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ABSTRACT
The representation for serial robotic tasks proposed in 

this thesis is a language of temporal constraints derived 
directly from a model of the space of serial plans. It was 
specifically designed to encompass problems that include 
disjunctive ordering constraints. This guarantees that the 
proposed language can completely and, to a certain extent, 
compactly represent all possible serial robotic tasks. The 
generality of this language carries a penalty. The proposed 
language of temporal constraints is NP-Complete. Specific 
methods have been demonstrated for normalizing constraints 
posed in this language in order to make subsequent 
sequencing and analysis more tractable. Using this language, 
the planner can specify necessary and alternative orderings 
to control undesirable interactions between steps of a plan. 
For purposes of analysis, the planner can factor a plan into 
strategies, and decompose those strategies into essential 
components. Using properly normalized constraint expressions 
the sequencer can derive admissible sequences and admissible 
next operations. Using these facilities, a robot can be 
given the specification of a task and it can adapt its 
sequence of operations according to run-time events and the 
constraints on the operations to be performed.
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I. INTRODUCTION

Automated manufacturing systems are quickly evolving 
from hard automation to programmable hardware and software. 
That evolution is made possible by a variety of 
technological advances. At the same time many of the 
technological advances are driven by the requirements of 
current and future applications. The availability of 
programmable robots has made it possible to replace complex, 
custom assembly hardware with robots which can adapt to new 
tasks simply by changing tools and software. The 
availability of programmable vision systems has made it 
possible to eliminate complex, custom parts presentation 
hardware and to make parts available on simple pallets or in 
bins. Advanced sensors and sophisticated robot programming 
languages have made it possible for robots to detect error 
conditions and to recover from those errors by corrective 
actions or by pursuing alternative courses of action.
Systems have been proposed which require robots to adapt not 
just to error conditions but more generally to the 
dynamically changing state of the world. For example, it has 
been frequently proposed that robots, with suitable 
intelligence and autonomy, can be used for assembly and 
maintenance operations in remote or hazardous environments 
such as deep space-1- or within the containment vessel of a

-^Schenker, P. S., NASA Telerobotics Research: program objectives and technology outreach, presentation at NASA/JPL Space Telerobotics Workshop, Pasedena, Calif, 1987 .
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damaged nuclear reactor2. In those situations it is 
impossible to prepare the environment in advance in order to 
structure and simplify the robot's task, nor is it possible 
to intervene when the robot encounters unexpected 
conditions. Such proposals necessitate the development of 
new robotic and artificial intelligence technologies.

2Rembold, U., Levi, P., Sensors and control for autonomous robots, in Proceedings Intelligent Autonomous Systems 
Amsterdam, The Netherlands, 1986, pp. 79-89.
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II. STATEMENT OF THE PROBLEM

A. PLANNING. SEQUENCING. AND EXECUTION
An intelligent autonomous robot operating in a remote 

unstructured environment must have three capabilities.
First, it must be able to create a plan or course of action 
according to the present state of the world, a goal state of 
the world, and some knowledge of its own abilities. Second, 
it must be able to determine a sequence of actions according 
to the constraints on the steps of the plan and the evolving 
state of the world. Finally, it must be able to produce the 
desired effect of those actions according to its abilities 
and the current state of the world. This three part 
delineation of capabilities follows the traditional 
boundaries between artificial intelligence, operations 
research, and robotics. The distinctions are conceptually 
useful but should not be construed as absolute.

The first capability, planning, has received 
considerable attention from the artificial intelligence 
community. In a general sense, planning is the process which 
derives a course of action which, when executed, will 
achieve a desired goal. More precisely, a planner is given a 
symbolic representation of an initial state of a system, a 
goal state of that system, and a set of operations which can 
be used to effect changes in that system. The plan which the 
planner produces consists of a subset of those operations 
plus some prescription for their order of execution.



