
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 May 1987

A Representation for Serial Robotic Tasks A Representation for Serial Robotic Tasks

Barry Ross Fox

Arlan R. Dekock
Missouri University of Science and Technology, adekock@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fox, Barry Ross and Dekock, Arlan R., "A Representation for Serial Robotic Tasks" (1987). Computer
Science Technical Reports. 86.
https://scholarsmine.mst.edu/comsci_techreports/86

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/86?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A REPRESENTATION FOR
SERIAL ROBOTIC TASKS

Barry Ross Fox* and Arlan R.
CSc-87-6

DeKock

*This report is substantially the PhD dissertation of the first
author, completed Spring, 1987.

ii

ABSTRACT
The representation for serial robotic tasks proposed in

this thesis is a language of temporal constraints derived
directly from a model of the space of serial plans. It was
specifically designed to encompass problems that include
disjunctive ordering constraints. This guarantees that the
proposed language can completely and, to a certain extent,
compactly represent all possible serial robotic tasks. The
generality of this language carries a penalty. The proposed
language of temporal constraints is NP-Complete. Specific
methods have been demonstrated for normalizing constraints
posed in this language in order to make subsequent
sequencing and analysis more tractable. Using this language,
the planner can specify necessary and alternative orderings
to control undesirable interactions between steps of a plan.
For purposes of analysis, the planner can factor a plan into
strategies, and decompose those strategies into essential
components. Using properly normalized constraint expressions
the sequencer can derive admissible sequences and admissible
next operations. Using these facilities, a robot can be
given the specification of a task and it can adapt its
sequence of operations according to run-time events and the
constraints on the operations to be performed.

iii

ACKNOWLEDGEMENTS

The author would like to acknowledge the contributions
of Arlan DeKock, George Zobrist, Stephen Cameron, Stan
Green, and Karl Kempf. The research reported in this thesis
was supported in part by the McDonnell Douglas Independent
Research and Development Program. This thesis is dedicated
to the memory of Phillip Arlo Fox (1912-1987).

IV

TABLE OF CONTENTS

Page
ABSTRACT.. ii
ACKNOWLEDGEMENTS ... iii
TABLE OF CONTENTS.. iv
LIST OF ILLUSTRATIONS......................................vi

I. INTRODUCTION ... 1
II. STATEMENT OF THE PROBLEM........................... 3

A PLANNING,SEQUENCING, AND EXECUTION 3
B. SEQUENCING..8

1. Job Shop Scheduling........................... 12
2. Assembly Line Balancing....................... 19
3. Sequencing the Activities of a Robot........ 2 6

C. RESTRICTION OF THE PROBLEM DOMAIN...............3 4
III. SURVEY OF THE CANDIDATE REPRESENTATIONS 37

A. THE CANONICAL REPRESENTATION OF PLANS 38
B. FOUR CRITERIA FOR COMPARISON.....................4 3
C. A SIMPLE ASSEMBLY PROBLEM 47
D. THE CANDIDATE REPRESENTATIONS 47

1. State Transition Networks 50
2 . And/Or Graphs................................. 58
3. Ordered Sets................................... 67
4. Petri Nets.....................................84

E. DISCUSSION....................................... 92
IV. THE PROPOSED REPRESENTATION........................97

A. GENESIS.. 97
B. SYNTAX... 98

V

C. SEMANTICS.. 100
D. COMPARISON UNDER THE FOUR CRITERIA.............. 101

1. The Simple Assembly Problem 101
2. Completeness and Compactness 101
3. Utility to the Planner....................... 102
4. Utility to the Sequencer.................... 105

E. SUMMARY... 14 0
V. CONCLUSIONS.. 14 2

BIBLIOGRAPHY .. 145
VITA... 154

vi

LIST OF ILLUSTRATIONS
Figures Page
1. Six possible sequences over {A,B,C}.................. 40
2. Sixty-four possible plans over {A,B,C} 41
3. The Boolean lattice of plans over {A,B,C}............42
4. A simple product of four parts....................... 48
5. Twelve admissible sequences for the simpleassembly problem 49
6. State transition network for the simple assemblyproblem... 52
7. Construction of the state transition network for thesimple assembly problem 55
8. And/or graph representation of the simple assemblyproblem... 59
9. Revised And/Or graph representation of the simple

assembly problem 53
10. Simplified And/Or graph representation of the simpleassembly problem 64
11. Six linear plans over {A,B,C}........................ 70
12. A restricted plan for the simple assembly problem ... 71
13. Canonical representation of the plan "B Not Last” ... 75
14. Two precedence diagrams which approximate the plan"B Not Last"... 7 6
15. Nineteen partially ordered plans over {A,B,C} 77
16. Four precedence diagrams which approximate the planfor the simple assembly problem 79
17. Thirteen possible interval relationships 83
18. Equivalent Petri net of the state transition networkof Figure 6 ... 86
19. Equivalent Petri net of the precedence diagram ofFigure 1 2 ... 88
20. Petri net representation of the plan defined in Figure 13 89

V l l

21. Petri net representation of the plan defined inFigure 5 .. 91
22. Extended precedence diagram notation for fivedisjunctive constraints 95
23. The gearbox assembly 104
24. Temporal constraints on the gearbox assembly.... . 106
25. Positive temporal constraints on the gearboxassembly .. 112
26. Two conjunctive clauses which cover the admissiblesequences for the gearbox assembly 113
27. Derivation of the disjunctive normal form of asimple constraint expression 120
28. Two conjunctive clauses which satisfy the simpleconstraint expression 123
29. The constraint expression for the second gearboxassembly problem 124
30. Comparison of 318 strategies over six operations. ..130
31. The zig-zag relationship which requires theapplication of decomposition rule 3 13 3
32. The decomposition of one of the strategies for thegearbox assembly 134

1

I. INTRODUCTION

Automated manufacturing systems are quickly evolving
from hard automation to programmable hardware and software.
That evolution is made possible by a variety of
technological advances. At the same time many of the
technological advances are driven by the requirements of
current and future applications. The availability of
programmable robots has made it possible to replace complex,
custom assembly hardware with robots which can adapt to new
tasks simply by changing tools and software. The
availability of programmable vision systems has made it
possible to eliminate complex, custom parts presentation
hardware and to make parts available on simple pallets or in
bins. Advanced sensors and sophisticated robot programming
languages have made it possible for robots to detect error
conditions and to recover from those errors by corrective
actions or by pursuing alternative courses of action.
Systems have been proposed which require robots to adapt not
just to error conditions but more generally to the
dynamically changing state of the world. For example, it has
been frequently proposed that robots, with suitable
intelligence and autonomy, can be used for assembly and
maintenance operations in remote or hazardous environments
such as deep space-1- or within the containment vessel of a

-^Schenker, P. S., NASA Telerobotics Research: program objectives and technology outreach, presentation at NASA/JPL Space Telerobotics Workshop, Pasedena, Calif, 1987 .

2

damaged nuclear reactor2. In those situations it is
impossible to prepare the environment in advance in order to
structure and simplify the robot's task, nor is it possible
to intervene when the robot encounters unexpected
conditions. Such proposals necessitate the development of
new robotic and artificial intelligence technologies.

2Rembold, U., Levi, P., Sensors and control for autonomous robots, in Proceedings Intelligent Autonomous Systems
Amsterdam, The Netherlands, 1986, pp. 79-89.

3

II. STATEMENT OF THE PROBLEM

A. PLANNING. SEQUENCING. AND EXECUTION
An intelligent autonomous robot operating in a remote

unstructured environment must have three capabilities.
First, it must be able to create a plan or course of action
according to the present state of the world, a goal state of
the world, and some knowledge of its own abilities. Second,
it must be able to determine a sequence of actions according
to the constraints on the steps of the plan and the evolving
state of the world. Finally, it must be able to produce the
desired effect of those actions according to its abilities
and the current state of the world. This three part
delineation of capabilities follows the traditional
boundaries between artificial intelligence, operations
research, and robotics. The distinctions are conceptually
useful but should not be construed as absolute.

The first capability, planning, has received
considerable attention from the artificial intelligence
community. In a general sense, planning is the process which
derives a course of action which, when executed, will
achieve a desired goal. More precisely, a planner is given a
symbolic representation of an initial state of a system, a
goal state of that system, and a set of operations which can
be used to effect changes in that system. The plan which the
planner produces consists of a subset of those operations
plus some prescription for their order of execution.

4

Planning has always been recognized as a difficult
problem and most of the literature is concerned with
techniques which make planning more tractable. The earliest
planning systems3'4 searched, in chronological order, from
an initial state of the world through the space of world
states which were reachable by the application of the
available operators. Later, non-linear planning methods5
were developed because the linear representation of plans,
used by the earlier systems, frequently imposed artificial
constraints on the order of execution. Those artificial
constraints often prevented the plan under construction from
being successful. In contrast, the non-linear planners
represented plans as a set of actions coupled with only the
most necessary constraints on the ordering of those actions.
When a non-linear plan was successfully produced a linear
sequence was derived from those necessary ordering
constraints. The earliest planning systems produced plans by
searching for a sequence of operations which leads from the
initial state to the goal state. Later hierarchical

3Fikes, R.E. and Nilsson, N.J., STRIPS: A new approach to the application of theorem proving to problem solving, Artificial Intelligence 2 (1971), 189-208.
4Sussman, G.J., A computational model of skill
acquisition, Ph.D. dissertation, AI Technical Report 297, AI Laboratory, Massachusetts Institute of Technology, 1973.

5Sacerdoti, E.D., A structure for plans and behavior,Ph.D. dissertation, Technical Note 109, AI Center, SRI International, Inc., Menlo Park, Calif., 1975.

5

planners6 produced plans by constructing a hierarchy of
goals and sub-goals. Such planners decomposed the given
problem into a set of sub-goals which must be achieved and
those in turn were decomposed until the given problem had
been reduced to a set of primitive operations to be
performed. Other planning systems7'8 have attempted to take
advantage of specific knowledge of the problem domain by
producing plans from a library of basic templates; these
templates are then modified and refined according to the
specific problem under consideration. Current research in
planning is quite polarized. Some research is concerned with
formal, domain independent methods for prescribing goals and
actions and with formal methods for deriving plans9. Other
research adopts the thesis that realistic planning is
dominated by domain specific knowledge and heuristics10. The

6Tate, A., Project planning using a hierarchic non-linear planner, Report Number 25, AI Research Department, University of Edinburgh, 1976.
7Friedland, P.E., Knowledge-based experiment design in molecular genetics, Ph.D. dissertation, Report Number 79- 771, Computer Science Department, Stanford University, 1979.
8Stefik, M.J., Planning with constraints. Ph.D. dissertation, Report Number 80-784, Computer Science Department, Stanford University, 1980.
9Chapman, D., Non-linear planning: a rigorous reconstruction, in Proceedings Ninth International Joint
Conference on Artificial Intelligence. Los Angeles, Calif., 1985, pp. 1022-1024.

10Cheeseman, P., Overview of planning/scheduling problems and procedures, in Proceedings NASA/JPL Space Telerobotics Workshop. Pasedena, Calif., 1987 (to
appear).

6

debate over the appropriate representation for plans
continues with various formal languages11'12 and models13 in
contention.

The second capability, sequencing, serves to reconcile
the constraints imposed by the planner with the constraints
imposed by the executor and the execution time environment.
In a general sense, sequencing is the process which
determines the order for executing the operations prescribed
by a plan. That order must be consistent with the
constraints imposed by the planner and it must be consistent
with the availability of the resources which are required by
the executor, i.e., an operation can be performed only after
the necessary predecessor operations have been completed and
only when the necessary resources are available.

The third capability required by an autonomous robot is
the ability to produce the desired effect of the actions
prescribed by the planner and ordered by the sequencer.
Ultimately, the responsibility of the executor is to map
abstract operations, such as install-retaining-clip, into a

11Cheeseman, P., A representation of time for automatic planning, in Proceedings Second IEEE International
Conference on Robotics and Automation. Atlanta, Georgia, 1983, pp. 513-518.
^Allen, J.F. and Koomen, J.A., Planning using a temporal world model, in Proceedings Eighth International Joint Conference on Artificial Intelligence. Karlsruhe, West Germany, 1983, pp. 741-747.
iJDrummond, M., Plan Nets: a formal representation of
action and belief for automatic planning systems, Ph.D. Dissertation, Department of Artificial Intelligence, University of Edinburgh, 1986.

7

combination of real physical motions. These operations must
be at an appropriate level of abstraction for the planner,
which must reason about high-level goals and effects, but at
the same time be at an appropriate level of abstraction for
the executor, which must produce the desired effects. From
this perspective, an abstract operation is simply a goal and
execution may involve the recursive invocation of planning,
sequencing, and execution over a domain of more primitive
goals, operations, and constraints. For example the abstract
operation, install-retaining-clip, involves the processes of
locating the part, identifying the target location,
acquiring the part, moving the part from the source to
target locations, and successfully mating the part with the
previously installed components. Hence an essential element
of an autonomous intelligent system is a vocabulary of
abstract operations which the planner and sequencer can
treat as atomic even though the executor may decompose those
operations into a vocabulary of more primitive operations.
Current robotics research is involved in the definition and
implementation of primitive operations, such as parts
recognition14, grasp planning15, trajectory planning16, and

14Bolles, R.C. and Cain, R.A., Recognizing and locating partially visible objects: the local-feature-focus method, International Journal of Robotics Research 1 (1982), 57-82.
15Salisbury, J.K. and Craig, J.J., Articulated hands: force control and kinematic issues, International Journal of Robotics Research 1 (1982), 4-17.
16Lozano-Perez, T., A simple motion planning algorithm for general robot manipulators, in Proceedings Fifth National

8

parts mating17 which can be used to implement a vocabulary
of abstract operations.

B. SEQUENCING
Sequencing and scheduling problems have traditionally

fallen within the domain of operations research and because
of extensive study in the field these problems have been
divided into many specific categories. Among these are the
problems of assembly line balancing, job shop scheduling,
timetable scheduling, project scheduling, and routing. These
categories are distinguished by the kinds of activities to
be scheduled, the kinds of constraints on those activities,
and the nature of the costs associated with them. Each
category of scheduling problem is an abstraction of some
frequently occurring real world problems. The expectation is
that effective methods for solving these abstract problems
will produce cost saving solutions to the real world
problems. At the same time, each category of scheduling
problem is associated with a fundamental combinatorial
problem which best characterizes the essential nature of

Conference on Artificial Intelligence Philadelphia, Penn., 1986.
17Lozano-Perez, T., Mason, M.T., and Taylor, R.H.,
Automatic synthesis of fine-motion strategies for robots, in Robotics Research: The First International Symposium M. Brady and R. Paul (eds), MIT Press, Cambridge, Mass., 1984.

9

that problem, for instance bin packing, graph coloring, or
the traveling salesman problem18.

Often in the Operations Research literature the term
scheduling is used interchangeably with the term sequencing.
In this thesis every attempt will be made to use the two
terms consistently according to the following conventions:
sequencing is the process of determining the relative
ordering of the operations under consideration and
scheduling is the process of determining the absolute time
of occurrence for those operations. Clearly, relative
orderings can be directly derived from absolute times of
occurrence. In many problems the reverse is also true,
absolute times of occurrence can be derived from a
combination of the relative orderings and the expected
durations of a set of operations.

Discussion of sequencing and scheduling problems
invariably involves some discussion of algorithms and
efficiency. A few historical comments and some basic
definitions will help give some perspective on the
complexity of sequencing and scheduling.

Successful application of linear programming in
planning the rate of production and distribution of
materials quite naturally led to attempts to develop
efficient, optimal algorithms for sequencing and scheduling
the discrete activities of production and distribution. In

18Garey, M.R. and Johnson, D.S., Computers andIntractability; A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

10

most cases these attempts were constantly frustrated. For
example, the following comment is typical of early research
in job-shop scheduling:

"The general job-shop problem is a fascinating challenge. Although it is easy to state, and to visualize what is required, it is extremely difficult to make any progress whatever toward a solution. Many proficient people have considered the problem, and all have come away essentially empty-handed. Since this frustration is not reported in the literature, the problem continues to attract investigators, who just cannot believe that a problem so simply structured can be so difficult, until they have tried it."19
Other authors, involved in assembly line balancing,
recognized the essential difficulty of their problem but
perceived that the failure to solve the problem was due to a
failure to find just the right algorithm.

"As noted by Kilbridge and Wester most, if not all, of the mathematically based methods proposed for line balancing problems seem to be impractical for realistically sized problems. This is due to
the amount of enumeration that they all require.Our suggestion is likely to suffer from the same defect; the required enumeration of all feasible orderings will probably be impractical for 'large' problems."20
Later developments in the theory of computability and

complexity made it possible to understand the essential
difficulty of these problems. Most of the apparently
intractable sequencing and scheduling problems are provably
NP-Hard. Although it has not yet been proven, it is

19Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory of Scheduling. Addison-Wesley, Reading, Mass., 1967, p. 103.
20Klein, M., On assembly line balancing, Operations Research 11 (1963), 281.

11

generally believed that any deterministic algorithm for the
solution of an NP-Hard problem will require execution time
which is exponentially related to the size of the given
instance of the problem.

Technically/ a problem is NP-Hard if it can be shown
that a polynomial-time deterministic algorithm for that
problem can be used to produce a polynomial-time
deterministic algorithm for some NP-Complete problem. The
NP-Complete problems are so related that a polynomial time
deterministic algorithm for one can be used to construct a
polynomial-time deterministic algorithm for any of them. The
NP-Complete problems share the additional property that the
best known deterministic algorithms for their solution
require exponential execution time. It is generally
believed, although it has not yet been proven, that no
polynomial-time deterministic algorithm will ever be found
for the NP-Complete problems. If this is true then no
polynomial-time deterministic algorithm will ever be found
for the NP-Hard problems either.

Current research in sequencing and scheduling
specifically addresses the apparent intractability of these
problems. For some researchers, the emphasis is on finding
specific subclasses of these problems which do have
efficient algorithms. For others, the emphasis is on finding
methods v/hich generally reduce the amount of time required
co find the optimal solution, or which improve the quality
of solution found in a fixed amount of time. Still others

12

pursue higher-order methods which balance the increasing
cost of increasingly accurate heuristics with the decreasing
return which they yield.

1. Job Shop Scheduling. In one sense, the most general
sequencing problem is the job shop scheduling problem which
involves sequencing the execution of multiple activities
making use of multiple resources. One model of the job shop
scheduling problem2 -̂ is defined by a set of machines and a
set of jobs. Each job is composed of a set of steps and a
precedence relation over those steps, and each step requires
a specific processing time on a specific machine. A solution
to a given job shop scheduling problem consists of an
assignment of each job step to a machine and an interval of
time such that the job steps obey the given precedence
constraints and the machines are dedicated to only one job
step at a time. The goal is to find a solution which
minimizes the cost of production, as defined by some
objective function, such as the time required to complete
all of the jobs. This can be properly viewed as a sequencing
problem since all of the absolute time intervals can be
derived from the expected durations of the job steps and the
relative ordering of jobs steps over the resources. Some
variations of this model require that all machines are
identical, or that all processing times are identical, or
that the precedence constraints within a job are strictly
linear. Other variations restrict jobs to single steps, but

2■'■Conway, Maxwell, and Miller, Theory of Scheduling.

