation of the Blockchain network with 

multiple suppliers. 
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5.2.1 The structure of the prototype 

The Blockchain prototype consists of 429 files and 296 folders. The overview of the 

entire structure of the prototype is depicted in Figure 5-2. On the highest structural level, 

the prototype consists of two main sections that are visible in Figure 5-2 on the left-hand 

side and the right-hand side, respectively, of the grey oval. In the following, each branch 

and its functionalities will be described in more detail. 

 

Figure 5-2: The structure of the prototype. 

This top-level structure of the prototype, as depicted in Figure 5-3, contains on the left-

hand side, the autoChainConfig node, all relevant files and scripts which bootstrap 

the Blockchain network. The autoChain node on the right-hand side comprises Java 

compiled runnables which provide the application interfaces, e.g., the “THINAPP” and 

“WEB APP” (cf. Chapter 5.2), as well as the possibility to interact with the Blockchain 

network for each engineering partner. 

 

Figure 5-3: Top level structure of the prototype. 
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The runnables include sub-structures for each engineering partner128. For each of 

them, different information is provided in further folders or archives such as the Java 

archives (.jar). Included are the environment settings for the application, ports 

definitions, DB names, and organization names. In Figure 5-4, the runnables for 

daimler are depicted which are the same as for oem and supplier2. 

 

Figure 5-4: Runnables including different, organization-specific settings. 

For the administrator of the Blockchain network, here in this case this would be 

superimposable with the OEM as defined above, there are other environments 

implemented and all organizations are combined to one network by the admin. For each 

engineering partner, further data is stored using SQL. This is depicted in Figure 5-5. 

 

Figure 5-5: Runnables for the administrator. 

 
128 The nomenclature of the following images is not congruent with the previous one. Previously, Daimler 
was described as the OEM, being responsible for the final automobile, and the other engineering partners 
which were denoted as suppliers. 
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The left-hand side of the above-mentioned delineation of the structure of the Blockchain 

prototype consists of a Blockchain explorer application, files for documentation, setup 

scripts, and files for bootstrapping the Blockchain network. Figure 5-6 depicts the 

Blockchain network definition files. 

 

Figure 5-6: Blockchain network definition files. 

Figure 5-7 depicts the Blockchain network explorer files in more detail, for instance the 

database, metrics, router, services, monitoring, initiation and termination of the network. 

The explorer app is implemented using Node.js express. Moreover, the Fabric 

explorer is used for the similar purpose as the Blockchain explorer. The file Docker 

compose mySQL written in YAML is used to facilitate the network setup for new peers in 

the network, as described above, by cloning the repositories, bootstrapping all relevant 

files and repositories, and starting the joint Blockchain network. 

 

Figure 5-7: Blockchain network explorer files. 
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Figure 5-8 depicts the transport layer security (TLS) setup files. For the initiation of 

bootstrapping of the Blockchain network, these files are essential. Furthermore, these 

files include all configuration files which are necessary for using Docker compose. 

These files will be described in more detail in the following, due to their relevance and 

distinctiveness for the Blockchain network and the prototypical implementation. 

 

Figure 5-8: Blockchain network setup files. 

The TLS setup folder further contains scripts to generate and manage the Blockchain 

network. In Figure 5-9 it is visible that there are folders including information for the 

generation of channels including the genesis block and providing of cryptographic items 

to the network’s peers such as private keys and certificates. init-db denotes the local 

database and all folders with the prefix nw which either starts or stops the Blockchain 

network. Moreover, the local database can be stopped (stop-db). 

 

Figure 5-9: Blockchain network setup binaries. 

The folders db and fabric-bins contain the relevant binaries for the storage of the 

configuration files for the local database and the Hyperledger Fabric platform, 

respectively (cf. Figure 5-10). 
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Figure 5-10: Local database and Fabric binaries. 

The folder orgs in Figure 5-8 contains the individual setup files for the organizations 

within the network. Configuration files (.yaml) that are equal for all peers are stored 

within the folder base in Figure 5-11. 

 

Figure 5-11: Base files for the organizations within the Blockchain network. 

For each organization within the Blockchain network, configuration and the 

cryptographic files are stored within the orgs folder of the tlssetup branch, as it is 

depicted exemplarily in Figure 5-12 for one peer. 

 

Figure 5-12: Cryptographic and configuration files for each organization. 
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Within each organization, there is again a folder called crypto-config within which 

the certificates (ca), the membership service providers (msp), and peer and user 

handling are located, among others. This is depicted in Figure 5-13 and Figure 5-14129. 

 

Figure 5-13: Structure of cryptographic files for peers of each organization. 

 

Figure 5-14: Structure of cryptographic files for one peer. 

Maneuvering back to the tlsSetup node, the folder profile_multiChannel 

contains all relevant data for the implementation of multiple channels which are applied 

for the distinction of separate development of E/E systems with the potential for a 

different group of engineering partners for each channel. This is to satisfy the need-to-

know-principle (cf. Chapter 1.2.2). It also comprises the chain code (cc), or smart 

contracts, which is sourced externally on github. This is depicted in Figure 5-15. 

 
129 Due to the same folder structure being used for all organizations and peers, the other organizations 
for the remaining engineering partners are omitted here. 
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Figure 5-15: Structure for multi-channel setup including chain code. 

In Figure 5-16, there are three generic E/E artifacts, cu-com-module, cu-eng-ctrl-

med, and cu-radar-sonsor-long-driv-assist-sys, implemented as distinct 

channels. The tx files contain the channel creation transactions, whereas the 

endorsement policy for each channel is described in the yaml files. The endorsement 

policy defines the consensus mechanism (cf. Chapter 2.7.3). 

 

Figure 5-16: Channel artifacts. 

5.2.2 GUI 

The graphical user interface (GUI) was designed to be web-based. Hence, it is feasible 

to open up the GUI in which the engineer will document their changes on each device 

capable of using a browser. Each organization, e.g., the OEM and the separate 

suppliers, have access to their channels where they contribute to the development or to 

all, in case of the OEM. Moreover, individual users can be selected during login who will 

be documented as the creators of transactions. The user’s name is displayed in the top 

right corner of the browser window. Additionally, in the menu on the left side under 

“Artifacts”, all created artifacts are shown as a list including relevant details. The menu 

item “Blockchain” grants general information on channels and the Blockchain network. 

The creation of an artifact by Supplier1 is depicted in Figure 5-17. There, Bob Supplier1 

fills out the required attributes. A UUID is generated automatically. Bob provides the part 

number (“Sachnummer”), declares the artifact type as a “control_unit_software” in 

“version 1.1”, and adds a description. The architecture of this software is AUTOSAR (cf. 

Chapter 3.4). 
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Figure 5-17: Supplier1 creates an artifact. 

After the artifact creation, Supplier1 sees his created information artifacts within his list 

of artifacts, as depicted in Figure 5-18. Within this list he can search for a specific part 

number, a term within that description, as well as the release status which can be “in 

progress”, “rejected”, or “final”. The OEM also sees the transactions in their list in which 

artifacts have been created by the Supplier1 and that their status is “in progress”, 

signifying that the OEM still has to vote for these artifacts. This is depicted in Figure 

5-19. 