4

Planning has always been recognized as a difficult 
problem and most of the literature is concerned with 
techniques which make planning more tractable. The earliest 
planning systems3'4 searched, in chronological order, from 
an initial state of the world through the space of world 
states which were reachable by the application of the 
available operators. Later, non-linear planning methods5 
were developed because the linear representation of plans, 
used by the earlier systems, frequently imposed artificial 
constraints on the order of execution. Those artificial 
constraints often prevented the plan under construction from 
being successful. In contrast, the non-linear planners 
represented plans as a set of actions coupled with only the 
most necessary constraints on the ordering of those actions. 
When a non-linear plan was successfully produced a linear 
sequence was derived from those necessary ordering 
constraints. The earliest planning systems produced plans by 
searching for a sequence of operations which leads from the 
initial state to the goal state. Later hierarchical

3Fikes, R.E. and Nilsson, N.J., STRIPS: A new approach to the application of theorem proving to problem solving, Artificial Intelligence 2 (1971), 189-208.
4Sussman, G.J., A computational model of skill 
acquisition, Ph.D. dissertation, AI Technical Report 297, AI Laboratory, Massachusetts Institute of Technology, 1973.

5Sacerdoti, E.D., A structure for plans and behavior,Ph.D. dissertation, Technical Note 109, AI Center, SRI International, Inc., Menlo Park, Calif., 1975.
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planners6 produced plans by constructing a hierarchy of 
goals and sub-goals. Such planners decomposed the given 
problem into a set of sub-goals which must be achieved and 
those in turn were decomposed until the given problem had 
been reduced to a set of primitive operations to be 
performed. Other planning systems7'8 have attempted to take 
advantage of specific knowledge of the problem domain by 
producing plans from a library of basic templates; these 
templates are then modified and refined according to the 
specific problem under consideration. Current research in 
planning is quite polarized. Some research is concerned with 
formal, domain independent methods for prescribing goals and 
actions and with formal methods for deriving plans9. Other 
research adopts the thesis that realistic planning is 
dominated by domain specific knowledge and heuristics10. The

6Tate, A., Project planning using a hierarchic non-linear planner, Report Number 25, AI Research Department, University of Edinburgh, 1976.
7Friedland, P.E., Knowledge-based experiment design in molecular genetics, Ph.D. dissertation, Report Number 79- 771, Computer Science Department, Stanford University, 1979.
8Stefik, M.J., Planning with constraints. Ph.D. dissertation, Report Number 80-784, Computer Science Department, Stanford University, 1980.
9Chapman, D., Non-linear planning: a rigorous reconstruction, in Proceedings Ninth International Joint 
Conference on Artificial Intelligence. Los Angeles, Calif., 1985, pp. 1022-1024.

10Cheeseman, P., Overview of planning/scheduling problems and procedures, in Proceedings NASA/JPL Space Telerobotics Workshop. Pasedena, Calif., 1987 (to 
appear).
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debate over the appropriate representation for plans 
continues with various formal languages11'12 and models13 in 
contention.

The second capability, sequencing, serves to reconcile 
the constraints imposed by the planner with the constraints 
imposed by the executor and the execution time environment. 
In a general sense, sequencing is the process which 
determines the order for executing the operations prescribed 
by a plan. That order must be consistent with the 
constraints imposed by the planner and it must be consistent 
with the availability of the resources which are required by 
the executor, i.e., an operation can be performed only after 
the necessary predecessor operations have been completed and 
only when the necessary resources are available.

The third capability required by an autonomous robot is 
the ability to produce the desired effect of the actions 
prescribed by the planner and ordered by the sequencer. 
Ultimately, the responsibility of the executor is to map 
abstract operations, such as install-retaining-clip, into a

