
The constantly increasing complexity in automotive development requires data models,

processes, and tools to address and handle this complexity by the documentation of information

artifacts and their relationships to create traceability. Particularly, electrics/electronics (E/E)

development including software and the corresponding information artifacts which are exchanged

between engineering partners and have a high reciprocal dependency are crucial for traceability.

The developed data model addresses peculiarities of model-based systems engineering (MBSE) in

alignment with product data management (PDM). The process model implements enhanced

alignment during systems engineering through automized synchronization of changes across IT

systems and a consensus mechanism to identify discrepancies as early as possible.

As a technological solution, the Blockchain technology is implemented and serves as a product

lifecycle management (PLM) backbone intermediating among multiple engineering partners’ IT

systems. Connecting the corresponding IT systems and tools within a company as well as

providing interfaces to external engineering partners, the PLM Blockchain backbone fosters

internal and external traceability.

A FRAMEWORK TO FOSTER
TRACEABILITY OF E/E ARTIFACTS

DURING AUTOMOTIVE
DEVELOPMENT

IN CONSIDERATION OF MODEL-
BASED SYSTEMS ENGINEERING

WITHIN DISTRIBUTED
ENGINEERING

COLLABORATION BY MEANS OF
THE BLOCKCHAIN

Dominik T. Heber

A
 FR

A
M

E
W

O
R

K
 TO

 FO
STER

 TR
A

C
EA

B
ILITY O

F E/E A
R

TIFA
C

TS D
U

R
IN

G
 A

U
TO

M
O

TIV
E D

EV
ELO

P
M

EN
T IN

 C
O

N
SID

ER
A

TIO
N

 O
F

M
O

D
EL-B

A
SED

 SYSTEM
S EN

G
IN

EER
IN

G
 W

ITH
IN

 D
ISTR

IB
U

TED
 EN

G
IN

EER
IN

G
 C

O
LLA

B
O

R
A

TIO
N

 B
Y M

E
A

N
S O

F TH
E B

LO
C

K
C

H
A

IN
D

o
m

in
ik T. H

eb
er

A FRAMEWORK TO FOSTER TRACEABILITY OF E/E

ARTIFACTS DURING AUTOMOTIVE DEVELOPMENT IN

CONSIDERATION OF MODEL-BASED SYSTEMS

ENGINEERING WITHIN DISTRIBUTED ENGINEERING

COLLABORATION BY MEANS OF THE BLOCKCHAIN

Dominik Tobias Heber

A FRAMEWORK TO FOSTER TRACEABILITY OF E/E

ARTIFACTS DURING AUTOMOTIVE DEVELOPMENT

IN CONSIDERATION OF MODEL-BASED SYSTEMS

ENGINEERING WITHIN DISTRIBUTED ENGINEERING

COLLABORATION BY MEANS OF THE BLOCKCHAIN

DISSERTATION

to obtain

the degree of doctor at the University of Twente,

on the authority of the rector magnificus,

prof.dr.ir. A. Veldkamp,

on account of the decision of the Doctorate Board,

to be publicly defended

on Thursday the 8th of December 2022 at 16:45 hours

by

Dominik Tobias Heber

This dissertation has been approved by:

Supervisor:

prof.dr. M. W. Groll

Supervisor:

prof.dr. J. Henseler

Cover design: Own design. Car illustration: © Mercedes-Benz Group. Background: © andruxevich/

Shutterstock.com
Printed by: Ipskamp Printing

ISBN: 978-90-365-5462-6

DOI: 10.3990/1.9789036554626

© 2022 Dominik T. Heber, The Netherlands. All rights reserved. No parts of this thesis may be
reproduced, stored in a retrieval system or transmitted in any form or by any means without

permission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag worden

vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande schriftelijke toestemming van

de auteur.

https://doi.org/10.3990/1.9789036554626

GRADUATION COMMITTEE:

Chair/secretary prof.dr.ir. H.F.J.M. Koopman (University of Twente)

Supervisor prof.dr. M.W. Groll (University of Twente)

Supervisor prof.dr. J. Henseler (University of Twente)

Members dr.ir. G.M. Bonnema (University of Twente)

Prof. Dr.-Ing. R. Dumitrescu (Paderborn University)

prof.dr. I. Gibson (University of Twente)

Prof. Dr. J. Oehmen (Technical University of Denmark)

"I remember clearly my parents' advice when, like all teenagers, I wondered what I
would do when I grew up. They said, "Money is not important. It will never bring you
happiness. [Strange advice to a future economist.] Use the brain God has given you,
and be of service to others. That is what will give you satisfaction"."

Joseph E. STIGLITZ, 2010: p. 276
Recipient of “The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2001”

Acknowledgements i

Acknowledgements

This thesis was written during my time as a PhD student at the University of Twente,

faculty of engineering technology, department of design, production & management,

and at Daimler AG, CoC electrics/electronics & software, IT processes & methods, and

would not exist without the help and support of many people.

I would like to express my highest gratitude towards my supervisor Prof. Dr. Marco W.

Groll. He ventured to accept me as a PhD student and I am deeply grateful for this

opportunity. I highly appreciate the scientific freedom I was granted, fruitful discussions,

with valuable input, helpful limitations in scope at the given time, and organizational

support in this new phase for me. Without Prof. Dr. Groll’s guidance, this thesis would

not have been feasible.

Furthermore, I would like to thank my supervisor Prof. Dr. Jörg Henseler for his

structured comprehension and scientific rigor which helped me to ameliorate this thesis

as well as driving the official process. I also would like to extend my appreciation towards

the members of the graduation committee dr.ir. Gerrit Maarten Bonnema, Prof. Dr.-Ing.

Roman Dumitrescu, prof.dr. Ian Gibson, prof.dr.ir. H.F.J.M. Koopman, Prof. Dr. Josef

Oehmen, for their valuable input, participation in the defense ceremony, and support.

I am exceptionally beholden to my internal supervisor at Daimler. Dr. Axel Lankenau,

the team leader of E/E documentation and testing, who supported me scientifically,

encouraged publications, served as enabler where necessary, gave me space, and

helped me to focus where required. With his brilliance and yet nonchalance, respect,

and motivation to others, Dr. Lankenau defines the embodiment of an excellent leader

for me.

Dr. Frank Arbes, head of the department of CoC electrics/electronics & software, IT

processes & methods at Daimler, I am very grateful not only for his monetary support

during my PhD phase at his department, but also for his encouragement during rough

patches. I am much obliged that he gave me the opportunity for this endeavor, to be

able to learn and grow as part of this PhD. Prof. Alfred Katzenbach I am thankful for the

introduction of me to Daimler and for shaping the beginning of my work. I appreciate Dr.

Siegmar Haasis’, CIO R&D Mercedes-Benz Cars, PhD-friendly environment and that I

had the chance to combine research and application in his center.

ii Acknowledgements

I would like to thank the Blockchain swarm at the Engineering IT Mercedes-Benz Cars

for their work for the prototype. Without their support, the prototype would not be what it

is. I particularly thank Dr. Sebastian Handschuh, Jochen Heinkel, Harald Lichtenstein,

Florian Michelbach, Melanie Paul, and Sebastian Sindermann for their awesome

teamwork, with inspiring and deepening discussions which were – most of all – a lot of

fun.

I would like to extend a great thank you to my colleagues at Daimler and especially my

teammates in the team “Lankenau”. This includes my supervised students, Florian

Michelbach and Furkan Karaoglu, I am grateful for their valuable work contributing to

the overall topic, interesting discussions and fun despite the stress during their Master

and Bachelor theses.

Dr. Barbara Heine I would like to thank especially for her strategic discussions, moral

support, and helpful coaching.

Towards my family, relatives, and friends I want to express my special thankfulness.

Constant support and understanding helped me to succeed. My brother Danilo always

had my back during the last decades and particularly during my PhD time. Without his

assistance in private life, I could not have undertaken this work. Infinite thanks to my

parents for my good characteristic traits. I wish you still could live to see this.

Abstract iii

Abstract

The constantly increasing complexity in automotive development requires data models,

processes, and tools to address and handle this complexity by the documentation of

information artifacts and their relationships to create traceability. This challenge exists

both within the OEM’s development organization as well as for each supplier.

Particularly, electrics/electronics (E/E) development including software and the

corresponding information artifacts which are exchanged between engineering partners

and have a high reciprocal dependency are crucial for traceability.

Derived from these challenges, this dissertation has the objectives of the

conceptualization and prototypical implementation of a solution framework that

addresses internal traceability, i.e., within a company’s IT systems, and external

traceability, i.e., among multiple engineering partners. For this purpose, three distinct

enablers for a framework for traceability are identified: i) data model, ii) process model,

iii) technology.

Given the current state of science and technology, the enablers are assessed by means

of the derived requirements. Therefore, the proposed solution framework also composes

these three enablers.

The developed data model addresses peculiarities of model-based systems engineering

(MBSE) in alignment with product data management (PDM) for early automotive E/E

development and thereby fosters predominantly internal traceability but also external.

Moreover, the data model includes universal identifiers for the promotion of external

traceability and proposes a data integration mechanism for the exchange and

synchronization of relevant data.

The process model implements enhanced alignment during systems engineering

through automized synchronization of changes across IT systems and a consensus

mechanism to identify discrepancies as early as possible. This mainly addresses

external traceability among engineering partners.

As a technological solution, the Blockchain technology is implemented and serves as a

product lifecycle management (PLM) backbone which intermediates between multiple

engineering partners’ IT systems. Connecting the corresponding IT systems and tools

iv Abstract

within a company as well as providing interfaces to external engineering partners, the

PLM Blockchain backbone fosters internal and external traceability.

As this technological approach using the Blockchain technology for engineering IT in

automotive engineering collaborations is completely new, the evaluation of the solution

framework was conducted with an existing development use case as well as a potential

future scenario. Conclusively, the elaborated solution framework addresses the

research objectives adequately. Limitations are discussed and serve as basis for

prospective work.

Title and summary in Dutch v

Title and summary in Dutch

EEN RAAMWERK OM DE TRACEERBAARHEID VAN E/E-ARTEFACTEN TIJDENS

DE ONTWIKKELING VAN AUTO'S TE BEVORDEREN IN HET LICHT VAN

MODELGEBASEERDE SYSTEMEN ENGINEERING BINNEN GEDISTRIBUEERDE

ENGINEERING-SAMENWERKING DOOR MIDDEL VAN DE BLOCKCHAIN

De complexiteit in de ontwikkeling van auto’s neemt voortdurend toe, en dat vereist

gegevensmodellen, processen en hulpmiddelen om deze complexiteit aan te pakken en

te verwerken. Dit gebeurt door het documenteren van informatieartefacten en hun

relaties om traceerbaarheid te creëren. Deze uitdaging bestaat zowel binnen de

ontwikkelingsorganisatie van de OEM als voor elke leverancier. Vooral de ontwikkeling

van elektronica/elektronica (E/E) is cruciaal voor de traceerbaarheid. Onder deze E/E-

artefacten vallen software en de bijbehorende informatieartefacten die worden

uitgewisseld tussen engineeringpartners en een hoge wederzijdse afhankelijkheid

hebben.

Deze uitdagingen leiden tot de doelstellingen van dit proefschrift: de conceptualisering

en prototypische implementatie van een oplossingsraamwerk dat werkt aan interne

traceerbaarheid (binnen de IT-systemen van een bedrijf) en externe traceerbaarheid

(onder meerdere engineeringpartners). Voor deze doelen worden drie verschillende

enablers geïdentificeerd voor een raamwerk voor traceerbaarheid: i) gegevensmodel,

II) procesmodel, III) technologie.

De enablers worden beoordeeld aan de hand van de eisen die zijn afgeleid uit de huidige

stand van wetenschap en technologie. Het voorgestelde oplossingskader vormt daarom

ook deze drie mogelijkheden.

Het ontwikkelde datamodel richt zich op de specifieke kenmerken van model-based

systems engineering (MBSE) in overeenstemming met product data management

(PDM), voor de vroege ontwikkeling van E/E in de automobielindustrie. Het bevordert

daardoor voornamelijk interne traceerbaarheid, maar ook externe. Bovendien bevat het

gegevensmodel universele identificatoren voor de bevordering van externe

traceerbaarheid. Daarnaast stelt het model een mechanisme voor, voor data-integratie

voor de uitwisseling en synchronisatie van relevante data.

vi Title and summary in Dutch

Het procesmodel implementeert verbeterde afstemming tijdens systeemontwikkeling.

Dit gebeurt door geautomatiseerde synchronisatie van veranderingen in IT-systemen

en een consensusmechanisme om afwijkingen zo vroeg mogelijk te identificeren. Dit

betreft vooral de externe traceerbaarheid onder engineeringpartners.

Als technologische oplossing wordt de blockchain-technologie geïmplementeerd. Deze

fungeert als een PLM-ruggengraat (Product Lifecycle Management) die de IT-systemen

van meerdere engineeringpartners bemiddelt. De PLM blockchain backbone bevordert

de interne en externe traceerbaarheid door de overeenkomstige IT-systemen en -tools

binnen een bedrijf te verbinden en interfaces te bieden aan externe engineeringpartners.

Deze technologische aanpak, waarbij de blockchain-technologie wordt gebruikt voor

engineering-IT in samenwerking met automotive engineering, is volledig nieuw. Daarom

werd de evaluatie van het oplossingskader uitgevoerd met een bestaande

ontwikkelingsgebruiksscenario en een potentieel toekomstig scenario. Het uitgewerkte

oplossingskader richt zich op afdoende wijze op de onderzoeksdoelstellingen.

Beperkingen worden besproken en dienen als basis voor toekomstig werk.

Table of Contents vii

Table of Contents

Acknowledgements ... i

Abstract .. iii

Title and summary in Dutch ... v

Table of Contents ... vii

Abbreviations ... xi

List of Figures ...xiv

List of Tables ..xviii

List of source codes ...xix

1 Introduction .. 1

1.1 Initial situation... 1

1.2 Problem statement and delineation .. 7

1.2.1 Traceability of information artifacts to address increasing
complexity in automotive E/E architecture .. 7

1.2.2 Current deficiency in research ... 9

1.3 Objectives of this thesis .. 14

1.4 Design research, research methodology, and structure of this thesis 16

2 Current state of science and technology, definitions, and general terms .. 22

2.1 Traceability ... 23

2.1.1 Definitions, norms, and standards ... 23

2.1.2 Methods .. 25

2.1.3 Traceability in the context of automotive development 27

2.2 Product development process .. 28

2.2.1 Definitions, norms, and standards ... 28

2.2.2 Processes and methods for product development 31

2.2.3 Idiosyncrasies of automotive electric/electronic product
development ... 39

2.2.4 Traceability in the context of product development 40

viii Table of Contents

2.3 Product data management and product lifecycle management 41

2.3.1 Definitions, norms, and standards ... 41

2.3.2 Configuration management ... 45

2.3.3 Traceability in the context of PDM/PLM .. 52

2.4 Model-based systems engineering ... 54

2.4.1 Definitions, norms, and standards ... 54

2.4.2 Methods and languages .. 56

2.4.3 Traceability in the context of MBSE ... 60

2.5 Automotive electrics and electronics including software 65

2.5.1 Definitions, norms, and standards ... 65

2.5.2 Architecture, communication, hardware, and software 65

2.5.3 Traceability in the context of automotive E/E and software 68

2.6 Distributed engineering collaboration ... 69

2.6.1 Definitions, norms, and standards ... 69

2.6.2 Phenotypes ... 71

2.6.3 Traceability in the context of engineering collaboration 73

2.7 Data base solutions .. 74

2.7.1 Definitions, norms, and standards ... 75

2.7.2 Central data bases .. 75

2.7.3 Decentral data bases .. 76

2.7.4 Traceability in the context of data base solutions 83

2.8 Ontologies .. 84

2.8.1 Definitions, norms, and standards ... 84

2.8.2 Traceability in the context of ontologies .. 87

2.9 Conclusion.. 88

3 Requirements for a solution framework and evaluation of current state 90

3.1 Evaluation method .. 90

3.2 Requirements for internal traceability ... 92

3.3 Requirements for external traceability .. 93

3.4 Classification of the current state of science and technology 95

3.5 Concluding evaluation of current state of science and technology 99

Table of Contents ix

4 Synthesis of a solution framework ..102

4.1 Definition of a data model ..104

4.1.1 Definition of the relevant information artifacts.................................105

4.1.2 Relevant metadata for a linked data model125

4.2 Definition of a process model ..133

4.2.1 Alignment of the SPES method and PDM135

4.2.2 New product creation process ..139

4.2.3 Configuration and variant creation process142

4.2.4 Version creation and change management process144

4.2.5 Inactivation process ..146

4.2.6 Processes for multiple engineering collaboration partners148

4.3 Definition of a technology ..151

4.3.1 Fundamental IT architecture of the IT solution152

4.3.2 Consensus mechanism ..160

4.4 Solution framework and its satisfaction of requirements163

5 Prototypical implementation ..167

5.1 Goal and scope of the prototypical implementation167

5.2 Implementation of a prototypical IT framework ..168

5.2.1 The structure of the prototype ..172

5.2.2 GUI ...178

5.2.3 Roles and permissions ...184

5.3 Implementation of process model ..186

5.4 Implementation of data model ...190

5.5 Alignment with legacy IT architecture ..198

6 Evaluation of the solution framework ...200

6.1 Evaluation approach ..200

6.2 Use case 1: Door control module ..202

6.2.1 Technical problem statement ...202

6.2.2 Use case description ..204

6.2.3 Exemplary implementation of use case 1204

6.3 Use case 2: Centralized, server-oriented E/E architecture207

x Table of Contents

6.3.1 Technical problem statement ...207

6.3.2 Use case description ..209

6.3.3 Exemplary implementation of use case 2210

6.4 Evaluation of research objectives ..212

6.5 Discussion ...214

7 Summary and outlook ...216

7.1 Summary ...216

7.2 Ramifications and outlook for automotive engineering IT218

7.3 Ramifications and outlook for further industries...221

7.4 Ramifications and outlook for the wider social context222

8 Appendix ..224

9 References ...225

Abbreviations xi

Abbreviations

ALM Application lifecycle management

API Application programming interface

ASPICE Automotive software process improvement and capability

determination

AUTOSAR Automotive open system architecture

bdd Block definition diagram

BOM Bill of material

CAD Computer-aided design

CAE Computer-aided engineering

CAN Controller area network

CASE Computer-aided software engineering

CAx Computer-aided X

CI Configuration items

CM Configuration management

CRM Customer relationship management

CRUD Create, read, update, delete

DAO Decentralized autonomous organizations

DB Data base

DBMS Data base management system

DCM Door control module

DLT Distributed ledger technologies

DSM Dependency structure matrices

E/E Electrics/electronics

E-BOM Engineering BOM

xii Abbreviations

E-CAD Electrics/electronics computer-aided design

ECU Electronic control unit

EEPROM Electrically erasable programmable read-only memory

ERP Enterprise resource planning

FMI Functional mock-up interface

FMU Functional mock-up unit

GUI Graphical user interface

HTTP Hypertext transfer protocol

HW Hardware

I/O Input/output

ID Identification, identifier

IP Intellectual property

IT Information technology

JT Jupiter tessellation

LIN Local interconnected network

M-BOM Manufacturing BOM

MBSE Model-based systems engineering

M-CAD Mechanics computer-aided design

MOST Media oriented systems transport

NCD Network communication description

NoSQL Not only structured query language

OEM Original equipment manufacturer

OS Operating system

OSLC Open services for lifecycle collaboration

OVM Orthogonal variability model

OWL Web ontology language

Abbreviations xiii

P2P Peer-to-peer

PDM Product data management

PLM Product lifecycle management

PPS Production planning system

R&D Research and development

RDF Resource description framework

RDFS RDF-scheme

REST Representational state transfer

RFLP Requirements, functional, logical, physical views

SCM Supply chain management

SiL/HiL Software/hardware in the loop

SPES Software platform embedded systems

SPICE Software process improvement and capability determination

STEP AP 242 Standard for the exchange of product data application protocol 242

SW Software

SysML Systems modelling language

TDM Team data management

UML Unified modelling language

URI Uniform resource identifiers

W3C World wide web consortium

XMI Extensible markup language metadata interchange

XML Extensible markup language

xiv List of Figures

List of Figures

Figure 1-1: Comparison of production quantity, variability of possible combinations,
and number of parts used for a final product for different industries (cf.
SIEMENS PLM, n.a. according to KATZENBACH, 2015b: p. 47).3

Figure 1-2: Comparison of products’ complexity, their variability, and the quantity of
production units for different industries (cf. REUSCHER, n.a. according
to KATZENBACH, 2015b: p. 48). ...3

Figure 1-3: Increasing complexity in a luxury automobile’s E/E architecture
represented by the growth of the total number of ECUs and
communication busses (LANKENAU and HEBER, 2017: p. 4).6

Figure 1-4: The problem space of automotive E/E development in a heterogeneous
IT tool and system landscape (in alignment to HEBER et al., 2018: p. 8;
HEBER and GROLL, 2018a: p. 281). ..13

Figure 1-5: Generic system development process in automotive E/E development
with multiple engineering collaboration partners. The objectives are
marked yellow as potentials for improvement (cf. SCHÄUFFELE and
ZURAWKA, 2016: p. 199)...15

Figure 1-6: Framework of the design research methodology (DRM) including
stages, basic means, and deliverables (in alignment to BLESSING and
CHAKRABARTI, 2009: p. 39). ...18

Figure 1-7: The problem space of this work (blue) and the enablers data model,
process model, and technology. ..20

Figure 1-8: Structure and approach of the thesis. ..21

Figure 2-1: Association between source artifact and target artifact by means of a
trace link (in alignment to GOTEL et al., 2012: p. 6)..................................24

Figure 2-2: Different methods for traceability representation: (a) Traceability matrix,
(b) cross referencing, (c) graph-based representation (in alignment to
WINKLER and PILGRIM, 2009: p. 542)..26

Figure 2-3: The main phases of a product lifecycle in differentiation to product
development and to product creation (in alignment to VEREIN

DEUTSCHER INGENIEURE, 2014: pp. 5–6; MÜLLER et al., 2012: p. 173).29

Figure 2-4: Evolution of the product development process over time (in alignment
to EIGNER and STELZER, 2009: p. 19; STEPHAN, 2013: p. 11).30

Figure 2-5: General process model for product development and design (in
alignment to PONN and LINDEMANN, 2011: p. 18; VEREIN DEUTSCHER

INGENIEURE, 1993: p. 9; STEPHAN, 2013: p. 26; EIGNER, 2014d: p. 16). ...33
Figure 2-6: Phase model of software development (in alignment to BOEHM, 1979: p.

4; EIGNER et al., 2012a: p. 162; EIGNER, 2014d: p. 33).35
Figure 2-7: Alteration of the term “mechatronics” (in alignment to EIGNER et al.,

2012a: p. 34; STEPHAN, 2013: p. 17; GROLL and HEBER, 2016: p. 291;
EIGNER, 2014d: p. 43; BERTSCHE et al., 2009: p. 3).36

Figure 2-8: Basic structure of a mechatronic system (in alignment to VEREIN

DEUTSCHER INGENIEURE, 2004b: p. 14; PONN and LINDEMANN, 2011: p.
12; STEPHAN, 2013: p. 18). ..37

Figure 2-9: The V-model of mechatronic system development (in alignment to
VEREIN DEUTSCHER INGENIEURE, 2004b: p. 29; BENDER, 2005: p. 45;
GROLL and HEBER, 2016: p. 291; EIGNER et al., 2012b: p. 1670;
ZAFIROV, 2014: p. 87). ...38

List of Figures xv

Figure 2-10: Product lifecycle phases (in alignment to EIGNER and STELZER, 2009:
pp. 16, 20, 28). ..42

Figure 2-11: Location of PDM and PLM with respect to the product lifecycle (in
alignment to EIGNER and STELZER, 2009: p. 37; EIGNER, 2014b: p.
270). ..43

Figure 2-12: Typical four-layered PLM architecture with a central PLM backbone
(in alignment to EIGNER and STELZER, 2009: p. 43; EIGNER, 2014b: p.
280). ..44

Figure 2-13: The five major aspects of configuration management (in alignment to
GRANDE, 2013: p. 16; INTERNATIONAL ORGANIZATION FOR

STANDARDIZATION, 2015c: p. 40; KIRSCH et al., 2017a: p. 157).47
Figure 2-14: Effectivity in configuration and change management (in alignment to

EIGNER and STELZER, 2009: p. 118; EIGNER, 2014c: p. 263).48
Figure 2-15: Different variations of version control in software development (in

alignment to KEYDEL and MEDING, 2008: pp. 230–231; CHACON and
STRAUB, 2014: pp. 1–4; GIFT and SHAND, 2009: pp. 2–3; GRANDE,
2013: p. 106). ..50

Figure 2-16: Connection between configuration, coexisting variants, and sequential
versions. ..52

Figure 2-17: System breakdown structure (in alignment to IEEE COMPUTER

SOCIETY, 2007: pp. 4, 18). ...55

Figure 2-18: Model-based systems engineering with a central system model (in
alignment to ZAFIROV, 2014: p. 82; FRIEDENTHAL et al., 2012: p. 18).56

Figure 2-19: The three modules of MBSE with the system model as its central
artifact (in alignment to ALT, 2012: p. 9; EIGNER et al., 2018: p. 382;
EIGNER et al., 2016a: p. 167). ..56

Figure 2-20: Overview of SysML (lite) language features (in alignment to
FRIEDENTHAL et al., 2012: p. 33). ...57

Figure 2-21: Example of three different product descriptions in hierarchical
representation in different phases of the lifecycle and the aim to foster
traceability by connection of information artifacts (in alignment to
MÜLLER and KIRSCH, 2017: p. 179). ...61

Figure 2-22: Transformation of supplier structures across time (in alignment to
FELDHUSEN and GROTE, 2013: p. 7; EIGNER and STELZER, 2009: p. 15;
STEPHAN, 2013: p. 71; KATZENBACH, 2015a: p. 626).72

Figure 2-23: Generic structure of blocks in the Blockchain (in alignment to
NARAYANAN et al., 2016: p. 33; BASHIR, 2018: p. 20).80

Figure 2-24: Semantic web layer cake (in alignment to SAKR et al., 2018: p. 4).86
Figure 4-1: Approach for the definition of a data model. .. 104

Figure 4-2: System concepts: i) functional, ii) structural, iii) hierarchical (in
alignment to ROPOHL, 2009: p. 76). ... 106

Figure 4-3: SysML taxonomy (in alignment to OMG, 2015: p. 187; FRIEDENTHAL et
al., 2012: p. 30). .. 107

Figure 4-4: Reference model for an automotive E/E system depicted as a package
diagram in SysML. Gray packages are not in scope of this work. 109

Figure 4-5: Generic structure of the automotive E/E system model. 110
Figure 4-6: Generic structure of the ECU. ... 111

Figure 4-7: Generic structure of the E/E architecture. ... 112
Figure 4-8: Generic structure of the communication bus. .. 113

Figure 4-9: Generic structure of the function. .. 114
Figure 4-10: Generic structure of the configuration. .. 116

xvi List of Figures

Figure 4-11: Connection between functional and logical viewpoints (in alignment to
POHL et al., 2012: p. 45). ... 118

Figure 4-12: Generic structure of the viewpoints. .. 119
Figure 4-13: Generic structure of the abstraction layers. ... 120

Figure 4-14: Generic relationships between different viewpoints for one system
element and between different abstraction layers (in alignment to
POHL et al., 2012: pp. 38, 45). ... 120

Figure 4-15: Generic structure of the I/O definition. ... 122

Figure 4-16: Generic structure element of potential variants of an ECU. 123
Figure 4-17: Generic structure of IT systems and tools as well as their relevant

structural aggregation models or elements. .. 125
Figure 4-18: Generic structure of an RDF triple as a graph. 129

Figure 4-19: Schematic data integration across different domains and between
engineering partners. .. 133

Figure 4-20: The SPES development process with its main information artifacts (in
alignment to POHL et al., 2012: pp. 51–105). ... 135

Figure 4-21: Alignment of a generic engineering process with the SPES viewpoints
(in alignment to POHL et al., 2012: p. 153). .. 137

Figure 4-22: Alignment of the MBSE and PDM processes with their main
information artifacts. .. 138

Figure 4-23: Generic process for the creation of a new product. 141

Figure 4-24: Generic process for the creation of a new configuration and variant. 143
Figure 4-25: Generic process for the creation of a new version as part of the

change management. .. 145
Figure 4-26: Generic process for the creation of new versions as part of the

change management. .. 146
Figure 4-27: Generic process for the inactivation of a version. 148

Figure 4-28: Generic process for the creation of a new configuration and variant
with three engineering partners. .. 150

Figure 4-29: Generic IT architecture including a PLM Blockchain backbone
simplified for one OEM and one supplier. .. 153

Figure 4-30: Generic IT architecture including the transfer of relevant information
artifacts of the E/E development process according to the SPES
methodology. ... 154

Figure 4-31: Generic IT architecture for multiple engineering partners with their
own PLM Blockchain backbone... 155

Figure 4-32: Integration info generic IT architecture with multiple channels
implemented by different suppliers. ... 159

Figure 4-33: Consensus mechanism: Initial creation and distribution of data by the
OEM and approval by the engineering partners. 161

Figure 4-34: Consensus mechanism: Creation and distribution of data by a
supplier and approval by the engineering partners. 162

Figure 4-35: Consensus mechanism: Creation and distribution of data by a
supplier and rejection by one engineering partner. 163

Figure 4-36: Solution framework for traceability of E/E artifacts during automotive
development in consideration of MBSE within distributed engineering
collaboration by means of the Blockchain and the satisfaction of
requirements. .. 166

Figure 5-1: Network deployment of the prototypical implementation of the
Blockchain network with multiple suppliers.. 171

Figure 5-2: The structure of the prototype. .. 172

List of Figures xvii

Figure 5-3: Top level structure of the prototype. .. 172
Figure 5-4: Runnables including different, organization-specific settings. 173

Figure 5-5: Runnables for the administrator. ... 173
Figure 5-6: Blockchain network definition files. .. 174

Figure 5-7: Blockchain network explorer files. ... 174
Figure 5-8: Blockchain network setup files. ... 175

Figure 5-9: Blockchain network setup binaries. ... 175
Figure 5-10: Local database and Fabric binaries. .. 176

Figure 5-11: Base files for the organizations within the Blockchain network.............. 176
Figure 5-12: Cryptographic and configuration files for each organization. 176

Figure 5-13: Structure of cryptographic files for peers of each organization. 177
Figure 5-14: Structure of cryptographic files for one peer. ... 177

Figure 5-15: Structure for multi-channel setup including chain code. 178
Figure 5-16: Channel artifacts. .. 178

Figure 5-17: Supplier1 creates an artifact. ... 179
Figure 5-18: List of artifacts of Supplier1 with pending voting answers. 179

Figure 5-19: List of artifacts of OEM with pending voting actions. 180
Figure 5-20: Voting by OEM. ... 180
Figure 5-21: List of artifacts of OEM with different release status. 181

Figure 5-22: Details of rejection by the OEM of supplier's artifact creation. 181
Figure 5-23: List of artifacts of Supplier1 after voting... 182

Figure 5-24: Artifact details including transaction history. .. 182
Figure 5-25: Voting retry. ... 183

Figure 5-26: Responsive design of web interface. ... 183
Figure 5-27: Process model of the Hyperledger Fabric framework. 187

Figure 5-28: Generic ontology for an ECU and its associated information artifacts
(blue) with additional MBSE views (green). ... 190

Figure 5-29: Generic positioning of the prototypical implementation of a PLM
Blockchain backbone within a legacy IT architecture. For
abbreviations, please refer to the description of Figure 2-12. 199

Figure 6-1: Door control module (in alignment to REIF, 2014: p. 246). 203

Figure 6-2: Development process for door control module. 206
Figure 6-3: Technology aspects for door control module. .. 207

Figure 6-4: Centralized ECU (in alignment to CONTINENTAL AG, 2021). 208
Figure 6-5: Use case centralized ECU... 209

Figure 6-6: Development process and technology aspects for centralized ECU. 211
Figure 7-1: Automobile as distinct node in the Blockchain network. 221

Figure 8-1: Digital Twin for the automotive lifecycle (HEBER et al., 2018). 224

xviii List of Tables

List of Tables

Table 2-1: Three alternatives of data model alignment between MBSE and
PDM/PLM (in alignment to MÜLLER and KIRSCH, 2017: p. 179; HEBER
and GROLL, 2018b: p. 127). ..62

Table 3-1: Assessment of objectives addressed by enablers.91

Table 3-2: Generic depiction of the evaluation method (in alignment to ESTEFAN,
2008: p. 10; KÖNIGS, 2013: p. 52; GILZ, 2014: 51).......................................91

Table 3-3: Comparison of different MBSE methods (cf. Chapter 2.4.2 for the
authors of the different methods) (own evaluation in alignment to HEBER
and GROLL, 2018b: p. 127, 2018a: p. 284). ...96

Table 3-4: Evaluation of different types of data bases with respect to peculiarities
in collaborations (own evaluation in alignment to STIEFEL, 2011: pp. 57–
62; HECKMANN et al., 2006: pp. 7–17). ..99

Table 3-5: Evaluation of the current state of science and technology according to
the defined requirements in alignment to the research objectives. 101

Table 6-1: Evaluation scheme for use cases. .. 202
Table 6-2: Evaluation of addressed objectives and requirements by use cases. 214

List of source codes xix

List of source codes

Source Code 4-1: Generic structure of the URI (in alignment to HITZLER, 2008: 27). 126
Source Code 4-2: Generic structure of the hardware variant and version scheme. ... 127

Source Code 4-3: Generic structure of the software variant and version scheme. 127
Source Code 4-4: Generic structure of the ECU variant and version scheme. 128

Source Code 4-5: Generic structure of an RDF triple using Turtle syntax. 129
Source Code 4-6: Generic structure of the OSLC namespace, domains, resources,

and properties. ... 130
Source Code 4-7: Example of the alignment of product development data with the

OSLC framework (in alignment to IBM KNOWLEDGE CENTER,
2020). ... 132

Source Code 5-1: Recording of votes. ... 184
Source Code 5-2: Authorized roles. ... 185

Source Code 5-3: Initialization of configuration state. .. 186
Source Code 5-4: Permitted voters. .. 186

Source Code 5-5: Basic operations. .. 188
Source Code 5-6: Create artifact operation. .. 188

Source Code 5-7: Artifact states. ... 189
Source Code 5-8: Vote status "in progress". ... 189

Source Code 5-9: Vote status "accepted". ... 189
Source Code 5-10: Vote status “not accepted”. ... 189

Source Code 5-11: Generic information artifact structure. ... 191
Source Code 5-12: Generic metamodel structure. .. 192

Source Code 5-13: Generic ontology description. ... 193
Source Code 5-14: Generic object properties of the ontology. 194

Source Code 5-15: Generic data properties of the ontology. 195
Source Code 5-16: Generic classes of the ontology. ... 196

Source Code 5-17: Generic object properties of the information artifacts.................. 197
Source Code 5-18: Generic data properties of the information artifacts. 198

Source Code 6-1: Data model for door control module.. 205
Source Code 6-2: Data model for centralized ECU. .. 210

Introduction 1

1 Introduction

1.1 Initial situation

INDUSTRIES WITH COMPLEX PRODUCTS

GERICKE et al. (2013) show that projects of complex products1, such as aerospace,

motor vehicles and software, have a higher coverage of all related lifecycle phases and

their processes within them, such as all related quality processes needed to meet

regulatory specifications etc. This can be argued by the tremendous risk a company

engages in with the development of a complex product and the complexity of products

themselves. On the other hand, companies building less complex products can skip

certain aspects of processes, for instance when a few disciplines or organizational

entities are involved during development (GERICKE et al., 2013: 7). Hence, for complex

products most lifecycle phases and processes are relevant and therefore the seamless

integration of those is necessary for efficiency and quality.

Particularly in aerospace, products have a lifecycle of over 50 years whereas a

spaceship’s or plane’s applications only are used for about three years. This implies a

constant adaption of applications, re-design, and re-development in collaboration with

many disciplines, departments, suppliers, and external engineering partners

(SINDERMANN, 2014: pp. 345–346; LOTAR INTERNATIONAL: LONG TERM ARCHIVING AND

RETRIEVAL). In the automotive industry, lifecycles of products are within circa five to

seven years, which is a lot shorter. However, automobiles are considered more and

more to be consumer goods that have to adapt quickly to technological changes

demanded by the customers. For that purpose, automobiles undergo frequent minor or

major alterations to meet the market demand and to include improvements or

technological novelties.

1 Products or systems are called complex or synonymously complicated. However, those terms have to
be distinguished. HABERFELLNER (2012) defines complexity of systems according to the amount, variety,
or size of elements on one axis and the dynamic and volatility of elements’ interfaces on the other. A
simple system consists of little elements that have little dynamic or little intense relations, i.e., parts have
little interfaces to other parts and these interfaces are mostly constant. Systems with many elements are
called massive networked complicated systems. Systems with a high dynamic or volatility are called
dynamic complicated systems. Complex systems have a high dynamic or volatility of elements’ interfaces
as well as a high amount, variety, or size of elements. Complex systems cannot be described, understood,
or modeled entirely, whereas with complicated systems this might be, at least partially, feasible
(HABERFELLNER, 2012: pp. 40–41; SCHUH, 2005: pp. 5–7). For more information about complexity in
products and systems, please refer to ULRICH and PROBST (1988); LINDEMANN et al. (2009); LINDEMANN
(2009); SCHUH (2005); DAENZER and HUBER (2002).

2 Initial situation

In comparison to other industries which produce complex products, such as truck or

machineries, commercial aircrafts, or ships, the automotive industry produces the most

units per day. In contrast, automobiles are not as big as most products of the other

mentioned industries and hence the number of parts used is significantly smaller than

for a ship, for example. With respect to variability, i.e., the possible combinations of

different parts for one final product, for instance another engine or color for the same

automobile model, the automotive industry has succeeded in standardization of

platforms and common parts. Consequently, the variability in the automotive industry is

not as high as for instance in the commercial aircraft industry (cf. Figure 1-1)

(KATZENBACH, 2015b: p. 47). Yet, customers demand a highly configurable product,

especially in the luxurious automotive segment. Thus, automotive manufacturers offer

a high variability to satisfy this demand.

A relatively complex industry, such as aerospace with its small production quantities,

does not have as much variability in its products as the automotive industry. Also, the

consumer electronics industry does not offer such a high variability of one product as

the automotive industry, albeit a high quantity of products is produced. Consumer

electronic products often are less complex than automobiles or spaceships because

they are made for mass production, therefore mostly have limited fields of application

and shorter lifecycles. The automotive industry is an intermediary regarding complex

products and high production quantities in comparison to aerospace and consumer

electronics. However, in variability of products the automotive industry excels compared

to these other industries (cf. Figure 1-2) (in alignment to KATZENBACH, 2015b: p. 48).

Due to a relatively intermediate complexity, based upon the amount and type of

interfaces as well as the art and number of elements (cf. Footnote 1), but with a relatively

high production output and also a significant variability, the automotive industry can be

considered as one of the most challenging industries. This is in regards to the

development and production of its products. Particularly, the congruency of complexity,

quantity, and variability of automobiles yields a special foundation for the assessment

of the accompanying development processes in a company and between different

companies contributing to an automobile. The increasing importance of

electric/electronics in automobiles and resulting challenges in the development of

complex systems further accentuate this stance, as it will be discussed in the next

section.

Introduction 3

Figure 1-1: Comparison of production quantity, variability of possible combinations, and number of

parts used for a final product for different industries (cf. SIEMENS PLM, n.a. according to KATZENBACH,

2015b: p. 47).

Figure 1-2: Comparison of products’ complexity, their variability, and the quantity of production units

for different industries (cf. REUSCHER, n.a. according to KATZENBACH, 2015b: p. 48).

VICISSITUDES OF THE AUTOMOTIVE INDUSTRY

In the last decades, a change from seller to a buyer market and resulting

individualization of products shaped product variety in order to satisfy the different

demands of customers. This is also true for the automotive market where automotive

4 Initial situation

manufacturers court customers with many possible combinations and hence

individualization (BURMANN and KOTHES, 2014: p. 3). This results in a huge amount of

variants (BURMANN and KOTHES, 2014: pp. 8–10; KATZENBACH, 2015a: p. 609). Of a total

of 1.1 million Mercedes-Benz A-class models produced within two years, only two

automobiles have been identical (SCHLOTT, 2005: p. 38). Today, even without color

combinations, 25,000 possible variants of one automobile model are common and for a

door panel there exist 18,000 possibilities (EHRLENSPIEL and MEERKAMM, 2017: p. 864;

SCHLOTT, 2005: p. 38). An increase in parts variety and product variety results in a

complexity of products, which has to be handled organizationally as well as

technologically.

Currently, the automotive industry faces profound vicissitudes based upon topics such

as connectivity, autonomous driving, car sharing, and electric drive systems (DAIMLER

AG, 2017: p. 24). Expectations by customers to connect their smartphone to their car

and also control it partially, induce this change. Additionally, especially in major cities, a

trend towards car sharing instead of purchasing an own car occurs. This is again

induced by changing customer demands. This can be considered as a further pull factor

in the view of automotive manufacturers. Opposing, there exist push factors. For

instance, most major original equipment manufacturers (OEMs) pursue a strategy

towards autonomous driving using assistance systems. This technology is becoming

more mature and enables new business segments, e.g., robot taxis. Implementation of

(partial) electric driving in vehicles is based on, one the one hand, a more efficient

battery and power train technology. On the other hand, regulatory requirements foster

electric vehicles. Amalgamation of push and pull factors yield new technological

solutions in an automobile in the realm of electrics/electronics (E/E), i.e., actuators,

sensors, electronic control units (ECUs), and software, in order to address these new

requirements. Due to new functionalities more likely being implemented software-based

and this software being more easily altered, the volatility as well as overall variance of

the current state of construction of a vehicle can increase tremendously (TRIPPNER et

al., 2015: p. 557; BEIHOFF et al., 2014: p. 12). BENDER (2005) states that 90 percent of

innovations in manufacturing engineering are realized by information technology (IT)

and therefore software can be considered as a business enabler (BENDER, 2005: pp. 7–

8). In the automotive industry, software and electronics even constitute up to 90% of all

innovations (BEECK, 2007: p. 205; BEUTNER et al., 2013: p. 19). A modern car from the

year 2012 has about 100 million lines of code and therefore more code than a F-35

Introduction 5

fighter jet from 2013 with ca. 24 million lines of code (NEWCOMB, 2012; AXE, 2012).

Accordingly, on the one hand, software facilitates myriad of new product functionalities

and hence increases functional complexity of products. On the other hand, a shift of

variance from hardware to software partially reduces complexity of development and

production of products (EIGNER et al., 2014: p. 2; BEECK, 2007: p. 205). Managing the

vicious cycle of changeability and understandability is a challenge when designing

products, particularly systems. Flexibility in dealing with changing information artifacts

is needed, whereas this flexibility itself induces complexity in the development process

(POMBERGER and PREE, 2004: p. 85; NEUMEYER et al., 2017: p. 29).

This vicissitude from hardware to software and their conjunction, so-called mechatronic

products2, has direct impact for automotive development. To enable new functionalities

and hence address the arising complexity, the quantity of ECUs and communication

busses within an automobile’s E/E architecture rose intensely. In a modern luxury

automobile, ECUs increased about 260% and communication busses 500% in the years

from 1995 to 2013 (LANKENAU and HEBER, 2017: p. 4), as depicted in Figure 1-3. This

steady augmentation of ECUs originates from the approach that for each new feature

added, an additional ECU is added to the current E/E architecture, particularly in comfort

electronics. However, in the power train domain a converse evolution is visible with more

performant ECUs instead of quantitatively more due to a higher integration of

functionalities in the power train domain (FROST & SULLIVAN, 2018: p. 10; BORGEEST,

2014: 90). As a fully autonomous automobile will require 40 to 120 ECUs solely to

compute all autonomous applications and will generate approximately four terra bytes

of data per day, there is a tendency for the automobile E/E architecture’s complexity to

rise (FROST & SULLIVAN, 2018: p. 10). FROST & SULLIVAN (2018) estimate that the average

total amount of ECUs accumulates up to 178 in autonomous vehicles in Europe and

North America in 2017 (FROST & SULLIVAN, 2018: p. 36).

2 Mechatronic products today comprise mechanics, electronics, and informatics (software) and will be

delineated in more detail in Chapter 2.2.2 (EIGNER et al., 2014: p. 43).

6 Initial situation

Figure 1-3: Increasing complexity in a luxury automobile’s E/E architecture represented by the growth

of the total number of ECUs and communication busses (LANKENAU and HEBER, 2017: p. 4).

Rampant product recalls of automobiles imply that the increased complexity of an

automobile’s E/E architecture is not yet appropriately managed (BERTSCHE et al., 2009:

p. 5; RITTBERG, 2014: p. 63). Moreover, software already causes 15 percent of

automobile recalls (HALVORSON, 2016). Not only does the customer demand a

functioning automobile, regulations and laws also require high quality assurance,

especially for safety-relevant applications (BEECK, 2007: p. 205; INTERNATIONAL

ORGANIZATION FOR STANDARDIZATION, 2011b: p. V; LÄMMER and THEISS, 2015: p. 463).

Due to an increased demand for variety, product variety grows, and therefore parts

variety, and order variety augment. Hence, a higher variety in suppliers can result

because the more diversified products are, the more knowledge is needed which cannot

always be provided by the OEMs (EHRLENSPIEL and MEERKAMM, 2017: pp. 863–868). An

OEM alone cannot master such a complexity. Consequently, there exists a long tradition

of supplier and engineering partner relationships with the OEMs in the automotive

industry. In the last years, suppliers evolved from engineering partners to the developer

or provider of entire systems. In this role, the engineering partners develop, produce,

and deliver particular systems and the OEM sometimes only executes integration and

assembly (KATZENBACH, 2015a: p. 610). However, the inclusion of new and more

intertwined partners all over the world increases process and work organization

complexity. This demands an organizational paradigm shift and hence yields a higher

demand for reconciliation (EIGNER et al., 2014: p. 3; KATZENBACH, 2015a: pp. 607, 611).

Introduction 7

1.2 Problem statement and delineation

1.2.1 Traceability of information artifacts to address increasing

complexity in automotive E/E architecture

In order to address all vicissitudes of the automotive industry, from more product

variance to innovations in E/E and their impact on the E/E architecture of an automobile,

an automobile developing and producing company has to take measures. These

measures could be to connect information artifacts. Also, their connections to distinct

entities of a product, i.e., a configuration, and their changes across the lifecycle within a

company. This is called traceability (EIGNER et al., 2014: p. 274).

A high variance of products is already established during development and it is much

more costly to address issues and changes later in the product lifecycle (EIGNER and

STELZER, 2009: p. 16). During development, 70% of total product costs are determined

which will become effective to 94% in later lifecycles (VEREIN DEUTSCHER INGENIEURE,

1987: p. 3). Hence, the focus of this work will lie on the early development phases in

order to address complexity there, where it has the highest impact on costs

(EHRLENSPIEL et al., 2014: p. 15). There exists a plethora of methodologies3 to support

the product development process and to foster traceability mostly for one specific

discipline but sometimes also for different disciplines, processes, and lifecycle phases

(cf. EIGNER et al., 2014: pp. 15–52). A particular methodology for the development of

mechatronic products, i.e., multidisciplinary products, is model-based systems

engineering (MBSE). By means of digital and development-specific system models, an

integration of information artifacts as well as modeling along the product development

process occurs. The issue of integration and alignment of specific information artifacts

during the development process can be alleviated in the early stages by such modeling

approaches. For that purpose, correlations between system requirements, functions,

behavior, and structure are defined explicitly (EIGNER et al., 2014: pp. 45, 77). The goal

is to make documented information available to all different domains and organizational

entities in a company. Product data management (PDM) particularly for development,

and product lifecycle management (PLM), already exist for some decades and take a

pivotal role in information and configuration management within companies during the

3 A methodology can be considered as a collection of related processes, methods, and tools (ESTEFAN,
2008: p. 10; EHRLENSPIEL and MEERKAMM, 2017: p. 173). For further definitions of method and
methodology, please refer to EHRLENSPIEL and MEERKAMM (2017), EIGNER (2014d) and Chapter 2.

8 Problem statement and delineation

development and for the entire lifecycle, respectively. Moreover, PDM/PLM systems

often provide application programming interfaces (APIs) for external engineering

partners (cf. EIGNER and STELZER, 2009: pp. 27-42). However, the documents stored in

PDM systems often do not represent connections and relations between information

artifacts described in these documents or this information cannot be made visible

without the distinct authoring tool (GILZ, 2014: p. 3). Thus, the more formalized approach

of MBSE and its conceptual system design aligned to product data models and their

management over the lifecycle is a solution approach which fosters traceability from the

very start of the development process with the documentation of requirements (cf. GILZ,

2014: pp. 3-7).

As stated in Chapter 1.1, complex products often are developed conjointly between

OEMs and engineering partners. Within such engineering collaborations, traceability of

information artifacts, their respective changes, and configurations in a worldwide-

distributed engineering and supply chain by means of potent IT technologies is crucial.

Therefore, PLM concepts are prerequisites. Those PLM concepts foster ubiquitous

information management (KATZENBACH, 2015a: p. 611; BEIER, 2014: p. 37). In order to

understand better the connection of the mentioned complex single artifacts, it is helpful

to map their interdependencies explicitly. Particularly, the heterogeneous methods of

different disciplines require traceability of information artifacts. Hence, traceability is not

autotelic but rather supports the comprehensive disciplinary understanding of systems

of a product. Therefore, traceability is required by many norms and standards

addressing both qualitative and statutory requirements towards traceability (cf. Chapter

2.1.1) (BEIER, 2014: p. 37; STARK, 2015: p. 45).

In this context, it can be distinguished between traceability within a company, i.e.,

internally, and externally, i.e., in the above-mentioned engineering collaborations. The

former addresses the connection of information artifacts of diverse disciplines which

develop parallelly or sequentially a product. The latter focuses on how to integrate

information artifacts across many engineering partners that all face the challenges of

internal traceability, too. This duality of internal and external traceability will be

elaborated in more detail in the following chapter and generally occurs in all engineering

collaborations for all involved partners, not only in the automotive but also in other

industries (vide supra).

Introduction 9

1.2.2 Current deficiency in research

INTERNAL TRACEABILITY

As already addressed above, complexity requires, inter alia, traceability in IT systems.

MBSE and PDM/PLM are methods to provide traceability in specific disciplines and

phases of the product lifecycle. MBSE fosters traceability commonly in the early phases

of the lifecycle, PDM/PLM usually starting in the middle and extending towards the end.

However, systems engineering4 is not stringently executed beyond the early product

development phase. Hence, subsequent processes cannot use the information created

during systems engineering. Consequently, data from manufacturing, support, and after

sales cannot be used to enhance the product. Integration of MBSE into PDM/PLM

requires plenty of alignment of different functionalities, such as to handle product lines,

variability, design, simulation, and configuration5. However, this alignment is not yet fully

achieved. This lack of alignment, preferably in one integrated platform, would address

the increasing complexity and foster traceability (GRIEVES, 2012: pp. 236–241; PAVALKIS,

2016: pp. 2, 14; BIAHMOU, 2015b: pp. 225, 228, 231). GILZ (2014) addressed some of

this alignment by the methodical integration of a functional product description. Though,

some open points remain, for instance, the specific configuration management, specific

workflows, organizational roles, as well as the application on the property level for

electrics/electronics computer-aided design (E-CAD) and inclusion of software models

(GILZ, 2014: pp. 183–184). Further research focused on the incremental integration of

different stages of expansion of the model-based development process into the PLM

according to the respective use case and how this integration of system models in the

PLM environment could look like. Moreover, different possibilities of how IT systems

could be linked in order to achieve this integration for the connection of MBSE and

PDM/PLM were assessed and how the connection on data model level could look like.

Restrictions of this joint research project so far is the lack of industrial application and

the refinement of some aspects such as which is the optimal solution approach to

document metadata in system models and distinct traceability schemes (LINDEMANN and

KRASTEL, 2017: p. 150; KIRSCH et al., 2017b: pp. 161–162; MÜLLER and KIRSCH, 2017:

pp. 178–179; MECPRO² ABSCHLUSSBERICHT, 2016d: p. 28; MÜLLER and HAßE, 2017a: p.

185, 2017b: p. 228; BEIER, 2014: p. 256). Furthermore, the missing documentation of

4 For the definition of systems engineering and the distinction to model-based systems engineering,
please refer to Chapter 2.4.
5 For more details please refer to Chapter 2.3 and 2.4 and PAVALKIS (2016).

10 Problem statement and delineation

dependencies caused by low transparency about changes and their impacts requires

the explicit modeling of information artifacts within a system and across organization

structures (KÖNIGS et al., 2012: pp. 926, 927, 930).

The availability of once created information artifacts to the other downstream or parallel

processes in the development process is threefold6. Horizontal integration requires the

integration of information artifacts along the development process regarding milestones

and procedural sequence. Vertical integration shall ensure that information artifacts are

modeled gradually with increasing level of detail. Interdisciplinary integration aims at

integrated information artifacts of different disciplines, such as mechanics, E/E, and

software. These diverse integration approaches foster traceability and still have to be

fully achieved (TRIPPNER et al., 2015: p. 560).

EXTERNAL TRACEABILITY

Particularly, the exchange of system models beyond a company’s boundaries is crucial

for traceability as well as to reduce reconciliation and is not yet fully supported. Also,

conventions of how the composition of system models in engineering collaborations and

its processes could look like and whether libraries of system models across companies

would support this, are still open issues. Research with scope on enabling technologies

for engineering collaboration identify a high necessity for more flexible and more efficient

solutions to transfer data amongst multiple engineering partners (STIEFEL, 2011: pp.

280–283; MECPRO² ABSCHLUSSBERICHT, 2016d: p. 28). Hence, the implementation of

common system models and joint development processes could reduce reconciliation

and error proneness and thus foster external traceability. However, so far, there do not

exist sufficient traceability schemes for OEM and supplier communication, i.e. the

transmission of supplier-specific traces of information artifacts in the context of the

OEM’s product (BEIER, 2014: pp. 80-81, 256). A better integration of IT systems and

data models reduces coordination, especially in case of highly integrated system

suppliers (KATZENBACH, 2015a: pp. 610–611, 632–633). Communication between

departments, organizations, and suppliers involved in development increases and yields

errors based on missing traceability (KÖNIGS et al., 2012: 926–927, 939).

Another aspect of external traceability, besides the reduction of reconciliation and

coordination in engineering collaborations, is the transparent and safe documentation

of changes made during development between multiple engineering partners. In this

6 The fourth dimension “modern workplace” is not in scope here (cf. TRIPPNER et al., 2015: p. 560).

Introduction 11

context, transparent means that changes during product development are visible in due

course to all parties involved. Safe means that changes are documented and stored with

legal protection for the obligation to prove the accuracy of components developed and

delivered as well as failure tolerant. This means that all data is available to all parties at

any time regardless of whether one server is offline. KATZENBACH (2015a), LÄMMER and

THEISS (2015), and STJEPANDIĆ et al. (2015a) highlight the dangers of sharing intellectual

property (IP) in engineering collaborations due to constant exchange of data between

partners who could later become harsh competitors (STJEPANDIĆ et al., 2015a: pp. 521,

526; LÄMMER and THEISS, 2015: pp. 464, 474; KATZENBACH, 2015a: pp. 611–612).

STIEFEL (2011) proposes a peer-to-peer network approach to address traceability

between multiple development partners. In a peer-to-peer network, the failure of a node

is possible. If each engineering partner only hosts their own data in order to better

protect IP and reduce bandwidth by not exchanging all data, the failure of one IT system

or node induces the loss or unavailability of data7 (STIEFEL, 2011: pp. 51, 281). In order

to avoid this scenario, a central node for data hosting would be necessary again what,

in turn, contradicts the protection of IP and the need for tamper-proof documentation.

Moreover, immediate transparency about change activities would alleviate exhausting

communication and data search in today’s distributed engineering collaboration using

different data formats which is not yet fully addressed by recent concepts (BIAHMOU,

2015b: pp. 222–223; KÖNIGS et al., 2012: p. 926).

Due to more intertwined engineering collaboration (cf. Chapter 1.1), a simple connection

of IT systems with engineering partners by means of standardized APIs also enables

external traceability (LÄMMER and THEISS, 2015: p. 464). This is also required by the

Code of PLM openness (CPO)8 and serves as the fundamentals for a joint PLM concept

(BIAHMOU, 2015a: pp. 790–791; DEUTSCHES INSTITUT FÜR NORMUNG E. V., 2018c: pp. 5–

7; KATZENBACH, 2015a: p. 611). This conceptual framework is normative and hence the

actual implementation and execution of norms required by the CPO is incumbent on the

company aligning with it. In collaborations with non-trustworthy partners, i.e., potential

future competitors or ad hoc contributors, a sub-collaboration in a separate network

alleviates onboarding of engineering partners. Additionally, many partners can suggest

new product models and engineering approaches by joining the standardized

7 Cf. Chapter 2.7.3 for more information about peer-to-peer networks.
8 Code of PLM openness (CPO) is an initiative by the prostep ivip association focusing on interoperability,
infrastructure, extensibility, interfaces, standards, architecture, and partnership in engineering
collaboration (cf. DEUTSCHES INSTITUT FÜR NORMUNG E. V., 2018a, 2018b, 2018c).

12 Problem statement and delineation

engineering network (STIEFEL, 2011: pp. 106–108, 150). This alleviated connection of

engineering partners fosters traceability by an easy, system-based exchange of data

instead of data sent by email or spreadsheets. Reasons for this could be a long and

tedious IT connection process or no connection at all due to costs. STIEFEL (2011)

describes a framework for a peer-to-peer engineering collaboration network based upon

the necessity of flexible and efficient solutions for collaborative engineering. However,

this described network is not reliable enough in the sense that peers might fail and hence

data is not available9. Also, standardized inclusion of new peers, i.e. engineering

partners, is complex and, depending on the chosen overlay-network, centralized peers

have to hold data (STIEFEL, 2011: pp. 149–160).