 

Figure 5-18: List of artifacts of Supplier1 with pending voting answers. 
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Figure 5-19: List of artifacts of OEM with pending voting actions. 

Next, the OEM has to vote given the consensus mechanism. They can approve the 

engineering activity, i.e., the creation of a new information artifact as an initial 

development or as a change of an existing artifact, or reject it by clicking the respective 

buttons, as depicted in Figure 5-20130. 

 

Figure 5-20: Voting by OEM. 

 
130 In the prototypical implementation as depicted here, the supplier still had to confirm his own creation 
of information artifacts. This is due to technical peculiarities given the design for multiple users of one 
organization who could vote independently. This scenario could be reasonable in the case of multiple 
parties within one company, such as different domains, shall also have to confirm or reject changes. 
However, this scenario is not in the scope here albeit it was designed initially according to this in the 
prototype. 
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After voting, the positive result of the OEM’s action is visible to them as well as pending 

requests for voting, as it is depicted in Figure 5-21. Contrarily, in Figure 5-22 it is shown 

that the OEM also can reject any creation of a new information artifact. 

Again, the Supplier1 receives all results of the consensus mechanism by the OEM. 

These results are depicted in Figure 5-23 in the supplier’s list of artifacts. 

Details of artifacts can be displayed by clicking the corresponding button in the list of 

artifacts. Within the details, the transaction history for this particular information artifact 

is visible as well as, who has voted how. This is depicted in Figure 5-24. 

 

Figure 5-21: List of artifacts of OEM with different release status. 

 

Figure 5-22: Details of rejection by the OEM of supplier's artifact creation. 
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Figure 5-23: List of artifacts of Supplier1 after voting. 

 

Figure 5-24: Artifact details including transaction history. 

A repetitive voting by the OEM is rejected by the system, as depicted in Figure 5-25. 

Figure 5-26 depicts the responsive design of the web interface for an iPhone 6. This 

enables engineers to work on devices with different screen sizes which again, fosters 

mobile work and hence instantaneous responses to engineering changes. This might 

be particularly relevant in a testing scenario of a prototype where changes can be 
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confirmed in the field, contemporaneous updates of MBSE and PDM systems are 

triggered, and these updates could be flashed over the air for quick retried testing. 

 

Figure 5-25: Voting retry. 

 

Figure 5-26: Responsive design of web interface. 
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5.2.3 Roles and permissions 

The single files located in the above-mentioned folder structures contain the actual 

source code for all transactions executed within the Blockchain network written in GO 

language. The source code underlies the functionalities executed in the GUI as distinct 

operations or their concatenation.  

For recording of votes, the variables ArtefactId, VoteInput, and RejectReason 

are created. Recording is only possible if these three variables are included in a 

transaction. Moreover, for the decision of which status the artifact will have when being 

recorded, the previous state has to be retrieved from the ledger beforehand. This is 

depicted in Source Code 5-1. 

 

Source Code 5-1: Recording of votes. 

In a scenario of a big company, it is reasonable that many engineers document their 

latest development information artifacts within their IT tools and systems. Therefore, the 

prototypical implementation of the Blockchain network contains different users per 

organization, i.e., each engineering partner has multiple users who can document their 

progress separately in the Blockchain. There are three hard-coded roles of 

organizations authorized to create artifacts and participate in voting: i) customer; ii) 
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supplier, iii) oem. Additionally, it is distinguished between the organization, i.e., the 

engineering partner, and different roles within this organization131. This is depicted in 

Source Code 5-2. 

 

Source Code 5-2: Authorized roles. 

Source Code 5-3 shows the initialization of configuration state upon the initial 

deployment of the Blockchain network. Permitted voters can vote as many as want to, 

even from the same organization (cf. Source Code 5-4). This might be the case if an 

engineer from another department within the same company also wants to give their 

statement. 

The Hyperledger Fabric platform allows the adding of new organizations, such as a new 

engineering partner, to the already existing and running Blockchain network. Hereby, 

the organizations’ peers can be added to the relevant channels where they want to 

contribute to the transactions (PEREPA and YELLICK, 2017; HYPERLEDGER, 2020), i.e., 

information artifacts to development activities. This addresses requirement 15 where the 

ad hoc inclusion of engineering partners and hence their legacy IT systems is required. 

 
131 For details regarding the implemented roles, please see Chapter 5.2.1. 
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Source Code 5-3: Initialization of configuration state. 

 

Source Code 5-4: Permitted voters. 

5.3 Implementation of process model 

The Blockchain network requires a dedicated sequence of actions in order to ensure its 

advantages for traceability in distributed environments. In addition, the Hyperledger 

Fabric framework implements certain workflows given its IT architecture and distribution 

of data among multiple peers. In Figure 5-27, the implemented process model is 

depicted for an exemplary user of the supplier. In step 1, the user initiates the creation 

of a new information artifact by providing the artifact’s attributes and documenting them 
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within the web app. Subsequently in step 2a, the “Thin-web-app”, which is a Fabric 

client, creates an endorsement proposal for the created artifact and sends it to its 

endorsing peers within its own organization. After receiving the endorsement, the 

endorsing peers simulate the transaction on the current ledger state and sign the 

endorsed transaction. Then in step 2b, all transaction endorsed messages will be 

collected into a valid endorsement which satisfies the endorsement policy. The 

synchronization of the valid endorsement will be transmitted from the supplier’s network 

to the OEM’s network via the common ordering service in step 3. In doing so, the 

transaction endorsement is broadcasted to all committing and endorsing peers. Step 4 

depicts the reception of the endorsement. For this, the endorsement will be verified and 

set to “read” on the ledger. If the verification is positive, it will be set to “write” (cf. BASHIR, 

2018: p. 481). 

 

Figure 5-27: Process model of the Hyperledger Fabric framework. 

The basic operations for a process model are depicted in Source Code 5-5. Functions 

are called via if arguments. The create function creates a new artifact on the ledger 

and voting for an artifact can be done with the vote function. The retrieval of an artifact 

can be executed using the query function. The connected CouchDB, storing the world 

state, can be searched for a specific artifact with the search function. Using 

artledger, the entire history for one artifact will be returned. 
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Source Code 5-5: Basic operations. 

The create artifact function uses all artifact attributes (cf. Chapter 5.4) as an input and 

creates an ID which is depicted in Source Code 5-6. 

 

Source Code 5-6: Create artifact operation. 
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During the consensus mechanism, information artifacts have a specific status which 

indicates to the engineer in the GUI whether voting is still in progress, who accepted or 

declined, and what the overall combined status is. This is depicted in Source Code 5-7. 

 

Source Code 5-7: Artifact states. 

The initial status after creation of the information artifact is In Progress (cf. Source 

Code 5-8). It is Accepted in the case of all permitted voters have approved the new 

artifact (cf. Source Code 5-9). If any permitted voter rejected the newly created artifact, 

the state is Not Accepted (cf. Source Code 5-10). The latter logic is helpful to identify 

any inconsistencies in the development process. 

 

Source Code 5-8: Vote status "in progress". 

 

Source Code 5-9: Vote status "accepted". 

 

Source Code 5-10: Vote status “not accepted”. 
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5.4 Implementation of data model 

OVERVIEW 

As the prototypical implementation and its technology dictates to a certain extent how a 

data model can be developed and implemented, this chapter follows Chapter 5.2 in 

describing the Blockchain prototype using the Hyperledger Fabric framework. 