11Cheeseman, P., A representation of time for automatic planning, in Proceedings Second IEEE International 
Conference on Robotics and Automation. Atlanta, Georgia, 1983, pp. 513-518.
^Allen, J.F. and Koomen, J.A., Planning using a temporal world model, in Proceedings Eighth International Joint Conference on Artificial Intelligence. Karlsruhe, West Germany, 1983, pp. 741-747.
iJDrummond, M., Plan Nets: a formal representation of 
action and belief for automatic planning systems, Ph.D. Dissertation, Department of Artificial Intelligence, University of Edinburgh, 1986.
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combination of real physical motions. These operations must 
be at an appropriate level of abstraction for the planner, 
which must reason about high-level goals and effects, but at 
the same time be at an appropriate level of abstraction for 
the executor, which must produce the desired effects. From 
this perspective, an abstract operation is simply a goal and 
execution may involve the recursive invocation of planning, 
sequencing, and execution over a domain of more primitive 
goals, operations, and constraints. For example the abstract 
operation, install-retaining-clip, involves the processes of 
locating the part, identifying the target location, 
acquiring the part, moving the part from the source to 
target locations, and successfully mating the part with the 
previously installed components. Hence an essential element 
of an autonomous intelligent system is a vocabulary of 
abstract operations which the planner and sequencer can 
treat as atomic even though the executor may decompose those 
operations into a vocabulary of more primitive operations. 
Current robotics research is involved in the definition and 
implementation of primitive operations, such as parts 
recognition14, grasp planning15, trajectory planning16, and

14Bolles, R.C. and Cain, R.A., Recognizing and locating partially visible objects: the local-feature-focus method, International Journal of Robotics Research 1 (1982), 57-82.
15Salisbury, J.K. and Craig, J.J., Articulated hands: force control and kinematic issues, International Journal of Robotics Research 1 (1982), 4-17.
16Lozano-Perez, T., A simple motion planning algorithm for general robot manipulators, in Proceedings Fifth National
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parts mating17 which can be used to implement a vocabulary 
of abstract operations.

B. SEQUENCING
Sequencing and scheduling problems have traditionally 

fallen within the domain of operations research and because 
of extensive study in the field these problems have been 
divided into many specific categories. Among these are the 
problems of assembly line balancing, job shop scheduling, 
timetable scheduling, project scheduling, and routing. These 
categories are distinguished by the kinds of activities to 
be scheduled, the kinds of constraints on those activities, 
and the nature of the costs associated with them. Each 
category of scheduling problem is an abstraction of some 
frequently occurring real world problems. The expectation is 
that effective methods for solving these abstract problems 
will produce cost saving solutions to the real world 
problems. At the same time, each category of scheduling 
problem is associated with a fundamental combinatorial 
problem which best characterizes the essential nature of

Conference on Artificial Intelligence Philadelphia, Penn., 1986.
17Lozano-Perez, T., Mason, M.T., and Taylor, R.H.,
Automatic synthesis of fine-motion strategies for robots, in Robotics Research: The First International Symposium M. Brady and R. Paul (eds), MIT Press, Cambridge, Mass., 1984.
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that problem, for instance bin packing, graph coloring, or 
the traveling salesman problem18.

Often in the Operations Research literature the term 
scheduling is used interchangeably with the term sequencing. 
In this thesis every attempt will be made to use the two 
terms consistently according to the following conventions: 
sequencing is the process of determining the relative 
ordering of the operations under consideration and 
scheduling is the process of determining the absolute time 
of occurrence for those operations. Clearly, relative 
orderings can be directly derived from absolute times of 
occurrence. In many problems the reverse is also true, 
absolute times of occurrence can be derived from a 
combination of the relative orderings and the expected 
durations of a set of operations.

Discussion of sequencing and scheduling problems 
invariably involves some discussion of algorithms and 
efficiency. A few historical comments and some basic 
definitions will help give some perspective on the 
complexity of sequencing and scheduling.

Successful application of linear programming in 
planning the rate of production and distribution of 
materials quite naturally led to attempts to develop 
efficient, optimal algorithms for sequencing and scheduling 
the discrete activities of production and distribution. In

18Garey, M.R. and Johnson, D.S., Computers andIntractability; A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.
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most cases these attempts were constantly frustrated. For 
example, the following comment is typical of early research 
in job-shop scheduling:

"The general job-shop problem is a fascinating challenge. Although it is easy to state, and to visualize what is required, it is extremely difficult to make any progress whatever toward a solution. Many proficient people have considered the problem, and all have come away essentially empty-handed. Since this frustration is not reported in the literature, the problem continues to attract investigators, who just cannot believe that a problem so simply structured can be so difficult, until they have tried it."19
Other authors, involved in assembly line balancing,
recognized the essential difficulty of their problem but
perceived that the failure to solve the problem was due to a
failure to find just the right algorithm.