The research deficiency is illustrated generically in the problem space in Figure 1-4

where the entire product lifecycle is depicted at the top, underneath the V-model of

development (cf. Chapter 2.2.2), and at the bottom the contemporary heterogeneous IT

tool and system landscape of bigger enterprises. Information artifacts are created in

each IT tool, often are domain-specific and, if not standardized, hardly can be connected

with or transferred to another data model of other tools or systems. However, this

connection of information artifacts is necessary due to the increasing complexity in

automotive E/E development (vide supra) in order to align development results across

disciplines as well as to track errors and changes in other phases of the lifecycle. This

issue of traceability is augmented if there are multiple engineering partners and

suppliers developing jointly for one final product. In such a case, the standardized

exchange of data is crucial.

9 Please refer to Chapter 2.7.3 and STIEFEL (2011) for more information about peer-to-peer networks.

Introduction 13

Figure 1-4: The problem space of automotive E/E development in a heterogeneous IT tool and system

landscape (in alignment to HEBER et al., 2018: p. 8; HEBER and GROLL, 2018a: p. 281).

14 Objectives of this thesis

1.3 Objectives of this thesis

Taking into account the issues previously stated and the current deficiency in research,

the objectives of this work is to describe the traceability in automotive E/E engineering

collaboration generically, i.e., for all OEM-supplier-relations. Therefore, focus will be on:

1. Internal traceability i.e., within a company’s IT systems:

a. Alignment of MBSE and PDM for E/E;

2. External traceability, i.e., among multiple engineering partners:

a. Reduction of reconciliation;

b. Transparent and safe product changes;

c. Alleviated connection of engineering partners.

The objectives are depicted schematically in Figure 1-5, where a generic system

development process in automotive E/E engineering collaboration is shown. This

generic process was described and analyzed with engineers and for the tool responsible

persons from all different domains. The three different swim lanes describe the

engineering collaboration partners, i.e., the OEM and suppliers for mechanical, E/E, and

software parts. The development process is subdivided according to the requirements,

functional, logical, and physical (RFLP) approach10. At the beginning (R-phase), the

Engineer A, responsible for the product, e.g., an electronic control unit (ECU) at the

OEM, formulates the requirements and sends them to the suppliers. The suppliers then,

each separately, develop their subcomponents without standardized or only partially

standardized and IT-supported exchange of data in the progress of development within

the separate steps of RFLP, each with more details. Moreover, the OEM internally

develops and integrates the E/E system or parts of it. However, the OEM also faces

disruptions between IT systems of different domains, such as mechanics, E/E, and

software. The whole E/E system with all its subcomponents will be integrated for testing

purposes in the software or hardware in the loop (SiL/HiL). Therefore, data models have

to be exchanged or suppliers have to get access to the OEM’s IT systems. Often only

then are errors identified due to a lack of traceability and transparency during the early

development process. Then, the OEM will report the errors and resulting adaptions to

the suppliers and a further reconciliation cycle starts. However, testing is not in scope

of this work which will mainly focus on the early phase of development. The potentials

for improvement and the objectives of this thesis are highlighted in yellow. The goal is

10 See Chapter 2.4 for more information about the RFLP approach.

Introduction 15

to make development faster, more effective and efficient by an increased traceability

internally as well as externally.

Figure 1-5: Generic system development process in automotive E/E development with multiple

engineering collaboration partners. The objectives are marked yellow as potentials for improvement

(cf. SCHÄUFFELE and ZURAWKA, 2016: p. 199).

16 Design research, research methodology, and structure of this thesis

1.4 Design research, research methodology, and structure of this

thesis

Natural science and the thereof descended behavioral science can be considered as

descriptive sciences, testing hypothesis with collected data and deducing theories. In

contrast, design research focuses on problem-solving where the “goal is to produce an

artifact which must be built and then evaluated” (HEVNER and CHATTERJEE, 2010: p. 5).

SIMON and LAIRD (2019) denominate the latter, design research and science of

engineering, as science of the artificial in contrast to science of the existing, which would

be the natural sciences11 (SIMON and LAIRD, 2019: pp. 4–5; HENSELER, 2021: pp. 27–

28).

“Designers, are exploring concrete integrations of knowledge that will combine theory

with practice for new productive purposes” (BUCHANAN, 1992: p. 6). Hereby, designers,

such as engineers, deal with wicked problems and try to solve them. Immanent to wicked

problems is their non-linear analysis, incomplete requirements specification, confusion,

conflicting stakeholders, unclear consequences within the system, and lack of an own

subject matter other than what the designer envisions12 (CHURCHMAN, 1967: p. 141;

BUCHANAN, 1992: pp. 15–16). Distinguishing the subject matter between a general and

particular level, the designer generates a working hypothesis of the appropriate scope

of its humanmade application or product on the general level. This can be considered

as the artificial (vide supra). However, “design is fundamentally concerned with the

particular, and there is no science of the particular” (BUCHANAN, 1992: p. 17). According

to BUCHANAN (1992), the particular work of designers begins with a so-called quasi-

subject matter or placement. This is the basis in design thinking in which the designer

creates a working hypothesis using placements. Science and design thinking are

congruent in regard to that placements in design thinking are what constitutes in science

a subject matter. Hence, design can be considered as an integrative discipline

(BUCHANAN, 1992: pp. 17–18). CROSS (2006) also states that design science can be

considered as a scientific activity itself with an “explicitly organised [sic], rational and

wholly systematic approach to design” (CROSS, 2006: p. 98). In contrast, science of

11 For an overview, what constitutes the science of the existing, e.g., physics, economics, etc., and the
science of the artificial, e.g., engineering, medicine, etc., please refer to HENSELER (2015); HENSELER
(2021). For the connection of behavioral and design research and testing thereof, please refer to
HENSELER (2017).
12 For further definitions and properties of wicked problems, please refer to RITTEL and WEBBER (1973).

Introduction 17

design concerns itself with the improvement of understanding of design by means of

scientific methods (CROSS, 2006: pp. 98–99).

Furthermore, design activities postulate a future solution, i.e., a reality that does not yet

exist. This future solution could be a composite of existing solution fragments which

combined yield a surplus benefit. This is called emergence (HENSELER, 2015: pp. 16–

17). Composition and assembly constitute emergence from a design perspective

(NELSON and STOLTERMAN, 2003: p. 93).

Given the explorative, problem-solving, wicked, artificial, and emergent nature of this

work and its underlying scope with the aim of creating, by composition and assembly,

and evaluating a novel solution approach, a general design research approach will be

followed to structure and conduct this work. This will be presented in the following.

RESEARCH METHODOLOGIES

The design research methodology (DRM) by BLESSING and CHAKRABARTI (2009) is a

widely accepted research approach for supporting mainly engineering and industrial

design research in order to ameliorate the design process. Here, design is defined as

activities aligned to the development of a product from the initial requirements via a

solution idea or technology, to the full documentation needed (BLESSING and

CHAKRABARTI, 2009: pp. 1–2). The DRM can be considered as a distinct activity of design

research rather than “a framework in which multidisciplinary methodological approaches

are facilitated” (ECKERT et al., 2003: p. 254). The DRM strives to structure design

research for the purpose of generating: a clear goal, methods, and tools as solutions for

distinct problems that actually exist. The definition of success criteria is a very rigid

concept for the definition of goals. This stems from the fact that DRM was designed to

ameliorate industrial practice. In contrast, the eight fold model of design research by

ECKERT et al. (2003) is a more agenda-driven framework for design research wherein

the eight different research steps are more generic and allow for the inclusion of several

research projects, such as PhD studies (ECKERT et al., 2003: pp. 253–255; BRAUN, 2013:

pp. 129–130). Due to the DRM emphasizing a more industrial application and also aims

at individual projects being executed towards practical outcome (ECKERT et al., 2003: p.

254), the DRM will be used as a blueprint for this thesis where suitable. However, the

DRM will not be executed stoically step by step13. The DRM framework is presented in

13 Please refer to BLESSING and CHAKRABARTI (2009) and ECKERT et al. (2003) for an overview of more
research methodologies regarding the design phase in engineering development.

18 Design research, research methodology, and structure of this thesis

Figure 1-6. Here, each stage’s deliverables are used iteratively as input for the previous

stages.

Figure 1-6: Framework of the design research methodology (DRM) including stages, basic means,

and deliverables (in alignment to BLESSING and CHAKRABARTI, 2009: p. 39).

APPROACH FOR THE ASSESSMENT OF THE CURRENT STATE OF SCIENCE AND TECHNOLOGY

There exist distinct methods for development of E/E components in MBSE, the

documentation of these components in IT systems along their lifecycle, engineering

collaboration, and technologies connecting all these different domains. Hence, the

research approach requires a precise assessment of each domain with respect to

elements which could integrate them. Literature proposes certain elements for this

purpose.

PAVALKIS (2016) suggests that a solution approach to connect MBSE with PLM should

follow the three steps of agreement of a metadata model, identification of a process,

and then selection of the technology (PAVALKIS, 2016: pp. 2466–2467). As crucial for the

management of data and information streams within PLM, FELDHUSEN and GEBHARDT

(2008) identify the structure of a standard product (a data model), the structure of a

standard process, and a knowledge repository, i.e. a specific technology that contains

and connects this information (FELDHUSEN and GEBHARDT, 2008: pp. 73–74). PFENNING

(2017) also suggests a central link repository to connect MBSE and PLM data

(PFENNING, 2017: pp. 156 ff.). This can be extended with a cooperation model (KÖNIGS,

2013: p. 40). STÖCKERT (2011) emphasizes the necessity that interfaces in distributed

engineering processes have to be assessed according to objects (data model),

Introduction 19

processes, and tools (technology)14 (STÖCKERT, 2011: pp. 102–103). A more technical

view focusing on communication between models assesses languages and data

representations (data model), ontologies (data model), tool, and interfaces (technology)

(FISHER et al., 2014: p. 224). For the template-based systems engineering and based

upon the systematics of product development, prerequisites are a model for the

description of technical systems, a method to handle models efficiently, and a tool which

implements both (KÖNIGS, 2013: p. 7). ESTEFAN (2008) differentiates the diverse aspects

of MBSE accordingly (ESTEFAN, 2008: p. 9): i) process, ii) method, and iii) tool15. STARK

(2016) mentions in his PLM grid the aspects which have to be addressed for the

management of a product across its lifecycle and handle the inherent complexity and

difficulty. Processes, methods, and tools as well as their interfaces are also part of the

PLM grid. Additionally, STARK (2016) mentions on a lower level of granularity product

data, such as CAD models and master data, as part of the grid (STARK, 2016: pp. 5–6).

This work focuses more on fostering traceability on the lower implementation level, i.e.,

a technical level. Therefore, the first step is to connect different IT tools by a defined

technology. Afterwards, aligning the semantic level, which is the data model, between

different IT tools has to be done. Then, a process model defines at which point in time

which data shall be created and exchanged given the correct technology.

To subsume the above-mentioned approaches, which all aim at fostering traceability

throughout the development by means of data, processual, and technological support,

the current state of science in Chapter 2 will be assessed using a threefold approach (in

alignment to ESTEFAN, 2008: p. 9; KÖNIGS, 2013: p. 7; GILZ, 2014: p. 8):

1. Data model: For the connection of different disciplines working in different IT tools

and systems, a joint data model serves as a connecting factor and bridges the

gap between MBSE and PDM. It is crucial for the exchange of data in an

engineering collaboration and hence a key ingredient of traceability.

2. Process model: If many parties are involved in the development, it has to be

defined at which step which data has to be handed over to whom in order to

enable and maintain traceability.

14 Here, the fourth element would be people (STÖCKERT, 2011: pp. 102–103). However, this would be
included in the fourth element environment in ESTEFAN (2008) and hence is not in scope (cf. Footnote 15).
15 The fourth element in ESTEFAN (2008) would be environment but it will not be considered here
separately due to limitations of the scope and a vast variety of degrees of freedom this would induce, for
instance social, organizational, cultural, or personal aspects.

20 Design research, research methodology, and structure of this thesis

3. Technology: A technology enabling the connection of MBSE and PDM,

developing disciplines and their idiosyncrasies, alleviating the integration of

engineering partners, and connecting heterogeneous IT systems on a technical

level, is fundamental for intra- and inter-company traceability.

Figure 1-7 depicts the tripartite enabling elements, also called enablers, for traceability,

data model, process model, and technology, by which each aspect of the current state

of science and technology will be assessed in order to ensure that the aspired solution

will suffice the postulated objectives. The centered triangle contains the main aspects

of the problem space that are in scope., i.e., the early phase of automotive development,

focus E/E, within engineering collaborations and shall be enabled by the surrounding

elements which foster traceability.

Figure 1-7: The problem space of this work (blue) and the enablers data model, process model, and

technology.

STRUCTURE OF THIS THESIS

For the purpose of achieving the research objectives, this thesis is built according a

structure which addresses all relevant aspects. In Chapter 2, the current state of science

and technology will be elicited. Therefore, traceability, product development processes,

PDM/PLM, MBSE, automotive E/E, engineering collaborations, data base solutions, and

ontologies each are defined, investigated, and assessed by means of the enablers (vide

supra) how they foster traceability. Chapter 3 derives requirements for a solution

approach based upon the state of science and technology in Chapter 2. Moreover, the

Introduction 21

fulfillment of these requirements by existing enablers will be assessed and the necessity

for improvement will be derived. In Chapter 4, the synthesis of a solution framework

according the enablers will be developed. The prototypical implementation of the

solution framework will be presented in Chapter 5. A subsequent evaluation of the

solution framework and accordingly selected use cases will be described in Chapter 6.

This work will be finalized by a summary and an outlook in Chapter 7. This structure is

shown in Figure 1-8. The deductive approach to assess the applicability of the solution

framework will be discussed in more detail in Chapter 6.4.

Figure 1-8: Structure and approach of the thesis.

22 Design research, research methodology, and structure of this thesis

2 Current state of science and technology, definitions, and

general terms

This chapter depicts the current state of science and technology with respect to the

fundamental theoretical frameworks and methods which later are necessary to build the

own solution framework upon. As depicted in Chapter 1, the early phase of automotive

E/E development is a complex endeavor and traceability within a company’s IT

landscape with external engineering partners is crucial more than ever. Against this

background, all fundamentals within the scope of an early automotive E/E product

development with external, distributed engineering partners will be stated in this chapter.

The focus particularly lies on traceability and how it can be achieved within multiple

disciplines.

The approach of this chapter follows a deductive approach (“cone logic”), where

applicable. This means to start with the more generic, high-level theory and later

advancing to the more idiosyncratic, specialized details (cf. Figure 1-8). To encompass

the recent and relevant developments in each theory, at the start of each chapter the

definitions, norms, and standards are described. Then, the decisive methods of the

respective disciplines are elaborated on or the specific phenotypes and processes

relevant to the later work are explained. Finally, traceability in each theory is assessed:

How can traceability be achieved in the particular discipline, and what fosters traceability

in it?

INITIAL TERMINOLOGY

The term method indicates a description of a rule-based and systematic approach in

accordance of which certain tasks have to be executed to achieve a given goal

(LINDEMANN, 2009: p. 57). A method is part of a methodology (cf. EHRLENSPIEL and

MEERKAMM, 2017: p. 173; HEYN, 1999 according to EVERSHEIM and SCHUH, 2005: p. 17).

A method has a prescriptive character, i.e., it is an instruction. In distinction to a process

model, which describes what has to be done according to which steps, a method

describes in what manner (how) something has to be done and subsumes different

techniques in order to perform a task (EIGNER et al., 2014: p. 47; LINDEMANN, 2009: p.

58; ESTEFAN, 2008: pp. 9–10). In this context, a process is defined as “a logical sequence

of tasks performed to achieve a particular objective” (ESTEFAN, 2008: p. 9). By usage of

an instrument or tool, the efficiency of a task can be enhanced by supporting the what

Current state of science and technology, definitions, and general terms 23

and how. Consequently, a methodology combines related processes, methods, and

tools16 (cf. MARTIN (1996) according to ESTEFAN, 2008: pp. 9–10).

2.1 Traceability

2.1.1 Definitions, norms, and standards

Traceability is required by ISO 9001:2015 “Quality management systems –

Requirements” to ensure quality across a product’s lifecycle which is controlled by

dedicated management systems. Within this norm, traceability is required explicitly for

production and service provision in case the organization wants to identify uniquely its

outputs and, for that purpose, the organization shall preserve documentation that is

necessary to foster traceability (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION,

2015a: p. 41).

Traceability in systems and software engineering is defined as the

1. “discernible association among two or more logical entities, such as

requirements, system elements, verifications, or tasks” (INTERNATIONAL

ORGANIZATION FOR STANDARDIZATION, 2017b: p. 478);

2. “degree to which a relationship can be established between two or more products

of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another” (INTERNATIONAL

ORGANIZATION FOR STANDARDIZATION, 2017b: p. 478).

Here in this work, the terms logical entities and products are denoted as (information)

artifacts in order to confine from the association between products and entities to ECUs

or automobiles. GOTEL et al. (2012) specify traceability of or within software and systems

generally as: “Traceability is simply the potential to relate data that is stored within

artifacts of some kind, along with the ability to examine this relationship” (GOTEL et al.,

2012: p. 4). Hence, traceability thereby is an attribute of one or more artifacts (GOTEL et

al., 2012: p. 9). Here, GOTEL et al. (2012) also use the generic term of artifacts to

describe generic units of data. Likewise, other studies use the term artifact as an entity

of which a system can be composed (WINKLER and PILGRIM, 2009: p. 531; BROY, 2013:

p. 83). A trace artifact, i.e., a traceable unit of data such as requirements, data model

16 Some authors deviate from the given definition of methodology. For instance, the SPES methodology
POHL et al. (2012) does neither include a defined process nor an IT tool. However, as SPES methodology
is a fixed term, it will be used accordingly. For more information about the SPES methodology, please
refer to Chapter 2.4.2.

24 Traceability

classes, or even persons, can be either a source artifact or a target artifact. Source

artifacts are called accordingly because they depict the artifact from which the trace

originates. In contrast, target artifacts denominate the destination. The connection or

association between source and target artifacts is referred to as trace link and can have

a primary direction, i.e. from the source to the target artifact, and a reverse direction

(GOTEL et al., 2012: pp. 5-6). This is depicted in Figure 2-1. An operationalized trace link

with a primary direction can, for instance, be the triple “A implements B”17. Conversely,

the reverse direction of a trace link could have the semantics “B is implemented by A”

(note the passive voice) (GOTEL et al., 2012: p. 6). This already shows that trace links

can have different types with different syntax (structure) or semantics (purpose), such

as implements, tests, refines, or replaces.

Figure 2-1: Association between source artifact and target artifact by means of a trace link (in

alignment to GOTEL et al., 2012: p. 6).

Vertical traceability addresses the connections of different parts or components of the

artifact, e.g., if the final product is denoted as the main artifact and has sub-components

that evolve during the development process. In contrast, horizontal traceability captures

the relations of these components across associated artifacts, for instance if a software

belongs to an ECU (PFLEEGER and BOHNER, 1990: p. 323). However, literature disagrees

upon the definitions of vertical and horizontal traceability (KÖNIGS et al., 2012: pp. 929–

930). Here, the definition of PFLEEGER and BOHNER (1990) will be used as it aligns with

the V-model of development (cf. Figure 2-9) where on one level, i.e. horizontally,

different domains develop associated components simultaneously in time. The vertical

axis also depicts a consecutive sequence of more and more detailed artifacts of one

component or system. Connection of the consecutive development artifacts would

induce vertical traceability; connection of the simultaneously developed artifacts of

different domains would constitute horizontal traceability.

Many roles during the development process are confronted with a need for traceability.

Due to this importance of traceability (cf. Chapter 1.2), there are plenty of norms and

17 For more information regarding triples, please refer to Chapter 2.8.

Current state of science and technology, definitions, and general terms 25

modeling guidelines from different disciplines that demand associations between

information artifacts (BEIER, 2014: p. 37; ARKLEY, 2007: pp. 16–17). Moreover, in

requirements traceability, a subset of requirements engineering, as well as traceability

in general, research flourished. This is due to the necessity to trace and ultimately test

requirements appropriately for the purpose of increasing quality of the final product18

(ARKLEY, 2007: p. 11).

For the purpose of managing traceability effectively and efficiently, it is crucial to provide

appropriate means and tools to engineers to handle all relations between artifacts. Even

for a medium-sized automobile with an already reduced effort of 65% due to a previous

exclusion of relations on a higher aggregation level, about 700 million relations should

be investigated for thorough documentation (KÖNIGS, 2013: p. 37). There exists a

plethora of methods to manage and visualize traceability of complex engineering data

during the product design phase. This will be shown in the next chapter.

2.1.2 Methods

One can distinguish between different representation techniques for traceability, such

as matrices, cross referencing, entity relational models, or graph-based visualization

(WIERINGA, 1995: pp. 12–13; ARKLEY, 2007: p. 21; WINKLER and PILGRIM, 2009: p. 542;

KÖNIGS et al., 2012: p. 929).

MATRICES

A traceability matrix displays all information artifacts and which artifacts have an

association with each other through trace links. Rows and columns of the matrix contain

traceable items and do not have to be identical (GOTEL et al., 2012: p. 7; WIERINGA,

1995: p. 12). A special form of traceability matrices is dependency structure matrices

(DSM). These matrices also are used in systems engineering. The DSM depict the

connections between different development levels, such as which system requirement

is satisfied by which system function and further executed by which component (GILZ,

2014: pp. 42-43, 95). It can be further differentiated between intra-domain matrices

depicting vertical traceability, such as the DSM, and inter-domain matrices capturing

18 Requirements engineering, requirements management, and requirements traceability will not be in
scope of this work explicitly. However, general concepts of traceability are used for requirements
traceability as well as for other disciplines. Please refer to RAMESH and JARKE (2001), TORKAR et al. (2012),
and ARKLEY (2007) for details about requirements traceability.

26 Traceability

horizontal traceability, and further combinations of those19 (LINDEMANN et al., 2009: pp.

49–50).

CROSS REFERENCING

A cross reference can range from a trivial “see system specification version 2.3, section

4.8 interfaces”, via links within one document or tool, to outgoing and incoming

hyperlinks stored in an artifact’s metadata. The surrounding context of the reference

contains the semantics of the link. Given new languages and modeling methods, cross

referencing augments in application (WINKLER and PILGRIM, 2009: pp. 542–543;

WIERINGA, 1995: p. 13; ARKLEY, 2007: p. 22).

GRAPH-BASED

Whenever traceability links are understood as edges and information artifacts as nodes,

such a traceability model can be represented similar to data models with a graph-based

notation. This representation can include more information and hence increase

interpretability. For instance, edges can have different meaning and nodes can also

include metadata for the description of each artifact. Traceability matrices can be

depicted as graphs20 (WINKLER and PILGRIM, 2009: p. 543; KÖNIGS, 2013: p. 50;

WIERINGA, 1995: p. 12).

The three different methods for traceability representation are depicted in Figure 2-2 (in

alignment to WINKLER and PILGRIM, 2009: p. 542).

Figure 2-2: Different methods for traceability representation: (a) Traceability matrix, (b) cross

referencing, (c) graph-based representation (in alignment to WINKLER and PILGRIM, 2009: p. 542).

19 Please refer to LINDEMANN et al. (2009), KÖNIGS (2013), and BEIER (2014) for an extensive overview of
matrices to depict and manage traceability and dependencies.
20 For an overview of different graph-based methods, please refer to SCHWARZ et al. (2010) and HERMAN
et al. (2000).

Current state of science and technology, definitions, and general terms 27

2.1.3 Traceability in the context of automotive development

DATA MODEL

As described above, the necessity for traceability becomes more prominent in

automotive development where many sub-systems have to realize multiple functions.

Graph-based models can be implemented in any database technology and are often

used in industry. Implementing a centrally managed data model connecting all different

domains, their proprietary IT tools, and data models to foster traceability is also an issue

for automotive development21 (WIERINGA, 1995: p. 12; BROODNEY et al., 2013: pp. 1176–

1178; FIGGE, 2014: p. 33). How traceability through programming of domain-specific

data models is enabled, will be explained in each of the following chapters and hence

will not be outlined further at this point.

PROCESS MODEL

A huge impediment for integrated data models that allow traceability are decoupled

activities in processes. Particularly defined processes can describe which information

artifact or relation has to be documented at which development step in order to foster

traceability. For that purpose, traceability process models depict all those relevant

activities. FISHER et al. (2014) present a method for managing data models of systems

engineering (cf. Chapter 2.4) in development scenarios. These are not specific to

automotive development but are used to align the create, read, update, and delete

(CRUD) operations amongst heterogeneous data models within the used tools and

databases of the network. A joint management of activities, such as configurations,

including versions, variants, and baselines (cf. Chapter 2.3) of models, enables

traceability (FISHER et al., 2014: p. 214; GOTEL et al., 2012: pp. 10–11; KAUFMANN and

SCHULER, 2017: p. 347). Each development domain has its own process models which

have to be aligned with the process models of upstream, downstream, and parallel

development domains and again their process models so as to allow traceability. This

will be discussed in more detail in the following chapters.

TECHNOLOGY

There exist several tools that foster traceability and are applied to different domains of

automotive development. The software METUS by ID-Consult GmbH enables the

documentation of relations between requirements, functions, sub-functions,

21 Please refer to HAUSMANN (2010), SUTINEN et al. (2000), and SUTINEN et al. (2002) for more information
about integrated data models which foster traceability during the product development.

28 Product development process

components, modules, configurations, and suppliers. However, neither is it possible for

relation types, i.e., edges, to be differentiated nor modeling up to the level of parameters.

METUS also can be integrated into a PLM system. ToolNet by EADS and

DaimlerChrysler was designed to manage traceability between different CAx tools

centrally in a separate database on a qualitative level without parameters. The reuse

and efficient handling of traceability relations in large companies is not within the scope

of this tool. LOOMEO by Teseon GmbH mainly focuses on handling different types of

traceability matrices. The software is non-integrative and hence requires copied data

from other IT tools and systems. Therefore, traceability between data models from

authoring tools, such as CAx, and PDM systems cannot be guaranteed22 (KÖNIGS, 2013:

pp. 49–51; BEIER, 2014: pp. 55–57, 71–72). Above-mentioned are IT tools that visualize

and manage traceability. Additionally, technology enabling traceability can also be found

on a lower level of the IT infrastructure, such as special databases, interfaces, and

networks. An elaboration will follow in the subsequent chapters.

2.2 Product development process

2.2.1 Definitions, norms, and standards

Most established process models for mechanics focus on the product development

process in four major phases (EIGNER et al., 2014: p. 16): i) Clarification of requirements

and tasks, planning; ii) Conceptual design; iii) Designing; iv) Elaboration, detailing.

In general, these phases apply to all sorts of products and their corresponding product

development processes, regardless of their distinct domain, e.g., mechanics, software,

or E/E. However, different literature includes or excludes different product lifecycle

phases from the product development process (BURR, 2008: p. 35; STEPHAN, 2013: p.

6). In this elaboration, the above-mentioned view, limited to the actual requirements,

conceptual design or the concept phase, design phase, and elaboration as well as

detailing phase will be applied. Here, the product development process is considered a

section of the product lifecycle and excludes, for instance, the strategy phase, ramp-up

for production, production itself, aftersales and recycling (STEPHAN, 2013: p. 7; BURR,

2008: pp. 35–36). The product development process can also be distinguished from the

product creation process as the product creation process also includes production

planning and production (MÜLLER et al., 2012: p. 173; VEREIN DEUTSCHER INGENIEURE,

22 For more information about traceability tools, please refer to KÖNIGS et al. (2012) and FIGGE (2014).

Current state of science and technology, definitions, and general terms 29

2014: pp. 5–6). Product lifecycle management spans over the entire product lifecycle

and will be discussed further in Chapter 2.3. The distinction between product

development and product creation in regards to the entire product lifecycle is illustrated

in Figure 2-3 (in alignment to VEREIN DEUTSCHER INGENIEURE, 2014: pp. 5–6; MÜLLER et

al., 2012: p. 173):

Figure 2-3: The main phases of a product lifecycle in differentiation to product development and to

product creation (in alignment to VEREIN DEUTSCHER INGENIEURE, 2014: pp. 5–6; MÜLLER et al., 2012:

p. 173).

The process of product development has significantly changed in the last few decades

due to a parallelization, distribution, and interconnectedness of projects, product, and

processes around the world; both intra-company and inter-company. The first evolution

of product development is called serial engineering. Each phase of product development

used the predecessor’s output as input consecutively. Product development took place

mainly in one company. The next evolution is called simultaneous engineering. Here,

phases of product development, such as product design and production planning or

purchasing of machinery, overlap. This is achieved by a better integration,

organizationally as well as with computer-aided engineering (CAE). By those means,

time to production can be reduced. This helps to address the requirements of markets

and customers faster. Simultaneous engineering commonly describes product

development within one company. Cross enterprise engineering is the latest evolution

of product development where product development as well as production planning are

interconnected between different locations of one company across the world as well as

between separated companies. This means that a multidimensional collaboration and

cooperation within a company and in the context of supplier and customer relationships

takes place. This collaboration is neither limited by a company’s boundaries, nor limited

to one domain of product development, i.e., mechanics, E/E, and software.

Collaborations can span over all product lifecycle phases (EIGNER and STELZER, 2009:

pp. 18–20; STEPHAN, 2013: pp. 10–11). The evolution of the product development

30 Product development process

process in the last few decades is depicted in Figure 2-4 (in alignment to STEPHAN, 2013:

p. 11; EIGNER and STELZER, 2009: p. 19).

Figure 2-4: Evolution of the product development process over time (in alignment to EIGNER and

STELZER, 2009: p. 19; STEPHAN, 2013: p. 11).

Due to the increasing interaction and connection between producers, international

engineering locations, and suppliers across the world, requirements towards IT solutions

have increased to address:

• The integration of IT solutions across the entire product lifecycle, i.e., from the

first idea and conceptual solution until recycling. The integration of IT solutions

across the product lifecycle has to be granted by means of APIs23 or functional

interfaces, for instance STEP AP 24224 or JT25. In practice this means the

23 An example for a normative approach for APIs gives INTERNATIONAL ORGANIZATION FOR

STANDARDIZATION (2011a).
24 STEP AP 242: Standard for the exchange of product data application protocol 242 for managed model-
based 3D engineering of the ISO standard 10303 (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION,
2014). For more details on data exchange standards, please refer to Chapter 2.6.1.
25 JT: Jupiter tessellation is a standard primarily used for the exchange of 3D data. Due to the JT standard
is not as performant regarding data exchange as STEP and is limited to 3D data (KATZENBACH et al.,

Current state of science and technology, definitions, and general terms 31

integration of a plethora of domain-specific IT solutions that are scattered across

the product lifecycle.

• The federation of IT solutions in a decentral and distributed working company

and, in the context with the supply chain, also beyond a company’s boundaries.

Federation of data and processes is required by the distribution across the entire

product lifecycle, interdisciplinarity, as well as the increasing connected and

interlinked development and production partnerships. Distribution can occur: i)

within a company, e.g., between many locations and across several phases of

the lifecycle; ii) between companies of a joint network of suppliers; and iii)

between companies in a customer/supplier relationship (EIGNER and STELZER,

2009: pp. 20–21).

The integration of different IT solutions, i.e., systems and tools, across the product

lifecycle will be discussed in more detail in Chapter 2.3.1.

Interdisciplinarity, as one requirement for the federation of IT solutions, describes the

cooperation of different disciplines or domains. This interdisciplinary development will

be elaborated further in Chapter 2.2.2.

2.2.2 Processes and methods for product development

In order to develop products, different phases in a product lifecycle have to be passed

through (cf. Chapter 2.2.1). Scientists from different disciplines suggested for many

years methods and process models to support the product development process.

Mostly, these methods and process models have to be considered as procedural

guidelines in which different phases of the product development process are defined as

best practices and are traversed once or repetitively. Additionally, development results

or deliverables of each phase in the process model are stipulated (EIGNER, 2014d: p.

15). Moreover, process models help the users to verify in which step they are currently

within a process and which step has to be executed next. Reflection of one’s own

proceedings by means of the process model also helps the engineer to control their

actions (PONN and LINDEMANN, 2011: p. 17). There has to be a distinction between

domain- or discipline-specific26 methods and process models. These disciplines are the

2015: p. 301), the JT standard is not in scope of this work. For more information, please refer to
KATZENBACH et al. (2015).
26 In the context of product development, domain and discipline, i.e., mechanics, E/E, software, systems
engineering, are used synonymously in this work.

32 Product development process

development of mechanics or hardware, E/E, software, and mechatronics as a

combination of all of the afore mentioned.

MECHANICS

The guideline VDI 2221 (VEREIN DEUTSCHER INGENIEURE, 1993) classifies the general

approach of development and design beginning with the task of development until

completion of design in seven distinct steps. Here, the focal point is on the deliverables,

i.e., the result documents or development results, which each single step yields as a

work result. The deliverables, for instance could be a requirements list, functional

structure, or principle solution, which depict representations or partial models,

respectively, of the product with increasing degree of detail and concretion. The

representation of the process model in the guideline VDI 2221 conveys a very sequential

character. However, the necessity of recesses in the sense of iterations also is

emphasized (PONN and LINDEMANN, 2011: pp. 17–18). The workflow with its steps and

deliverables in the context of the four major development phases, is presented in Figure

2-5 (in alignment to PONN and LINDEMANN, 2011: p. 18; VEREIN DEUTSCHER INGENIEURE,

1993: p. 9; STEPHAN, 2013: p. 26; EIGNER et al., 2014: p. 16)27.

ELECTRICS/ELECTRONICS

In E/E development, a diversity in development methods is more prevalent due to

multiple reasons. On the one hand, E/E is a vast discipline concerning electrical

installations, plant construction, automotive, aerospace, conductor boards, chips,

microprocessors, flash memory, schematics, etc. On the other hand, there is a

fundamentally different approach by engineers in E/E in contrast to mechanics. In E/E,

there exists a design level of the schematical draft (circuit design) before the geometrical

design (layout). Additionally, there is a rapid technological change particularly in the field

of the circuit design as well as the evolution in automation technology with respect to

logical and physical design and verification (EIGNER, 2014d: p. 21, cf. WEHN, 2013

according to EIGNER, 2014d: p. 21). It is noteworthy that for some methods of E/E

development a step called “behavior” occurs. This step depicts the behavior of

algorithms, registers, Boolean algebra and differential equations in E/E hardware

27 For further methods of development in mechanics, please refer to PONN and LINDEMANN (2011),
FELDHUSEN and GROTE (2013), EVERSHEIM and SCHUH (2005), WINZER (2016), and EIGNER et al. (2014).

Current state of science and technology, definitions, and general terms 33

(EIGNER, 2014d: pp. 26–27). The development level “behavior” or “function” is highly

important in a model-based approach for systems development (cf. Chapter 2.4)28.

Figure 2-5: General process model for product development and design (in alignment to PONN and

LINDEMANN, 2011: p. 18; VEREIN DEUTSCHER INGENIEURE, 1993: p. 9; STEPHAN, 2013: p. 26; EIGNER,

2014d: p. 16).

SOFTWARE

Software development has always been severely affected by fast changing customer

requirements, and need to implement those new demands quickly into products.

Usually, to mitigate development risks and to realize the demanded quick

implementation, new software is built on basis of existing software components. Hence,

fast reactions to new market demands were feasible and existing knowledge could be

reused (FELDHUSEN et al., 2013: p. 808). In software development, this reuse is achieved

using previously developed software components (BROWN, 2000: p. 8). As requirements

became ever more volatile and had to be implemented faster, methods evolved likewise.

28 For more information on recent methods in the field of (virtual) product development and design
techniques please refer to STELZER (2014) and BEUTNER et al.(2013).

34 Product development process

So-called ponderous or heavy process models are strictly phase-oriented models and

are very formalized with respect to processes and the amount of associated

(intermediate) results and (intermediate) products, respectively. Prominent phenotypes

of the ponderous process models in software development are the classical sequential

process model, the waterfall model, and the V-model. In contrast, the lightweight

process models, also called agile process models, are more flexible, less formalized,

iterative process models, e.g., eXtreme programming. Scrum and the spiral model can

be considered as intermediate process models according to the above-introduced

classification. In agile software development methods, complete specifications at the

beginning of a project often are not available and are not considered to be important

because they are assumed to change throughout the process anyway. To compensate

the absence of neatly documented specifications, constant exchange between team

members is crucial (cf. Figure 1-5) (POMBERGER and PREE, 2004: p. 45; STEPHAN, 2013:

p. 32). The most prominent software development processes and methods will be

described in the following, starting with the classical and advancing to the agile ones

bearing in mind that some methods cannot be classified clearly.

The phase model describes the typical activities in software development, which is

divided into four major phases and their immanent questions. The fundamental

approach it is presented here (EIGNER et al., 2012a: pp. 161–162; EIGNER, 2014d: pp.

32–34):

1. Requirements analysis: The goal is to have completed as many as possible

complete of the requirements.

2. System design: The software-oriented system design aims at describing an

abstract solution plan for the problem. Based upon the requirements analysis, it

is noted of which components the system is composed.

3. Detailed design: Itemization of the plan for the problem solution from the system

design is in scope of this step.

4. Encoding and integration: The last phase’s scope is the implementation of the

complete solution.

The realized partial solutions of individual components will be integrated into an overall

solution (EIGNER et al., 2012a: pp. 161–162; EIGNER, 2014d: pp. 32–34). The major

phases of the phase model of software development, as described above, have an

Current state of science and technology, definitions, and general terms 35

apparent resemblance with the process steps of model-based systems engineering in

Chapter 2.4 and are depicted in Figure 2-6.

Figure 2-6: Phase model of software development (in alignment to BOEHM, 1979: p. 4; EIGNER et al.,

2012a: p. 162; EIGNER, 2014d: p. 33).

The waterfall process model of software development is based on the assumption that

a phase is not passed through anymore after its finalization. This implies that a phase

shall not be started before the preceding phase has been terminated. This means that

after finalization of the requirements analysis, in Figure 2-6 phase 1, requirements have

to be specified faultless. Due to a high degree of volatility within the specification of

requirements, in practice, the waterfall model proves to be improper. With this

fundament, further iterative process models have evolved. A very famous one is the

“spiral model of software development and enhancement” by BOEHM (1988). The spiral

model aims at representation and mitigation of development risk in the software

development process by depicting each development round (analysis, evaluation,

development and tests, planning) as one round in a spiral, visualizing increasing cost

and complexity (EIGNER, 2014d: pp. 34–36). The documents and product model of

software development is based on the fundamental work of BOEHM (1979), who

introduced a V-shaped view on the software development process, and this was

extended and adapted frequently. This so-called V-model also was adopted by the

VEREIN DEUTSCHER INGENIEURE (2004b) and adjusted to the development of mechatronic

products (EIGNER et al., 2012a: p. 162). Therefore, the V-model will be discussed in

more detail in the next section MECHATRONICS.

Against this background, agile methods for software development were created and first

adopted by the software community, and to an increasing degree later on, by

commercial software development (FELDHUSEN et al., 2013: p. 808). Most of these agile

software development methods are based upon the agile manifesto and its twelve

36 Product development process

principles29 (BECK et al., 2001). An agile approach is commonly characterized by the

separation of the project into several stages of configuration or iterations of the product,

respectively. The focus is on the main criteria in order to quickly serve customer’s

demands30 (FELDHUSEN and GROTE, 2013: p. 809).

MECHATRONICS

In 1969, Ko Kikuchi coined the term mechatronics, a combination of mechanics and

electronics. Hereby, he meant the increased electrical and electrotechnical functionality

of mechanical components and devices. Software only became relevant later, as

depicted in Figure 2-7 (COMERFORD, 1994: p. 46; HARASHIMA et al., 1996: p. 1; STEPHAN,

2013: p. 16; EIGNER, 2014d: p. 42).

Figure 2-7: Alteration of the term “mechatronics” (in alignment to EIGNER et al., 2012a: p. 34; STEPHAN,

2013: p. 17; GROLL and HEBER, 2016: p. 291; EIGNER, 2014d: p. 43; BERTSCHE et al., 2009: p. 3).

Mechatronic systems consist of a mechanical basic system, sensors, actuators, and

information processing (cf. Figure 2-8). Hence, all different domains discussed above,

mechanics, E/E, and software, are present. The initial goal of a mechatronic system is

to improve the functionality and behavior of the underlying mechanical basic system by

means of sensors that register information of the environment and the system itself. This

information is manipulated in processors which trigger the optimal reactions by means

of actors in the respective context. Through intelligent software, mechatronic systems

nowadays are capable of adapting themselves to changes in the environment, detect

critical operational states, and optimize processes (VEREIN DEUTSCHER INGENIEURE,

2004b: p. 10).

29 Please refer to BECK et al. (2001) for all twelve principles.
30 For further literature regarding software development and a more detailed view on the above-mentioned
process models please refer to EIGNER et al. (2012a), EIGNER (2014d), POMBERGER and PREE (2004),
STEPHAN (2013), DÖRN (2018).

Current state of science and technology, definitions, and general terms 37

Figure 2-8: Basic structure of a mechatronic system (in alignment to VEREIN DEUTSCHER INGENIEURE,

2004b: p. 14; PONN and LINDEMANN, 2011: p. 12; STEPHAN, 2013: p. 18).

TOMIZUKA (2000) extends the mechatronic system by “complex-decision making in the

design, manufacture and operation of industrial products and processes” (TOMIZUKA,

2000: p. 1). However, the guideline VDI 2206 “Design methodology for mechatronic

systems” limits the scope of mechatronics to the definition: “[Mechatronics is] the

synergetic integration of mechanical engineering with electronic and intelligent computer

control in the design and manufacturing of industrial products and processes”31

(HARASHIMA et al., 1996: pp. 1–2; VEREIN DEUTSCHER INGENIEURE, 2004b: p. 14).

There exists a plethora of different process models and methods to develop mechatronic

products or systems (VEREIN DEUTSCHER INGENIEURE, 2004b: p. 14; STEPHAN, 2013: p.

21; EIGNER, 2014d: p. 44).

The V-model, designed as a process model for software development, which was

frequently extended and adapted further, became a widely used process model for the

development of mechatronic systems. The most common V-model for mechatronic

systems is in the guideline VDI 2206 (VEREIN DEUTSCHER INGENIEURE, 2004b). BENDER

(2005) extended the V-model further by including three levels, namely the system level,

subsystem level, and component level in the development process of mechatronic

systems (BENDER, 2005: p. 45). If the automotive industry is in scope, then, additionally,

the fourth level “vehicle level” as an overall system for other mechatronic systems is

appended at the beginning and the end of the development cycle. The left wing of the

V-model describes the interdisciplinary system development. The four different levels of

the mechatronic system – vehicle, system, subsystem, component – each address

differently the granularity of system description. Aligned are description elements –

31 Due to three involved disciplines, complex products, and a long evolution of mechatronic systems, there
exist a myriad of definitions. Please refer to VEREIN DEUTSCHER INGENIEURE (2004b), EIGNER et al. (2014),
STEPHAN (2013), and EIGNER et al. (2012a) for an overview.

38 Product development process

requirement, function, element of the logical architecture, physical element (RFLP32).

The component level is dedicated to discipline specific itemization (mechanics, E/E,

software). The right wing of the V-model describes the steps for system integration and

testing by means of virtual, hybrid, or physical tests. On each level horizontally from the

right to the left wing, there is validation of requirements and specifications as described

in previous phases33. The V-model by BENDER (2005) allows for an iterative proceeding,

similar the V-model in the guideline VDI 2206 (STEPHAN, 2013: pp. 44–46; VEREIN

DEUTSCHER INGENIEURE, 2004b: pp. 26–31; ZAFIROV, 2014: pp. 85–87; PEARCE and

HAUSE, 2012: p. 10). The V-model as described is depicted in Figure 2-9. It serves as

fundament for model-based systems engineering in Chapter 2.4.

Figure 2-9: The V-model of mechatronic system development (in alignment to VEREIN DEUTSCHER

INGENIEURE, 2004b: p. 29; BENDER, 2005: p. 45; GROLL and HEBER, 2016: p. 291; EIGNER et al., 2012b:

p. 1670; ZAFIROV, 2014: p. 87).

32 Cf. Chapter 2.4, HORVATH (2017), and HORVÁTH and RUDAS (2015) for more information about the RFLP
approach.
33 Cybertronic systems consist of at least two cybertronic elements. A cybertronic element is, in turn, a
mechatronic system with the ability for communication in open networks and the be part of a cybertronic
system. Hence, simplified, cybertronic systems are mechatronic systems that are enabled to
communicate via open networks for the purpose of joint cooperation (CADET and MEISSNER, 2017: pp. 19–
20; ZAFIROV and ROUBANOV, 2014: p. 139). Cybertronic systems are not in scope of this elaboration.

Current state of science and technology, definitions, and general terms 39

2.2.3 Idiosyncrasies of automotive electric/electronic product

development

As depicted in Figure 1-3, complexity in automotive development steadily increased in

recent years. It can be distinguished between a risen complexity concerning the product,

i.e., technical complexity, as well as complexity regarding the development process, i.e.,

organizational complexity. The number of E/E components, such as ECUs, actuators,

and sensors, has increased. Due to this, the total length of automotive wiring harness

has augmented drastically. Organizational complexity in automotive E/E development

stems from the fact that an automobile is a complex product including multiple involved

development domains that are highly integrated and interactive (cf. Chapter 1).

Engineers in these development domains use different tools, processes, methods, and

even specific vocabulary (BIAHMOU, 2015b: p. 222).

In order to alleviate and address technical and organizational complexity, the application

of auxiliary means is indispensable. In E/E development, there has to be a distinction

between three different classifications of development objects which differ by their

degree of granularity. A high-level development object means a low level of granularity

and vice versa. These classifications are relevant for specific IT tools and the field of

application of computational E/E development, i.e., electrics/electronics computer aided

design (E-CAD). These three levels of development objects align to the definition of

mechatronic systems (cf. Figure 2-8). Hence, E/E design, conductor plate design, and

chip design are the three relevant levels for E/E development. Inherent to these levels

are different approaches, methods, and IT tools (ZAFIROV and ROUBANOV, 2014: pp.

138–141). Mastering this complexity, cost pressure, a desire to offer automobiles

worldwide, and legal regulations, amongst others, forced automotive manufacturers and

suppliers eventually to pursue standardized solutions for E/E development. This

included communication bus systems, common software platforms for ECUs, and

protocols for data exchange (ZIMMERMANN and SCHMIDGALL, 2014: p. 1; ROBERT BOSCH

GMBH, 2014: p. 11). Additionally, in the automobile industry there is an increasing

variance of variants. Simultaneously, there is a decreasing quantity per variant,

economic necessity to develop these variants on common platforms, shorter lifecycles,

and a high volatility in E/E and software due to a high demand from customers for new

features (cf. Chapter 1). This also contributes to a relatively high and continuously

increasing complexity in automotive E/E development (EIGNER and STELZER, 2009: pp.

11–13; HARMS, 2009: p. 39).

40 Product development process

As an automotive manufacturer seldom is the producer of integrated circuits and

conductor plates, the main task for engineers in E/E development for an automobile is

the design of electrical wiring that is necessary, in order to display all connectors and

pins of an ECU, as well as which communications messages are transported on which

bus system (cf. Chapter 2.5). For that purpose, collaborative engineering (cf. Chapter

2.6) by usage of team data management (TDM) (cf. Chapter 2.3) is necessary to

integrate different E/E development disciplines, different organizational departments,

and development activities scattered around the globe. The fundamentals for

engineering collaboration concerning IT architectures will be given in Chapter 2.3. The

technical complexity of joint development by means of MBSE will be described in

Chapter 2.4. A closer look will be taken on automotive E/E in Chapter 2.5, and a concise

overview with of engineering collaboration in Chapter 2.6 in order to address

organizational complexity.

2.2.4 Traceability in the context of product development

Product development is a challenging endeavor and differs from discipline to discipline

by processes, methods, organization, data models, and IT tools. This makes the

identification of traceable artifacts difficult so as to enable and foster traceability.

DATA MODEL

During product development, data models are created which can be modeled

accordingly to implement traceability in product data across IT tools and IT databases

throughout the entire lifecycle. Traceability in product development has a crucial

significance and realization of it is decisive in modern development of complex,

interdisciplinary products and processes. Additionally, the work results and deliverables

of those processes have to be capable of being integrated and machine-readable across

different IT tools, disciplines, and IT databases. This can be achieved by one or many

collective data models for mechatronic systems. Depicting traceability in engineering is

often done using graph-based modeling and graph theory34.

PROCESS MODEL

Product development occurs in an early phase of the product lifecycle where changes

in the design of a product does not yet affect costs as severely as in later phases (EIGNER

and STELZER, 2009: pp. 15–16). However, if changes have to be made in later phases

34 Please refer to ZAWIŚLAK and RYSIŃSKI (2017) for more information about graph-based modeling in
engineering.

Current state of science and technology, definitions, and general terms 41

of the product lifecycle, as well as during the product development itself, ramifications

with other (sub-)products have to be traceable. Furthermore, processes of different

disciplines involved, as depicted in Figure 2-9, have to be aligned. This means that the

organizational structure intra- and inter-company shall foster collaboration in

development. When changes during development occur, the processes have to

propagate them to all affected domains and relevant engineering partners.

TECHNOLOGY

Above it was mentioned that a distributed product development process states high

requirements on the integration of IT solutions, i.e., the technology that enables

distributed engineering collaboration. Often, the dedicated development tools for a

specific domain offer very good traceability within their tool platform. This means, that

information artifacts can be easily traced within a software development platform and

across single instances of development platforms or tools of one vendor. However,

some vendors use proprietary data formats and interfaces which impedes traceability in

product development and engineering collaboration. For the development of 3D

mechanical parts (CAD), the tool CATIA by Dassault Systèmes and NX by Siemens

shall be mentioned, inter alia35. However, as the focus of this elaboration is on E/E and

software development as well as MBSE, only these specific tools will be highlighted

further (please refer to Chapters 2.4 and 2.5).

2.3 Product data management and product lifecycle management

2.3.1 Definitions, norms, and standards

Already during the years of 1980, the first PDM IT systems were available. At that time,

the focus of those IT systems was to provide an instrument for document management

in CAD and enterprise resource planning (ERP). PDM is defined as the management of

a product and process model with the aim to create distinct and reproducible product

configurations (EIGNER and STELZER, 2009: p. 34). However, the typical area of

application was restricted to department-specific activities of development and design

(EIGNER and STELZER, 2009: p. 27). Consequentially, through usage of PDM across the

entire product lifecycle, different specifications of product structures occurred inevitably

along the individual product lifecycle phases. According to EIGNER and STELZER (2009),

35 Please refer to SENDLER (2009), VAJNA (2009), and KÖNIGS (2013) for more information about CAD
development tools.

42 Product data management and product lifecycle management

the product lifecycle phases are depicted in Figure 2-10 (EIGNER and STELZER, 2009:

pp. 16, 20, 28).

Figure 2-10: Product lifecycle phases (in alignment to EIGNER and STELZER, 2009: pp. 16, 20, 28).

In contrast, STARK (2016) only defines five phases of a generic product lifecycle. Those

are Imagine, Define, Realize, Support/Use, and Retire/Dispose which can be considered

as superordinate categories of the above mentioned phases (STARK, 2016: pp. 3–4).

The product model within the definition of PDM aims at the digital reproducibility of

products and the information which is relevant for the lifecycle. A process and its model

delineate the technical and organizational sequence of business. If one combines the

functions of the product and process model, this yields the configuration model. The

configuration model integrates all relevant information with regard to content, status, or

version (EIGNER and STELZER, 2009: pp. 26–30). Configurations, their models, and their

management will be discussed in Chapter 2.3.2. Configuration management is also one

of the core functionalities of PDM systems. However, sometimes it is not fully

implemented36 (EIGNER and STELZER, 2009: p. 35).

Definitions of the functionalities of PDM systems, their names, and their location in one

or more different IT systems differ (STARK, 2016: p. 233). STARK (2016) also gives an

overview of eight more generic components of a PDM system that mainly align with the

above mentioned (STARK, 2016: pp. 233–243).

In order to integrate data from PDM systems universally, i.e., along all lifecycle phases,

across all organizational divisions, and all domains involved with the product, for

instance development, production, after sales, the PLM concept was introduced.

Moreover, legal requirements towards reproducibility and traceability demanded a

higher degree of integration of all IT systems along the product lifecycle. By means of a

continuous configuration management, PDM becomes the backbone of a complete

lifecycle management. There is a plethora of names and definitions for this, yet PLM

became accepted and prevails. What all definitions of PLM have in common is that the

36 Please refer to EIGNER and STELZER, 2009: pp. 35–36 for more information about the common
functionalities of a PDM system.

Current state of science and technology, definitions, and general terms 43

scope of PLM in comparison with PDM is a broader application. Also, a higher degree

of integration of multiple IT systems across all phases of the product lifecycle and the

process of the supply chain is part of PLM. This is to manage all parts and products and

the entire portfolio of a company (EIGNER and STELZER, 2009: pp. 36–37; STARK, 2016:

p. 2). The PLM concept combines functionalities to manage or execute for instance

objectives and metrics, management and organization, people, methods, facilities and

equipment, other PLM applications, PDM system, product data, processes, products,

and the lifecycle37 (STARK, 2016: p. 5). The distinction of PDM and PLM, their allocation

within the product lifecycle, and major stakeholders and their corresponding IT systems

are displayed in Figure 2-11 (in alignment to EIGNER and STELZER, 2009: p. 37; EIGNER

et al., 2014: p. 270).

Figure 2-11: Location of PDM and PLM with respect to the product lifecycle (in alignment to EIGNER

and STELZER, 2009: p. 37; EIGNER, 2014b: p. 270).

As stated above, IT systems executing PLM functionalities often serve as an

integrational solution in terms of processes, data models, methods, organizational

aspects, etc. in the interaction with multiple other IT systems across the entire product

lifecycle in a company’s IT infrastructure. Hence, these IT systems used for PLM often

are referred to as so-called engineering backbones or PLM backbones. This

denomination shall reflect the functional, technical, and process-related connection a

company-wide PLM system toolchain enables (EIGNER and STELZER, 2009: pp. 43–44;

MÜLLER et al., 2017: p. 193; EIGNER, 2014b: p. 280).

37 For more information regarding functionalities of a PLM system, please refer to STARK (2016), EIGNER
and STELZER (2009), KIRSCH et al. (2017a), BUHL et al. (2001).

44 Product data management and product lifecycle management

In a typical four-layered PLM architecture (cf. Figure 2-12), as encountered in

automotive, aerospace, and high-tech industries, the PLM backbone is situated between

the ERP layer and the TDM layer (EIGNER et al., 2014: p. 280). As the functionalities of

PLM systems also comprise PDM functionalities or systems (cf. Figure 2-11), hereafter,

PDM/PLM will be used together where a separation of terms is not necessary, e.g., in

case when the management of bill of materials (BOMs), technical master data, change,

release, and configuration management is considered which is also part of the PLM

backbone (cf. EIGNER and STELZER, 2009: p. 44). Also, focus in this work is on the early

engineering phase where PDM functionalities and processes dominate as downstream

processes for PLM sometimes have not started yet.

At the very bottom of the four-layered PLM architecture in a company’s IT landscape,

there usually are the domain-specific authoring systems. In the case of simultaneous

engineering, those authoring systems can be used in parallel as well as sequentially.

Data is created within the authoring tools, e.g., data such as CAD models, schematic

layouts, source code, calculations, simulations, etc. Examples for domain-specific

authoring systems can be for the support of requirements management, M-CAD, E-

CAD, computer aided software engineering (CASE), CAE, as well es Microsoft Office

programs and project management tools (EIGNER and STELZER, 2009: p. 43; EIGNER et

al., 2014: p. 280).

Figure 2-12: Typical four-layered PLM architecture with a central PLM backbone (in alignment to

EIGNER and STELZER, 2009: p. 43; EIGNER, 2014b: p. 280).

Current state of science and technology, definitions, and general terms 45

The next layer manages the created data close to the authoring systems. Tools and

systems installed at this layer commonly are referred to as TDM tools or systems and

handle data in the native format of the authoring systems. Separation of disciplines,

product lines, and organizational entities by means of this layer contributes to the

reduction of overall complexity of big, worldwide operating companies’ IT landscapes.

In the development phase, TDM systems can be local PDM systems. If authoring

systems are simple, the TDM layer can be omitted and authoring systems are connected

directly to the PLM system. Often, TDM and authoring systems are combined by tool

vendors (EIGNER et al., 2014: p. 280; EIGNER and STELZER, 2009: pp. 43–44).

The PLM backbone is the next layer. The PLM backbone usually comprises of multiple

IT systems and includes the mechatronic product structure and all corresponding

documents, which are commonly available in neutral data formats to improve transfer of

those across all tethered IT systems. Most importantly, the PLM backbone includes the

configuration and change management and by that, is the actual PLM solution layer.

Additionally, further central processes, for instance release management, visualization,

and archiving, usually are implemented in this layer. This guarantees a worldwide

access to all technical master and structural data with all configurations. From this layer

occurs the transfer of information which is relevant for production to the plant-specific

ERP systems (EIGNER et al., 2014: p. 280; EIGNER and STELZER, 2009: p. 44).

The uppermost layer commonly is an ERP, supply chain management (SCM),

production planning system (PPS), or customer relationship management (CRM)

system. There, the logistical and production-related parts of change and configuration

management are executed. Plants often have their own local ERP and PPS systems to

adapt flexibly to local production conditions (EIGNER et al., 2014: p. 280; EIGNER and

STELZER, 2009: p. 44).