In a first step, the relations of the in Chapter 4.1 defined information artifacts are 

modeled. For this purpose, the Cypher Query Language and the tool Neo4j132 have 

been used to depict a graph which is shown in Figure 5-28. In turn, the data model from 

Neo4j can be exported in JSON format allowing the inclusion into the Hyperledger Fabric 

framework. 

 

Figure 5-28: Generic ontology for an ECU and its associated information artifacts (blue) with additional 

MBSE views (green). 

ARTIFACT STRUCTURE 

The data model described here was implemented in the Hyperledger Fabric Blockchain 

prototype. Therefore, the artifact structure was enriched with the above-mentioned 

information artifacts. In order to enable traceability, information artifacts described in 

 
132 Please refer to https://neo4j.com/ for more information about Neo4j and Cypher Query Language. 
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Chapter 4.1, such as EE_system, are integrated as attributes within the artifact 

structure in JSON format, as depicted in Source Code 5-11. This data model also serves 

as a fundament for the RDF namespaces of each engineering partner as it contains all 

relevant information artifacts as well as their relationships among each other. Due to this 

data model is implemented in the Blockchain itself, it is multiplied for each newly joining 

peer and enables traceability with legacy IT systems as well as within the Blockchain 

network (cf. Figure 4-36). 

 

Source Code 5-11: Generic information artifact structure. 
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METAMODEL 

The metadata model includes information on the definition of information artifacts, their 

attributes and stats, as well as interface objects. It has been implemented using RDF 

and OWL. Source Code 5-12 depicts the generic metamodel structure. 

 

Source Code 5-12: Generic metamodel structure. 
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ONTOLOGY 

The ontology defines the object and data properties as well as classes. It has also been 

implemented with RDF and OWL. The generic description of the ontology is depicted in 

Source Code 5-13 where all relevant taxonomies are preloaded and annotations are 

defined. Source Code 5-14 depicts the generic object properties for, e.g., interface 

elements, business objects, or an email address. 

 

Source Code 5-13: Generic ontology description. 

Data properties, such as an element name, interface link URI, or parameter name, are 

depicted in Source Code 5-15. Different classes are implemented for the categorization 

of backend system interface elements which helps alignment of data. This is depicted 

in Source Code 5-16. 
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Source Code 5-14: Generic object properties of the ontology. 
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Source Code 5-15: Generic data properties of the ontology. 
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Source Code 5-16: Generic classes of the ontology. 

INFORMATION ARTIFACTS 

The relations and information artifacts depicted in Figure 5-28 are transferred, again in 

OWL and RDF, to the implemented data model. In that, relations are described by 

bundles and the association with other domains, as it is depicted generically in Source 

Code 5-17. 

Additional information is provided by data properties, such as the type version of an 

automobile, the model series, an aggregated process status, or the current state. This 

is depicted in Source Code 5-18. 
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Source Code 5-17: Generic object properties of the information artifacts. 
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Source Code 5-18: Generic data properties of the information artifacts. 

5.5 Alignment with legacy IT architecture 

The Hyperledger Fabric platform is integrated in the existing IT architecture landscape 

of each engineering partner as the PLM Blockchain backbone, as presented above. 

Hereby, each node of each engineering partner represents the PLM Blockchain 

backbone for their own internal IT architecture. This is depicted in Figure 5-29133. 

Different REST APIs enable the quick and easy connection of the in the Hyperledger 

Fabric platform to legacy systems (BASHIR, 2018: p. 476) and hence is in alignment with 

requirement 15 for standardized APIs to alleviate the connection of engineering partners 

as well as legacy IT systems. 

 
133 The fourth layer for ERP etc., as depicted in Figure 2-12, was omitted due to it not being in the scope 
of this work. 
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Figure 5-29: Generic positioning of the prototypical implementation of a PLM Blockchain backbone 

within a legacy IT architecture. For abbreviations, please refer to the description of Figure 2-12. 

As presented in Chapter 5.2.2, the GUI is web-based and allows for IT system-

independent documentation of relevant metadata. Due to it could not have been 

implemented directly into an existing IT system architecture, based on limitations in time 

and a huge complexity (cf. Chapter 5.2), the interims step of separate documentation of 

metadata in the web browser has to be implemented. This implies the conjecture that, 

after the engineer modeled objects according the SPES method in the MBSE tool, would 

have to switch tools and document the relevant metadata manually in the web browser. 

This would, in turn, trigger an update of RDF namespaces for MBSE within the 

Blockchain framework (cf. Chapter 4.2). 

The implementation scenario for a first step including manual documentation within the 

web browser presented above would consist of stand-alone IT tools and systems. This 

means that after modeling MBSE SysML models, the manual documentation has to be 

started by also manually opening the Blockchain framework’s GUI. Afterwards, the 

engineering collaboration partner also has to open their web browser in order to access 

the changes made by the counterpart. In the next step, these alterations have to be 

documented manually again in the respective MBSE tool. The updating of the RDF 

namespaces after confirmation will be triggered automatically within the Blockchain 

framework. In a further development stage, there might be a button within the MBSE 

tool directly linking the Blockchain framework’s web browser GUI via OSLC where the 

MBSE tool serves as consumer and the Blockchain framework as provider for the 

delegated UI (cf. Chapter 2.4.3). This would already increase usability slightly. The rest 

of the steps would still be executed manually. 

In the ultimate development stage, metadata will be exchanged automatically between 

the MBSE tools and the Hyperledger Fabric platform to allow for maximum efficiency 

and minimum error-proneness. 
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6 Evaluation of the solution framework 

This chapter conducts the evaluation of the solution framework according to the four 

objectives of this research. For this purpose, in Chapter 6.1 the evaluation approach will 

be presented. The following Chapters 6.2 and 6.3 describe use cases for the evaluation 

of different aspects of the framework. Chapter 6.4 summarizes the overall evaluation of 

the solution framework based on the research objectives and Chapter 6.5 discusses the 

results as well as ramifications. 

6.1 Evaluation approach 

The terms validation and verification are used differently in engineering and literature 

(SEEPERSAD et al., 2006: p. 303). Here, verification is defined as the evaluation that 

specifications have been fulfilled, i.e., internal view and consistency. Validation is 

defined as the evaluation of if the product fulfills the intended business use required by 

the customer or stakeholder, i.e., external view and consistency134. In this work, the 

focus will mainly lie on the verification of the defined framework according to the 

deduced requirements. Hence, the internal view will be applied, and internal consistency 

will be evaluated accordingly. Additionally, validation was done within the project with 

the three engineering partners with whom the prototype was developed. Given the 

complexity of the defined solution framework, the empirical validation with end-users 

was not in scope. This is often the case due to the difficulty in the assessment of 

methodologies and approaches. The design process, also in automotive industry, is 

often longer than a research project and hence the effects might not be visible directly135 

(BLESSING and CHAKRABARTI, 2009: p. 183). Moreover, “the synthetic nature of design is 

incompatible with the controlled experiments useful for theory testing” (GAVER, 2012: p. 

940). For these reasons, a qualitative evaluation approach will be chosen. 