13

admit precedence constraints between jobs. The scope of the
job shop scheduling problem is so broad that most texts on
the matter introduce some classification scheme in the early
chapters.22/23

Like most sequencing and scheduling problems, the job
shop problem is NP-hard. This is demonstrated by proving
that an arbitrary instance of the NP-Complete problem known
as 3-Satisfiability can be encoded as an instance of job
shop scheduling in polynomial time24. If the job shop
scheduling problem could be solved deterministically in
polynomial time then a given instance of the
3-Satisfiability problem could be encoded as a job shop
scheduling problem and solved in polynomial time. (The total
execution time would be the sum of the time required to
encode the problem and the time required to solve the
problem. The sum of two polynomial functions is itself a
polynomial function.) Because of the apparent intractable
nature of the problem, current job shop scheduling research
has focused on heuristic methods or on special cases of the
problem.

22Section 1-3: A Classification of Scheduling Problems, in Conway, Maxwell, and Miller, Theory of Scheduling.
23Section 2: A Classification of Scheduling Problems, in Scheduling and Sequencing, Michael S. Salvador, Handbook of Operations Research: models and applications. Moder, J.J. and Elmaghraby, S. E. (eds), Van Nostrand Reinhold, New York, 1978.
24Ullman, J. D., NP-complete scheduling problems, Journal of Computer and System Sciences 10 (1975), 384-393.

14

Two kinds of heuristics are frequently proposed in the
literature: those which generally reduce the time required
to find an optimal solution, and those which generally
produce good solutions in a limited amount of time. Examples
of the former are usually based upon a heuristic search
strategy, such as branch-and-bound or A*25. Examples of the
latter are usually based upon some dispatch rule which
determines the priority of jobs waiting to be processed.
Although branch-and-bound methods do significantly prune the
search space, they are somewhat unpredictable. Moreover, the
search space for job shop scheduling problems is so large
that even branch-and-bound algorithms are effectively
limited to small problems. For such reasons most job shop
scheduling research has focused on the latter category of
heuristics.

Scheduling algorithms based upon dispatching rules are
very simple. They determine the assignment of job steps to
time intervals by simulating the jobs, the machines, the
advance of time, and the application of the dispatching
rule. Each time a machine completes a job step the simulator
identifies all job steps which are waiting for that machine
and schedules the one that has the highest priority
according to the given dispatching rule. Priority can be
determined by any conceivable combination of factors: the
amount of time for the current job step, the amount of time

25Pearl, J.. Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, Reading, Mass.,
1984.

15

remaining in the job, the due date of the job, etc. Under
this methodology, the time required to schedule n job steps
is on the order of n2: n scheduling decisions must be made,
at each decision at most n job steps need be considered. If
all of the jobs consist of just one step, there are no
precedence requirements, and all of the machines are
identical, then the time required for this process is on the
order of n log m, where m is the number of machines. One
survey of dispatching rules itemizes 113 different
strategies and thirty-six articles which analyze their
performance26. A more recent article27 surveys thirty-four
dispatching rules. According to that survey, the single most
effective dispatching rule, when ranked according to cost-
based criteria, is one which gives priority to the job step
with the shortest imminent (SI) processing time. This is
quite surprising! After thirty years of research the most
effective dispatching rule is the simplest.

In spite of this volume of research scheduling by
dispatching rules is only an approximate method which
occasionally produces anomalous results. Simple examples can
be constructed which yield worse solutions when the number
of machines is increased, the precedence constraints are

26Panwalkar, S.S. and Iskander, W., A survey of scheduling rules, Operations Research 25 (1977), 45-61.
27Blackstone Jr., J.H., Phillips, D.T., and Hogg, G.L., A state-of-the-art survey of dispatching rules for
manufacturing job shop operations, International Journal of Production Research 20 (1982), 27-45.

16

relaxed, or the processing times are reduced28. If
schedulers are going to routinely rely upon such rules it is
important to precisely quantify the bounds of their
behavior. Most often the performance of a dispatching rule
is expressed as a ratio. Some researchers characterize the
performance as the ratio between the expected cost of a
solution and the cost of the optimal solution. Others refer
to the ratio between the worst case solution and the optimal
solution. Ratios of the expected cost are hard to justify
because so many simplifying assumptions must be made to make
the analysis tractable. Moreover, the expected value of a
solution gives no indication of the bounds on the solution
produced by a given dispatching rule. On the other hand, if
an instance of the job shop scheduling problem can be
constructed which is guaranteed to yield the worst solution
under a given dispatching rule then the performance of that
rule can be bounded precisely29. Such worst cases instances
can then be used to qualify suitable contexts for applying
the given dispatching rule. Further analysis may even
suggest modifications to the rule which correctly compensate
for those worst case instances.

Perhaps the most interesting research involves what can
best be characterized as higher-order heuristics. The

28Hu , T. C., Combinatorial Algorithms. Addison-Wesley, Reading, Mass., 1982, pp. 222-228.
29Garey, M. R., Graham, R. L., and Johnson, D. S., Performance guarantees for scheduling algorithms,Operations Research 26 (3978), 3-21.

17

general method is to choose some simple heuristic, such as
lookahead, which can be applied to any desired depth, but to
use it only to the depth where the value of the scheduling
solution justifies the computational cost. Such methods are
motivated by the law of diminishing return: exponentially
more costly heuristics yield exponentially decreasing
improvements in their solutions. Obviously there must be
some saddle point where the increasing cost is unjustified.
Refinements of this method result in algorithms which
produce near-optimal solutions in polynomial time3®.

Other job shop scheduling research is not concerned
with heuristic methods but with specific cases of the
scheduling problem which can be solved in polynomial time.
One case involves scheduling jobs that have tree structured
precedence constraints and specifically limited execution
times3-1-. Other cases involve job shops of only two machines
and specific limitations on the routing of jobs* 31 32 or
limitations on the execution times33.

All of the research cited above falls clearly within
the domain of Operations Research but a new development is
the application of artificial intelligence to the same

3®Graham, R. L., The combinatorial mathematics ofscheduling, Scientific American 238 (1978), 124-132.
31Hu , Combinatorial Algorithms. 228-236.
32Gillett, B. E., Introduction to Operations Research. McGraw-Hill, New York, 1976, pp. 262-277.
33Coffman, E. G. and Graham, R.L., Optimal scheduling for two-processor systems, Acta Informatica 1 (1972), 200-

213 .

18

problems. One well established artificial intelligence
scheduling system is ISIS34, developed at the Robotics
Institute of Carnegie-Mellon University, which is frequently
described as a system for constraint directed reasoning.
This system is effective primarily because it has facilities
for itemizing and resolving all of the constraints that
might possibly have an impact on the resulting schedules.
These include the factors normally considered by OR systems,
such as precedence constraints, capacity constraints,
personnel costs, etc. The unique feature of ISIS is that it
accepts any constraint that can be encoded as a LISP
function or predicate. With this capability, a scheduler and
a programmer can construct a model of any given job shop and
include any desired elements of cost or constraint. The
scheduling algorithm itself, however, is primitive. It
operates, much like dispatch rule scheduling, by simulating
the jobs, the machines, and the advance of time. Each time a
machine completes a job step, the simulator identifies all
job steps which are waiting for that machine. That set is
then pruned by the given constraint functions, and those
that remain are ranked by the given cost functions. That set
is then reduced to the K best, and the scheduler
systematically explores the schedules that emanate from the
assignment of those K jobs to the idle machine. If this

34Fo x , M. S., Constraint-Directed Search: A Case Study of
Job-Shop Scheduling, Ph.D dissertation, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Penn.

19

process fails to produce an acceptable schedule, the
scheduler attempts to construct the schedule in reverse,
from the given due dates. If that fails, the scheduler
systematically relaxes some of the constraints and tries
again. Although the scheduling algorithm is primitive, the
resulting schedules are considered to be quite good because
the model builder can incorporate any factor which is
considered significant.

2. Assembly Line Balancing. Focusing on situations that
involve sequencing the execution of one job over multiple
machines reduces the subject domain to the assembly line
balancing problem. An instance of the assembly line
balancing problem is defined by a set of tasks, the
processing times for those tasks, a precedence relation over
those tasks, and a desired cycle time for completing the
entire set of tasks. A solution to a given assembly line
balancing problem consists of an assignment of tasks to work
stations such that the total amount of work assigned to any
work station does not exceed the desired cycle time, and the
order of the tasks is consistent with the given precedence
relation. The goal is to find a solution which minimizes
the total number of work stations.

Like most sequencing and scheduling problems, assembly
line balancing is NP-hard. This is informally demonstrated
by the following argument. Bin packing problems can be
converted to assembly line balancing problems by a simple
procedure. An instance of the bin packing problem consists

20

of a set of items, the sizes of the items, and an unlimited
number of bins of some fixed capacity. The problem is to
determine the minimum number of bins required to contain the
items. The conversion is accomplished by mapping items to
tasks, the size of an item to the time required for the
task, and the capacity of the bins to the cycle time. The
remaining element of the assembly line balancing problem,
the precedence relation is left empty. If a polynomial time
algorithm is found for the assembly line balancing problem
then a given instance of the bin packing problem can be
converted to an assembly line balancing problem and solved
in polynomial time. It has already been established that the
bin packing problem is NP-hard35, hence the same must be
true of the assembly line balancing problem.

The earliest citation to assembly line balancing is
Salveson36 * which serves to introduce the problem. The first

• , * 3 7 ,practical algorithm focused on the enumeration of feasible
workstations. It is interesting to note that over twenty
years later, this algorithm proved to be one of the most
effective38, and its influence is clearly seen in the state-

Garey and Johnson, Computers and Intractability, pp. 124-
128 .

36Salveson, M. E., The assembly line balancing problem, Journal of Industrial Engineering 6 (1955), 18-25.
36Jackson, J. R. , A computing procedure for a lineckson, J. R., A computing procedure for a line balancing
problem, Management Science 2 (1956), 261-271.

38Johnson, R. V., Assembly line balancing algorithms: computational comparisons, International Journal of
Production Research 19 (1981), 277-287.

21

of-the-art algorithm discussed below. A later algorithm39 is
based upon explicit enumeration of all possible orderings of
the tasks and the partition of each ordering into
workstations. Another algorithm40 41 42 is based upon the explicit
enumeration of all possible states in the execution of the
tasks, which are less numerous than the possible orderings.
Subsequent research introduced a wide variety of algorithms,
including various dynamic programming, integer programming,
and branch-and-bound formulations, which have been analyzed
and compared in a number of papers.41,42. According to
Mastor's study the dynamic programming algorithm of Held,
Karp, and Sharesian was quite effective. The later study by
Johnson indicates that Johnson's own branch-and-bound
methodology, or Jackson's dynamic programming algorithm
were generally faster and required less memory.

Recent work falls into two categories: refinements of
established techniques, and variations on the problem
formulation. Each of these will be discussed briefly.

39Klein, M. On assembly line balancing, Operations Research 11 (1963), 281.
40Held, M., Karp, R. M., and Shareshian, R., Assembly-line balancing - dynamic programming with precedence constraints, Operations Research 11 (1963), 442-459.
41Mastor, A. A., An experimental investigation and comparative evaluation of production line balancing techniques, Management Science 16 (1970), 728-746.
42Johnson, Assembly line balancing algorithms.

22

For instance, one algorithm43 introduces a refinement
of previous integer programming solutions and at the same
time effectively applies the principles introduced by
Jackson's dynamic programming solution. The general approach
of that algorithm is to implicitly enumerate all possible
task to workstation assignments under the guidance of a
sophisticated set of heuristics. Unfortunately, the strict
integer programming representation of assembly line
balancing problems often requires an excessive number of
variables and constraints. Hence, the first refinement
introduced in that paper is a scheme which implicitly
represents the integer programming problem without
introducing all of the intermediate variables and
constraints. The net effect is a much more compact
representation with the possibility of solving much larger
problems.

This compact representation is then coupled with a
sophisticated set of problem specific heuristics. First, in
order to prevent blind enumeration of task assignments, the
algorithm precomputes the earliest and latest workstations
into which a task can be assigned. At the same time it
identifies all tasks, which because of their duration and
the ordering constraints, must necessarily be assigned to a
workstation alone. This information is then used to identify

43Talbot, F. B. and Patterson, J.H., An integer programming algorithm with network cuts for solving the assembly line balancing problem, Management Science, vol 30 (1984), 85-
99 .

23

distinguished workstations, called network cuts, at which
special backtracking and fathoming heuristics can be
applied. Additional heuristics involve comparison of the
current partial solution with previous solutions. Those that
show no significant differences are abandoned, as are those
that show excessive idle time. Then to give the algorithm
some initial momentum, a first solution is constructed using
a simple heuristic, such as maximum task time first.

This work is significant in three ways. First, it
carefully refines the algorithms and data structures of
traditional integer programming. Second, it applies multiple
heuristics which separately have been shown to be effective
in previous systems. Third, it introduces heuristics which
are selectively applied according to the structure of the
problem and the state of the solution process. As a whole it
represents an effective refinement and composition of
established techniques and the introduction of unique
context sensitive heuristics.

Another algorithm44 relies upon some refinements of the
dynamic programming solution first proposed by Held, Karp,
and Shareshian. Although some dramatic improvements in the
storage requirements of the algorithm are presented
(reductions by at least half!) this method still requires
the explicit enumeration of all possible states in the
execution of the tasks. Because of this, the method is

44Kao, E. P. C. and Queyranne, M. On dynamic programming methods for assembly line balancing, Operations Research 30 (1982), 375-390.

24

limited to much smaller problems than the implicit
enumeration method discussed above.

Other papers focus on variations on the assembly line
balancing problem rather than refinements of the algorithms.
These papers are motivated by the fact that real assembly
lines are much more complex than the assembly line balancing
model admits.

For instance, the basic model requires that the set of
tasks to be performed is fixed, and the problem is simply to
assign those tasks to workstations. However, the design of
the assembly line, and the decomposition of the assembly
into tasks are closely coupled. Hence, a fruitful area of
research is to expand the scope of the problem and to
produce algorithms which balance assembly lines which may
have processing alternatives4 .̂

Other variations on the basic model involve the unique
problems of robotic assembly lines. A robot cannot be
programmed to perform an arbitrary combination of tasks.
Each robot has specific limitations on its speed, strength,
reach, accuracy, etc., and each capability has a clearly
identifiable cost. All of the tasks assigned to a single
robot must be within its capabilities but failure to use
some capability is wasteful. Moreover, commercial robots are
not yet equipped with general purpose hands; instead robots
are usually equipped with interchangeable tools which are 45

45Pinto, P. A., Dannenbring, D. G., and Khumawala, B. M., Assembly line balancing with processing alternatives: an application, Management Science 29 (1983), 817-830.

25

specifically tailored to the operations that must be
performed. The assignment of arbitrary combinations of tasks
to a single workstation may require the robot to make
frequent tool changes. Unlike humans, the task of changing
to a new tool may be as difficult and time-consuming for a
robot as performing its assembly tasks. Additionally, it is
impossible to accurately predict the time required to
perform a task without first designing the workstation and
planning the robots operations46. Hence, balancing robotic
assembly lines must take into consideration a large number
of cost factors not normally associated with human assembly
lines47.

Other research has focused on less extravagant but
still important, realistic, and frequently occurring
variations on the assembly line balancing problem. For
instance, one author presents nine variations of the problem
and a branch and bound algorithm for their solution together
in a single paper48. These variations include the assignment
of tasks to particular types of stations, to specific
stations, to a specific side of the assembly line, or even
problems which prohibit the assignment of certain tasks to

46Kondoleon, A. S., Assessing cycle times for robot
assembly systems, Robotics Today 3 (1981), 38-41.

47Graves, S. C. and Lamar, B. W., An integer programming procedure for assembly system design problems. Operations Research 31 (1983), 522-545.
A Q Johnson, R. V., A branch and bound algorithm for assembly

line balancing problems with formulation irregularities, Management Science 29 (1983), 1309-1324.

26

the same station or problems which intentionally require an
imbalance in the work assigned to the stations

3. Sequencing the Activities of a Robot. Focusing on
situations that involve sequencing the execution of one job
on one machine reduces the subject domain to the problem of
sequencing the activities of a robot. An instance of this
problem is defined by a single job, composed of a set of
steps, where each step is subject to specific resource
requirements and specific ordering constraints. Xf the
resource requirements are guaranteed to be satisfied then a
solution to a given instance of this problem is simply a
linear ordering of the steps which is consistent with the
ordering constraints. If the sequence of operations must be
adapted to the availability of the resources then the
problem becomes significantly more complicated.
Unfortunately, even in the absence of resource constraints,
the problem of sequencing the activities of a robot is very
difficult. It will be shown in a later section that given a
sufficiently general language for posing the ordering
constraints on the steps of a job, the problem of finding a
sequence of operations which is consistent with the given
constraints is NP-hard.

This is a relatively new problem, motivated by the
availability of general purpose robots, sophisticated
programming languages, and the significant accomplishments
in parts recognition, grasp planning, trajectory planning,
and parts mating. For this reason, the papers devoted to

27

this subject are relatively few and are found mostly in the
robotics and artificial intelligence rather than operations
research literature.

Three instances of this problem seem representative of
the active research in the area. The earliest of these was
an experimental assembly system developed at Edinburgh
University49'50. That system consisted of a four degree of
freedom arm and a vision system both mounted over a two
degree of freedom cartesian table. Assembly tasks submitted
to the robot consisted of a jumbled heap of parts on the
table from which the robot was required to acquire the
individual parts and perform the assembly. A more recent
system was developed as a joint venture by SRI, Honeywell,
and Adept Technology under contract from the Air Force51.
That system consisted of a six degree of freedom robot and a
vision system mounted over a fixed table. The assembly tasks
submitted to the robot consisted of a jumbled bin of parts
from which the robot was required to acquire the individual
parts and perform the assembly. A system currently under

a q̂Ambler, P., Barrow, H.G., Brown, C.M., Burstall, R.M. , and Popplestone, R.J., A versatile computer-controlled assembly system, in Proceedings Third International Joint Conference on Artificial Intelligence. Stanford University, 1973, pp. 298-303.
50Ambler, P., Barrow, H.G., Brown, C.M., Burstall, R.M. , and Popplestone, R.J., A versatile system for computer- controlled assembly, Artificial Intelligence 6 (1975),

129-156.
51Interim Report #3, Research for Intelligent TaskAutomation, Air Force Contract #F33615-82-C—5092, July

15, 1983.

28

development at the Robotics Institute of Carnegie Mellon
University under a contract with Westinghouse consists of
two robots, a vision system, and a conveyor52. The assembly
tasks submitted to this robot consist of a series of parts
delivered in random order by the conveyor from which the
robot must acquire the parts and perform the assembly. All
three problems share the same characteristics. The job to be
performed consists of a well defined set of operations.
Those operations have specific resource requirements, namely
the parts, and specific ordering constraints. The problem is
not simply to find one linear ordering of operations which
satisfies the ordering constraints because there is no way
to guarantee that the parts can be acquired or will be
delivered in precisely that order. Instead the problem is to
develop a method for sequencing the activities of the robot
which will produce a sequence of operations consistent with
the ordering constraints and the availability of parts.

The systems cited above developed three unique
solutions to the problem of satisfying the ordering
constraints simultaneously with satisfying the resource
constraints. The approach used at Edinburgh was to pursue
the task in two phases. In the first phase the robot
separated the parts from the heap one by one, and according
to their identity, moved them to fixed locations in the

52deMello, L.S.H. and Sanderson, A., And/Or graphrepresentation of assembly plans, in Proceedings Fifth
National Conference on Artificial Intelligence. Philadelpha, Penn., 1986, pp. 1113-1119.