As stated above, configuration management is essential to the PLM backbone systems

as a solution layer to connect product structures and documents in a native data format

across many IT systems and along the product lifecycle. Therefore, the following chapter

will scrutinize configuration management further.

2.3.2 Configuration management

A configuration is defined in ISO 10007:2017 as “interrelated functional and physical

characteristics of a product or service” and is delineated in the configuration information,

which are “requirements for product or service design, realization, verification, operation

46 Product data management and product lifecycle management

and support” (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2017a: p. 1;

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1983: p. 13). This norm aligns to

ISO 9001:2015 in which traceability is required to “control the unique identification of the

outputs” (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015a: p. 41) and to meet

traceability requirements and product identification (INTERNATIONAL ORGANIZATION FOR

STANDARDIZATION, 2015a: p. 60). Hence, a configuration is a description of a product or

output at a certain point in time or in a defined status of delivery, respectively, and

includes all relevant information, such as the product structure including software

components in the form of bills of materials (EIGNER and STELZER, 2009: p. 113).

Accordingly, configuration management (CM) is a discipline, which has the scope to

track and monitor a product’s functional and physical characteristics across its lifecycle.

CM serves to establish integrity, reproducibility, traceability, availability, and consistency

of configuration items (CIs), can be considered as the logical consequence of an

integrated implemented product and process management, and is essential to systems

and software engineering38 (GRANDE, 2013: pp. 8–10; SCHULTE et al., 2017d: p. 326;

EIGNER and STELZER, 2009: pp. 33, 112–113; INTERNATIONAL ORGANIZATION FOR

STANDARDIZATION, 2017a: V; INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS,

2012: VIII; FELDHUSEN and GROTE, 2013: pp. 792 ff.; EIGNER and STELZER, 2009: p. 115;

SCHULTE et al., 2017d: p. 328; WALLMÜLLER, 2011: pp. 339–340). The CMII Standard for

Enterprise-Wide Configuration Management and Integrated Process Excellence (CMII)

strives for an efficient CM process as well as for integrated process excellence. CMII is

an incremental approach for the improvement of business processes (MECPRO²

ABSCHLUSSBERICHT, 2016c: p. 170; INSTITUTE OF CONFIGURATION MANAGEMENT AND CMII

RESEARCH INSTITUTE, 2014: pp. 2, 10). In comparison with a change process in software

development, the CMII, aiming at mechanical development, can be considered rather

cumbersome. This is due to many different roles, workflows, and a change review board

are involved (PFENNING, 2017: pp. 29–30). This is in contrast to objective 2.a. which

postulates the reduction of reconciliation, to have earlier and faster reconciliation of

changes.

Additionally to manage changes to a configuration, it is decisive to align specific versions

and their appurtenant configurations (INTERNATIONAL ORGANIZATION FOR

38 For further classification of configuration items, such as technical, contractual, and serialized
configuration items, please refer to EIGNER and STELZER (2009) and EIGNER et al. (2014). Here in this
elaboration, the above-mentioned, generic definition of configuration item is used.

Current state of science and technology, definitions, and general terms 47

STANDARDIZATION, 2003: p. 14). Hence, version control or version management is part

of CM. Also, CM can be considered as a superordinate concept for or advancement of

release and change management, as well as build, baseline, version including variant,

and audit management (KIRSCH et al., 2017d: p. 334; GRANDE, 2013: pp. 14–16; EIGNER

and STELZER, 2009: p. 112). A configuration baseline is a “frozen”, dedicated state of

product description in development status that is used for an internal or external

transition39. The five major components of CM are displayed in Figure 2-13. Moreover,

configuration management supports the intra- and interdisciplinary collaboration and

builds a foundation for communication between design engineers and all other involved

parties in the engineering process (WATTS, 2011: p. 4).

Figure 2-13: The five major aspects of configuration management (in alignment to GRANDE, 2013: p.

16; INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015c: p. 40; KIRSCH et al., 2017a: p. 157).

Change, version, and variant management will be described in more detail as they are

relevant for understanding of the solution framework and its building blocks.

CHANGE MANAGEMENT

Change management results from necessary fixes or new requirements to optimize the

product with the purpose of evaluation and decision, whether changes should be

included and if so, which artifacts will be affected at which costs and expenditure of time

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2017b: p. 66; GRANDE, 2013: p. 15;

EIGNER, 2014c: pp. 253, 255). Sub-steps of change management also prevail outside of

a company, e.g., at a supplier or engineering partner, if this particular change requires

a consensus (STARK, 2016: p. 330; EIGNER, 2014c: 253).

39 Please refer to EIGNER (2014c) and GRANDE (2013) for more information regarding baselines.

48 Product data management and product lifecycle management

According to a taxonomy40, there exists at each point in time one or more assemblies of

items, i.e., configurations of a product, that are effective (EIGNER, 2014c: pp. 256, 259,

260). This so-called effectivity is a major part not only of change management but also

of CM. Effectivity in the context of CM describes a validity period of a configuration or

the over the time changing product status, respectively, and can be modeled by an CI

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2012b: p. 97; EIGNER, 2014c: pp.

262–263; ŞENALTUN and CANGELIR, 2012: p. 371). Effectivity enables the distinct

identification of a product and documentation configuration that can be restored in a

system at any point in time in order to foster traceability (EIGNER, 2014c: p. 263). An

example for effectivity is shown in Figure 2-14.

Figure 2-14: Effectivity in configuration and change management (in alignment to EIGNER and

STELZER, 2009: p. 118; EIGNER, 2014c: p. 263).

VERSION MANAGEMENT

Version management enables capture of all changes to objects in a lifecycle in its

various different versions and, if necessary, to reproduce them (GRANDE, 2013: p. 15;

KIRSCH et al., 2017d: p. 334). In software configuration and its version management

40 A taxonomy is a directed model, i.e., terms at the top commonly are generic terms for or aggregations
of terms at the bottom, that hierarchically orders terms and hence describes relations between
superordinate and subordinate terms (DORSCHEL, 2015: p. 317). For more information, please refer to
Chapter 2.8.

Current state of science and technology, definitions, and general terms 49

there has to be a distinction between central (using centralized server to store version

database) and distributed (storing repository of version database at client) version

control systems (SCHULTE et al., 2017d: p. 326; GIFT and SHAND, 2009: p. 2). For the

sake of completeness, the local version control on only one computer is mentioned here.

This yields six different variations of version control systems (in alignment to KEYDEL

and MEDING, 2008: pp. 230–231; CHACON and STRAUB, 2014: pp. 1–4; GIFT and SHAND,

2009: pp. 2–3):

1. Sole local version control system: This is the classical local version control

system on one computer, which is very error prone and has its limitations in

collaboration.

2. No local client and no common file system: The simplest variation for distributed

development is to access a file server remotely, perform a check-out of a file,

transfer it to your local computer, modify the software, transmit it back to the file

server, and then, at last, check the altered software in again.

3. No local client but a common file system: This variation is a so-called centralized

version control system where a version database is stored centrally at a file

server and each computer or user transfers single files back and forth.

4. A local client but no common file system: Only very few version control systems’

clients are capable of retrieving data from a server directly over the internet, e.g.,

with a network protocol or file transfer protocol and without proprietary software

also on the file server side. Hence, this scenario is seldom used.

5. A local client and a common file system: Here, the client accesses the software

repository of a common file system on the central file server. This facilitates

providers of version control software implementation on local computers and file

servers and fosters distributed software development and its version control. A

major downside of this variation with a centralized version control system is the

single point of failure with respect to the central file server that stores the only

version database. In case of downtime of the file server or a corrupted database,

further development might temporarily not be possible.

6. Distributed version control system: This variation recently prevails most often.

Here, clients do not only check out the latest files, but they completely mirror the

entire version database repository of the server. This makes the entire version

control system resistant towards server failure, compromised data, and errors in

the version database. Hence, those advantages are used by the today’s most

50 Product data management and product lifecycle management

popular distributed version control systems, for instance Git (KEYDEL and MEDING,

2008: pp. 230–231; CHACON and STRAUB, 2014: pp. 1–4; GIFT and SHAND, 2009:

pp. 2–3).

The six different variations of version control in software development are displayed in

Figure 2-1541. The insights from variation 6 are particularly relevant for distributed

engineering collaborations (cf. Chapter 2.6) and the underlying data bases (cf. Chapter

2.7).

Figure 2-15: Different variations of version control in software development (in alignment to KEYDEL

and MEDING, 2008: pp. 230–231; CHACON and STRAUB, 2014: pp. 1–4; GIFT and SHAND, 2009: pp. 2–

3; GRANDE, 2013: p. 106).

41 For more information about version control in software development, please refer to CHACON and
STRAUB (2014) and BRICOGNE et al. (2012).

Current state of science and technology, definitions, and general terms 51

VARIANT MANAGEMENT

As stated above, variant management can be considered part of version management

within configuration management. A variant is a version of a product that is intended to

coexist with other versions (BRUEGGE and DUTOIT, 2010: p. 562). Variant management

is in the discrepancy between the economic necessity of as much common parts for

many similar products as possible on the one hand and the desire to meet customers’

requirements on the other (FELDHUSEN and GROTE, 2013: pp. 793–794; AVAK, 2006: p.

22).

There is an outer variance, which is noticeable as product variance by the customer.

Conversely, the inner variance is the needed or used variance of parts, assemblies, and

products as well as processes and resources for the realization of the outer variance by

means of variation points (SCHULTE et al., 2017c: p. 262; KIRSCH et al., 2017a: p. 157;

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015b: p. 6).

A reference or template product, i.e., a so-called “150% product” based upon a

company’s knowledge repository, marketing, product management, or strategy, often

builds the basis or “platform” for the deduction of variants which are built from standard

components, options, and individual solutions for customers42 (FELDHUSEN and GROTE,

2013: pp. 795–796; POHL et al., 2012: 170). The “150% product” describes all elements

of a platform (main configuration) or, in other words, includes all standard features

whereas only a subset of 100% of elements is used for one variant (CHADZYNSKI, 2022a:

p. 309, 2022b).

The connection between configuration, version, and variant is displayed in Figure 2-16

using an example from the automotive industry showing coexisting variants and

consecutive versions43.

42 For more information about variant management, development of the reference product structure for
reference variants for a product group, an implementation approach according the reference product
structure, and its processes, please refer to FELDHUSEN and GROTE (2013). AVAK (2006), HARMS (2009),
HASS (2003), WOSS (1997), and BRUEGGE and DUTOIT (2010) give more details on variant management.
POHL et al. (2005) and DALGARNO and BEUCHE (2007) show the distinction of problem space and solution
space for each domain engineering and application engineering, where variability occurs, and is
managed. Variant management drivers, complexity, cost, and examples from automotive industry are
presented in ELMARAGHY et al. (2013).
43 Also cf. SCHÄUFFELE and ZURAWKA, 2016: p. 199.

52 Product data management and product lifecycle management

Figure 2-16: Connection between configuration, coexisting variants, and sequential versions.

2.3.3 Traceability in the context of PDM/PLM

When considering PDM and PLM, traceability is the fundament in today’s product

development and lifecycle for complex products in the realm of E/E and mechatronics.

DATA MODEL

Due to different disciplines develop and process data in a PDM/PLM IT landscape, a

common language, i.e., a shared data model for the main business objects, is crucial.

There exist different peculiarities of which data is stored where. For instance, a PLM

system can hold all technical data, or only construction data, or intermediate data

handling in reciprocity with an ERP system. The extent of PLM functionalities define

where and how the different model structures and BOM, e.g., CAD model structure, the

engineering BOM (E-BOM), and the manufacturing BOM (M-BOM), are handled (EIGNER

and STELZER, 2009: pp. 301–309). Standardized data exchange formats as well as

standardized APIs are key for a PDM/PLM integrated network (SINDERMANN, 2014: pp.

327–347).

PROCESS MODEL

As PDM and PLM are management methods to administrate product data, distinct

process models are inherent. Without these process models, for example configuration

management and all its subprocesses where certain items of a product are managed in

order to monitor their characteristics (cf. Chapter 2.3.2), traceability would not be

Current state of science and technology, definitions, and general terms 53

feasible. Particularly, traceability would not be feasible for complex products in

distributed engineering with multiple parties involved. Hence, the capability of

configuration management and its appurtenant aspects (cf. Figure 2-13) has to be

ensured in the context of PDM/PLM processes to foster traceability.

TECHNOLOGY

An interconnected and linked technology, i.e., IT systems, authoring tools, and TDMs in

the context of PDM/PLM, is decisive. As described in Chapter 2.3.1, PLM backbone

systems between the IT systems in product development and further downstream

processes serves as a pivotal integration point with dedicated APIs for different data

and process models in discipline-specific IT systems and tools. TRIPPNER et al. (2015)

show the complexity in IT architecture at BMW AG. Figure 2-12 and STARK (2015) show

the complexity generically (STARK, 2015: pp. 184–185). Standardized and open APIs

and the reduction of IT systems are the main approaches in industry to manage or

master this kind of complexity (PROBST, 2010: p. 13; EIGNER et al., 2016b: p. 59; BITZER

et al., 2018: p. 351). Additionally, especially with respect to software development but

also generally for distributed engineering and the respective PDM/PLM systems, it is

decisive to have a jointly accessible version control system (cf. Figure 2-15). KÖNIGS et

al. (2012) mention popular PDM/PLM IT systems which provide basic means to

establish traceability of information artifacts. V6 by Dassault Systèmes offers the RFLP

approach44 to foster traceability by means of trace links across all development phases

that are stored in one single PDM system (KÖNIGS, 2013: pp. 45–46; KÖNIGS et al., 2012:

p. 930; SENDLER, 2009: p. 153). Dassault Systèmes’ 3DEXPERIENCE platform is the

successor of V6 and also combines all relevant PDM/PLM functionalities and,

additionally, provides the open services for lifecycle collaboration (OSLC)45 (DASSAULT

SYSTÈMES, 2014, 2018a: pp. 11–12, 2018b: p. 6, 2020). The IT system Teamcenter by

Siemens provides interconnected PDM/PLM functionalities to enable traceability across

development phases and domains using URL hyperlinks. However, OSLC only is

supported partially (KÖNIGS, 2013: p. 48; KÖNIGS et al., 2012: p. 930; SIEMENS INDUSTRY

SOFTWARE INC., 2019, 2020a, 2020b; SENDLER, 2009: pp. 189–190; PROSTEP IVIP E.V.,

2020b). PTC’s Windchill PDMLink is an extensive PDM/PLM tool, offering OSLC link

creation as well as OSLC link inclusion in its latest version, handling of system elements

within the BOM, and fosters traceability via trace links between parts in PDMLink and

44 Cf. Chapter 2.4 for more information about the RFLP approach.
45 Please refer to Chapter 2.8 for more information about OSLC.

54 Model-based systems engineering

model system blocks in Windchill Modeler46 (SODIUS CORP., 2020; PTC INC., 2020a,

2020c; OLLERTON, 2016: p. 4). The Aras Innovator, a PDM/PLM platform by Aras,

applies the RFLP approach (REARDON, 2016; PFENNING, 2017: p. 94). In combination

with an adapter, OSLC can be used together with Aras Innovator (PROSTEP INC.).

2.4 Model-based systems engineering

2.4.1 Definitions, norms, and standards

A system constitutes of a quantity of elements or sub-systems with specific properties

that are linked to each other. System boundaries and the environment confine a system

and, in case of an open system, the system interacts with its boundaries and

environment (EHRLENSPIEL and MEERKAMM, 2017: p. 28). A system’s elements interact

and are organized to achieve a purpose (INTERNATIONAL ORGANIZATION FOR

STANDARDIZATION, 2017b: p. 449). Systems often are depicted using an architecture

description. An architecture in the system’s context describes general properties of a

system through its elements, their relationships, and embedded in its environment

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011f: p. 2).

In order to develop systems, MBSE enhances previous methods by the creation of a

system model in the early concept phase. Here, collaboration between involved

disciplines shall not occur via documents, as in systems engineering47, but rather by

means of centrally available and up to date, semantically rich models. Hence, MBSE is

the formalized application of model creation to support activities of requirements

engineering, development, verification and validation48 of a system, from the conceptual

design phase throughout later phases in the lifecycle49,50 (TECHNICAL OPERATIONS

INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING, 2007: p. 15; ZAFIROV, 2014: p. 81).

According to IEEE COMPUTER SOCIETY (2007), the basic building blocks of a system are

46 For more information about PTC’s Windchill Modeler, please refer to Chapter 2.4.3.
47 For an overview of the transition form systems engineering as document-based discipline to model-
based systems engineering as model-driven discipline please refer to ESTEFAN (2008), TECHNICAL

OPERATIONS INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING (2007), WALDEN et al. (2015), BUEDE
(2009), and NASA (2007).
48 The purpose of verification is to provide an objective confirmation that specifications are met, i.e., that
the “product is built correctly”. Validation on the other hand means that it has to be clarified whether a
product in use meets the customer’s requirements, i.e., that the “right product was built” (BOEHM, 1979:
p. 3; INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2015c: pp. 70–75).
49 An engineering process is model-based when its description is based upon a formal language. A formal
language is an abstract language with focus on the mathematical or physical application, such as a
programming language (EIGNER, 2014a: p. 7).
50 The conceptual design phase is located at the phase “concept” in the product lifecycle (cf. Figure 2-3).

Current state of science and technology, definitions, and general terms 55

elements of the product hierarchy as well as of the lifecycle processes (IEEE COMPUTER

SOCIETY, 2007: p. 4). A system can be divided further into the so-called system

breakdown structure, which reflects the three major phases of systems development: i)

system definition, ii) preliminary design, iii) detailed design (cf. Figure 2-17) (IEEE

COMPUTER SOCIETY, 2007: pp. 17–18).

Figure 2-17: System breakdown structure (in alignment to IEEE COMPUTER SOCIETY, 2007: pp. 4, 18).

By implementation of a central system model that connects all the other discipline-

specific models, for instance simulation, CASE, E-CAD, and M-CAD models, MBSE

improves complexity management, collaboration, quality, productivity, and reuse,

amongst others. The central system model and its connection to the discipline-specific

models is depicted in Figure 2-18. Due to a model only being a partial representation of

reality, it can only contain aspects that are relevant for its purpose, whether synthesis

or analysis51. Therefore, the content of the system model, its application along the

development process, and which languages and IT tools that will be used, are focal

questions (ZAFIROV, 2014: pp. 82–83). Different methods for MBSE define different

artifacts, different steps, and modeling approaches. These will be discussed in the next

chapter52.

51 Synthesis describes the conception of new solutions including the specification of new goals. Contrarily,
the identification or prediction of actual behavior based on these specifications by means of tests or
simulations are inherent to analysis (ZAFIROV, 2014: p. 80).
52 Please refer to FRIEDENTHAL et al. (2012) for an overview of a partial systems engineering standards
taxonomy including further standards, architecture frameworks, modeling methods, and interchange
standards.

56 Model-based systems engineering

Figure 2-18: Model-based systems engineering with a central system model (in alignment to ZAFIROV,

2014: p. 82; FRIEDENTHAL et al., 2012: p. 18).

MBSE commonly consists of an underlying method of how the modeling has to be

executed, a modeling language, and a tool in which the method according to the syntax

and semantics of the language that has been applied. Those three parts of MBSE have

in common that the system model is crucial, as depicted in Figure 2-19 (in alignment to

ALT, 2012: p. 9; EIGNER et al., 2018: p. 382; EIGNER et al., 2016a: p. 167).

Figure 2-19: The three modules of MBSE with the system model as its central artifact (in alignment

to ALT, 2012: p. 9; EIGNER et al., 2018: p. 382; EIGNER et al., 2016a: p. 167).

The most prominent modeling language is systems modeling language (SysML)53.

MBSE methods using SysML, and current IT tools which support the introduced

methods and apply SysML are presented in the next chapter.

2.4.2 Methods and languages

LANGUAGE

MBSE is an approach which uses a formal language to describe connections and

creates connections between different disciplines. There are several languages used to

graphically model systems. However, SysML, a successor of unified modeling language

(UML), evolved to an industry standard and is wide spread (ALBERS and ZINGEL, 2013:

p. 82; KLEINER and KRAMER, 2013: p. 102; ZAFIROV, 2014: p. 89). SysML provides

53 SysML is standardized by the Object Management Group (OMG). Please refer to OMG (2015) for a
holistic overview of SysML and its components.

Current state of science and technology, definitions, and general terms 57

structure diagrams (block definition, internal block), parametric diagrams, package

diagrams, behavior diagrams (activity, use case, state machine, sequence), structure

and behavior models, and cross-sectional diagrams (requirement, stereotype, data

exchange formats) (WEILKIENS, 2008: pp. 226–227; KÖNIGS, 2013: p. 28; ZAFIROV, 2014:

p. 90; FRIEDENTHAL et al., 2012: pp. 17, 30; KORDON, 2013: p. 49). An exemplary

depiction of the diagrams in SysML (lite) language features and some highlights for each

type of diagram are displayed in Figure 2-2054 (in alignment to FRIEDENTHAL et al., 2012:

p. 33).

Figure 2-20: Overview of SysML (lite) language features (in alignment to FRIEDENTHAL et al., 2012: p.

33).

METHODS

As depicted in Figure 2-9, the RFLP (requirements engineering, functional design,

logical design, physical design) approach describes the systematic product

development process for systems in alignment with the V-model. Commonly, PLM

systems support the RFLP breakdown structure. It is also the most mature systems

engineering metamodel in PLM. Hence, compatibility on this metalevel of data between

54 SysML lite is a simplified subset of the SysML notation and only used here for exemplary reasons (cf.
FRIEDENTHAL et al., 2012: pp. 31 ff.)

58 Model-based systems engineering

MBSE authoring tools and PDM/PLM systems is often provided, although some MBSE

methods define the RFLP approach differently55 (KLEINER and KRAMER, 2013: p. 95;

PAVALKIS, 2016: pp. 2466–2469, 2479; ZAFIROV, 2014: p. 88; HORVATH et al., 2015: p.

85; ZAFIROV, 2017: pp. 31–32).

Due to SysML being considered as the de facto standard modeling language for MBSE

(vide supra), only MBSE methods using SysML are in scope of this work. In alignment

to EIGNER et al. (2016a), MECPRO² ABSCHLUSSBERICHT (2016b) and DICKOPF et al. (2017),

the following MBSE methods use SysML56:

Alt, Oliver (ALT (2012))

This method focusses on the model-based top-down description of technical systems

starting at the requirements and use cases. Chains of effects following input, processing,

and output are established. Allocation relations span connections between different

levels of abstraction.

FAS method (LAMM and WEILKIENS (2010))

The functional architectures for systems (FAS) method deduces a functional systems

architecture from use cases and detailed activities. A functional architecture already on

a system level shall enable a preferably solution-neutral and hence technology-

independent depiction.

FAS4M (GRUNDEL et al. (2014))

This method extends the FAS method towards mechanics. FAS4M (functional

architecture of systems for mechanical engineers) aims at the connection of abstract

functional models with shape describing CAD models by using SysML as a fundament

for further depictions of the distinct mechanical characteristics at the logical level.

Harmony SE (HOFFMANN (2011))

This method provides an integrated development process for systems and software by

a combination of the Harmony software engineering and systems engineering

processes. Iterative and incremental steps in the requirements phase, system function

analysis, and design synthesis are based upon use cases.

55 For more information, please also refer to LOPER (2015).
56 The method CONSENS is not in scope due to its proprietary modeling language and SysML is only
included by means of an additional profile (IWANEK et al., 2013: pp. 337–346; DICKOPF et al., 2017: p. 67).

Current state of science and technology, definitions, and general terms 59

Holt and Perry (HOLT and PERRY (2008))

This method’s foundation is the elements ontology, MBSE framework, and viewpoints.

The ontology describes concepts, terms, and relations in the system’s context. The

framework defines the application of the ontology by viewpoints. Viewpoints delineate

extracts of a system that refer to a specific part of the ontology57.

OOSEM (FRIEDENTHAL et al. (2012))

The object-oriented systems engineering method (OOSEM) supports the specification,

analysis, design process, and verification of a system. This method again is a top-down

approach and aims at an easily adaptable model-based systems architecture.

SE-VPE (GILZ (2014))

This method focuses on the model-based functional and logical breakdown (cf. Figure

2-17) in an early phase of development derived from the requirements. In doing so,

vertical and horizontal traceability58 is ensured. Very important in this method is the

ability to transfer elements of the generated system elements to a system lifecycle

management IT system.

SPES (POHL et al. (2012))

The software platform embedded systems (SPES) methodology59 combines different

modeling approaches from diverse disciplines. It uses abstraction layers to further

increase the level of detail. Viewpoints are implemented to distinguish between different

aspects of different stakeholders. Viewpoints are similar to the RFLP approach:

requirements, functional, logical, and technical viewpoint.

SYSMOD (WEILKIENS (2008))

The method system modeling process (SYSMOD) serves as a tool kit to model systems

without a predetermined sequence of activities. It supports modeling of requirements as

57 A view is defined as a “collection of entities and assigned attributes (domains) assembled for some
purpose” (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2017b: p. 502). Consecutively, a viewpoint
on a system is defined as a “form of abstraction achieved using a selected set of architectural concepts
and structuring rules, in order to focus on particular concerns within as system” (INTERNATIONAL

ORGANIZATION FOR STANDARDIZATION, 2017b: p. 502). Please refer to INTERNATIONAL ORGANIZATION FOR

STANDARDIZATION (2017b) and POHL et al. (2012) for more definitions on views and viewpoints.
58 Vertical traceability means the connection of precedent and subsequent phases of the systems
development. Horizontal traceability is enabled by linking different disciplines in one phase of
development. Cf. also Chapter 2.1 for further definitions of vertical and horizontal traceability.
59 Please refer to Footnote 16 (p. 23) for an explanation why the SPES methodology is called like this.

60 Model-based systems engineering

well as the functional and physical structure of complex systems (in alignment to

DICKOPF et al., 2017: pp. 66–68).

2.4.3 Traceability in the context of MBSE

Traceability should be intrinsic to all MBSE methods between domains involved, e.g.,

mechanics (CAD), E/E (E-CAD and CASE), and simulations, in the early systems

engineering process because MBSE methods claim to model relations explicitly. Hence,

MBSE methods enable traceability in the first place. Therefore, this chapter will focus

on how MBSE methods foster traceability with further downstream processes in the

development phase as well as with supplementary processes of documentation

(PDM/PLM). Further upstream processes and methods, such as Modelica, Matlab,

Simulink, functional mock-up unit/interface (FMU/FMI) are not in scope as they also

often occur in separate author tools.

DATA MODEL

Within the discipline of MBSE and each MBSE method, traceability is fostered by the

system model and explicit modeling of relations between artifacts, their values, etc. (cf.

Figure 2-20). However, due to MBSE occurs in the early development phase, these

relations and connections to downstream processes and disciplines are not yet fully

implemented. For that purpose, WEILKIENS et al. (2016) included a criterion “connectivity”

into their “framework for the evaluation of MBSE methodologies for practitioners” to

assess this essential feature of MBSE tools. In this study it is assessed whether

information can be exchanged easily with other tools, which standard API are provided

or can be added, and if open protocols are used for import and export. The criterion

“connectivity“ is weighted with the highest possible value, indicating its relevance for the

assessment in practice (WEILKIENS et al., 2016: pp. 2–3).

Hence, a lot of research focuses on enabling traceability of relations created in early

development between many different disciplines and providing this information to

subsequent processes and disciplines throughout the product lifecycle. Figure 2-21

shows a schematic representation of different hierarchical product descriptions in

different phases of the lifecycle and the aim to foster traceability between the product

descriptions and between lifecycle phases by means of linkage of information artifacts

that refer to artifacts of other phases (in alignment to MÜLLER and KIRSCH, 2017: p. 179).

However, the requirements phase is not in scope of this work and is displayed here for

mere exemplary reasons. BIAHMOU (2015b) emphasizes the necessity of traceability of

Current state of science and technology, definitions, and general terms 61

changes on the different abstraction levels of development, i.e., functional, logical, and

physical, by means of a common metadata model of the system. This could be achieved

by the central systems model within MBSE (BIAHMOU, 2015b: pp. 222, 231). Additionally,

an integrated, ontology-based (meta) data model enhances connections and traceability

between different disciplines in MBSE and between MBSE and PDM/PLM (HOOSHMAND

et al., 2018: pp. 106, 108; HOOSHMAND et al., 2016: pp. 246, 253).

Figure 2-21: Example of three different product descriptions in hierarchical representation in different

phases of the lifecycle and the aim to foster traceability by connection of information artifacts (in

alignment to MÜLLER and KIRSCH, 2017: p. 179).

For the purpose of link creation between the phases of MBSE and PDM/PLM, the distinct

data models have to be aligned. Due to a fundamentally different approach in generating

data models in the involved disciplines and their IT tools and systems which grew over

decades or are relatively novel, alignment of data models is a major endeavor. On data

level, there are three different variations of how to generate this alignment of data

models (in alignment to MÜLLER and KIRSCH, 2017: pp. 178–180; HEBER and GROLL,

2018b: p. 127):

1. Equivalent information artifacts are used within the data model structure of MBSE

and PDM/PLM that are identical except in regards to their name. By this,

asynchrony of content and metadata is ensured, for instance to describe different

lifecycles, due to metadata being able to diverge. Hence, lifecycle information as

well as rights and roles can deviate. The connection is achieved via a global

connection and enables traceability. Regular synchronization of information

artifacts is necessary.

62 Model-based systems engineering

2. Globally valid information artifacts with the same name are used for the data

models of both disciplines. Therefore, lifecycle information as well as rights and

roles cannot deviate.

3. If PDM/PLM information artifacts include a link in their metadata to artifacts of

MBSE, then this is called linked information artifacts. Links can be URL, such as

the OSLC approach, where one information artifact can merely hold

metainformation and a link, while the other includes all relevant properties.

Lifecycles and rights and roles should be identical.

Which variation of data model alignment in the form of information artifact connection is

superior or optimal is a moot point. This is because it depends on many factors such as

which IT systems prevail, how the data models are implemented, and how

responsibilities as well as rights and roles are shaped (MÜLLER and KIRSCH, 2017: pp.

178–180). Table 2-1 illustrates the three options of data model alignment.

Table 2-1: Three alternatives of data model alignment between MBSE and PDM/PLM (in alignment

to MÜLLER and KIRSCH, 2017: p. 179; HEBER and GROLL, 2018b: p. 127).

To store and manage links, a central link repository is suggested as OSLC does not

support a centralized management of links. The advantage of a central link repository

can be that there is the update of links and prevention of broken links, in case of altered

resources. In some cases, the PLM system itself can function as a central link repository

(PFENNING, 2017: pp. 105, 118, 156). However, for distributed engineering

collaborations such a centrally managed link repository might hold some impediments

regarding data sovereignty, trustworthiness, availability, etc. (cf. Chapter 2.7).

Depending on which variation of data model alignment is chosen and hence how

integrated lifecycles of the different disciplines have to be, it might be necessary to

introduce a common variability or variant management (cf. Chapter 2.3.2). This has to

be based upon a joint data model. If variability is present, a system model alone is not

capable of completely ensuring traceability due to variability or variant management is

Current state of science and technology, definitions, and general terms 63

interdisciplinary and hence different data models of different disciplines have to be

aligned. There are many variability concepts, standalone, embedded, or enabling

techniques. However, in practice this still remains an issue at which level of granularity

to install variability management (DUMITRESCU et al., 2014: pp. 130–131; BIAHMOU,

2015b: 231). A configuration item (CI) and a linkable item (LI) as distinct metadata

allocated to the actual information artifact can create different configurations/variants of

multiple items by links. This allows for a separation of disciplines’ lifecycles and yet

linking them together with a joint CI in a light weighted manner, such as the variation of

linked information artifacts in Table 2-1 (SCHULTE et al., 2017a: pp. 88, 91; SCHULTE et

al., 2017b: pp. 179–180; SCHULTE et al., 2017d: pp. 328–329, 331). This approach of a

separate information artifact to handle variability in MBSE in order to foster traceability

by alignment of MBSE and PDM/PLM data models is in line with the orthogonal

variability model (OVM). In OVM, the variability of a software product line is modeled

explicitly in a separate model as metadata and can connect various different models.

(SCHULTE et al., 2017c: pp. 263–264; SCHULTE et al., 2017a: 90; POHL et al., 2005: pp.

72 ff.).

PROCESS MODEL

GILZ (2014) describes in the SE-VPE method an approach how a change workflow for

the lifecycle of system elements by means of a voting mechanism is shaped. In the

process, engineers can vote if changes affecting their systems or components are valid

(compatible change) or not (incompatible). A majority accepting the change, promotes

the system element in scope along its release lifecycle in the PLM backbone:

preliminary, in review, released, in change, superseded. Change management can also

occur in MBSE authoring tools or TDMs, but the focus here is on the change process

on PDM/PLM level. In order to avoid broken links between information artifacts of MBSE

and PDM/PLM when a change request is released, links and relations have to be

maintained. Floating relations, conversely to fixed ones, always point to the latest

version of a connected information artifact. By those means, explicit maintenance of

linked relations between information artifacts in different data models can be

circumvented. A floating relation automatically creates a modified copy whenever an

artifact changes and links it with the previously related artifact. GILZ (2014) suggests not

to transfer unreleased MBSE information from the specific authoring tools or TDMs to

the PLM backbone and rather only transfer released information (cf. Figure 2-12). The

release generates a version number and a unique identifier in the PLM backbone. By

64 Model-based systems engineering

mapping version numbers after a change occurred, SysML models in the MBSE TDM

or authoring tool are kept updated (GILZ, 2014: pp. 115–123, 145-151). For regulatory

purposes as well as traceability, storage of baselines of configurations of information

artifacts as well as their links is necessary (PFENNING, 2017: pp. 160–161). Additionally,

the integration between these MBSE information artifacts and processes with

organizational processes is required (BRETZ et al., 2016: p. 8).

TECHNOLOGY

Some MBSE authoring tools are able to provide a hierarchical structure of model-based

systems that is called containment tree. This hierarchical structure can be transferred to

a PDM/PLM structure. However, today this still often requires proprietary APIs (KIRSCH

et al., 2017b: pp. 161–167). Often, the replacement of the entire IT landscape to

implement a holistic, model-driven set of IT tools and systems is not feasible for

companies. For that purpose, a federative, integrated, and interdisciplinary backbone

concept with links connecting different IT tools and systems could be an alternative

(EIGNER et al., 2016b: pp. 59–61). IBM’s Engineering Systems Design Rhapsody - Model

Manager (Rational Rhapsody) is part of IBM’s Jazz platform and uses SysML, which

connects requirements, simulation, as well as PDM/PLM via OSLC, if applicable (BRUSA

et al., 2018: pp. 335–336; IBM CORPORATION, 2020a, 2020b). The Windchill Modeler

(Integrity Modeler) by PTC also supports the integration via OSLC and can describe

models using SysML. Moreover, it also offers direct OSLC integration to PTC’s own

PDM tool, PDMLink (cf. Chapter 2.3.3) (BRUSA et al., 2018: pp. 336–337; PTC INC.,

2019: p. 4, 2020b; OLLERTON, 2016: p. 4; NORFOLK, 2015: pp. 12–13). Sparx Systems’

Enterprise Architect (EA) enables graphical depiction by usage of SysML. EA serves as

an OSLC provider only. This means, that artifacts in EA can be addressed by their

distinct URL for CRUD operations (cf. Chapter 2.1.3) using HTTP commands (SPARX

SYSTEMS PTY LTD., 2020b, 2020a). SysML also is supported by NoMagic’s (acquired by

Dassault Systèmes) Cameo Systems Modeler and by the installation of additional

plugins, OSLC resources can be used. However, only using an additional IT tool called

DataHub, the Cameo Systems Modeler can handle OSLC links60 (NO MAGIC, 2015: 48

ff., 2020a, 2020b).

60 iQUAVIS by ISID can be considered a niche product and hence is not in scope here (HEIHOFF-SCHWEDE
et al., 2017: p. 43). Capella by Eclipse PolarSys does not use SysML as modeling language and hence
also is not in scope here (ECLIPSE FOUNDATION, 2020).

Current state of science and technology, definitions, and general terms 65

2.5 Automotive electrics and electronics including software

2.5.1 Definitions, norms, and standards

A vast quantity of electrical systems in an automobile address different requirements.

Powertrain, comfort, security, and infotainment partially evolved independently and use

their dedicated technologies of communication, actuators, and sensors (REIF, 2016: p.

2). There prevail many standards for E/E. Some examples of ISO norms for

communication bus systems are given in REIF, 2014: p. 1461. Generically, ECUs consist

of an input, e.g., plug with pins, which are connected with sensors that deliver input

signals. Those signals are processed internally by means of a microcontroller and

memory. The output signal addresses actuators according the calculated results.

Communication interfaces build the connection to the communication bus systems and

enable message delivery between different components (ECUs) in one or different

systems (REIF, 2014: p. 136).

Software often already is embedded in ECUs (embedded system) as part of measuring,

steering, and control functions as well as for communication. Hence, software also is

considered to be part of E/E in this work as it is done in BORGEEST (2014) (cf. BORGEEST,

2014: pp. 213 ff.). The automotive software process improvement and capability

determination (ASPICE), derived from ISO/IEC 15504 (SPICE), assesses the capability

of development processes and their output of suppliers for ECUs according given criteria

(MECPRO² ABSCHLUSSBERICHT, 2016c: pp. 65–66). ASPICE uses process performance

indicators, such as best practices and work products, for such an assessment.

Traceability is demanded normatively by explicitly stating that traceability between

system artifacts shall be established, e.g., as a result of system integration tests (VDA

QUALITY MANAGEMENT CENTER, 2017: pp. 21, 43). Hence, ASPICE is not suitable to

implement traceability but rather request and assess it.

2.5.2 Architecture, communication, hardware, and software

The physical E/E architecture of an automobile consists of ECUs, actors, and sensors

which are connected via cables, plugs, and pins62. An automotive E/E architecture with

61 Please refer to REIF (2014), particularly Chapters 1 and 2, and Chapter 2.5.2 here in this work for further
E/E definitions and standards such as ISO/OSI reference model, communication principles, bus
topologies, software, etc.
62 The power supply by means of a vehicle electrical system to transmit energy for electrical consumption
is not in scope here.

66 Automotive electrics and electronics including software

focus on communication consists of (communication) bus systems. It enables the

transport of messages (layer 3 and 4 of the OSI layer model) by means of transfer of

bits (layer 1 and 2)63.

There exist various communication bus systems in the automotive industry. However,

former automobile manufacturer-specific bus systems were superseded by

standardized solutions, such as the controller area network (CAN) or local

interconnected network (LIN). Whereas the LIN bus as a cheap alternative is used for

instance for switches with a low data rate, CAN, FlexRay, media oriented systems

transport (MOST), or ethernet, amongst others, were developed for different

requirements such as higher data rates, sequential communication times per peer on

the bus, fault tolerance, star, bus, or ring topologies (cf. ZIMMERMANN and SCHMIDGALL,

2014: p. 8; REIF, 2014: pp. 7, 14; SCHÄUFFELE and ZURAWKA, 2016: p. 124). Multiple

communication bus systems which use different technologies are linked together by

central or decentral gateways. Commonly, functional systems, such as powertrain or

infotainment, share their bus system with the same technology.

The complexity in the automotive E/E architecture tremendously increased in the last

decades (cf. Figure 1-3). The usage of different technologies for communication busses

and hence the yielding complexity from this approach is one reason for efforts of

standardization and actions to cope with this complexity. Additionally, many solutions

reflect organizational structures of automotive manufacturers and their suppliers.

Historically, engine, gear unit, chassis, and body are developed in different departments.

Striving for an optimal solution for the respective department itself and then handling the

integration of the interfaces is a common phenomenon. Those isolated applications

hinder the transdisciplinary integration of functions, which is the reality in today’s

automotive development. A high reuse of bus systems due to cost reasons enforces

upward compatibility. Hence, new technologies do not fully replace older solutions and

ECUs have to provide all different kinds of connectors and the integration during

distributed development becomes more and more complex (REIF, 2014: p. 34;

ZIMMERMANN and SCHMIDGALL, 2014: pp. 9–11; BOSCHERT and ROSEN, 2016: p. 62).

63 For more information on the different layers of the ISO standard including the open system
interconnection (OSI) model, please refer to ZIMMERMANN and SCHMIDGALL (2014), BORGEEST (2014),
REIF (2014), VAJNA (2009), and PETERSON and DAVIE (2012).

Current state of science and technology, definitions, and general terms 67

HARDWARE

Although actuators and sensors play an important role in a modern automobile, e.g., for

autonomous driving, here the focus regarding hardware will be on the ECUs due to their

relevant role as interface components in E/E systems. Hence during development,

different departments intra- and inter-company have to align their interface

specifications for ECUs. Often, actuators and sensors are highly standardized and

match the ECU they are connected to (REIF, 2016: p. 7).

SOFTWARE

Usually, software has to be changed more frequently during its application than other

products. This might be due to newly added software that has to be integrated or

processes in which the software supports have changed. One approach to alleviate the

number of changes necessary is the parametrization of software to give software

components yet another degree of freedom in customization without the need to alter

huge parts of it. For that purpose, configuration parameters are stored in parametrization

files64 (POMBERGER and PREE, 2004: p. 85). An automotive example would be the

parametrization of the same engine ECU for two different power levels where the

parametrization file stores different characteristic curves, injection masses, air volume,

etc. Additionally, ECUs commonly have a bootloader software and a firmware

(STRINGHAM, 2010: p. 6).

Many functionalities in modern automobiles are enabled by software. Therefore,

automobile manufacturers recognized the exigency of standardization for software. The

automotive open system architecture (AUTOSAR) standard addresses this complexity

by the development and implementation of standard software components suitable for

reuse and exchange. This is accomplished by designing hardware-independent

application software (OEM-specific) and hardware-oriented basic software (OEM-

independent) connected by a flexible runtime environment. By those means, software

can be developed without specific knowledge of the planned hardware and software

components can be implemented flexibly on different ECUs. During development, the

system configuration, i.e., network topology, is described explicitly from communication

bus systems up to the communication matrix of single channels65 (WINNER et al., 2015:

pp. 106–115). The AUTOSAR adaptive platform enhances the classical AUTOSAR by

64 See Chapter 2.3.2 for more information about software parametrization and its use for the configuration
of software.
65 See Chapter 2.5.3 for more information on the (network) communication matrix or network
communication description.

68 Automotive electrics and electronics including software

offering functional clusters with services and APIs as interfaces which are linked

dynamically during runtime. A virtual function bus connects joint functions across

ECUs66 (AUTOSAR, 2019; REIF, 2014: p. 58).

2.5.3 Traceability in the context of automotive E/E and software

DATA MODEL

Besides the requirements towards traceability in the E/E development for hardware and

software, the above-mentioned communication matrix or network communication

description (NCD) describes dependencies on the signal level. There is no standardized

format of what the NCD has to compose. Sometimes the NCD names the signals on a

communication bus in its rows and further attributes in its columns. Also, the NCD can

have ECU names in rows and columns indicating which ECU consumes or provides

which signal (BORGEEST, 2014: 131–132; WINNER et al., 2015: p. 115; ZIMMERMANN and

SCHMIDGALL, 2014: pp. 416–417). Hence, the NCD is one possibility to foster traceability

in the context of automotive E/E by the possibility of the creation of a machine-readable

file that indicates physical connections (hardware) among ECUs as well as their

communication by means of messages (software).

PROCESS MODEL

As stated above, the complexity in automotive E/E, hardware and software, becomes

hard to handle. This is particularly relevant when it comes to safety-relevant functions.

Therefore, norms address this issue. The norm ISO 2626 for road vehicles, one of the

most important norms for automotive E/E, requires functional safety for systems with

E/E components. The norm stipulates different analysis, required documentation of

product information during the development process along nested V-models.

Traceability has to be documented and maintained explicitly for safety-relevant relations

between systems and elements on hardware and software level. Changes during the

development as well as during configuration management have to be traceable

(INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011c: p. 9, 2011d: p. 10, 2011e:

pp. 8, 11, 14, 37; KÖNIGS, 2013: p. 27; BORGEEST, 2014: pp. 332 ff.).

TECHNOLOGY

Usually, automotive E/E architectures are developed discretely, i.e., not car-specific,

and if a development project for an automobile model line starts, the desired E/E

66 For more information on the AUTOSAR (adaptive) standard, please refer to AUTOSAR (2019), REIF
(2014), ZIMMERMANN and SCHMIDGALL (2014), and WINNER et al. (2015).

Current state of science and technology, definitions, and general terms 69

architecture will be adapted to the automotive platform in scope. Without computer-

aided modeling of harnesses, E/E architectures, and their message transmission,

modern E/E development would not be practicable. Therefore, there prevail plenty IT

tools to support the development process. Often, engineering disciplines are separated

into the design of communication busses and message transmission, E/E architecture

design, harness wiring layout, etc. Examples for common IT tools are PREEVision,

CANoe and CANape by Vector Informatics. PREEVision is a widely used E/E

development tool for the communication bus design in the automotive sector. It uses a

centralized approach for an IT collaboration platform. The integration of automotive E/E

hardware and closely related software development, particularly among IT tools of the

same vendor, is relatively high. However, traceability with other disciplines or direct

integration of E/E hardware or software into a BOM in a PDM/PLM system are currently

scarce67 (cf. ZIMMERMANN and SCHMIDGALL, 2014: pp. 415–433; BECK et al., 2016: pp.

6–7).

With respect to software development and its decisive version control, particularly in

distributed development scenarios, the open-source tool Git is acknowledged widely.

Git holds a complete replication of databases from the server at each client (cf. Chapter

2.3.2 and Figure 2-15) (CHACON and STRAUB, 2014: p. 4; GIT, 2020b). Atlassian’s tool

Bitbucket for the management of Git-code extends the sole software version control by

means of project planning, testing and deployment, as well as collaboration. Hence,

Bitbucket is in scope here instead of the stand-alone Git68 (ATLASSIAN, 2020a, 2020b,

2020c).

2.6 Distributed engineering collaboration

2.6.1 Definitions, norms, and standards

Due to ever shorter innovation cycles, companies see themselves urged to decrease

the duration of development projects. An approach to do so is the parallelization of

processes so as to reduce engineering time and enhance quality of results, i.e.

simultaneous engineering (cf. Figure 2-4) (EVERSHEIM and SCHUH, 2005: p. 8). A high

67 For further information about software development tools and the necessary version control, please
refer to Chapter 2.3.
68 Here, Apache Subersion (SVN) by CollabNet is not in scope due to a centralized approach for a version
control system and hence differences in performance and fault tolerance towards Git in a distributed
engineering network approach (cf. Chapter 2.3.2 and Figure 2-15) (CHACON and STRAUB, 2014: p. 3; GIT,
2020a).

70 Distributed engineering collaboration

interdependency with suppliers already in the early development phase, increased

globalization, and more product knowledge at the supplier, demands automotive

manufacturers to execute this simultaneous engineering across their suppliers. By this

so-called cross-enterprise engineering, frontloading and handling of complexity is

fostered (cf. Figure 2-4) (STEPHAN, 2013: pp. 67–68; EIGNER and STELZER, 2009: pp. 14–

15, 18; KATZENBACH, 2015a: p. 611). The necessity resulting from cross-enterprise

engineering to be in a position to manage distributed and federative information and

processes requires solutions across companies. Engineering collaboration denominates

solution approaches for distributed development by means of product data exchange or

direct collaboration in virtual project rooms (EIGNER and STELZER, 2009: pp. 182–183;

EIGNER et al., 2012a: p. 27). Collaboration is understood as a process where companies

share information, resources, and responsibilities in order to strive for a joint goal. For

that purpose, short-term virtual enterprises can be founded to achieve a common project

(BORSATO and PERUZZINI, 2015: pp. 168–169; WOGNUM and CURRAN, 2013: p. 6).

Moreover, a company has to collaborate with external sources of knowledge, such as

start-ups, to promote open innovation (WOGNUM and CURRAN, 2013: p. 7). Additionally,

relationships in engineering collaboration are temporary, limited to a project and a

current partner can become tomorrow’s competitor. A flexible IT infrastructure is needed

to address this volatility as well as the protection of intellectual property (IP). Moreover,

mechanisms to protect IP, such as watermarking, are enforced to confront this insecurity

and mistrust69 (LIESE et al., 2013: pp. 270-272, 277; cf. HEYN, 1999 according to

STEPHAN, 2013: p. 69).

For engineering collaboration, the exchange of data is mandatory (cf. Chapter 2.1.1).

For that purpose, many standards for the exchange of data have been established. The

most prominent standards in the realm of PDM/PLM are:

• Extensible markup language (XML) metadata interchange (XMI) which extends

XML by means of inclusion of metaobjects.

• ISO 10303 STEP and here particularly AP 242 (cf. Footnote 24 on p. 30) that

describes 3D engineering data whereas AP 233 focuses on systems

engineering70.

69 Please refer to STJEPANDIĆ et al. (2015b) for more information on engineering collaboration, concurrent
engineering, and further forms of joint development.
70 For more information about ISO 10303 AP 233, please refer to GILZ (2014), KÖNIGS (2013), and
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2012a).

Current state of science and technology, definitions, and general terms 71

• OSLC aims at defining specifications to foster integration of IT tools during

development and uses web technologies, such as uniform resource identifiers

(URI), resource description framework (RDF), and representational state transfer

(REST)71 (STIEFEL, 2011: pp. 40–42; GILZ, 2014: p. 34; KÖNIGS, 2013: pp. 26–27;

KATZENBACH, 2015a: pp. 627–632).

Engineering collaboration platforms, i.e., dedicated IT systems and tools to exchange

engineering data in engineering relationships, shall include aspects for communication,

product data, processes, and organization that are relevant for collaborations72

(KATZENBACH, 2015b: p. 189; STIEFEL, 2011: p. 30).

2.6.2 Phenotypes

Engineering collaboration transformed itself in alignment to the transformation of the

OEMs’ and suppliers’ relationships. Traditionally, an OEM had centralistic purchasing

and each supplier developed and delivered a specific product which the OEM integrated

into its final product. Later, as products became more complex, different tiers of

suppliers formed, each tier specialized in one activity, such as engineering of

components and single parts, sub-systems and modules, or entire systems. Today most

prevalent is the engineering and supplier structure, which is separated out by

production, developing systems, and integrating systems for an OEM. Already today

there are engineering and supply networks that are highly integrated and connected.

System integrators and system specialists offer standard systems to OEMs which adapt

these systems according their own preferences. Moreover, OEMs and the other

suppliers develop highly innovative components and systems together to share costs,

profits, risks, and opportunities. Therefore, the sole OEM-supplier relationship changed

to joint engineering partners, mostly for dedicated projects or products such as

autonomous driving. This relationship can extend to virtual enterprises amongst different

OEMs, their engineering partners, and suppliers (DAIMLER AG, 2018; FELDHUSEN and

GROTE, 2013: pp. 6-8, 31–33; EIGNER and STELZER, 2009: pp. 14–17; LIESE et al., 2013:

p. 270). This vicissitude is depicted in Figure 2-22 (in alignment to FELDHUSEN and

GROTE, 2013: p. 7; EIGNER and STELZER, 2009: p. 15; STEPHAN, 2013: p. 71).

71 See Chapter 2.8 and KATZENBACH (2015a), GILZ (2014), STIEFEL (2011), and KÖNIGS (2013) for more
information about these standards.
72 Please refer to EIGNER and STELZER (2009) and STIEFEL (2011) for more details about different IT
systems for engineering collaboration and how they are connected.

72 Distributed engineering collaboration

Figure 2-22: Transformation of supplier structures across time (in alignment to FELDHUSEN and

GROTE, 2013: p. 7; EIGNER and STELZER, 2009: p. 15; STEPHAN, 2013: p. 71; KATZENBACH, 2015a: p.

626).

STIEFEL (2011) differentiates between product data-oriented, project-oriented, and

process-oriented collaboration (cf. KRAUSE et al., 2007 according to STIEFEL, 2011: pp.

21–26). Product data-oriented collaboration is defined according to the necessary

exchange of engineering data between partners in an engineering collaboration in order

to make this data available at the right point in time and at the right venue. The data

exchange occurs by means of transfer of neutral data formats, e.g., STEP, between

different PDM systems. These aspects are aligned to the Sections Data Model and

Technology in Chapter 2.6.3. Project-oriented collaborations focus on coordination of

schedules, controlling, planning, etc. and are not within the scope of this work. An intra-

company development process characterizes process-oriented collaborations. The goal

is to align process steps in each phase of the development process between the

involved engineering partners in order to increase traceability and velocity, as well as to

Current state of science and technology, definitions, and general terms 73

reduce manual work and errors (STIEFEL, 2011: pp. 21–26). The process aspects of

engineering collaboration contribute to the Section Process Model in Chapter 2.6.3.

Another relatively young form of engineering collaborations are start-ups, developing

products jointly with incumbent OEMs or their suppliers and integrating their products in

automobiles in an early stage or later as a service. Often, start-ups and emergent new

entrants into the automotive market deliver software or other E/E components to OEMs

and suppliers. Hence, OEMs heavily invest into start-ups associated with products for

the automotive industry (KAAS et al., 2016: pp. 13–14; KÄSSER et al., 2017: p. 4;

HOLLAND-LETZ et al., 2019: pp. 1–3; WIEHMEIER, 2017: p. 1; GLASNER, 2018: pp. 1–6;

KRIEG et al., 2018: pp. 15–16). In regards to this connection, alignment of development

processes, product lifecycles, and production pace are challenging. Additionally, sharing

IP with start-ups in a secure manner is, likewise to traditional engineering collaborations,

crucial (STAREPRAVO, 2019: p. 6).

2.6.3 Traceability in the context of engineering collaboration

DATA MODEL

In engineering collaboration, the data exchange according to a collective data model is

crucial for traceability and reduces manual rework or intensive API programming and

maintenance. Hence, standards for the exchange of data (cf. Chapter 2.2.1) in a multiple

partners engineering collaboration facilitates automized data exchange. Thus, APIs do

not have to be adapted frequently whenever new suppliers or collaboration partners

enter the joint development. If the data model within each IT tool or system already

matches data exchange standards or these tools and systems provide accordingly

standardized APIs, then the adaptation effort for each participant is minimized.

Otherwise, authoring tools often provide converters to convert the proprietary data

format into a neutral data format, e.g., in the case of CAD models into JT. Only

collaboration partners that have IT tools including a converter or are already capable of

handling native data can participate in the engineering collaboration (EIGNER and

STELZER, 2009: p. 186). In order to share knowledge in an engineering collaboration, a

common taxonomy for the description of product data models is necessary. For that

purpose, ontologies are used (STIEFEL, 2011: p. 36; VACHER et al., 2007: pp. 314–316).

This will be discussed in Chapter 2.8.

74 Data base solutions

PROCESS MODEL

Usually, engineering partners only exchange data at distinct milestones during the

development process. This approach has disadvantages, namely that product data

often is not up-to-date, reactions to constructive or technological changes of product

models occur too late, and therefore this yields unnecessary changes, long development

cycles, incomplete traceability, and high costs (STIEFEL, 2011: p. 27; FERREIRA et al.,

2017: pp. 1478–1480; SCHÄUFFELE and ZURAWKA, 2016: p. 199). Usually, PDM/PLM

systems have strong workflows implemented. The alignment of these workflows across

multiple PDM/PLM systems as well as authoring tools of many engineering partners is

essential. Today, this is often done with emails as a reminder for the partner that the

previous engineer finished their task and the consecutive task can start (EIGNER and

STELZER, 2009: p. 189).

TECHNOLOGY

OEMs and suppliers use up to eight different tools within one process phase during

development. Hence, traceability and re-use of engineering data is necessary (BEIER,

2014: p. 31; SCHÄUFFELE and ZURAWKA, 2016: pp. 198–200). Moreover, many systems

induce incompatibility of data types and hence released data which is often held

redundantly at distinct collaboration partners, leading to errors and delays (STIEFEL,

2011: p. 22). Some vendors specialize in offering engineering collaboration IT platforms

for the connection of PDM/PLM systems of the major automotive OEMs, SAP systems,

authoring tools, simulation software, requirements management, etc. The example of

OpenPDM by PROSTEP further offers APIs to a data exchange platform to transfer

huge amounts of data, for instance, with suppliers who do not have direct connectors to

OpenPDM. A high degree of collaboration for the maintenance and development of

OpenPDM is required due to the definition of data models, APIs, process models,

amongst other things (STIEFEL, 2011: p. 31). OpenPDM is a mere integrational

facilitation platform in which you cannot manage information artifacts directly to the

extent of a proper PDM/PLM IT system (PROSTEP IVIP E.V., 2020a).

2.7 Data base solutions

Particularly in Chapters 2.2, 2.3, 2.6, and in Figure 2-12, the importance of compatible

IT systems for traceability in engineering activities and their accompanying

documentation within a company and in engineering collaborations, was highlighted. In

this chapter, different technologies for those IT systems or data bases will be examined.

Current state of science and technology, definitions, and general terms 75

This is in order to assess the adequacy of different types of data bases for fostering

traceability during development within one and across multiple companies.

2.7.1 Definitions, norms, and standards

A data base is a collection of data which have logical relations among one another and

are administered by one’s own data base management system (DBMS). The DBMS has

one or many logical external APIs which allow users and IT tools to access the data in

the data base by translation of logical to physical access (SCHICKER, 2017: p. 3). Above,

the distinction between the logical and physical layers of IT systems or data bases has

not been made. Hence, below a data base or IT system will be considered to include

both layers as well as the DBMS73.

In the following, different types of data bases will be discussed in order to assess their

aptitude to foster traceability in distributed engineering collaborations.

2.7.2 Central data bases

The central data base is the traditional IT system. It comprises the following type of data

bases (SCHICKER, 2017: pp. 12–16; DORSCHEL, 2015: pp. 288–293):

• Relational data bases: They consists of tables, called relations, which also store

the relations between different tables. Their simplicity of use and program

contributes to their popularity.

