4 research outputs found

    A Representation for Serial Robotic Tasks

    Get PDF
    The representation for serial robotic tasks proposed in this thesis is a language of temporal constraints derived directly from a model of the space of serial plans. It was specifically designed to encompass problems that include disjunctive ordering constraints. This guarantees that the proposed language can completely and, to a certain extent, compactly represent all possible serial robotic tasks. The generality of this language carries a penalty. The proposed language of temporal constraints is NP-Complete. Specific methods have been demonstrated for normalizing constraints posed in this language in order to make subsequent sequencing and analysis more tractable. Using this language, the planner can specify necessary and alternative orderings to control undesirable interactions between steps of a plan. For purposes of analysis, the planner can factor a plan into strategies, and decompose those strategies into essential components. Using properly normalized constraint expressions the sequencer can derive admissible sequences and admissible next operations. Using these facilities, a robot can be given the specification of a task and it can adapt its sequence of operations according to run-time events and the constraints on the operations to be performed

    Robotic workcell analysis and object level programming

    Get PDF
    For many years robots have been programmed at manipulator or joint level without any real thought to the implementation of sensing until errors occur during program execution. For the control of complex, or multiple robot workcells, programming must be carried out at a higher level, taking into account the possibility of error occurrence. This requires the integration of decision information based on sensory data.Aspects of robotic workcell control are explored during this work with the object of integrating the results of sensor outputs to facilitate error recovery for the purposes of achieving completely autonomous operation.Network theory is used for the development of analysis techniques based on stochastic data. Object level programming is implemented using Markov chain theory to provide fully sensor integrated robot workcell control
    corecore