29

workspace. In the second phase, with all of the parts
identified and available, the robot performed the assembly
according to a predetermined sequence of operations. The
approach used at SRI was to build a better vision system. In
fact the mandate of the research contract was to apply the
best available vision hardware and software so that at each
step of a predetermined assembly sequence the robot could
locate and acquire the required part. Of course it is
impossible to visually locate parts that are obscured and
covered by other parts, so the assembly program included an
escape mechanism: if the required part could not be located
the robot would shake the bin or stir the parts with the
expectation that the required part would be revealed. A
third approach, advocated by this author and
others53'54'55'56'57'58'59 and adopted at Carnegie Mellon

53Fo x , B.R. and Ho, C.Y., A relation control mechanism for flexible assembly, in Advanced Software in Robotics. A.
Danthine and M. Geradin (eds), North-Holland, Amsterdam, 1984.

C AHFox, B.R. and Kempf, K.G., Opportunistic scheduling for robotic assembly, in Robotics and Industrial Engineering, Selected Readings, E.L. Fisher and O.Z. Maimon (eds), Industrial Engineering and Management Press, Institute of Industrial Engineers, Atlanta, Georgia, 1986.
55Fo x , B.R. and Kempf, K.G., Complexity, uncertainty, and opportunistic scheduling, in Artificial Intelligence Applications. The Engineering- of Knowledge-Based Systems.

C. Weisbin (ed), IEEE computer Society Press, Washington,D. C., 1986.
56Fo x , B.R. and Kempf, K.G., A representation for opportunistic scheduling, in Third International

Symposium on Robotics Research, O. Faugeras and G. Giralt (eds), MIT Press, Cambridge, Mass., 1986.

30

University57 58 59 60, and at Edinburgh and Aberdeen Universities
under a joint program of research61, is to dynamically
determine the sequence of operations according to the
initial ordering constraints and the order of the
availability of the parts.

On closer inspection, candidate solutions to this
problem fall into one of the five categories: eliminate
uncertainty, quantify uncertainty, restore certainty,
increase the likelihood of progress, or increase the avenues
for progress.

Eliminate Uncertainty: The most frequently proposed
solution to this problem is to eliminate the uncertainty in
the availability of the parts by re-engineering the task.
Instead of delivering the parts in a bin or heap, deliver
the parts affixed to a pallet with specific locations and
orientations. Or instead of delivering the parts in random

57Fo x , B.R. and Kempf, K.G., Planning, scheduling, and uncertainty in the sequence of future events, in Uncertainty in Artificial Intelligence. Vol. 2, J. Lemmer (ed), North-Holland, Amsterdam, 1987 (to appear).
58Fo x , B.R., The implementation of opportunistic scheduling, in Proceedings Intelligent Autonomous Systems, Amsterdam, 1986, pp. 231-240.
59Fo x , B.R. and Kempf, K.G., Reasoning about opportunistic schedules, in Proceedings IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, 1987 (to appear).
60deMello and Sanderson, And/Or graph representation of

assembly plans.
61Malcolm, C. and Fothergill, P., Some architectural implications of the use of sensors, in Proceedings Intelligent Autonomous Systems. Amsterdam, 1986, pp. 71-

78 .

31

order on the conveyor, introduce some system which
guarantees the order of delivery. The robot can then be
programmed to perform the task according to some
predetermined sequence of operations according to the fixed
locations of the parts or the expected order of arrival. Of
course the cost of this solution is determined by the cost
of engineering the pallets and transport. The cost may be
justifiable in large volume applications but it is
unacceptable in the aerospace industry, for instance, where
millions of parts are produced in quantities of 100 or less
per year. The inventory of pallets and fixtures would exceed
the value of the parts to be produced. Moreover, in many
circumstances human labor would be required to prepare the
pallets. The motive for introducing vision and artificial
intelligence in such applications is to automate the
production without introducing the added expense of custom
fixtures, pallets, and transport.

Quantify Uncertainty: Yet another solution might be to
gather statistics over hundreds of trials and to program the
robot to perform the assembly over the sequence of parts
most likely to occur. Unfortunately, this only displaces the
problem, it does not address the question of how to sequence
the activities of the robot when the sequence of parts
deviates from the programmed order. Hence, this is only a
partial solution and it carries with it the added cost of
performing the experiments and gathering the statistics.

3

Again, such costs are unjustifiable in small volume
productions.

Restore Certainty: The solution implemented in the
Edinburgh system cited above, is to restore certainty
whenever it is lost. The parts were presented to the robot
as an unordered heap which the robot immediately separated
into individual parts which were moved to fixed layout
locations. Although the parts would most certainly be
acquired from the heap in a random order, the process of
placing the parts in fixed locations restored the order
necessary in order to perform the assembly according to a
predetermined sequence of operations. The cost of this
solution is determined by the added execution time required
to lay out the parts. Although the number of motions
required to perform the the assembly is fixed (one motion to
acquire and buffer each part, and one motion to install each
part) on the average, many of the intermediate motions are
extraneous62. A more efficient solution would be to move a
part to a buffer location only if it cannot be immediately
installed in the assembly.

Increase the Likelihood of Progress: The system
developed by SRI, Honeywell, and Adept Technology can be
properly viewed as a Markov process. There is an initial
state of the task, a final state of the task, and a fixed
number of states in between. Each state is determined by the

62Fox and Kempf, Opportunistic scheduling for robotic assembly.

33

set of parts that have already been installed and each state
transition is produced by the installation of a new part.
Since the SRI robot was programmed to pursue a fixed
assembly sequence, the corresponding Markov Process consists
of a purely linear chain of states with no branching or
alternative orderings. At each step of the process there is
a certain probability of locating the next part and making
progress and a complementary probability that the task will
remain in the same state and that the robot will need to
shake the bin or stir the parts. The goal of that research
was to build a better vision system in order to increase the
likelihood of finding the required part and thereby increase
the likelihood of progress in each state of the process. The
net effect was to reduce the expected duration of the
assembly task. There is no way to completely remove the
uncertainty from this system and this solution still carries
with it a degree of uncertainty.

Increase the Avenues for Progress: There is a common
weakness in the four prior categories of solutions. They
focus exclusively on the process of acquiring the parts and
they fail to apply knowledge of the assembly task itself. In
those situations where there is no way to predict nor
control the sequence of parts as they may be acquired or
delivered, there may still be many feasible sequences for
installing the parts in the assembly. The intelligent
solution is to exploit this inherent flexibility and to
opportunistically sequence the set of assembly operations at

34

execution time, according to the availability of parts and
according to the constraints on the assembly operations.
This approach is also based upon a model of the assembly
task as a Harkov Process but with an important difference.
The likelihood of transition from a particular state can be
increased by increasing the number of possible successor
states, that is, to enable alternative orderings for the
installation of the parts.

C. RESTRICTION OF THE PROBLEM DOMAIN.
The implementation of an opportunistic scheduling

strategy depends upon the consistent application of the
principle of least commitment. It is not unusual for a
planner to determine the steps of a task and also a single
fixed sequence for their execution. However, most tasks can
be executed according to many different sequences. It is
very unlikely that one, chosen before execution time, will
be the best. It is certain, however, that if only one
sequence is passed to the robot it will have no flexibility
in the execution of that task. In order to maximize
flexibility, a plan should consist of a set of steps and a
minimum set of ordering constraints thereby encompassing
every feasible sequence of steps. Most extant planning
systems, however, generate a plan as a linearly ordered set
of actions or at best produce partially ordered sets of
actions. Hence, a challenging area of research would be to
develop a planner which could produce a plan with a
minimally ordered set of actions.

35

This concept of plan leads to a unique problem of
representation. The principle of least commitment dictates
that the plan for a task encompass every feasible sequence
of steps, and that in turn dictates a representation which
completely and compactly encodes those sequences.
Unfortunately, the most common forms for representing plans
fail to satisfy one or both of these requirements. Hence, a
second area of research would be to develop a representation
for plans which would be complete and compact, and which
would facilitate the processes of planning and sequencing.
In fact, the consensus among several of the individuals
actively engaged in this area of research is that the first
issue that needs to be addressed is the matter of
representation00. The significance of representation is
emphasized in a note by Nilsson:

"...artificial intelligence (AI) is primarily concerned with propositional languages for representing knowledge and with techniques for manipulating these representations. In this respect, AI is analogous to applied mathematics; its representations and techniques can be applied in a variety of other subject areas. Typically, AI research is (or should be) more concerned with the general form and properties of representational languages and methods than it is with the content being described by these languages."63 64

63Results of a personal poll conducted by the author among C. Malcolm and M. Drummond of Edinburgh, P. Fothergill of Aberdeen, A. Sanderson of Carnegie-Mellon, P. Cheeseman of NASA/ARC and K. Kempf of FMC Corp.
64Nilsson, N. J., from the abstract of Artificial

Intelligence: Engineering, Science, or Slogan?, Technical Note 248, SRI International, Menlo Park, Calif, July 1981.

36

The remainder of this thesis will be concerned with the
problem of representing the tasks that a robot is to perform
and with methods for reasoning over those representations.

37

III. SURVEY OF THE CANDIDATE REPRESENTATIONS

The representation of plans plays a central role in the
processes of planning and sequencing. In a general sense, a
plan is a collection of information which has been produced
by an analysis of the problem to be solved and has been
encoded in some machine readable language from which the
sequence of operations can be derived. The representation is
the exchange point between the planner and the sequencer. It
determines what information must be produced by the planner
and it determines what information is available to the
sequencer.

As noted previously, in early planning systems it was
found that a linear representation for plans introduced some
artificial ordering constraints which frequently caused the
plan under construction to fail. Consequently, considerable
effort was required to find a linear ordering which was
successful. Similarly, a linear ordering of operations
seriously limits the process of sequencing. If the plan
delivered to the sequencer is a linear ordering of
operations then the sequencer has only one option. The steps
must be executed in exactly that order. If the resources
required by the next step of the plan are not available then
execution must be delayed until they are, even if the
resources are available for some other steps. In later
planners, use of partial orders facilitated the process of
planning by accurately representing the necessary ordering
constraints and by eliminating any which were unnecessary.

38

Likewise, partial orders have already been shown to increase
the flexibility of the sequencer by allowing alternative
orderings of the operations.65 Frequently when one operation
is delayed because of the unavailability of resources, there
are other sibling operations that can be executed instead.

A. THE CANONICAL REPRESENTATION OF PLANS
Regardless of its form, a plan must precisely define

the operations that are to be performed and it must
precisely circumscribe the admissible orderings of those
operations. Given that this work is concerned with plans
that are to be executed by a single robot, the prescription
for the admissible orderings carries with it an implicit
constraint that the operations are to be performed one step
at a time. Hence, the set of admissible orderings will in
fact be a set of linear orderings over the given operations.
This suggests a canonical representation for plans that can
be used to compare the expressive power of candidate
representations. For purposes of comparison, define the
canonical representation of a plan to be a set of operations
plus a set of linear orderings, or sequences, over that set.
This definition of plan applies only to finite serial
processes but it encompasses the domain of simple tasks to
be performed by individual robots. As a matter of notation,
a sequence over a set of symbols {Si | i=l,n} is an ordered
list [Sp,Sq, ... Sr] in which each symbol occurs once and

65Fo x and Ho, A relational control mechanism for flexible assembly.

39

only once. When the given symbols denote operations to be
performed the ordinal position of a symbol in the list
determines the temporal ordering of the corresponding
operation. The leftmost operation should occur first, the
following operation should occur second, and so on.

By defining a plan as a set of sequences, all of the
possible plans over a set of K steps can be organized into a
Boolean lattice. This gives a unique perspective on the
space of possible plans and on the relationships between
plans. For example, consider the set of all possible plans
over a set of three operations labeled A, B, and C. There
are six possible sequences over those operations: [A,B,C],
[A ,C,B], [B, A, C], [BiC,A], [C,A,B], and ^C,B,Aj. This m
turn implies that there are 26 distinct plans over the three
operations, one for each possible subset of the six
sequences. If each of the six sequences is given a numeric
label, as shown in Figure 1, and if each of the sixty-four
possible plans is represented as a set of those numeric
labels, as shown in Figure 2, then the sixty-four possible
plans can be organized into the Boolean lattice shown in
Figure 3. The corresponding lattice of plans over a set of
four operations would entail 224 nodes! The bottom node in
that figure denotes the nil plan with no feasible sequences,
the top node denotes the universal plan which admits any of
the six sequences, and the intermediate nodes denote subsets
of the six sequences. Arcs which meet below a node denote
set intersection, and arcs which join above a node denote

40

1. [A, B , C]
2 . [A, C, B]
3 . [B, A, C]
4 . [B, C , A]
5 . [C, A, B]
6 . [C ,B , A]

F i g u r e 1.
Six possible sequences over {A,B,C}.

41

{ }

{ 1,2
{1,2
{1,2
{ 1,2
{ 1,3
{ 1,3
{ 1,3
{1,4
{1,4{1,5
{1,2{1,2{1,2
{ 1,2
{ 1,2
{ 1,2
{ 1,3
{ 1,3
{ 1,3
{ 1,4

{ 1,2
{ 1,2
{1,2

Sixty

{1 } {1 ,2 } {2 ,3 }
{2 } {1 ,3 } {2 ,4 }
{3 } {1 ,4 } {2 ,5 }
{4 } {1 ,5 } {2 ,6 }
{5 } {1 ,6 }
{6 }

, 3 } {2 ,3 ,4 } {3,4
, 4 } {2 ,3 ,5 } {3,4
, 5 } {2 ,3 ,6 } {3,5
, 6 } {2 ,4 ,5 }
, 4 } {2 , 4 ,6 }
, 5 } {2 ,5 ,6 }
, 6 }
, 5 }
, 6 }
, 6 }
,3 , 4 } {2 ,3 ,4 , 5 }
,3 , 4 } {2 ,3 ,4 , 6 }
,3 , 6 } {2 ,3 ,5 , 6 }
,4 ,5 }
,4 , 6 }
,5 , 6 }
,4 , 5 }
,4 , 6 }
,5 , 6 }
,5 , 6 }

{2 ,4 ,5 , 6 }

,3 , 4 ,5 } {2 ,3 , 4 ,5 ,
,3 , 4 , 6 }
,3 , 4 , 5 , 6 }

{3,4} {4,5} {5,6}
{3,5} {4,6}
{3,6}

,5} {4,5,6}
, 6 }
, 6 }

{3, 4,5, 6}

6 }

Figure 2.
four possible plans over {A,B,C}.

42

1
2
3
4
5
6

The p l a n c o n s i s t i n g of
sequences 3, 4, 5, & 6.

1
2
3
4
5

1
2
3
4
6

1
2
3
5
6

1 1 2
2 3 3
4 4 4
5 5 5
6 6 6

i.

y

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 1 1 1 1 1 1 1 1 1
2 2 2 2 3 3 3 4 4 5
3 4 5 6 4 5 6 5 6 6

2 2 2 2 2 2 3 3 3 4
3 3 3 4 4 5 4 4 5 5
4 5 6 5 6 6 5 6 6 6

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

1 2 3 4 5 6

y d y

(Sets and their elements are listed
Figure 3.

The Boolean lattice of plans over {A,B,C>.

43

et union, but for simplicity, only a few arcs are shown in
the figure. From this perspective, it appears that complex
plans can be viewed as the intersection and union of more
basic plans.

B. four c r i t e r i a for c o m p a r i s o n
This map of the space of possible plans provides the

first criterion for comparing candidate representations. A
representation can be considered complete if and only if
every possible plan over a fixed set of operations can be
represented within that framework. If a representation fails
to be complete then it may impede the process of planning
and it will most certainly artificially constrain the
options of the planner.

This map of the space of possible plans also suggests a
second criterion for comparing candidate representations.
The obvious disadvantage of the canonical representation is
that the size of each plan is directly proportional to the
number of sequences admissible under that plan. Consider a
plan of K steps. The simplest plan, which imposes no
constraints on the order of the operations, requires K!
sequences in its canonical form, and plans that impose the
simplest of ordering constraints require K!/2. A goal which
will be very difficult to achieve, is that a representation
should be reasonably compact. The size of the plan under
some representation should generally be proportional to the
complexity of the plan not the number of sequences which it
encodes. Although it would be impractical, if not

m̂pOSsible, to determine the size of every plan over K steps
when encoded in some representation, it is useful to
consider the two extremes: the largest plan which has no
constraints and K! sequences and the smallest plan, which
admits only one sequence.

The third criterion for the comparison of candidate
representations is that the representation should be
i-ractable for the planner to produce. This means that its
content should be primarily analytic information rather than
synthetic. For example, the production of the canonical
representation requires the creation of the individual
sequences which are admissible. Obviously these cannot be
produced by some cursory inspection of the task to be
performed. Instead these can only be synthesized from some
more primitive information which has been gathered by an
analysis of the task. The representation should be based
upon the most primitive collection of information that
defines the set of operations to be performed and their
admissible orderings. This is emphasized for two reasons.
First, it encourages the consideration of more basic
representations and second, it discourages suggestions of
more complex representations. Either the planner must be
able to directly produce the candidate representation or
some other structure must be identified that the planner can
produce which can be used to derive the candidate
representation. The goal is simply to agree upon the

45

appropriate exchange point between the planner and
sequencer.

The fourth criterion for the comparison of candidate
representations is that it should be tractable for the
sequencer to use. The representation of a plan can be used
in a variety of ways. Ultimately it will be used to
determine the order of execution, but it can also be
analyzed prior to execution in order to compare alternative
plans or to predict expected behavior. The problem of
greatest interest is the problem of constructing the set of
admissible next operations given some representation of the
plan and the current state of the task. The first standard
of comparison is the traditional delineation between
polynomial-time and exponential-time algorithms. Three cases
will arise in the following discussions. For a given
representation and the problem of constructing the set of
admissible next operations, it may be possible to
demonstrate a polynomial-time algorithm, or it may be
possible to demonstrate an exponential-time algorithm but
the actual complexity of the problem has not been
determined, or finally it may be possible to demonstrate an
exponential-time algorithm and it can be demonstrated that
the problem is NP-hard.

Usually the terms polynomial-time and exponential-time
qualify the expected execution time with respect to the size
of the input. This can be misleading because the size of a
plan under some representations can be exponentially related

46

to the number of the operations but the algorithm for
determining the set of admissible next operations can be
polynomially related to the size of the plan. For instance,
given the canonical representation of a plan, the time
required to determine the set of admissible next operations
is a simple polynomial function of the number of sequences.
This can be accomplished by inspecting each of the S
sequences in the plan. If the initial steps of a sequence
match the sequence of steps already completed, then the next
step in that sequence can admissibly be executed next. If
each sequence consists of K operations then at most S*K
comparisons need to be made in order identify the admissible
next operations. Of course the complication is, that for
some simple plans, the number of sequences will be on the
order of K!. Similar situations will be pointed out when
they occur.

In the distant future it is imaginable that truly
autonomous systems will be developed which can plan,
sequence, and execute their activities independent of any
human contribution or supervision. In the immediate future,
however, humans will be the most active intelligent element
in robotic systems. Hence, a representation for plans must
also satisfy two additional requirements. A candidate
representation must be tractable for a human to produce and
must be tractable for a human to understand and analyze.