• Object-oriented data bases: An object can be a real or an abstract entity. Objects

also can be stored in tables. Therefore, object-oriented data bases often are

considered as extensions to relational data bases. Programmers and designers

have to invest more effort in the creation of these more complex object-oriented

data bases.

• Hierarchical data bases: The access via the uppermost node and the successive

descent to the node of interest makes these data bases archaic and hence

obsolete.

• Key/Value-oriented data bases: Those data bases gain their flexibility and

velocity via the allocation of unique keys to values.

73 Please refer to SCHICKER (2017) for a detailed overview of general capabilities of a data base.

76 Data base solutions

• Document-oriented data bases: Similar to key/value data bases, documents

(values) are assigned distinct names (keys). Hence, the storage of documents

and their association with other data is feasible.

• Column-oriented data bases: Instead of reading row by row when looking for the

values of interest as in traditional relational data bases, the column-oriented data

bases invert the table. This yields quicker searches due to there only being one

column, which stores the value of interest, that has to be searched.

• Graph-oriented data bases: Here, data is structured according to graph theory

using nodes and edges and is particularly performant for geographical or social

data.

The latter four data base types are so-called NoSQL (not only structured query

language) data bases and are often used for use cases where performance of data

access and calculations are crucial (SCHICKER, 2017: pp. 12–16; DORSCHEL, 2015: pp.

288–293).

2.7.3 Decentral data bases

An increasing amount of data, as well as access to it anytime and anywhere, demands

more performant and flexible data bases than the relational, central data bases

described above. Central data bases are limited in their vertical scalability, i.e., the

increase of processors, disk storage, and main memory for the purpose of higher

performance. For that purpose, decentral data bases were created where the data

processing is distributed among multiple IT systems (horizontal scalability). Decentral

data bases are defined by data which is stored at least at two computers or IT systems

within the same network. Validity or consistency in case of redundant data are just two

more examples of how the complexity increases with multiple IT systems handling data

in one network. It has to be figured out which set of data is the most recent and at which

IT system the data is. On the other hand, decentral data bases offer advantages in

comparison to central data bases such as faster access and higher performance. This

is also advantageous for distributed companies with, for instance, multiple plants,

subsidiaries, or development offices. Consequently, a frequent local access to data

across the world can be facilitated. Moreover, availability, i.e., the reciprocal of an IT

system downtime, can be ameliorated and hence the failure of one IT system does not

compromise the entire network. The failure of the central data base then again is its

Achilles’ heel (SCHICKER, 2017: pp. 307–309; DORSCHEL, 2015: p. 278). DATE (1990)

Current state of science and technology, definitions, and general terms 77

postulates twelve principles towards decentral data bases so that decentral data bases

appear to the user as if they would be a central data base. The most important principles

in the context of distributed engineering collaboration and traceability for engineering

data across the lifecycle are74 (cf. DATE, 1990 according to SCHICKER, 2017: pp. 309–

312):

• No central administration instance,

• Permanent availability,

• Independent of fragmentation,

• Independent of data replication,

• Decentral transaction administration.

Not all principles can be satisfied concurrently due to an immanent contradiction of some

of them. Additionally, consistency (C), availability (A), and tolerance of network partitions

(P) partially are disjunct and only two of them can occur simultaneously. This is called

the CAP theorem and is important for decentral data bases in the following (SCHICKER,

2017: pp. 312–315).

LINKED DATA

Linked data is characterized as a data base, multiple data bases, or IT systems which

hold data from different domains that are integrated and linked semantically75. The world

wide web also became a web of linked data with highly integrated semantical links

between contents instead of solely linking documents (SAKR et al., 2018: p. 5).

Integrated content and semantical links in the context of linked data implies specific data

relationships and machine-processable data. Herewith, isolated data silos shall be

overcome and an interconnection of data fosters global data integration. The World

Wide Web Consortium (W3C) standardized all fundamental concepts of linked data

(SAKR et al., 2018: p. 9). The four most important principles are (BERNERS-LEE, 2006;

SAKR et al., 2018: pp. 9–10):

• Denominate objects with uniform resource identifiers (URIs)76.

• For transfer of data the hypertext transfer protocol (HTTP) shall be used77.

74 Please refer to SCHICKER (2017) for the full list of the principles by DATE (1990).
75 Cf. Chapter 2.8 for more information about semantics in data bases and IT.
76 For more information, please refer to https://www.w3.org/Addressing/.
77 For more information, please refer to https://www.w3.org/Protocols/.

78 Data base solutions

• Data identified by URIs and transferred via HTTP shall be provided using

standards such as the resource description framework (RDF)78.

• The inclusion of further links to other URIs into the content shall promote the

integration of data.

Commonly, linked data is a static snapshot of information. So-called triples form the

semantical interconnection of data that yields large RDF graphs. This will be explained

further in Chapter 2.8.

PEER-TO-PEER NETWORK WITH STRUCTURED OVERLAY NETWORK

A peer-to-peer (P2P) network is a special kind of decentral data base where peers, i.e.,

participants, of a computer network or network of IT systems allows direct access to

data stored at a peer’s computer or data base. Resource sharing, such as content,

bandwidth, processing power, etc., amongst millions of nodes79 without contacting a

centralized authority is a distinct feature of P2P networks. The absence of a central

authority to control resources and the capability to scale up to millions of nodes makes

a P2P network to a P2P network with an overlay network. The overlay network spans

over the physical network of, e.g., the internet and creates the actual P2P network with

nodes operating as hosts for their content, offering it to share their data, and often with

their own address space. In contrast to unstructured overlay networks, structured

overlay networks comprise a specific graph structure which allows for efficient search of

data objects within the network. On the one hand, structured overlay networks require

higher maintenance effort as well as induce further complexity during installation. On

the other hand, the structured network allows for routing of queries due to nodes holding

the information of other peers and which data they offer, so-called routing tables, which

makes directed searches feasible. In an unstructured overlay network peers or nodes

do not hold information of data of other peers inducing random searches, without

specific forwarding80 (PETERSON and DAVIE, 2012: pp. 769–772; STIEFEL, 2011: pp. 43–

51).

IDIOSYNCRASIES OF THE BLOCKCHAIN TECHNOLOGY AS A PEER-TO-PEER NETWORK

In 2008, an unknown author with the pseudonym Satoshi Nakamoto (NAKAMOTO, 2008)

proclaimed a digital P2P electronic cash system called Bitcoin. This uses the Blockchain

78 For more information, please refer to https://www.w3.org/RDF/.
79 Here, nodes and peers are used synonymously for computers, IT systems, or data bases in one or
multiple networks that exchange data or have some sort of contact.
80 Please refer to STIEFEL (2011), BOHN (2007), ÖZSU and VALDURIEZ (2011), and PETERSON and DAVIE
(2012) for more information about peer-to-peer networks and their peculiarities.

Current state of science and technology, definitions, and general terms 79

technology, a special kind of a P2P network, as the fundamental technology to establish

trust with distributed, public transactions in an otherwise centralized, restricted monetary

system. Although all technical components of the Blockchain and Bitcoin emanate from

academic research and literature of the 1980s and 1990s, Nakamoto’s achievement

was the particular combination of the underlying components in a very complex manner.

The main (business) features of the Blockchain technology are:

1. Decentrality: The Blockchain is a distributed data base, or distributed ledger,

holding redundant data with a P2P network of all nodes. There does not exist an

intermediary or central authority to control transactions in the P2P network81. It is

an unstructured P2P network due to the absence of routing tables. Searches in

the network occur using a flooding protocol called gossip protocol, i.e., search

requests are randomly forwarded82. Transactions are validated by means of a

consensus mechanism employing a lot of computational power for the purpose

of solving mathematical issues, for instance the so-called proof of work.

2. Publicity: Each node within the network has the same state of knowledge

regarding the transactions executed. Data is stored completely redundant,

meaning that each (full) node holds the entire transaction history ever made.

Each new transaction between or among nodes is spread after some time across

the whole network in order to keep all nodes’ data bases up to date. This update

only can be performed once the majority of nodes have agreed via a consensus

upon the result of the mathematical problem.

3. Irreversibility: Blocks of multiple transactions include a time stamp and the hash

value of a cryptographical hash function of the previous block of transactions.

This concatenation of append-only blocks yields an irreversible transaction

history and ensures the integrity of data. Due to blocks of transactions being

interlinked irrevocably via hashes, this technology was named chain of blocks

81 BARAN (1964) distinguishes between decentralized and distributed networks. Decentralized networks
(many connected stars) can be considered as many connected centralized networks (star) with a
hierarchical structure whereas in distributed networks (mesh or grid) all nodes are connected, at least to
those in proximity BARAN (1964: pp. 1–2). This definition goes in line with the above-provided descriptions
of P2P networks with different types of overlay networks. Hence, in this work decentralized and distributed
networks are considered to be synonymous.
82 ERCIYES (2013) describes the flooding algorithm and its composition in more detail.

80 Data base solutions

and later Blockchain83 (BASHIR, 2018: pp. 16–18, 24; NARAYANAN and CLARK,

2017: pp. 1–3).

As mentioned, blocks within the Blockchain contain transactions. These transactions

can be of monetary nature in case of Bitcoin or merely a record of an event. A block

does not only contain the payload, i.e., transactions, but also a block header including

a pointer to previous block’s hash value (not in case of the so-called first genesis block),

a nonce, time stamp, and Merkle root. This is displayed in Figure 2-23. The components

of the Blockchain and its blocks will be shortly described in the following.

Figure 2-23: Generic structure of blocks in the Blockchain (in alignment to NARAYANAN et al., 2016: p.

33; BASHIR, 2018: p. 20).

A cryptographic hash function calculates a fixed sized output given a string of any size.

Knowing the result of the hash function, i.e., the hash value or just hash, does not give

one any feasible way to become aware of the input. Using the same input and the same

hash function always yields the same result. Hence, if a transaction in one block of the

Blockchain would be altered, the calculated hash value would differ and not match the

successive block, which includes the previous block’s hash value, anymore84

(NARAYANAN et al., 2016: pp. 23, 27). Public and private keys are used to sign and verify

transactions and are created upon entering the network (NAKAMOTO, 2008: p. 2). The

Merkle tree is another cryptographic instrument using hash pointers to previous data.

The hash values of transactions are paired in groups of two and two of those again serve

83 If one node or a group of nodes gains more than 51% of computing power within the entire network,
then transaction blocks indeed can be altered and hence are not irreversible anymore. However, for
practical purposes, this scenario is not relevant due to whenever one interest group gains the majority of
computing power, trust in the entire network will be lost and its crypto-currency will be worthless (BASHIR,
2018: pp. 17, 177).
84 This shows that the change of a block requires recalculating not only the altered block but all successive
blocks as well and solve the immanent mathematical problem of finding the nonce (see next paragraph).
As this requires a lot of computational power and now blocks are appended approximately at the same
speed, a catch up in the sense of re-calculating the entire transaction history can be considered as
impossible. Based upon the computational power, i.e., the hashing rate or the calculation speed of hashes
per second, within the entire Bitcoin network and to counter technological advancement, the difficulty of
the mathematical problem can be adapted accordingly (BASHIR, 2018: p. 172).

Current state of science and technology, definitions, and general terms 81

as input for a new hash value which aggregates graphically to a tree shape. This

technique fosters traceability because all hashes can be verified and data tampering

can be precluded85 (NARAYANAN et al., 2016: pp. 34–35; BASHIR, 2018: pp. 19, 111).

“A nonce is a number that is generated and used only once” (BASHIR, 2018: p. 19;

DEUTSCHES INSTITUT FÜR NORMUNG E. V., 2018d: p. 10) and provides protection against

repetition in cryptographic operations. In the Blockchain network the nonce is used for

the consensus algorithm, i.e., the mathematical problem nodes or so-called miners must

solve. Consensus is essential in the Blockchain network and particularly for

cryptocurrencies such as Bitcoin. Consensus is a necessary process for the agreement

about a final state of data among distributed and distrusting nodes and ensures,

amongst other, validity, fault tolerance, and integrity. For that purpose, several

consensus mechanisms prevail that can be selected according to the specific type of

Blockchain (see last paragraph of this subchapter). The most prominent consensus

mechanism, due to being implemented in the Bitcoin network, is the proof of work86.

Consensus mechanisms in distributed data bases, particularly in P2P networks, are an

enabler to achieve traceability and integrity of data for peers who need due to, for

instance, for legal reasons, a verified transaction history (BASHIR, 2018: pp. 35–37; SIXT,

2017: p. 13; VEREIN DEUTSCHER INGENIEURE, 2004a: pp. 8–11).

Smart contracts are decentralized, secure programs which denote an automatically

executable and self-enforcing agreement. In the case of the Blockchain technology,

smart contracts are small programs placed in the Blockchain code with a certain

business logic agreed upon, i.e., consensus protocols for publicly specified programs

(BASHIR, 2018: pp. 53–54, 261–262; NARAYANAN and CLARK, 2017: p. 20). In case of

financial transactions, smart contracts could, for instance, trigger an event in the case

of incoming payment. A smart contract can be considered an if-then-relation as known

from programming. In automotive engineering IT, smart contracts could encompass all

85 Please refer to NARAYANAN et al. (2016), BASHIR (2018), ANTONOPOULOS (2015), and ANTONOPOULOS
(2017) for further information on public private key infrastructures, digital signatures, and Merkle trees.
86 In the proof of work consensus mechanism, originally suggested as an anti-spam mechanism, so-called
miners invest computational power (“work”) to seek or guess the nonce. This yields, out of the given hash
function, a hash value small enough, i.e., with a varying number of leading zeros, to satisfy the difficulty
level given by the Blockchain code according to the network’s immanent computing power. When the
computing power increases, the difficulty level correlates positively and hence miners must test more
nonces in order to get a small enough hash value. Miners are rewarded for their effort – in case of Bitcoin
with Bitcoins. This reward incentivizes the protection of the integrity of the distributed ledger or otherwise
double-spending and hence worthlessness would occur (NARAYANAN et al., 2016: pp. 64–65; NARAYANAN
and CLARK (2017: pp. 11–17). For further consensus mechanism and details about the proof of work
mechanism, please refer to BASHIR (2018), FRANCO (2015), and BOHN (2007).

82 Data base solutions

Boolean expressions of the feasibility of components’ combinations. Hence, the entire

configuration management could be integrated in automatically executed smart

contracts that check whether a change of a component is compatible or not. This is not

in scope of this work due to the tremendous complexity and will be left for future

research87 (cf. Chapter 7.2).

There prevail different types of Blockchains that have been developed and adapted for

diverse purposes. The initial and most common Blockchains are public due to the aim

for circumvention of a financial intermediary (vide supra). This kind of Blockchains is not

possessed by anyone and anyone can set up a peer and join the network. Hence, the

Blockchain is called unpermissioned as all peers have a copy of the ledger on their local

nodes and via a distributed consensus mechanism the eventual content of transaction

blocks and hence the eventual state of the Blockchain is decided upon. Conversely, a

private, permissioned or consortium Blockchain is restricted to a dedicated circle of

peers who have agreed to utilize this distributed ledger88. Access has to be granted and

hence data of transactions, participants, and the network are secured amongst

members. A consensus mechanism, such as the proof of work, is not necessary

because the truth of the ledger also can be found using a simpler agreement protocol.

In the case of an agreement protocol, all verifiers are known and preselected. In this

work, consensus mechanism and agreement protocol are used synonymously due to

both aim at the decision on the truth of data in the distributed ledger and differ only by

the underlying mechanism to execute and achieve this. Completely private and

proprietary Blockchains contradict the underlying principles of decentrality, publicity, and

irreversibility. Hence, there are scarce applications for this kind of Blockchain. However,

there might be intra-company use cases where data has to be shared and details of this

data transfer have to be guaranteed legally or for traceability purposes (BASHIR, 2018:

pp. 30–34; GLASER, 2017: p. 1548).

87 Please refer to BASHIR (2018), PRUSTY (2017), and NARAYANAN and CLARK (2017) for further information
about smart contracts, oracles, Ricardian contracts, and decentralized autonomous organizations (DAO).
88 A permissioned Blockchain does not have to be private, given that a public Blockchain using an access
control layer also can regulate participation of peers (BASHIR, 2018: p. 33). However, the introduction of
any access control implies a certain authority deciding upon the requirements of access control etc. and
hence a fraction of privacy is induced. Therefore, in this work, private and permissioned Blockchains are
considered to be congruent.

Current state of science and technology, definitions, and general terms 83

2.7.4 Traceability in the context of data base solutions

Taking into account the context of data base solutions that are assessed here, namely

in the automotive E/E development in distributed engineering collaborations, the

following assessment of traceability for data base solutions will also be limited to this

scope. There also exists partial congruency with traceability in the context of PDM/PLM

IT systems in Chapter 2.3.3 due to those systems also using one of the above-

mentioned data base solutions.

DATA MODEL

The data model implemented in data bases has to enable traceability of data objects

and artifacts by offering the necessary references, dependencies, and to which model

they belong (FELDHUSEN and GEBHARDT, 2008: pp. 79, 133). This is usually done in the

first step, on an atomic level. An attribute is atomic if the corresponding attribute entry

is only assigned one element. Transactions in data bases are considered atomic if either

the entire transaction is executed completely, or not at all89 (SCHICKER, 2017: pp. 18,

28). The next level where traceability in data models has to be ensured is the sub-

assembly or module level where one engineering discipline models its product in scope,

such as in E/E one ECU or one software function. The overlying level of data models is

the assembly or final product level, with multiple intermediate levels where required. A

data model on the metalevel, where configurations and their subsets across the lifecycle

are handled, has to be enabled in order to foster traceability in and between data base

solutions.

PROCESS MODEL

Data base solutions in automotive E/E development in distributed engineering

collaborations have to have the capability to represent the necessary process model for

PDM/PLM (cf. Chapter 2.2) (FELDHUSEN and GEBHARDT, 2008: p. 79). Especially when

multiple data bases are involved, the holistic integration of processes becomes

challenging, but is crucial.

TECHNOLOGY

When considering a central data base, which is controlled by the OEM, data is available

to engineering partners and suppliers either via direct access to the data base or via

transfer of data. The technology of the data base has to ensure basic traceability

89 For idiosyncrasies regarding the data model of transactions in case of the Blockchain in comparison to
traditional transaction systems, please refer to KRUIJFF and WEIGAND (2017).

84 Ontologies

mechanisms. The documentation of read/write actions of dedicated users and the

documented history of an artifact can be taken for granted nowadays. In the case of

distributed engineering collaboration, a central data base has to provide a standardized

API for the up- and download of data for suppliers. Hence, traceability in a central data

base mainly depends on the data model. When decentral data bases are in scope, the

technological aspects become more prominent. Coherence, i.e., the connection of

related artifacts, as well as consistency, i.e., that replications of data which have the

same version, and correctness, whereby changes of data are propagated, have to be

ensured to foster traceability. By mastering this complexity, decentral data bases can

perform their advantages, especially when data is replicated completely (HECKMANN et

al., 2006: pp. 7–17; STIEFEL, 2011: pp. 57–62; JOHNSIRANI and NATARAJAN, 2015: p. 120).

Particularly, between P2P systems where data is often replicated completely,

interoperability is a paramount challenge. If P2P systems were standardized, migration

and development of P2P would be facilitated and hence traceability of data due to

standardized technology would be fostered (BOHN, 2007: p. 287).

2.8 Ontologies

2.8.1 Definitions, norms, and standards

Comprehension in terms of communication based upon knowledge about the real world

or fractions of the real world, respectively, require a common knowledge model. This

must be understood by all participating humans and machines. The unique replication

and illustration of the knowledge to be transferred is enabled by a knowledge model.

For that purpose, ontologies describe the conceptional formalization of artifacts and their

relations to each other. Ontologies represent hierarchies of terms in context-specific

knowledge structures by means of connected, disjunct taxonomies90. Furthermore,

categories and rules to depict immanent connections are modeled. Ontologies are

mostly depicted as undirected graphs, in contrast to taxonomies, meaning there is no

interpretable hierarchy from top to bottom but rather connections and relations of terms

within in a knowledge area. A node illustrates the terms and an edge depicts the relation

between nodes. These undirected graphs with given semantics can stand for a semantic

net and show the meaning of the data and its relations (GAUSEMEIER et al., 2014: pp. 57,

59–60; DORSCHEL, 2015: pp. 317–318).

90 Cf. Footnote 40 on p. 48 for the definition of taxonomy.

Current state of science and technology, definitions, and general terms 85

So that ontologies are computer interpretable, they have to be formally specified. For

this, there prevail a set of formal description languages which can be serialized in XML

and hence be processed further (GAUSEMEIER et al., 2014: p. 60). The main description

languages for ontologies will be described in the following. These standards originally

stem from the vision of the semantic web, the extension of the world wide web by means

of structure and meaning, which was assigned to the data. These standards become

more and more relevant in other disciplines. This is due to most devices are connected

to the internet today and each internet-compatible device is equipped with technology

based upon these ontological standards (SAKR et al., 2018: pp. 1–2; GAUSEMEIER et al.,

2014: pp. 59 ff.)

RESOURCE DESCRIPTION FRAMEWORK (RDF)

The RDF provides a model for the representation of metadata, e.g., information about

websites and other objects, and thus enhances automated information processing in

internet-based information systems. For that purpose, resources are identified by an

URI and are delineated by a triple consisting of a subject, a predicate, and an object,

where the subject and object form the nodes and the predicate is a labeled edge

between the nodes91. RDF is a language for knowledge representation and hence an

ontology. RDF-scheme (RDFS) extends RDF by means of implementation of a semantic

scheme or a vocabulary. In principle, it is feasible to exchange product models between

different applications by means of RDFS without losing the original meaning. However,

RDFS is not expressive enough and, therefore, the web ontology language (OWL) was

developed (GAUSEMEIER et al., 2014: p. 60; SAKR et al., 2018: p. 4; STIEFEL, 2011: pp.

39–40; HITZLER, 2008: pp. 35, 38).

WEB ONTOLOGY LANGUAGE (OWL)

In order to describe terms of one discipline and make them machine-readable, the OWL

was developed. It depicts ontologies by means of a formal descriptive language and

enables the publication and distribution of these ontologies. The W3C standardizes

OWL and expands the meaning of RDF by further constructs. On the one hand, for

instance to increase the mightiness of expression, on the other hand also to limit the

mightiness to avoid ambiguity. OWL uses classes, properties, and individuals. Object

properties describe relations between individuals, and datatype properties depict

individuals’ properties. Hence, OWL provides a more enhanced framework than RDFS

91 Triple graph grammars already are in scope of research for many years. For an overview and more
technical details, please refer to SCHÜRR (1995).

86 Ontologies

to depict complex knowledge (GAUSEMEIER et al., 2014: pp. 60–61; STIEFEL, 2011: pp.

39–40; SAKR et al., 2018: p. 4).

Together, OWL and RDF/RDFS are part of the so-called semantic web stack or layer

cake by the W3C consortium, as well as the already above-mentioned standards (cf.

Chapter 2.7.3). The semantic web layer cake is depicted in Figure 2-24. Not all of its

components and standards are in scope here.

Figure 2-24: Semantic web layer cake (in alignment to SAKR et al., 2018: p. 4).

OPEN SERVICE FOR LIFECYCLE COLLABORATION (OSLC)

The open service for lifecycle collaboration (OSLC) provides a uniform infrastructure for

interfaces between distinct systems. OSLC offers direct and neutral interfaces, i.e., data

is directly linked and not exchanged between systems and interface descriptions are

neutral and public. OSLC links data by means of an URI, as also depicted in Table 2-1.

OSLC was primarily developed for application lifecycle management (ALM) but also

gains more importance in the realm of PLM. However, due to immaturity of some

specifications of OSLC, penetration of this integration standard in industrial practice is

not very advanced yet. Loose coupling of heterogeneous tools and systems are prone

to the implementation of OSLC because OSLC combines standardized interfaces with

an overlying metadata. Internet technologies and liked data principles serve as the

basement for OSLC. The interfaces use common HTTP commands such as get, put,

Current state of science and technology, definitions, and general terms 87

post, delete, etc. Representational state transfer (REST) serves as an enabler

mechanism for distributed, loosely coupled APIs by means of stateless transactions,

i.e., all REST messages include all information for clients and servers to understand the

message. Therefore, messages are self-contained and neither node has to save

information about the state. On top of this basic internet technologies, OSLC implements

metamodels for specific domains which face a high necessity of inter-discipline

collaboration, e.g., requirements, change, and quality management as well as ALM and

PLM. For this purpose, OSLC also makes use of STEP AP233 (cf. Chapter 2.6.1).

However, the OSLC PLM reference model is only a draft since 2011 (BACHELOR, 2011).

The standardized interfaces and already partially standardized metamodels for different

disciplines within the OSLC standard can contribute to an interoperability between IT

systems and tools as well as their data models. Hence, OSLC fosters traceability in

engineering from a data perspective92 (SINDERMANN, 2014: pp. 331–332; KIRSCH et al.,

2017c: p. 171; MECPRO² ABSCHLUSSBERICHT, 2016c: pp. 139–140; OASIS, 2019: pp. 4–

5; HOOSHMAND et al., 2018: p. 109; RYMAN, 2013: p. 2). OSLC does not standardize

business processes which, in turn, have to be considered separately (PFENNING, 2017:

p. 118).

2.8.2 Traceability in the context of ontologies

DATA MODEL

SELLGREN (2009) emphasizes the importance of modeled interfaces between (3D)

components and argues that interfaces also have to be managed as a data artifact

likewise other components where the interface function is stored as an attribute

(SELLGREN, 2009: pp. 8, 11). Additionally, a common metadata model with dedicated

ontologies in RDF and OWL within collaborations enables knowledge management in

collaborative R&D, as already described in Chapter 2.6.393 (VACHER et al., 2007: pp.

315–317). PIMMLER, T. U., EPPINGER, S. D. (1994) suggest that for system analysis in

system engineering, a system shall be decomposed into its physical elements and

components (PIMMLER, T. U., EPPINGER, S. D., 1994: pp. 343–346). This also has to

reflect in the ontologies when working across disciplines and within engineering

collaborations. This is in order to describe variability in MBSE, for instance within the

configuration and variant management, and to foster traceability across a

92 Please refer to https://www.oasis-open.org/standards for more information about OSLC.
93 Protégé is a well-known and widely-used tool to build and manage ontologies with standards such as
RDF and OWL (NOY and MCGUINNESS, 2001: p. 2).

88 Conclusion

heterogeneous IT landscape. Therefore, a federalized IT backbone is required (cf.

Chapters 2.2 and 2.3). For this purpose, OSLC can be considered as an enabler and it

is sufficient to link configuration items with models and artifacts in the respective IT

system and data model, i.e., create a specific ontology (HOOSHMAND et al., 2018: pp.

108–109). Additionally, interfaces can be modeled explicitly using their own ontology to

align MBSE, PDM/PLM, and simulation in engineering collaboration in order to foster

traceability (VOSGIEN et al., 2012: pp. 612–622).

PROCESS MODEL

Initially, partners in an engineering collaboration have to agree upon a joint ontology

describing the product they are all working on. This implies there is transformation of

tacit into explicit knowledge and later modeling of this information into RDF and OWL.

These ontologies can be updated dynamically in order to develop with the engineering

processes (VACHER et al., 2007: pp. 315–317). Particularly when relations of different

components or any of their properties alter, a process has to ensure that all disciplines

or owners are notified of the change and, consequently, maintain traceability across

disciplines and companies (SELLGREN, 2009: p. 9). For the integration of domain-specific

data models into a system model, appropriate interfaces have to exist and a model-

based process model has to be developed (MECPRO² ABSCHLUSSBERICHT, 2016a: p. 48).

TECHNOLOGY

In order to enable the full possibilities of ontologies, each discipline and company within

an engineering collaboration has to employ the same ontology and has to have access

to changes in it. Thus, a dynamic exchange and storage of ontologies has to be assured

by means of appropriate data bases. This can be achieved by a federative approach (cf.

Chapter 2.6) and linking artifacts directly according to the OSLC standard (EBELING and

EIGNER, 2018: p. 261; ALVAREZ-RODRÍGUEZ et al., 2014: pp. 995–996).

2.9 Conclusion

An automotive industry in vicissitude demands solutions to address the resulting product

complexity. Therefore, early engineering methods, tools, and processes have to address

this complexity which increases if development occurs in distributed engineering

collaborations. One way of doing this is to foster traceability of information artifacts

across involved domains intra-company and across participating engineering partners

inter-company.

Current state of science and technology, definitions, and general terms 89

For this purpose, the current state of science and technology was assessed focusing on

automotive E/E development and the enablers data model, process model, and

technology.

After defining traceability in this context, the product development processes and

methods which are relevant for automotive development, were described. Afterwards,

PDM/PLM set the focus on existing process and data base solutions to handle

complexity and foster traceability during development and beyond. MBSE combines

data models and process models for a holistic system view already in the early

development phase. Peculiarities of automotive E/E development were described

afterwards leading over to distributed engineering collaborations, in which E/E

development often occurs. Highlighting technological solutions, i.e., data bases, was

done in the following chapter. Ontologies were examined in the last chapter as the basis

for common data models and traceability within them.

The gained insights from each chapter with respect to traceability in each domain now

will be transferred to the formulation of requirements for a synthesis of a solution

framework.

90 Evaluation method

3 Requirements for a solution framework and evaluation of

current state

3.1 Evaluation method

The objectives of this research are to foster internal and external traceability in different

facets, which can already be matched to the enablers of a solution for traceability, a data

model, a process model, and technology, in the early automotive E/E development

within distributed engineering collaborations, as motivated in Chapter 1.3. This is in

order to obtain a better understanding of what the final solution comprises and what has

to be addressed during the evaluation. This is illustrated in Table 3-1. The internal

traceability is addressed by the alignment of MBSE and PDM for E/E. This mainly

concerns data and process model, as not only the data model has to be aligned, but the

development and documentation processes having to be aligned, too. Despite

technology here focuses more on the external aspects of engineering collaboration, also

internal traceability is in scope as it connects different IT systems and tools. The external

traceability among multiple engineering partners is addressed in a threefold manner.

For the purpose of the reduction of reconciliation, all three enablers have to be aligned

to foster traceability among engineering partners due to data, processes, and

technologies have to work hand in hand. This is to allow for transparent and safe product

changes, where again all enablers are crucial. The same holds true for the ad hoc and

easy connection of new engineering partners. This assessment of which objectives are

addressed by which enablers shows the complexity as all aspects have to be considered

during the elaboration of a potential solution framework.

According to the tripartite enabling elements, the current state of science and technology

was assessed in Chapter 2 at the end of each subchapter. Thereof, requirements for a

solution will be deduced contingent on the current state of science and technology.

These requirements will then be aligned with the research objectives motivated in

Chapter 1.3. Then, the fulfillment of the requirements by the current state of science and

technology will be measured qualitatively pursuant to the scale “not fulfilled” (○),

“partially fulfilled” (◑), and “fulfilled” (●). The gray squares mean that at least one of the

dimensions of the matrix does not apply. The evaluation method is depicted generically

in Table 3-2.

Requirements for a solution framework and evaluation of current state 91

Table 3-1: Assessment of objectives addressed by enablers.

Table 3-2: Generic depiction of the evaluation method (in alignment to ESTEFAN, 2008: p. 10; KÖNIGS,

2013: p. 52; GILZ, 2014: 51).

92 Requirements for internal traceability

3.2 Requirements for internal traceability

A) ALIGNMENT OF MBSE AND PDM FOR E/E

Based upon the first objective of this research, to enhance the alignment of MBSE and

PDM for E/E, it is decisive to provide exactly the information necessary during early

development phases. Therefore, the crucial information artifacts which are prone to

changes in the E/E development have to be modeled already in the MBSE period and

have to be found also in the PDM system and not only in domain-specific E/E

development tools. Hence, the availability of relevant information artifacts has to be

ensured across all existing IT systems and tools (cf. Chapters 2.2, 2.3, 2.4, inter alia).

As an ECU’s pins transfer the electrical messages in the form of charges over the

communication bus systems between other ECUs, each pin has to be modeled

discretely. The network communication description (NCD) serves as sort of a map for

which ECU communicates with which or which ECU needs the signal of another ECU.

Due to the crucial importance of the knowledge of an automobile’s E/E communication

and its inherent complexity, tracing this information during the development between

multiple engineering partners is essential. Software realizes a lot of functionalities in a

modern automobile, it is built across many departments and suppliers, and is

tremendously complex. The single types of software within an ECU have to be traceable

and hence must be modeled in a data model for MBSE and PDM. As mentioned above,

different organizational departments in an OEM contribute to the automotive E/E

system, using many different IT systems and tools. The smart connection of these

systems, particularly to an IT backbone system, by a linked data approach is key for

internal traceability. This leads to requirements 1 to 4.

1. Requirement: The solution framework for internal traceability shall comprise

information artifacts for ECUs’ pins (E-CAD).

2. Requirement: The solution framework for internal traceability shall comprise

information artifacts for NCDs, including the respective communication bus

systems, signals, and interfaces.

3. Requirement: The solution framework for internal traceability shall comprise

information artifacts for ECUs’ software versions, including their parametrization

files.

4. Requirement: The solution framework for internal traceability shall comprise a

linked data model in order to connect all legacy IT systems, e.g., for MBSE, E/E

development, and PDM, with a common IT backbone data base.

Requirements for a solution framework and evaluation of current state 93

3.3 Requirements for external traceability

A) REDUCTION OF RECONCILIATION

As elaborated in Chapters 1.2, 2.2, 2.3, 2.6, inter alia, a major issue for traceability with

external engineering partners is an elevated effort for reconciliation during development.

Hence, the reduction of effort for reconciliation is objective 2.a. It has been argued that

there is still a plethora of deficiencies in the reconciliation process in distributed

engineering collaborations, whether regarding data models, processes, or technologies

(cf. entire Chapter 2). Particularly, trace links for dedicated information artifacts have to

be available for all engineering partners (requirement 5). Additionally, a potential

solution framework has to foster a distributed engineering collaboration and not focus

on a centralized approach for the purpose of mitigating the bottleneck of communication

between the OEM and suppliers (requirement 6). Requirement 7 addresses the

necessity of a formalized consensus mechanism for the purpose of a faster decision-

making process in engineering collaborations which, in turn, fosters traceability by

transparency of changes. This is more than the release process that commonly takes

place at each supplier and finally at the OEM separately. The required consensus

mechanism here aims at the affirmation of all involved engineering partners for all

decisive changes. Thereby, components affected by changes immediately can be

identified, reconciliation circles can be reduced or shortened, and overall traceability is

fostered. Accompanying this, changes and consent, or dissent about those have to be

propagated automatically and instantaneously across the involved engineering partners

for quicker reaction and intervention of engineers regarding their affected parts as well

as reduced effort. Hereby, not a mere transmission of the information that a change has

occurred is in scope. More, the focus lies on the actual propagation of metadata

regarding the latest version of a product, which of the components have altered, and the

documentation in all affected engineering partners’ IT systems (requirement 8).

5. Requirement: The solution framework for external traceability shall provide

universally unique trace links to identify information artifacts across IT systems

among multiple engineering partners.

6. Requirement: The solution framework for external traceability shall foster

distributed engineering collaboration with the focus on MBSE and E/E.

7. Requirement: The solution framework for external traceability shall consist of a

consensus mechanism for development changes.

94 Requirements for external traceability

8. Requirement: The solution framework for external traceability shall include an

automatic change propagation across all involved engineering partners.

B) TRANSPARENT AND SAFE PRODUCT CHANGES

In addition to the reduction of reconciliation during development, changes have to be

transparent as well as safe (cf. Chapters 1.2, 2.6, inter alia). In case that suppliers deliver

parts and software where there might be a dispute about the actual content of such a

delivery, the tamper-resistant documentation about the content of information artifacts

has to be provided. Therefore, an immutable product history for purposes of liability is

one aspect of external traceability (requirement 9). Commonly, one supplier

synchronizes its information artifacts solely with the OEM. This hinders transparency of

changes across other affected suppliers. Hence, requirement 10 addresses a multi-

directional synchronization of data among all involved engineering partners. A

traceability scheme between an OEM and suppliers focuses explicitly only on the

information artifacts’ traceability that are relevant for one supplier but embeds this also

on suppliers’ side in the overall product structure of the OEM. Thus, information artifacts

across all IT systems and tools on OEM’s as well as all suppliers’ sides are congruent

and changes can be traced transparently (requirement 11). Fraud-save data becomes

particularly relevant in the case of ad hoc contribution by start-ups. It must not be

possible to compromise data integrity (requirement 12). In contrast to the above-

mentioned immutable product history, data integrity emphasizes all information artifacts

in an IT system, whereas an immutable product history focuses on the traceability of

each change. Moreover, data integrity has to be guaranteed also if another engineering

partner hosts the data base.

9. Requirement: The solution framework for external traceability shall contain an

immutable product history.

10. Requirement: The solution framework for external traceability shall allow for

multi-directional synchronization of data among all involved engineering partners.

11. Requirement: The solution framework for external traceability shall include a

traceability scheme for OEM and suppliers.

12. Requirement: The solution framework for external traceability shall foster data

integrity among multiple engineering partners.

Requirements for a solution framework and evaluation of current state 95

C) ALLEVIATED CONNECTION OF ENGINEERING PARTNERS

The development of automobiles engages multiple engineering partners. As software’s

importance increases, also new engineering partners have to have access to the joint

development data granting quicker development and cost reduction by the increase of

traceability, which would not be possible in case of non- to low-integrated partners (cf.

Chapters 1.2, 2.2, 2.5, 2.6, inter alia). Requirement 13 concerns a standardized data

model for the exchange of information artifacts. Moreover, processes have to be aligned

between engineering partners (requirement 14). The ad hoc technical integration of new

engineering partners can be alleviated by standardized APIs and a connection to the

established IT infrastructure (requirement 15). Data always has to be available and

robust towards failure of nodes or the exit of an engineering partner, i.e., a peer in the

network. Also, data has to be traceable in the network. Requirement 16 addresses this.

13. Requirement: The solution framework for external traceability shall include a

standardized data model for the exchange of information artifacts.

14. Requirement: The solution framework for external traceability shall prescribe a

standardized development process for all engineering partners.

15. Requirement: The solution framework for external traceability shall include

standardized APIs and an integration into the legacy IT systems.

16. Requirement: The solution framework for external traceability shall guarantee

the availability of data and its robustness.

3.4 Classification of the current state of science and technology

For the purpose of assessment of the above-deduced requirements, the current state of

science and technology has to be classified and pre-sorted according to the most

relevant prevailing solutions. Due to the vast range of topics and existing data models,

process models, and technologies, the classification in advance ensures a more focused

assessment below.

DATA MODELS

ISO 10303 STEP AP 233 focuses on systems engineering data, whereas AP 242

describes the exchange of 3D engineering data (cf. Chapter 2.6.1, GILZ, 2014: p. 139).

Hence, AP 233 will be evaluated further on the basis of the requirements as state of the

art regarding systems engineering and PDM data models. AUTOSAR is a standard for

many companies for E/E and E/E-related software development and, therefore, will be

96 Classification of the current state of science and technology

in scope (cf. Chapter 2.5.3). Due to OSLC aims at an improved collaboration by means

of a joint linked data model, it will be evaluated hereinafter (cf. Chapter 2.6.1).

PROCESS MODELS

As the E/E development is also part of mechatronics in automotive development (cf.

Chapter 2.2.2), the V-model of mechatronic system development (VDI 2206) as a widely

spread development approach will be under scrutiny.

Due to E/E being within scope of this work, it is necessary to assess MBSE methods for

their inclusion of the physical layer, according to the RFLP approach. This is partially a

data model concern but also mainly belongs to a process model. As these MBSE

methods prescribe specific processes, traceability is fostered by each consecutive step.

Stopping the development process before modeling the physical layer explicitly will

hinder traceability with respect to automotive E/E. The evaluation of the above-

mentioned MBSE methods (cf. Chapter 2.4.2) with respect to their support of traceability

and their inclusion of the physical layer is presented in Table 3-3.

Table 3-3: Comparison of different MBSE methods (cf. Chapter 2.4.2 for the authors of the different

methods) (own evaluation in alignment to HEBER and GROLL, 2018b: p. 127, 2018a: p. 284).

It is noteworthy that the SE-VPE method includes a dedicated approach of how to

transfer MBSE information artifacts to PLM (cf. Chapter 2.4.2). However, a distinct

Requirements for a solution framework and evaluation of current state 97

integration of E/E in the physical layer lacks on lower level of detail, such as regarding

pins. On the other hand, the SPES method has a very pronounced physical layer

including detailed descriptions of software, hardware, and their connections on the level

of ports and signals and, therefore, will be assessed regarding the fulfillment of the

specified requirements.

TECHNOLOGIES

On the basis of a plethora of technologies, i.e., tools and IT systems for systems as well

as E/E and SW development, traceability, PDM/PLM, and data bases, the scope has to

be classified in advance, as mentioned at the beginning of this chapter.

Tools which primarily focus on the visualization of traceability, such as LOOMEO,

METUS, and ToolNet, are not in scope due to their limitations regarding the ad hoc

management and modification of data and integration with other tools (cf. Chapter

2.1.3).

For PDM/PLM, 3DEXPERIENCE platform is not considered further due to Cameo

Systems Modeler, also by Dassault Systèmes, is suboptimal regarding the ability to

handle OSLC (cf. Chapters 2.3.3 and next paragraph). Hence, the integration between

MBSE and PDM/PLM only can be achieved via extra tools. The partial support of OSLC

disqualifies Teamcenter to be evaluated furthermore. The availability of OSLC, full

PDM/PLM functionalities, and the full integration with the Windchill Modeler for MBSE

makes Windchill PDMLink a valid candidate to come under further scrutiny (cf. Chapter

2.3.3). As OpenPDM mainly provides features for data exchange and serves as an API

but lacks further PDM/PLM data management possibilities, it will not be in scope any

further as a technical solution (cf. Chapter 2.6.3). Aras Innovator can only handle OSLC

with the help of an adapter (cf. Chapter 2.3.3). In contrast to PTC and its Windchill

platform, the Aras company does not provide a MBSE authoring tool from the same

vendor. Aras Innovator does not fully integrate the system model but creates a separate

so-called system architecture model only linking user-defined elements (PFENNING,

2020: pp. 4–5). The lack of complete integration of the MBSE and PDM data models,

both MBSE and PDM tool do not come from one vendor, as well as non-native OSLC

support excludes the Aras Innovator from further scrutiny in comparison to Windchill

PDMLink.

Regarding MBSE development tools, the Rhapsody Model Manager is not nominated

for further assessment given that IBM does not provide any PDM/PLM tools and solely

98 Classification of the current state of science and technology

relies on partners such as Dassault Systèmes or PTC (SENDLER, 2009: pp. 203–204).

The Cameo Systems Modeler can only handle OSLC via plugins and additional tools,

hence it is not in scope anymore. The tool Enterprise Architect (EA) only supports the

provision of OSLC artifacts but for optimal engineering collaboration also the

consumption would be required. Hence, EA does not qualify further. Due to OSLC

compatibility and integration with PDMLink, the Windchill Modeler will be evaluated as

the preferred MBSE tool (cf. Chapter 2.4.3).

Bitbucket includes software development as well as collaboration functionalities and is

based on the widely used Git. Therefore, Bitbucket will be under further evaluation as a

software development tool.

PREEVision supports MBSE as well as AUTOSAR and is very common in automotive

E/E development. However, PREEVision does neither support a decentralized

approach nor OSLC. Nevertheless, PREEVision is included in the further evaluation due

to its high prevalence.

A data base technology serves as the fundamental pivot in engineering collaborations.

As presented in Chapter 2.7, central and decentral technologies can be differentiated.

Due to the exchange of data in engineering collaborations is in scope, a central data

base also is evaluated according to how it is suited to exchange data and according the

corresponding criteria. Furthermore, decentral data bases, e.g., linked data and peer-

to-peer in different facets, are compared in Table 3-4 according to data base properties

relevant in distributed engineering collaborations. In the case of the Blockchain

technology, consistency of data is achieved eventually. This is due to the consensus or

validation mechanism by multiple nodes which need a certain time for solving the

mathematical puzzle and agree upon its result (BASHIR, 2018: p. 40). The evaluation

reveals that the Blockchain technology might be advantageous for distributed

engineering collaborations.

Requirements for a solution framework and evaluation of current state 99

Table 3-4: Evaluation of different types of data bases with respect to peculiarities in collaborations

(own evaluation in alignment to STIEFEL, 2011: pp. 57–62; HECKMANN et al., 2006: pp. 7–17).

3.5 Concluding evaluation of current state of science and technology

The qualitative evaluation of the current state of science and technology is depicted in

Table 3-5. The evaluation method has been described in Chapter 3.1. The evaluation

has been executed given that the motivated requirements stated in Chapters 3.2 and

3.3 have been deduced from the research objectives in Chapter 1.3 and the current

state of science and technology in Chapter 2. The selection and classification of the

current state of science and technology, or “state of the art” for reasons of length, was

elaborated in Chapter 3.4.

It is apparent that the available solutions do not fully address traceability of E/E artifacts

during automotive development with respect to the connection of model-based systems

engineering in distributed engineering collaborations. Some specific data models

address the MBSE as well as E/E development to some extent. Existing processes

partially include E/E specifics but, of course, hardly address peculiarities of distributed

engineering. Certainly, modern IT development tools strive for traceability of information

Linked data

(single sources

w/ APIs)

Peer-to-Peer

(single sources

w/ overlay

network,

structured)

Blockchain

(P2P,

redundant

data,

unstructure

d)

transfer ad hoc, linked ad hoc, transfer
continous,

transfer

centralized co-centralized co-centralized distributed

Scalability (quantitatively)

Stability (quantitatively)

Flexibility (qualitatively)

Availability

Dependability

Robustness

Confidentiality

Integrity

Availability

Accountability

Performance/Effort

Localizability

Coherence

Consistency

Correctness

Central

data base

(to

exchange

data)

Decentral data base

Data sovereignty

Reliability

T
ru

s
tw

o
rt

h
in

e
s
s

Security

Data transmission

Adaptivity

Properties of data bases in collaborations

Efficiency

Validity

100 Concluding evaluation of current state of science and technology

artifacts in distributed engineering collaborations. However, not all tools have the

capabilities to deal with special E/E data. Moreover, some tools use a centralized data

base approach which might have advantages if working exclusively within one company.

However, such a tool reaches its limits regarding data integrity or availability if external

engineering partners want to contribute to the development. The lack of emphasis on

collaboration-specific functionalities, such as a consensus mechanism and an automatic

change propagation, becomes apparent. A major requirement for distributed

engineering, also with ad hoc contributions by new partners, the immutable product

history, is only guaranteed by the Blockchain technology as it is designed as a

distributed ledger.

Finally, it can be stipulated that few approaches unify a congruent intersection of the

defined objectives and requirements regarding traceability in the early automotive E/E

development within distributed engineering collaborations.

Consequently, a solution approach as a framework consisting of the three enabling

elements, data model, process model, and technology has to be conceptualized and

evaluated for the purpose of addressing the deficiencies of the above-mentioned

approaches and solutions.

Requirements for a solution framework and evaluation of current state 101

Table 3-5: Evaluation of the current state of science and technology according to the defined

requirements in alignment to the research objectives.

not fulfilled

partially fulfilled SE
E/E&

SW

Colla

borati

on

Devel

opme

nt

MBS

E

PDM/

PLM

MBS

E

Softw

are
E/E

Dece

ntral

DB

fulfilled

not applicable

Requirements

1. Include ECU pins

2. Include NCD

3. Include ECU SW

4. Linked data model

5. Trace links available

6. Foster distributed

engineering

7. Consensus

mechanism

8. Automatic change

propagation

9. Immutable product

history

10. Multi-directional

synchronization

11. Traceability scheme

OEM-supplier

12. Data integrity

13. Standard data

model for exchange

14. Stand developm.

processes

15. Standard APIs/

integration in legacy IT

16. Availability of data

& robustness

B
lo

c
k
c
h
a
in

Enablers

State of the art:

Data models

State of the

art:

Processes

State of the art: Technologies

P
R

E
E

V
is

io
n

c
.

A
ll

e
v
ia

te
d

c
o

n
n

e
c
ti

o
n

 o
f

e
n

g
in

e
e
ri

n
g

 p
a
rt

n
e
rs

S
P

E
S

W
in

d
c
h
ill

P
D

M
L
in

k

W
in

d
c
h
ill

M
o
d
e
le

r

B
it
b
u
c
k
e
t

Objectives S
T

E
P

 A
P

2
3
3

A
U

T
O

S
A

R

O
S

L
C

V
D

I
2
2
0
6

2
.

E
x
te

rn
a
l

tr
a
c
e
a
b

il
it

y

a
.

A
li

g
n

m
e
n

t
o

f

M
B

S
E

 &

P
D

M
 f

o
r

E
/E

a
.

R
e
d

u
c
ti

o
n

 o
f

re
c
o

n
c
il

ia
ti

o
n

b
.

T
ra

n
s
p

a
re

n
t

&

s
a
fe

 p
ro

d
u

c
t

c
h

a
n

g
e
s

1
.

In
te

rn
a
l

tr
a
c
e
a
b

il
it

y

102 Concluding evaluation of current state of science and technology

4 Synthesis of a solution framework

In order to foster traceability in engineering collaborations it has been suggested that

there have to be three prevailing enabling elements: data model, process model, and

technology (cf. Chapter 1.4). Pursuant, the current state of science and technology has

been investigated and classified according to which existing solutions shall be

considered for a potential solution approach (cf. Chapters 2 and 3). Deduced from the

current state of science and technology and aligned with the research objectives, the

requirements have been elaborated. Opposing, the enablers, represented by the current

state of science and technology, have been evaluated regarding their fulfilment by the

research objectives, characterized by the requirements, and the potential for

enhancement has been derived. Following this analysis, the synthesis (cf. Footnote 51

on p. 55) strives at the description of a solution approach alleviating the above-

mentioned shortcomings by the creation of a framework consisting of the enablers and

their operationalization on a practical level, for instance as a dedicated data model,

process model, and IT tool or system.

In Chapter 4.1, the data model for enhanced traceability in the early automotive E/E

development with focus on MBSE and PDM will be elaborated. Here, the different

aspects of the internal traceability (objective 1) between IT tools for MBSE and PDM,

that often serves as the linchpin for successive processes, is in scope. Without the

thorough integration of these two domains, traceability hardly can be achieved as PDM

information artifacts are often built upon by other domains during development as well

as downstream processes, such as production. Therefore, first the relevant information

artifacts from a system theoretical point of view with emphasis on E/E, have to be

defined. Secondly, the required specifics for automotive E/E development, i.e., those

information artifacts particularly relevant for traceability in distributed engineering

collaboration as described by requirements 1 till 4, have to be modeled and aligned with

the information artifacts from the system theory for MBSE. Consecutively, information

artifacts for PDM/PLM in alignment to the previously defined information artifacts from

system theory and automotive E/E development will be elaborated. Afterwards, the

definition of a fundamental data model and its construction as an ontology will be

performed. Coincidingly, the data model for the final product, i.e., an automotive ECU

including its different types of software, and the data exchange-related aspects of

Synthesis of a solution framework 103

collaboration have to be addressed. This means that not only the information artifacts

describing the product and its distinct aspects of each development step but also the

product documentation has to be included in the data model. Additionally, it has to be

considered which metadata, in case of a distributed engineering approach, shall be

transferred in order to enable a linked data approach (requirement 4).

In a distributed engineering collaboration, the information of what someone does and

when during development is decisive. In Chapter 4.2, a process model including these

consecutive steps will be defined. These individual tasks must be known to each partner

of the engineering collaboration for the purpose of a joint development of one final

product. Subsequently, the information artifacts of each new process step have to be

shared within the engineering collaboration’s IT network so that each partner is aware

of the most recent status of development. This is in case of relevant changes which

might also affect one’s own sub-product, making it possible to investigate these changes

in a timely manner, in order to circumvent incompatibility at a later point, leading to

further reconciliation circles and potential delays. All the relevant process steps of MBSE

in alignment with PDM/PLM have to be outlined. This includes the initial MBSE process,

creation of a new product in PDM, a process for the creation of a configuration and a

variant, as well as versioning and a change management process for existing

information artifacts. The identification of incorrect or outdated information artifacts has

to be addressed by an inactivation or deletion process.

Crucial for traceability within one company and between many companies, too, is an

interconnected and integrated IT landscape. As deduced from the evaluation of the

current state of science and technology on basis of the requirements, for a distributed

engineering collaboration a decentral data base can be considered advantageous.

Therefore, a fundamental IT architectural framework will be motivated. Following, this

conceptual IT architecture has to be aligned with a generic IT architecture in automotive

E/E development and PDM/PLM for the purpose of enabling of an integrational

approach into existing IT landscapes, so-called “brownfield” (WADE et al., 2018: p. 1176).

This will be explained further in Chapter 4.3.

Chapter 4.4 will present the final framework to foster traceability of E/E information

artifacts during automotive development in consideration of model-based systems

engineering within distributed engineering collaboration and where the requirements are

satisfied.

104 Definition of a data model

4.1 Definition of a data model

The approach for the definition of a data model derived from MBSE theories and system

models, carried over to include E/E domain-specific information artifacts and PDM-

relevant information towards the inclusion of linked data mechanisms for distributed

engineering collaboration, integrated in a combined, shared data model is depicted in

Figure 4-1. The individual steps, from (a) to (e) are described in the following.

SysML serves as modeling language and hence defines the basic denominations and

structures of the used system model (a). The reference model (b) including all relevant

stereotypes will be based upon the SysML notation. Individual, domain-specific

structures for different E/E aspects, functions, configurations, PDM/PLM-specifics, etc.

will be modeled afterwards (c). Distinctive features for a data model for distributed

engineering collaborations, for instance linked data, will be defined afterwards (d).

Eventually, all these elements will be combined forming an integrated, linked, shared

data model (e).

Figure 4-1: Approach for the definition of a data model.

Synthesis of a solution framework 105

4.1.1 Definition of the relevant information artifacts

GENERAL SYSTEM DEFINITION AND CONCEPTS

In order to define the relevant information artifacts for the respective system within the

final automobile, it has to be defined what constitutes the system and which are its

boundaries, physical or functional connections, and interfaces within or with other

systems. At this juncture, it can be distinguished between

i). a functional concept,

ii). a structural concept, and

iii). a hierarchical concept of a system.

These concepts are not disjunct but rather conjunct views of one system with different

foci94 (see Figure 4-2). The functional concept depicts the system as an aggregation of

properties and their correlation. These properties are mainly inputs and outputs and

corresponding states of the system. This depiction is known as a “black box”. The

relationship of elements within the system is in scope of the structural concept. Such

elements could be different components of a system. The structural view emphasizes

the interdependencies between parts of a system which shall not be examined in

isolation but rather in their context. The hierarchical concept can be considered as

cascading in the sense that elements of a system can be systems and the system itself

again can be regarded as part of a more comprehensive system. Hence, a system is a

model of an entity which i) possesses relations between attributes (e.g. inputs, outputs,

states, etc.), ii) consists of concatenated parts or sub-systems, respectively, and iii) is

confined from its environment or from a super-system (ROPOHL, 2009: pp. 75–77).

Bearing these different representation concepts with their complementary foci in mind,

the next section will incorporate the alternative depictions of a system by explicitly

modeling them by means of the modeling language SysML to create a reference model

for an automotive E/E system.

94 The socio-technical dimension, wherein the technical system interacts with humans, is not in scope of
this work (cf. ROPOHL, 2009: pp. 58, 135 ff.).

106 Definition of a data model

Figure 4-2: System concepts: i) functional, ii) structural, iii) hierarchical (in alignment to ROPOHL, 2009:

p. 76).

COMPOSITION OF A REFERENCE MODEL OF AN AUTOMOTIVE E/E SYSTEM

A metamodel is a model of itself which is implemented to describe a modeling language.

The modeling language SysML deploys this logic of a self-describing metamodel (cf.

Chapter 2.4.2) (ALT, 2012: p. 24). For the purpose of the description of an automotive

E/E system and due to a de facto standard in the systems development (MBSE) (cf.

Chapter 2.4), the modeling language SysML is used to depict the reference model. The

generic SysML taxonomy or metamodel is depicted in Figure 4-3 and consists of the

activity diagram, sequence diagram, state machine diagram, use case diagram, block

definition diagram, internal block diagram, package diagram, and parametric diagram.

The foremost four diagrams are used to model the system’s behavior. The latter four

diagrams represent the structure. Additionally, there is a diagram to model the

requirements. Hence, each type of the nine unique diagrams considers a special aspect

of the system. The structure diagrams are commonly used to describe the system

architecture which primarily is in scope here (HOOSHMAND, 2015: p. 59). The arrow with

a white triangle (“△”) in Figure 4-3 stands for a generalization of blocks95 (OMG, 2015:

95 For more information about SysML notation, please refer to DORI and CRAWLEY (2016), VAN RANDEN et
al. (2016), OMG (2015).

Synthesis of a solution framework 107

p. 38; DORI and CRAWLEY, 2016: p. 33). For conformity reasons for consecutively

following data model descriptions, not all SysML notations are used.

Figure 4-3: SysML taxonomy (in alignment to OMG, 2015: p. 187; FRIEDENTHAL et al., 2012: p. 30).

The SPES method, which is used to model the data model for MBSE, also extends to a

metamodel. However, the metamodel has its scope on an architectural view of a system

and does not include the relevant specifications of automotive E/E development that are

pivotal here. Albeit, the metamodel includes the modeling of dedicated pins as a point

of interaction, also for communication with transmission of signals, further information

artifacts necessary for traceability in the automotive E/E development are not explicitly

modeled. For instance, a NCD matrix is not represented distinctly within the

communication data; neither are the three main ECU software components bootloader,

functional, and parametric software. The description of software remains on a higher

granularity level and only refers to it as a system artifact, on an abstract, coarser level,

or a rich component, on a concrete, finer level that still can be distinguished into a

function, logical, or technical component, inter alia96 (WEBER et al., 2012: pp. 17, 27–30,

65–67, 126–127).