In alignment with BLESSING and CHAKRABARTI (2009), the application evaluation targets 

on the assessment of the desired values with respect to the applicability of the support 

for this dedicated task. Usability and applicability are considered to be focal (BLESSING 

and CHAKRABARTI, 2009: p. 37). Here in this context, the desired values resemble the 

 
134 Also, please refer to Footnote 48 on p. 54 for the distinction of verification and validation and the 
respective sources as well as INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (1983: p. 37). 
135 Please also refer to DEUTSCHES INSTITUT FÜR NORMUNG E. V. (2018b, 2018a, 2018c) for an assessment 
of specific criteria of the openness of IT products in the realm of PLM which is deemed to be too generic 
for the evaluation of this work. 
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requirements, and the support is equal to the solution framework136. It shall be clarified 

whether: 

1. the framework can be used, 

2. the framework does indeed address the requirements it is meant to, 

3. the requirements are affected as expected (BLESSING and CHAKRABARTI, 2009: p. 

184). 

Commonly, the actual support of the implemented, synthesized solution framework does 

not address all requirements of the intended support (BLESSING and CHAKRABARTI, 2009: 

p. 183). Therefore, different use cases will be described in the following chapters which 

highlight different aspects of the framework. The use cases have been chosen as 

generically as possible to alleviate the transfer to other automotive engineering 

collaborations as well as to engineering collaborations in other industries. Use case 1, 

the door control module (DCM), evaluates a very common ECU and hence allows for a 

transfer to all automotive OEMs and their engineering partners and, partially, to other 

industries where such ECUs are developed jointly. This use case was developed, 

implemented, and tested with three major companies in the automotive sector. Use case 

2, the centralized ECU, is an approach the entire automotive industry follows more or 

less and hence does not limit the scope to one OEM. Similar approaches might be 

possible also for other industries where there are multiple ECUs whose functionalities 

could be combined into one. 

Here, the explicitly formal, i.e., mathematical, evaluation of MBSE and its data models 

and other implemented data models is not within scope due to it only being one part of 

the entire solution framework. Moreover, the evaluation of data models commonly 

assesses the quality of data models by distinct metrics137. However, here in this work 

the focus is on generating traceability by means of an integrated data model, inter alia, 

which is not designed to achieve the highest performance in modeling or data 

exchange138.  

Table 6-1 depicts according to which exemplary use cases the requirements are 

addressed. 

 
136 As described in Chapter 1.4, the DRM only serves as a blueprint where suitable and is not followed 
stoically. 
137 For more information about formal verification techniques, please refer to DEBBABI et al. (2010). 
138 For more information regarding methods for evaluation, please refer to BORTZ and DÖRING (2006) and 
FELDHUSEN and GEBHARDT (2008: 189 ff.) for the quantitative evaluation of PDM IT systems. 
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Table 6-1: Evaluation scheme for use cases. 

 

6.2 Use case 1: Door control module 

6.2.1 Technical problem statement 

Figure 1-5 depicts the generic system development process in automotive E/E 

development with multiple engineering collaboration partners. This generic process is 

the basis for use case 1 which focuses on fostering traceability up- and downstream of 

the process within the OEM’s company (internal) and in alignment with suppliers 

(external). For this purpose, the development process of the DCM will be evaluated. 
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OBJECT OF INVESTIGATION 

The functionalities implemented in the DCM have increased in the last years due to an 

increase in functionalities in an automobile’s door itself. This yields in a greater variety 

of variants and hence a higher complexity which has to be bundled within a DCM. 

Commonly, a DCM comprises of the control of the electric window lifter, mirrors, 

functional illumination, locks, signal lights in the mirrors, seat adjustment, etc. Due to 

these functionalities being connected with each other within the automobile, the DCM 

must be interconnected with other ECUs. Depending on the amount and complexity of 

functions implemented in the DCM, it is connected via a CAN, or in the case of less 

complexity, a LIN bus is used (REIF, 2014: p. 245). Figure 6-1 depicts a DCM from an 

E/E perspective (in alignment to REIF, 2014: p. 246). The respective software, 

bootloader, functional, and parametric, is added in darker shades. The parametric 

software is stored within the EEPROM. In principle, a DCM can be divided into the input 

area, the processing unit, and the output area (from left to right in Figure 6-1) (REIF, 

2014: p. 246). Particularly, the I/O structure, for instance pins, plugs, signals, etc. are 

relevant here (cf. Figure 4-15). Single E/E sub-parts, sensors, and actors within or 

attached to the ECU are not in scope and subsumed under “ECU”. 

 

Figure 6-1: Door control module (in alignment to REIF, 2014: p. 246). 
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6.2.2 Use case description 

The DCM can be considered as one of the least complex ECUs in an automobile and 

hence serves here as an entry level example for the joint development in an engineering 

collaboration. It is assumed that the entire DCM hardware, i.e., the physical ECU, is 

developed by one supplier including the bootloader and functional software for the main 

car variant (cf. Figure 2-14 and Figure 2-16). The parametric software usually is coded 

by the OEM. The DCM is embedded in the automobile’s E/E system “comfort system” 

and interacts there with other ECUs within this system as well as across other E/E 

systems. For instance, in case of an emergency, windows close automatically and this 

signal by another ECU has to be processed within the DCM. Therefore, changes in other 

ECUs within the same or from another E/E system have impacts on the DCM itself and 

vice versa. These dependencies have to be considered early during the development. 

Commonly, the OEM starts by defining the E/E architecture and within this dedicated 

E/E systems, such as the “comfort system” where the DCM is included. For the search 

of a supplier, the OEM writes a specification sheet for the DCM including all relevant 

technical parameters that have to be considered during development to ensure proper 

operability. After the confirmation of the order, the supplier starts with the engineering 

process. Partially in parallel, many other engineering partners develop other ECUs and 

E/E systems as well as the OEM starts coding the parametric software. Given the above-

mentioned multiple dependencies, engineering changes affecting other parts or 

information artifacts of different engineering partners have to be detected as early as 

possible (cf. Chapter 1.2). For that purpose, the actual implementation of the use case 

within the solution framework has to be described in the following. 

6.2.3 Exemplary implementation of use case 1 

The relevant information artifacts for use case 1 were addressed in Chapter 4.1.1 where 

the synthesis of the data model for the solution framework was presented. Figure 4-6 

depicts the generic structure of the ECU, also including the DCM’s relevant information 

artifacts. The implementation of these information artifacts was shown in Chapter 5.4 

and depicted in Figure 5-28 and Source Code 5-11.  

Objective 1.a., foster internal traceability by means of the alignment of MBSE and PDM 

for E/E, requires the explicit inclusion of ECU pins (requirement 1), the NCD 

(requirement 2), and the ECU software (requirement 3) as crucial information artifacts 

specifically for E/E. Therefore, these information artifacts must be modeled within the 
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data model. This is depicted in Source Code 6-1. Although the relevant information 

artifacts to foster traceability were defined and implemented, the holistic integration of 

this data model with these of MBSE and PDM in their respective IT systems were not 

implemented (cf. requirement 4). However, requirement 5 was addressed, including 

https links in the data model which serves as part of the basis for requirement 11. Yet, 

the traceability scheme for OEM and supplier is only partially addressed. This is due to 

OSLC including RDF, https trace links, and REST APIs are implemented but not 

connected across all IT systems. The implemented standard data model alleviates data 

exchange. Due to there is no automatic data exchange within the MBSE tool and PDM 

system implemented, requirement 13 is only partially addressed. 