47

c- A SIMPLE ASSEMBLY PROBLEM
The comparison of the candidate representations will be

facilitated by the introduction of a simplified version of
an assembly problem defined in a recent paper66. The product
to be assembled consists of four parts labeled cap, stick,
receptacle, and handle as shown in Figure 4. The stick is a
solid cylinder which fits inside of the receptacle, and the
receptacle is a hollow cylinder which is closed on one end
by the cap and on the other end by the handle. The assembly
is to be performed by a single robot forming a single
product without use of sub-assemblies (the original
formulation required two robots and allowed the use of
subassemblies). At one level of resolution the task consists
of four operations: install-cap, install-stick, install-
receptacle, install-handle. For brevity, the part names will
be frequently reduced to simply their first letters C, S, R,
and H, and the operations will be reduced to i-C, i-S, i-R,
and i-H. In its canonical form the plan for this task
consists of the four operations plus the twelve sequences
shown in Figure 5.

D. THE CANDIDATE REPRESENTATIONS
The representations that have been proposed in the

literature have focused on different elements of the tasks
to ce performed. The basic elements, from which tasks are
defined, are the objects to be manipulated and the

66de Mello and Sanderson, And/Or graph representation of
assembly plans.

48

Figure 4.
A simple product of four parts.

49

1. [i-C,i-S,i - R ,i-H]
2 . t i-C, i-R, i-S, i-H]
3 . [i-S,i-C,i-R,i-H]
4 . [i-S,i-R,i-C,i-H]
5 . [i-S,i-R,i-H,i-C]
6 . [i-S,i-H,i-R,i-C]
7 . [i-R,i-C,i-S,i-H]
8 . [i-R,i-S,i-C,i-H]
9 . [i-R,i-S,i-H,i-C]

10 . [i-R,i-H,i-S,i-C]
11 . [i-H,i-S,i-R,i-C]
12 . [i-H,i-R,i-S,i-C]

Figure 5.
Twelve admissible sequences for the simple assembly problem.

50

operations to be applied to them. From one perspective, the
state of all of the objects, when treated as an aggregate,
defines the state of the task. In that context, the
admissible orderings of the operations is implicitly defined
by the set of admissible states and state transitions. From
another perspective, the operations can only be applied to
specific operands. Some of the operands may be initially
available, some may be the result of other operations. The
dependency of operations on the availability of operands,
which in turn may need to be produced by other operations,
implicitly defines the necessary ordering of operations.
Alternatively, knowledge of the operations, their
prerequisites, and effects can be used to formulate explicit
constraints on the order of their execution. Each
perspective leads to a distinct method of representation.
Several proposed representations will be considered
including state space representations, problem decomposition
representations, and several representations based upon
explicit temporal constraints. These representations will be
compared using the criteria defined above, and whenever
possible, using the simple assembly problem for examples.

1. State Transition Networks. One of the earliest
candidate representations for tasks that robots are to
perform is state transition networks67. In a system proposed

67Chapter II, Section B1: State-space representation, in The Handbook of Artificial Intelligence, vol 1, A. Barr and E .A . Feigenbaum (eds), William Kaufmann, 1981.

51

by Whitney68 the robot plus its working environment was
considered to be a single system which could be described by
a state vector of discrete parameters. Coupled with this was
a vocabulary of discrete operators which caused transitions
between states. From this perspective, planning the
activities of a robot was simply a matter of search through
the space of all states reachable from an initial state by
the application of the available operators. Cost functions
could be applied to the operators and metric functions could
be applied to the states in order to control the search
process and improve the quality of the solutions.

The plans produced in this system were purely linear
but this same combination of states and operators can be
used to represent minimally ordered plans. Based upon an
analysis of the physical process, the simple assembly
problem can be encoded in a state transition network as
shown in Figure 6. In this case, each state is determined by
the set of parts that have been installed. The initial state
is the empty set and the final state is denoted by the set
of all four parts. Due to the natural constraints on the
assembly task not every configuration of parts is admissible
and the state space for this task is a subset of the 24
possible sets over four parts. A directed arc between two
nodes denotes a state transition effected by the
installation of a single part. Each path from the initial

68Whitney, D.E., State space models of remote manipulation tasks, IEEE Transactions on Automatic Control, vol AC-14,
#6, Dec. 1969.

52

{C, S, R,H}Ni-H i-C

{C,S,R}/tvi-R i-S i-C

{S,R,H}/tv
i-H i-R i-S

{C,S } {C,R } {S,R} {S,H} {R,H}

Figure 6.
State transition network for the simple assembly problem.

53

state to the final state requires the execution of all four
operations, each exactly once. There are twelve paths
through the network corresponding to the twelve sequences in
the canonical representation.

When properly formed, the state transition network
representing a plan contains no loops or cycles and only one
terminal state. Given that arcs denote operations, the state
transition network representing a plan is properly formed
when every path from the initial state to the final state
requires the execution of each operation exactly once and
the set of all possible paths defines the set of admissible
sequences.

More generally, it can be demonstrated that state
transition networks provide a complete representation for
plans. The argument is based upon a fundamental theorem of
formal language theory. Every finite language is accepted by
some deterministic finite state automaton. If the set of
sequences which define a plan are viewed as strings over the
alphabet of operators, then the state transition network
which represents that plan can be found by constructing a
finite state machine which accepts that language.

The construction of a state transition network from the
canonical representation must be done very carefully. In the
case of the simple assembly problem, the state of the
process is exactly determined by the set of parts that have
been installed, and equivalently, by the set of operations
that have been performed. However, this is an artificially

54

simple case. Consider the plan over the four steps A, B, C,
and D, which consists of only the two sequences [A,B,C,D]
and [B/A /D/C]. The order of the last two steps, C and D,
cannot simply be determined from the fact that A and B have
been completed. The order of execution is significant. The
execution of A then B leads to a different state than the
execution of B then A.

The proper construction is based upon sets of sequences
and subsequences. Each state of the network is distinguished
by the set of sequences which lead from that state to the
final state of the task. The initial state is identified by
the set of all admissible sequences and the final state by
the null set. The set of admissible operators in any given
state is found by inspecting the leading operators of the
sequences which define that state. Successor states are
constructed in two steps. First, the sequences which define
the current state are partitioned according to their first
operator. Second, each partition is then used to construct a
successor state which can be reached by the application of
the leading operator. The sequences which define the
successor state are constructed from the sequences in the
partition simply by removing the leading operator. For
instance, the sets of sequences construction of the state
transition network for the simple assembly problem is shown
in Figure 7. Although it will not always be true, in this
case the network derived from an analysis of the sequences

W PS

55

t] ̂Vi-H i-C

[i-H] [i-C]

XtX x txi-R i-S i-C i-H i-R i-S

[i-R, i-H] [i-S, i-H] [i-C, i-H] [i-R, i-C] [i-S, i-C][i-H,i-C]

, i-R, i-H][i-C, i-R, i-H][i-C, i-S, i - H] [i - S , i-R, i - , i-S,'i—H][i—R, i-C, i — H][i-S, i-C, i —H][i-R, i-S, i - [i-R, i — H, i — C][i-S, i-H, i-C][i-H, i-R, i — C][i-H, i-S, i-C]

[i-C,i-S,i-R,i-H] [i-C,i-R,i-S,i-H] [i-S,i-C,i-R,i-H]
[i-S,i-R,i-C,i-H] [i-S,i-R,i-H,i-C] [i-S,i-H,i-R,i-C]

[i-R,i-C,i-S,i-H] [i-R,i-S,i-C,i-H] [i-R,i-S,i-H,i-C]
[i-R,i-H,i-S,i-C] [i-H,i-S,i-R,i-C] [i-H,i-R,i-S,i-C]

Ficfure 7 .
Construction of the state t r a n sition network

for the simple assembly problem.

n n

56

is identical in structure to the network derived from an
analysis of the physical process.

This construction is presented in order to emphasize
that the states of a task may not be sufficiently
distinguished by the set of operations that have been
completed. Instead a more refined concept of state is needed
for many practical applications. For instance, the state of
a chemical process cannot be determined solely on the basis
of the set of chemicals that have been added to a reactor.
The order is significant. Some reactions produce heat, some
require heat, some produce by-products that can contaminate
other reactions, and some neutralize contaminants.

The compactness of the representation can be estimated
by considering two cases: the smallest plan over K steps
consisting of one sequence and the largest plan over K steps
consisting of K! sequences. In the first case the state
transition network consists of a linear chain of K+l states
with K transitions in between. In the second case the order
of execution is unconstrained and the set of sequences for
completing the task from some given state is independent of
the sequence of operations which led to that state. Hence,
the state transition network can safely be constructed from
the 2K possible subsets of the K operations. For an
unconstrained task of twenty operations this implies a
network of over a million states 1 While this may not be
prohibitive in the context of modern memory prices this does

57

raise serious questions about the methods for creating and
analyzing plans using this representation.

From the perspective of the planner, state transition
networks pose serious difficulties. Except for very small
problems, the work required to build a state transition
network exceeds human capabilities. Simple problems will
have an enormous number of possible states, complex problems
will require a tremendous analytic effort. In some problems
the state is determined not only by the operations that have
been completed but also by their ordering, which further
compounds the analysis. It is arguable that a computer could
be programmed to produce the state transition network, but
this only differs the question of representation. The input
to such a program must be some representation of the task to
be performed which accurately and completely delimits every
possible sequence of operations. Suggestions that a
computerized planning system could produce this
representation are equally suspect. Planners, such as
STRIPS, that produce linear plans by systematically
searching the reachable states of a state transition network
have proven to be slow and inefficient. The prospects of
circumscribing the set of every admissible sequence over a
set of operations using such methods seem remote.

From the perspective of the sequencer, state transition
networks are ideal. Every possible state of the task has
been itemized, and for every state, every admissible
operator and state transition has been itemized. The cost of

58

determining the set of admissible next operations for a
given state is negligible. Unfortunately, humans will find
state transition networks as intractable to understand and
analyze as they are to construct. While the elements of the
representation are simple: states, operators, and successor
states, the profusion of states, and state transitions can
obscure even simple patterns in a plan or make it impossible
to recognize common elements when comparing plans.

2. And/Or Graphs. A recently proposed representation
for tasks that robots are to perform is based upon sub-
assembly decomposition. In a system developed by deMello and
Sanderson 3 an assembly problem was decomposed into a set of
stable sub-assemblies and those in turn were decomposed
until the product had been factored into its constituent
parts. By exhaustively considering every stable
decomposition of an assembly all of the feasible methods for
producing it could be circumscribed.

The decomposition of assemblies into sub-assemblies can
be very conveniently represented by And/Or graphs69 70. For
instance, the simple assembly problem as originally posed by
deMello and Sanderson is represented by the And/Or graph
shown in Figure 8. The topmost node in that figure, labeled
{C,S,R,H} denotes the completed assembly. The leaf nodes

69de Mello and Sanderson, AND/OR graph representation of assembly plans.
70Chapter II, Section B2: Problem Reduction representation, in The Handbook of Artificial Intelligence. vol 1, A.

Barr and E.A . Feigenbaum (eds), William Kaufmann, 1981.

59

{C, S, R, H}

(C> {s> {R> {H}

(for simplicity, n o d e s w h i c h r e p r e s e n t i n d i v i d u a l
p a r t s h ave b e e n f r e e l y r e p l i c a t e d .)

Figure 8.
A n d / O r g r a p h

s i m p l e
of

a s s e m b l y p r o b l e m .
the

60

denote the constituent parts. Nodes in between represent the
possible stable sub-assemblies which can be used to form the
product. Arcs descending from a node which are joined by a
bar are referred to as hyperarcs and lead to a set of
components that can be combined to form the sub-assembly in
that node. As formulated by deMello and Sanderson, each
hyperarc denotes an operation. The node from which it
descends represents the result of the operation and the
nodes to which it connects denote the operands. A singular
arc can be used to represent operations with only one
operand, such as inspecting or drilling. When more than one
arc or hyperarc descends from a node, each denotes an
alternative method for producing that sub-assembly. For
instance, the topmost node has four descending hyperarcs
which denote four alternative methods for constructing the
completed product, the sub-assembly labeled {C,S,R>, in
turn, can be produced from three different combinations of
sub-assemblies but the leftmost node, labeled {C,S}, can
only be produced by mating the two parts {C> and {S}.

When properly formed, the And/Or graph representing a
plan contains no loops or cycles and a single root node. A
solution to an And/Or graph can be found by marking a sub­
graph according to the following rules. First mark the root
node. If some node has been marked, then select exactly one
arc or hyperarc descending from that node and mark the
descendant nodes. The process is complete when no additional
nodes can be marked. Given that arcs and hyperarcs denote

61

operations, the And/Or graph representing a plan is properly
formed when every solution requires the execution of each
operation exactly once and the set of all possible solutions
defines the set of admissible sequences.

Figure 8 is an accurate representation of the simple
assembly problem, as originally posed by deMello and
Sanderson, but it contains elements not found in the problem
defined in this paper. There are three important
differences. Their version of the problem allowed the use
of two robots, allowed the use of sub-assemblies, and each
hyperarc in the And/Or graph represented the operation of
mating two components using the two arms. If the problem is
restricted to one robot, no sub-assemblies, and the
vocabulary of four operations, install-cap, install-stick,
install-receptacle, and install-handle, the And/Or graph
contains some significant differences. Most important, with
only one robot it becomes impossible to directly mate two
parts. Instead one part must be first be mated with a jig or
other stabilizing fixture in the workspace and then the
second part can be mated with it.

With these restrictions the And/Or graph of Figure 8
can be revised to accurately represent the simple assembly
problem. First, any hyperarcs which denote the combination
of sub-assemblies must be removed. Second, a specific
symbol, J, must be introduced to denote the jig, or fixture
which stabilizes the assembly. Finally, any hyperarcs which
denote the combination of two individual parts must be

62

replaced with a sub-graph representing the process by which
those parts can be mated using the jig. The result of these
revisions is shown in Figure 9. As before, each node in the
graph denotes a stable sub-assembly and hyperarcs which
descend from a node lead to the components which can be
combined to form that sub-assembly. Hyperarcs still denote
the process of mating, but in this context, all matings must
be between a single part and the partial product already
completed.

Unfortunately, Figure 9 contains a profusion of arcs
which can obscure the basic underlying structure of the
assembly problem. A second set of revisions can simplify the
graph and at the same time reveal its most important
characteristics. Each hyperarc in the graph consists of two
branches: one leading to an individual part and a second
leading to a stable sub-assembly. Given this uniform pattern
of usage, each hyperarc can be collapsed to a single arc
labeled with the individual part and leading to the sub-
assembly. The And/Or graph resulting from this revision is
shown in Figure 10, and in this form, should be easily
recognized. It is identical in structure to the state
transition networks presented in the previous section.

This illustrates a very important point. Unless a
problem can in fact be partitioned into independent sub­
problems, an And/Or graph which represents that problem will
be nothing more than a state transition network. By virtue
of their ability to contain embedded state transition

63

{ J, C, S , R, H)

(for simplicity, nodes which r e p r e s e n t i n dividual
parts have b e e n freely replicated.)

Figure 9.
Revised And/Or graph of the simple

assembly problem.

64

{ J , C , S, R, H}/ \
{J,C,S,R> { J , S , R , H }

{J,C} {J,S> {J,R} {J,H}

F i g u r e 10.
S i m p l i f i e d A n d / O r graph.

of the s i m p l e a s s e m b l y p r o b l e m

65

networks, And/Or graphs are complete, but they are
conceptually and computationally useful only when a
problem can be decomposed into two (or more) independent
sub-tasks.

As formulated by deMello and Sanderson, nodes in the
And/Or graph denote objects and the arcs and hyperarcs
denote operations. Multiple arcs descending from a node
denote the alternative methods for producing the object in
that node. This is a very effective framework for
representing the alternative combinations of sub-assemblies
that can be used to produce a particular product. However,
this usage of And/Or graphs does not facilitate the
representation of alternative orderings of operations.

In order to illustrate this point, consider a set of K
milling operations that are to be performed on a single
piece of metal and which can be done in any order desired.
The final product can be produced from any one of K
alternative partial-products. It can be produced from a
piece of metal which has gone through all but operation 1,
or it can be produced from a piece of metal which has gone
through all but operation 2, etc. In an And/Or graph the
arcs descending from the root node can indicate the
alternative objects that can be used to form the final
product and can implicitly indicate those operations that
can be performed last, but a complete state transition
network of 2K nodes must be constructed in order to indicate
that K operations can be done in any order desired.

66

It is only when a problem can be decomposed into
independent sub-assemblies that this representation becomes
economical. Under a state transition representation, the
number of states, and accordingly the number of nodes, in a
problem would be equal to the product of the number of
states in each independent sub-assembly. Under an And/Or
graph representation, each independent sub-assembly can be
represented by a separate sub-graph and the total number of
nodes in the graph would be the sum of the number of nodes
in each sub-graph. Hence, for problems which do not involve
building independent sub-assemblies this representation is
essentially identical to a state transition network but when
sub-assemblies are used in the construction of the final
product an And/Or graph representation is substantially more
compact.

From the perspective of the planner, an And/Or graph
representation of the decomposition of an assembly is
subject to the same analysis. For problems which do not
involve building independent sub-assemblies this
representation is essentially identical to a state
transition network and the same criticisms apply. When sub-
assemblies are used in the construction of the final product
an And/Or graph representation is both conceptually and
computationally more tractable. If for no other reason, this
is because the number of distinct states to be considered
has been reduced from a product of states to a sum of
states. More important, an And/Or graph accurately models

67

one strategy that a planner might follow in planning. First
decompose the problem into a set of independent sub­
problems, and when that is accomplished recursively
decompose each of those.

From the perspective of the sequencer And/Or graphs
pose only modest complications. It is a trivial matter to
determine the set of admissible next operations if the
representation of a task is, in effect, a state transition
network. All of the admissible states and state transitions
have already been enumerated. For sake of efficiency, it may
be desirable to collapse and label hyperarcs using the same
methods demonstrated in Figure 10. If the task has been
partitioned into sub-assemblies, then the sequencer must
separately consider the state of each active sub-assembly
and properly shift attention when sub-assemblies are mated.
This does not appear to present any serious difficulties.

The usefulness of this representation is limited to the
degree that a problem is decomposed into independent sub­
problems. An And/Or graph representing any problem or sub­
problem that cannot be decomposed is simply a state
transition network. Hence to a large degree, this
representation has the same merits and demerits as state
transition networks, but for some specific problems, it can
be quite economical.

3. Ordered Sets. Given that a plan consists of a set of
operations plus a set of admissible sequences over those
operations it is quite natural to consider methods for

68

defining the admissible sequences by some formula or
prescription.

a. Linearly Ordered Sets. The simplest method for
prescribing the ordering of a set of operations is to
explicitly state a feasible execution sequence. This is the
weakest representation possible. Of sixty-three feasible
plans in Figure 11, only the six marked with asterisks, can
be represented within this framework. The other fifty-seven
can only be approximated by selecting one of their
constituent linear sequences. Of course, this will eliminate
any sequencing options that would otherwise be available to
the sequencer. Although far from complete, it can be argued
that this representation is compact. The size of a plan is
proportional only to the number of operations. The price of
this compactness, though, is a loss of information. It has
already been argued in the discussion of planning and in the
general discussion of representation, that this form of
representation interferes with the process of planning and
artificially constrains the process of sequencing.

For purposes of comparison, a linear plan for the
simple assembly problem can be any one (but only one) of the
sequences shown in Figure 5.

b. Partially Ordered Sets. The representation most
frequently used to state the ordering constraints over a set
of operations is the precedence diagram' . As used in the

"^Prenting, T.O. and Battaglin, R.M., The precedencediagram: a tool for analysis in assembly line balancing.