"As noted by Kilbridge and Wester most, if not all, of the mathematically based methods proposed for line balancing problems seem to be impractical for realistically sized problems. This is due to 
the amount of enumeration that they all require.Our suggestion is likely to suffer from the same defect; the required enumeration of all feasible orderings will probably be impractical for 'large' problems."20
Later developments in the theory of computability and 

complexity made it possible to understand the essential 
difficulty of these problems. Most of the apparently 
intractable sequencing and scheduling problems are provably 
NP-Hard. Although it has not yet been proven, it is

19Conway, R. W., Maxwell, W. L., and Miller, L. W., Theory of Scheduling. Addison-Wesley, Reading, Mass., 1967, p. 103.
20Klein, M., On assembly line balancing, Operations Research 11 (1963), 281.
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generally believed that any deterministic algorithm for the 
solution of an NP-Hard problem will require execution time 
which is exponentially related to the size of the given 
instance of the problem.

Technically/ a problem is NP-Hard if it can be shown 
that a polynomial-time deterministic algorithm for that 
problem can be used to produce a polynomial-time 
deterministic algorithm for some NP-Complete problem. The 
NP-Complete problems are so related that a polynomial time 
deterministic algorithm for one can be used to construct a 
polynomial-time deterministic algorithm for any of them. The 
NP-Complete problems share the additional property that the 
best known deterministic algorithms for their solution 
require exponential execution time. It is generally 
believed, although it has not yet been proven, that no 
polynomial-time deterministic algorithm will ever be found 
for the NP-Complete problems. If this is true then no 
polynomial-time deterministic algorithm will ever be found 
for the NP-Hard problems either.

Current research in sequencing and scheduling 
specifically addresses the apparent intractability of these 
problems. For some researchers, the emphasis is on finding 
specific subclasses of these problems which do have 
efficient algorithms. For others, the emphasis is on finding 
methods v/hich generally reduce the amount of time required 
co find the optimal solution, or which improve the quality 
of solution found in a fixed amount of time. Still others
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pursue higher-order methods which balance the increasing 
cost of increasingly accurate heuristics with the decreasing 
return which they yield.

1. Job Shop Scheduling. In one sense, the most general 
sequencing problem is the job shop scheduling problem which 
involves sequencing the execution of multiple activities 
making use of multiple resources. One model of the job shop 
scheduling problem2 -̂ is defined by a set of machines and a 
set of jobs. Each job is composed of a set of steps and a 
precedence relation over those steps, and each step requires 
a specific processing time on a specific machine. A solution 
to a given job shop scheduling problem consists of an 
assignment of each job step to a machine and an interval of 
time such that the job steps obey the given precedence 
constraints and the machines are dedicated to only one job 
step at a time. The goal is to find a solution which 
minimizes the cost of production, as defined by some 
objective function, such as the time required to complete 
all of the jobs. This can be properly viewed as a sequencing 
problem since all of the absolute time intervals can be 
derived from the expected durations of the job steps and the 
relative ordering of jobs steps over the resources. Some 
variations of this model require that all machines are 
identical, or that all processing times are identical, or 
that the precedence constraints within a job are strictly 
linear. Other variations restrict jobs to single steps, but

2■'■Conway, Maxwell, and Miller, Theory of Scheduling.
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admit precedence constraints between jobs. The scope of the 
job shop scheduling problem is so broad that most texts on 
the matter introduce some classification scheme in the early 
chapters.22/23