 

Source Code 6-1: Data model for door control module. 
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When starting with the process, the engineer models the E/E system in Windchill 

modeler, the MBSE tool. According to the SPES method and the RFLP logic, information 

artifacts are created for each engineering partner within the authoring MBSE tool, 

transferred to the RDF namespaces by means of the standard data model, eventually 

updating the documentation in the PDM system for E/E, and satisfying requirement 14. 

The standard development process is relevant for internal traceability and even more so 

for synchronized work with engineering partners fostering external traceability. This is 

depicted schematically in Figure 6-2. 

 

Figure 6-2: Development process for door control module. 

Moreover, external traceability is strongly enabled by the Blockchain technology serving 

as the PLM backbone for each OEM and engineering partner which fosters distributed 

engineering. Given that the OSLC key components are implemented (cf. Chapter 5.4), 

however not across all IT systems, requirement 6 is only partially addressed. Through 

the consensus mechanism (requirement 7) and the automatic change propagation 

(requirement 8), engineering changes for the DCM become directly apparent, which can 

then be assessed, and the confirmation or veto can be communicated. Thus, the 

reduction of reconciliation is fostered during the development of the DCM. Engineers 

modeling and documenting their information artifacts for the DCM can rely on an 

immutable product history (requirement 9) when exchanging data with engineering 

partners and suppliers. The multi-directional synchronization (requirement 10) is not 

completely addressed due to the above-mentioned reasons of no implementation in the 

MBSE tool and PDM system. The same applies to requirement 15, although the 

Hyperledger framework provides REST APIs. Data integrity for safe product changes 
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(requirement 12) which is ensured for the DCM development through the Blockchain 

technology, as well as the availability of data and its robustness (requirement 16). The 

technological aspects of the use case for DCM development are depicted in Figure 6-3. 

 

Figure 6-3: Technology aspects for door control module. 

6.3 Use case 2: Centralized, server-oriented E/E architecture 

Due to the maturity of this use case during the definition and implementation of the 

prototype and elaboration of this work, the following chapters describe a conceptual 

state. Nevertheless, the developed solution framework for traceability suits very well the 

future server-oriented automotive E/E architecture with a centralized control unit and a 

server-oriented E/E architecture, for which reasons this use case is deemed to be 

evaluated, albeit given some assumptions. 

6.3.1 Technical problem statement 

Similar to use case 1, the engineering collaboration with multiple partners is assumed 

as well as the current impediments. The motivated, synthesized solution framework (cf. 

Chapter 4) is deduced from the impediments and used to address these with the 

compiled, implemented framework (cf. Chapter 5). 
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OBJECT OF INVESTIGATION 

In order to counter the increasing complexity of the automotive E/E architecture (cf. 

Chapter 1.2), OEMs and suppliers develop and already offer a centralized, server-

oriented approach where a centralized ECU with more processing power and more 

memory substitutes multiple single, less powerful ECUs. This does not only reduce 

complexity of the wiring harness, communication busses, and packaging but also 

enables future software and feature updates which might require more powerful ECUs 

than today’s used ones. The centralized ECU consists of distinct hardware, 

middleware/OS, and multiple software. Sometimes, several virtual ECUs are emulated 

within the centralized ECU to provide different software environments for different 

applications as well as for security reasons. The centralized ECU is connected to other 

ECUs controlling distinct zones of the automobile’s E/E architecture, for instance the 

multimedia system. Additionally, gateways and body control modules can be connected 

(CONTINENTAL AG, 2020, 2021; DAIMLER AG, 2020). The structure of the centralized ECU 

is depicted in Figure 6-4. 

 

Figure 6-4: Centralized ECU (in alignment to CONTINENTAL AG, 2021). 

The multiple software can be separated in sandboxes, again for security reasons. This 

enables the access of third parties, such as a supplier, to this dedicated software 

sandbox on the centralized ECU via the automobile’s antenna. Consequently, the 

supplier can update existing, or add new features and applications throughout the 

automobile’s lifecycle. 
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6.3.2 Use case description 

Already today, automobiles receive updates over the air during their operations phase 

with the customer. These can be minor bug fixes, updates of, e.g., navigation data and 

enabling of features for which the hardware already was integrated in the automobile 

but the feature has not been purchased initially. Such updates during the operation 

phase reflect the processes during the initial development including the development V-

model where the OEM serves as a final integrator of all the contributions of the suppliers 

and their own. In contrast, the centralized, server-oriented E/E architecture with 

sandboxes for dedicated software applications on the centralized ECU enables the 

direct transfer of software updates and features by the suppliers to the centralized ECU. 

Therefore, the OEM does not have to serve as a carrier for specific software from 

suppliers into all vehicles anymore. This fosters the easier integration of new software 

suppliers in order to decrease time to market for new features. Still, all engineering 

partners write their changes of information artifacts into their Blockchain PLM backbone 

from where these information artifacts are synchronized within the engineering 

collaboration’s Blockchains and the respective MBSE tools and PDM systems. After the 

consensus process and positive responses, the supplier can directly flash the new 

software onto all vehicles in scope without the need for a detour via the OEM’s IT 

infrastructure. This use case is depicted in Figure 6-5. Of course, granting access to the 

transmission infrastructure of the OEM still is necessary for a supplier to execute such 

a remote update. 

 

Figure 6-5: Use case centralized ECU. 
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6.3.3 Exemplary implementation of use case 2 

Again, the exemplary implementation of the centralized, server-oriented E/E 

architecture with a central ECU highlights the peculiarities of this scenario. Further 

details have already been given above. 

Requirements 1 to 3 have been addressed, although not all pins, NCDs, and software 

have been included in the data model which would probably exist in an integrated, 

powerful centralized ECU. The data model is depicted in Source Code 6-2. 

 

Source Code 6-2: Data model for centralized ECU. 
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A linked data model is enabled given the https links and UUIDs. However, the 

complete integration with the MBSE tool and PDM systems is not implemented despite 

REST compatibility of all systems (requirement 4). Trace links are implemented for each 

information artifact (requirement 5). Requirement 6 is addressed only partially by the 

implementation of OSLC, yet not including all IT systems. Requirements 7, 8, 9, and 12 

are addressed again through the usage of the Blockchain technology. Due to changes 

for the central ECU also first have to be shared with the engineering partners through 

the individual PLM Blockchain backbones, a multi-directional synchronization is ensured 

within the Blockchain network (requirement 10). A traceability scheme is enabled by 

OSLC and its components, but it was not completely implemented across all IT systems 

(requirement 11). The standard development process is implemented (requirement 14) 

and the standard data model for exchange (requirement 13) is addressed partially due 

to limitations in the connection of IT systems. The alleviated connection of engineering 

partners is enabled by means of standardized APIs; however, the integration of legacy 

IT systems is not implemented completely (requirement 15). Data availability and its 

robustness is addressed by the Blockchain (requirement 16). These different aspects 

are depicted in Figure 6-6. 