69

Production Engineering and Operations Research literature, a
precedence diagram consists of a set of nodes and a set of
directed arcs. Each node represents an operation to be
performed and each arc represents a constraint on the order
of two operations. By convention, arcs are drawn as arrows
from predecessor to successor operations. Operations that
have no predecessors can be performed at any time, and those
with predecessors can only be done after all of the
predecessor operations have been completed. When properly
formed, a precedence diagram contains one node for each
operation to be performed, one arc for each necessary
ordering constraint, and no loops or cycles.

Clearly, a precedence diagram is nothing more than a
directed acyclic graph with a specific interpretation
applied to the nodes and arcs. An equivalent mathematical
structure is the strict partial order, consisting of a set
of objects and a set of ordered pairs which define a
transitive asymmetric relation over those objects. Of course
the objects in question are the operations and the
relationship of interest is precedence.

For example, a precedence diagram which represents a
restricted form of the plan for the simple assembly problem
is shown in Figure 12. The operations i-C and i-R can be
performed at any time, the operation i-S can be done only
after the operation i-C, and the operation i-H can be done
only after i-S and i-R.

Journal of Industrial Engineering, vol 15, #4, pp. 208-
211, July-Aug 1964.

70

1
2
3
4
5
6

1 1 1
2 2 2
3 3 3
4 4 5
5 6 6

1 1 2
2 3 3
4 4 4
5 5 5
6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4
2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 4 4 5 5
3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 5 6 6 6

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

1 2 3★ * ★ 4 5 6* * *

(Sets a n d t h e i r e l e m e n t s are l i s t e d v e r t i c a l l y .)
F i gu re 11 .

Six l i n e a r p l a n s over { A , B , C } .

71

F i g u r e 12.
A r e s t r i c t e d p l a n for the simple a s s e m b l y problem.

72

The execution of a task according to the constraints
embodied in a precedence diagram is analogous to the process
of pebbling the nodes of that graph. That process is
governed by one basic rule. A node can be pebbled only if
all of its predecessor nodes have been previously pebbled.
By default, an initial node, with no predecessors, can be
pebbled at any time. The process is complete when all of the
nodes are covered. Given a properly formed precedence
diagram, the set of all possible pebbling sequences is
identical to the set of all possible execution sequences.

Precedence diagrams are clearly compact. The
representation of a plan over K operations will always
contain K nodes and never more than K(K-l)/2 arcs. The
smallest plan, a linear sequence over K steps, requires only
(K-l) arcs, and the largest plan, which admits K! sequences,
requires 0 arcs. Hence, it appears that this representation
best approximates a previously stated ideal. The size of a
plan under a given representation should be proportional to
its complexity, not simply the number of sequences which it
encodes.

Precedence diagrams are conceptually and
computationally useful to the planner. During the course of
planning, operations are added to the plan in order to
produce specific desired effects. In order to guarantee
those effects, an operation must necessarily follow the
operations that enable its execution, it must necessarily
precede the operations that require its effect, and the

73

operations that require its effect must precede any
operations that negate its effect. Hence, each time that an
operation is added to the plan a number of ordering
constraints must be added to the plan as well. It is not
necessary to determine a linear ordering of the operations,
it is only necessary to tabulate the constraints and to
check for any inconsistencies among them. However, a
collection of ordering constraints over a set of operations
is nothing more than a partially ordered set or precedence
diagram. Moreover, the satisfiability of a conjunction of
ordering constraints over K steps can be determined by a
simple algorithm whose execution time is on the order of K3.

Precedence diagrams are conceptually and
computationally useful to the sequencer. They contain only
the most essential information, the operations and the
necessary ordering constraints, in a form that can be easily
understood by humans. In contrast to state transition
networks and And/Or graphs, they are guaranteed to be
tractably small in both the number of nodes and the number
of arcs. Unlike state transition networks, the admissible
states and state transitions have not been explicitly
enumerated but it is a simple matter to determine the set of
admissible next operations using the previously stated
pebbling rule. A number of other simple algorithms will be
presented in the next section of the paper which make it
possible to compare and analyze plans and strategies that
have been represented using this formalism.

74

Unfortunately, precedence diagrams are not complete.
This can be easily demonstrated by considering a simple task
over three steps. In its most abstract form, the problem is
to perform three operations, A, B, and C, but step B cannot
be done last. Of six possible sequences over three steps,
exactly four satisfy this constraint as shown in Figure 13.

The ordering constraints that must necessarily be
imposed on the three steps can be determined by a simple
analysis of three cases. The ordering of operations A and B
cannot be constrained because they occur in one order in
sequence 1 and in the opposite order in sequence 2; the
ordering of operations A and C cannot be constrained because
they occur in one order in sequence 1 and in the opposite
order in sequence 3; and finally, the ordering of operations
B and C cannot be constrained because they occur in one
order in sequence 1 and in the opposite order in sequence 4.
Unfortunately, this eliminates every possible constraint.
Hence, the only possible precedence diagram which is
consistent with these four sequences is the one which
represents six sequences. This is clearly unsatisfactory.
Only four sequences are admissible under this plan. The
other alternative, is to approximate this plan by one of the
precedence diagrams shown in Figure 14, either one of which
represents three of the four admissible sequences.

For a more global perspective on the matter, the set of
all plans over three steps that can be represented by
precedence diagrams are marked with asterisks in Figure 15.

75

1. [A, B, C]
2 . [B , A, C]
3 . [B, C,A]
4 . [C, B,A]

F i g u r e 13.
C a n o n i c a l r e p r e s e n t a t i o n of the plan: "B Not Last. »»

(a) (b)
C 2

i i

E A IS C

Figure 14.
Two p r e c e d e n c e d i a g r a m s w h i c h a p p r o x i m a t e

the plan: "B Not Last."

77

1
2
3
4
5
6 *

1 1 1 1 1 2
2 2 2 2 3 3
3 3 3 4 4 4
4 4 5 5 5 5
5 6 6 6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4
2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 4 4 5 5
3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 5 6 6 6* * * * * *

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6* * * * * *

1 2 3 4 5 6* * * * ★ *
(Sets and. t heir ele m e n t s are l i s t e d v e r tically.)

F i g u r e 15.
N i n e t e e n p a r t i a l l y o r d e r e d plans o ver {A,B,C}.

78

clearly, this representation only sparsely covers the space
of possible plans. Notably, no plan over K steps that
contains more than K!/2 sequences but less than K! can be
represented by a precedence diagram1

Instances of this kind of problem are common. The
simple assembly problem is a good example. The stick is
contained within the space formed by the other three parts,
cap, receptacle, and handle, and obviously cannot be
installed last. Likewise, if the cap, stick, and handle have
been mated it is impossible to then install the receptacle,
in fact, the set of admissible assembly sequences for this
product is exactly circumscribed by those two constraints.
As in the previous problem, there are several precedence
diagrams, as shown in Figure 16, that can represent a subset
of the admissible sequences, but there does not exist a
single precedence diagram that encompasses all 12.

The weakness of precedence diagrams is very simple to
identify. A precedence diagram is a conjunction of ordering
constraints. There is no notational convention for including
disjunctive constraints within that representation. Any
problems which are subject to a disjunction of ordering
constraints cannot be represented within this framework.

Disjunctive constraints occur naturally in a number of
circumstances. A common situation is that a step is enabled
by any one of several predecessors. For example, if step z
is enabled by either of the steps x or Y, then unless
otherwise limited, X must precede Z or Y must precede Z.

79

F i gu re 16.
F o u r p r e c e d e n c e d i a g r a m s w h i c h a p p r o x i m a t e
the p l a n for the s i m p l e a s s e m b l y p r oblem.

80

Another common situation is when a step is disabled upon the
completion of every one of several steps. As in the simple
assembly problem, if step X is disabled when both Y and Z
are both completed, then X must precede Y or X must precede
2. A case which leads to a more complicated combination of
constraints is when two sets of operations sufficiently
interfere so that their execution cannot be interleaved. For
example, if steps X and Y interfere with steps Z and W then
X and Y must be performed before Z and W or Z and W must be
performed before X and Y. The situations are common and the
possibilities are endless.

c. And/OR Graphs Reconsidered. Is it possible that
under a suitable encoding, And/Or graphs can be used as a
general representation for the constraints over the steps of
a plan? The most natural encoding would be to interpret
nodes of the graph as steps of the plan, arcs of the graph
as ordering constraints drawn as arrows from predecessor to
successor steps, hyperarcs which descend from a node as
conjunctions of ordering constraints, and unconnected arcs
and hyperarcs which descend from a node as a disjunction of
the constraints which they denote. Clearly, every precedence
diagram can be represented in this fashion simply by joining
the arcs which meet beneath a node with a bar to denote a
conjunction of the predecessors. It is equally possible to
represent constraints of the form X must precede Z or Y must
precede Z, as a pair of independent arcs drawn from nodes x
and Y to Z.

81

This usage of And/Or graphs poses two difficulties.
First, under this interpretation of nodes and arcs it is not
possible to represent state transition networks and problem
decompositions as discussed earlier. Second, this
alternative usage still does not cover the variety of
constraints that may be presented by real problems. For
instance, without some extended notation, it is impossible
to represent the disjunction of constraints, X must precede
Y or x must precede z, or the disjunction of constraints, X
and Y must precede Z and W or Z and W must precede X and Y.
Attempts to extend And/Or graphs with sufficient notational
conventions to encompass these and other more complicated
problems will result in a system of nodes, arcs, and
hyperarcs not suitable for graphical presentation.

d. Interval Algebra. Since the problem of sequencing
the activities of a robot is in fact a problem of reasoning
about time, it is natural to consider the languages that
have been proposed for systems of temporal reasoning. The
foremost among these is the language proposed by Allen72.
The basic elements of this language are intervals of time
and 13 primitive relationships that can hold between two
intervals as shown in Figure 17. Each phrase in this
language defines the relationship between two intervals and
is formed as a disjunction of any of the thirteen primitive

72Allen, J., Maintaining knowledge about temporal intervals, Communications of the ACM 26 (1983), 832-843.

relationships. The constraints on the order of a set of
operations is formulated as a conjunction of such phrases.

82

This extensive vocabulary of interval relationships
makes this language particularly useful when specifying the
constraints over a set of concurrent activities. However,
most of these relationships are superfluous in the context
of a single robot performing a set of atomic operations.

More interesting, this language provides a limited
facility for stating disjunctions of constraints. This
facility produces an ironic effect. Although it is
impossible to directly pose the constraint, X must precede Y
or Z must precede W , it has been shown that, under a
clever encoding, this language can be used to represent any
NP complete problem73 74. Because of this inherent complexity
the problem of determining the satisfiability of a given set
of interval constraints is NP-Complete. The constraint
propagation algorithm that Allen proposes runs in polynomial
time, but it is not guaranteed to derive all of the
necessary relationships implied by the constraints, nor is
it guaranteed to detect every possible inconsistency. Other
complete constraint propagation algorithms have been
considered but the expected execution time is prohibitive75.

73Allen, J., Maintaining knowledge about temporal intervals.
74Vilain, M. and Kautz, H., Constraint propagationalgorithms for temporal reasoning, in Proceedings Fifth National Conference on Artificial Intelligence. Philadelphia, Penn., 1986, pp. 377-382.
75Allen, J. personal communication, February 1987..

XX

XX

XX

XX

KX

83

before Y,
after X

meets Y,
met-by X

overlaps Y, ---- x
overlapped-by X

contains Y,
contained-by X

starts Y,
started-by X

X ends Y,
Y ended-by X

X equals Y

x
y

X

y

F i g u r e 17.
T h i r t e e n p o s s i b l e in t e r v a l r e l a t i o n s h i p s .

84

4. Petri Nets. Other recent papers suggest that Petri
nets' can be used to represent the tasks that robots are
to perform. Not coincidentally two proposals have originated
from Edinburgh. One is offered from the perspective of the
planner76 77'78'79 and the second from the perspective of the
sequencer and executor80'81.

Although quite a variety of Petri nets are found in the
literature, the most common formulation consists of four
elements: tokens, two kinds of nodes, and arcs which connect
them. One kind of node, referred to as a place. is
represented as a circle, the other kind, called a
transition, is represented as a bar. All of the arcs are
directed, drawn as arrows from places to transitions or from
transitions to places but never directly from transition to
transition or from place to place. Tokens reside in the
circles which represent places and, according to some simple

76Petersen, J.L., Petri nets, Computing Surveys 9 (1977),223-252.
77Drummond, M.E., Refining and extending the procedural net, in Proceedings Ninth International Joint Conference on Artificial Intelligence. Los Angeles, Calif, 1985,pp.1010-1012.
78Drummond, Plan Nets: a formal representation of action and belief for automatic planning systems.
79Drummond, M.E., Contingent plan structures forspacecraft, in Proceedings NASA/JPL Workshop on Space Telerobotics. Jet Propulsion Laboratory, Pasedena,Calif., 1987 (to appear).
80Malcolm, C., DAI Working Paper 187, Department ofArtificial Intelligence, University of Edinburgh, 1986.
81Malcolm and Fothergill, Some architectural implications of the use of sensors.

85

rules and the structure of a net, are moved from place to
place. The distribution of tokens in a Petri net determines
its state and a set of future, reachable states.

The behavior of a Petri net is determined by a set of
simple firing rules, not unlike the marking or pebbling
rules associated with the other representations. A
transition is enabled when all of its input places contain
at least one token. At each step of execution, one of the
enabled transitions is selected and fired. When fired, a
transition removes one token from each of its input places
and deposits one token in each of its output places. The
number of input and output places need not be equal.

Using these elements it is a simple matter to construct
a network which is identical to a state transition network
in both structure and behavior. For example, the state
transition network of Figure 6 can be translated into the
Petri net shown in Figure 18. Each node of the state
transition network is replaced by a place(circle) and each
arc of the state transition network is replaced by an arc,
transition(bar), arc combination. The labels attached to the
nodes in the state transition network are attached to the
corresponding places and the labels attached to the arcs of
the state transition network are attached to the
corresponding transitions. By virtue of this simple encoding
of state transition networks, Petri nets must necessarily be
a complete representation for plans. It is equally simple to
encode And/Or graphs and precedence diagrams. For example,

86

{ C , S , R } O O (S,R,H>

E q u i v a l e n t P e t r i net of t he s t a t e
t r a n s i t i o n n e t w o r k of F i g u r e 6.

87

the precedence diagram of Figure 12 can be reformulated as
the Petri net shown in Figure 19.

The unique aspect of Petri nets is found in a careful
interpretation of the places and transitions. In a general
sense, each place denotes a precondition for the transitions
which follow. Each transition denotes an action or event and
multiple input places form a conjunction of necessary
enabling conditions. The places which follow a transition
then denote the post-conditions or effects of the action.
Given this interpretation, a Petri net for a task of K steps
can be constructed from a set of K transitions which denote
those steps, K places which denote the effects of those
operations, K places which denote the necessary
preconditions, and sufficient network circuitry to establish
those preconditions. Petri nets constructed in this fashion
are guaranteed to be compact. The size will be proportional
to the number of operations in the task and the complexity
of the enabling conditions. For example, the Petri net shown
in Figure 20 represents the simple task discussed above, "B
not last”. The three topmost places denote the conditions
that the actions have been completed, the transitions below
those denote the respective operations, and the places below
the transitions denote the necessary enabling conditions.
The remaining network elements have been so constructed as
to establish the enabling conditions. For example, the
action A is enabled for execution if action B has been
completed or if the action enable-A has been completed.

88

o o
- r i - s i-R — —

o
▲

_ _ • _ /-»

©

n 1 c

©

Figure 19.
E q u i v a l e n t P etri net of the p r e c e d e n c e

d i a g r a m of F i g u r e 12.

89

A-complefced B-completed C-completed

®
A - i n itially-enabled

®
C-initially-enabled

Figure 20.
Petri net r e p r e s e n t a t i o n of the pl?n

d e f i n e d in F i g u r e 13.

90

However, the action enable-A can be executed only if both A
and C are initially enabled. The Petri net for the simple
assembly problem, which has similar enabling conditions, is
shown in Figure 21.

The construction of a Petri net presents two
difficulties. First, the enabling conditions for each action
must be precisely circumscribed, and second, network
structures must be fabricated which establish exactly those
conditions. The former problem is the most critical.
Although this may not involve the laborious process involved
in building a state transition network, it does involve the
enumeration and resolution of all of the factors that
constrain a given operation. As in previously discussed
representations, the analysis and resolution of the relevant
constraints may exceed human capabilities and the
implementation of computerized systems which can perform
this same analysis requires some representation for the
limiting constraints and some methods for analyzing them.
Again, this only displaces the question of representation.
What are the underlying constraints, how can they be
represented, and what methods can be used to resolve them?
Drummond suggests, that instead of completely resolving the
necessary preconditions and encoding them in the Petri net,
that a companion data structure be constructed which
circumscribes the admissible orderings of operations. He
further proposes that this information be derived from a
state transition network constructed by simulating the

91

completed S-completed R-completed H-completedo o o o

F igure 21.
Petri net representation of the plan defined in Figure 5.

92

execution of the task in question82. At present, Malcolm is
currently more concerned with exploring the potential
applications of Petri nets and will later consider methods
for their production83.

The analysis of a Petri net poses another difficulty.
The predominant tool for the analysis of the behavior of a
Petri net is the reachability graph84. Essentially, this is
a state transition network constructed by simulating the
execution of the Petri net. As in other representations, the
least constrained problems will be the most difficult to
analyze because of the exponential explosion in the space of
reachable states. The most discouraging aspect of Petri nets
is that without specific constraints on their structure,
they are equivalent in computational power to Turing
Machines. Hence, basic questions about behavior and
termination are undecidable.

E. DISCUSSION
Three basic categories of representation have been

proposed in the literature. The first category includes
those that are based primarily upon the admissible states of
the task. Of course, the primary representative of this
category is the state transition network, but the problem
decomposition representations rely upon this mode of

82Drummond, M.E., personal communication, January 1987.
83Malcolm, C. personal communication, December 1986.
84Petersen, Petri nets.

93

representation for those parts of problem which cannot be
decomposed.

The second category includes those that are based
primarily upon some scheme of precedence among the
operations to be performed. The strictest representation in
this category is the linear order. Precedence diagrams and
partial orders impose the least constraint within the limits
of purely conjunctive languages. The language of temporal
intervals includes a restricted form of disjunction but the
expressions which can be formed with this facility are
superfluous in the context of single robots performing sets
of atomic operations. Under an appropriate interpretation,
And/Or graphs encompass a larger domain of problems but
still fail to cover every possible plan.

The third category includes those that establish
precisely the enabling conditions for each of the operations
to be performed. The singular representative of this
category is the Petri net. Since all of these
representations are concerned with a common domain and
since, to a large extent, they can be translated, one to
another, it should not be surprising that each
representation contains some elements of state, precedence,
and precondition. The delineation of these categories is
only intended to identify the most prominent distinguishing
characteristics of the candidate representations.

With the exception of the interval algebra, all of
these representations have one characteristic in common.

94

They are primarily graphical languages intended for two
dimensional presentation. They are most effective for small
or simple problems. When applied to larger or more complex
problems these representations lose their elegance. Some
forms of representation, like the precedence diagram, are
structurally very simple and can only be used to encode
simple problems. Some forms of representation, like the
state transition network, are structurally very simple but
the encoding of simple problems results in an excessively
large structure. Other forms of representation may be both
complete and compact, such as the Petri net, but may be
prohibitively complex to produce and intractable to analyze.