The SPES method, obviously, focuses on software-intensive systems and hence this

approach is obvious, yet too generic for traceability discussed in this work here where

certain information artifacts have been identified to be crucial for traceability in

automotive E/E development in distributed engineering collaborations. Therefore, the

elaborated data model here takes into consideration the information artifacts, which are

not explicitly in scope of the SPES method and its architecture metamodel, and

implements a generic data model specifically aligned to automotive E/E development.

96 For more information about the SPES metamodel, please refer to WEBER et al. (2012).

108 Definition of a data model

By those means, a greater traceability particularly within the automotive E/E

development is fostered.

For the purpose of holistic modeling of the system architecture, system requirements,

and system behavior for a continuous and traceable MBSE, commonly all types of

diagrams of the SysML modeling language are necessary (HOOSHMAND, 2015: p. 60).

However, here in this work the pivotal attention lies upon those system elements that

are essential for traceability in engineering collaboration as well as with a later

documentation in PDM/PLM systems. Consequently, not all diagram types will be

implemented.

The reference model is modeled in the package diagram which serves as an

organizational storage location and captures all relevant model elements contained in

the system. The package diagram again includes several packages with further

elements (FRIEDENTHAL et al., 2012: pp. 53–55, 104-105). Figure 4-4 shows the

reference model for a generic automotive E/E system with the relevant packages in

scope of this work. Behavior, use cases, and requirements packages are in grey as

these models will not be elaborated on in more depth. Due to an emphasis on

automotive E/E, input/output (I/O) definitions and parametrics are added separately

wherein the first encompasses model elements required for the specification of

interfaces including ports as well as their inputs and outputs (FRIEDENTHAL et al., 2012:

p. 55). The latter contains parametric data particularly necessary for automotive

software development (cf. Chapter 2.5). A model library package, denoted with

<<modelLibrary>>, includes all system elements and structural elements, respectively,

such as hardware and software components, as well as the associated properties and

information. These elements can be referenced and imported by other diagrams. This

also applies to IT systems (HOOSHMAND, 2015: p. 60; FRIEDENTHAL et al., 2012: p. 369).

The development process, which shall foster traceability in MBSE among multiple

engineering partners, will be modeled in the package processes. Configuration

elements can be found in the homonymous package. The symbol “⊕” in Figure 4-4

means that the packages have a hierarchical relationship and denotes a containment

(FRIEDENTHAL et al., 2012: p. 55).

Synthesis of a solution framework 109

Figure 4-4: Reference model for an automotive E/E system depicted as a package diagram in SysML.

Gray packages are not in scope of this work.

In the following sections, the building blocks for each package will be described to depict

the reference model. Moreover, their relations will be described, too. First, the system

structure will be modeled, then development process specifics including the viewpoints,

which address the RFLP approach, will be considered. Afterwards, peculiarities of

automotive E/E including I/O definitions as well as parametrics will be further detailed.

Information artifacts for configuration management will be addressed in the following. In

a final step, a dedicated data model for the involved IT systems will be depicted for the

model library. The model library for structure elements does not have to be described

separately due to all elements already being addressed in the previous packages.

DEFINITION OF THE GENERIC STRUCTURE OF THE AUTOMOTIVE E/E SYSTEM MODEL

The generic structure of the automotive E/E system model is depicted in Figure 4-5. For

the purpose of visualization, in the SysML logic a so-called block definition diagram

(bdd) is used to formalize structural relations between different blocks. A block in the

SysML is an entity or element with distinct properties and features (FRIEDENTHAL et al.,

110 Definition of a data model

2012: pp. 57, 120). The arrow with one black lozenge-shaped end (“⧫”) describes a

compositional relationship between the “whole”, i.e., then end with the “⧫”, and the part

of the composite, i.e., the end with the arrow (“🡢”) (OMG, 2015: p. 38). A composite

characterizes a relationship between the child and parent, where the child cannot exist

independently from the parent. Of course, an ECU or a communication bus can exist

without the relation to an E/E system. However, in automotive E/E this rarely will be the

case. Hence, for practical relevance, the relation of the E/E system with other blocks

within the bdd will be a composition each. Further attributes and additional details are

not yet included here.

Figure 4-5: Generic structure of the automotive E/E system model.

Figure 4-5 shows the automotive E/E system at the top level with distinct blocks that

each is part of the structure, referenced in other packages of the reference model, and

in the model library for structure elements. The core of an automotive E/E system builds

one or multiple ECUs which, in turn, again consist of different hardware and numerous

software. The E/E architecture is commonly developed independently of the car model

line or car platform and is only adapted during the development process. The E/E

architecture defines the overall, high-level topology of an automobile’s E/E configuration

whereas the communication bus delineates the 1..n connected busses in a specific E/E

system. Due to the fact that distinct functions are spread across many E/E systems and

hence several ECUs, modeling the functional association of an E/E system is essential.

Moreover, the E/E system can exist in multiple discrete configurations, for instance if

certain features are enabled or if different stages of functionalities are available and

customizable. Each block will be described separately in the following.

DEFINITION OF THE GENERIC STRUCTURE OF THE ECU

The ECU is embedded in the E/E system, denoted by a composite relationship in Figure

4-6 (vide supra for nomenclature). As well as the E/E system, the ECU correlates with

Synthesis of a solution framework 111

one or many communication busses and functions. The configuration block subsumes

the lifecycle management by means of variants and versions and will be discussed

below. As a main criterion, the ECU commonly consists of hardware and software in

their different characteristics. Hardware is further fragmented into its geometry for the

purpose of calculations of the designed space contingent on the ECU’s case. The E/E-

related hardware composes of memory, a processor, and plugs serving as physical

interfaces. The plugs again have a relation with the NCD, indicated by the symbol “🡢”,

fostering traceability of each signal between ECUs down to the level of individual pins

that are used to transmit the currency for the signals. Also associated with the hardware

is its schematic in different level of granularity.

Bootloader, functional, and parametric software commonly constitute what is called a

software component, i.e., a given baseline of the relevant software artifacts, that is

deployed in an ECU with a certain specification for a particular configuration of the

automobile.

The blocks E/E architecture, communication bus, function, and configuration will be

discussed in the following packages of the structures of the reference model.

Figure 4-6: Generic structure of the ECU.

112 Definition of a data model

DEFINITION OF THE GENERIC STRUCTURE OF THE E/E ARCHITECTURE

The E/E architecture is developed independently of the car platform (cf. Chapter 2.5)

and only adapted to the specific car platform and later model series in due course. This

is done under the consideration of cost saving. Hence, in the context of a dedicated

model series of a car platform97, the E/E architecture has a specific configuration, which

will be depicted in consecutive packages. Often, a 150% model of the wiring of the entire

E/E architecture is used to depict the overall concatenations of all ECUs and

communication busses (cf. Chapter 2.3.2). The data model for the structure of the E/E

architecture is illustrated in Figure 4-7.

Figure 4-7: Generic structure of the E/E architecture.

DEFINITION OF THE GENERIC STRUCTURE OF THE COMMUNICATION BUS

The communication bus or busses are the backbone of communication among multiple

ECUs. Hence, during development it is crucial to trace changes to the bus and its

associated data defined for the exchange of messages within an engineering

collaboration because a false specification will yield a deficiency in reliability. The

communication bus has a simple aggregation relationship to the ECU due to the

communication bus being able to exist without the ECU. This is particularly the case, if

a communication bus connects many ECUs. The simple aggregation relationship is

denoted by the symbol “♢” combined with the same arrow “🡢” as mentioned previously

(OMG, 2015: p. 38). The NCD is a direct composite of the block communication bus due

97 Analog to Figure 2-16, a Mercedes E-class denotes the car platform, whereas the model series would
be a derived variant, such as the E-class convertible.

Synthesis of a solution framework 113

to it describing the messages on the communication bus and hence cannot exist without

its parent. This is depicted in Figure 4-8.

Figure 4-8: Generic structure of the communication bus.

DEFINITION OF THE GENERIC STRUCTURE OF THE FUNCTION

In the RFLP approach (cf. Chapter 2.4), functions are deduced from requirements.

Afterwards, functions serve as a connector to the logical viewpoint and later, more

granular, to the technical viewpoint. This breakdown on the basis of different

aggregation levels is essential for traceability during development. Therefore, the block

function has to be modeled explicitly for the purpose of generating data artifacts that can

be traced by association with the E/E system and its components.

Here in this case, one or multiple functions are modeled to have only a reference

association to the ECU, the E/E system, and the software; as represented in Figure 4-9.

These simple reference associations stem from the fact that functions are often spread

across many ECUs, hardware-related, and multiple software components in case the

function is software-based. Moreover, functions frequently are implemented in different

E/E systems. The relation to the block Viewpoint via the E/E system ensures the

feasibility of different views which often have some correlation to functions and

described coherently for a specific person, such as a systems architect (FRIEDENTHAL et

al., 2012: p. 115).

114 Definition of a data model

Figure 4-9: Generic structure of the function.

DEFINITION OF THE GENERIC STRUCTURE OF THE CONFIGURATION AND VARIANTS

By means of a generic configuration model, the topology of a product, the relationships

between different components, and their association with the respective IT system,

where the configuration will be stored and managed, will be modeled and implemented

(cf. KÖNIGS, 2013: p. 91).

The inclusion and alignment of both MBSE and PDM, as required to foster traceability

in the early development phase, is modeled based upon a dedicated configuration data

model. For that purpose, a separate or orthogonal data model for the description of

variability in a product and resulting configurations will be defined (POHL et al., 2005: pp.

57 ff; SCHULTE et al., 2017c: pp. 264–265). However, in contrast to POHL et al. (2005),

the variability yielding different possible configurations will be modeled explicitly within

the given data model, such as done by KÖNIGS (2013). This has the advantage that in

an engineering collaboration, where data models have to be exchanged, the

configuration data model is already included within the entire data model and is not

implemented in a separate metamodel. This might alleviate incompatibilities as well as

reduce issues or errors during the exchange of data among multiple engineering

partners98. As here a separate bdd solely for the configuration, i.e., variability, is defined,

this also can be considered as “orthogonal”.

The definition of variants for elements of the E/E system and ECU, depicted by distinct

blocks, can be implemented using a top-down or a bottom-up approach. The bottom-up

approach requires the specification of discrete, variant-building attributes. In contrast,

the top-down approach primarily addresses elements on system level and then

98 Please refer to POHL et al., 2005: pp. 74 ff for disadvantages of modeling the variability model within
the actual development models, in that case for software.

Synthesis of a solution framework 115

proceeds successively to elements on lower levels to elaborate variants (HOOSHMAND,

2015: p. 71). Here in this work, the complete description of the E/E system and ECU,

besides focus on E/E, is not a goal and therefore the level of granularity of attributes is

not in scope. Hence, the top-down approach will be used to form variants for the ECU

on closer inspection.

The newly introduced block variation point describes the actual representation of

variability, i.e., the possibility to vary and hence form configurations and variants, within

the data model itself and its domain artifacts (POHL et al., 2005: 62). For instance, the

processor or memory of an ECU are variation points. Depending on the requirements,

the concrete instances of a processor or the size of memory represent different variants

for this ECU within the modeled data99.

Figure 4-10 shows the generic structure of the configuration of an E/E system including

its relevant information artifacts. A configuration of an ECU comprises hardware and

software and has a direct relationship with the block ECU itself. Via the ECU, a

connection to the engineering BOM (E-BOM), manufacturing BOM (M-BOM), and their

corresponding, but also other, IT systems is modeled. Both, hardware and software are

combined each at a certain state of development and with specific characteristics to a

variant. This variant, in turn, exists in a dedicated version at a given point in time (cf.

Chapter 2.3). Such a version will be addressed if a deployment date was planned. This

is the case when the ECU in scope will be included at the assembly line with a specific

start date and a given end date at a dedicated plant. Additionally, an engineering change

includes a precise version for the purpose of adaptation. A release can be considered

as a major baseline for the entire E/E architecture that shall be built in combination at

an explicit date. Hence, the release directly addresses an ECU’s version and is a child

to the model series in which it shall be implemented.

99 Please refer to POHL et al. (2012) for variant handling with respect to E/E and software development in
alignment of the SPES method and the IT tool PREEvision.

116 Definition of a data model

Figure 4-10: Generic structure of the configuration.

Subsequent to the definition of the reference model for the automotive E/E system and

the elaboration of the concrete data models of a generic structure of the E/E system,

ECU, E/E architecture, communication bus, function, and configuration, the description

of process-relevant information artifacts follows.

Synthesis of a solution framework 117

DEFINITION OF PROCESS-SPECIFIC INFORMATION ARTIFACTS

The question of which information artifacts have to be generated in order to precisely

address the required information in an engineering collaboration at a given point in time,

will be addressed here in this section.

The SPES method according to POHL et al. (2012) describes an elaborated manner for

MBSE (cf. Chapter 2.4.2). However, the detailed process steps for a distributed

engineering collaboration framework in alignment to the SPES method will be developed

in Chapter 4.2, due to there being no detailed process description inherent to the SPES

method (DAUN et al., 2016: p. 3; POHL et al., 2012: p. 151). Consequently, the scope

here in this section will be on the information artifacts defined by the SPES method.

The SPES method focuses on model-based and continuous documentation as well as

seamless engineering. The former focal point is achieved by metamodels which define

structures of information artifacts. The latter focal point is enabled via formal semantics

that clearly define the relationships between different categories of information artifacts.

By means of model-based and seamless engineering, models additionally can be used

for the execution of automized analysis and model transformation and not only for

documentational purposes (POHL et al., 2012: pp. 34–35).

By means of abstraction layers, the SPES method implements the logic of engineering

to increase the level of detail successively when advancing in someone’s work.

Moreover, abstraction layers can also be used as a transfer from one organizational

department or domain to the other. Abstraction layers are not a fixed concept for

granularity. In contrast, depending on the industry the SPES method is applied to,

abstraction layers differ. For instance, in the automotive industry the abstraction layers

would be supersystem, system, subsystem, and hardware/software component (POHL

et al., 2012: pp. 35–38).

The SPES method defines the already previously introduced viewpoints as major

clustering objects. With each viewpoint, which itself is a work product, a different

perspective of a system and the stakeholder’s current concern, are highlighted. For that

purpose, the system is modeled distinctively to represent relevant information for the

viewpoint. The requirements viewpoint serves as a basis for consecutive viewpoints as

the satisfaction of those requirements in the following viewpoints have to adhere to the

initial requirements. For the purpose of relating the viewpoints, functional requirements

have to be modeled explicitly within the functional viewpoint and hence, fulfilled by a

118 Definition of a data model

user function. The user function can be distinguished from the realization function, as

the latter is required to fulfill a user function. This means that several realization functions

have to be implemented, commonly highly integrated, for the purpose of enabling one

user function. Sequentially, the functional viewpoint is mapped with a logical component

via a n:m relation, i.e., a logical component can realize multiple user functions and one

user function can be implemented within many logical components. In the following, the

logical and technical viewpoints have to be correlated with each other. This is achieved

by means of the so-called deployment mapping which specifies on which hardware, e.g.,

ECUs or communication busses, which software functions of the logical viewpoint are

implemented (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2011f: p. 2; POHL et

al., 2012: pp. 36, 40–41, 43–45). The actual interaction point on a logical and technical

level is depicted by a pin within the SPES metamodel100 (WEBER et al., 2012: pp. 65–

66).The relation between the functional and logical viewpoints and their actual

connection is done by linkage of a user function with a logical component as depicted in

Figure 4-11.

Figure 4-11: Connection between functional and logical viewpoints (in alignment to POHL et al., 2012:

p. 45).

According to the above-mentioned definition of abstraction layers and their usage within

the SPES method in combination with the different viewpoints, further information

artifacts can be added to the reference model and its immanent generic structures

modeled in SysML prior to this. In this connection, the focus still excludes the explicit

consideration of requirements (cf. Footnote 18 on p. 25). However, the requirements

viewpoints are already included in the reference model rudimentarily (cf. Figure 4-4).

The connection of the viewpoints with the E/E system is depicted in Figure 4-12. The

abstraction layers are modeled in Figure 4-13. Both, the viewpoints and the abstraction

100 For more information about the SPES metamodel, please refer to WEBER et al. (2012).

Synthesis of a solution framework 119

layers are linked to the E/E system as an integrated and central information artifact,

enabling traceability across the entire data model. Each block in the depiction of the

generic structure of the abstraction layers in Figure 4-13 can inherit the different

viewpoints described in Figure 4-12 and hence the individual instances of the E/E

system. This is broken down from coarse to fine and can be examined according to each

viewpoint. This enables a holistic overview of the entire E/E (super-) system, its sub-

systems, as well as components. Moreover, explicitly modeling these dependencies

fosters the required traceability.

Figure 4-12: Generic structure of the viewpoints.

Figure 4-14 describes the generic relationship between the different elements of the E/E

system, from the super-system to the hardware or software component, as well as the

relationship between the different viewpoints and their immanent modeling elements.

According to the structure of the abstraction layers (cf. Figure 4-13), the distinct system

elements are connected and hence traceability throughout the different layers of

granularity is ensured. The linkage of the system elements as well as the viewpoints

across separate abstraction layers is depicted schematically by a bright blue arrow and

connects the vertical axis in Figure 4-14. The horizontal layers describe the commonly

successively developed viewpoints of one system element101. The viewpoints are linked

be referencing of specific information artifacts (cf. Figure 4-11), which are depicted by

black arrows in Figure 4-14. Due to all viewpoints being also connected to their

respective system element, such as the E/E system (cf. Figure 4-12), traceability is

therefore ensured along the horizontal axis.

101 Naturally, the development process is a highly iterative approach and therefore information artifacts
and their relationships are modeled gradually. However, the main approach follows a sequential
refinement from coarse to fine with respect to the level of granularity (cf. Chapter 2.2).

120 Definition of a data model

Figure 4-13: Generic structure of the abstraction layers.

Figure 4-14: Generic relationships between different viewpoints for one system element and between

different abstraction layers (in alignment to POHL et al., 2012: pp. 38, 45).

By integration of the relevant information artifacts deduced from the SPES method for

the abstraction layers and viewpoints into the overall reference model, the data model

now fosters traceability for the early MBSE phase. The dedicated interfaces between

the different viewpoints, in Figure 4-14 denoted for instance by “I/O channel”, will be

Synthesis of a solution framework 121

described in the following section. The description of each process step follows in

Chapter 4.2.1.

AUTOMOTIVE E/E DEVELOPMENT INCLUDING I/O DEFINITIONS AND PARAMETRIC SOFTWARE

In extension to the generic structure of an ECU (Figure 4-6), the relations between

specific information artifacts within the realm of automotive E/E development have to be

modeled in order to foster traceability for the main characteristics, yielding a higher

complexity in today’s automotive industry. Particularly, E/E-specific inputs and outputs

and their form of transmission of signals as well as the medium of transmission is a

major hurdle for traceability in an engineering collaboration. Subsequently, product

quality is also impeded in mastering the complexity already in the IT systems (cf.

Chapter 1).

The SPES method stipulates so-called input/output channels for the connection of

logical components and their subcomponents, and the achievement of communication

between them102 (POHL et al., 2012: pp. 88–89, 92). Modeling these relations explicitly,

physical, e.g., a communication bus, as well as digital, e.g., a signal, traceability is

enabled. This information is carried over to the technical viewpoint. Granularity levels,

as fine as decomposing signals into messages, frames, or even bits, is not in scope of

this work and hence not displayed in Figure 4-15. The same applies to sensors,

actuators, and single ports.

The parametric software, or short parametrics, has already been modeled in the

structure of the ECU in combination with the other major prevailing software types on

an ECU (cf. Figure 4-6). Due to parametrics being very relevant with regards to input

and output of an E/E system and its components, they also have been included here

and being enriched by the connection to their signals, organized in the NCD and sent

via the communication bus.

The generic structure of the input and output definitions is depicted in Figure 4-15.

Relations between the blocks pin, I/O channel, signal, NCD, and communication bus

have been complemented given the goal of traceability, the scope, and the level of

granularity described above.

102 Dedicated input and output ports are modeled for logical components in the SPES method and then
serve as connection point for the I/O channels (POHL et al., 2012: 92). However, this level of detail is not
in scope of this work and hence it is refrained from modeling these ports explicitly. Additionally, the object
mapping, mapping block, and further mapping artifacts are not in scope here due to dedicated connection
points, such as pins, are modeled distinctly (cf. WEBER et al., 2012: pp. 73 ff; POHL et al., 2012: pp. 103
ff).

122 Definition of a data model

Figure 4-15: Generic structure of the I/O definition.

CONCRETIZED SPECIFICATION OF VARIANTS AND VERSIONS

Traceability of information artifacts across the lifecycle and different domains is one

major purpose of PDM/PLM (cf. Chapter 2.3). Hence, this also has to be considered in

the data model. The foundation for the for PDM/PLM relevant specifications of

information artifacts was already described in the generic structure of the configuration

in Figure 4-10. There, the blocks Variant, Version, and further temporally structural

blocks, such as Deployment date, Engineering change, and Release, have been

modeled, since these are crucial for PDM/PLM in general and for automotive

development particularly.

Exemplary structure elements of variants of an ECU and their versions are depicted in

Figure 4-16. There, hardware and software variants are itemized into different versions.

Moreover, metadata for these dedicated versions has been added generically, for

instance, identifiers are depicted as well as metadata where the different versions could

be disjunct. Commonly, there exists a standard variant aiming at cost savings of a

component and a high-end variant aiming at the best possible performance. With

respect to hardware, the altering technical parts within the component are usually CPUs

Synthesis of a solution framework 123

or memory. Software components often distinguish themselves by a different

parametrization or parametric software. This may yield a different service offered to

other software components, or enables higher performance in combination with

hardware parameters. Theoretically, the referenced blocks of versions could be endless

and, here, it is only depicted generically with its first iteration.

Figure 4-16: Generic structure element of potential variants of an ECU.

Dedicated metainformation regarding PDM/PLM, configuration and change

management will be described in Chapter 4.1.2. For this purpose, identifiers such as for

versions, variants, smaller engineering changes, and more extensive releases will be

defined.

DEFINITION OF IT SYSTEMS-SPECIFIC AND COLLABORATION-SPECIFIC INFORMATION ARTIFACTS

In Figure 4-10, the generic structure of a configuration and the necessity to link the block

ECU to an IT system was already modeled. This is due to different IT systems being

124 Definition of a data model

used in different domains, which define and handle configurations distinctly. For the

purpose of generating traceability across numerous IT tools and systems, this

relationship between the ECU and IT system will be defined more accurately in the

following. Therefore, stereotypes of IT tools and IT systems that are commonly stored

within the model library IT systems (cf. Figure 4-4), will be associated with the block

ECU in order to make this information artifact traceable throughout the development

process, towards PDM/PLM, and further along the product lifecycle. HOOSHMAND (2015)

suggests to model blocks for each IT tool and then only reference norms and standards

as metadata within the block of the IT tool (HOOSHMAND, 2015: pp. 80–81). Given that

the explicit representation of norms and standards is not in scope of this work, it is

deemed to be advantageous to directly model the relationship between ECU and IT tool

or IT system.

In this context it is important to emphasize that not only different document types related

to the ECU, such as a specification sheet, schematics, CAD drawing, etc. shall be linked

to IT systems but rather the superordinate information artifact of the ECU itself. This is

in contrast to KÖNIGS (2013), yet has the advantage that the relationship of information

artifacts with IT systems can be identified, analyzed, and managed, regardless of the

existence of respective documents and also aligns with the approach presented in the

previous passage (KÖNIGS, 2013: p. 87).

ISO 10303 STEP AP 242, as a standard for data exchange in engineering collaborations

(cf. Chapter 2.1.1), allows for different kinds of mapping of the BOM structure, such as

the assemblies based upon the part occurrences, the part view, or the breakdown

structure of the system103. Here, the approach of directly linking the relevant information

of the BOM and other IT systems with the MBSE data model will be implemented, as

already presented in Table 2-1 and modeled by GILZ (2014) (GILZ, 2014: pp. 139–140).

This approach ensures linking and hence traceability by usage of URIs (cf. Chapters 2.6

and 2.8) and will be addressed in the following chapter.

For purposes of distributed engineering collaboration, the transmission of trace links,

which have been created between IT systems or tools at one engineering partner or the

OEM, has to be ensured. Otherwise, only the engineering partner who created the trace

links enables traceability within its own IT architecture while every other engineering

103 Please refer to GILZ (2014) for more information about the mapping of BOMs in ISO 10303 STEP AP
242.

Synthesis of a solution framework 125

partner has to model trace links anew. In combination with the generic structure of the

ECU (cf. Figure 4-6), hierarchical transitivity can be achieved. By means of explicit

modeling the ECU’s main components, the respective hierarchical transitivity can be

transferred from one engineering partner to another. The connection of the ECU to its

relevant IT tools and systems, in order to preserve and transmit links between

information artifacts, is also achieved by explicit modeling (cf. BEIER, 2014: pp. 80–81).

During development, this part of the data model also can be handed over and, therefore,

via the block ECU, traceability including hierarchical transitivity among various

engineering partners can be fostered.

The modeled connection of the ECU with the main IT systems or tools is depicted

generically in Figure 4-17. Additionally, for each IT system or tool the main, relevant

structural aggregation model or element is referenced. For example, for MBSE the

relevant aggregation model is the system model (cf. Chapter 2.4), and for PDM/PLM

this would be the engineering or manufacturing BOM.

Figure 4-17: Generic structure of IT systems and tools as well as their relevant structural aggregation

models or elements.

4.1.2 Relevant metadata for a linked data model

In order to satisfy requirement four, including a linked data model that is decisive for

distributed engineering collaboration into a prospective solution framework, dedicated

126 Definition of a data model

metadata for the global identification of information artifacts have to be defined (cf.

Chapters 2.6 and 2.8). This necessity stems from the heterogeneously deployed IT

landscape, both within a company as well as externally with other engineering partners.

The identification, integration, and management of knowledge must be feasible.

Therefore, all relevant product-related data has to be easily accessible and department-

overlapping. Also, the reduction of search time and processes for data management,

maintenance, and access have to be enabled (HOOSHMAND, 2015: p. 79). For this

purpose and analogous to the semantic web layer cake (cf. Figure 2-24), URIs, a syntax

for data interchange, such as RDF, and a superordinate ontology, here according to

OSLC, have to be defined. In this work, basic metadata, such as a time stamp of creation

and modification, information artifact owner, description, etc. will not be addressed

explicitly.

METADATA FOR THE LOCATION AND IDENTIFICATION OF RESOURCES

As URIs can identify objects and resources universally in a standardized manner, they

build the foundation for a holistic data management and data exchange in distributed

engineering collaboration across multiple domains104. The exemplary URI scheme for

the engineering context is depicted in Source Code 4-1105. There, the first part denotes

the scheme applied within the dedicated URI. Afterwards, the server follows.

Subsequently, a self-defined path follows. In this case, the path aligns exemplarily with

the generic structure of the E/E architecture as depicted in Figure 4-7. In Source Code

4-1, Mercedes modular rear architecture 2 (mra2) denotes the car platform, 223

resembles the model series BR223 Mercedes-Benz S-class, etherstar stands for the

specific E/E architecture, followed by the E/E system and the included ECU. This

information will be included in the form of metadata within the information artifacts that

will be transferred among engineering partners.

Source Code 4-1: Generic structure of the URI (in alignment to HITZLER, 2008: 27).

104 Please refer to HITZLER, 2008: pp. 26 ff. for more information about URIs, their composition scheme,
the definition and distinction between uniform resource locators (URLs) and uniform resource names
(URNs).
105 All source codes have been improved solely in their appearance for the purpose of better readability
using the website https://carbon.now.sh/.

Synthesis of a solution framework 127

Additionally, universally unique identifiers (UUIDs) enable linking of data objects across

systems by means of only one primary key (KIRSCH et al., 2017b: p. 165). UUIDs are

mostly applied where there are no requirements for a speaking identification key and a

sole technical mechanism of identification suffices. UUIDs are introduced additionally to

URIs to provide an everlasting technical solution for the identification of data objects.

Time, clock sequence, and a node identifier form a UUID106.

METADATA FOR THE IDENTIFICATION OF INFORMATION ARTIFACTS IN PDM/PLM

As already introduced in Figure 4-16, information artifacts in PDM/PLM require specific

identification for traceability across the product lifecycle.

Configurations, encompassing variants and versions, commonly are denoted using a

self-selected scheme. Sometimes, this scheme has a speaking logic implemented. In

Source Code 4-2 it is depicted that hardware variants are numbered consecutively

alphanumerically with H1…Hn, where versions are numbered numerically 01…n, and

depicted jointly this yields H1.01…Hn.n.

Source Code 4-2: Generic structure of the hardware variant and version scheme.

The same logic applies to software and the ECU as a final product, which combines

hardware and software variants and versions, and is depicted in Source Code 4-3 and

Source Code 4-4.

Source Code 4-3: Generic structure of the software variant and version scheme.

106 Please refer to LEACH et al. (2005) for the definition and specification of UUIDs by the Networking
Working Group.

128 Definition of a data model

Source Code 4-4: Generic structure of the ECU variant and version scheme.

As change management is also considered part of configuration management (cf.

Chapter 2.3.2), the above-mentioned logic of IDs for versions can be applied likewise to

the change management for the purpose of traceability of individual information artifacts

in case of changes. Figure 4-16 already depicts the documentation of changes for each

variant of hardware as well as software denoted by an increase of the version ID in a

simplified manner. Commonly, it is left to the engineer to decide when to create a new

version of a component and when to change the old one. As a rule of thumb in practice,

the form, fit, function assumption is used. If either one of the aforementioned are

changed, then a new version or even part number is required in order to avoid confusion

or errors.

METADATA FOR THE DATA EXCHANGE

Before, metadata for the identification across IT systems and within PDM/PLM have

been addressed. Metadata has to be exchanged for the purpose of collaborative work.

As described in Chapter 2.8.1, RDF was designed to represent and exchange metadata

and is an internet standard today. The RDF uses graphs for the depiction of relationships

of information artifacts. So-called triples are used for this purpose (cf. Chapter 2.8.1).

Nodes, i.e., the information artifacts, can have multiple triples, i.e., relations, and hence

a graph of relations can be built. This is particularly relevant in the case where the above-

introduced SysML model cannot be implemented. This might be the case where there

are other programming and modeling languages which prevail and the SPES method is

not applicable. As described above, the heterogeneous IT landscape with numerous,

domain-specific modeling languages is one major hindrance of traceability of information

artifacts. Despite the focus in this work is on the early phase of development including

MBSE where SysML prevails as a formal language, bridging the gap to other domains

and their dedicated modeling languages must also be facilitated. Therefore, RDF and

its triples are the chosen approach for a standardized connection and exchange of data

among multiple engineering partners across the internet.

Synthesis of a solution framework 129

Figure 4-18 depicts the generic structure of an RDF triple for the relationship between

the software SW1 of the door control module (DCM) and the ECU, the DCM itself.

Software development and E/E development are usually executed in different IT tools.

There, SysML might not be the standard modeling language. Hence, the RDF triple

connecting the software and the ECU by means of is part of offers this linking

possibility independent of any IT tool and language. The blocks for software and ECU

in Figure 4-18 also include the URI in the form of an http link.

Figure 4-18: Generic structure of an RDF triple as a graph.

The triple in Figure 4-18 can also be depicted in source code using the Turtle syntax107.

The graphical depiction of relationships between information artifacts facilitates humans’

work, whereas the depiction in source code fosters the interpretability for machines. The

latter is depicted in Source Code 4-5108.

Source Code 4-5: Generic structure of an RDF triple using Turtle syntax.

ONTOLOGY FOR THE EXCHANGE OF RELEVANT DATA FOR PRODUCT DEVELOPMENT

As OSLC includes dedicated identifiers for data, addresses resources in a standardized

manner, and further offers an ontology for product development, OSLC will serve as the

basis for the provision of an ontology. The first two included points have already been

107 Please refer to HITZLER (2008) for more information about different RDF syntaxes.
108 The RDFS, as a means of introducing a taxonomy into RDF, will not be addressed here due to OWL
extends the content of RDFS further. However, OSLC already introduces certain ontologies specifically
developed for the product development, sometimes described also in OWL, and is based upon RDF logic,
too. Hence, there is no need for the dedicated specification of an additional ontology using OWL.

130 Definition of a data model

addressed above. Therefore, OSLC will be used to connect information artifacts and

hence foster traceability (cf. Table 2-1).

The in Chapter 4.1.1 defined information artifacts will be aligned with the OSLC

nomenclature. Therefore, the main E/E components of the generically defined E/E

system have to be aligned with the OSLC resources, as these resources commonly

denote a PLM or ALM artifact, change request, or requirement (JOHNSON and SPEICHER,

2013). The OSLC resources’ names are appended via an # to the namespace URI. The

exemplary namespace (ns) URI in our case was already mentioned above

(<http://daimler.engineering-mbc.com/ns/{domain}>), where domain

denotes, e.g., engineering domains such as MBSE and PDM. A resource would be ECU.

Resources can have property definitions and constraints. Each property can also be

addressed as an appendix to the core’s namespace, for instance #EEcomponent.

Moreover, appendices attached via # also denote classes (CROSSLEY, 2019). This

generic structure of the used namespace including domains, resources, and properties

is depicted exemplarily in Source Code 4-6.

Source Code 4-6: Generic structure of the OSLC namespace, domains, resources, and properties.

According to the above-mentioned nomenclature, the namespace in OSLC terminology

will be aligned given the information artifacts defined in Chapter 4.1.1. This is depicted

exemplarily in Source Code 4-7. At the beginning, the different public namespaces for

RDF, OSLC, and DCterms109 are defined. In this example, the namespace of MBSE is

connected to the namespace of PDM110, following the rule of subject ⇾ predicate

⇾ object, where rdf:about resembles the subject and rdf:resource the

object. The predicate in this example is describes. In Source Code 4-7, the

properties DCM, Periphery-EE-System, and DCM_SW1 are defined for the distinct

namespace denoted by opening with <oslc:property>, denoting the property’s

name with <oslc:name>propertyname</oslc:name>, and closing the argument

109 For more information about the Dublin Core (DC) Metadata Initiative’s terms, please refer to
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.
110 The namespace PDM solely is used exemplarily for demonstrative purposes.

Synthesis of a solution framework 131

with </oslc:property>. Further attributes of the properties are defined as an

example, such as for DCM how often it might occur (Zero-or-many), a specific

definition within the namespace MBSE, what value type it is assigned, or what its full title

is. The property is defined locally, i.e., within the own namespace and only in addition

to standard attributes. The property Periphery-EE-System is defined within the

OEM’s namespaces and can occur Zero-or-one times. It can be found in both

namespaces of MBSE and PDM and hence this information artifact can be addressed out

of a PDM IT system as well as out of a MBSE tool within the development IT architecture

of a company. Similarly, the property DCM_SW1 is defined both within the OEM’s and

within the supplier’s namespaces and hence enables engineering collaboration by jointly

using the same information artifact not only across IT systems but also between and

among companies.

OSLC enables the connection of the definition of the reference model and generic

structures in SysML for a product description in the early development phase with a

standardized possibility for exchange of this development data. Hence, the intra- and

inter-company engineering collaboration across different domains, IT systems, and

engineering partners is enabled from the data perspective. This connection of data

models is depicted schematically in Figure 4-19. In this figure, the OEM creates an early

SysML data model during the early MBSE activities. For purposes of engineering

collaboration, the Supplier 1 likewise generates a SysML data model, which is a subset

of the entire data model found at the OEM, considering only these development parts,

the supplier was contracted to deliver. If only considered one domain, such as MBSE,

the data exchange between these two engineering partners could be implemented more

easily. However, both engineering partners also have to take into account their

respective subsequent processes, domains, and IT systems, such as PDM, which have

to be connected to MBSE and with the other engineering partners. For this purpose, the

data integration is implemented using separate RDF namespaces for each domain at

each engineering partner. Of course, if the same namespaces are already implemented

for different domains, this will facilitate data model alignment. For dedicated

interdisciplinary, joint development activities, these RDF namespaces can then be

addressed in an integrational routine written in OSLC, adding metadata in the form of

attributes and values to the information artifact in focus. This allows for distinct pulls of

all information artifacts of each RDF namespace, such as it is depicted exemplarily in

Source Code 4-7.

132 Definition of a data model

Source Code 4-7: Example of the alignment of product development data with the OSLC framework

(in alignment to IBM KNOWLEDGE CENTER, 2020).

Each engineering collaboration partner has their own data within their IT systems and

tools, MBSE as well as PDM, and additionally there are the RDF namespaces for each

Synthesis of a solution framework 133

domain and partner. Moreover, these RDF namespaces are then combined to one

routine, specific to this development endeavor. Given this separation of configuration

items (cf. Figure 4-10) among domains, engineering partners, as well as IT systems,

this approach for configuration management is close to the orthogonal variability model

(OVM), as presented in Chapter 2.4.3 (cf. POHL et al., 2005: pp. 72 ff.). A metamodel

links domains and IT systems and therefore also engineering partners’ activities.

Figure 4-19: Schematic data integration across different domains and between engineering partners.

4.2 Definition of a process model

The process model depicts what is done when in time (cf. Chapters 2.2 and 2.3). It shall

describe which information artifact (what) is created at which development step (when).

The SPES method (cf. POHL et al., 2012) with its development steps, describing which

view and which information artifact (what) is successively modeled (when), serves as a

fundament (cf. Chapter 2.4.2). However, the SPES method does not explicitly define a

process for the creation of the information artifacts depicted in Chapter 4.1 (DAUN et al.,

2016: p. 3; POHL et al., 2012: p. 151). Therefore, this development process has to be

134 Definition of a process model

outlined here under the assumptions and conditions relevant for distributed engineering

and in the context of the required information artifacts.

Additionally, basic aspects of PDM/PLM have to be incorporated for the process model

to foster traceability of information artifacts in a distributed systems development.

Therefore, the PDM/PLM processes of Chapter 2.3 shall be aligned to the SPES

method. Consequently, it is described in the next chapters how the SPES systems

development artifacts are created and linked to their respective PDM/PLM artifacts

(Chapter 4.2.1). For that purpose, these information artifacts are written into the PLM

Blockchain111 and are made available to all involved engineering partners, which have

access to the data of a particular system and its respective ECUs. This is done for all

steps that occur in the product development within the engineering phase, i.e., all

different use cases during engineering. Hence, the initial process describes which

information artifacts are created just at the beginning of the development process, at the

instant of time when a system is developed for the first time (Chapter 4.2.2). Following,

configurations and variants have to be created and this information has to be aligned

across IT systems, domains, and engineering partners (Chapter 4.2.3). Subsequently,

the history of a product and its information artifacts has to be captured by the creation

of versions and with a change management process (Chapter 4.2.4). Eventually, unused

information artifacts shall be prevented to be reused what is demanding an inactivation

process (Chapter 4.2.5). These use cases during product development cover the major

processes in scope.

As described in Chapter 2.1.3, the CRUD (create, read, update, delete) operations,

stemming from persistent database technologies, are essential for a process model to

foster traceability in an engineering collaboration. Due to the data model integration of

different domains across multiple engineering partners being implemented by means of

OSLC (cf. Chapter 4.1.2), the CRUD operations have to be aligned with the OSLC

syntax. As OSLC uses standard http commands, post, get, put, and delete (cf.

Chapter 2.8.1) which are the counterparts of CRUD and will be used to implement and

execute the different use cases of the processes during engineering in the respective

databases.

111 In analogy to the PLM backbone in Chapter 2.3.1, the PLM Blockchain serves as the IT system
connecting other authoring tools, as depicted in Figure 2-12. For more information about the PLM
Blockchain, please refer to Chapter 4.3.

Synthesis of a solution framework 135

4.2.1 Alignment of the SPES method and PDM

As the SPES method does not explicitly address a procedural step-by-step description

of which information artifact has to be created in each development step (cf. Chapter

2.4.2), Figure 4-20 depicts the here applied process when using the SPES method. This

process is derived from POHL et al. (2012) where only dedicated information artifacts,

which have to be created, are described but not the chronological sequence of their

creation112.

Figure 4-20: The SPES development process with its main information artifacts (in alignment to POHL

et al., 2012: pp. 51–105).

As already depicted in Figure 4-14 with focus on the linkage of different viewpoints and

different abstraction layers, each system under development is developed according to

different viewpoints and abstraction layers, given the required level of granularity.

Commonly, the engineer starts within the requirements viewpoint by modeling different

aspects of requirements. As the description of requirements is not in scope of this work,

this viewpoint is depicted in a simplified manner. Hence, only the operational

requirements model, i.e., a high-level model of distinct functions of the product and how

they might be connected by means of interfaces as well as inputs and outputs, is

112 POHL et al. (2012) only maps the different viewpoints and abstraction levels to a generic engineering
process but without either addressing distinct information artifacts nor the level of mechatronics (POHL et
al., 2012: pp. 151–153).

136 Definition of a process model

modeled as an information artifact within this process step. This information artifact then

can be used to connect the consecutive, functional viewpoint. The next process step is

the modeling of the functional black box model and already belongs to the functional

viewpoint. In this step, each function is denoted including its inputs and outputs. The

functional black box model consists of distinct user functions, i.e., on a higher, user-

perceived level, which are modeled separately (cf. Figure 4-11). Following, a functional

white box model decomposes high-level user functions into functions on a technical

level. For instance, the user function “accelerate car” is broken down into the different

actions of actuators and sensors of the automobile’s powertrain to enable acceleration,

e.g., the function “F1”. In turn, this function F1 has a n:m relation to logical components,

such as the above-mentioned actuators and sensors. The logical viewpoint consists of

the logical component architecture which again can be denominated as a functional

black box model of logical components due to it describes the generic relation of logical

(sub-) components by means of I/O channels. Again, technical components have a n:m

relation to logical sub-components. The technical components within the technical

viewpoint describe the system under development with its physical architecture

including hardware and software, varying in level of granularity according to the given

abstraction layer (POHL et al., 2012: p. 43).

Given a SPES development process, as depicted in Figure 4-20, the next step will be to

align this with the generic PDM process, its single steps, and its main information

artifacts. As the generic PDM process stipulates the creation of PDM-specific

information artifacts (cf. Chapter 2.3), such as BOMs and other artifacts which are

mostly associated with the technical viewpoint, these information artifacts will be briefly

highlighted (cf. Figure 4-10). Due to the focus of this work being on systems engineering,

only relevant information artifacts for both, systems engineering as well as PDM, will be

considered. Therefore, PDM also has to include these relevant information artifacts

which traditionally is not the case (cf. Chapter 2.3). For that purpose, the different

viewpoints with their abstraction layers can be aligned with the generic engineering

process. The conceptual phase during engineering is addressed by the requirements

and functional viewpoint. In the phase of basic or desing engineering, all viewpoints are

represented and aligned. Then, the detailing is modeled in the functional, logical, and

technical viewpoint as well as following engineering phases, such as installation &

commissioning or production planning. This is depicted in Figure 4-21 and is also in

alignment with Figure 2-3 and Figure 2-10. Given that the SPES method stipulates an

Synthesis of a solution framework 137

interative modeling, engineers will have to refine their models constantly by moving back

and forth between the different engineering phases refining the distinct viewpoints as

knowledge increases.

Figure 4-21: Alignment of a generic engineering process with the SPES viewpoints (in alignment to

POHL et al., 2012: p. 153).

The generic alignment of the MBSE process with the PDM process, including the

aforementioned relevant information artifacts, is depcited in Figure 4-22. Therefore, the

information artifacts for MBSE and PDM from Chapter 4.1 have been considered. The

E/E system serves as a starting point as well as a high level bundler for engineeing

activities across IT sytems. Hence, its creation as a dedicated information artifact is

relevant for both MBSE and PDM. Subsequently, the next relevant information artifact

that is in scope is a specific function. Commonly, functional black box models etc. are

not documented in PDM IT systems. However, not documenting any functions in PDM

sytems, as it often is still the case today, yields to a documentational gap as ECUs can

execute different functions of different E/E systems and thus these relationships would

not be captured. Hence, the distinct instantiation of a function, e.g. “F1”, also has to be

documented within the PDM sytem. In order to distinguish an ECU from its inherent

components, which are separate information artifacts that have to be addressed during

development, the ECU will be aligned with the logical viewpoint and within this is a

logical component. As depicted in Figure 4-10 and Figure 4-15, the ECU data model

stipulates the important distinction between hardware and software. This process step

is modeled with the creation of a logical sub-component and is documented likewise on

the PDM side. The most detailled modeling level, the technical viewpoint, aligns with the

highest granularity also in the PDM system where, during this process step, plugs, pins,

signals, NCDs, parametric software, etc. will be documented.

138 Definition of a process model

Figure 4-22: Alignment of the MBSE and PDM processes with their main information artifacts.

Synthesis of a solution framework 139

4.2.2 New product creation process

The initial process designates how the development process for a newly developed E/E

system and its components occurs. In doing so, at each process step a new information

artifact is written into the IT systems for MBSE, PDM, both mirrored to a certain extent

on the side of the OEM and the supplier, as well as in data integration (cf. Figure 4-19).

For the latter, these process steps are automated.

At the beginning, the common RDF namespaces for MBSE and PDM will be

implemented in the data integration layer. This can be done by an initial upload of these

RDF namespaces and the implementation of a work routine that aligns them

automatically across connected IT systems. Considering one or many engineers on the

OEM side responsible for modeling of an E/E system and its components in MBSE,

denoted with “OEM MBSE”, and documenting this information in a PDM system,

denoted with “OEM PDM”. Similarly, there are one or many engineers who model and

document for the Supplier 1, denoted with “Supplier 1 MBSE” and “Supplier 1 PDM”. In

the first process step it is assumed that the OEM engineer responsible for MBSE starts

by modeling the E/E system under development. This assumption stems from the fact

that the OEM determines the rough outlines including the requirements of an E/E

system. Yet, also the supplier could start modeling. However, in this case it is presumed

that the OEM has sovereignty over the E/E system and its functions and the supplier

contributes the ECU including its hardware and software components. The OEM’s

MBSE IT tool, which is connected to the data integration layer, automatically updates

the respective RDF namespace in the data integration layer. Thus, these information

artifacts are available for other IT systems within the engineering collaboration. These

information artifacts will be synchronized with the MBSE IT tool from Supplier 1, where

the E/E system under development will be “modeled”, i.e., the data will be transferred

from the data integration layer to the MBSE IT tool. Instantaneously, the RDF

namespaces for MBSE and PDM will be synchronized by means of the work routine

implemented in the data integration layer. Then, the updated RDF namespaces for PDM

will be synchronized with the respective PDM systems on each side of the engineering

collaboration partners.

The second process step starts with modeling of function F1. Of course, considering the

MBSE modeling process, there are interim process steps as depicted in Figure 4-22 that

are not shown here for simplicity and due to relevance for PDM. After modeling of

140 Definition of a process model

function F1, the RDF namespace for MBSE in the data integration layer will be updated

once more. This, in turn, triggers the automatic update of the supplier’s MBSE IT tool as

well as the alignment with the RDF namespaces for PDM. Consequently, an update of

the PDM RDF namespaces propagates these changes to the PDM documentation of

both the OEM’s and the Supplier 1’s PDM systems.

As Supplier 1 takes the lead of development of the ECU and its components from the

consecutive process step onwards, modeling takes place at first in the MBSE IT tool of

the supplier. The propagation of changes takes place symmetrically to the process steps

initiated by the OEM via the data integration layer, which still serves as an intermediary

between engineering partners as well as different domains. This logic also applies to the

following process steps for modeling the logical sub-components for hardware and

software and the technical components, e.g., the NCD. This generic process for the

creation of a new product is depicted in Figure 4-23.

In order to satisfy requirement 7, that external traceability is fostered through the

reduction of reconciliation effort by means of a consensus mechanism, the new product

creation process also includes such a consensus mechanism for the case that a new

information artifact will be created. Therefore, each time an engineering partner creates

a new information artifact, the receiving engineering partner has the obligation to

consent to or to decline the data transfer including the relevant metadata. This step is a

manual affirmation step that, in turn, will again be transferred automatically through IT

systems. In Figure 4-23, consensus is depicted by a green solid (manual process step)

or dashed (automatic process step/transfer of data) arrow and check mark. Contrarily,

decline is marked in red crosses and solid or dashed arrows. The technological aspects

of the consensus mechanism will be described in more detail in Chapter 4.3.2, after the

technological framework was presented.

Synthesis of a solution framework 141

Figure 4-23: Generic process for the creation of a new product.

142 Definition of a process model

4.2.3 Configuration and variant creation process

For the creation of different configurations, and therefore distinct variants (cf. Chapter

2.3.2), the generic process is depicted in Figure 4-24. In analogy to the process for the

creation of a new product, the OEM starts with the modeling of the E/E system and its

variant points and, subsequently, the supplier follows with the residual development of

the ECU and its components. Both engineering partners follow the same interchange of

information artifacts as well as consent or decline as before. Again, the process is

aligned with the data model for configurations in Figure 4-10 where variant points for the

E/E system are defined. For instance, variant points are defined for separate car lines

using similar specifications for an E/E system or an ECU, which is slightly adapted for

the dedicated car model. At first, the OEM models these variant points in their MBSE IT

tools from where the information will be propagated, via the data layer updating the RDF

namespaces for MBSE, to the supplier’s MBSE IT tools. The supplier’s consent or

decline of this update will follow and, in turn, will automatically trigger the update of the

RDF namespaces for PDM in case of consent. It results an automated update of the

documentation of the E/E system with its newly created variant point in the respective

PDM systems.

Consecutively, the OEM models the variant point of the ECU in case Supplier 1 only

develops this particular variant of the ECU. Otherwise, this variant point would be

modeled by the supplier for the case that all different variants are developed by the

supplier and hence they would be in charge of this process step. The consensus

mechanism and the update of the RDF namespaces as well as the other IT systems

happens likewise.

It follows the actual modeling of the logical component, i.e., the ECU, by the supplier

who takes over development starting with this process step. Before continuing with the

modeling of a dedicated configuration of hardware and software components, the OEM

has the opportunity to affirm or reject the modeling results of the logical component by

the supplier and, given a positive outcome of the consensus mechanism, RDF

namespaces and IT systems will be updated accordingly. For simplicity, the hardware

and software configuration are subsumed in one modeling process step, albeit the

modeling of hardware and software are commonly separate steps, sometimes in

discrete tools by distinct engineers. The consensus mechanism as well as the IT system

updates will be executed in the known procedure, followed by a variant of the ECU.

Synthesis of a solution framework 143

Again, this process step is combined for succinctness and data is updated according to

the previously depicted process steps.

Figure 4-24: Generic process for the creation of a new configuration and variant.

144 Definition of a process model

4.2.4 Version creation and change management process

For the purpose of ensuring that a precisely defined configuration, i.e., a variant, can be

identified and addressed in an IT system, the creation of a version and its effectivity over

time is crucial (cf. Chapter 2.3.2 and Figure 2-14). In the definition for the version

creation process and its change management process, the assumption is to have a

distributed version control system, as depicted in Figure 2-15 in variation 6. This is due

to the circumstance that the Blockchain technology is the objective of investigation which

inherently is a distributed data base and hence is technologically closest to a distributed

version control system. Therefore, the process has to reflect this technological premise.

The identification of the latest version of an information artifact within an IT system is

essential for the embodiment of the version creation process. Given that the

relationships between versioned information artifacts also have to be managed in case

of versioning of an element, this has to be considered when the effectivity of a

configuration and its version is defined. These relationships can be floating or fixed. In

case of floating relationships, they will always point automatically to the latest version of

an information artifact. Contrarily, a fixed relationship does not update to the latest

version in case of alteration (GILZ, 2014: p. 121). For the definition of the version creation

process it will be assumed that the relationships are maintained in a floating manner

and hence a manual or explicit process step for management of relationships is not

required. This ensures traceability to the always latest information artifact as well as a

traceable history of changes due to artifacts will not be overwritten but the old versions

will be archived in the background instead.

As the versioning of information artifacts commonly starts after the creation of a variant

(cf. Figure 2-16), here the depicted process definition builds upon the variant creation

process and presumes the existence of a variant. Thus, the process definition starts with

the supplier creating a new version due to the OEM which already defined a variant and

handed the development of this specific variant over to the supplier which creates

different versions during the development process. The generic process for the creation

of a new version is depicted in Figure 4-25.

Synthesis of a solution framework 145

Figure 4-25: Generic process for the creation of a new version as part of the change management.

The different lifecycle states of an information artifact, for instance preliminary, in review,

released, in change, or superseded (cf. GILZ, 2014: p. 123), are implicitly included in the

consensus mechanism while a response is still pending. Hence, they are not addressed

here explicitly for reasons of simplicity.

Figure 4-26 depicts the generic process for the change management, particularly the

creation of a new version of information artifacts and how these updates are transferred

process-relatedly across IT systems of the engineering partners. As described above,

updated data models will always automatically refer to the latest version due to floating

relationships and the separate lifecycle status of the information artifacts undergoing

change are included in the consensus mechanism. Supplier 1 starts with modeling

version 1.5, hence updating a previous version. This information will be transmitted to

their own RDF namespace and then routed to the OEM’s MBSE tool. Preconditioned

the affirmation of the change by the OEM, changes will be propagated to the other RDF

namespaces and into the documentation of the PDM systems in the same manner as

146 Definition of a process model

already described above. The same process repeats for further increments of

information artifacts’ versions.

The process for change management, as designed here, does support the automatic

change propagation, given a suitable data base, such as the Blockchain technology (cf.

Chapter 4.3), which satisfies requirement 8.

Figure 4-26: Generic process for the creation of new versions as part of the change management.

4.2.5 Inactivation process

The effectivity in configuration management, presented in Chapter 2.3.2, addresses

timely aspects of information artifacts and their relationships between each other. For

this purpose, obsolete information artifacts must also have the capability of being

cancelled. This inactivation is required to prevent the usage and implementation of

superseded information artifacts. This capability is particularly important for engineering

collaborations due to the knowledge of a product is not concentrated within one

Synthesis of a solution framework 147

development department but dispersed across multiple different engineering partners

who might have little to no contact.

The inactivation of information artifacts requires the definition of an obsolete item as well

as the investigation of affected relationships in the case of the latest version of this item

for the assessment of compatibility. The latter step would be inherent to the generic

process for the creation of configurations and variants, as depicted in Chapter 4.2.3.

Furthermore, the superseded information artifact has to be tagged as obsolete. Involved

engineering partners must have the ability to consent or reject an inactivation by means

of a consensus mechanism, in case of concordance or discrepancies. It is assumed that

the inactivation of one single information artifact does not inactivate the entire product

structure, i.e., hierarchical transitivity for inactivation does not apply (cf. Chapter 4.1).

Figure 4-27 depicts the generic process for the inactivation of a version of an information

artifact. The inactivation of other information artifacts, for instance an entire variant,

configuration, ECU, or E/E system, can be implemented analogously. Again, it is

assumed that Supplier 1 is in charge of the development of the ECU and its components.

Hence, in general it is the supplier’s duty to deactivate obsolete components and inform

all other engineering partners that certain information artifacts shall not be used

anymore in the ECU and the associated E/E system. Therefore, first the supplier initiates

the inactivation of a dedicated version, here in this case version 3 of a variant, which, in

turn, is a specific configuration of hardware and software at a given point in time within

the MBSE IT tool (cf. Figure 4-10). Afterwards, the already above-presented updates of

the RDF namespaces for MBSE are triggered that again transfers the request for

inactivation to the OEM’s MBSE IT tool. The OEM now again has the opportunity to

affirm or reject the inactivation which, in the first case, prompts the updates of the RDF

namespaces for PDM and, consecutively, the actualization of the engineering partners’

PDM systems.

148 Definition of a process model

Figure 4-27: Generic process for the inactivation of a version.

4.2.6 Processes for multiple engineering collaboration partners

So far in this chapter, the generic engineering processes for only two partners have

been depicted and described. This was mainly for reasons of simplicity. Of course, the

entire framework to foster traceability within distributed engineering collaboration aims

at the connection and inclusion of n>2 engineering partners, as it often is the case for

modern E/E development in the automotive industry. Therefore, the generic process for

the creation of a new configuration and variant for the involvement of three engineering

partners, one OEM and two suppliers, is depicted exemplarily in Figure 4-28. Scaling to

more than three engineering partners complies with the same process steps as

presented below with only three engineering partners. Hence again for simplicity, the

depiction is limited to the basic scenario of n=3 engineering partners. It is imaginable

that the OEM contracts two different suppliers for the development of two ECUs for one

E/E system or one supplier for the hardware of an ECU and one for the software. In both

cases, all three engineering partners have to be informed about changes as early as

Synthesis of a solution framework 149

possible and shall have the possibility to confirm or reject changes for the purpose of

fast and reliant development. This addresses requirements 7 and 8 in particular.

Once again, it is assumed that the OEM starts modeling a dedicated variant of an E/E

system and its corresponding variant point in their MBSE IT tool. This update of

information artifacts is synchronized with the RDF namespaces for MBSE of which there

are as many distinct as there are engineering partners involved in the development of

this particular E/E system; hence here in this case there are three. All RDF namespaces

for MBSE include the new information artifacts and trigger the data transfer to the

connected MBSE IT tools of Supplier 1 and Supplier 2. In addition to the previous

depicted processes with only one supplier, now also Supplier 2 has the opportunity to

affirm or decline the variant point of the E/E system modeled by the OEM. Via the RDF

namespaces for MBSE, the consensus or dissension of the suppliers will be transferred

to the OEM. It follows the update of the three RDF namespaces for PDM from where

the local PDM systems of the engineering partners are refreshed.