Like most sequencing and scheduling problems, the job 
shop problem is NP-hard. This is demonstrated by proving 
that an arbitrary instance of the NP-Complete problem known 
as 3-Satisfiability can be encoded as an instance of job 
shop scheduling in polynomial time24. If the job shop 
scheduling problem could be solved deterministically in 
polynomial time then a given instance of the 
3-Satisfiability problem could be encoded as a job shop 
scheduling problem and solved in polynomial time. (The total 
execution time would be the sum of the time required to 
encode the problem and the time required to solve the 
problem. The sum of two polynomial functions is itself a 
polynomial function.) Because of the apparent intractable 
nature of the problem, current job shop scheduling research 
has focused on heuristic methods or on special cases of the 
problem.

22Section 1-3: A Classification of Scheduling Problems, in Conway, Maxwell, and Miller, Theory of Scheduling.
23Section 2: A Classification of Scheduling Problems, in Scheduling and Sequencing, Michael S. Salvador, Handbook of Operations Research: models and applications. Moder, J.J. and Elmaghraby, S. E. (eds), Van Nostrand Reinhold, New York, 1978.
24Ullman, J. D., NP-complete scheduling problems, Journal of Computer and System Sciences 10 (1975), 384-393.



14

Two kinds of heuristics are frequently proposed in the 
literature: those which generally reduce the time required 
to find an optimal solution, and those which generally 
produce good solutions in a limited amount of time. Examples 
of the former are usually based upon a heuristic search 
strategy, such as branch-and-bound or A*25. Examples of the 
latter are usually based upon some dispatch rule which 
determines the priority of jobs waiting to be processed. 
Although branch-and-bound methods do significantly prune the 
search space, they are somewhat unpredictable. Moreover, the 
search space for job shop scheduling problems is so large 
that even branch-and-bound algorithms are effectively 
limited to small problems. For such reasons most job shop 
scheduling research has focused on the latter category of 
heuristics.

Scheduling algorithms based upon dispatching rules are 
very simple. They determine the assignment of job steps to 
time intervals by simulating the jobs, the machines, the 
advance of time, and the application of the dispatching 
rule. Each time a machine completes a job step the simulator 
identifies all job steps which are waiting for that machine 
and schedules the one that has the highest priority 
according to the given dispatching rule. Priority can be 
determined by any conceivable combination of factors: the 
amount of time for the current job step, the amount of time

25Pearl, J.. Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, Reading, Mass., 
1984.
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remaining in the job, the due date of the job, etc. Under 
this methodology, the time required to schedule n job steps 
is on the order of n2: n scheduling decisions must be made, 
at each decision at most n job steps need be considered. If 
all of the jobs consist of just one step, there are no 
precedence requirements, and all of the machines are 
identical, then the time required for this process is on the 
order of n log m, where m is the number of machines. One 
survey of dispatching rules itemizes 113 different 
strategies and thirty-six articles which analyze their 
performance26. A more recent article27 surveys thirty-four 
dispatching rules. According to that survey, the single most 
effective dispatching rule, when ranked according to cost- 
based criteria, is one which gives priority to the job step 
with the shortest imminent (SI) processing time. This is 
quite surprising! After thirty years of research the most 
effective dispatching rule is the simplest.

In spite of this volume of research scheduling by 
dispatching rules is only an approximate method which 
occasionally produces anomalous results. Simple examples can 
be constructed which yield worse solutions when the number 
of machines is increased, the precedence constraints are