A fundamental problem with graphical languages is that
some of the relationships between the objects in question
cannot be reduced to simple adjacency and connectivity. In
some circumstances the relationships themselves are
constrained or related. Consider, for example, the problem
of extending the language of precedence diagrams to
encompass general disjunction. Whatever graphical element is
introduced to denote disjunction must apply to any
imaginable constraints including the five cases shown in
Figure 22: (a) X must precede Z or Y must precede Z; (b) X
must precede Y or X must precede Z; (c) X must precede Y or
Y must precede Z; (d) X must precede Y or Z must precede W;
(e) (X must precede Y and z must precede W) or (Y must
precede X and W must precede Z). Clearly meta-arcs can be
introduced to disjunctively connect arcs which denote the

95

Figure 2 2 .
Extended precedence diagram notation for five disjunctive constraints.

96

primitive ordering constraints in cases (a), (b), (c), and
even (d). In case (e), however, the objects to be connected
are logical entities that do not have a graphical analog. If
sufficient graphical elements are introduced to model all of
the relevant connections and combinations, the resulting
representation will be so littered with arcs, and meta-arcs
that it would be unsuitable for visual presentation.

The alternative is to consider purely textual forms of
representation. One system, which is a logical extension of
precedence diagrams and And/Or graphs, is presented next.

97

IV. THE PROPOSED REPRESENTATION

A. GENESIS
The genesis of the proposed representation took place

over many months and involved the resolution of many
different constraints and influences. It was recognized
early in the course of the research that precedence diagrams
were particularly easy to understand, produce, and utilize,
and that form of representation was used in the author's
first implementations of opportunistic scheduling8^•88.
Later, it was discovered that some problems simply could not
be represented using that formalism. This discovery
motivated the consideration of alternative representations
and the definition of a canonical representation that could
be used for purposes of comparison. With a clearer
understanding of the problem space to be represented and
with a clearer understanding of the properties of the
candidate representations it was possible to create a more
general, but still conceptually tractable representation.

The canonical representation provided the necessary
insight. If each plan over a fixed set of operations is
interpreted as a set of admissible sequences then the set of
all possible plans over a fixed set of operations can be
organized into a Boolean lattice such as that shown in 85 86

85Fox and Ho, A relational control mechanism for flexible assembly.
86Fox and Kempf, Opportunistic scheduling for robotic

assembly.

98

Figure 3. Given that organization, each plan in the lattice
can be constructed from the intersection and union of
other plans. This suggested that each plan could be defined
by the intersection and union of certain basic plans. Under
the canonical representation, each plan is defined as the
union of its constituent linear sequences. However, each
linear sequence can be formed as the intersection of the
plans defined by its constituent primitive ordering
constraints. Hence, the primitive ordering constraints can
be used to define the requisite basic plans and each plan in
the lattice can be defined by the intersection and union of
those elements.

B. SYNTAX
From this perspective, precedence diagrams are

precisely those plans that can be formed using only
intersections of the basic plans. The proposed
representation is simply a textual version of precedence
diagrams with additional notation for union (disjunction)
and complement (negation). Syntactically it is composed of
(1) symbols which denote the activities to be sequenced,
(2) primitive constraints of the form (X < Y), where X and

Y denote activities to be sequenced under the
constraint that X must precede Y, and

(3) logical combinations of primitive constraints
constructed using the operators and, or, and not.

The formal syntax of the representation recursively defines
the structure of a constraint expression c, as a composition

99

Q * subexpressions Cl and C2, atomic symbols si and S2, and
t h e literals <, (,), and, or, and not:

c — > (Cl and C2)
C — > (Cl or C 2)
C — > (not Cl)
C — > (SI < S2)

In addition to this basic syntax, a number of macro
expressions have been defined in order to abbreviate some
frequently occurring conjunctive constraints. For instance,
if several operations X, Y, and Z must all precede W then
the corresponding constraint expression:

(((X < W) and (Y < W)) and (Z < W))
can be condensed to simply the phrase:

((X Y Z) < W) .
Likewise, multiple successors can be combined within a
single constraint as in:

(X < (Y Z W))
and by natural extension, the phrase

((X Y) < (Z W))
denotes the constraint that both X and Y must precede both Z
and w. (For sake of clarity, infix notation will be used
throughout this presentation although the Lisp programs
which have been implemented expect constraint expressions in
an equivalent prefix notation.)

100

c. SEMANTICS
Coupled with this syntax are two axioms which define

the semantics of the representation. The first defines the
transitive nature of order:

Transitive Axiom:for all X, Y, and z, (X < Y) and (Y < z) implies that (X < Z).
The second defines the nature of serial processes:

Serial Axiom:(a) it is never true that (X < X) ,(b) it is never true that ((X < Y) and (Y < X)).(c) for all distinct X and Y, ((X < Y) or (Y < X))
The second axiom, in a sense, tailors the representation to
sets of activities which must be performed one step at a
time such as the steps of an assembly performed by a single
robot.

The second axiom also defines the proper interpretation
of negation. Negation applied to a constraint expression can
be distributed over conjunction and disjunction according to
the rules of Boolean algebra:

(not (Cl and C2)) — > ((not Cl) or (not C2)),
(not (Cl or C2)) — > ((not Cl) and (not C2)),

double negations can eliminated:
(not (not C)) — > c,

and negation applied to a primitive constraint can be
removed according to a rule derived from the Serial Axiom:

(not (SI < S2)) — > (S2 < SI).
Hence, negation can be used freely to state constraints in
their most natural form but it can be easily eliminated from

101

constraint expressions in order to facilitate the analysis
of those constraints.

D. COMPARISON UNDER THE FOUR CRITERIA
1. The Simple Assembly Problem. Using this notation the

problems discussed in the previous chapter have a very
succinct representation. For instance, the problem of three
steps A, B, and C in which B should not be performed last,
can be represented by the constraint expression

(not ((AC) < B))
or by the equivalent constraint expression

((B < A) or (B < C)).
Similarly, the simple assembly problem can be represented by
the constraint expression:

(((i-C i-S i-R) < i-H) or ((i-H i-S i-R) < i-C)).
2. Completeness and Compactness. Because this

representation is derived directly from the lattice
structure of the space of possible plans it is guaranteed to
be complete. However, it is not guaranteed to be compact.
This is because of the restricted set of basic plans which
can be used to construct other plans within the lattice. An
arbitrary element of the lattice is not guaranteed to be
composed of sequences which are dominated by simple ordering
constraints. For instance, consider a plan for a set of
activities A, B, C, D, and E consisting of the five
sequences [A,B,C,D,E], [B/C,D,E,A], [C/D/E/A/B],
[D,E,A,B,C], [E , A, B , C , D]. Obviously these sequences cannot
be defined by a precedence diagram since every step occurs

102

both before and after every other step. In fact the most
compact representation of this plan, when using the proposed
representation and the primitive ordering constraints as the
set of basic plans, is simply a disjunction of the five
admissible sequences. However, ordering constraints derived
from the most common physical constraints appear to be
dominated by simple conjunctions and disjunctions of
primitive ordering constraints.

3. Utility to the Planner. This representation can be
particularly useful to a planner. The process of
constructing a state transition network requires the
enumeration of every feasible state of a task; the process
of constructing an And/Or graph requires the enumeration of
every possible decomposition of a task and the enumeration
of every feasible state within the sub-problems that cannot
be decomposed; the construction of a Petri net requires the
enumeration and resolution of every constraint that defines
the admissible sequences; the construction of a precedence
diagram requires the enumeration of a necessarily
satisfiable conjunction of constraints. Using the proposed
representation, it is only necessary to enumerate the
limiting constraints. Any further analysis or resolution of
the constraints can be performed by machine using the
algorithms discussed below.

Most frequently occurring physical constraints can be
mapped directly into very simple temporal constraints. For
instance, consider the gearbox shown in a schematic sideview

103

in Figure 23. It is composed of a top plate Tp, bottom plate
Bp, input gear Ig, large transfer gear Lg, small transfer
gear Sg, output gear og, and four distinct retaining clips
Ll, L2, si, and S2 which secure the assembly after both the
top and bottom plates are in place. The operations of
installing those parts are represented by the symbols i-Tp,
i-Bp, i-Ig, i-Lg, i-Sg, i-Og, i-Ll, i-L2, i-Sl, and i-S2. A
normal assembly sequence would be to choose one of the
plates, insert the four gears into that plate, mate the
other plate with the gears, and secure the top and bottom
plates using the four retaining clips.

The minimal constraints on the assembly are derived
from the fundamental spatial and functional relationships
among the parts. For instance, a recurring spatial
relationship involves parts that are contained between other
parts. All of the internal gears are contained between the
top and bottom plates. It would be impossible to install
those parts after installing the two plates. Similarly, the
large transfer gear is contained between the input gear and
the bottom plate and it would be impossible to install that
gear after both the input gear and the bottom plate were
installed. Other instances of between-ness and containment
could be itemized as well. The functional relationships
among the parts imply some additional ordering constraints.
The top and bottom plates have the very useful property that
either of them can serve as a jig for installation of the
internal gears. Hence, it is quite logical to require that

104

LI SI S 2 L2

(schematic side-view)
Figure 23.

The gearbox assembly problem.

105

one of the plates be installed before any attempt is made to
install the gears. Similarly the retaining clips secure the
assembly after both the top and bottom plates have been
installed and it is quite logical to impose the constraint
that the clips can only be installed after the plates. The
complete itemized list of temporal constraints which are
implied by these spatial and functional relationships are
shown in Figure 24.

The explicit enumeration of these constraints may, at
first, appear to be a complicated affair. In reality, any
system which plans and executes a set of activities must
identify and resolve every relevant sequencing constraint.
This appears complicated because humans perform this
analysis naturally, almost without conscious effort.

4. Utility to the Sequencer.
a. Complexity. By simplifying the task of the planner

the task of the sequencer becomes substantially more
difficult. It is simple to demonstrate that the problem of
determining the satisfiability of an arbitrary temporal
constraint expression is NP-Complete and the process of
determining an admissible first step is NP-Hard. A sketch of
the proof follows. First, it must be demonstrated that a
proposed solution to a given sequencing problem can be
verified in polynomial time. Second, it must be demonstrated
that any method which can determine the satisfiability of a
temporal constraint expression in polynomial time can be

106

Both the top and bottom plates must be installed
before the four retaining clips can be installed:

(i-Bp < (i-Ll i-L2 i-Sl i-S2)) and
(i—Tp < (i—LI i-L2 i-Sl i-S2)) and

The i n p u t gear, l a r g e t r a n s f e r gear, s m a l l t r a n s f e r
g e a r , a n d o u t p u t g e a r are all b o u n d b e t w e e n th e to p
a n d b o t t o m p l a t e s :

(not ((i-Tp i-Bp) < i-Ig)) and
(not ((i-Tp i-Bp) < i-Lg)) and
(not ((i-Tp i-Bp) < i-Sg)) and
(not ((i-Tp i-Bp) < i-Og)) and

The i n p u t g e a r is b o u n d b e t w e e n the t o p p l a t e and
the l a r g e t r a n s f e r gear:

(not ((i-TP i-Lg) < i-Ig)) and
The l a r g e t r a n s f e r ge a r is b o u n d b e t w e e n t h e input
g e a r a n d t h e b o t t o m plate:

(not ((i-Ig i-Bp) < i-Lg)) and
The l a r g e t r a n s f e r gear is b o u n d b e t w e e n the small
t r a n s f e r g e a r a n d t h e b o t t o m plate:

(not ((i-Sg i-Bp) < i-Lg)) and
The s m a l l t r a n s f e r g e a r is b o u n d b e t w e e n the top
p l a t e a n d t h e la r g e t r a n s f e r gear:

(not ((i-Tp i-Lg) < i-Sg)) and
All of th e ge a r s are s e l f - j i g g i n g in e i t h e r the top
or b o t t o m p l a t e so one of th o s e two p a r t s must
p r e c e d e t h e i n s t a l l a t i o n of t h e i n t e r n a l gears:

((i-Bp < (i-Ig i-Lg i-Sg i-Og) or
(i-Tp < (i-Ig i-Lg i-Sg i-Og))).

Figure 24.
T e m p o r a l c o n s t r a i n t s o n t h e g e a r b o x a s s e m b l y .

108

solution to a given constraint expression can be verified in
polynomial time.

The prototype NP-complete problem is the problem of
Boolean satisfiability. Given a formula over a set of K
Boolean variables , v2, ...Vĵ , does there exist an
assignment of true and false values to the K variables which
causes the formula to be true? It is a trivial matter to
translate an arbitrary Boolean formula, in polynomial time,
into a temporal constraint expression which is satisfiable
if and only if the given Boolean formula is satisfiable. If
some algorithm could be found which determines the
satisfiability of a temporal constraint expression in
polynomial time then it would be possible determine the
satisfiability of a Boolean formula in polynomial time. The
translation proceeds in two parts. First, for each variable
in the Boolean formula, V^, create two symbols QV^ and
Second, create an exact copy of the given Boolean formula
but for each occurrence of a variable v^, substitute the
temporal constraint (QV^ < -jV̂) . Ultimately, if a given
Boolean formula fails to be satisfiable then it requires
some variable , to be both true and false. This fault
translates into the temporal constraint

<<ovi < ivi> and <ivi < ovi>>
which according to the Serial Axiom cannot be satisfied.
Hence, the constructed temporal constraint expression is
satisfiable if and only if the Boolean formula is
satisfiable.

109

Although only a sketch of the proof, both elements have
been demonstrated: a proposed solution to a temporal
constraint expression can be verified in polynomial time and
an established NP-complete problem can be translated into a
temporal constraint expression in polynomial time. Hence,
the problem of temporal satisfiability is NP-complete.

An immediate consequence is that the problem of
constructing an admissible sequence of operations, or even
the problem of selecting an admissible first step is NP-
Hard! This is demonstrated by constructing a sequencing
problem which can be used surreptitiously to establish the
satisfiability of some Boolean formula. Given an arbitrary
Boolean formula, construct a temporal constraint expression
C, using the methods outlined above. Then construct the
temporal constraint expression:

(((A < B) and C) or ((B < A) and (not C)))
where A and B are unique symbols not used in the
construction of C. Obviously, A can be sequenced first only
if C is satisfiable and B can be sequenced first only if
not-c is satisfiable. Both are candidate first steps only if
both C and and its inverse are satisfiable. If some
polynomial time algorithm could be found for selecting an
admissible first step, then that algorithm can be used to
determine the satisfiability of a Boolean formula in
polynomial time. Hence, the problem of sequencirg a set of
activities according to a temporal constraint expression is
NP-Hard.

110

b. Normalization. The inherent complexity of this
language of temporal constraints should not be surprising.
Artificial Intelligence is dominated by NP-Hard problems.
The challenge is to discover some methods which make the
problems more tractable. The key observation in this case is
that some temporal constraint expressions are very easy to
analyze. Any problems which can be represented by a
conjunction of primitive constraints (i.e., a precedence
diagram) can be analyzed and sequenced by simple polynomial
time algorithms. Although not every problem can be reduced
to such a simple representation, every problem can be
represented as the union of a set of conjunctive plans
(i.e., a disjunction of conjunctions of primitive
constraints) which together cover every admissible sequence
of operations. Most algorithms which can be applied to
conjunctive constraint expressions can be adapted to the
more general disjunctive normal form.

This is not to suggest that the planner should bear the
responsibility for producing a plan in this form. Given an
arbitrary constraint expression, an equivalent disjunctive
normal form constraint expression can be produced by purely
algebraic means. Since this is an NP-complete language there
are two hidden costs associated with this process. If
simple, direct methods are used to create the disjunctive
normal form then the size of the resulting expression can be
prohibitively large and if more sophisticated methods are
used to produce the smallest possible disjunctive normal

I l l

form the time required may be prohibitive. However, an
investment of time can be justified since it enables simple
polynomial time algorithms to be used in subsequent stages
of analysis. For many problems, careful use of heuristic
methods yields a reasonably small disjunctive normal form
constraint expression in a reasonable amount of time.

Consider again, the gearbox assembly problem shown in
Figure 23. Negation can safely be removed from the
constraints shown in Figure 24, resulting in a positive
constraint expression with nine embedded disjunctions as
shown in Figure 25. Production of the disjunctive normal
form of that constraint expression using the distributive
law of Boolean algebra,

(X and (Y or z)) — > ((X and Y) or (X and Z))
results in a set of 512 conjunctive clauses. (In general,
the size of the disjunctive normal form grows exponentially
with the number of applications of the distributive law.)
However, all of the admissible sequences for performing this
assembly are covered by two conjunctive clauses shown as
precedence diagrams in Figure 26. Of the other 510 clauses,
some are inconsistent some are inconsistent and can be
covered by the clauses shown in Figure 26 and can be safely
be removed.

Other systematic methods for explicitly generating the
disjunctive normal form are possible. For instance, given a
positive constraint expression (a constraint expression with
no occurrence of negation) every relevant conjunctive clause

112

Both the top and bottom plates must
before the four retaining clips can be i n s t a l l e d

be i n s t a l l e d :

(i-Bp < (i-Ll i-L2 i-Sl i-S2)) and
(i-Tp < (i-Ll i-L2 i—SI i-S2)) and

The i n p u t gear, l a r g e t r a n s f e r gear, s m a l l t r a n s f e
g e a r , a n d ou t p u t ge a r are all b o u n d b e t w e e n the to p
a n d b o t t o m p l a t e s :

((i-ig < i-Tp) or (i-Ig < i-Bp)) and
((i-Lg < i-Tp) or (i-Lg < i-Bp)) and
((i-Sg < i-Tp) or (i-Sg < i-Bp)) and
((i-Og < i-Tp) or (i-Og < i-Bp)) and

The input gear is b o u n d b e t w e e n the top p l a t e a n d
the large transfer gear:

((i-Ig < i-Tp) or (i-Ig < i-Lg)) and
The la r g e t r a n s f e r g e a r is b o u n d b e t w e e n the in p u t
g e a r a n d t h e b o t t o m plate:

((i-Lg < i-Ig) or (i-Lg < i-Bp)) and
The la r g e t r a n s f e r g e a r is b o u n d b e t w e e n the small
t r a n s f e r g e a r a n d th e b o t t o m plate:

((i-Lg < i-Sg) or (i-Lg < i-Bp)) and
The small t r a n s f e r g e a r is b o u n d b e t w e e n the t o p
p l a t e a n d the la r g e t r a n s f e r gear:

((i-Sg < i-Tp) or (i-Sg < i-Lg)) and
A l l of t h e g e a r s are s e l f - j i g g i n g in e i t h e r t h e t o p
or b o t t o m p l a t e so o n e o f t h o s e two p a r t s must
p r e c e d e t h e i n s t a l l a t i o n of t h e i n t e r n a l gears:

((i-Bp < (i-Ig i-Lg i-Sg i-Og) or
(i-Tp < (i-Ig i-Lg i-Sg i-Og))) .

Figure 25.
Positive temporal constraints on the

gearbox assembly.

113

F i g u r e 2 6.
T w o c o n j u n c t i v e c l a u s e s w h i c h c o v e r t h e

a d m i s s i b l e s e q u e n c e s f o r t h e g e a r b o x a s s e m b l y .

114

can be formed, from subsets of the primitive constraints
contained in that expression. Of course, the number of
possible subsets grows exponentially with the number of
constituent primitive constraints. Alternatively, given a
constraint expression in conjunctive normal form (a
conjunction of disjunctive clauses) every relevant
conjunctive clause can be formed by constructing every
possible combination of one primitive constraint from each
disjunctive clause. Again the number of possible
conjunctions grows exponentially with the number of clauses.