The next process step for modeling a variant point for the ECU is executed similarly as

the one before. Afterwards, Supplier 1 takes over the modeling of the logical component,

which is the ECU. Therefore, they initially model the relevant information artifacts for the

logical component and, in doing so, triggers the update of the RDF namespaces. From

the RDF namespaces in the data integration layer, the information is transmitted to the

OEM’s and Supplier 2’s MBSE IT tools. Now, in turn, the OEM and Supplier 2 have the

duty to confirm or decline the modeling of the logical component. This data is transferred

to Supplier 1. In the case of a consensus, the RDF namespaces for PDM will be updated

and likewise the separate PDM systems of all three engineering partners. These

process steps repeat themselves for the modeling of a configuration for hardware and

software until a distinct variant of the ECU is modeled. Certainly, these process steps

can further be evolved until a finer level of granularity, for instance for modeling versions,

releases, or other changes.

150 Definition of a process model

Figure 4-28: Generic process for the creation of a new configuration and variant with three engineering

partners.

Synthesis of a solution framework 151

4.3 Definition of a technology

This framework to foster traceability of E/E information artifacts in an engineering

collaboration during automotive development is fundamentally based upon a technology

to connect IT tools and systems of the involved engineering partners. It was shown in

Chapter 2.3 and Figure 2-12 that not only within one company the heterogeneous IT

landscape is an impediment but becomes even more difficult to handle among multiple

engineering partners (cf. Chapter 2.6 and Figure 2-22).

As objective 1. a. of this thesis is to foster internal traceability, particularly by means of

the alignment of MBSE and PDM for E/E, the conceptual IT tool shall serve as an

enabler for this internal traceability, according to the PLM backbone described in

Chapter 2.3. Additionally, external traceability (objective 2.) shall be enabled by an IT

solution. For that purpose, the proposed technology shall include a consensus

mechanism (requirement 7) and an automatic change propagation (requirement 8). For

legal and compliance reasons, an immutable product history shall be enabled by the IT

solution (requirement 9) as well as the multi-directional synchronization among

engineering partners (requirement 10). Data integrity (requirement 12) is crucial for

sensible development data and also has to be granted in the case of the standardized

inclusion of IT systems of other engineering partners or of other intra-company IT

systems (requirement 15). System downtimes (availability) and the exit of engineering

partners (robustness) shall be addressed by the conceptual IT tool and not harm the

engineering network (requirement 16).

In Table 3-4, the merits of an unstructured P2P network with redundant data were

already assessed and deemed to be the preferred form of data base. In the evaluation

of the current state of science and technology, according to the objectives and

requirements in Table 3-5, the Blockchain technology addressed many of the IT-related

requirements. It was therefore chosen to serve as the basis for the conceptual IT tool in

the context of distributed engineering collaborations in the automotive environment.

A prerequisite for the conception of a technological solution is the definition of a

fundamental IT architecture. This will be described in Chapter 4.3.1. There, the above-

introduced concepts for a linked data model, trace links, UUIDs, URLs, etc. are brought

in relation to the IT architecture. The combination of the fundamental IT architecture in

alignment to a generic IT architecture in automotive E/E development will be examined

further. Here the focus lies on objective c., the alleviation of the connection of

152 Definition of a technology

engineering partners. Each new engineering partner must integrate the conceptual IT

tool into their own IT architecture including all legacy IT systems. It will be shown how

the presented technology can foster traceability not only within one company but also

across companies. Additionally, it will be described how the consensus mechanism will

be implemented, not only from a processual perspective (cf. Chapter 4.2) but also from

an IT standpoint (Chapter 4.3.2).

4.3.1 Fundamental IT architecture of the IT solution

The fundamental IT architecture for the proposed technological solution to foster

traceability is similar to the IT concept of a PLM backbone overstretching multiple IT

systems and tools, as presented in Chapter 2.3 and Figure 2-12. The Blockchain

technology serves as an equivalent for the PLM backbone in Figure 2-12 in order to

connect different authoring tools and systems, as well as potential TDM systems of

affiliated domains across the lifecycle113. It might also connect additional IT systems,

such as ERP, SCM, PPS, etc. which are not within scope here. Figure 4-29 depicts the

simplified generic IT architecture in which the so-called PLM Blockchain backbone

enables intra- and inter-company traceability by linkage of data models, as presented in

Chapter 4.1.

The PLM Blockchain backbone is connected to the proprietary, domain-specific IT

systems via standardized interfaces. The native data, such as a simulation or functional

model written in SysML, remains at each engineering partners MBSE authoring tool.

The same applies to native data included in, for instance, a BOM in the PDM systems.

Only the metadata of each system is translated into RDF namespaces, integrated in

joint work routines, and transferred to the PLM Blockchain backbone (cf. Figure 4-19).

In the interfaces between MBSE tools or PDM systems to the Blockchain, the

translations between the different domain-specific data models, such as SysML, and the

RDF namespaces, are implemented. Therefore, the PLM Blockchain backbone serves

as the data integration layer.

113 For reasons of simplicity, the TDM layer is omitted here in the depiction. As the TDM systems often
manage access rights as well as metadata, this will be relevant again for the prototypical implementation
in Chapter 5.

Synthesis of a solution framework 153

Figure 4-29: Generic IT architecture including a PLM Blockchain backbone simplified for one OEM

and one supplier114.

According to the process defined in Chapter 4.2, information artifacts are then

exchanged between the engineering partners, enabled by the IT architecture. Given the

SPES development method, the System under development is modeled in the MBSE

IT tool. The relevant metadata is transferred to the PLM Blockchain backbone where the

RDF namespaces for MBSE will be updated. Corresponding with the data model (cf.

Chapter 4.1.2), UUIDs and URIs (cf. Chapters 2.7.3 and 2.8.1) provide the basis for

identification of information artifacts across IT systems. The header information includes

all features for immutable, distributed, and transparent traceability within the Blockchain.

For instance, the pointer to the previous block’s header, time stamp, etc. (cf. Figure

2-23). These information artifacts are mirrored to the PDM system accordingly.

Consecutively following the SPES process from the system, to function, to the logical

component (ECU), its sub-components hardware and software, via modeling of

interfaces to the low-level technical component, each additional information artifact’s

metadata is written in the PLM Blockchain backbone, concatenated with the previous

block of information, and transferred to the attached IT systems of both the OEM and

their suppliers. This is depicted in Figure 4-30115.

114 The symbol for the API () denotes both the required API (socket notation) as well as the offering
API (ball notation) and can be considered here in this context as a bilateral API where both connected IT
systems require and offer an API.
115 For the description of the Channel ECUA, please see below in paragraph Integration into generic IT
architecture and channels.

154 Definition of a technology

Figure 4-30: Generic IT architecture including the transfer of relevant information artifacts of the E/E

development process according to the SPES methodology.

Synthesis of a solution framework 155

The above-mentioned generic IT architecture was simplified for the purpose of

demonstration of its basic functionalities. However, in the case of multiple engineering

partners, each partner possesses their own PLM Blockchain backbone. This is derived

from the requirements for an immutable product history, multi-directional

synchronization, data integrity, data availability and robustness, in the case of volatile

participation of engineering partners who shall to be integrated easily into the

engineering collaboration and the legacy IT architecture by means of standardized APIs

(cf. requirements 9, 10, 12, 15, 16). Hence, there exist as many PLM Blockchain

backbones in the engineering collaboration network as there are engineering partners.

The nature of the Blockchain technology implies that all different PLM Blockchain

backbones are connected to each other to form an unstructured P2P network with

redundant data. This generic IT architecture for multiple engineering partners is depicted

in Figure 4-31.

Figure 4-31: Generic IT architecture for multiple engineering partners with their own PLM Blockchain

backbone.

APPLICATION PROGRAMMING INTERFACES

In order to connect all PLM Blockchain backbones within the engineering collaboration

network, the unstructured P2P network builds the basic connection among nodes by

means of the internet (HTTP, REST). On top of this, the P2P network enables

communication among each linked node (BASHIR, 2018: pp. 49, 51). Therefore, the

communication among the PLM Blockchain backbones, if implemented accordingly, is

guaranteed. The inclusion of new engineering partners is facilitated by this standardized

data integration layer and enables ad hoc participation in the development also for, e.g.,

start-ups without prior extensive adaptations of APIs.

156 Definition of a technology

The challenge for the integration of development activities in an existing IT architecture

is the connection of many legacy IT systems to create, first, intra-company traceability,

and further extend this traceability towards the other engineering partners. As depicted

in Figure 4-19, the data integration is implemented using OSLC including all its

components and standards (cf. Chapter 2.8.1). The data model, itself being used for

enabling a traceability scheme between OEM and suppliers (requirement 11), is

implemented as linked data using RDF in the distinct RDF namespaces and the joint

collaborative work routine. In turn, this information can be written into the payload of the

blocks within the Blockchain. As the semantic uses RDF, the APIs connecting the legacy

IT systems, such as the MBSE tools and the PDM IT systems, are implemented

according to the REST standard which is also part of OSLC. Here, the actual challenge

is that many legacy IT systems do not support the REST standard and their APIs have

to be first enabled in order to use it. As new IT systems are commonly already equipped

with REST APIs, the connection of intra-company IT systems will become simpler over

time and requirement 15 could be satisfied out of the box.

TYPE OF BLOCKCHAIN

As development data is sensitive, intellectual property requires a high degree of data

protection and data integrity, the IT architecture has to reflect this requirement

(requirement 12). This is especially the case for ad hoc engineering collaboration

networks where partners can join just for the contribution of, for instance, one software

component. Therefore, data has to be also robust, i.e., the exit of an engineering partner

from the network shall not affect the availability of the relevant data. Also, data

availability is important for distributed engineering collaboration (requirement 16).

The Blockchain technology does innately satisfy requirements 12 and 16. However, data

shall not be publicly available entirely, only for the associated engineering partners

within the collaboration network. For this purpose, the Blockchain must not be a public

or unpermissioned. Contrarily, the Blockchain has to be a private, permissioned or a

consortium Blockchain (cf. Chapter 2.7.3). In this case, the OEM is the owner of the

Blockchain and grants access to suppliers that will contribute to the development of the

automobile.

Synthesis of a solution framework 157

INTEGRATION INTO GENERIC IT ARCHITECTURE AND CHANNELS

As already depicted in Figure 4-30, some Blockchain technologies116 offer different so-

called channels. By means of distinct channels, engineering partners can transfer

confidential data in transactions within the same Blockchain network but using separate

Blockchains. Channels offer a separate permission level for participants of the

Blockchain network. Hence, only permissioned engineering partners can view data in

channels that they are a member of. Other engineering partners within the same

engineering collaboration using the same Blockchain network cannot access

transactions in a channel they have not been granted access to (cf. BASHIR, 2018: p.

477). This IT architecture addresses the need-to-know principle and also corresponds

to data integrity (requirement 12), data availability and robustness (requirement 16).

Figure 4-32 depicts the integration of multiple PLM Blockchain backbones into a generic

IT architecture with multiple channels in an engineering collaboration. There, the OEM

outsourced the E/E system development to Supplier 1. Both share a channel for

SystemA which is implemented in each engineering partner’s PLM Blockchain backbone.

In turn, each PLM Blockchain backbone is connected to the respective MBSE tool and

PDM system of the OEM and Supplier 1117. In this particular channel, all relevant blocks

regarding SystemA, documenting each transaction in case of any updates of metadata

during development, are stored and only visible to the OEM and Supplier 1.

As Supplier 1 also contributes some component for ECUA, for instance the hardware,

there is a separate channel for this ECU together with Supplier 2 who might be

developing software for ECUA. Therefore, the OEM, Supplier 1 and 2 each have a

distinct PLM Blockchain backbone building a sub-network exclusively for the

development of ECUA.

In case of ECUB, there are also two other suppliers who contribute components to the

development for the OEM. Again, distinct PLM Blockchain backbones with a Channel

ECUB are implemented for the purpose of compartmentation of data that is relevant only

for contributing engineering partners.

116 The Blockchain technology Hyperledger Fabric features such channels. The channel ID is written in
the transaction of each block in the Blockchain (BASHIR, 2018: p. 474). See Chapter 5 for more information
on Hyperledger Fabric.
117 Supplier 1 and its MBSE tool and PDM system are depicted twice in Figure 4-32. This is done for
representational reasons only. In order to have a single source of truth at each engineering partners’ site,
the MBSE and PDM systems shall exist only once in reality.

158 Definition of a technology

Separated channels for each component which is being developed with different

engineering partners require distinct PLM Blockchain backbones. This is so that

traceability is not hindered by such an IT architecture due to more fragmentation as

before. Data has to be stored in a single source of truth, i.e., domain-specific IT systems

that are the master for a dedicated type of data, such as a MBSE tool for MBSE data

and PDM system for PDM data. Therefore, each engineering partner has to connect

their own legacy IT systems with the respective PLM Blockchain backbones and their

channels used for the development of a specific component where they participate.

As the PLM Blockchain backbone is merely a data integration layer enabling traceability

across legacy IT systems and within engineering collaboration networks, these

Blockchains do not serve as single sources of truth. However, all PLM Blockchain

backbones form a joint network are linked to each other (cf. Figure 4-32). By this

connection, the RDF namespaces dedicated to one channel and stored within the

associated Blockchain can be synchronized and updated in case this is required and

desired. This could be the case for the channels SystemA and ECUA due to both are

used by the OEM and Supplier 1 for collaboration. Hence, there might be no necessity

for separation of data due to IP. RDF namespaces and the combined work routine could

be connected. In the case of separated channels, each engineering partner updates

their RDF namespaces in the linked Blockchain out of their MBSE tool or PDM system

and each channel has its own work routine, mirrored at each Blockchain, where RDF

namespaces will be combined (cf. Chapter 4.1.2). Consequently, the PLM Blockchain

backbones enable traceability of E/E artifacts within the engineering collaboration

networks. The exchange of necessary information artifacts is limited to the involved

engineering partners by means of the described, connected IT architecture. The

Blockchain technology also supports the processual traceability through the immanent

consensus mechanism which will be described in the following118.

The different aspects of the inclusion of the technological solution framework into an

existing, generic, brown-field IT architecture, for instance APIs, data models and

synchronization of the same across IT systems, have all been described above.

118 The separate depiction of the internet, the P2P network in contrast to the Blockchain network, and the
different nodes has not been done for simplicity. In Figure 4-32, the internet is immanent as is the P2P
network. The Blockchain network is depicted by the separate PLM Blockchain backbones. The users or
nodes are displayed by the distinct MBSE tools and PDM systems of each engineering partner. For more
information about the IT architecture of the Blockchain technology, please refer to BASHIR (2018).

Synthesis of a solution framework 159

Figure 4-32: Integration info generic IT architecture with multiple channels implemented by different

suppliers.

160 Definition of a technology

4.3.2 Consensus mechanism

The consensus mechanism implemented in the Blockchain technology facilitates

reconciliation of engineering changes (objective 2.a., requirement 7 and 8). This is a

bonus with respect to the above-addressed advantages of the Blockchain technology,

satisfying the multiple requirements due to no further approval workflow that has to be

included on this level of the IT architecture in the development process. As the OEM

possesses the final developed product, it is in charge of the integration of components

and legally responsible for placing the automobile on the market. Hence, the consensus

mechanism is implemented such as that the OEM’s rejection supersedes the approval

of suppliers (cf. Chapter 4.2).

The most common consensus mechanism in the Blockchain technology, called proof of

work (cf. Chapter 2.7.3), devours a lot of energy due to a mathematical problem that has

to be solved by finding the nonce, to prove that sufficient computational resources have

been mustered to avoid attacks on the data integrity of the Blockchain119. In contrast to

a public Blockchain which has to be protected from hacking and attacks, the

permissioned consortium Blockchain does not need such a security measure. Hence,

the engaged nodes, i.e., the engineering partners, are not required to spend a high

amount of computational power to reach a consensus about the validity of information

artifacts shared. The prior admission of each supplier into the engineering network

implies a scrutiny by the OEM and a contractual agreement and hence there should be

no risk induced into the engineering network with respect to data integrity. Therefore,

the consensus mechanism is being implemented simply by the click of a button for

approval or rejection by the respective engineer who assesses the validity and

correctness of data. Given certain metrics and rules, such an evaluation and approval

process could be implemented in an automatic manner as a consensus mechanism. For

that purpose, smart contracts could be used. However, due to the complexity of such an

automated evaluation process for development data, smart contracts will not be

addressed here (cf. Chapters 2.7.3 and 7.2).

In the following, the consensus mechanism is explained in more detail, as depicted in

Figure 4-33. In this case, the particular scenario is described as that OEM, Supplier 1,

2, and 3 all develop together ECUA and hence are all part of the channel ECUA which is

implemented in each of their distinct PLM Blockchain backbones. In the first step (①),

119 Please refer to BASHIR (2018: pp. 35 ff.) for more details about different consensus mechanisms.

Synthesis of a solution framework 161

the OEM updates information artifacts mostly relevant to the component of ECUA that

Supplier 1 develops, and writes this metadata into their PLM Blockchain backbone. In

parallel, the RDF namespaces of the other suppliers will be updated preliminarily (②).

Subsequently in step three (③), all suppliers confirm the validity and correctness of the

received metadata. Their approval is depicted by a green check mark and is also

transferred to all other engineering partners. The OEM stores this consensus knowing

that they can proceed with development as planned. After this, the RDF namespaces

will be updated permanently (cf. Chapter 4.2).

Figure 4-33: Consensus mechanism: Initial creation and distribution of data by the OEM and approval

by the engineering partners.

Likewise, the consensus mechanism operates in the case that a supplier creates data,

distributes it, and the other engineering partners will have to approve it. When Supplier

2 creates metadata which may be most relevant for Supplier 3 (④), for instance if the

I/O table is changed and Supplier 3 has to adjust their interface, this data will also be

synchronized to the others’ PLM Blockchain backbones. The approval of the recently

updated metadata occurs in step five (⑤). This is depicted in Figure 4-34.

162 Definition of a technology

Figure 4-34: Consensus mechanism: Creation and distribution of data by a supplier and approval by

the engineering partners.

There might also be the case where the synchronized metadata reveals discrepancies

in the alignment of all the relevant components for ECUA. This situation is depicted in

Figure 4-35. Supplier 3 updates development data relevant for Supplier 1 and submits

their metadata to the Blockchain network (⑥). However, Supplier 1 does not agree with

the proposal for the update of the component of ECUA. Supplier 1 rejects this update

which will be immediately synchronized with the other engineering partners’ PLM

Blockchain backbones (⑦). Also, the initiator of this update, Supplier 3, receives the

rejection and hence RDF namespaces will not be updated with a valid information

artifact. As the rejection becomes apparent immediately to the entire engineering

collaboration network, traceability regarding changes is increased and issues can be

addressed in due course (requirement 7 and 8).

Synthesis of a solution framework 163

Figure 4-35: Consensus mechanism: Creation and distribution of data by a supplier and rejection by

one engineering partner.

4.4 Solution framework and its satisfaction of requirements

As motivated in Chapter 1.3 and 1.4, internal and external traceability of E/E artifacts

during automotive development in consideration of MBSE within distributed engineering

collaboration has been assessed in Chapter 2. This was then evaluated in Chapter 3

using the three categories of enablers: data model, process model, and technology (cf.

Figure 1-7). In Chapter 4, the synthesis of the solution approaches for each enabler has

been conducted separately. Therefore, in this chapter the entire solution framework shall

be described including how the framework satisfies the requirements.

In Figure 4-36, the entire framework is depicted. On top of this, the OEM’s perspective

is shown including the product lifecycle, highlighting the development process by a

stylized V-model. Both IT tools and systems in scope, i.e., MBSE and PDM, are

illustrated by database icons and the immanent peculiarities of both domains are

presented by a schematical SysML model, as well as the effectivity of configurations

over time. Below, the OEM’s PLM Blockchain backbone with a dedicated channel for

ECUA serves as the data integration layer to enable internal and external traceability.

On the bottom, the IT architecture of two suppliers is outlined. Both have their own PLM

Blockchain backbone that are connected with the OEM’s and each other’s via the joint

Blockchain network. Additionally, both suppliers have their own MBSE tool and PDM

system which are, again, linked to their PLM Blockchain backbones.

164 Solution framework and its satisfaction of requirements

The satisfaction of the requirements by the solution framework is depicted by circled

numbers in Figure 4-36 which correlate with the numbered requirements in Chapters

3.2 and 3.3. Graphically, the circled numbers have been placed there where the

requirements were addressed by either the data model, process model, or technology.

Certainly, there may be more points where each requirement is addressed by the

framework but the most important ones are depicted where they can be placed logically.

In the following, it is described how and where in the solution framework the

requirements have been implemented.

1. Requirement ①: The pins of an ECU are modeled explicitly in the MBSE SysML

data model.

2. Requirement ②: NCDs, communication bus systems, signals, and interfaces are

modeled explicitly in the MBSE SysML data model.

3. Requirement ③: The ECU’s software versions including parametrization files are

modeled explicitly in the MBSE SysML data model.

4. Requirement ④: The linked data model is implemented using UUIDs and URIs

which can be used across all IT systems and are the pivotal identifier within work

routines and RDF namespaces.

5. Requirement ⑤: Trace links are implemented using http schemes that can link

from one IT system to another and are implemented in the RDF namespaces for

referencing.

6. Requirement ⑥: Distributed engineering with the focus on MBSE and E/E is

fostered by integration of data models that can be accessed by different

engineering partners, as well as a joint IT architecture for data exchange such as

the Blockchain technology.

7. Requirement ⑦: The consensus mechanism is inherent to the Blockchain

technology and allows for approval or rejection of publicized engineering changes

documented in separate information blocks.

8. Requirement ⑧: The automated change propagation is achieved by the P2P

network of the Blockchain technology wherein changes in the form of new blocks

are automatically distributed to all peers.

9. Requirement ⑨: The immutable product history is implemented by connected

information blocks, creating hash values of the previous blocks, that are already

immanent to the Blockchain technology.

Synthesis of a solution framework 165

10. Requirement ⑩: Multi-directional synchronization of data is realized by the

automatic change propagation within the Blockchain network and the updates of

each engineering partner’s RDF namespaces.

11. Requirement ⑪: A traceability scheme for OEM and suppliers is implemented

using the joint RDF work routines which integrate the distinct RDF namespaces

of each engineering partner by means of trace links, UUIDs, and URIs.

12. Requirement ⑫: Data integrity among multiple engineering partners is reached

by means of separate PLM Blockchain backbones for each engineering partner.

13. Requirement ⑬: The standardized data model for data exchange is

implemented in the RDF work routine referencing each engineering partner’s

RDF namespaces.

14. Requirement ⑭: The standardized development process is prescribed in

alignment to the SPES method for MBSE and includes the consensus

mechanism for each engineering partner.

15. Requirement ⑮: The ad hoc integration of new engineering partners and their

legacy IT systems as well as the OEM’s is accomplished using the standardized

REST API included in the OSLC framework.

16. Requirement ⑯: Availability and robustness of data results from distinct PLM

Blockchain backbones for each engineering partner, and hence data

redundancy.

166 Solution framework and its satisfaction of requirements

Figure 4-36: Solution framework for traceability of E/E artifacts during automotive development in

consideration of MBSE within distributed engineering collaboration by means of the Blockchain and

the satisfaction of requirements.

Prototypical implementation 167

5 Prototypical implementation

The description of the different aspects under scrutiny, i.e., the enablers (cf. Chapters

1.4 and 3), follows the funnel approach coming from the broadest topic, the realization

of the basic architecture (technology), via the process model to the data model. This

approach was chosen as the Blockchain technology already determines processual and

data aspects which later do not have to be repeated.

5.1 Goal and scope of the prototypical implementation

In the Chapters 4.1, 4.2, and 4.3 the entire framework to foster E/E traceability within

distributed engineering collaboration during automotive development, with a focus on

MBSE and PDM, was presented. The basic solution modules of the framework comprise

a data model connecting MBSE and PDM intra- and inter-company wide, the definition

of a process model for engineering processes in distributed development, and the

conceptualization of an IT solution, in this case is the PLM Blockchain backbone

network. The assessment of this solution framework and its applicability requires an

integrated and extensive implementation of its solution modules.

Therefore, the goal of this implementation is the evaluation of the framework later in

Chapter 6. Accordingly, the objectives of this thesis must be addressed, as presented

in Chapter 1.3. The questions have to be answered whether this solution framework

supports traceability of E/E artifacts within distributed engineering collaboration

sufficiently? Hence, the implementation of a prototype shall address the objectives (cf.

Chapter 3.5):

1. a. Internal traceability by means of the alignment of MBSE and PDM for E/E

(requirements 1 to 4 in Chapter 3.2).

2. External traceability by means of

a. Reduction of reconciliation (requirements 5 to 8 in Chapter 3.3).

b. Transparent and safe product changes (requirements 9 to 12 in Chapter

3.3).

c. Alleviated connection of engineering partners (requirements 13 to 16 in

Chapter 3.3).

168 Implementation of a prototypical IT framework

As these objectives and thereof deduced requirements, according to the state of science

and technology, serve as the leitmotif for this thesis, they also provide the basis for the

prototypical implementation and the evaluation in Chapter 6.

The implementation of a prototypical IT architecture, the underlying framework, and

tools stipulates how precisely a data and a process model can be implemented.

Consequently, the decision of which programming language will be used and which

information artifact will be created at which point in time in this case are aligned with the

Hyperledger Fabric platform120.

This prototypical implementation was executed together between one OEM and two

engineering collaboration partners as all three partners face the same challenges

regarding internal and external traceability. Thus, albeit being a specific implementation,

it addresses deficiencies of multiple engineering partners and, in its generic form, the

prototypical implementation can be applied for other similar engineering collaborations

within the automotive industry or others (cf. Chapter 7).

The direct connection with legacy IT systems such as MBSE tools and PDM systems

could not be implemented during this work due to the tremendous complexity this would

have induced into the prototype development.

5.2 Implementation of a prototypical IT framework

In addition to Chapter 4.3, some more details regarding the technological realization of

the prototype and its basic IT architecture have to be described.

Due to being a standard, modular platform used for the Blockchain technology and the

convenient inclusion of distinct channels (cf. Chapter 4.3.1), the Hyperledger Fabric

platform is used for the prototypical implementation (cf. Footnote 116 on p. 157).

Moreover, Hyperledger Fabric focuses on permissioned Blockchains (BASHIR, 2018: p.

471), as this is the case here in this work for distributed engineering collaboration121.

120 Commonly, the strategic level provides the basis for an operational level including, for instance, the
product development process. Underneath, there is yet another operational level with sub-processes with,
e.g., the design process. The lowest or PLM level constitutes of concrete IT solutions on a functional and
system level (EIGNER and STELZER, 2009: pp. 23–24). Here in this work, the scope does not include
strategic considerations of a company and its impact on the operational level. Therefore, due to the
necessity to reduce complexity, it is assumed that the IT solution is also aligned with how the processes
will be implemented.
121 For more information about the Hyperledger Fabric platform or framework, please refer to BASHIR
(2018: pp. 461 ff.).

Prototypical implementation 169

Figure 5-1 depicts the entire network deployment for a network with four engineering

collaboration partners. Each engineering partner has the same set of databases that are

part of the modular platform of Fabric122. The PostgreSQL or short Postgres data base

(DB) is an opensource, object-relational DB (SCHICKER, 2017: p. 13) and is used here to

store cryptographic credentials about the organizations and users. As the Blockchain

comprises of blocks which, in turn, contain transactions in the payload (cf. Figure 2-23

and Chapter 2.7.3), these transactions can again be executed by the chain code123 and

update the so-called world state (cf. Chapters 2.7.3 and 4.3.1). The world state is a key-

value DB and stores further information of transactions, sub-transactions and further

automatisms, such as smart contracts. Each peer of the Blockchain network stores its

world state, which in this case is on a CouchDB124 (BASHIR, 2018: pp. 473, 477). A

CouchDB is a document-based DB (SCHICKER, 2017: p. 16) and in the Hyperledger

Fabric platform connected to the peers which can execute the above-mentioned updates

of the world state125. The actual ledger, i.e., the Blockchain with its concatenated blocks

of transactions, is maintained on each peer’s file system, denoted by “OS” (ordering

service) underneath the green “THINAPP” that denotes the Fabric client of each peer’s

Blockchain node. For the purpose of the distribution of each transaction, each

engineering partner’s (peer) nodes are connected to the “common ordering service”,

depicted in the middle of Figure 5-1. The common ordering service receives endorsed

transactions, orders them into a block, sorts them according the specific channel ID, and

executes the transmission to all participating peers126 (BASHIR, 2018: pp. 481–483).

Broadcasting of information, i.e., of the consensus mechanism as well as the in blocks

combined transactions, is implemented using google remote procedure calls (gRPC),

based on HTTP/2, including protocol buffers. Nodes in the Blockchain network within

the Hyperledger Fabric platform exchange four main message types: i) discovery, ii)

transaction, iii) synchronization, iv) consensus. The first message type is used to

122 This implementation of the basic IT architecture using the Hyperledger Fabric platform can vary
according to its modular composition and hence the chosen databases also could be substituted by others
that serve the same purpose.
123 Chain code is synonym for smart contracts due to its code being executed on the Blockchain (BASHIR,
2018: 472).
124 As described in Chapters 2.7.3 and 4.3.1, smart contracts are not in the scope of this work and hence
the world state is just mentioned because it is a standard part of the Hyperledger Fabric platform. The
prototype was already designed to include smart contracts for potential future use cases.
125 Given the modular definition of the Hyperledger Fabric platform, instead of a CouchDB also other
databases, such as LevelDB, can be implemented (BASHIR, 2018: 473).
126 A more detailed description of each module of the Hyperledger Fabric platform is given in BASHIR
(2018).

170 Implementation of a prototypical IT framework

discover and identify new network nodes on launch of the network or in case of a new

entry of a peer to it. Transaction messages include the handling of transactions in all

their states. Updates of all the nodes and their synchronization is achieved via the

corresponding message type. Likewise, consensus messages are defined (BASHIR,

2018: p. 474).

The “CA” in each peer’s network setup represents the company’s own certificate

authority (CA) for the purpose of authorization operations and identity management

including role assignment. Upon identification, a peer can join the network. By short-

term certificates, peers can join for one-time transactions only (BASHIR, 2018: p. 472)

which might be the case for a one-time contribution to a source code of an ECU by, for

instance, a start-up.

The orange and green “APP”, or “THINAPP” respectively, denote the applications a user

can interfere with. As the peers are the only clients within the Blockchain network, they

only have thin applications (“THINAPP”) whereas via the common ordering service the

entire network can be configurated (“APP”). On top of each peer’s thin app, additionally

there is a web app coded in Java. This is for enhanced user experience for the end user,

e.g., the engineer, and will be described in more detail in Chapter 5.2.2.

The setup of each the Hyperledger Fabric node including all relevant data bases for

each engineering collaboration partner was executed using Docker software for the

creation of virtual container machines based on a Linux kernel. Each Docker image can

be deployed on the premise of engineering partners and it contains all relevant

information to set up the Blockchain network and participate in the development. The

relevant code already is included in the Docker image and was coded in Java, Python,

JSON, and GO language127.

In Figure 5-1, each engineering partner has two peers. This stems from the fact that the

Hyperledger Fabric platform stipulates the endorsement of transactions, i.e., the

execution of transactions, is simulated before they are submitted (BASHIR, 2018: pp.

481–483). For the implementation of this prototype, the setup of two peers per

engineering partner was chosen for this reason. This process of endorsement of

transactions will be described in more detail in Chapter 5.3.

127 Please refer to RAVAL (2016), DHILLON et al. (2017), PRUSTY (2017), and BASHIR (2018) for more
information about the architecture of a Blockchain network, Hyperledger Fabric, and Docker.

Prototypical implementation 171

Figure 5-1: Network deployment of the prototypical implementation of the Blockchain network with

multiple suppliers.

172 Implementation of a prototypical IT framework

5.2.1 The structure of the prototype

The Blockchain prototype consists of 429 files and 296 folders. The overview of the

entire structure of the prototype is depicted in Figure 5-2. On the highest structural level,

the prototype consists of two main sections that are visible in Figure 5-2 on the left-hand

side and the right-hand side, respectively, of the grey oval. In the following, each branch

and its functionalities will be described in more detail.

Figure 5-2: The structure of the prototype.

This top-level structure of the prototype, as depicted in Figure 5-3, contains on the left-

hand side, the autoChainConfig node, all relevant files and scripts which bootstrap

the Blockchain network. The autoChain node on the right-hand side comprises Java

compiled runnables which provide the application interfaces, e.g., the “THINAPP” and

“WEB APP” (cf. Chapter 5.2), as well as the possibility to interact with the Blockchain

network for each engineering partner.

Figure 5-3: Top level structure of the prototype.

Prototypical implementation 173

The runnables include sub-structures for each engineering partner128. For each of

them, different information is provided in further folders or archives such as the Java

archives (.jar). Included are the environment settings for the application, ports

definitions, DB names, and organization names. In Figure 5-4, the runnables for

daimler are depicted which are the same as for oem and supplier2.

Figure 5-4: Runnables including different, organization-specific settings.

For the administrator of the Blockchain network, here in this case this would be

superimposable with the OEM as defined above, there are other environments

implemented and all organizations are combined to one network by the admin. For each

engineering partner, further data is stored using SQL. This is depicted in Figure 5-5.

Figure 5-5: Runnables for the administrator.

128 The nomenclature of the following images is not congruent with the previous one. Previously, Daimler
was described as the OEM, being responsible for the final automobile, and the other engineering partners
which were denoted as suppliers.

174 Implementation of a prototypical IT framework

The left-hand side of the above-mentioned delineation of the structure of the Blockchain

prototype consists of a Blockchain explorer application, files for documentation, setup

scripts, and files for bootstrapping the Blockchain network. Figure 5-6 depicts the

Blockchain network definition files.

Figure 5-6: Blockchain network definition files.

Figure 5-7 depicts the Blockchain network explorer files in more detail, for instance the

database, metrics, router, services, monitoring, initiation and termination of the network.

The explorer app is implemented using Node.js express. Moreover, the Fabric

explorer is used for the similar purpose as the Blockchain explorer. The file Docker

compose mySQL written in YAML is used to facilitate the network setup for new peers in

the network, as described above, by cloning the repositories, bootstrapping all relevant

files and repositories, and starting the joint Blockchain network.

Figure 5-7: Blockchain network explorer files.

Prototypical implementation 175

Figure 5-8 depicts the transport layer security (TLS) setup files. For the initiation of

bootstrapping of the Blockchain network, these files are essential. Furthermore, these

files include all configuration files which are necessary for using Docker compose.

These files will be described in more detail in the following, due to their relevance and

distinctiveness for the Blockchain network and the prototypical implementation.

Figure 5-8: Blockchain network setup files.

The TLS setup folder further contains scripts to generate and manage the Blockchain

network. In Figure 5-9 it is visible that there are folders including information for the

generation of channels including the genesis block and providing of cryptographic items

to the network’s peers such as private keys and certificates. init-db denotes the local

database and all folders with the prefix nw which either starts or stops the Blockchain

network. Moreover, the local database can be stopped (stop-db).

Figure 5-9: Blockchain network setup binaries.

The folders db and fabric-bins contain the relevant binaries for the storage of the

configuration files for the local database and the Hyperledger Fabric platform,

respectively (cf. Figure 5-10).

176 Implementation of a prototypical IT framework

Figure 5-10: Local database and Fabric binaries.

The folder orgs in Figure 5-8 contains the individual setup files for the organizations

within the network. Configuration files (.yaml) that are equal for all peers are stored

within the folder base in Figure 5-11.

Figure 5-11: Base files for the organizations within the Blockchain network.

For each organization within the Blockchain network, configuration and the

cryptographic files are stored within the orgs folder of the tlssetup branch, as it is

depicted exemplarily in Figure 5-12 for one peer.

Figure 5-12: Cryptographic and configuration files for each organization.

Prototypical implementation 177

Within each organization, there is again a folder called crypto-config within which

the certificates (ca), the membership service providers (msp), and peer and user

handling are located, among others. This is depicted in Figure 5-13 and Figure 5-14129.

Figure 5-13: Structure of cryptographic files for peers of each organization.

Figure 5-14: Structure of cryptographic files for one peer.

Maneuvering back to the tlsSetup node, the folder profile_multiChannel

contains all relevant data for the implementation of multiple channels which are applied

for the distinction of separate development of E/E systems with the potential for a

different group of engineering partners for each channel. This is to satisfy the need-to-

know-principle (cf. Chapter 1.2.2). It also comprises the chain code (cc), or smart

contracts, which is sourced externally on github. This is depicted in Figure 5-15.

129 Due to the same folder structure being used for all organizations and peers, the other organizations
for the remaining engineering partners are omitted here.

178 Implementation of a prototypical IT framework

Figure 5-15: Structure for multi-channel setup including chain code.

In Figure 5-16, there are three generic E/E artifacts, cu-com-module, cu-eng-ctrl-

med, and cu-radar-sonsor-long-driv-assist-sys, implemented as distinct

channels. The tx files contain the channel creation transactions, whereas the

endorsement policy for each channel is described in the yaml files. The endorsement

policy defines the consensus mechanism (cf. Chapter 2.7.3).

Figure 5-16: Channel artifacts.

5.2.2 GUI

The graphical user interface (GUI) was designed to be web-based. Hence, it is feasible

to open up the GUI in which the engineer will document their changes on each device

capable of using a browser. Each organization, e.g., the OEM and the separate

suppliers, have access to their channels where they contribute to the development or to

all, in case of the OEM. Moreover, individual users can be selected during login who will

be documented as the creators of transactions. The user’s name is displayed in the top

right corner of the browser window. Additionally, in the menu on the left side under

“Artifacts”, all created artifacts are shown as a list including relevant details. The menu

item “Blockchain” grants general information on channels and the Blockchain network.

The creation of an artifact by Supplier1 is depicted in Figure 5-17. There, Bob Supplier1

fills out the required attributes. A UUID is generated automatically. Bob provides the part

number (“Sachnummer”), declares the artifact type as a “control_unit_software” in

“version 1.1”, and adds a description. The architecture of this software is AUTOSAR (cf.

Chapter 3.4).

Prototypical implementation 179

Figure 5-17: Supplier1 creates an artifact.

After the artifact creation, Supplier1 sees his created information artifacts within his list

of artifacts, as depicted in Figure 5-18. Within this list he can search for a specific part

number, a term within that description, as well as the release status which can be “in

progress”, “rejected”, or “final”. The OEM also sees the transactions in their list in which

artifacts have been created by the Supplier1 and that their status is “in progress”,

signifying that the OEM still has to vote for these artifacts. This is depicted in Figure

5-19.

Figure 5-18: List of artifacts of Supplier1 with pending voting answers.

180 Implementation of a prototypical IT framework

Figure 5-19: List of artifacts of OEM with pending voting actions.

Next, the OEM has to vote given the consensus mechanism. They can approve the

engineering activity, i.e., the creation of a new information artifact as an initial

development or as a change of an existing artifact, or reject it by clicking the respective

buttons, as depicted in Figure 5-20130.

Figure 5-20: Voting by OEM.

130 In the prototypical implementation as depicted here, the supplier still had to confirm his own creation
of information artifacts. This is due to technical peculiarities given the design for multiple users of one
organization who could vote independently. This scenario could be reasonable in the case of multiple
parties within one company, such as different domains, shall also have to confirm or reject changes.
However, this scenario is not in the scope here albeit it was designed initially according to this in the
prototype.

Prototypical implementation 181

After voting, the positive result of the OEM’s action is visible to them as well as pending

requests for voting, as it is depicted in Figure 5-21. Contrarily, in Figure 5-22 it is shown

that the OEM also can reject any creation of a new information artifact.

Again, the Supplier1 receives all results of the consensus mechanism by the OEM.

These results are depicted in Figure 5-23 in the supplier’s list of artifacts.

Details of artifacts can be displayed by clicking the corresponding button in the list of

artifacts. Within the details, the transaction history for this particular information artifact

is visible as well as, who has voted how. This is depicted in Figure 5-24.

Figure 5-21: List of artifacts of OEM with different release status.

Figure 5-22: Details of rejection by the OEM of supplier's artifact creation.

182 Implementation of a prototypical IT framework

Figure 5-23: List of artifacts of Supplier1 after voting.

Figure 5-24: Artifact details including transaction history.

A repetitive voting by the OEM is rejected by the system, as depicted in Figure 5-25.

Figure 5-26 depicts the responsive design of the web interface for an iPhone 6. This

enables engineers to work on devices with different screen sizes which again, fosters

mobile work and hence instantaneous responses to engineering changes. This might

be particularly relevant in a testing scenario of a prototype where changes can be

Prototypical implementation 183

confirmed in the field, contemporaneous updates of MBSE and PDM systems are

triggered, and these updates could be flashed over the air for quick retried testing.

Figure 5-25: Voting retry.

Figure 5-26: Responsive design of web interface.

184 Implementation of a prototypical IT framework

5.2.3 Roles and permissions

The single files located in the above-mentioned folder structures contain the actual

source code for all transactions executed within the Blockchain network written in GO

language. The source code underlies the functionalities executed in the GUI as distinct

operations or their concatenation.

For recording of votes, the variables ArtefactId, VoteInput, and RejectReason

are created. Recording is only possible if these three variables are included in a

transaction. Moreover, for the decision of which status the artifact will have when being

recorded, the previous state has to be retrieved from the ledger beforehand. This is

depicted in Source Code 5-1.

Source Code 5-1: Recording of votes.

In a scenario of a big company, it is reasonable that many engineers document their

latest development information artifacts within their IT tools and systems. Therefore, the

prototypical implementation of the Blockchain network contains different users per

organization, i.e., each engineering partner has multiple users who can document their

progress separately in the Blockchain. There are three hard-coded roles of

organizations authorized to create artifacts and participate in voting: i) customer; ii)

Prototypical implementation 185

supplier, iii) oem. Additionally, it is distinguished between the organization, i.e., the

engineering partner, and different roles within this organization131. This is depicted in

Source Code 5-2.

Source Code 5-2: Authorized roles.

Source Code 5-3 shows the initialization of configuration state upon the initial

deployment of the Blockchain network. Permitted voters can vote as many as want to,

even from the same organization (cf. Source Code 5-4). This might be the case if an

engineer from another department within the same company also wants to give their

statement.

The Hyperledger Fabric platform allows the adding of new organizations, such as a new

engineering partner, to the already existing and running Blockchain network. Hereby,

the organizations’ peers can be added to the relevant channels where they want to

contribute to the transactions (PEREPA and YELLICK, 2017; HYPERLEDGER, 2020), i.e.,

information artifacts to development activities. This addresses requirement 15 where the

ad hoc inclusion of engineering partners and hence their legacy IT systems is required.

131 For details regarding the implemented roles, please see Chapter 5.2.1.

186 Implementation of process model

Source Code 5-3: Initialization of configuration state.

Source Code 5-4: Permitted voters.

5.3 Implementation of process model

The Blockchain network requires a dedicated sequence of actions in order to ensure its

advantages for traceability in distributed environments. In addition, the Hyperledger

Fabric framework implements certain workflows given its IT architecture and distribution

of data among multiple peers. In Figure 5-27, the implemented process model is

depicted for an exemplary user of the supplier. In step 1, the user initiates the creation

of a new information artifact by providing the artifact’s attributes and documenting them

Prototypical implementation 187

within the web app. Subsequently in step 2a, the “Thin-web-app”, which is a Fabric

client, creates an endorsement proposal for the created artifact and sends it to its

endorsing peers within its own organization. After receiving the endorsement, the

endorsing peers simulate the transaction on the current ledger state and sign the

endorsed transaction. Then in step 2b, all transaction endorsed messages will be

collected into a valid endorsement which satisfies the endorsement policy. The

synchronization of the valid endorsement will be transmitted from the supplier’s network

to the OEM’s network via the common ordering service in step 3. In doing so, the

transaction endorsement is broadcasted to all committing and endorsing peers. Step 4

depicts the reception of the endorsement. For this, the endorsement will be verified and

set to “read” on the ledger. If the verification is positive, it will be set to “write” (cf. BASHIR,

2018: p. 481).

Figure 5-27: Process model of the Hyperledger Fabric framework.

The basic operations for a process model are depicted in Source Code 5-5. Functions

are called via if arguments. The create function creates a new artifact on the ledger

and voting for an artifact can be done with the vote function. The retrieval of an artifact

can be executed using the query function. The connected CouchDB, storing the world

state, can be searched for a specific artifact with the search function. Using

artledger, the entire history for one artifact will be returned.

188 Implementation of process model

Source Code 5-5: Basic operations.

The create artifact function uses all artifact attributes (cf. Chapter 5.4) as an input and

creates an ID which is depicted in Source Code 5-6.

Source Code 5-6: Create artifact operation.

Prototypical implementation 189

During the consensus mechanism, information artifacts have a specific status which

indicates to the engineer in the GUI whether voting is still in progress, who accepted or

declined, and what the overall combined status is. This is depicted in Source Code 5-7.

Source Code 5-7: Artifact states.

The initial status after creation of the information artifact is In Progress (cf. Source

Code 5-8). It is Accepted in the case of all permitted voters have approved the new

artifact (cf. Source Code 5-9). If any permitted voter rejected the newly created artifact,

the state is Not Accepted (cf. Source Code 5-10). The latter logic is helpful to identify

any inconsistencies in the development process.

Source Code 5-8: Vote status "in progress".

Source Code 5-9: Vote status "accepted".

Source Code 5-10: Vote status “not accepted”.

190 Implementation of data model

5.4 Implementation of data model

OVERVIEW

As the prototypical implementation and its technology dictates to a certain extent how a

data model can be developed and implemented, this chapter follows Chapter 5.2 in

describing the Blockchain prototype using the Hyperledger Fabric framework.

In a first step, the relations of the in Chapter 4.1 defined information artifacts are

modeled. For this purpose, the Cypher Query Language and the tool Neo4j132 have

been used to depict a graph which is shown in Figure 5-28. In turn, the data model from

Neo4j can be exported in JSON format allowing the inclusion into the Hyperledger Fabric

framework.

Figure 5-28: Generic ontology for an ECU and its associated information artifacts (blue) with additional

MBSE views (green).

ARTIFACT STRUCTURE

The data model described here was implemented in the Hyperledger Fabric Blockchain

prototype. Therefore, the artifact structure was enriched with the above-mentioned

information artifacts. In order to enable traceability, information artifacts described in

132 Please refer to https://neo4j.com/ for more information about Neo4j and Cypher Query Language.

Prototypical implementation 191

Chapter 4.1, such as EE_system, are integrated as attributes within the artifact

structure in JSON format, as depicted in Source Code 5-11. This data model also serves

as a fundament for the RDF namespaces of each engineering partner as it contains all

relevant information artifacts as well as their relationships among each other. Due to this

data model is implemented in the Blockchain itself, it is multiplied for each newly joining

peer and enables traceability with legacy IT systems as well as within the Blockchain

network (cf. Figure 4-36).

Source Code 5-11: Generic information artifact structure.

192 Implementation of data model

METAMODEL

The metadata model includes information on the definition of information artifacts, their

attributes and stats, as well as interface objects. It has been implemented using RDF

and OWL. Source Code 5-12 depicts the generic metamodel structure.

Source Code 5-12: Generic metamodel structure.

Prototypical implementation 193

ONTOLOGY

The ontology defines the object and data properties as well as classes. It has also been

implemented with RDF and OWL. The generic description of the ontology is depicted in

Source Code 5-13 where all relevant taxonomies are preloaded and annotations are

defined. Source Code 5-14 depicts the generic object properties for, e.g., interface

elements, business objects, or an email address.

Source Code 5-13: Generic ontology description.

Data properties, such as an element name, interface link URI, or parameter name, are

depicted in Source Code 5-15. Different classes are implemented for the categorization

of backend system interface elements which helps alignment of data. This is depicted

in Source Code 5-16.

194 Implementation of data model

Source Code 5-14: Generic object properties of the ontology.

Prototypical implementation 195

Source Code 5-15: Generic data properties of the ontology.

196 Implementation of data model

Source Code 5-16: Generic classes of the ontology.

INFORMATION ARTIFACTS

The relations and information artifacts depicted in Figure 5-28 are transferred, again in

OWL and RDF, to the implemented data model. In that, relations are described by

bundles and the association with other domains, as it is depicted generically in Source

Code 5-17.

Additional information is provided by data properties, such as the type version of an

automobile, the model series, an aggregated process status, or the current state. This

is depicted in Source Code 5-18.

Prototypical implementation 197

Source Code 5-17: Generic object properties of the information artifacts.

198 Alignment with legacy IT architecture

Source Code 5-18: Generic data properties of the information artifacts.

5.5 Alignment with legacy IT architecture

The Hyperledger Fabric platform is integrated in the existing IT architecture landscape

of each engineering partner as the PLM Blockchain backbone, as presented above.

Hereby, each node of each engineering partner represents the PLM Blockchain

backbone for their own internal IT architecture. This is depicted in Figure 5-29133.

Different REST APIs enable the quick and easy connection of the in the Hyperledger

Fabric platform to legacy systems (BASHIR, 2018: p. 476) and hence is in alignment with

requirement 15 for standardized APIs to alleviate the connection of engineering partners

as well as legacy IT systems.

133 The fourth layer for ERP etc., as depicted in Figure 2-12, was omitted due to it not being in the scope
of this work.

Prototypical implementation 199

Figure 5-29: Generic positioning of the prototypical implementation of a PLM Blockchain backbone

within a legacy IT architecture. For abbreviations, please refer to the description of Figure 2-12.

As presented in Chapter 5.2.2, the GUI is web-based and allows for IT system-

independent documentation of relevant metadata. Due to it could not have been

implemented directly into an existing IT system architecture, based on limitations in time

and a huge complexity (cf. Chapter 5.2), the interims step of separate documentation of

metadata in the web browser has to be implemented. This implies the conjecture that,

after the engineer modeled objects according the SPES method in the MBSE tool, would

have to switch tools and document the relevant metadata manually in the web browser.

This would, in turn, trigger an update of RDF namespaces for MBSE within the

Blockchain framework (cf. Chapter 4.2).

The implementation scenario for a first step including manual documentation within the

web browser presented above would consist of stand-alone IT tools and systems. This

means that after modeling MBSE SysML models, the manual documentation has to be

started by also manually opening the Blockchain framework’s GUI. Afterwards, the

engineering collaboration partner also has to open their web browser in order to access

the changes made by the counterpart. In the next step, these alterations have to be

documented manually again in the respective MBSE tool. The updating of the RDF

namespaces after confirmation will be triggered automatically within the Blockchain

framework. In a further development stage, there might be a button within the MBSE

tool directly linking the Blockchain framework’s web browser GUI via OSLC where the

MBSE tool serves as consumer and the Blockchain framework as provider for the

delegated UI (cf. Chapter 2.4.3). This would already increase usability slightly. The rest

of the steps would still be executed manually.

In the ultimate development stage, metadata will be exchanged automatically between

the MBSE tools and the Hyperledger Fabric platform to allow for maximum efficiency

and minimum error-proneness.

200 Evaluation approach

6 Evaluation of the solution framework

This chapter conducts the evaluation of the solution framework according to the four

objectives of this research. For this purpose, in Chapter 6.1 the evaluation approach will

be presented. The following Chapters 6.2 and 6.3 describe use cases for the evaluation

of different aspects of the framework. Chapter 6.4 summarizes the overall evaluation of

the solution framework based on the research objectives and Chapter 6.5 discusses the

results as well as ramifications.

6.1 Evaluation approach

The terms validation and verification are used differently in engineering and literature

(SEEPERSAD et al., 2006: p. 303). Here, verification is defined as the evaluation that

specifications have been fulfilled, i.e., internal view and consistency. Validation is

defined as the evaluation of if the product fulfills the intended business use required by

the customer or stakeholder, i.e., external view and consistency134. In this work, the

focus will mainly lie on the verification of the defined framework according to the

deduced requirements. Hence, the internal view will be applied, and internal consistency

will be evaluated accordingly. Additionally, validation was done within the project with

the three engineering partners with whom the prototype was developed. Given the

complexity of the defined solution framework, the empirical validation with end-users

was not in scope. This is often the case due to the difficulty in the assessment of

methodologies and approaches. The design process, also in automotive industry, is

often longer than a research project and hence the effects might not be visible directly135

(BLESSING and CHAKRABARTI, 2009: p. 183). Moreover, “the synthetic nature of design is

incompatible with the controlled experiments useful for theory testing” (GAVER, 2012: p.

940). For these reasons, a qualitative evaluation approach will be chosen.

In alignment with BLESSING and CHAKRABARTI (2009), the application evaluation targets

on the assessment of the desired values with respect to the applicability of the support

for this dedicated task. Usability and applicability are considered to be focal (BLESSING

and CHAKRABARTI, 2009: p. 37). Here in this context, the desired values resemble the

134 Also, please refer to Footnote 48 on p. 54 for the distinction of verification and validation and the
respective sources as well as INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (1983: p. 37).
135 Please also refer to DEUTSCHES INSTITUT FÜR NORMUNG E. V. (2018b, 2018a, 2018c) for an assessment
of specific criteria of the openness of IT products in the realm of PLM which is deemed to be too generic
for the evaluation of this work.

Evaluation of the solution framework 201

requirements, and the support is equal to the solution framework136. It shall be clarified

whether:

1. the framework can be used,

2. the framework does indeed address the requirements it is meant to,

3. the requirements are affected as expected (BLESSING and CHAKRABARTI, 2009: p.

184).

Commonly, the actual support of the implemented, synthesized solution framework does

not address all requirements of the intended support (BLESSING and CHAKRABARTI, 2009:

p. 183). Therefore, different use cases will be described in the following chapters which

highlight different aspects of the framework. The use cases have been chosen as

generically as possible to alleviate the transfer to other automotive engineering

collaborations as well as to engineering collaborations in other industries. Use case 1,

the door control module (DCM), evaluates a very common ECU and hence allows for a

transfer to all automotive OEMs and their engineering partners and, partially, to other

industries where such ECUs are developed jointly. This use case was developed,

implemented, and tested with three major companies in the automotive sector. Use case

2, the centralized ECU, is an approach the entire automotive industry follows more or

less and hence does not limit the scope to one OEM. Similar approaches might be

possible also for other industries where there are multiple ECUs whose functionalities

could be combined into one.

Here, the explicitly formal, i.e., mathematical, evaluation of MBSE and its data models

and other implemented data models is not within scope due to it only being one part of

the entire solution framework. Moreover, the evaluation of data models commonly

assesses the quality of data models by distinct metrics137. However, here in this work

the focus is on generating traceability by means of an integrated data model, inter alia,

which is not designed to achieve the highest performance in modeling or data

exchange138.

Table 6-1 depicts according to which exemplary use cases the requirements are

addressed.

136 As described in Chapter 1.4, the DRM only serves as a blueprint where suitable and is not followed
stoically.
137 For more information about formal verification techniques, please refer to DEBBABI et al. (2010).
138 For more information regarding methods for evaluation, please refer to BORTZ and DÖRING (2006) and
FELDHUSEN and GEBHARDT (2008: 189 ff.) for the quantitative evaluation of PDM IT systems.

202 Use case 1: Door control module

Table 6-1: Evaluation scheme for use cases.

6.2 Use case 1: Door control module

6.2.1 Technical problem statement

Figure 1-5 depicts the generic system development process in automotive E/E

development with multiple engineering collaboration partners. This generic process is

the basis for use case 1 which focuses on fostering traceability up- and downstream of

the process within the OEM’s company (internal) and in alignment with suppliers

(external). For this purpose, the development process of the DCM will be evaluated.

not addressed

partially addressed

addressed

not applicable

Requirements

1. Include ECU pins

2. Include NCD

3. Include ECU SW

4. Linked data model

5. Trace links available

6. Foster distributed

engineering

7. Consensus

mechanism

8. Automatic change

propagation

9. Immutable product

history

10. Multi-directional

synchronization

11. Traceability scheme

OEM-supplier

12. Data integrity

13. Standard data

model for exchange

14. Stand developm.

processes

15. Standard APIs/

integration in legacy IT

16. Availability of data

& robustness

2
.

E
x
te

rn
a
l

tr
a
c
e
a
b

il
it

y

a
.

R
e
d

u
c
ti

o
n

 o
f

re
c
o

n
c
il

ia
ti

o
n

b
.

T
ra

n
s
p

a
re

n
t

&

s
a
fe

 p
ro

d
u

c
t

c
h

a
n

g
e
s

c
.

A
ll

e
v
ia

te
d

c
o

n
n

e
c
ti

o
n

 o
f

e
n

g
in

e
e
ri

n
g

 p
a
rt

n
e
rs

Addressing

U
s
e
 c

a
s
e
 1

:

D
C

M

U
s
e
 c

a
s
e
 2

:

C
e
n
tr

a
l
E

C
U

Objectives

1
.

In
te

rn
a
l

tr
a
c
e
a
b

il
it

y

a
.

A
li

g
n

m
e
n

t
o

f

M
B

S
E

 &

P
D

M
 f

o
r

E
/E

Evaluation of the solution framework 203

OBJECT OF INVESTIGATION

The functionalities implemented in the DCM have increased in the last years due to an

increase in functionalities in an automobile’s door itself. This yields in a greater variety

of variants and hence a higher complexity which has to be bundled within a DCM.

Commonly, a DCM comprises of the control of the electric window lifter, mirrors,

functional illumination, locks, signal lights in the mirrors, seat adjustment, etc. Due to

these functionalities being connected with each other within the automobile, the DCM

must be interconnected with other ECUs. Depending on the amount and complexity of

functions implemented in the DCM, it is connected via a CAN, or in the case of less

complexity, a LIN bus is used (REIF, 2014: p. 245). Figure 6-1 depicts a DCM from an

E/E perspective (in alignment to REIF, 2014: p. 246). The respective software,

bootloader, functional, and parametric, is added in darker shades. The parametric

software is stored within the EEPROM. In principle, a DCM can be divided into the input

area, the processing unit, and the output area (from left to right in Figure 6-1) (REIF,

2014: p. 246). Particularly, the I/O structure, for instance pins, plugs, signals, etc. are

relevant here (cf. Figure 4-15). Single E/E sub-parts, sensors, and actors within or

attached to the ECU are not in scope and subsumed under “ECU”.