 

Figure 6-6: Development process and technology aspects for centralized ECU. 
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6.4 Evaluation of research objectives 

The evaluation of the research objectives (cf. Chapter 1.3) and the resulting 

requirements (cf. Chapter 3) is done by means of the three questions for application 

evaluation (cf. Chapter 6.1). 

THE SOLUTION FRAMEWORK CAN BE USED 

The scope is to assess whether the support presented here, which is the solution 

framework, is actually usable and applicable to the situation which shall be improved. 

This means, if the support is able to address the key factors or objectives and 

requirements in this case. BLESSING and CHAKRABARTI (2009) give the example that, 

albeit a support for an issue is implemented, it might be too complicated for designers 

to use. Hence, usability would not be given in this case, and proper solution approaches 

to increase usability must be considered in order to not discard the intended support 

(BLESSING and CHAKRABARTI, 2009: pp. 167, 187–188). 

Transferred to the framework at hand, the usability and applicability of it must be 

evaluated. This has to be looked from the perspective of two different angles. First, it 

shall be deduced if the solution framework addresses the research objectives and 

resulting requirements (applicability). Secondly, as mentioned by BLESSING and 

CHAKRABARTI (2009), is shall be considered whether the solution framework supports 

engineers in their work (usability). 

The applicability of the solution framework is inherent, given the deduction of it from the 

initial problem statement via all the steps in between. The problem statement is the basis 

for the research objectives, which have been categorized to address different kinds of 

traceability and subitems within them. The state of science and technology was 

assessed given the three dimensions of enablers, data model, process model, and 

technology, that are relevant for the solution framework, as motivated in Chapter 1.4. 

Based upon the research objectives and the state of science and technology, the 

requirements have been derived from. Deduced from these previous assessments, the 

solution framework was synthesized. Ergo, the applicability of the solution framework to 

address the problem statement is in alignment with the nature of deduction of the entire 

research approach. The deductive approach is depicted in Figure 1-8. 

The usability of the solution framework was analyzed above by means of use cases. 

Here, the perception was made that the engineer has to document less in multiple tools, 

reduces effort for reconciliation and searching for the most recent product updates, and 
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is supported by the solution framework in their engineering tasks within the engineering 

collaboration. In general, the usability of the framework is given. Limitations will be 

addressed further below in the next paragraphs and in Chapter 6.5. 

THE SOLUTION FRAMEWORK ADDRESSES THE REQUIREMENTS 

As stated above, the requirements have been derived from the research objectives after 

the evaluation of the state of science and technology. Each objective was further 

subclassified and within these subitems the requirements were formulated. For the 

synthesis of the solution framework, each requirement was addressed individually by 

one of the three enablers. This means, that for instance, an information artifact was 

modeled explicitly, a processual step was defined, or a given logic was implemented 

into the IT tools to satisfy these specific requirements. Therefore, the solution framework 

addresses all established requirements. 

THE REQUIREMENTS ARE AFFECTED AS EXPECTED 

The expectation is that objectives and their requirements are addressed completely by 

the solution framework. The solution framework does indeed address all requirements 

generically and conceptually. However, complexity impeded the holistic implementation 

of all requirements (cf. Chapters 6.2 and 6.3). Hence, the presented use cases only 

partially address some requirements and conclusively also only partially address the 

defined objectives. 

As presented in Table 6-2, both use cases display the same level of generic 

implementation and thus also the same extent of requirements which are addressed 

completely or only partially. As presented above, the challenges are to fully implement 

the defined linked data model with existing MBSE and PDM data. For this reason, 

objective 1.a. is only addressed partially. Likewise, objective 2.a. is confined regarding 

the complete implementation of OSLC across all IT systems. The same reason applies 

to objective 2.b., where the implementation with MBSE and PDM systems is not fully 

achieved. This also prevents a complete automatic data exchange and the integration 

of legacy IT systems. Hence, objective 2.c. is only addressed partially. 

In conclusion, it can be stated that the developed solution framework addresses all 

objectives and requirements, albeit not all requirements could be implemented to their 

fullest extend in each use case due to the reasons mentioned above (cf. Table 6-2). 
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Table 6-2: Evaluation of addressed objectives and requirements by use cases. 

 

6.5 Discussion 

DATA MODEL 

The most difficult endeavor in generating and improving traceability across multiple 

engineering domains and within an engineering collaboration is the connection of 

information, i.e., implementing a standardized data model which suites all semantical 

and technological needs. By the definition of the crucial information artifacts for E/E 

development, in this work a generic solution approach is created. Although existing 

standards are used as references, an industry standard has to be created in order to 

foster stringent and efficient connection of information artifacts and traceability with 
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multiple engineering partners. A major obstacle is the connection with and inclusion of 

legacy IT systems and their existing data models with their own semantics which is 

implemented here as a generic joint metadata model. 

PROCESS MODEL 

The definition of a joint development process model that fits the domains of MBSE, PDM, 

and has a technological fit with the Blockchain technology, is achieved by extending the 

SPES method for MBSE. The SPES method defines which information artifact is created 

in which scenario, but not at which point in time. The alignment with the consensus 

mechanism of the Blockchain technology is the basis for the reduction of reconciliation 

and transparent changes. The major PDM operations, for instance, creation of a 

configuration and variant, change management, and inactivation, are described for a 

limited number of engineering partners. However, there are many more relevant PDM 

processes, such as release or audit management (cf. Chapter 2.3.2) which are not 

addressed here in this work. 

TECHNOLOGY 

As the Blockchain technology has already existed for some years in the financial world, 

it is slowly finding its applications in other domains. Therefore, what was defined initially 

for finances has to be adapted and extended to fit the engineering domain. Here in this 

work, a first step towards this application of the Blockchain technology is done. The 

connection with tools and IT systems from engineering is very challenging and only is 

implemented partially in the presented use cases. Although the underlying technology 

for the interfaces between the Blockchain and MBSE and PDM systems, i.e., REST API, 

is the same, a complete definition of these interfaces is not feasible during this work and 

still requires a lot of standardization. Moreover, advantages of the Blockchain 

technology, e.g., anonymity, ad hoc participation, transparency, etc. do not always apply 

in an industrial setting. Although the Hyperledger fabric framework addressed some of 

these adaptations, not all issues for engineering collaboration are resolved. 

The Hyperledger fabric framework, used for the implementation of the Blockchain, does 

not support the addition of further information artifacts once the Blockchain network was 

installed among all peers. This is particularly cumbersome in agile development where 

not all scope is specified at the beginning but rather during engineering. The latest 

versions of Hyperledger fabric might address this issue by implementation of a chain 

code lifecycle (SORNIOTTI and YELLICK, 2018). 
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7 Summary and outlook 

7.1 Summary 

The research work at hand assesses challenges that are arising during the automotive 

development process in distributed engineering collaborations. Particularly, traceability 

of E/E information artifacts in early development within a company and among multiple 

engineering partners is in scope. The state of science and technology so far has not 

established sufficient concepts to address these issues in detail. 