Given that the number of possible conjunctions grows
exponentially with the size of the given constraint
expression, the only feasible means of constructing the
requisite disjunction of conjunctive clauses is to use some
►strategy of implicit enumeration. An efficient method for
deriving a small number of covering conjunctive clauses is
based upon a very careful analysis of the given constraints
and a systematic expansion of a tree structured search
space. Each node in the tree consists of two parts: a
partial solution consisting of a conjunction of primitive
constraints and a partial problem consisting of a constraint
expression in conjunctive normal form. (Conjunctive normal
form is necessary to the analytic and algebraic processes
involved in the expansion of nodes into successor nodes.)
Each node implicitly represents all of the possible ways
that the partial solution can be completed and at the same
time the partial problem satisfied. In the root node, the

115

partial solution is nil and the partial problem consists of
khe initial constraint expression. In the target leaf nodes,
the partial solution consists of a conjunction which
satisfies the original constraint expression and the partial
problem is nil.

The process of expanding a node into its two successor
nodes begins by selecting one of the primitive constraints
within the partial problem. The left successor is
constructed under the assumption that this constraint will
be realized in the solution. This implies that the selected
constraint and any additional constraints implied by
transitive closure necessarily become part of the partial
solution. This also implies two reductions of the partial
problem. First, any clause which contains a constraint which
‘las been added to the partial solution should be removed
since it is guaranteed to be satisfied. Second, since a
constraint and its inverse will never be realized
simultaneously, any clause which contains the inverse of a
constraint which has been added to the partial solution
should be reduced by the removal of that inverse constraint.
The right successor node is constructed under the assumption
that the selected constraint will not be realized in the
solution. This implies that the partial solution should
remain unchanged in the successor node and the partial
problem should be reduced by the removal of the selected
constraint from all of the clauses which contain it.

116

The partial solutions produced by this process are
inconsistent if they require some cyclic ordering
constraints such as ((X < Y) and (Y < X)) in violation of
the serial axiom. The partial problems produced by this
process are guaranteed to be non-satisfiable if some clause
is reduced to length zero leaving no possibility for the
clause to be satisfied.

The expansion of the search space proceeds in a
leftmost, depth first fashion. If the partial solution in
some node is inconsistent then the partial solution of every
descendant node will be inconsistent. If the partial problem
in some node is non-satisfiable then the partial problem of
every descendant node is non-satisfiable. Hence, the
expansion of a subtree terminates when a partial solution is
■produced which is inconsistent or when the partial problem
has been reduced to a formula which is clearly non-
satisf iable. Expansion also terminates when the partial
problem has been completely reduced leaving a (partial)
solution which satisfies the initial constraint expression.
Each solution produced in this fashion is guaranteed to
satisfy the given constraint expression and all of the
solutions together are guaranteed to cover all of the
admissible sequences.

The main factor which affects the performance of this
algorithm is the method used for selecting the primitive
constraint which is used to expand a given node. First
choice is always given to constraints that obviously must be

117

true and then preference is given to the constraints which
most reduce the partial problem. This approach will either
lead quickly to a contradiction and the elimination of a
large subtree of the search space, or it will lead quickly
to a solution which covers a large number of the admissible
sequences.

A constraint obviously must be true if it is the only
primitive constraint within a clause. One measure of the
size of a partial problem is the size of disjunctive normal
form which can be generated from its constituent
constraints. As noted above, this can be related to the
number of disjunctions, the number primitive constraints, or
the number of clauses, depending upon the form of the
constraint expression. The number of conjunctive clauses
which can be generated from a conjunctive normal form
constraint expression will always be less than or equal to
the product of the number of primitive constraints in each
of the clauses.

As implemented, the process of constructing the
disjunctive normal form of a given constraint expression
begins with the construction of the conjunctive normal form.
This removes all tautologies, all negation and leaves the
constraints in a regular structure which facilitates
subsequent analytic and algebraic processes. Although
conversion to clausal form can potentially result in a
prohibitively large constraint expression, most of the
problems that have been examined are dominated by

118

conjunction and show only a modest increase in size.
Occasionally, a constraint expression will be encountered
which is a disjunction of two or more subexpressions. Such
formulae are guaranteed to be excessively large when
converted to conjunctive normal form. However, conjunctive
normal form is only an intermediate form and not the
ultimate goal. Whenever a disjunction of two or more
subexpressions is given, the logical approach is to
separately convert each subexpression to disjunctive normal
form and then to disjunctively combine the results.

One common situation can easily lead to an
unnecessarily large disjunctive normal form constraint
expression. Suppose that a set of activities can be divided
into two independent sets of activities si and S2 such that
'there are no sequencing constraints between the two sets.
Further suppose that the constraints over si can be
converted to a disjunctive normal form expression

(XI or X2 or X3 or ...)
and the constraints over S2 can be converted to a
disjunctive normal form expression

(Yl or Y2 or Y3 or ...).
Since the constraints over SI must be satisfied
simultaneously with the constraints over S2, the disjunctive
normal form constraint expression over the combined sets of
activities will necessarily be the Cartesian product of the
two constraint expressions

119

((XI or X2 or X3 --) and (Yl or Y2 or Y3 ___)) =
((Xl and Yl) or (XI and Y2) or (XI and Y3) ...)•
Given a set of activities and a temporal constraint

expression which governs their execution, it is quite simple
to partition the activities into independent sets. First,
extract all of the the primitive constraints that occur in
the given constraint expression (regardless of the logical
structure of the formula). Then, for each primitive
constraint (X < Y) construct the constraint (X Rel Y) which
denotes the fact that X is related to Y. The relation Rel
satisfies the definition of an equivalence relation. It is
reflexive (X Rel X), symmetric (X Rel Y) implies (Y Rel X),
and transitive (X Rel Y) and (Y Rel z) implies (X Rel Z).
Next, form the closure of the equivalence relation Rel. Each
of the resulting equivalence classes contains only
activities that are related by some combination of ordering
constraints. Hence, the given set of activities can be
partitioned into independent sets of activities along the
boundaries defined by the equivalence relation. The
execution of those activities should be treated as the
interleaved execution of multiple independent tasks defined
by the equivalence classes.

Some of these processes are illustrated in a small
example shown in Figure 27. The initial conjunctive normal
form constraint expression consists of one unary clause and

120

F i g u r e 27 .
Derivation of the disjunctive normal form of a simple constraint expression.

121

three binary clauses:
((A < B)) and
((C < B) or (C < A)) and
((A < c) or (A < D)) and
((D < A) or (C < A)).

The initial node is expanded by the constraint (A < B)
since this constraint must necessarily be satisfied. The
left successor node moves (A < B) into the partial solution
and removes the clause ((A < B)) from the partial problem.
Of course the right successor node is non-satisfiable since
it is impossible to construct a solution without this
constraint. (In actual practice, if a node is expanded by a
necessary constraint then only the left successor node is
constructed.)

The leftmost successor of the root node can be expanded
by any of the remaining constraints but the constraint
(C < A) is estimated to most reduce the partial problem. If
that constraint is realized in the solution then the clause
((C < B) or (C < A)) is guaranteed to be satisfied, the
clause ((A < C) or (A < D)) can only be satisfied by the
constraint (A < D), and the clause ((D < A) or (C < A)) is
guaranteed to be satisfied. Hence, if that constraint is
realized in the solution the partial problem which remains
to be satisfied is the unit clause ((A < D)). If the
constraint (C < A) is not realized in the solution then the
constraint (C < B) must be satisfied in the clause ((C < B)
or (C < A)), the second clause of the partial problem is

122

unaffected by the assumption, and (D < A) must be satisfied
in the clause ((D < A) or (C < B)). Hence, if that
constraint is not realized in the solution the partial
problem which remains to be satisfied is a conjunction of
the clauses ((C < B)), ((A < C) or (A < D)), and ((D < A)) .

The remainder of the tree expansion is controlled by a
series of constraints that must necessarily be satisfied.
The two conjunctive clauses that satisfy the initial
constraints and cover all of the admissible sequences are
shown as precedence diagrams in Figure 28.

In small problems it is quite feasible to enumerate
every possible conjunctive clause and then prune the
redundant and non-satisfiable clauses. In problems of only
modest size this is impossible. Using the methods described
above the derivation of the disjunctive normal form of the
gearbox assembly problem produced exactly 2 conjunctive
clauses. This is considerably more efficient than producing
512 clauses only to eliminate 510. Consider the constraints
over a second gearbox assembly problem shown in Figure 29.
Any explicit methods for producing the disjunctive normal
form will produce 1024 clauses, some of which are
inconsistent and some of which are redundant. However, all
of the admissible sequences for performing the task defined
by these constraints are embodied in only twenty-two
conjunctive clauses. Using the methods described above,
forty consistent conjunctive clauses were produced. During
that process six solutions were eliminated because they were

123

F i gure 2 8.
Two conjunctive clauses which satisfy the simple constraint expression.

((CO < cl))
((ba < cl))
((co < s t) o r
((dr < CO) o r
((ba < dr) o r
((ra < CO) o r
((mi < CO) o r
((sm < CO) o r
((ri < CO) o r
((sm < b a) o r
((mi < s m) o r
((ra < mi) o r

(c o < dr))
and and an d(dr < ba)) and(ba < ca)) and(ra < ba)) and(mi < ba)) and

(sm < ba)) and(ri < ba)) and(sm < mi)) and
(mi < ra)) and(ra < co))

F i g u r e 29 .
T h e c o n s t r a i n t e x p r e s s i o n f o r t h e
s e c o n d g e a r b o x a s s e m b l y p r o b l e m .

1 2 5

subsumed by later solutions, twelve were rejected because
they were subsumed by earlier solutions and twenty-two were
retained in the final solution set.

c. Interpretation. The disjunctive normal form of a
given constraint expression has several important
interpretations. Like the original constraint expression, it
still represents the task to be accomplished; it still
represents the constraints over the individual operations to
be performed; and it still represents the set of admissible
sequences for performing those operations. The added
interpretation that can be applied to the disjunctive normal
form is that each conjunctive clause can be interpreted as a
strategy for performing the given task. This can be
particularly useful to engineers responsible for designing
and managing the execution of complex tasks. They can first
focus on the constraints over the constituent operations.
Then they can verify and refine the specification of the
tasks by analyzing the admissible strategies which are
produced by this normalization.

The clearest way of presenting these strategies to a
human analyst is in the form of precedence diagrams. As
described earlier, a precedence diagram consists of a set of
nodes which denote the operations to be performed and a set
of arcs which denote the ordering constraints among the
operations. If all of the necessary and implied constraints
are mapped into the arcs of a precedence diagram the
resulting figure would be a confusion of crossing lines. The

126

most effective figure displays the transitive cover of a
strategy which includes only the necessary constraints and
eliminates any which are implied. The easiest way of
distinguishing the necessary and implied constraints is to
execute the transitive closure algorithm and each time a
pair of constraints match the pattern ((X < Y) and (Y < Z))
mark the implied constraint (X < Z) as unnecessary. A simple
method for producing the pictorial representation of a
precedence diagram is to make a crude assignment of nodes to
points on a grid, to draw the resulting figure on a high
resolution monitor, and to give the human analyst
interactive tools to edit and modify the placement of nodes.

d. Analysis. Given two or more strategies for
performing a set of operations, it is natural to inquire
whether they hold any execution sequences in common and
whether there exists a single strategy which represents
their intersection. Such questions can be answered in a
simple and direct fashion. The set of sequences held in
common between two strategies must simultaneously satisfy
the constraints of both. Hence, the intersection of two or
more given strategies is defined by their conjunction. If
that conjunction is satisfiable the intersection is non­
empty and every sequence which is consistent with that
conjunction is consistent with every one of the given
strategies.

Given two or more strategies for performing a set of
operations, it is equally natural to inquire whether there

127

exists a single strategy which exactly represents their
union. Two cases are particularly easy to detect and
resolve. The first case is when two strategies exactly
partition the strategy which is their union. For example, if
two strategies hold a conjunction of constraints C in common
but are distinguished by a pair of complementary
constraints, (A < B) in one case and (B < A) in the other,
then all of the sequences defined by the two strategies are
exactly covered by the conjunction c. The second case is
when one strategy completely covers all of the sequences
defined by another. For example, suppose that two strategies
hold a conjunction of constraints C in common but one of
them imposes some additional conjunctive constraints. The
additional constraints only reduce the set of sequences
admissible under the conjunction C. Again, all of the
sequences defined by the two strategies together are exactly
covered by the conjunction, C. This situation occurs
frequently, and this sort of simplification is performed
continuously during the process of normalization.

It is not always easy to identify strategies which can
be combined under a more general strategy. For example,
suppose that three operations, A, B, and C, are to be
sequenced according to the disjunctive normal form
constraint expression:

(((A < B)) or <<B < c>> or ((C < A))).
The first strategy, ((A < B)) defines the three admissible
sequences [A,B,C], [A,C,B] , and [C,A,B] , the second

128

strategy, ((B < C)), defines the three admissible sequences
[A,B,C], [B,A,C], and [B,C,A], and the third strategy,
((C < A)) defines the three admissible sequences [B,C,A],
[C,A,B], and [C,B ,A] . Together, the three strategies cover
every possible sequence over the three operations. The union
of these strategies is the single strategy which imposes no
constraint. Unfortunately, it is only an analysis of the
constituent sequences or a series of algebraic manipulations
which reveals this fact.

Under most strategies the combined ordering constraints
limit the admissible sequences of operations but do not
remove every sequencing option. In many cases, the number of
admissible sequences provides a useful estimate of the
inherent flexibility that can be exploited in sequencing
those operations. For instance, consider a task of six
operations. Ignoring differences produced by different
labelings of the tasks, there are exactly 318 distinct
strategies for executing the six operations. One strategy
imposes no constraints and admits 720 sequences of
operations and one strategy imposes a linear set of
constraints and admits exactly one sequence of operations.
The number of sequences admitted by the other strategies are
bound strictly between 1 and 720. A variant of the SRI
vision directed assembly problem, discussed above, was
constructed and 100 assemblies were simulated for each of
the 318 strategies. The average execution time as a function
of the number of admissible sequences is shown in Figure 30.

129

The linear strategy required, on the average, 22.1 steps and
the flat strategy required exactly 6.

In the absence of other considerations, the flexibility
inherent in a strategy is directly related to the number of
admissible sequences.

The naive approach to computing the number of
admissible sequences would be to explicitly enumerate all of
the feasible sequences by simulated pebbling or other more
sophisticated algorithms87 88. Unfortunately, the least
constrained problems will prove the most intractable.
Consider a serial task of 15 steps with no sequencing
constraints. There exists 151 = 1,307,674,368,000 admissible
sequences. General methods are available which can determine
the number of feasible sequences without explicit
enumeration. These methods were first reported in a
mathematics textbook by Wells00 on computational methods for
combinatorial problems . Generally this computation can be
accomplished by recursive application of the function S
defined by the following three rules:

87Kalvin, A.D. and Varol, Y.L., On the generation of all topological sortings, Journal of Algorithms 4 (1983),
150-162.

88Wells, M.G., Elements of Combinatorial Computing. Pergamon Press, Elmsford, New York, 1971.

execution time
25

0

1 number of admissible sequences 750

Figure 30.
Comparison of 318 strategies over six operations

131

(1) If a set of operations P, under a set of constraints C,
can be partitioned into two subsets, P-̂ and P2, such
that all of the operations in Pjl must precede all of
the operations in P2, then

S(P/C) = SCP^C) * S(P2,C).
(2) If a set of operations P, under a set of constraints c,

can be partitioned into two subsets, P1 and P2, such
that all of the operations in P-j_ are independent of all
of the operations in P2, then

S(P,C) = S(P17C) * S(P2,C) *
((! P X i + |P2 I) ! > / < l p i l ! * I p 2 I ! > '

where the later part of the equation determines the
number of ways that one sequence from the first
partition can be interleaved with one sequence from the
second partition.

(3) If a set of operations P, under a set of constraints C,
cannot be divided into two subsets according to rules
(1) or (2) then

S(P,C) = S(P,C1) + S(P,C2),
where

Cx = (C and (X < Y)>
C2 = (C and (Y < X))

and the operations X and Y are elements of P but are
unconstrained in c. In effect this third rule
partitions the set of operations not into subsets but
into substrategies, and C2, which have no sequences
in common

132

Repeated application of these three rules is guaranteed
to work regardless of the operations X and Y chosen when
using rule 3, but the number of partitions generated is
significantly affected by the choice. Wells offered no clear
rule for the selection of those operations but an analysis
of the situations when rule 3 must be invoked reveals the
proper choice. If four points, X, Y , 2, and W, are subject
to the zig-zag of constraints shown in Figure 31, rules 1
and 2 are guaranteed to fail and it will be necessary to
invoke rule 3. The only way to successfully partition this
set of four points into dependent and independent sets is to
first produce two strategies for the execution of those
operations. The first requires that X precede Y, (X < Y),
and the second requires that Y precede X, (Y < X).

Even with this refinement the number of necessary
partitions grows exponentially with the number of zig-zag
patterns contained in the given strategy. It would be
interesting to explore additional refinements which might
control this explosion. Although the performance of this
algorithm is known to be exponential, the author has not yet
established the essential complexity of implicitly
enumerating all of the admissible sequences.

Using this method the number of admissible sequences
for the strategy shown in Figure 32 can be determined
without explicit enumeration. The strategy can be

133

Z Y

F i g u r e 31.
T h e z i g - z a g r e l a t i o n s h i p w h i c h r e q u i r e s t h e

a p p l i c a t i o n o f t h e d e c o m p o s i t i o n r u l e 3.

134

LI || L2 || SI || S 2

Tp

Bp

F i g u r e 3 2.
The decomposition of one of the strategies for the gearbox assembly problem.

135

partitioned into four dependent sets of operations,
{i-Ll, i-L2, i-S 1, i-S2) ,
{i-Tp},
{i-ig, i-Lg, i-Sg, i-og}/
{ i - B p } ,

and the total number of admissible sequences is the product
of the number of admissible sequences for each of these
subsets.

The set {i-Ll, i-L2, i-Sl, i-S2) admits twenty-four
sequences, the set {i-Tp} admits one sequence, the set
{i-Ig, i-Lg, i-Sg, i-Og} admits eight sequences, and the set
(i-Bp) admits one sequence for a total of 192 sequences.

The eight admissible sequences over the set
{i-ig, i-Lg, i-Sg, i-Og} results from a partition into the
two independent sets {i-Ig, i-Lg, i-Sg} and {i-Og}. There
are two admissible sequences over {i-Ig, i-Lg, i-Sg}, one
admissible sequence over (i-Og), and four admissible ways
that the operation i-Og can interleaved with the operations
i-Ig, i-Lg, and, i-Sg. The other partitions are generated in
a similar fashion.

Given two or more strategies for performing a set of
operations it is a simple matter to determine the number of
admissible sequences under each strategy, but a bit more
complicated to determine the total number of admissible
sequences. This is because the given strategies are not
guaranteed to be disjoint. They may in fact hold some
sequences in common. At present, the best solution is to

136

compute the number of sequences under each strategy and to
systematically subtract the number of sequences found in
their intersections. Given the tools discussed above, this
is straightforward. First, impose an index scheme on the
given strategies. Then consider each of the strategies one
at a time and form the sum of the following results. For
strategy i, determine the number of admissible sequences
under that strategy, but subtract the number of sequences
found in the intersection between that strategy and each
strategy with index greater than i. Admittedly this is a
direct solution, but using the methods described above, the
intersections and their decompositions can all be
constructed automatically. Moreover, given J admissible
strategies, at most j(J-l)/2 intersections need be
constructed. For problems which have been investigated by
the author, most of the intersections are nil.