Figure 6-1: Door control module (in alignment to REIF, 2014: p. 246).

204 Use case 1: Door control module

6.2.2 Use case description

The DCM can be considered as one of the least complex ECUs in an automobile and

hence serves here as an entry level example for the joint development in an engineering

collaboration. It is assumed that the entire DCM hardware, i.e., the physical ECU, is

developed by one supplier including the bootloader and functional software for the main

car variant (cf. Figure 2-14 and Figure 2-16). The parametric software usually is coded

by the OEM. The DCM is embedded in the automobile’s E/E system “comfort system”

and interacts there with other ECUs within this system as well as across other E/E

systems. For instance, in case of an emergency, windows close automatically and this

signal by another ECU has to be processed within the DCM. Therefore, changes in other

ECUs within the same or from another E/E system have impacts on the DCM itself and

vice versa. These dependencies have to be considered early during the development.

Commonly, the OEM starts by defining the E/E architecture and within this dedicated

E/E systems, such as the “comfort system” where the DCM is included. For the search

of a supplier, the OEM writes a specification sheet for the DCM including all relevant

technical parameters that have to be considered during development to ensure proper

operability. After the confirmation of the order, the supplier starts with the engineering

process. Partially in parallel, many other engineering partners develop other ECUs and

E/E systems as well as the OEM starts coding the parametric software. Given the above-

mentioned multiple dependencies, engineering changes affecting other parts or

information artifacts of different engineering partners have to be detected as early as

possible (cf. Chapter 1.2). For that purpose, the actual implementation of the use case

within the solution framework has to be described in the following.

6.2.3 Exemplary implementation of use case 1

The relevant information artifacts for use case 1 were addressed in Chapter 4.1.1 where

the synthesis of the data model for the solution framework was presented. Figure 4-6

depicts the generic structure of the ECU, also including the DCM’s relevant information

artifacts. The implementation of these information artifacts was shown in Chapter 5.4

and depicted in Figure 5-28 and Source Code 5-11.

Objective 1.a., foster internal traceability by means of the alignment of MBSE and PDM

for E/E, requires the explicit inclusion of ECU pins (requirement 1), the NCD

(requirement 2), and the ECU software (requirement 3) as crucial information artifacts

specifically for E/E. Therefore, these information artifacts must be modeled within the

Evaluation of the solution framework 205

data model. This is depicted in Source Code 6-1. Although the relevant information

artifacts to foster traceability were defined and implemented, the holistic integration of

this data model with these of MBSE and PDM in their respective IT systems were not

implemented (cf. requirement 4). However, requirement 5 was addressed, including

https links in the data model which serves as part of the basis for requirement 11. Yet,

the traceability scheme for OEM and supplier is only partially addressed. This is due to

OSLC including RDF, https trace links, and REST APIs are implemented but not

connected across all IT systems. The implemented standard data model alleviates data

exchange. Due to there is no automatic data exchange within the MBSE tool and PDM

system implemented, requirement 13 is only partially addressed.

Source Code 6-1: Data model for door control module.

206 Use case 1: Door control module

When starting with the process, the engineer models the E/E system in Windchill

modeler, the MBSE tool. According to the SPES method and the RFLP logic, information

artifacts are created for each engineering partner within the authoring MBSE tool,

transferred to the RDF namespaces by means of the standard data model, eventually

updating the documentation in the PDM system for E/E, and satisfying requirement 14.

The standard development process is relevant for internal traceability and even more so

for synchronized work with engineering partners fostering external traceability. This is

depicted schematically in Figure 6-2.

Figure 6-2: Development process for door control module.

Moreover, external traceability is strongly enabled by the Blockchain technology serving

as the PLM backbone for each OEM and engineering partner which fosters distributed

engineering. Given that the OSLC key components are implemented (cf. Chapter 5.4),

however not across all IT systems, requirement 6 is only partially addressed. Through

the consensus mechanism (requirement 7) and the automatic change propagation

(requirement 8), engineering changes for the DCM become directly apparent, which can

then be assessed, and the confirmation or veto can be communicated. Thus, the

reduction of reconciliation is fostered during the development of the DCM. Engineers

modeling and documenting their information artifacts for the DCM can rely on an

immutable product history (requirement 9) when exchanging data with engineering

partners and suppliers. The multi-directional synchronization (requirement 10) is not

completely addressed due to the above-mentioned reasons of no implementation in the

MBSE tool and PDM system. The same applies to requirement 15, although the

Hyperledger framework provides REST APIs. Data integrity for safe product changes

Evaluation of the solution framework 207

(requirement 12) which is ensured for the DCM development through the Blockchain

technology, as well as the availability of data and its robustness (requirement 16). The

technological aspects of the use case for DCM development are depicted in Figure 6-3.

Figure 6-3: Technology aspects for door control module.

6.3 Use case 2: Centralized, server-oriented E/E architecture

Due to the maturity of this use case during the definition and implementation of the

prototype and elaboration of this work, the following chapters describe a conceptual

state. Nevertheless, the developed solution framework for traceability suits very well the

future server-oriented automotive E/E architecture with a centralized control unit and a

server-oriented E/E architecture, for which reasons this use case is deemed to be

evaluated, albeit given some assumptions.

6.3.1 Technical problem statement

Similar to use case 1, the engineering collaboration with multiple partners is assumed

as well as the current impediments. The motivated, synthesized solution framework (cf.

Chapter 4) is deduced from the impediments and used to address these with the

compiled, implemented framework (cf. Chapter 5).

208 Use case 2: Centralized, server-oriented E/E architecture

OBJECT OF INVESTIGATION

In order to counter the increasing complexity of the automotive E/E architecture (cf.

Chapter 1.2), OEMs and suppliers develop and already offer a centralized, server-

oriented approach where a centralized ECU with more processing power and more

memory substitutes multiple single, less powerful ECUs. This does not only reduce

complexity of the wiring harness, communication busses, and packaging but also

enables future software and feature updates which might require more powerful ECUs

than today’s used ones. The centralized ECU consists of distinct hardware,

middleware/OS, and multiple software. Sometimes, several virtual ECUs are emulated

within the centralized ECU to provide different software environments for different

applications as well as for security reasons. The centralized ECU is connected to other

ECUs controlling distinct zones of the automobile’s E/E architecture, for instance the

multimedia system. Additionally, gateways and body control modules can be connected

(CONTINENTAL AG, 2020, 2021; DAIMLER AG, 2020). The structure of the centralized ECU

is depicted in Figure 6-4.

Figure 6-4: Centralized ECU (in alignment to CONTINENTAL AG, 2021).

The multiple software can be separated in sandboxes, again for security reasons. This

enables the access of third parties, such as a supplier, to this dedicated software

sandbox on the centralized ECU via the automobile’s antenna. Consequently, the

supplier can update existing, or add new features and applications throughout the

automobile’s lifecycle.

Evaluation of the solution framework 209

6.3.2 Use case description

Already today, automobiles receive updates over the air during their operations phase

with the customer. These can be minor bug fixes, updates of, e.g., navigation data and

enabling of features for which the hardware already was integrated in the automobile

but the feature has not been purchased initially. Such updates during the operation

phase reflect the processes during the initial development including the development V-

model where the OEM serves as a final integrator of all the contributions of the suppliers

and their own. In contrast, the centralized, server-oriented E/E architecture with

sandboxes for dedicated software applications on the centralized ECU enables the

direct transfer of software updates and features by the suppliers to the centralized ECU.

Therefore, the OEM does not have to serve as a carrier for specific software from

suppliers into all vehicles anymore. This fosters the easier integration of new software

suppliers in order to decrease time to market for new features. Still, all engineering

partners write their changes of information artifacts into their Blockchain PLM backbone

from where these information artifacts are synchronized within the engineering

collaboration’s Blockchains and the respective MBSE tools and PDM systems. After the

consensus process and positive responses, the supplier can directly flash the new

software onto all vehicles in scope without the need for a detour via the OEM’s IT

infrastructure. This use case is depicted in Figure 6-5. Of course, granting access to the

transmission infrastructure of the OEM still is necessary for a supplier to execute such

a remote update.

Figure 6-5: Use case centralized ECU.

210 Use case 2: Centralized, server-oriented E/E architecture

6.3.3 Exemplary implementation of use case 2

Again, the exemplary implementation of the centralized, server-oriented E/E

architecture with a central ECU highlights the peculiarities of this scenario. Further

details have already been given above.

Requirements 1 to 3 have been addressed, although not all pins, NCDs, and software

have been included in the data model which would probably exist in an integrated,

powerful centralized ECU. The data model is depicted in Source Code 6-2.

Source Code 6-2: Data model for centralized ECU.

Evaluation of the solution framework 211

A linked data model is enabled given the https links and UUIDs. However, the

complete integration with the MBSE tool and PDM systems is not implemented despite

REST compatibility of all systems (requirement 4). Trace links are implemented for each

information artifact (requirement 5). Requirement 6 is addressed only partially by the

implementation of OSLC, yet not including all IT systems. Requirements 7, 8, 9, and 12

are addressed again through the usage of the Blockchain technology. Due to changes

for the central ECU also first have to be shared with the engineering partners through

the individual PLM Blockchain backbones, a multi-directional synchronization is ensured

within the Blockchain network (requirement 10). A traceability scheme is enabled by

OSLC and its components, but it was not completely implemented across all IT systems

(requirement 11). The standard development process is implemented (requirement 14)

and the standard data model for exchange (requirement 13) is addressed partially due

to limitations in the connection of IT systems. The alleviated connection of engineering

partners is enabled by means of standardized APIs; however, the integration of legacy

IT systems is not implemented completely (requirement 15). Data availability and its

robustness is addressed by the Blockchain (requirement 16). These different aspects

are depicted in Figure 6-6.

Figure 6-6: Development process and technology aspects for centralized ECU.

212 Evaluation of research objectives

6.4 Evaluation of research objectives

The evaluation of the research objectives (cf. Chapter 1.3) and the resulting

requirements (cf. Chapter 3) is done by means of the three questions for application

evaluation (cf. Chapter 6.1).

THE SOLUTION FRAMEWORK CAN BE USED

The scope is to assess whether the support presented here, which is the solution

framework, is actually usable and applicable to the situation which shall be improved.

This means, if the support is able to address the key factors or objectives and

requirements in this case. BLESSING and CHAKRABARTI (2009) give the example that,

albeit a support for an issue is implemented, it might be too complicated for designers

to use. Hence, usability would not be given in this case, and proper solution approaches

to increase usability must be considered in order to not discard the intended support

(BLESSING and CHAKRABARTI, 2009: pp. 167, 187–188).

Transferred to the framework at hand, the usability and applicability of it must be

evaluated. This has to be looked from the perspective of two different angles. First, it

shall be deduced if the solution framework addresses the research objectives and

resulting requirements (applicability). Secondly, as mentioned by BLESSING and

CHAKRABARTI (2009), is shall be considered whether the solution framework supports

engineers in their work (usability).

The applicability of the solution framework is inherent, given the deduction of it from the

initial problem statement via all the steps in between. The problem statement is the basis

for the research objectives, which have been categorized to address different kinds of

traceability and subitems within them. The state of science and technology was

assessed given the three dimensions of enablers, data model, process model, and

technology, that are relevant for the solution framework, as motivated in Chapter 1.4.

Based upon the research objectives and the state of science and technology, the

requirements have been derived from. Deduced from these previous assessments, the

solution framework was synthesized. Ergo, the applicability of the solution framework to

address the problem statement is in alignment with the nature of deduction of the entire

research approach. The deductive approach is depicted in Figure 1-8.

The usability of the solution framework was analyzed above by means of use cases.

Here, the perception was made that the engineer has to document less in multiple tools,

reduces effort for reconciliation and searching for the most recent product updates, and

Evaluation of the solution framework 213

is supported by the solution framework in their engineering tasks within the engineering

collaboration. In general, the usability of the framework is given. Limitations will be

addressed further below in the next paragraphs and in Chapter 6.5.

THE SOLUTION FRAMEWORK ADDRESSES THE REQUIREMENTS

As stated above, the requirements have been derived from the research objectives after

the evaluation of the state of science and technology. Each objective was further

subclassified and within these subitems the requirements were formulated. For the

synthesis of the solution framework, each requirement was addressed individually by

one of the three enablers. This means, that for instance, an information artifact was

modeled explicitly, a processual step was defined, or a given logic was implemented

into the IT tools to satisfy these specific requirements. Therefore, the solution framework

addresses all established requirements.

THE REQUIREMENTS ARE AFFECTED AS EXPECTED

The expectation is that objectives and their requirements are addressed completely by

the solution framework. The solution framework does indeed address all requirements

generically and conceptually. However, complexity impeded the holistic implementation

of all requirements (cf. Chapters 6.2 and 6.3). Hence, the presented use cases only

partially address some requirements and conclusively also only partially address the

defined objectives.

As presented in Table 6-2, both use cases display the same level of generic

implementation and thus also the same extent of requirements which are addressed

completely or only partially. As presented above, the challenges are to fully implement

the defined linked data model with existing MBSE and PDM data. For this reason,

objective 1.a. is only addressed partially. Likewise, objective 2.a. is confined regarding

the complete implementation of OSLC across all IT systems. The same reason applies

to objective 2.b., where the implementation with MBSE and PDM systems is not fully

achieved. This also prevents a complete automatic data exchange and the integration

of legacy IT systems. Hence, objective 2.c. is only addressed partially.

In conclusion, it can be stated that the developed solution framework addresses all

objectives and requirements, albeit not all requirements could be implemented to their

fullest extend in each use case due to the reasons mentioned above (cf. Table 6-2).

214 Discussion

Table 6-2: Evaluation of addressed objectives and requirements by use cases.

6.5 Discussion

DATA MODEL

The most difficult endeavor in generating and improving traceability across multiple

engineering domains and within an engineering collaboration is the connection of

information, i.e., implementing a standardized data model which suites all semantical

and technological needs. By the definition of the crucial information artifacts for E/E

development, in this work a generic solution approach is created. Although existing

standards are used as references, an industry standard has to be created in order to

foster stringent and efficient connection of information artifacts and traceability with

not addressed

partially addressed

addressed

not applicable

Requirements

1. Include ECU pins

2. Include NCD

3. Include ECU SW

4. Linked data model

5. Trace links available

6. Foster distributed

engineering

7. Consensus

mechanism

8. Automatic change

propagation

9. Immutable product

history

10. Multi-directional

synchronization

11. Traceability scheme

OEM-supplier

12. Data integrity

13. Standard data

model for exchange

14. Stand developm.

processes

15. Standard APIs/

integration in legacy IT

16. Availability of data

& robustness

Addressing

2
.

E
x
te

rn
a
l

tr
a
c
e
a
b

il
it

y

a
.

R
e
d

u
c
ti

o
n

 o
f

re
c
o

n
c
il

ia
ti

o
n

b
.

T
ra

n
s
p

a
re

n
t

&

s
a
fe

 p
ro

d
u

c
t

c
h

a
n

g
e
s

c
.

A
ll

e
v
ia

te
d

c
o

n
n

e
c
ti

o
n

 o
f

e
n

g
in

e
e
ri

n
g

 p
a
rt

n
e
rs

U
s
e
 c

a
s
e
 1

:

D
C

M

U
s
e
 c

a
s
e
 2

:

C
e
n
tr

a
l
E

C
U

Objectives
1
.

In
te

rn
a
l

tr
a
c
e
a
b

il
it

y

a
.

A
li

g
n

m
e
n

t
o

f

M
B

S
E

 &

P
D

M
 f

o
r

E
/E

Evaluation of the solution framework 215

multiple engineering partners. A major obstacle is the connection with and inclusion of

legacy IT systems and their existing data models with their own semantics which is

implemented here as a generic joint metadata model.

PROCESS MODEL

The definition of a joint development process model that fits the domains of MBSE, PDM,

and has a technological fit with the Blockchain technology, is achieved by extending the

SPES method for MBSE. The SPES method defines which information artifact is created

in which scenario, but not at which point in time. The alignment with the consensus

mechanism of the Blockchain technology is the basis for the reduction of reconciliation

and transparent changes. The major PDM operations, for instance, creation of a

configuration and variant, change management, and inactivation, are described for a

limited number of engineering partners. However, there are many more relevant PDM

processes, such as release or audit management (cf. Chapter 2.3.2) which are not

addressed here in this work.

TECHNOLOGY

As the Blockchain technology has already existed for some years in the financial world,

it is slowly finding its applications in other domains. Therefore, what was defined initially

for finances has to be adapted and extended to fit the engineering domain. Here in this

work, a first step towards this application of the Blockchain technology is done. The

connection with tools and IT systems from engineering is very challenging and only is

implemented partially in the presented use cases. Although the underlying technology

for the interfaces between the Blockchain and MBSE and PDM systems, i.e., REST API,

is the same, a complete definition of these interfaces is not feasible during this work and

still requires a lot of standardization. Moreover, advantages of the Blockchain

technology, e.g., anonymity, ad hoc participation, transparency, etc. do not always apply

in an industrial setting. Although the Hyperledger fabric framework addressed some of

these adaptations, not all issues for engineering collaboration are resolved.

The Hyperledger fabric framework, used for the implementation of the Blockchain, does

not support the addition of further information artifacts once the Blockchain network was

installed among all peers. This is particularly cumbersome in agile development where

not all scope is specified at the beginning but rather during engineering. The latest

versions of Hyperledger fabric might address this issue by implementation of a chain

code lifecycle (SORNIOTTI and YELLICK, 2018).

216 Summary

7 Summary and outlook

7.1 Summary

The research work at hand assesses challenges that are arising during the automotive

development process in distributed engineering collaborations. Particularly, traceability

of E/E information artifacts in early development within a company and among multiple

engineering partners is in scope. The state of science and technology so far has not

established sufficient concepts to address these issues in detail.

This work constitutes the creation of a new solution framework by composition and

assembly of existing approaches, similar to the Blockchain technology itself, and new

solution elements applied in a complex and heterogeneous context with multiple

stakeholders, different IT standards, and emerging technologies. Such a problem space

in engineering can be denominated as a wicked problem and the research thereof as

science of the artificial. The envisioned solution framework composing and assembling

different solutions even could yield a surplus benefit, such as traceability reduces error

proneness, increases quality, reduces efforts, etc., what is called emergence. Therefore,

this work follows a design research approach.

The objectives of this work are to foster internal as well as external traceability by means

of a solution framework consisting of a data model, process model, and technology as

enablers. The objective to foster internal traceability is further refined by the connection

of the early systems development (MBSE) with product data management (PDM).

External traceability is subdivided further into: cultivating the reduction of reconciliation

among engineering partners, to encourage transparent and safe product changes, and

to foster alleviated connection of engineering partners. Given the conceptualization of

the enablers, the solution framework offers a sufficient satisfaction of the requirements

to foster traceability of E/E information artifacts in engineering collaborations and

addresses all previously defined objectives. During the implementation of the solution

framework, not all aspects of the objectives and requirements are addressed by the

enablers due to the underlying complexity of the connection of the solution framework

with legacy IT systems.

Summary and outlook 217

DATA MODEL

The presented metadata model incorporates aspects of E/E, MBSE, and PDM in

automotive development. System modeling aspects shape the hierarchy of the data

model, which is strongly aligned with existing industry standards, and extending the data

model further to include crucial missing aspects of E/E and PDM. For E/E in particular,

the E/E systems all the way down to an ECU’s pin as well as a NCD are modeled.

Configurations, variants, and versions are included to reflect the PDM aspects of a

product lifecycle and for the collaborative exchange of data with engineering partners.

For the purposes of availability of data among engineering partners, association of data

is achieved by including UUIDs and links into the metadata. Data integration is

accomplished by RDF namespaces which comprise the joint metadata models of each

domain and can be included into each engineering partner’s own IT systems using the

defined links and UUIDs.

The definition of a metadata model, stored in standard form, its integration in the

engineering collaboration, and the linkage to each partner’s legacy IT systems provide

the fundament for traceability.

PROCESS MODEL

In alignment with the chosen systems development approach and the selected

technology underneath, the elaborated process model defines at which point in time

which information artifact is created in which IT system of which engineering partner. It

has been considered that the systems development is aligned with the PDM.

Moreover, the process model includes, provided by the Blockchain technology,

instantaneous change propagation and the underlying consensus mechanism regarding

these changes. Additionally, the exchange of data for the purpose of synchronization of

all involved IT systems is modeled in the process models. Both aspects are transferred

to engineering collaborations.

Combining the systems development with PDM aspects, as well as the reduction of

reconciliation combined with transparent product changes, fosters traceability during the

early automotive development phase with multiple engineering partners.

TECHNOLOGY

As for the integrational technology for collaborative data exchange, a decentral peer-to-

peer data base is chosen, namely the Blockchain technology and specifically the

Hyperledger fabric framework. By the use of the Hyperledger fabric framework, some

218 Ramifications and outlook for automotive engineering IT

objectives of this work are addressed inherently. The Blockchain technology fosters

traceability through the immutable documentation of transactions among many peers,

offers a consensus mechanism which can be applied to enterprise necessities, spreads

changes in form of new transactions instantaneously, and many more. This work applies

the Blockchain technology to the realm of engineering IT. Data and process models from

engineering are adapted to fit the solution framework. The application of this solution

framework in the early systems development in the automotive industry is a novelty.

Moreover, ad hoc participation of engineering partners for the contribution of

engineering content is alleviated by means of the standardized Blockchain technology.

As the Blockchain technology in the financial domain is classically not connected to

further, extensive data bases, except those storing information of the transactions,

users, or their assets, the connection to legacy IT tools and systems is tremendously

challenging. Implementing standard APIs, joint data model namespaces, and the

alignment of information artifacts across IT systems, enable this connection.

The Blockchain technology is a very powerful solution which helps fostering traceability

in the systems development within an engineering collaboration, as it is shown in this

elaboration. Yet, further research must be conducted to enable a standardized industrial

application of it.

7.2 Ramifications and outlook for automotive engineering IT

RAMIFICATIONS

From engineering and engineering IT perspective the introduction of a new, disruptive

technology is often associated with many challenges. The Blockchain technology can

be considered disruptive due to its decentralized setup, versus centralized, more

traditional approaches. Such challenges arise in the technical area, as this work

describes abundantly, as well as in the organizational area.

Enabling and training people to work with new technologies, such as presented here, is

an important task to foster acceptance and remove barriers. As the effort for searching,

alignment, reworking, etc. diminish due to a holistic framework for traceability by means

of the Blockchain technology, efficiency of engineers will increase. This in turn means

that for the same amount of work, less people are necessary. Generally speaking, this

could lead to a reduction of the workforce. For companies, efficiency gains are crucial

Summary and outlook 219

to remaining competitive. On the other hand, increased efficiency and the potential

reduction of the workforce might have negative effects for employees.

The organizational ramifications of the introduction of the Blockchain technology on

organizational aspects, not only for the engineering IT but also in the wider social

context, will be addressed in more detail in Chapter 7.4.

OUTLOOK

A further standardization of data models in automotive development across the entire

industry would further foster traceability. At least each domain involved in the

development phase up to the involvement in the entire lifecycle of an automobile should

adapt the same business objects on a high level in order to achieve traceability across

many IT systems and tools as well as among engineering partners. Such

standardization would further contribute to the concept of a Digital Twin, which will be

touched briefly further below.

Additionally, the associations or relations between information artifacts could be

enriched further with relevant knowledge for development or production. This concept

has already been presented by GROLL (2008) for PDM in the automotive industry.

Important knowledge for MBSE, E/E, engineering collaboration, specific processes, etc.

could be added to the interconnections of information artifacts, creating a model-based

process description. For this purpose, the association block in UML or SysML could be

used and adapted (cf. WEILKIENS, 2008: pp. 154 ff.).

As mentioned in Chapters 2.7.3 and 4.3.2, smart contracts139 are not in scope of this

work due to their complexity in themselves, as well as for PDM in general. Smart

contracts could however be implemented for the purpose of containing and executing

Boolean expressions for the combinatory, which is required in the automotive

development (ZENGLER and KÜCHLIN, 2013). Smart contracts could execute the if-then-

relations to combine and exclude technical dependencies, such as if ‘gas engine’

then NOT ‘diesel engine’, or map sales-oriented combinations, for instance the

upgraded navigation system requires the entire business package. On a lower level, in

the sense of technical product granularity, smart contracts could also represent

dependencies within data models. Thereby, the incompatibility of information artifacts

could be modeled and checked automatically. This automatism could be implemented

early in the development phase and could partially replace manual process steps of

139 For more information about smart contacts, please refer to BASHIR, 2018: pp. 261 ff.

220 Ramifications and outlook for automotive engineering IT

agreement or decline during the consensus mechanism (cf. Chapter 4.2). A higher

automized and more efficient, error-robust development process would be the result.

The Blockchain technology and one framework, the Hyperledger Fabric platform, are

implemented here exemplarily due to Hyperledger Fabric’s focus on consortia solutions

including permissioned Blockchains. However, there are plenty of other Blockchain or

distributed ledger technologies (DLT) or frameworks as well as decentralized

autonomous organizations (DAO). Each of this framework has its peculiarities, different

foci, and research in this field as well as implementation evolve quickly. Hence, there

could be, in the meanwhile, a superior Blockchain technology available for dedicated

purposes. Furthermore, different Blockchains can be pegged together, allowing for the

transfer of assets between them (BACK et al., 2014). This approach could further foster

data sovereignty of each engineering partner, not having to rely on the OEM’s channels.

Therefore, future research also could focus on the specific definition of a Blockchain

platform, tailor-made for the automotive industry140.

The Digital Twin is an extension of the PDM and PLM concepts with individual, product-

specific scope. The term Digital Twin can be understood in general as the holistic,

physical (described by laws of physics) and functional description of a component, a

product or a system which has a physical (real, haptic) instance and a digital copy

(“twin”) in IT backbone systems. Included in this is all relevant information which could

be necessary for current or future lifecycle phases (BOSCHERT and ROSEN, 2016: p. 59;

HEBER et al., 2018: p. 9; HEBER and GROLL, 2018c: p. 324). The concept of the Digital

Twin is depicted in Figure 8-1141. Changes applied to the Digital Twin could be traced

by means of the Blockchain technology (KIRKPATRICK and KAUL, 2019: p. 3). By this, the

Blockchain technology could foster traceability on the level of individual products.

As described in Chapter 5.2, Docker containers were used to install the prototype on

each peer’s computer. Beyond that, Docker images could be applied to transfer the

complete initial Blockchain network, data model for MBSE and PDM, as well as process

model information to all new engineering partners who want to contribute to the

development of the dedicated automotive E/E system. The image of the Docker

container could be ready for download once granting access to it. After installation, the

140 For more information about different Blockchain technologies, DAOs, and DLTs, please refer to FROST

& SULLIVAN (2017), FRØYSTAD and HOLM (2015), HILEMAN and RAUCHS (2017), DHILLON et al. (2017), UK

GOVERNMENT CHIEF SCIENTIFIC ADVISER (2016).
141 For more information about the concept of the Digital Twin, please refer to HEBER et al. (2018), HEBER
and GROLL (2018c), BOSCHERT and ROSEN (2016), EIGNER et al. (2017).

Summary and outlook 221

Blockchain network would be initialized for the new peer, APIs configured, metadata

model implemented, and information regarding the development process shared. This

would further alleviate the connection of engineering partners and foster external

traceability.

In addition to the presented use case 2 (centralized, server-oriented E/E architecture),

the automobile also could serve as a distinct node of the Blockchain network. Not only

would engineering partners directly write their software into each car, but the car would

also document these changes transparently, immutably, and decentralized. This would

mitigate the possibilities of manipulation of software particularly during the after sales

phase and could contribute to the above-mentioned concept of the Digital Twin. Whether

smart contracts would automatically agree or decline changes of the software, or the

PLM Blockchain within the car just serves as a documentation of results without

participation in the consensus mechanism, still has to be defined. This outlook is

depicted in Figure 7-1.

Figure 7-1: Automobile as distinct node in the Blockchain network.

7.3 Ramifications and outlook for further industries

The Blockchain technology has already revolutionized parts of the financial industry by

the introduction of crypto currencies. Besides this, the application of the Blockchain

technology has evolved into many other industries where traceability combined with

immutability, transparency, and decentralization is required.

222 Ramifications and outlook for the wider social context

“Insurance, healthcare, transportation, real estates, manufacturing, networking, [and]

IoT, and energy management” (FROST & SULLIVAN, 2017: pp. 25 ff., 51) are supposed to

be industries which will be disrupted by 2025 by the Blockchain technology where a wide

array of applications of the Blockchain technology considers the documentation of

ownership of physical and digital assets (cf. MORABITO, 2017: pp. 28 ff.; ANTONOPOULOS,

2017: p. 278). Likewise, the financial sector will be impacted (FROST & SULLIVAN, 2017:

p. 51). Supply chain and verification of provenance might be one of the most popular

application of the Blockchain technology outside the financial area (LU and XU, 2017: p.

22). Confirmation of the reliability of scientific studies and their results, or medical

studies probably rank among the rather exotic use cases (MORABITO, 2017: p. 30). For

governmental affairs and the public sector, for instance for notaries, land charge

registers, or auditing, traceability with the amenities of the Blockchain technology are

possible applications (VOSHMGIR, 2016: pp. 21–22; SCHLATT et al., 2016: p. 30).

In the automotive industry, not only could the engineering IT be affected by the

Blockchain technology, but also connected cars as well as autonomous vehicles, supply

chain and logistics, and leasing, to name a few (FROST & SULLIVAN, 2017: p. 58).

7.4 Ramifications and outlook for the wider social context

The Blockchain technology automizes process steps and tasks which should otherwise

have to be done by engineers. Examples for this are redundant documentation,

controlling multiple systems for data synchrony, manual alignments with other

engineering partners, inter alia. If process steps and tasks are automized, people have

more time for duties which are not fully automated. However, it also could be the case

that parts of the workforce can or must be laid-off due to a higher degree of

automation142 (ABELE and REINHART, 2011 according to SPATH, 2013: p. 46).

Prof. Dr. Hans-Jörg Bullinger also highlights that digitalization and interconnectedness

in production will generate advantages in efficiency. This might yield to a reduction of

employment in industry143. Simultaneously, new jobs will emerge from the construction

of automatization technologies. However, this cannot be achieved with the workforce

released from industry and factories. A potential solution for this issue might be,

according to Prof. Dr. Bullinger, extensive qualification of people towards systemic

142 Depending on the degree of automation, labor costs, and other key factors, jobs could also increase
in the manufacturing industry (ABELE and REINHART, 2011 according to SPATH, 2013: p. 46)
143 It is not yet clear whether substitution or complementary effects of digitalization on employment will
predominate (BULLINGER et al., 2017: p. 112).

Summary and outlook 223

knowledge of electronics, mechanics, and IT144 (BULLINGER et al., 2017: pp. 112–114;

GORGS, 2016).

Transferred to the elaboration at hand, for those cases where automatization due to the

Blockchain technology might result in the dismissal of engineers, qualifications to these

people shall be offered. This training could include software development and coding,

particularly for the Blockchain. Thus, engineers could maintain and improve their

Blockchain installation, adapt smart contracts, and integrate legacy IT systems.

Hence, the Blockchain technology could not only foster traceability, in some cases, it

might also increase efficiency. If so, these employees relieved of inefficient, manual

work could obtain further qualifications towards future technologies, such as the

Blockchain technology.

144 For more information about the connection of digitalization and qualification, please refer to DEUTSCHE

AKADEMIE DER TECHNIKWISSENSCHAFTEN (2014), SPATH et al. (2017), BULLINGER et al. (2009).

224 Appendix

8 Appendix

Figure 8-1: Digital Twin for the automotive lifecycle (HEBER et al., 2018).

References 225

9 References

ABELE, E. and G. REINHART (2011): Zukunft der Produktion. Herausforderungen,
Forschungsfelder, Chancen. Hanser, München.

ALBERS, A. and C. ZINGEL (2013): Challenges of Model-Based Systems Engineering: A
Study towards Unified Term Understanding and the State of Usage of SysML. In:
Abramovici, M. and R. Stark (Eds.): Smart Product Engineering. Proceedings of the
23rd CIRP Design Conference, Bochum, Germany, March 11th - 13th, 2013. Lecture
Notes in Production Engineering: pp. 82–92.

ALT, O. (2012): Modell-basierte Systementwicklung mit SysML. Hanser, München.

ALVAREZ-RODRÍGUEZ, J. M., J. LLORENS, M. ALEJANDRES and J. FUENTES (2014): Why
avoiding how when defining what? Towards an OSLC-based approach to support
Model-Driven Requirements Engineering. In: INCOSE International Symposium 24
(1): pp. 990–1005.

ANTONOPOULOS, A. M. (2015): Mastering Bitcoin. Unlocking digital crypto-currencies.
O'Reilly, Sebastopol Calif. u.a.

ANTONOPOULOS, A. M. (2017): Mastering Bitcoin. Programming the open Blockchain.
O'Reilly Media, Sebastopol, CA.

ARKLEY, P. (2007): Benefits of Traceability in Software Development. Dissertation.
School of Computing Science, Newcastle University, Newcastle.

ATLASSIAN (2020a): DVCS workflows for Bitbucket. In:
https://confluence.atlassian.com/get-started-with-bitbucket/dvcs-workflows-for-
bitbucket-860009652.html. Call: 13.4.2020.

ATLASSIAN (2020b): Types of version control. In: https://confluence.atlassian.com/get-
started-with-bitbucket/types-of-version-control-856845192.html. Call: 13.4.2020.

ATLASSIAN (2020c): Version control software for professional teams. Bitbucket supports
Version Control Solutions for Git and Mercurial. In:
https://bitbucket.org/product/version-control-software. Call: 13.4.2020.

AUTOSAR (2019): Adaptive platform. In: https://www.autosar.org/standards/adaptive-
platform/. Call: 30.3.2019.

AVAK, B. (2006): Variant management of modular product families in the market phase.
Dissertation. Zurich, ETH Zurich.

AXE, D. (2012): Marines' first frontline stealth fighter lacks vital gear. In:
https://www.wired.com/2012/11/marines-jsf/. Call: 18.9.2018.

BACHELOR, G. (2011): OSLC PLM Reference Model Release. In: https://archive.open-
services.net/bin/view/Main/PlmHome.html. Call: 1.8.2020.

BACK, A., M. CORALLO, L. DASHJR, M. FRIEDENBACH, G. MAXWELL, A. MILLER, A.
POELSTRA, J. TIMÓN and P. WUILLE (2014): Enabling Blockchain Innovations with
Pegged Sidechains.

BARAN, P. (1964): On Distributed Communications Networks. In: IEEE Transactions on
Communications 12 (1): pp. 1–9.

226 References

BASHIR, I. (2018): Mastering blockchain. Distributed ledger technology, decentralization,
and smart contracts explained. Expert insight. Packt Publishing Ltd, Birmingham.

BECK, K., M. BEEDLE, A. VAN BENNEKUM, A. COCKBURN, W. CUNNINGHAM, M. FOWLER, J.
GRENNING, J. HIGHSMITH, A. HUNT, R. JEFFRIES, J. KERN, B. MARICK, R. C. MARTIN, S.
MELLOR, K. SCHWABER, J. SUTHERLAND and D. THOMAS (2001): Manifesto for Agile
Software Development. Twelve Principles of Agile Software. In:
http://agilemanifesto.org/. Call: 8.3.2019.

BECK, T., C. REICHMANN and J. SCHÄUFFELE (2016): E/E-Entwicklung für zukünftige
Fahrzeuginnovationen: Ein integrierter, modellbasierter Ansatz. Vector Informatik
GmbH. In: https://assets.vector.com/cms/content/know-how/_technical-
articles/PREEvision/PREEvision_EE_Development_ATZelektronik_201612_Press
Article_DE.pdf.

BEECK, M. von der (2007): Development of logical and technical architectures for
automotive systems. In: Software & Systems Modeling 6 (2): pp. 205–219.

BEIER, G. (2014): Verwendung von Traceability-Modellen zur Unterstützung der
Entwicklung technischer Systeme. Berichte aus dem Produktionstechnischen
Zentrum Berlin. Fraunhofer-Verlag, Stuttgart.

BEIHOFF, B., C. OSTER, S. FRIEDENTHAL and J. WADE (2014): A World in Motion –
Systems Engineering Vision 2025. Systems Engineering Vision 2025. INCOSE -
International Council on Systems Engineering, San Diego.

BENDER, K. (Ed.) (2005): Embedded Systems. Qualitätsorientierte Entwicklung.
Springer, Berlin.

BERNERS-LEE, T. (2006): Linked data-design issues. In:
https://www.w3.org/DesignIssues/LinkedData.html. Call: 30.5.2019.

BERTSCHE, B., P. GÖHNER, U. JENSEN, W. SCHINKÖTHE and H.-J. WUNDERLICH (2009):
Zuverlässigkeit mechatronischer Systeme. Grundlagen und Bewertung in frühen
Entwicklungsphasen. VDI-Buch. Springer, Berlin, Heidelberg.

BEUTNER, E., H. NEUKIRCHNER and G. MAAS (Eds.) (2013): Virtuelle Produktentwicklung.
Vogel, Würzburg.

BIAHMOU, A. (2015a): Sustainable Mobility. In: Stjepandić, J., N. Wognum and W. J. C.
Verhagen (Eds.): Concurrent engineering in the 21st century. Foundations,
developments and challenges. Springer, Cham: pp. 779–803.

BIAHMOU, A. (2015b): Systems Engineering. In: Stjepandić, J., N. Wognum and W. J. C.
Verhagen (Eds.): Concurrent engineering in the 21st century. Foundations,
developments and challenges. Springer, Cham: pp. 221–254.

BITZER, M., M. EIGNER, K.-G. FAISST, C. MUGGEO and T. EICKHOFF (2018): Framework of
the evolution in virtual product modelling and model management towards digitized
engineering. In: Maier, A. et al. (Eds.): Product, services and systems design. DS,
87, 3. Curran Associates Inc, Red Hook, NY: pp. 345–354.

BLESSING, L. T.M. and A. CHAKRABARTI (2009): DRM, a Design Research Methodology.
Springer London, London.

BOEHM, B. W. (1979): Guidelines for Verifying and Validating Software Requirements
and Design Specifications. In: Samet, P. A. (Ed.): Euro IFIP 79. North-Holland
Publishing Company, Amsterdam.

References 227

BOEHM, B. W. (1988): A Spiral Model of Software Development and Enhancement. In:
Computer: pp. 61–72.

BOHN, J. (2007): User-centric dependability concepts for ubiquitous computing. Zugl.:
Zürich, Techn. Hochsch., Diss., 2006. Dissertation.de, Issue 1314. dissertation.de,
Berlin.

BORGEEST, K. (2014): Elektronik in der Fahrzeugtechnik. Springer Fachmedien
Wiesbaden, Wiesbaden.

BORSATO, M. and M. PERUZZINI (2015): Collaborative Engineering. In: Stjepandić, J., N.
Wognum and W. J. C. Verhagen (Eds.): Concurrent engineering in the 21st century.
Foundations, developments and challenges. Springer, Cham: pp. 165–196.

BORTZ, J. and N. DÖRING (2006): Forschungsmethoden und Evaluation. Für Human- und
Sozialwissenschaftler. Springer-Lehrbuch Bachelor, Master. Springer-Medizin-Verl.,
Heidelberg.

BOSCHERT, S. and R. ROSEN (2016): Digital Twin - The Simulation Aspect. In:
Hehenberger, P. and D. Bradley (Eds.): Mechatronic Futures. Springer International
Publishing, Cham: pp. 59–74.

BRAUN, A. (2013): Modellbasierte Unterstützung der Produktentwicklung - Potentiale der
Modellierung von Produktentstehungsprozessen am Beispiel des integrierten
Produktentstehungsmodells (iPeM). Model Based Support of Product Development
- Potentials of Modelling Product Engineering Processes using the example of the
Integrated Product Engineering Model (iPeM). Forschungsberichte: IPEK, Issue 72.
KIT-Bibliothek, Karlsruhe.

BRETZ, L., C. TSCHIRNER and R. DUMITRESCU (2016): A concept for managing information
in early stages of product engineering by integrating MBSE and workflow
management systems. In: Institute of Electrical and Electronics Engineers (Ed.):
ISSE 2016, Edinburgh, Scotland. 2016 International Symposium on Systems
Engineering: George Hotel, October 3-5, 2016: proceedings papers. IEEE,
Piscataway, NJ: pp. 1–8.

BRICOGNE, M., L. RIVEST, N. TROUSSIER and B. EYNARD (2012): Towards PLM for
Mechatronics System Design Using Concurrent Software Versioning Principles. In:
Rivest, L., A. Bouras and B. Louhichi (Eds.): Product Lifecycle Management.
Towards Knowledge-Rich Enterprises. IFIP WG 5.1 International Conference, PLM
2012, Montreal, QC, Canada, July 9-11, 2012, Revised Selected Papers. IFIP
Advances in Information and Communication Technology, Issue 388. Springer,
Berlin, Heidelberg: pp. 339–348.

BROODNEY, H., U. SHANI and A. SELA (2013): Model Integration - Extracting Value from
MBSE. In: INCOSE International Symposium 23 (1): pp. 1174–1186.

BROWN, A. W. (2000): Large-scale, component-based development. Object and
component technology series. Prentice Hall PTR, Upper Saddle River, NJ.

BROY, M. (2013): Modellbasiertes Software und Systems Engineering als Element eines
durchgängigen Systems Lifecycle Managements (SysLM). In: Sendler, U. (Ed.):
Industrie 4.0. Beherrschung der industriellen Komplexität mit SysLM. Xpert.press.
Springer Berlin Heidelberg, Berlin, Heidelberg, s.l.: pp. 73–90.

BRUEGGE, B. and A. H. DUTOIT (2010): Object-oriented software engineering. Using
UML, patterns, and Java. Prentice Hall, Boston.

228 References

BRUSA, E., A. CALÀ and D. FERRETTO (2018): Systems engineering and its application to
industrial product development. Studies in Systems, Decision and Control,
Issue 134. Springer International Publishing, Cham.

BUCHANAN, R. (1992): Wicked Problems in Design Thinking. In: Design Issues 8 (2): pp.
5–21.

BUEDE, D. M. (2009): The engineering design of systems. Models and methods. Wiley
series in systems engineering and management. John Wiley & Sons, Hoboken, N.J.

BUHL, H. U., A. HUTHER and B. REITWIESNER (2001): Information Age Economy. 5.
Internationale Tagung Wirtschaftsinformatik 2001. Physica-Verlag HD, Heidelberg.

BULLINGER, H.-J., W. GANZ and J. NEUHÜTTLER (2017): Smart Services – Chancen und
Herausforderungen digitalisierter Dienstleistungssysteme für Unternehmen. In:
Bruhn, M. and K. Hadwich (Eds.): Dienstleistungen 4.0. Springer Fachmedien
Wiesbaden, Wiesbaden: pp. 97–120.

BULLINGER, H.-J., D. SPATH, H.-J. WARNECKE and E. WESTKÄMPER (2009): Handbuch
Unternehmensorganisation. Strategien, Planung, Umsetzung. VDI-Buch. Springer-
Verlag, Berlin, Heidelberg.

BURMANN, C. and R. KOTHES (2014): Variantenvielfalt und Intramarkenimagekonfusion.
LiM-Arbeitspapiere No. 54. Universität Bremen, Lehrstuhl für innovatives
Markenmanagement, Bremen. In: http://www.lim.uni-
bremen.de/files/burmann/publikationen/AP%2054_Variantenvielfalt%20und%20Intr
amarkenimagekonfusion_1.pdf. Call: 21.8.2018.

BURR, H. (2008): Informationsmanagement an der Schnittstelle zwischen Entwicklung
und Produktionsplanung im Karosserierohbau. Dissertation. Lehrstuhl für
Konstruktionstechnik/CAD, Universität des Saarlandes, Saarbrücken.

CADET, M. and H. MEISSNER (2017): Cybertronische Systeme. In: Eigner, M., W. Koch
and C. Muggeo (Eds.): Modellbasierter Entwicklungsprozess cybertronischer
Systeme. Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und
Produktionssysteme. Springer Vieweg, Berlin: pp. 19–22.

CHACON, S. and B. STRAUB (2014): Pro Git. Everything you need to know about Git.
Books for professionals by professionals. Apress/Springer, New York, NY.

CHADZYNSKI, P. Z. (2022a): Incorporating MBSE Across a PLM Managed Digital Thread
- Three Real Life Use Cases. In: ISCIE (The Institute of Systems, Control
and Information Engineers) 66 (8): pp. 309–314.

CHADZYNSKI, P. Z. (2022b): Is Variant Management Your Achilles Heel? It’s All About
Systems Thinking. In: https://community.aras.com/b/english/posts/is-variant-
management-your-achilles-heel-it-s-all-about-systems-thinking. Call: 6.11.2022.

CHURCHMAN, C. W. (1967): Guest Editorial: Wicked Problems. In: Management Science
14 (4): B141-42.

COMERFORD, R. (1994): Mecha…what? [mechatronics]. In: IEEE Spectrum 31 (8): pp.
46–49.

CONTINENTAL AG (2020): Start in die Elektro-Ära: Neues E-Modell VW ID.3 fährt mit
Technologien von Continental. In:
https://www.continental.com/de/presse/pressemitteilungen/volkswagen-id3. Call:
21.7.2021.

References 229

CONTINENTAL AG (2021): More Intelligence with Server-based E/E Architectures.
Continental's Body High Performance Computer. In: https://www.continental-
automotive.com/en-gl/Passenger-Cars/Vehicle-Networking/Body-High-
Performance-Computer. Call: 21.7.2021.

CROSS, N. (2006): Designerly Ways of Knowing. Springer, London.

CROSSLEY, N. (2019): OSLC Configuration Management 1.0 Part 4: RDF Vocabulary.
Working Draft 01. In: https://oslc-op.github.io/oslc-specs/specs/config/config-
vocab.html.

DAENZER, W. F. and F. HUBER (Eds.) (2002): Systems Engineering. Methodik und Praxis.
Verl. Industrielle Organisation, Zürich.

DAIMLER AG (2017): Annual Report 2017. Daimler AG, Stuttgart.

DAIMLER AG (2018): Future mobility. Bosch and Daimler join forces to work on fully
automated, driverless system. In:
https://www.daimler.com/innovation/case/autonomous/bosch-cooperation.html.
Call: 21.4.2019.

DAIMLER AG (2020): Mercedes-Benz and NVIDIA to Build Software-Defined Computing
Architecture for Automated Driving Across Future Fleet. In:
https://media.daimler.com/marsMediaSite/en/instance/ko/Mercedes-Benz-and-
NVIDIA-to-Build-Software-Defined-Computing-Architecture-for-Automated-Driving-
Across-Future-Fleet.xhtml?oid=46665504. Call: 21.7.2021.

DALGARNO, M. and D. BEUCHE (2007): Variant Management. 3rd British Computer
Society Configuration Management Specialist Group Conference, Oxford.

DASSAULT SYSTÈMES (2014): Dassault Systèmes’ 3DEXPERIENCE Platform Based on
V6 Architecture Empowers Leading Companies Worldwide. In:
https://www.3ds.com/press-releases/single/dassault-systemes-3dexperience-
platform-based-on-v6-architecture-empowers-leading-companies-wo/. Call:
7.4.2020.

DASSAULT SYSTÈMES (2018a): 3DEXPERIENCE for software lifecycle management
(SWLM). A federated platform for software driven innovation. High-Tech.

DASSAULT SYSTÈMES (2018b): 3DEXPERIENCE platfrom for intelligent connected
systems. Imagine, engineer and experience smart products and systems.

DASSAULT SYSTÈMES (2020): 3DEXPERIENCE platform. Creating sustainable
innovation. In: https://www.3ds.com/products-services/3dexperience/. Call:
7.4.2020.

DATE, C. J. (1990): What is a Distributed Database. In: Warden, A. and C. J. Date (Eds.):
Relational database. Writings 1985-1989. Addison-Wesley, Reading.

DAUN, M., P. BOHN, J. BRINGS and T. WEYER (2016): Structured Model-Based
Engineering of Long-living Embedded Systems: The SPES Methodological Building
Blocks Framework. Software Engineering 2016 - Software engineering für smart
cities, Wien.

DEBBABI, M., F. HASSAÏNE, Y. JARRAYA, A. SOEANU and L. ALAWNEH (2010): Verification
and Validation in Systems Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg.

230 References

DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN (2014): Smart service Welt.
Umsetzungsempfehlungen für das Zukunftsprojekt Internetbasierte Dienste für die
Wirtschaft. acatech, Berlin.

DEUTSCHES INSTITUT FÜR NORMUNG E. V. (2018a): Code of PLM Openness (CPO) -
Certification Handbook ICS 03.120.20; 35.240.50 (DIN SPEC 91372-2). Beuth
Verlag GmbH, Berlin.

DEUTSCHES INSTITUT FÜR NORMUNG E. V. (2018b): Code of PLM Openness (CPO) - IT
Openness Criteria ICS 35.240.50 (DIN SPEC 91372-1). Beuth Verlag GmbH, Berlin.

DEUTSCHES INSTITUT FÜR NORMUNG E. V. (2018c): Code of PLM Openness (CPO) -
Mapping of CPO criteria to assessment criteria ICS 35.240.50 (DIN SPEC 91372-3).
Beuth Verlag GmbH, Berlin.

DEUTSCHES INSTITUT FÜR NORMUNG E. V. (2018d): Terminology for blockchains (DIN
SPEC 16597) ICS 01.040.35; 35.240.99 (DIN SPEC 16597). Berlin.

DHILLON, V., D. METCALF and M. HOOPER (2017): Blockchain Enabled Applications.
Understand the Blockchain Ecosystem and How to Make It Work for You. Apress L.
P, Berkeley, CA.

DICKOPF, T., T. SCHULTE and M. SCHNEIDER (2017): Analyse existierender SysML-
basierter Ansätze aus Industrie und Forschung. In: Eigner, M., W. Koch and C.
Muggeo (Eds.): Modellbasierter Entwicklungsprozess cybertronischer Systeme. Der
PLM-unterstützte Referenzentwicklungsprozess für Produkte und
Produktionssysteme. Springer Vieweg, Berlin: pp. 65–72.

DORI, D. and E. CRAWLEY (2016): Model-based systems engineering with OPM and
SysML. Springer, New York.

DÖRN, S. (2018): Programmieren für Ingenieure und Naturwissenschaftler. Intelligente
Algorithmen und digitale Technologien. eXamen.press. Springer Vieweg, Berlin.

DORSCHEL, J. (2015): Praxishandbuch Big Data. Springer Fachmedien Wiesbaden,
Wiesbaden.

DUMITRESCU, C., P. TESSIER, C. SALINESI, S. GÉRARD, A. DAURON and R. MAZO (2014):
Capturing Variability in Model Based Systems Engineering. In: Aiguier, M. et al.
(Eds.): Complex Systems Design & Management. Springer International Publishing,
Cham: pp. 125–139.

EBELING, R. and M. EIGNER (2018): OSLC based approach for product appearance
structuring. In: Maier, A. et al. (Eds.): Product, services and systems design. DS, 87,
3. Curran Associates Inc, Red Hook, NY: pp. 259–266.

ECKERT, C. M., P. J. CLARKSON and M. K. STACEY (2003): The spiral of applied research:
A methodological view on integrated design research. In: Folkeson, A. et al. (Eds.):
Research for practice - innovation in products, processes and organisations. ICED
03, 14th International Conference on Engineering Design; 19 - 21 August 2003, The
Royal Institute of Technology, Stockholm. DS / Design Society, Issue 31. Design
Society, Glasgow: pp. 245–257.

ECLIPSE FOUNDATION, I. (2020): Equivalences and differences between SysML and
Arcadia/Capella. In:
https://www.eclipse.org/capella/arcadia_capella_sysml_tool.html. Call: 8.4.2020.

References 231

EHRLENSPIEL, K., A. KIEWERT, U. LINDEMANN and M. MÖRTL (2014): Kostengünstig
Entwickeln und Konstruieren. Kostenmanagement bei der integrierten
Produktentwicklung. VDI-Buch. Springer Vieweg, Berlin.

EHRLENSPIEL, K. and H. MEERKAMM (2017): Integrierte Produktentwicklung.
Denkabläufe, Methodeneinsatz, Zusammenarbeit. Carl Hanser Verlag, München.

EIGNER, M. (2014a): Einleitung - Modellbasierte virtuelle Produktentwicklung. In: Eigner,
M., D. Roubanov and R. Zafirov (Eds.): Modellbasierte virtuelle Produktentwicklung.
Springer Vieweg, Berlin: pp. 1–13.

EIGNER, M. (2014b): Product Lifecycle Management (PLM). In: Eigner, M., D. Roubanov
and R. Zafirov (Eds.): Modellbasierte virtuelle Produktentwicklung. Springer Vieweg,
Berlin: pp. 267–300.

EIGNER, M. (2014c): Technische Organisation des Produktentwicklungsprozesses. In:
Eigner, M., D. Roubanov and R. Zafirov (Eds.): Modellbasierte virtuelle
Produktentwicklung. Springer Vieweg, Berlin: pp. 227–266.

EIGNER, M. (2014d): Überblick Disziplin-spezifische und -übergreifende
Vorgehensmodelle. In: Eigner, M., D. Roubanov and R. Zafirov (Eds.):
Modellbasierte virtuelle Produktentwicklung. Springer Vieweg, Berlin: pp. 15–52.

EIGNER, M., T. DICKOPF, M. SCHNEIDER and T. SCHULTE (2018): MECPRO² - A holistic
concept for the model-based development of cybertronic systems. In: Maier, A. et al.
(Eds.): Product, services and systems design. DS, 87, 3. Curran Associates Inc, Red
Hook, NY: pp. 379–388.

EIGNER, M., T. DICKOPF, T. SCHULTE and M. SCHNEIDER (2016a): mecPro² - Entwurf einer
Beschreibungssystematik zur Entwicklung cybertronischer Systeme mit SysML. In:
Schulze, S.-O., C. Muggeo and J. Abulawi (Eds.): Tag des Systems Engineering.
Ulm, 11.-13. November 2015. Hanser, München: pp. 163–172.

EIGNER, M., K.-G. FAISST, T. EICKHOFF, A. EIDEN and C. MUGGEO (2016b): Der
Engineering Backbone für ein interdisziplinäres Product Development und Life Cycle
Management. System Lifecycle Management. In: ProduktDatenJournal 23 (2): pp.
56–61.

EIGNER, M., F. GERHARDT, T. GILZ and F. MOGO NEM (Eds.) (2012a):
Informationstechnologie für Ingenieure. SpringerLink Bücher. Springer Vieweg,
Berlin, Heidelberg.

EIGNER, M., T. GILZ and R. ZAFIROV (2012b): Proposal for functional product description
as part of a PLM solution in interdisciplinary product development. In: Marjanović, D.
(Ed.): DESIGN 2012. Proceedings of the 12th International Design Conference, May
21 - 24, 2012, Dubrovnik, Croatia. DS, Issue 70. Fac. of Mechanical Engineering and
Naval Architecture, Zagreb: pp. 1667–1676.

EIGNER, M., W. KOCH and C. MUGGEO (Eds.) (2017): Modellbasierter
Entwicklungsprozess cybertronischer Systeme. Der PLM-unterstützte
Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer
Vieweg, Berlin.

EIGNER, M., D. ROUBANOV and R. ZAFIROV (Eds.) (2014): Modellbasierte virtuelle
Produktentwicklung. Springer Vieweg, Berlin.

EIGNER, M. and R. STELZER (2009): Product Lifecycle Management. Ein Leitfaden für
Product Development und Life Cycle Management. VDI. Springer, Dordrecht.

232 References

ELMARAGHY, H., G. SCHUH, W. ELMARAGHY, F. PILLER, P. SCHÖNSLEBEN, M. TSENG and
A. BERNARD (2013): Product variety management. In: CIRP Annals 62 (2): pp. 629–
652.

ERCIYES, K. (2013): Distributed Graph Algorithms for Computer Networks. Computer
Communications and Networks. Springer London, London.

ESTEFAN, J. A. (2008): Survey of Model-Based Systems Engineering (MBSE)
Methodologies. INCOSE-TD-2007-003-01. International Council on Systems
Engineering, Seattle, WA.

EVERSHEIM, W. and G. SCHUH (Eds.) (2005): Integrierte Produkt- und Prozessgestaltung.
VDI. Springer, Berlin.

FELDHUSEN, J. and B. GEBHARDT (2008): Product Lifecycle Management für die Praxis.
Ein Leitfaden zur modularen Einführung, Umsetzung und Anwendung. Springer-
Verlag Berlin Heidelberg, Berlin, Heidelberg.

FELDHUSEN, J. and K.-H. GROTE (Eds.) (2013): Pahl/Beitz Konstruktionslehre. Methoden
und Anwendung erfolgreicher Produktentwicklung.

FELDHUSEN, J., K.-H. GROTE and J. THON (2013): Grundsätzliche Überlegungen zur
Rationalisierung. Der agile Entwicklungs- und Konstruktionsprozess. In: Feldhusen,
J. and K.-H. Grote (Eds.): Pahl/Beitz Konstruktionslehre. Methoden und Anwendung
erfolgreicher Produktentwicklung: pp. 773–815.

FERREIRA, F., J. FARIA, A. AZEVEDO and A. L. MARQUES (2017): Product lifecycle
management in knowledge intensive collaborative environments. An application to
automotive industry. In: International Journal of Information Management 37 (1): pp.
1474–1487.

FIGGE, A. (2014): Effiziente Erfassung und Pflege von Traceability-Modellen zur
Entwicklung technischer Systeme. Berichte aus dem Produktionstechnischen
Zentrum Berlin. Fraunhofer Verlag, Stuttgart.