26Panwalkar, S.S. and Iskander, W., A survey of scheduling rules, Operations Research 25 (1977), 45-61.
27Blackstone Jr., J.H., Phillips, D.T., and Hogg, G.L., A state-of-the-art survey of dispatching rules for 
manufacturing job shop operations, International Journal of Production Research 20 (1982), 27-45.
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relaxed, or the processing times are reduced28. If 
schedulers are going to routinely rely upon such rules it is 
important to precisely quantify the bounds of their 
behavior. Most often the performance of a dispatching rule 
is expressed as a ratio. Some researchers characterize the 
performance as the ratio between the expected cost of a 
solution and the cost of the optimal solution. Others refer 
to the ratio between the worst case solution and the optimal 
solution. Ratios of the expected cost are hard to justify 
because so many simplifying assumptions must be made to make 
the analysis tractable. Moreover, the expected value of a 
solution gives no indication of the bounds on the solution 
produced by a given dispatching rule. On the other hand, if 
an instance of the job shop scheduling problem can be 
constructed which is guaranteed to yield the worst solution 
under a given dispatching rule then the performance of that 
rule can be bounded precisely29. Such worst cases instances 
can then be used to qualify suitable contexts for applying 
the given dispatching rule. Further analysis may even 
suggest modifications to the rule which correctly compensate 
for those worst case instances.

Perhaps the most interesting research involves what can 
best be characterized as higher-order heuristics. The

28Hu , T. C., Combinatorial Algorithms. Addison-Wesley, Reading, Mass., 1982, pp. 222-228.
29Garey, M. R., Graham, R. L., and Johnson, D. S., Performance guarantees for scheduling algorithms,Operations Research 26 (3978), 3-21.
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general method is to choose some simple heuristic, such as 
lookahead, which can be applied to any desired depth, but to 
use it only to the depth where the value of the scheduling 
solution justifies the computational cost. Such methods are 
motivated by the law of diminishing return: exponentially 
more costly heuristics yield exponentially decreasing 
improvements in their solutions. Obviously there must be 
some saddle point where the increasing cost is unjustified. 
Refinements of this method result in algorithms which 
produce near-optimal solutions in polynomial time3®.

Other job shop scheduling research is not concerned 
with heuristic methods but with specific cases of the 
scheduling problem which can be solved in polynomial time. 
One case involves scheduling jobs that have tree structured 
precedence constraints and specifically limited execution 
times3-1-. Other cases involve job shops of only two machines 
and specific limitations on the routing of jobs* 31 32 or 
limitations on the execution times33.

All of the research cited above falls clearly within 
the domain of Operations Research but a new development is 
the application of artificial intelligence to the same

3®Graham, R. L., The combinatorial mathematics ofscheduling, Scientific American 238 (1978), 124-132.
31Hu , Combinatorial Algorithms. 228-236.
32Gillett, B. E., Introduction to Operations Research. McGraw-Hill, New York, 1976, pp. 262-277.
33Coffman, E. G. and Graham, R.L., Optimal scheduling for two-processor systems, Acta Informatica 1 (1972), 200- 

213 .
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problems. One well established artificial intelligence 
scheduling system is ISIS34, developed at the Robotics 
Institute of Carnegie-Mellon University, which is frequently 
described as a system for constraint directed reasoning.
This system is effective primarily because it has facilities 
for itemizing and resolving all of the constraints that 
might possibly have an impact on the resulting schedules. 
These include the factors normally considered by OR systems, 
such as precedence constraints, capacity constraints, 
personnel costs, etc. The unique feature of ISIS is that it 
accepts any constraint that can be encoded as a LISP 
function or predicate. With this capability, a scheduler and 
a programmer can construct a model of any given job shop and 
include any desired elements of cost or constraint. The 
scheduling algorithm itself, however, is primitive. It 
operates, much like dispatch rule scheduling, by simulating 
the jobs, the machines, and the advance of time. Each time a 
machine completes a job step, the simulator identifies all 
job steps which are waiting for that machine. That set is 
then pruned by the given constraint functions, and those 
that remain are ranked by the given cost functions. That set 
is then reduced to the K best, and the scheduler 
systematically explores the schedules that emanate from the 
assignment of those K jobs to the idle machine. If this

34Fo x , M. S., Constraint-Directed Search: A Case Study of 
Job-Shop Scheduling, Ph.D dissertation, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Penn.
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process fails to produce an acceptable schedule, the 
scheduler attempts to construct the schedule in reverse, 
from the given due dates. If that fails, the scheduler 
systematically relaxes some of the constraints and tries 
again. Although the scheduling algorithm is primitive, the 
resulting schedules are considered to be quite good because 
the model builder can incorporate any factor which is 
considered significant.