The computations described above have an important
side-effect. Application of the three decomposition rules
results in the partition of a set of operations into
dependent sets, independent sets , and disjoint sub­
strategies. Just like the decomposition of a plan into
strategies can be useful to human analysts and planners,
this decomposition of strategies into their component sets
can be used by human analysts to better understand the
structure of the tasks that they must plan and coordinate.

e. Sequencing. The normalization and analysis described
above serve only one purpose: the production of a set of

137

constraints which precisely circumscribe the admissible
sequences over a set of operations and the transformation of
those constraints into a form suitable for real-time
sequencing. The methods for sequencing a set of operations,
given a disjunctive normal form constraint expression can be
derived directly from methods for sequencing a set of
operations given a simple precedence diagram.

The execution of a task according to the constraints
embodied in a precedence diagram is analogous to the process
of pebbling the nodes of that graph. That process is
governed by one basic rule. A node can be pebbled only if
all of its predecessor nodes have been previously pebbled.
An initial node, with no predecessors, can be pebbled at any
time. By analogy, the set of steps that can admissibly be
executed next correspond exactly to the set of nodes that
can admissibly be pebbled next. The process is complete when
all of the nodes are covered. Given a properly formed
precedence diagram, the set of all possible pebbling
sequences is identical to the set of all possible execution
sequences.

With three modifications, this same execution analogy
can be extended to a set of precedence diagrams defined by a
disjunctive normal form constraint expression. First, an
operation is admissible if the corresponding node can be
pebbled in at least, one of the given precedence diagrams.
Hence, the set of admissible operations is simply the union
of the admissible operations derived from each of the given

138

strategies. This is a natural interpretation of disjunction.
Second, when an operation is selected, the corresponding
node must be pebbled simultaneously in every precedence
diagram which admits this as the next operation. Of course,
the selected operation need not be admissible under every
strategy but subsequent sequencing decisions must be based
only on those strategies which are consistent with the
selected operation. Hence the third modification, when an
operation is selected, eliminate from further consideration
every precedence diagram which does not admit this as the
next operation.

This physical analogy suggests a straightforward
algorithm for the construction of the set of admissible next
operations. For each precedence diagram under consideration,
initially let the set of admissible next operations be nil.
Then consider each of the operations to be sequenced. If an
operation has not been performed but every predecessor of
that operation has been completed then add that operation to
the set of admissible next operations. Hence, for each
precedence diagram this set can be constructed by 2*K set
operations to identify the admissible steps plus at most K
set operations to build the resulting set. The final result
is simply the union of the admissible operations derived
from each of the given precedence diagrams. When an
operation is selected, all of the precedence diagrams which
are inconsistent with this choice must be excluded from
further consideration.

139

By focusing on the constraints rather than the
operations it is possible to determine the set of admissible
next operations without the added process of explicitly
eliminating the inconsistent strategies. For each constraint
(X < Y) within a particular strategy there are three
possibilities. If neither X nor Y have been executed then it
must be guaranteed that X precedes Y. This can be
accomplished by removing the operation Y from the set of
admissible next operations. If X has been executed before Y
then the constraint has been satisfied and no special action
needs to be taken. If Y has been executed before X then the
constraint has been violated and it must be guaranteed that
this strategy does not contribute any operations to the
final result. Based upon these observations given a
constraint expression C, in disjunctive normal form, and an
execution history H the admissible next operations can be
determined by the recursive function N defined by the
following equations:

or C2 ,H] = N C C ^ H] + N[C2 ,H],
N[CX and C2 ,H] = N f C ^ H] * N[C2 ,H],
if (X < Y) is satisfied in H
then N[(X < Y) ,H] = REMAINING[H] ,
if (X < Y) is violated in H
then N[(X < Y),H] = nil,
if neither X nor Y have been executed
then N [(X < Y),H] = REMAINING[H] - {Y}

where the operators *, +, and - denote the set operations

1 4 0

intersection, union, and difference, and the function
REMAINING returns those operations remaining to be executed.

E. SUMMARY
The proposed representation can be viewed from several

perspectives. First, it is a symbolic language defined by a
simple syntax and a small set of axioms. All of the methods
for normalizing and analyzing temporal constraint
expressions posed in this language must be consistent with
this algebraic structure. Second, it is a temporal language
which can be used to state the ordering constraints over a
set of operations which must be executed serially. Third, it
is a planning language. It has been derived from a specific
model of the space of possible plans. A given constraint
expression denotes a single element of that space by
prescribing the set of admissible sequences over a given set
of operations. Normalization and analysis of a given
constraint expression can reveal the fundamental logical and
chronological structures of a task, i.e., the constituent
strategies of a plan and the decomposition of those
strategies. Fourth, it is a sequencing language. Simple
algorithms can be used to determine the properties of the
constituent strategies of a plan and the relationships among
them. Other algorithms can be used to determine the set of
admissible next operations given a properly normalized
constraint expression and an execution history. Finally, it
is an NP-Complete language. The penalty for its generality
is its inherent complexity. It has been shown that by

1 4 1

investing the time required to normalize a given constraint
expression and by investing the space required to store the
resulting disjunctive normal form expression, subsequent
analysis is much more tractable. Although defined by a
simple syntax and semantics, it is a useful and interesting
language which presents many challenging problems and areas
of research.

14 2

V. CONCLUSIONS

The problem of sequencing the activities of a robot is
a relatively new problem which has attracted investigators
from both artificial intelligence and robotics. Research in
this area is motivated by rapid advances in effectors,
sensors, and computers and by the ambitious applications of
autonomous robots proposed by NASA and the various defense
agencies. Much of the research is concerned specifically
with the issue of representation. What structures can be
used to represent the tasks that a robot is to perform? What
methods can be used to translate the specification of a task
into that representation? What methods can be used to derive
an admissible course of action from that representation?

Several representations have been proposed in the
literature including state transition networks, And/Or
graphs, precedence diagrams, and Petri nets. These have been
discussed in great detail and compared with respect to four
criteria: completeness, compactness, utility to the planner,
and utility to the sequencer.

The representation proposed in this thesis is a
language of temporal constraints derived directly from a
model of the space of serial plans. It was specifically
designed to encompass problems that include some form of
disjunctive ordering constraints. This guarantees that the
proposed language can completely and, to a certain extent,
compactly represent all possible serial robotic tasks. The
generality of this language carries a penalty. The proposed

14 3

language of temporal constraints is NP-Complete. Specific
methods have been demonstrated for normalizing constraints
posed in this language in order to make subsequent
sequencing and analysis more tractable. Using this language,
the planner can specify necessary and alternative orderings
to control undesirable interactions between steps of a plan.
For purposes of analysis, the planner can factor a plan into
strategies, and decompose those strategies into essential
components. Using properly normalized constraint expressions
the sequencer can derive admissible sequences and admissible
next operations. Using these facilities, a robot can be
given the specification of a task and it can adapt its
sequence of operations according to run-time events and the
constraints on the operations to be performed.

Continuing research in this area can pursue several
questions. At a purely abstract level, what are the
algebraic properties of this language of temporal
constraints? At a theoretical level, is it possible to
derive the temporal constraints over a set of operations
from some specification of a task and its operations? Can
this facility for stating and analyzing temporal constraints
be applied in some established problem domains such as graph
coloring or job-shop scheduling? At a more practical level,
is it possible to apply some metrics to the set of
admissible next operations in order to determine which of
those operations might be best, or is it possible to apply
some metrics to the constituent strategies of a plan in

144

order to determine which of those might be best? Answers to
such questions require the definition of some model of the
executional environment and some mapping from real-world
applications into that model. Perhaps the most challenging
avenue of research would be to consider extensions to the
model of the space of possible plans and to the language of
temporal constraints in order to represent concurrency.

145

BIBLIOGRAPHY

Interim Report #3, Research for Intelligent Task Automation,
Air Force Contract #F33615-82-C-5092, July 15, 1983.

Allen, J., Maintaining knowledge about temporal intervals,
Communications of the ACM 26 (1983), 832-843.

Allen, J.F. and Koomen, J.A., Planning using a temporal
world model, in Proceedings Eighth International Joint
Conference on Artificial Intelligence. Karlsruhe, West
Germany, 1983, pp. 741-747.

Ambler, P., Barrow, H.G., Brown, C.M., Burstall, R.M., and
Popplestone, R.J., A versatile computer-controlled
assembly system, in Proceedings Third International
Joint Conference on Artificial Intelligence. Stanford
University, 1973, pp. 298-303.

Ambler, P., Barrow, H.G., Brown, C.M., Burstall, R.M., and
Popplestone, R.J., A versatile system for computer-
controlled assembly, Artificial Intelligence 6 (1975),
129-156.

Barr, A. and Feigenbaum, E.A. (eds), The Handbook of
Artificial Intelligence. Vol 1, Chapter II, Section B1:
State-space representation, William Kaufmann, 1981.

Barr, A. and Feigenbaum, E.A. (eds), The Handbook of
Artificial Intelligence. Vol 1, Chapter II, Section B2:
Problem Reduction representation, William Kaufmann,
1981.

146

Blackstone Jr., J.H., Phillips, D.T., and Hogg, G.L., A
state-of-the-art survey of dispatching rules for
manufacturing job shop operations, International
Journal of Production Research 20 (1982), 27-45.

Bolles, R.C. and Cain, R.A., Recognizing and locating
partially visible objects: the local-feature-focus
method, International Journal of Robotics Research 1
(1982), 57-82.

Chapman, D., Non-linear planning: a rigorous reconstruction,
in Proceedings Ninth International Joint Conference on
Artificial Intelligence. Los Angeles, Calif., 1985, pp.
1022-1024.

Cheeseman, P., A representation of time for automatic
planning, in Proceedings Second IEEE International
Conference on Robotics and Automation. Atlanta,
Georgia, 1983, pp. 513-518.

Cheeseman, P., Overview of planning/scheduling problems and
procedures, in Proceedings NASA/JPL Space Telerobotics
Workshop. Pasedena, Calif., 1987 (to appear).

Coffman, E. G. and Graham, R.L., Optimal scheduling for two-
processor systems, Acta Informatica 1 (1972), 200-213.

Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory of
Scheduling, Addison-Wesley, Reading, Mass., 1967, p.
103

147

deMello, L.S.H. and Sanderson, A., And/Or graph
representation of assembly plans, in Proceedings Fifth
National Conference on Artificial Intelligence.
Philadelphia, Penn., 1986, pp. 1113-1119.

Drummond, M., Plan Nets: a formal representation of action
and belief for automatic planning systems, Ph.D.
Dissertation, Department of Artificial Intelligence,
University of Edinburgh, 1986.

Drummond, M.E., Contingent plan structures for spacecraft,
in Proceedings NASA/JPL Workshop on Space Telerobotics.
Jet Propulsion Laboratory, Pasedena, Calif., 1987 (to
appear).

Drummond, M.E., Refining and extending the procedural net,
in Proceedings Ninth International Joint Conference on
Artificial Intelligence. Los Angeles, Calif, 1985,
pp.1010-1012.

Fikes, R.E. and Nilsson, N.J., STRIPS: A new approach to the
application of theorem proving to problem solving,
Artificial Intelligence 2 (1971), 189-208.

Fox, B.R., The implementation of opportunistic scheduling,
in Proceedings Intelligent Autonomous Systems.
Amsterdam, 1986, pp. 231-240.

Fox, B.R. and Ho, C.Y., A relation control mechanism for
flexible assembly, in Advanced Software in Robotics. A.
Danthine and M. Geradin (eds), North-Holland,
Amsterdam, 1984

148

Fox, B.R. and Kempf, K.G., A representation for
opportunistic scheduling, in Third International
Symposium on Robotics Research. O. Faugeras and G.
Giralt (eds), MIT Press, Cambridge, Mass., 1986.

Fox, B.R. and Kempf, K.G., Complexity, uncertainty, and
opportunistic scheduling, in Artificial Intelligence
Applications. The Engineering of Knowledge-Based
Systems. C. Weisbin (ed), IEEE computer Society Press,
Washington, D.C., 1986.

Fox, B.R. and Kempf, K.G., Opportunistic scheduling for
robotic assembly, in Robotics and Industrial
Engineering. Selected Readings. E.L. Fisher and O.Z.
Maimon (eds), Industrial Engineering and Management
Press, Institute of Industrial Engineers, Atlanta,
Georgia, 1986.

Fox, B.R. and Kempf, K.G., Planning, scheduling, and
uncertainty in the sequence of future events, in
Uncertainty in Artificial Intelligence. Vol. 2, J.
Lemmer (ed), North-Holland, Amsterdam, 1987 (to
appear).

Fox, B.R. and Kempf, K.G., Reasoning about opportunistic
schedules, in Proceedings IEEE International Conference
on Robotics and Automation. Raleigh, North Carolina,
1987. (to appear)

149

Fox, M. S., Constraint-Directed Search: A Case Study of Job-
Shop Scheduling, Ph.D dissertation, Department of
Computer Science, Carnegie-Mellon University,
Pittsburgh, Penn.

Friedland, P.E., Knowledge-based experiment design in
molecular genetics, Ph.D. dissertation, Report Number
79-771, Computer Science Department, Stanford
University, 1979.

Garey, M. R., Graham, R. L., and Johnson, D. S., Performance
guarantees for scheduling algorithms, Operations
Research 26 (1978), 3-21.

Garey, M.R. and Johnson, D.S., Computers and Intractability;
A Guide to the Theory of NP-Completeness. W.H. Freeman
and Company, New York, 1979.

Gillett, B. E., Introduction to Operations Research. McGraw-
Hill, New York, 1976, pp. 262-277.

Graham, R. L., The combinatorial mathematics of scheduling,
Scientific American 238 (1978), 124-132.

Graves, S. C. and Lamar, B. W., An integer programming
procedure for assembly system design problems,
Operations Research 31 (1983), 522-545.

Held, M., Karp, R. M., and Shareshian, R., Assembly-line
balancing - dynamic programming with precedence
constraints, Operations Research 11 (1963), 442-459.

Hu, T. C., Combinatorial Algorithms. Addison-Wesley,
Reading, Mass., 1982, pp. 222-228.

150

Jackson, J. R., A computing procedure for a line balancing
problem, M a n a g e m e n t S c i e n c e 2 (1956), 261-271.

Johnson, R. V., Assembly line balancing algorithms;
computational comparisons, International Journal of
Production Research 19 (1981), 277-287.

Johnson, R. V., A branch and bound algorithm for assembly
line balancing problems with formulation
irregularities, Management Science 29 (1983), 1309-
1324.

Kalvin, A.D. and Varol, Y.L., On the generation of all
topological sortings, Journal of Algorithms 4 (1983),
150-162.

Kao, E. P. C. and Queyranne, M. On dynamic programming
methods for assembly line balancing, Operations
Research 30 (1982), 375-390.

Klein, M., On assembly line balancing, Operations Research
11 (1963), 281.

Kondoleon, A. S., Assessing cycle times for robot assembly
systems, Robotics Today 3 (1981), 38-41.

Lozano-Perez, T., A simple motion planning algorithm for
general robot manipulators, in Proceedings Fifth
National Conference on Artificial Intelligence.
Philadelphia, Penn., 1986.

151

Lozano-Perez, T., Mason, M.T., and Taylor, R.H., Automatic
synthesis of fine-motion strategies for robots, in
Robotics Research; The First International Symposium M.
Brady and R. Paul (eds), MIT Press, Cambridge, Mass.,
1984.

Malcolm, C. and Fothergill, P., Some architectural
implications of the use of sensors, in Proceedings
Intelligent Autonomous Systems, Amsterdam, 1986, pp.
71-78.

Malcolm, C., DAI Working Paper 187, Department of Artificial
Intelligence, University of Edinburgh, 1986.

Mastor, A. A., An experimental investigation and comparative
evaluation of production line balancing techniques,
Management Science 16 (1970), 728-746.

Nilsson, N. J., from the abstract of Artificial
Intelligence; Engineering, Science, or Slogan?,
Technical Note 248, SRI International, Menlo Park,
Calif, July 1981.

Panwalkar, S.S. and Iskander, W., A survey of scheduling
rules, Operations Research 25 (1977), 45-61.

Pearl, J.. Heuristics; Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, Reading,
Mass., 1984.

Petersen, J.L., Petri nets, Computing Surveys 9 (1977), 223-
252 .

152

Pinto, P. A., Dannenbring, D. G., and Khumawala, B. M.,
Assembly line balancing with processing alternatives:
an application, Management Science 29 (1983), 817-830.

Prenting, T.O. and Battaglin, R.M., The precedence diagram:
a tool for analysis in assembly line balancing. Journal
of Industrial Engineering, vol 15, #4, pp. 208-211,
July-Aug 1964.

Rembold, U., Levi, P., Sensors and control for autonomous
robots, in Proceedings Intelligent Autonomous Systems
Amsterdam, The Netherlands, 1986, pp. 79-89.

Sacerdoti, E.D., A structure for plans and behavior, Ph.D.
dissertation, Technical Note 109, AI Center, SRI
International, Inc., Menlo Park, Calif., 1975.

Salisbury, J.K. and Craig, J.J., Articulated hands: force
control and kinematic issues, International Journal of
Robotics Research 1 (1982), 4-17.

Salveson, M. E., The assembly line balancing problem,
Journal of Industrial Engineering 6 (1955), 18-25.

Schenker, P. S., NASA Telerobotics Research: program
objectives and technology outreach, presentation at
NASA/JPL Space Telerobotics Workshop, Pasedena, Calif,
1987 .

Salvador, M.S., Scheduling and Sequencing, Section 2: A
Classification of Scheduling Problems,in Handbook of
Operations Research; models and applications, Moder,
J.J. and Elmaghraby, S. E. (eds), Van Nostrand
Reinhold, New York, 1978.

153

Stefik, M.J., Planning with constraints. Ph.D. dissertation,
Report Number 80-784, Computer Science Department,
Stanford University, 1980.

Sussman, G.J., A computational model of skill acquisition,
Ph.D. dissertation, AX Technical Report 297, AI
Laboratory, Massachusetts Institute of Technology,
1973.

Talbot, F. B. and Patterson, J.H., An integer programming
algorithm with network cuts for solving the assembly
line balancing problem, Management Science. v30 (1984),
85-99.

Tate, A., Project planning using a hierarchic non-linear
planner, Report Number 25, AI Research Department,
University of Edinburgh, 1976.

Ullman, J. D., NP-complete scheduling problems, Journal of
Computer and System Sciences 10 (1975), 384-393.

Vilain, M. and Kautz, H., Constraint propagation algorithms
for temporal reasoning, in Proceedings Fifth National
Conference on Artificial Intelligence. Philadelphia,
Penn., 1986, pp. 377-382.

Wells, M.G., Elements of Combinatorial Computing. Pergamon
Press, Elmsford, New York, 1971.

Whitney, D.E., State space models of remote manipulation
tasks, IEEE Transactions on Automatic Control, vol AC-
14, #6, Dec. 1969.

154

VITA

Barry Ross Fox was born February 11, 1952 in Espanola,
New Mexico. He received his primary and secondary education
in Overland Park, Kansas. He received a B.S. in Mathematics
from the University of Missouri-Kansas City and a M.S. in
Computer Science from the University of Kansas. He has been
enrolled in the Graduate School of the University of
Missouri-Rolla since August, 1981.

	A Representation for Serial Robotic Tasks
	Recommended Citation

	tmp.1607357217.pdf.LpyXk