FISHER, A., M. NOLAN, S. FRIEDENTHAL, M. LOEFFLER, M. SAMPSON, M. BAJAJ, L.
VANZANDT, K. HOVEY, J. PALMER and L. HART (2014): Model Lifecycle Management
for MBSE. In: INCOSE International Symposium 24 (1): pp. 207–229.

FRANCO, P. (2015): Understanding Bitcoin. Cryptography, Engineering and Economics.
The Wiley Finance Series. Wiley, Chichester, West Sussex.

FRIEDENTHAL, S., A. MOORE and R. STEINER (2012): A practical guide to SysML. The
systems modeling language. Morgan Kaufmann, Amsterdam.

FROST & SULLIVAN (2017): Blockchain Technology Revolutionizing Automotive Industry.
Automotive Ecosystem Participants to Spend ~0.6% of their Total IT Spend on
Blockchain by 2025. K13A-18.

FROST & SULLIVAN (2018): Automotive ECUs for ADAS and Autonomous Driving
Systems, North America and Europe, 2017. E/E Architecture Will Transform from
Multiple ECUs to 5 Domain Controllers. MD81-18.

FRØYSTAD, P. and J. HOLM (2015): Blockchain: Powering the Internet of Value. Evry,
Fornebu. In: https://www.evry.com/globalassets/insight/bank2020/bank-2020---
blockchain-powering-the-internet-of-value---whitepaper.pdf. Call: 20.8.2018.

GAUSEMEIER, J., A. TRÄCHTLER, W. SCHÄFER and H. ANACKER (2014): Semantische
Technologien im Entwurf mechatronischer Systeme. Effektiver Austausch von
Lösungswissen in Branchenwertschöpfungsketten. Hanser, München.

References 233

GAVER, W. (2012): What should we expect from research through design? In:
Association for Computing Machinery, New York, NY, United States (Ed.): CHI 2012,
it's the experience. The 30th ACM Conference on Human Factors in Computing
Systems; Austin, Texas, USA, May 5 - 10, 2012. ACM, New York, NY: pp. 937–946.

GERICKE, K., A. J. QURESHI and L. BLESSING (2013): Analyzing Transdisciplinary Design
Processes in Industry. An Overview. In: ASME (Ed.): 25th International Conference
on Design Theory and Methodology; ASME 2013 Power Transmission and Gearing
Conference. ASME: V005T06A031.

GIFT, N. and A. SHAND (2009): Introduction to distributed version control systems. Learn
about and compare how to use Bazaar, Mercurial, and Git. IBM.

GILZ, T. (2014): PLM-Integrated Interdisciplinary System Models in the Conceptual
Design Phase Based on Model-Based Systems Engineering. Dissertation.
Maschinenbau und Verfahrenstechnik, Technische Universität Kaiserslautern,
Kaiserslautern.

GIT (2020a): About - Small and Fast. In: https://git-scm.com/about/small-and-fast. Call:
13.4.2020.

GIT (2020b): git - everything is local. In: https://git-scm.com/. Call: 13.4.2020.

GLASER, F. (2017): Pervasive Decentralisation of Digital Infrastructures: A Framework
for Blockchain enabled System and Use Case Analysis. In: Hawaii International
Conference on System Sciences 2017 (HICSS-50).

GLASNER, J. (2018): Automakers Pump Record Sums Into Startups. In:
https://news.crunchbase.com/news/automakers-pump-record-sums-into-startups/.
Call: 22.4.2019.

GORGS, C. (2016): Digitalisierung gibt den Menschen mehr Freiheiten - Interview mit
Prof. Dr. Hans-Jörg Bullinger. In: https://www.manager-
magazin.de/unternehmen/artikel/hans-joerg-bullinger-ueber-chancen-der-
digitalisierung-a-1118356.html. Call: 29.8.2021.

GOTEL, O., J. CLELAND-HUANG, J. H. HAYES, A. ZISMAN, A. EGYED, P. GRÜNBACHER, A.
DEKHTYAR, G. ANTONIOL, J. MALETIC and P. MÄDER (2012): Traceability
Fundamentals. In: Cleland-Huang, J., O. Gotel and A. Zisman (Eds.): Software and
Systems Traceability. Springer London, London: pp. 3–22.

GOVERNMENT OFFICE FOR SCIENCE (2016): Distributed Ledger Technology: beyond block
chain. UK Government Chief Scientific Adviser, London.

GRANDE, M. (2013): 100 Minuten für Konfigurationsmanagement. Kompaktes Wissen
nicht nur für Projektleiter und Entwickler.

GRIEVES, M. W. (2012): Virtually Indistinguishable. Systems Engineering and PLM. In:
Rivest, L., A. Bouras and B. Louhichi (Eds.): Product Lifecycle Management.
Towards Knowledge-Rich Enterprises. IFIP WG 5.1 International Conference, PLM
2012, Montreal, QC, Canada, July 9-11, 2012, Revised Selected Papers. IFIP
Advances in Information and Communication Technology, Issue 388. Springer,
Berlin, Heidelberg: pp. 226–242.

GROLL, M. W. (2008): Interconnection Based Product and Process Documentation.
Dissertation. University of Twente, Twente.

GROLL, M. W. and D. T. HEBER (2016): E/E-Product Data Management in Consideration
of Model-Based Systems Engineering. In: Borsato, M. et al. (Eds.): Transdisciplinary

234 References

engineering. Crossing boundaries: proceedings of the 23rd ISPE Inc. International
Conference on Transdisciplinary Engineering, October 3-7, 2016. Advances in
transdisciplinary engineering, Volume 4. IOS Press, Amsterdam: pp. 289–298.

GRUNDEL, M., J. ABULAWI, G. MOESER, T. WEILKIENS, A. SCHEITHAUER, S. KLEINER, C.
KRAMER, M. NEUBERT, S. KÜMPEL and A. ALBERS (2014): FAS4M – No more: “Please
mind the gap!”. In: Maurer, M., S.-O. Schulze and J. Abulawi (Eds.): Tag des Systems
Engineering 2014. Bremen, 12. - 14. November 2014. Hanser, München: pp. 63–74.

HABERFELLNER, R. (Ed.) (2012): Systems Engineering. Grundlagen und Anwendung.
Orell Füssli, Zürich.

HALVORSON, B. (2016): Software Now To Blame For 15 Percent Of Car Recalls. In:
https://www.popsci.com/software-rising-cause-car-recalls. Call: 18.09.20118.

HARASHIMA, F., M. TOMIZUKA and T. FUKUDA (1996): Mechatronics - "What Is It, Why,
and How? " An editorial. In: IEEE/ASME Transactions on Mechatronics 1 (1): pp. 1–
4.

HARMS, E. (2009): Änderungs- und Konfigurationsmanagement unter Berücksichtigung
von Verwendungsinstanzen. Arbeitsmethoden für integrierte Produktmodelle im
Rahmen des Produkt-Lebenszyklus-Managements der Automobilindustrie.
Dissertation. Fakultät für Maschinenbau, Universität Karlsruhe, Karlsruhe.

HASS, A. M. J. (2003): Configuration management principles and practice. The Agile
software development series. Addison-Wesley, Boston, MA.

HAUSMANN, K. (2010): Permeter: Performanzmessung in der Produktentwicklung.
Performanzmessung in der Produktentwicklung auf Basis semantisch integrierter
Produktmodelle. Suedwestdeutscher Verlag fuer Hochschulschriften, Saarbrücken.

HEBER, D. T. and M. W. GROLL (2018a): A Meta-Model to Connect Model-based Systems
Engineering with Product Data Management by Dint of the Blockchain. In: IEEE
TEMS (Ed.): 2018 International Conference on Intelligent Systems (IS). IEEE: pp.
280–287.

HEBER, D. T. and M. W. GROLL (2018b): How the Blockchain fosters E/E traceability for
MBSE and PLM in distributed engineering collaboration. In: IEEE TEMS (Ed.): 2018
IEEE International Conference on Technology Management, Operations and
Decisions (ICTMOD). IEEE: pp. 125–130.

HEBER, D. T. and M. W. GROLL (2018c): Towards a digital twin: How the blockchain can
foster E/E-traceability in consideration of model-based systems engineering. In:
Maier, A. et al. (Eds.): Product, services and systems design. DS, 87, 3. Curran
Associates Inc, Red Hook, NY: pp. 321–330.

HEBER, D. T., F. MICHELBACH, F. S. MORELLI and M. W. GROLL (2018): Digital Twin-
Konzeption in der Automobilindustrie: Einsatzpotenziale der Blockchain-
Technologie. In: Anwendungen und Konzepte der Wirtschaftsinformatik (8): pp. 7–
19.

HECKMANN, O., R. STEINMETZ, N. LIEBAU, A. BUCHMANN, C. ECKERT, J. KANGASHARJU, M.
MÜHLHÄUSER and A. SCHÜRR (2006): Qualitätsmerkmale von Peer-to-Peer
Systemen. Technical Report. Technische Universität Darmstadt, Darmstadt. In:
ftp://ftp.kom.e-technik.tu-darmstadt.de/papers/HSL+06-1-paper.pdf.

HEIHOFF-SCHWEDE, J., C. BREMER, M. RABE and C. TSCHIRNER (2017): Werkzeuge für
den Mittelstand – MBSE leicht. In: Schulze, S.-O., C. Tschirner and R. Kaffenberger

References 235

(Eds.): Tag des Systems Engineering. Herzogenaurach, 25.-27. Oktober 2016.
Hanser, München: pp. 35–44.

HENSELER, J. (2015): Is the whole more than the sum of its parts? On the interplay of
marketing and design research. Inaugural lecture. University of Twente, Twente.

HENSELER, J. (2017): Bridging Design and Behavioral Research With Variance-Based
Structural Equation Modeling. In: Journal of Advertising 46 (1): pp. 178–192.

HENSELER, J. (2021): Composite-based structural equation modeling. Analyzing latent
and emergent variables. Methodology in the social sciences. The Guilford Press, a
division of Guilford Publications, Inc, New York, NY.

HERMAN, I., G. MELANCON and M. S. MARSHALL (2000): Graph visualization and
navigation in information visualization. A survey. In: IEEE Transactions on
Visualization and Computer Graphics 6 (1): pp. 24–43.

HEVNER, A. and S. CHATTERJEE (2010): Design Research in Information Systems,
Issue 22. Springer US, Boston, MA.

HEYN, M. (1999): Methodik zur schnittstellenorientierten Gestaltung von
Entwicklungskooperationen. Shaker Verlag, Aachen.

HILEMAN, G. and M. RAUCHS (2017): Global Blockchain benchmarking study. Cambridge
Centre for Alternative Finance, Cambridge, UK.

HITZLER, P. (2008): Semantic Web. Grundlagen. eXamen.press. Springer-Verlag Berlin
Heidelberg, Berlin, Heidelberg.

HOFFMANN, H.-P. (2011): Systems Engineering Best Practices with the Rational Solution
for Systems and Software Engineering - Deskbook. Model-Based Systems
Engineering with Rational Rhapsody and rational Harmony for Systems Engineering.
IBM Corporation.

HOLLAND-LETZ, D., M. KÄSSER, B. KLOSS and T. MÜLLER (2019): Start me up: Where
mobility investments are going. Automotive & Assembly. In:
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/start-
me-up-where-mobility-investments-are-going. Call: 22.4.2019.

HOLT, J. and S. PERRY (2008): SysML for systems engineering. Professional
applications of computing series. Institution of Engineering and Technology, London.

HOOSHMAND, Y. (2015): Transparenzerhöhung bei der Entwicklung von individualisierten
Produkten in der Einzelfertigung. Ingenieurwissenschaften. Dr. Hut, München.

HOOSHMAND, Y., D. ADAMENKO, S. KUNNEN and P. KÖHLER (2018): An approach for
holistic model-based engineering of industrial plants. In: Maier, A. et al. (Eds.):
Product, services and systems design. DS, 87, 3. Curran Associates Inc, Red Hook,
NY: pp. 101–110.

HOOSHMAND, Y., M. HÖNER, S. DANJOU and P. KÖHLER (2016): Ein integriertes
Gesamtsystemmodell für die modellbasierte Entwicklung. In: Krause, D., K. Paetzold
and S. Wartzack (Eds.): Design for X - Beiträge zum 27. DfX-Symposium Oktober
2016. TuTech Verlag TuTech Innovation GmbH, Hamburg: pp. 243–254.

HORVATH, L. (2017): New method for enhanced driving of entity generation in RFLP
structured product model. In: Institute of Electrical and Electronics Engineers (Ed.):
Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and
Applications (ICIEA). 18-20 June 2017, Siem Reap, Cambodia. IEEE, Piscataway,
NJ: pp. 541–546.

236 References

HORVATH, L., I. J. RUDAS and M. TAKACS (2015): Content representation structure for
product system modeling. In: Szakál, A. (Ed.): INES 2015. IEEE 19th International
Conference on Intelligent Engineering Systems: September 3-5, 2015, Bratislava,
Slovakia: proceedings. IEEE, Piscataway, NJ: pp. 85–90.

HORVÁTH, L. and I. J. RUDAS (2015): Intelligent Content for Product Definition in RFLP
Structure. In: Fujita, H. and Selamat A. (Eds.): Intelligent software methodologies,
tools and techniques. 13th international conference, SoMeT 2014, Langkawi,
Malaysia, September 22-24, 2014; revised selected papers. Communications in
Computer and Information Science, Issue 513. Springer, Cham: pp. 55–70.

HYPERLEDGER (2020): Adding an Org to a Channel. In: https://hyperledger-
fabric.readthedocs.io/en/release-2.2/channel_update_tutorial.html. Call: 19.4.2021.

IBM CORPORATION (2020a): IBM Engineering Systems Design Rhapsody. In:
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody. Call: 9.4.2020.

IBM CORPORATION (2020b): IBM Engineering Systems Design Rhapsody - Model
Manager. In: https://jazz.net/products/rhapsody-model-manager/. Call: 9.4.2020.

IBM KNOWLEDGE CENTER (2020): IBM Maximo Asset Management Multitenancy 7.6.
Specification of OSLC resources. In:
https://www.ibm.com/support/knowledgecenter/de/SSLKT6_7.6.0/com.ibm.mt.doc/
gp_intfrmwk/oslc/c_oslc_res_spec.html. Call: 5.12.2020.

IEEE COMPUTER SOCIETY (2007): Systems engineering - Application and management
of the systems engineering process (ISO/IEC 26702, IEEE 1220-2005). IEEE
Computer Society Press, New York, NY.

INSTITUTE OF CONFIGURATION MANAGEMENT AND CMII RESEARCH INSTITUTE (2014): CMII
Standard for Enterprise-Wide Configuration Management and Integrated Process
Excellence (CMII-100H).

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (1983): IEEE Standard Glossary
of Software Engineering Terminology (729). IEEE, Piscataway, NJ, USA. In:
https://standards.ieee.org/standard/729-1983.html.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (2012): IEEE Standard for
Configuration Management in Systems and Software Engineering (828-2012). IEEE,
Piscataway, NJ, USA.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2003): Information technology -
Reference Model of Data Management (ISO/IEC TR 10032:2003). Geneva. In:
https://www.iso.org/standard/38607.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2011a): Industrial automation
systems and integration - Product data representation and exchange - Part 1251:
Application module: Interface (ISO/TS 10303-1251:2011). Geneva. In:
https://www.iso.org/standard/60631.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2011b): Road vehicles - Functional
safety - Part 1: Vocabulary (ISO 26262-1:2011). Geneva. In:
https://www.iso.org/standard/43464.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2011c): Road vehicles - Functional
safety - Part 5: Product development at the hardware level (ISO 26262-5:2011).
Geneva. In: https://www.iso.org/standard/43464.html.

References 237

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2011d): Road vehicles - Functional
safety - Part 6: Product development at the software level (ISO 26262-6:2011).
Geneva. In: https://www.iso.org/standard/43464.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2011e): Road vehicles - Functional
safety - Part 8: Supporting processes (ISO 26262-8:2011). Geneva. In:
https://www.iso.org/standard/43464.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2011f): Systems and software
engineering - Architecture description (ISO/IEC/IEEE 42010:2011). Geneva. In:
https://www.iso.org/standard/50508.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2012a): Industrial automation
systems and integration — Product data representation and exchange Part 233:
Application protocol: Systems engineering (ISO 10303-233:2012(E)). Geneva.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2012b): Technical product
documentation – Vocabulary - Terms relating to technical drawings, product
definition and related documentation (ISO 10209:2012). Geneva. In:
https://www.iso.org/standard/51183.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2014): Industrial automation
systems and integration — Product data representation and exchange Part 242:
Application protocol: Managed model-based 3D engineering (ISO 10303-
242:2014(E)). Geneva.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2015a): Quality management
systems - Requirements (DIN EN ISO 9001:2015). Geneva. In:
https://www.iso.org/standard/62085.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2015b): Software and systems
engineering - Reference model for product line engineering and management
(ISO/IEC 26550). Geneva. In: https://www.iso.org/standard/69529.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2015c): Systems and software
engineering - System life cycle processes (ISO/IEC/IEEE 15288:2015). Geneva. In:
https://www.iso.org/standard/63711.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2017a): Quality management -
Guidelines for configuration management (ISO 10007:2017). Geneva. In:
https://www.iso.org/standard/70400.html.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (2017b): Systems and software
engineering - Vocabulary (ISO/IEC/IEEE 24765:2017(E)). Geneva.

IWANEK, P., L. KAISER, R. DUMITRESCU and A. NYßEN (2013): Fachdisziplinübergreifende
Systemmodellierung mechatronischer Systeme mit SysML und CONSENS. In:
Maurer, M. and S.-O. Schulze (Eds.): Tag des Systems Engineering. Carl Hanser
Verlag GmbH & Co. KG, München: pp. 337–346.

JOHNSIRANI, B. and M. NATARAJAN (2015): An Overview of Distributed Database
Management System. In: International Journal of Trend in Research and
Development (IJTRD) 2 (5): pp. 118–121.

JOHNSON, D. and S. SPEICHER (2013): Open Services for Lifecycle Collaboration Core
Specification Version 2.0. In: https://archive.open-
services.net/bin/view/Main/OslcCoreSpecification.html. Call: 3.8.2020.

238 References

KAAS, H.-W., D. MOHR, P. GAO, N. MÜLLER, D. WEE, R. HENSLEY, M. GUAN, T. MÖLLER,
G. ECKHARD, G. BRAY, S. BEIKER, A. BROTSCHI and D. KOHLER (2016): Automotive
revolution – perspective towards 2030. How the convergence of disruptive
technology-driven trends could transform the auto industry. Advanced Industries. In:
https://www.mckinsey.com/~/media/mckinsey/industries/high%20tech/our%20insig
hts/disruptive%20trends%20that%20will%20transform%20the%20auto%20industry
/auto%202030%20report%20jan%202016.ashx. Call: 22.4.2019.

KÄSSER, M., T. MÜLLER and A. TSCHIESNER (2017): Analyzing start-up and investment
trends in the mobility ecosystem. How can companies identify and source the
technologies that will be critical for crafting a strategy to keep up in the shifting
automotive landscape? In: https://www.mckinsey.com/industries/automotive-and-
assembly/our-insights/analyzing-start-up-and-investment-trends-in-the-mobility-
ecosystem. Call: 22.4.2019.

KATZENBACH, A. (2015a): Automotive. In: Stjepandić, J., N. Wognum and W. J. C.
Verhagen (Eds.): Concurrent engineering in the 21st century. Foundations,
developments and challenges. Springer, Cham: pp. 607–638.

KATZENBACH, A. (2015b): Informationstechnik und Wissensverarbeitung in der
Produktentwicklung (Lecture notes). Institut für Konstruktionstechnik und
Technisches Design, 2015, Stuttgart.

KATZENBACH, A., S. HANDSCHUH, R. DOTZAUER and A. FRÖHLICH (2015): Product
Lifecycle Visualization. In: Stjepandić, J., N. Wognum and W. J. C. Verhagen (Eds.):
Concurrent engineering in the 21st century. Foundations, developments and
challenges. Springer, Cham: pp. 287–318.

KAUFMANN, U. and R. SCHULER (2017): Systems Re-Engineering – ein Beitrag zur
Integration von MBSE und PLM. In: Schulze, S.-O., C. Tschirner and R. Kaffenberger
(Eds.): Tag des Systems Engineering. Herzogenaurach, 25.-27. Oktober 2016.
Hanser, München: pp. 343–353.

KEYDEL, C. and O. MEDING (2008): Installing and Using a Version Control System. In:
Ganssle, J. et al. (Eds.): Embedded systems. World class designs. Newnes, Oxford:
pp. 225–246.

KIRKPATRICK, K. and A. KAUL (2019): Digital Twins.
Global Market Demand Across Manufacturing, Aerospace, Connected Vehicles, S
mart Cities, Retail, Healthcare, Industrial IoT, and Other Industries. Tractica,
Boulder, CO.

KIRSCH, L., C. MUGGEO, M. SCHNEIDER, T. SCHULTE and C. DETTMERS (2017a):
Funktionen im PDM / PLM. In: Eigner, M., W. Koch and C. Muggeo (Eds.):
Modellbasierter Entwicklungsprozess cybertronischer Systeme. Der PLM-
unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme.
Springer Vieweg, Berlin: pp. 155–160.

KIRSCH, L., C. MUGGEO, T. SCHULTE and M. SCHNEIDER (2017b): Verwaltung von
Systemmodellen. In: Eigner, M., W. Koch and C. Muggeo (Eds.): Modellbasierter
Entwicklungsprozess cybertronischer Systeme. Der PLM-unterstützte
Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer
Vieweg, Berlin: pp. 161–167.

KIRSCH, L., C. MUGGEO, T. SCHULTE, M. SCHNEIDER and P. MÜLLER (2017c): PLM-
Funktionen im Kontext von Systemmodellen. In: Eigner, M., W. Koch and C. Muggeo
(Eds.): Modellbasierter Entwicklungsprozess cybertronischer Systeme. Der PLM-

References 239

unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme.
Springer Vieweg, Berlin: pp. 169–176.

KIRSCH, L., P. MÜLLER, M. EIGNER and C. MUGGEO (2017d): SysML-Modellverwaltung im
PDM/PLM-Umfeld. In: Schulze, S.-O., C. Tschirner and R. Kaffenberger (Eds.): Tag
des Systems Engineering. Herzogenaurach, 25.-27. Oktober 2016. Hanser,
München: pp. 333–342.

KLEINER, S. and C. KRAMER (2013): Model Based Design with Systems Engineering
Based on RFLP Using V6. In: Abramovici, M. and R. Stark (Eds.): Smart Product
Engineering. Proceedings of the 23rd CIRP Design Conference, Bochum, Germany,
March 11th - 13th, 2013. Lecture Notes in Production Engineering: pp. 93–102.

KÖNIGS, S. F. (2013): Konzeption und Realisierung einer Methode zur
templategestützten Systementwicklung.

KÖNIGS, S. F., G. BEIER, A. FIGGE and R. STARK (2012): Traceability in Systems
Engineering – Review of industrial practices, state-of-the-art technologies and new
research solutions. In: Advanced Engineering Informatics 26 (4): pp. 924–940.

KORDON, F. (Ed.) (2013): Embedded systems. Analysis and modeling with SysML, UML
and AADL. Electronics engineering series. ISTE, London.

KRAUSE, F.-L., H.-J. FRANKE and J. GAUSEMEIER (Eds.) (2007): Innovationspotenziale in
der Produktentwicklung. Hanser, München.

KRIEG, A., A. RAJKO and F. BOUCHÉ (2018): Agil und attraktiv - Wie
Entwicklungsdienstleister die Zukunft mitgestalten. In: ATZextra 23 (S2): pp. 14–17.

KRUIJFF, J. de and H. WEIGAND (2017): Understanding the Blockchain Using Enterprise
Ontology. In: Dubois, E. and K. Pohl (Eds.): Advanced information systems
engineering. 29th International Conference, CAiSE 2017, Essen, Germany, June 12-
26, 2017: proceedings. Lecture Notes in Computer Science, Issue 10253. Springer,
Cham: pp. 29–43.

LAMM, J. G. and T. WEILKIENS (2010): Funktionale Architekturen in SysML. In: Maurer,
M. and S.-O. Schulze (Eds.): Tag des Systems Engineering 2010. Carl Hanser
Verlag, München: pp. 109–118.

LÄMMER, L. and M. THEISS (2015): Product Lifecycle Management. In: Stjepandić, J., N.
Wognum and W. J. C. Verhagen (Eds.): Concurrent engineering in the 21st century.
Foundations, developments and challenges. Springer, Cham: pp. 455–490.

LANKENAU, A. and D. T. HEBER (2017): The Importance of E/E in the Context of the Digital
Twin, EDM CAE Forum 2017, Daimler AG, 19.7.2017, Stuttgart.

LEACH, P., M. MEALLING and R. SALZ (2005): A Universally Unique IDentifier (UUID) URN
Namespace. Request for Comments No. 4122. In: https://tools.ietf.org/html/rfc4122.
Call: 19.7.2020.

LIESE, H., S. RULHOFF and J. STJEPANDIĆ (2013): Enhancing Product Innovation by
Implementing Intellectual Property Protection into the Virtual Product Creation. In:
Stjepandić, J., G. Rock and C. Bil (Eds.): Concurrent Engineering Approaches for
Sustainable Product Development in a Multi-Disciplinary Environment. Proceedings
of the 19th ISPE International Conference on Concurrent Engineering. Springer,
London: pp. 267–278.

LINDEMANN, G. and M. KRASTEL (2017): Die Implementierung des Informationsmodells
in PLM-Systemen. In: Eigner, M., W. Koch and C. Muggeo (Eds.): Modellbasierter

240 References

Entwicklungsprozess cybertronischer Systeme. Der PLM-unterstützte
Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer
Vieweg, Berlin: pp. 149–151.

LINDEMANN, U. (2009): Methodische Entwicklung technischer Produkte. Springer, Berlin,
Heidelberg.

LINDEMANN, U., M. MAURER and T. BRAUN (2009): Structural complexity management.
An approach for the field of product design. Springer, Berlin, Heidelberg.

LOPER, M. L. (Ed.) (2015): Modeling and simulation in the systems engineering life cycle.
Core concepts and accompanying lectures. Springer, London.

LOTAR INTERNATIONAL: LONG TERM ARCHIVING AND RETRIEVAL. In: http://www.lotar-
international.org. Call: 3.5.2019.

LU, Q. and X. XU (2017): Adaptable Blockchain-Based Systems. A Case Study for
Product Traceability. In: IEEE Software 34 (6): pp. 21–27.

MARTIN, J. N. (1996): Systems Engineering Guidebook: A Process for Developing
Systems and Products. CRC Press, Boca Raton, FL.

MECPRO² ABSCHLUSSBERICHT (2016a): Arbeitspaket 2.1 Referenzprozesse
(Prozessanalyse) CTP und CTPS. Modellbasierter Entwicklungsprozess
Cybertronischer Produkte und Produktionssysteme (mecPro²).

MECPRO² ABSCHLUSSBERICHT (2016b): Arbeitspaket 2.3 Integrierte
Beschreibungssystematik. Modellbasierter Entwicklungsprozess Cybertronischer
Produkte und Produktionssysteme (mecPro²).

MECPRO² ABSCHLUSSBERICHT (2016c): Arbeitspaket 6.5 - Normen, Standards und
Formate. Modellbasierter Entwicklungsprozess Cybertronischer Produkte und
Produktionssysteme (mecPro²).

MECPRO² ABSCHLUSSBERICHT (2016d): Arbeitspaket 6.7 PLM-Funktionen.
Modellbasierter Entwicklungsprozess Cybertronischer Produkte und
Produktionssysteme (mecPro²).

MORABITO, V. (2017): Business Innovation Through Blockchain. The B³ Perspective.
Springer, Cham.

MÜLLER, P. and A. HAßE (2017a): Fokus der Demonstratoren. In: Eigner, M., W. Koch
and C. Muggeo (Eds.): Modellbasierter Entwicklungsprozess cybertronischer
Systeme. Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und
Produktionssysteme. Springer Vieweg, Berlin: pp. 183–187.

MÜLLER, P. and A. HAßE (2017b): Gemeinsame Erkenntnislage. In: Eigner, M., W. Koch
and C. Muggeo (Eds.): Modellbasierter Entwicklungsprozess cybertronischer
Systeme. Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und
Produktionssysteme. Springer Vieweg, Berlin: pp. 227–229.

MÜLLER, P. and L. KIRSCH (2017): Vernetzung von Entwicklungsdaten. In: Eigner, M.,
W. Koch and C. Muggeo (Eds.): Modellbasierter Entwicklungsprozess
cybertronischer Systeme. Der PLM-unterstützte Referenzentwicklungsprozess für
Produkte und Produktionssysteme. Springer Vieweg, Berlin: pp. 177–180.

MÜLLER, P., L. KIRSCH, M. SCHNEIDER and A. HERZMANN (2017): Demonstrator 1 –
Modellbasierte Entwicklung cybertronischer Produkte. In: Eigner, M., W. Koch and
C. Muggeo (Eds.): Modellbasierter Entwicklungsprozess cybertronischer Systeme.

References 241

Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und
Produktionssysteme. Springer Vieweg, Berlin: pp. 189–208.

MÜLLER, P., M. MUSCHIOL and R. STARK (2012): PLM-Based Service Data Management
in Steam Turbine Business. In: Rivest, L., A. Bouras and B. Louhichi (Eds.): Product
Lifecycle Management. Towards Knowledge-Rich Enterprises. IFIP WG 5.1
International Conference, PLM 2012, Montreal, QC, Canada, July 9-11, 2012,
Revised Selected Papers. IFIP Advances in Information and Communication
Technology, Issue 388. Springer, Berlin, Heidelberg: pp. 170–181.

NAKAMOTO, S. (2008): Bitcoin: A Peer-to-Peer Electronic Cash System. www.bitcoin.org.
In: https://bitcoin.org/bitcoin.pdf.

NARAYANAN, A., J. BONNEAU, E. FELTEN, A. MILLER and S. GOLDFEDER (2016): Bitcoin
and cryptocurrency technologies. A comprehensive introduction. Princeton
University Press, Princeton.

NARAYANAN, A. and J. CLARK (2017): Bitcoin's academic pedigree. The concept of
cryptocurrencies is built from forgotten ideas in research literature. In:
Communications of the ACM 15 (4): pp. 1–30.

NASA (2007): Systems Engineering Handbook. NASA/SP-2007-6105 Rev1. National
Aeronautics and Space Administration, Washington, D.C.

NELSON, H. G. and E. STOLTERMAN (2003): The design way. Intentional change in an
unpredictable world; foundations and fundamentals of design competence.
Educational Technology Publications, Englewood Cliffs, N.J.

NEUMEYER, S., P. LÜNNEMANN, R. WOLL, H. HAYKA and R. STARK (2017): Systems
Engineering im Kontext der unternehmensübergreifenden Produktentwicklung. In:
Schulze, S.-O., C. Tschirner and R. Kaffenberger (Eds.): Tag des Systems
Engineering. Herzogenaurach, 25.-27. Oktober 2016. Hanser, München: pp. 23–32.

NEWCOMB, D. (2012): The next big OS war is in your dashboard. In:
https://www.wired.com/2012/12/automotive-os-war/. Call: 18.9.2018.

NO MAGIC, I. (2015): Cameo DataHub. User Guide 18.1. Allen, TX. In:
https://www.nomagic.com/files/manuals/CameoDataHubUserGuide.pdf. Call:
12.4.2020.

NO MAGIC, I. (2020a): Cameo Systems Modeler - Features. In:
https://www.nomagic.com/products/cameo-systems-modeler#features. Call:
12.4.2020.

NO MAGIC, I. (2020b): User Guide - Defining hyperlinks. In:
https://docs.nomagic.com/display/MD190SP2/Defining+hyperlinks. Call: 12.4.2020.

NORFOLK, D. (2015): PTC Integrity Modeler… a standards-based tool for systems and
software engineering. InDetail. Bloor. In: https://www.ptc.com/-
/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Bloor-
InDetail.pdf?la=en&hash=D41860FAF851610B3C45180221FB398A.

NOY, N. F. and D. L. MCGUINNESS (2001): Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05. Stanford University, Stanford, CA. In:
https://protegewiki.stanford.edu/wiki/Ontology101.

242 References

OASIS (2019): OSLC Core Version 3.0. Part 1: Overview - Project Specification Draft
04. Pennsylvania. In: http://docs.oasis-open.org/oslc-core/oslc-
core/v3.0/csprd03/part1-overview/oslc-core-v3.0-csprd03-part1-overview.html.

OLLERTON, P. (2016): Integrity modeler 8.3 Windchill integration - overview and use
cases. PTC Inc. In:
https://community.ptc.com/sejnu66972/attachments/sejnu66972/Integrity-
Tips/16/1/PTC_IntegrityModeler_8.3_Windchill_Integration-
Overview_and_UseCases.pdf.

OMG (2015): OMG Systems Modeling Language (OMG SysML™). Object Management
Group. In: https://www.omg.org/spec/SysML/1.4/PDF.

ÖZSU, M. T. and P. VALDURIEZ (2011): Principles of Distributed Database Systems, Third
Edition. Springer New York, New York, NY.

PAVALKIS, S. (2016): Towards Industrial Integration of MBSE into PLM for Mission-
Critical Systems. In: INCOSE International Symposium 26 (1): pp. 2462–2477.

PEARCE, P. and M. HAUSE (2012): ISO-15288, OOSEM and Model-Based Submarine
Design. SETE APCOSE 2012.

PEREPA, B. and J. YELLICK (2017): Add an organization to your existing Hyperledger
Fabric blockchain network using an easy tool. Use configtxlator to customize the
Hyperledger Fabric first-network sample. In:
https://developer.ibm.com/technologies/blockchain/tutorials/cl-add-an-organization-
to-your-hyperledger-fabric-blockchain/. Call: 19.4.2021.

PETERSON, L. L. and B. S. DAVIE (2012): Computer networks. A systems approach.
Morgan Kaufmann, Burlington, Mass.

PFENNING, M. (2017): Durchgängiges Engineering durch die Integration von PLM und
MBSE. Schriftenreihe VPE.

PFENNING, M. (2020): Breaking Down the Silos. How Systems Architecture Enables
Interdisciplinary Collaboration. Aras, Gröbenzell.

PFLEEGER, S. L. and S. A. BOHNER (1990): A framework for software maintenance
metrics. In: Institute of Electrical and Electronics Engineers (Ed.): November 26 - 29,
1990, San Diego, Ca. IEEE Comput. Soc. Press: pp. 320–327.

PIMMLER, T. U., EPPINGER, S. D. (1994): Integration analysis of product decompositions.
In: Hight, T. K. and F. Mistree (Eds.): Design theory and methodology, DTM '94.
Presented at the 1994 ASME Design Technical Conferences, 6th International
Conference on Design Theory and Methodology, Minneapolis, Minnesota,
September 11-14, 1994. DE, vol. 68. American Society of Mechanical Engineers,
New York: pp. 343–351.

POHL, K., G. BÖCKLE and F. LINDEN (2005): Software Product Line Engineering.
Foundations, Principles, and Techniques. Springer-Verlag, Berlin, Heidelberg.

POHL, K., H. HÖNNINGER, R. ACHATZ and M. BROY (Eds.) (2012): Model-Based
Engineering of Embedded Systems. The SPES 2020 Methodology. Springer, Berlin,
Heidelberg.

POMBERGER, G. and W. PREE (2004): Software Engineering. Architektur-Design und
Prozessorientierung.

References 243

PONN, J. and U. LINDEMANN (2011): Konzeptentwicklung und Gestaltung technischer
Produkte. Systematisch von Anforderungen zu Konzepten und Gestaltlösungen.
VDI-Buch. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.

PROBST, K. E. (2010): automotiveDAY. Die Business-IT der Zukunft. BMW Group IT.

PROSTEP INC.: Partner Integrations. OSLC Integration. In:
https://prostep.us/home/solutions/partner-integrations/oslc-integration/. Call:
8.11.2022.

PROSTEP IVIP E.V. (2020a): OpenPDM integrate. In:
https://www.prostep.com/en/products-and-solutions/openpdm/openpdm-
integrate.html. Call: 26.4.2020.

PROSTEP IVIP E.V. (2020b): OSLC Integration. OpenPDM Open Services for Lifecycle
Collaboration (OSLC) Adapter. In: https://prostep.us/home/solutions/partner-
integrations/oslc-integration/. Call: 26.4.2020.

PRUSTY, N. (2017): Building Blockchain projects. Building decentralized Blockchain
applications with Ethereum and Solidity. Packt, Birmingham, Mumbai.

PTC INC. (2019): Windchill Modeler data sheet. In: https://www.ptc.com/-
/media/Files/PDFs/ALM/Integrity/PTC-Integrity-Modeler-Data-
Sheet.pdf?la=en&hash=E36AC88752AA3C1ED6F08BF6FA0ABF76.

PTC INC. (2020a): Einführung in Windchill 11. In: https://ptc-
solutions.de/produkte/windchill/windchill-11. Call: 2.5.2020.

PTC INC. (2020b): PTC Integrity Modeler - What's New! In:
https://www.ptc.com/en/products/plm/plm-products/integrity-modeler-what-is-new.
Call: 12.4.2020.

PTC INC. (2020c): Windchill PDMLink for Digital Product Traceability. In:
https://support.ptc.com/help/oslc/dpt/en/index.html#page/oslc_dpt/WCPDMLink/RM
windchill_ALMintegration.html. Call: 2.5.2020.

RAMESH, B. and M. JARKE (2001): Toward reference models for requirements
traceability. In: IEEE Trans. Software Eng. (IEEE Transactions on Software
Engineering) 27 (1): pp. 58–93.

RAVAL, S. (2016): Decentralized applications. Harnessing Bitcoin's Blockchain
technology. O'Reilly Media, Sebastopol, CA.

REARDON, K. (2016): Aras to Present on MBSE at Zuken Innovation World 2016.
Presentation entitled “Beyond ECAD Connectors” Addresses the Model-Based
Systems Engineering Challenges Faced in IoT Design Processes. In:
https://www.aras.com/en/news/press-releases/2016/04/aras-to-present-on-mbse-
at-zuken-innovation-world-2016. Call: 6.11.2022.

REIF, K. (2014): Automobilelektronik. Springer Fachmedien Wiesbaden, Wiesbaden.

REIF, K. (2016): Sensoren im Kraftfahrzeug. Springer Fachmedien Wiesbaden,
Wiesbaden.

RITTBERG, S. (2014): Jahresbericht 2013/2014. Produktsicherheit - Rückrufe. Kraftfahrt-
Bundesamt, Flensburg.

RITTEL, H. W. J. and M. M. WEBBER (1973): Dilemmas in a General Theory of Planning.
In: Policy Sciences 4 (2): pp. 155–169.

244 References

ROBERT BOSCH GMBH (2014): Bosch Automotive Electrics and Automotive Electronics.
Systems and Components, Networking and Hybrid Drive. Springer Fachmedien
Wiesbaden, Wiesbaden.

ROPOHL, G. (2009): Allgemeine Technologie. Eine Systemtheorie der Technik. KIT
Scientific Publishing, s.l.

RYMAN, A. (2013): Linked Data Interfaces. Define REST API contracts for RDF resource
representation. IBM Corporation.

SAKR, S., M. WYLOT, R. MUTHARAJU, D. LE PHUOC and I. FUNDULAKI (2018): Linked Data.
Storing, Querying, and Reasoning. Springer International Publishing, Cham.

SCHÄUFFELE, J. and T. ZURAWKA (2016): Automotive Software Engineering. Grundlagen,
Prozesse, Methoden und Werkzeuge effizient einsetzen. ATZ / MTZ-Fachbuch.
Springer Vieweg, Wiesbaden.

SCHICKER, E. (2017): Datenbanken und SQL. Eine praxisorientierte Einführung mit
Anwendungen in Oracle, SQL Server und MySQL. Informatik & Praxis.

SCHLATT, V., A. SCHWEIZER, N. URBACH and G. FRIDGEN (2016): Blockchain: Grundlagen,
Anwendungen und Potentiale. Projektgruppe Wirtschaftsinformatik des Fraunhofer-
Institut für Angewandte Informationstechnik FIT.

SCHLOTT, S. (2005): Wahnsinn mit Methode. In: Automobil-Produktion (1): pp. 38–42.

SCHUH, G. (2005): Produktkomplexität managen. Strategien - Methoden - Tools. Hanser,
München, Wien.

SCHULTE, T., T. DICKOPF and A. STANDKE (2017a): Integration & CTP-Spezialisierung.
In: Eigner, M., W. Koch and C. Muggeo (Eds.): Modellbasierter Entwicklungsprozess
cybertronischer Systeme. Der PLM-unterstützte Referenzentwicklungsprozess für
Produkte und Produktionssysteme. Springer Vieweg, Berlin.

SCHULTE, T., S. GROß, S. LANGER and L. KIRSCH (2017b): ConfigML – Erste
prototypische Realisierung einer Verwaltung von Modellen mit Modellen im PLM. In:
Schulze, S.-O. et al. (Eds.): Tag des Systems Engineering. Paderborn, 8. -10.
November 2017. Carl Hanser Verlag GmbH & Co. KG, München: pp. 177–186.

SCHULTE, T., M. SCHNEIDER, T. DICKOPF and L. MAYERHOFER (2017c): Erweiterung des
integrierten Konzeptes aus Prozessrahmenwerk und Beschreibungssystematik von
mecPro2 um ein modellbasiertes Variantenmanagement. In: Schulze, S.-O., C.
Tschirner and R. Kaffenberger (Eds.): Tag des Systems Engineering.
Herzogenaurach, 25.-27. Oktober 2016. Hanser, München: pp. 257–268.

SCHULTE, T., M. SCHNEIDER, U. JUDASCHKE and D. BATZ (2017d): Systemmodelle
verwalten mit ConfigML - Motive, Grundlagen und erste Konzepte einer Sprache für
das modellbasierte Konfigurationsmanagement. In: Schulze, S.-O., C. Tschirner and
R. Kaffenberger (Eds.): Tag des Systems Engineering. Herzogenaurach, 25.-27.
Oktober 2016. Hanser, München: pp. 321–332.

SCHÜRR, A. (1995): Specification of graph translators with triple graph grammars. In:
Goos, G. et al. (Eds.): Graph-Theoretic Concepts in Computer Science. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg: pp. 151–
163.

SCHWARZ, H., J. EBERT and A. WINTER (2010): Graph-based traceability. A
comprehensive approach. In: Software & Systems Modeling 9 (4): pp. 473–492.

References 245

SEEPERSAD, C. C., K. PEDERSEN, J. EMBLEMSVÅG, R. BAILEY, J. ALLEN and F. MISTREE
(2006): The Validation Square. How Does One Verify and Validate a Design Method?
In: Lewis, K. E., W. Chen and L. C. Schmidt (Eds.): Decision Making in Engineering
Design. ASME Press: pp. 303–313.

SELLGREN, U. (2009): The journey towards PLM managed and interface-driven design.
In: Malmqvist, J. and G. Gustafsson (Eds.): Proceedings of the 2nd Nordic
Conference on Product Lifecycle Management - NordPLM'09, Göteborg, January 28-
29, 2009: pp. 1–12.

ŞENALTUN, G. and C. CANGELIR (2012): Software Management in Product Structure. In:
Rivest, L., A. Bouras and B. Louhichi (Eds.): Product Lifecycle Management.
Towards Knowledge-Rich Enterprises. IFIP WG 5.1 International Conference, PLM
2012, Montreal, QC, Canada, July 9-11, 2012, Revised Selected Papers. IFIP
Advances in Information and Communication Technology, Issue 388. Springer,
Berlin, Heidelberg: pp. 369–378.

SENDLER, U. (2009): Das PLM-Kompendium. Referenzbuch des Produkt-Lebenszyklus-
Managements. Xpert.press. Springer, Berlin, Heidelberg.

SIEMENS INDUSTRY SOFTWARE INC. (2019): Software Design Management and PLM-ALM
Integration in Teamcenter 11.3. In:
https://community.sw.siemens.com/s/article/software-design-management-and-
plm-alm-integration-in-teamcenter-11-3. Call: 26.4.2020.

SIEMENS INDUSTRY SOFTWARE INC. (2020a): Teamcenter. In:
https://www.plm.automation.siemens.com/global/de/products/teamcenter/. Call:
7.4.2020.

SIEMENS INDUSTRY SOFTWARE INC. (2020b): Teamcenter provides strategic pillar for
aerospace firm as it seeks to grow its business. Using Siemens Digital Industries
Software solutions enables ITP to improve traceability and efficiency while enhancing
quality. In: https://www.plm.automation.siemens.com/global/de/our-
story/customers/industria-de-turbo-propulsores/66227/. Call: 7.4.2020.

SIMON, H. A. and J. E. LAIRD (2019): The sciences of the artificial. The MIT Press,
Cambridge, Massachusetts, London, England.

SINDERMANN, S. (2014): Schnittstellen und Datenaustauschformate. In: Eigner, M., D.
Roubanov and R. Zafirov (Eds.): Modellbasierte virtuelle Produktentwicklung.
Springer Vieweg, Berlin: pp. 327–347.

SIXT, E. (2017): Bitcoins und andere dezentrale Transaktionssysteme. Blockchains als
Basis einer Kryptoökonomie. Springer Gabler, Wiesbaden.

SODIUS CORP. (2020): OSLC Connect for Windchill. In:
https://www.sodiuswillert.com/en/products/oslc-connect-for-windchill. Call: 2.5.2020.

SORNIOTTI, A. and J. YELLICK (2018): Chaincode lifecycle - 2.0 improvements. In:
https://jira.hyperledger.org/browse/FAB-11237. Call: 13.8.2021.

SPARX SYSTEMS PTY LTD. (2020a): Enterprise Architect - Compare Editions. In:
https://sparxsystems.com/products/ea/compare-editions.html. Call: 12.4.2020.

SPARX SYSTEMS PTY LTD. (2020b): OSLC Architecture Management v2.0. In:
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_repository/o
slc_am_top.html. Call: 12.4.2020.

246 References

SPATH, D. (Ed.) (2013): Produktionsarbeit der Zukunft - Industrie 4.0. [Studie].
Fraunhofer-Verl., Stuttgart.

SPATH, D., E. WESTKÄMPER, H.-J. BULLINGER and H.-J. WARNECKE (2017): Neue
Entwicklungen in der Unternehmensorganisation. VDI-Buch Ser. Vieweg, Berlin,
Heidelberg.

STAREPRAVO, I. (2019): How Automotive OEMs Partner with Startups to Create New
Opportunities. The Startup. In: https://medium.com/swlh/how-automotive-oems-
partner-with-startups-to-create-new-opportunities-7d271bf650a7. Call: 22.4.2019.

STARK, J. (2015): Product Lifecycle Management (Volume 1). 21st Century Paradigm
for Product Realisation. Springer International Publishing, Cham.

STARK, J. (2016): Product Lifecycle Management (Volume 2). The Devil is in the Details.
Decision Engineering. Springer International Publishing AG Switzerland, Cham.

STELZER, R. (Ed.) (2014): Entwerfen Entwickeln Erleben 2014. Beiträge zur virtuellen
Produktentwicklung und Konstruktionstechnik, Dresden, 26.-27. Juni 2014.
TUDpress; Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek
Dresden, Dresden, Dresden.

STEPHAN, N. K. (2013): Vorgehensmodell zur Unterstützung der interdisziplinären und
föderierten Zusammenarbeit in der frühen Phase der Produktentstehung. Am
Beispiel der Nutzfahrzeugindustrie. Kaiserslautern, Techn. Univ., Diss., 2013. KIMA-
Schriftenreihe, Issue 9. Technische Universität, Kaiserslautern.

STIEFEL, P. (2011): Eine dezentrale Informations- und Kollaborationsarchitektur für die
unternehmensübergreifende Produktentwicklung. Vieweg+Teubner Verlag,
Wiesbaden.

STIGLITZ, J. E. (2010): Freefall. Free markets and the sinking of the global economy.
Penguin Books, London.

STJEPANDIĆ, J., H. LIESE and A. J. C. TRAPPEY (2015a): Intellectual property protection.
In: Stjepandić, J., N. Wognum and W. J. C. Verhagen (Eds.): Concurrent engineering
in the 21st century. Foundations, developments and challenges. Springer, Cham: pp.
521–551.

STJEPANDIĆ, J., N. WOGNUM and W. J. C. VERHAGEN (Eds.) (2015b): Concurrent
engineering in the 21st century. Foundations, developments and challenges.
Springer, Cham.

STÖCKERT, H. (2011): Fehlervermeidung an Schnittstellen-Prozessen der verteilten
Produktentwicklung. Dissertation. Technische Universität Berlin, Berlin.

STRINGHAM, G. (2010): Hardware/firmware interface design. Best practices for improving
embedded systems development. Newnes, Amsterdam.

SUTINEN, K., L. ALMEFELT and J. MALMQVIST (2000): Implementation of Requirements
Traceability in Systems Engineering Tools.

SUTINEN, K., L. ALMEFELT and J. MALMQVIST (2002): Supporting Concept Development
Using Quantitative Requirements Traceability.

TECHNICAL OPERATIONS INTERNATIONAL COUNCIL ON SYSTEMS ENGINEERING (2007):
Systems Engineering Vision 2020. INCOSE-TP-2004-004-02. San Diego.

TOMIZUKA, M. (2000): Mechatronics. From the 20th to 21st Century. In: IFAC
Proceedings Volumes 33 (26): pp. 1–10.

References 247

TORKAR, R., T. GORSCHEK, R. FELDT, M. SVAHNBERG, U. A. RAJA and K. KAMRAN (2012):
Requirements Traceability. A systematic review and industry case study. In:
International Journal of Software Engineering and Knowledge Engineering 22 (03):
pp. 385–433.

TRIPPNER, D., S. RUDE and A. SCHREIBER (2015): Challenges to Digital Product and
Process Development Systems at BMW. In: Stjepandić, J., N. Wognum and W. J. C.
Verhagen (Eds.): Concurrent engineering in the 21st century. Foundations,
developments and challenges. Springer, Cham: pp. 555–569.

ULRICH, H. and G. J. B. PROBST (1988): Anleitung zum ganzheitlichen Denken und
Handeln. Ein Brevier für Führungskräfte. Haupt, Bern u.a.

VACHER, A., D. BRISSAUD and S. TICHKIEWITCH (2007): Towards a framework for
managing conceptual knowledge in distributed and collaborative R&D projects. In:
Krause, F.-L. (Ed.): The Future of Product Development. Proceedings of the 17th
CIRP Design Conference. Springer-Verlag, Berlin, Heidelberg: pp. 311–318.

VAJNA, S. (2009): CAx für Ingenieure. Eine praxisbezogene Einführung. Springer, Berlin
u.a.

VAN RANDEN, H. J., C. BERCKER and J. FIEML (2016): Einführung in UML. Analyse und
Entwurf von Software. Springer Vieweg, Wiesbaden.

VDA QUALITY MANAGEMENT CENTER (2017): Automotive SPICE - Process reference
model, process assessment model, version 3.1.

VEREIN DEUTSCHER INGENIEURE (1987): VDI 2235 - Wirtschaftliche Entscheidungen beim
Konstruieren - Methoden und Hilfen. VDI-Gesellschaft Produkt- und
Prozessgestaltung, Düsseldorf.

VEREIN DEUTSCHER INGENIEURE (1993): Systematic approach to the development and
design of technical systems and products (VDI 2221). VDI-Gesellschaft Entwicklung
Konstruktion Vertrieb, Düsseldorf.

VEREIN DEUTSCHER INGENIEURE (2004a): Systematic embodiment design of technical
products (VDI 2223). VDI-Gesellschaft Entwicklung Konstruktion Vertrieb,
Düsseldorf.

VEREIN DEUTSCHER INGENIEURE (2004b): VDI 2206 - Design methodology for
mechatronic systems. VDI-Gesellschaft Produkt- und Prozessgestaltung. Call:
27.7.2017.

VEREIN DEUTSCHER INGENIEURE (2014): VDI 2219 - Information technology in product
development – Introduction and usage of PDM systems (VDI 2219). VDI-
Gesellschaft Produkt- und Prozessgestaltung, Düsseldorf.

VOSGIEN, T., T. NGUYEN VAN, M. JANKOVIC, B. EYNARD and J.-C. BOCQUET (2012):
Towards Model-Based System Engineering for Simulation-Based Design in Product
Data Management Systems. In: Rivest, L., A. Bouras and B. Louhichi (Eds.): Product
Lifecycle Management. Towards Knowledge-Rich Enterprises. IFIP WG 5.1
International Conference, PLM 2012, Montreal, QC, Canada, July 9-11, 2012,
Revised Selected Papers. IFIP Advances in Information and Communication
Technology, Issue 388. Springer, Berlin, Heidelberg: pp. 612–622.

VOSHMGIR, S. (2016): Blockchains, Smart Contracts und das Dezentrale Web.
Technologiestiftung Berlin, Berlin.

248 References

WADE, J., R. ADCOCK, T. MCDERMOT and L. STRAWSER (2018): Future Systems
Engineering Research Directions. In: Madni, A. M. et al. (Eds.): Disciplinary
Convergence in Systems Engineering Research. Springer International Publishing,
Cham: pp. 1165–1179.

WALDEN, D. D., G. J. ROEDLER, K. FORSBERG, R. D. HAMELIN and T. M. SHORTELL (Eds.)
(2015): Systems engineering handbook. A guide for system life cycle processes and
activities; INCOSE-TP-2003-002-04, 2015. Wiley, Hoboken, NJ.

WALLMÜLLER, E. (2011): Software quality engineering. Ein Leitfaden für bessere
Software-Qualität. Hanser Verlag, München.

WATTS, F. B. (2011): Engineering documentation control handbook. Configuration
management and product lifecycle management.

WEBER, R., P. REINKEMEIER, E. THADEN and A. BAUMGART (2012): Specification of an
Architecture Meta-Model. OFFIS Technical Report. OFFIS, Oldenburg.

WEHN, N. (2013): System Modelling HW/SW Co-Design Optimization. Lecture notes.
Technische Universität Kaiserslautern, Lehrstuhl Entwurf Mikro-elektronischer
Systeme.

WEILKIENS, T. (2008): Systems Engineering with SysML/UML. Modeling, Analysis,
Design. The MK / OMG Press. Elsevier professional, s.l.

WEILKIENS, T., A. SCHEITHAUER, M. DI MAIO and N. KLUSMANN (2016): Evaluating and
comparing MBSE methodologies for practitioners. In: Institute of Electrical and
Electronics Engineers (Ed.): 2016 IEEE International Symposium on Systems
Engineering (ISSE). IEEE: pp. 1–8.

WIEHMEIER, M. (2017): Start-ups im Automobilsektor: Erhöhter finanzieller Einsatz für
Gründer. In: https://www.oliverwyman.de/media-center/2017/Erhoehter-finanzieller-
Einsatz-fuer-Grunder.html. Call: 22.4.2019.

WIERINGA, R. J. (1995): An Introduction to Requirements Traceability. IR-389. Free
University, Faculty of Mathematics and Computer Science, Amsterdam.

WINKLER, S. and J. von PILGRIM (2009): A survey of traceability in requirements
engineering and model-driven development. In: Software & Systems Modeling 9 (4):
pp. 529–565.

WINNER, H., S. HAKULI, F. LOTZ and C. SINGER (Eds.) (2015): Handbuch
Fahrerassistenzsysteme. Grundlagen, Komponenten und Systeme für aktive
Sicherheit und Komfort. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden.

WINZER, P. (2016): Generic Systems Engineering. Ein methodischer Ansatz zur
Komplexitätsbewältigung. Springer Vieweg, Berlin, Heidelberg.

WOGNUM, N. and R. CURRAN (2013): Current Concurrency in Pratice. In: Stjepandić, J.,
G. Rock and C. Bil (Eds.): Concurrent Engineering Approaches for Sustainable
Product Development in a Multi-Disciplinary Environment. Proceedings of the 19th
ISPE International Conference on Concurrent Engineering. Springer, London: pp. 3–
14.

WOSS, W. (1997): A rule-driven generator for variant parts and variant bills of material.
In: IEEE Computer Society (Ed.): Database and Expert Systems Applications. 8th
International Conference, DEXA '97. Proceedings. IEEE Computer Society Press:
pp. 556–561.

References 249

ZAFIROV, R. (2014): Modellbildung und Spezifikation. In: Eigner, M., D. Roubanov and
R. Zafirov (Eds.): Modellbasierte virtuelle Produktentwicklung. Springer Vieweg,
Berlin: pp. 77–96.

ZAFIROV, R. (2017): Model-based systems engineering methods for integrated product
design, process planning, and production systems design. Dissertation. Technische
Universität Kaiserslautern.

ZAFIROV, R. and D. ROUBANOV (2014): Elektrik und Elektronik (E-CAD). In: Eigner, M.,
D. Roubanov and R. Zafirov (Eds.): Modellbasierte virtuelle Produktentwicklung.
Springer Vieweg, Berlin: pp. 137–159.

ZAWIŚLAK, S. and J. RYSIŃSKI (Eds.) (2017): Graph-based modelling in engineering.
Mechanisms and machine science, Volume 42. Springer, Cham.

ZENGLER, C. and W. KÜCHLIN (2013): Boolean Quantifier Elimination for Automotive
Configuration – A Case Study. In: Dierkes, M. and C. Pecheur (Eds.): Formal
Methods for Industrial Critical Systems. 18th International Workshop, FMICS 2013,
Madrid, Spain, September 23-24, 2013, Proceedings. Lecture Notes in Computer
Science / Programming and Software Engineering, v.8187. Springer Berlin
Heidelberg, Berlin/Heidelberg: pp. 48–62.

ZIMMERMANN, W. and R. SCHMIDGALL (2014): Bussysteme in der Fahrzeugtechnik.
Protokolle, Standards und Softwarearchitektur. ATZ / MTZ-Fachbuch. Springer
Vieweg, Wiesbaden.

	Folie 1