This work constitutes the creation of a new solution framework by composition and 

assembly of existing approaches, similar to the Blockchain technology itself, and new 

solution elements applied in a complex and heterogeneous context with multiple 

stakeholders, different IT standards, and emerging technologies. Such a problem space 

in engineering can be denominated as a wicked problem and the research thereof as 

science of the artificial. The envisioned solution framework composing and assembling 

different solutions even could yield a surplus benefit, such as traceability reduces error 

proneness, increases quality, reduces efforts, etc., what is called emergence. Therefore, 

this work follows a design research approach. 

The objectives of this work are to foster internal as well as external traceability by means 

of a solution framework consisting of a data model, process model, and technology as 

enablers. The objective to foster internal traceability is further refined by the connection 

of the early systems development (MBSE) with product data management (PDM). 

External traceability is subdivided further into: cultivating the reduction of reconciliation 

among engineering partners, to encourage transparent and safe product changes, and 

to foster alleviated connection of engineering partners. Given the conceptualization of 

the enablers, the solution framework offers a sufficient satisfaction of the requirements 

to foster traceability of E/E information artifacts in engineering collaborations and 

addresses all previously defined objectives. During the implementation of the solution 

framework, not all aspects of the objectives and requirements are addressed by the 

enablers due to the underlying complexity of the connection of the solution framework 

with legacy IT systems. 
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DATA MODEL 

The presented metadata model incorporates aspects of E/E, MBSE, and PDM in 

automotive development. System modeling aspects shape the hierarchy of the data 

model, which is strongly aligned with existing industry standards, and extending the data 

model further to include crucial missing aspects of E/E and PDM. For E/E in particular, 

the E/E systems all the way down to an ECU’s pin as well as a NCD are modeled. 

Configurations, variants, and versions are included to reflect the PDM aspects of a 

product lifecycle and for the collaborative exchange of data with engineering partners. 

For the purposes of availability of data among engineering partners, association of data 

is achieved by including UUIDs and links into the metadata. Data integration is 

accomplished by RDF namespaces which comprise the joint metadata models of each 

domain and can be included into each engineering partner’s own IT systems using the 

defined links and UUIDs. 

The definition of a metadata model, stored in standard form, its integration in the 

engineering collaboration, and the linkage to each partner’s legacy IT systems provide 

the fundament for traceability. 

PROCESS MODEL 

In alignment with the chosen systems development approach and the selected 

technology underneath, the elaborated process model defines at which point in time 

which information artifact is created in which IT system of which engineering partner. It 

has been considered that the systems development is aligned with the PDM. 

Moreover, the process model includes, provided by the Blockchain technology, 

instantaneous change propagation and the underlying consensus mechanism regarding 

these changes. Additionally, the exchange of data for the purpose of synchronization of 

all involved IT systems is modeled in the process models. Both aspects are transferred 

to engineering collaborations. 

Combining the systems development with PDM aspects, as well as the reduction of 

reconciliation combined with transparent product changes, fosters traceability during the 

early automotive development phase with multiple engineering partners. 

TECHNOLOGY 

As for the integrational technology for collaborative data exchange, a decentral peer-to-

peer data base is chosen, namely the Blockchain technology and specifically the 

Hyperledger fabric framework. By the use of the Hyperledger fabric framework, some 
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objectives of this work are addressed inherently. The Blockchain technology fosters 

traceability through the immutable documentation of transactions among many peers, 

offers a consensus mechanism which can be applied to enterprise necessities, spreads 

changes in form of new transactions instantaneously, and many more. This work applies 

the Blockchain technology to the realm of engineering IT. Data and process models from 

engineering are adapted to fit the solution framework. The application of this solution 

framework in the early systems development in the automotive industry is a novelty. 

Moreover, ad hoc participation of engineering partners for the contribution of 

engineering content is alleviated by means of the standardized Blockchain technology. 

As the Blockchain technology in the financial domain is classically not connected to 

further, extensive data bases, except those storing information of the transactions, 

users, or their assets, the connection to legacy IT tools and systems is tremendously 

challenging. Implementing standard APIs, joint data model namespaces, and the 

alignment of information artifacts across IT systems, enable this connection. 

The Blockchain technology is a very powerful solution which helps fostering traceability 

in the systems development within an engineering collaboration, as it is shown in this 

elaboration. Yet, further research must be conducted to enable a standardized industrial 

application of it. 

7.2 Ramifications and outlook for automotive engineering IT 

RAMIFICATIONS 

From engineering and engineering IT perspective the introduction of a new, disruptive 

technology is often associated with many challenges. The Blockchain technology can 

be considered disruptive due to its decentralized setup, versus centralized, more 

traditional approaches. Such challenges arise in the technical area, as this work 

describes abundantly, as well as in the organizational area. 

Enabling and training people to work with new technologies, such as presented here, is 

an important task to foster acceptance and remove barriers. As the effort for searching, 

alignment, reworking, etc. diminish due to a holistic framework for traceability by means 

of the Blockchain technology, efficiency of engineers will increase. This in turn means 

that for the same amount of work, less people are necessary. Generally speaking, this 

could lead to a reduction of the workforce. For companies, efficiency gains are crucial 
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to remaining competitive. On the other hand, increased efficiency and the potential 

reduction of the workforce might have negative effects for employees.  

The organizational ramifications of the introduction of the Blockchain technology on 

organizational aspects, not only for the engineering IT but also in the wider social 

context, will be addressed in more detail in Chapter 7.4. 

OUTLOOK 

A further standardization of data models in automotive development across the entire 

industry would further foster traceability. At least each domain involved in the 

development phase up to the involvement in the entire lifecycle of an automobile should 

adapt the same business objects on a high level in order to achieve traceability across 

many IT systems and tools as well as among engineering partners. Such 

standardization would further contribute to the concept of a Digital Twin, which will be 

touched briefly further below. 

Additionally, the associations or relations between information artifacts could be 

enriched further with relevant knowledge for development or production. This concept 

has already been presented by GROLL (2008) for PDM in the automotive industry. 

Important knowledge for MBSE, E/E, engineering collaboration, specific processes, etc. 

could be added to the interconnections of information artifacts, creating a model-based 

process description. For this purpose, the association block in UML or SysML could be 

used and adapted (cf. WEILKIENS, 2008: pp. 154 ff.). 

As mentioned in Chapters 2.7.3 and 4.3.2, smart contracts139 are not in scope of this 

work due to their complexity in themselves, as well as for PDM in general. Smart 

contracts could however be implemented for the purpose of containing and executing 

Boolean expressions for the combinatory, which is required in the automotive 

development (ZENGLER and KÜCHLIN, 2013). Smart contracts could execute the if-then-

relations to combine and exclude technical dependencies, such as if ‘gas engine’ 

then NOT ‘diesel engine’, or map sales-oriented combinations, for instance the 

upgraded navigation system requires the entire business package. On a lower level, in 

the sense of technical product granularity, smart contracts could also represent 

dependencies within data models. Thereby, the incompatibility of information artifacts 

could be modeled and checked automatically. This automatism could be implemented 

early in the development phase and could partially replace manual process steps of 

 
139 For more information about smart contacts, please refer to BASHIR, 2018: pp. 261 ff. 
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agreement or decline during the consensus mechanism (cf. Chapter 4.2). A higher 

automized and more efficient, error-robust development process would be the result. 

The Blockchain technology and one framework, the Hyperledger Fabric platform, are 

implemented here exemplarily due to Hyperledger Fabric’s focus on consortia solutions 

including permissioned Blockchains. However, there are plenty of other Blockchain or 

distributed ledger technologies (DLT) or frameworks as well as decentralized 

autonomous organizations (DAO). Each of this framework has its peculiarities, different 

foci, and research in this field as well as implementation evolve quickly. Hence, there 

could be, in the meanwhile, a superior Blockchain technology available for dedicated 

purposes. Furthermore, different Blockchains can be pegged together, allowing for the 

transfer of assets between them (BACK et al., 2014). This approach could further foster 

data sovereignty of each engineering partner, not having to rely on the OEM’s channels. 

Therefore, future research also could focus on the specific definition of a Blockchain 

platform, tailor-made for the automotive industry140. 

The Digital Twin is an extension of the PDM and PLM concepts with individual, product-

specific scope. The term Digital Twin can be understood in general as the holistic, 

physical (described by laws of physics) and functional description of a component, a 

product or a system which has a physical (real, haptic) instance and a digital copy 

(“twin”) in IT backbone systems. Included in this is all relevant information which could 

be necessary for current or future lifecycle phases (BOSCHERT and ROSEN, 2016: p. 59; 

HEBER et al., 2018: p. 9; HEBER and GROLL, 2018c: p. 324). The concept of the Digital 

Twin is depicted in Figure 8-1141. Changes applied to the Digital Twin could be traced 

by means of the Blockchain technology (KIRKPATRICK and KAUL, 2019: p. 3). By this, the 

Blockchain technology could foster traceability on the level of individual products. 

As described in Chapter 5.2, Docker containers were used to install the prototype on 

each peer’s computer. Beyond that, Docker images could be applied to transfer the 

complete initial Blockchain network, data model for MBSE and PDM, as well as process 

model information to all new engineering partners who want to contribute to the 

development of the dedicated automotive E/E system. The image of the Docker 

container could be ready for download once granting access to it. After installation, the 

 
140 For more information about different Blockchain technologies, DAOs, and DLTs, please refer to FROST 

& SULLIVAN (2017), FRØYSTAD and HOLM (2015), HILEMAN and RAUCHS (2017), DHILLON et al. (2017), UK 

GOVERNMENT CHIEF SCIENTIFIC ADVISER (2016). 
141 For more information about the concept of the Digital Twin, please refer to HEBER et al. (2018), HEBER 
and GROLL (2018c), BOSCHERT and ROSEN (2016), EIGNER et al. (2017). 
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Blockchain network would be initialized for the new peer, APIs configured, metadata 

model implemented, and information regarding the development process shared. This 

would further alleviate the connection of engineering partners and foster external 

traceability. 

In addition to the presented use case 2 (centralized, server-oriented E/E architecture), 

the automobile also could serve as a distinct node of the Blockchain network. Not only 

would engineering partners directly write their software into each car, but the car would 

also document these changes transparently, immutably, and decentralized. This would 

mitigate the possibilities of manipulation of software particularly during the after sales 

phase and could contribute to the above-mentioned concept of the Digital Twin. Whether 

smart contracts would automatically agree or decline changes of the software, or the 

PLM Blockchain within the car just serves as a documentation of results without 

participation in the consensus mechanism, still has to be defined. This outlook is 

depicted in Figure 7-1. 

 

Figure 7-1: Automobile as distinct node in the Blockchain network. 

7.3 Ramifications and outlook for further industries 

The Blockchain technology has already revolutionized parts of the financial industry by 

the introduction of crypto currencies. Besides this, the application of the Blockchain 

technology has evolved into many other industries where traceability combined with 

immutability, transparency, and decentralization is required.  
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“Insurance, healthcare, transportation, real estates, manufacturing, networking, [and] 

IoT, and energy management” (FROST & SULLIVAN, 2017: pp. 25 ff., 51) are supposed to 

be industries which will be disrupted by 2025 by the Blockchain technology where a wide 

array of applications of the Blockchain technology considers the documentation of 

ownership of physical and digital assets (cf. MORABITO, 2017: pp. 28 ff.; ANTONOPOULOS, 

2017: p. 278). Likewise, the financial sector will be impacted (FROST & SULLIVAN, 2017: 

p. 51). Supply chain and verification of provenance might be one of the most popular 

application of the Blockchain technology outside the financial area (LU and XU, 2017: p. 

22). Confirmation of the reliability of scientific studies and their results, or medical 

studies probably rank among the rather exotic use cases (MORABITO, 2017: p. 30). For 

governmental affairs and the public sector, for instance for notaries, land charge 

registers, or auditing, traceability with the amenities of the Blockchain technology are 

possible applications (VOSHMGIR, 2016: pp. 21–22; SCHLATT et al., 2016: p. 30). 

In the automotive industry, not only could the engineering IT be affected by the 

Blockchain technology, but also connected cars as well as autonomous vehicles, supply 

chain and logistics, and leasing, to name a few (FROST & SULLIVAN, 2017: p. 58).  

7.4 Ramifications and outlook for the wider social context 

The Blockchain technology automizes process steps and tasks which should otherwise 

have to be done by engineers. Examples for this are redundant documentation, 

controlling multiple systems for data synchrony, manual alignments with other 

engineering partners, inter alia. If process steps and tasks are automized, people have 

more time for duties which are not fully automated. However, it also could be the case 

that parts of the workforce can or must be laid-off due to a higher degree of 

automation142 (ABELE and REINHART, 2011 according to SPATH, 2013: p. 46).  

Prof. Dr. Hans-Jörg Bullinger also highlights that digitalization and interconnectedness 

in production will generate advantages in efficiency. This might yield to a reduction of 

employment in industry143. Simultaneously, new jobs will emerge from the construction 

of automatization technologies. However, this cannot be achieved with the workforce 

released from industry and factories. A potential solution for this issue might be, 

according to Prof. Dr. Bullinger, extensive qualification of people towards systemic 

 
142 Depending on the degree of automation, labor costs, and other key factors, jobs could also increase 
in the manufacturing industry (ABELE and REINHART, 2011 according to SPATH, 2013: p. 46) 
143 It is not yet clear whether substitution or complementary effects of digitalization on employment will 
predominate (BULLINGER et al., 2017: p. 112). 
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knowledge of electronics, mechanics, and IT144 (BULLINGER et al., 2017: pp. 112–114; 

GORGS, 2016). 

Transferred to the elaboration at hand, for those cases where automatization due to the 

Blockchain technology might result in the dismissal of engineers, qualifications to these 

people shall be offered. This training could include software development and coding, 

particularly for the Blockchain. Thus, engineers could maintain and improve their 

Blockchain installation, adapt smart contracts, and integrate legacy IT systems. 

Hence, the Blockchain technology could not only foster traceability, in some cases, it 

might also increase efficiency. If so, these employees relieved of inefficient, manual 

work could obtain further qualifications towards future technologies, such as the 

Blockchain technology. 

 
144 For more information about the connection of digitalization and qualification, please refer to DEUTSCHE 

AKADEMIE DER TECHNIKWISSENSCHAFTEN (2014), SPATH et al. (2017), BULLINGER et al. (2009). 
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Figure 8-1: Digital Twin for the automotive lifecycle (HEBER et al., 2018).
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