2. Assembly Line Balancing. Focusing on situations that 
involve sequencing the execution of one job over multiple 
machines reduces the subject domain to the assembly line 
balancing problem. An instance of the assembly line 
balancing problem is defined by a set of tasks, the 
processing times for those tasks, a precedence relation over 
those tasks, and a desired cycle time for completing the 
entire set of tasks. A solution to a given assembly line 
balancing problem consists of an assignment of tasks to work 
stations such that the total amount of work assigned to any 
work station does not exceed the desired cycle time, and the 
order of the tasks is consistent with the given precedence 
relation. The goal is to find a solution which minimizes 
the total number of work stations.

Like most sequencing and scheduling problems, assembly 
line balancing is NP-hard. This is informally demonstrated 
by the following argument. Bin packing problems can be 
converted to assembly line balancing problems by a simple 
procedure. An instance of the bin packing problem consists
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of a set of items, the sizes of the items, and an unlimited 
number of bins of some fixed capacity. The problem is to 
determine the minimum number of bins required to contain the 
items. The conversion is accomplished by mapping items to 
tasks, the size of an item to the time required for the 
task, and the capacity of the bins to the cycle time. The 
remaining element of the assembly line balancing problem, 
the precedence relation is left empty. If a polynomial time 
algorithm is found for the assembly line balancing problem 
then a given instance of the bin packing problem can be 
converted to an assembly line balancing problem and solved 
in polynomial time. It has already been established that the 
bin packing problem is NP-hard35, hence the same must be 
true of the assembly line balancing problem.

The earliest citation to assembly line balancing is 
Salveson36 * which serves to introduce the problem. The first

• ,  * 3 7  ,practical algorithm focused on the enumeration of feasible 
workstations. It is interesting to note that over twenty 
years later, this algorithm proved to be one of the most 
effective38, and its influence is clearly seen in the state-

Garey and Johnson, Computers and Intractability, pp. 124- 
128 .

36Salveson, M. E., The assembly line balancing problem, Journal of Industrial Engineering 6 (1955), 18-25.
36Jackson, J. R. , A computing procedure for a lineckson, J. R., A computing procedure for a line balancing 
problem, Management Science 2 (1956), 261-271.

38Johnson, R. V., Assembly line balancing algorithms: computational comparisons, International Journal of 
Production Research 19 (1981), 277-287.
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of-the-art algorithm discussed below. A later algorithm39 is 
based upon explicit enumeration of all possible orderings of 
the tasks and the partition of each ordering into 
workstations. Another algorithm40 41 42 is based upon the explicit 
enumeration of all possible states in the execution of the 
tasks, which are less numerous than the possible orderings. 
Subsequent research introduced a wide variety of algorithms, 
including various dynamic programming, integer programming, 
and branch-and-bound formulations, which have been analyzed 
and compared in a number of papers.41,42. According to 
Mastor's study the dynamic programming algorithm of Held, 
Karp, and Sharesian was quite effective. The later study by 
Johnson indicates that Johnson's own branch-and-bound 
methodology, or Jackson's dynamic programming algorithm 
were generally faster and required less memory.

Recent work falls into two categories: refinements of 
established techniques, and variations on the problem 
formulation. Each of these will be discussed briefly.

39Klein, M. On assembly line balancing, Operations Research 11 (1963), 281.
40Held, M., Karp, R. M., and Shareshian, R., Assembly-line balancing - dynamic programming with precedence constraints, Operations Research 11 (1963), 442-459.
41Mastor, A. A., An experimental investigation and comparative evaluation of production line balancing techniques, Management Science 16 (1970), 728-746.
42Johnson, Assembly line balancing algorithms.
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For instance, one algorithm43 introduces a refinement 
of previous integer programming solutions and at the same 
time effectively applies the principles introduced by 
Jackson's dynamic programming solution. The general approach 
of that algorithm is to implicitly enumerate all possible 
task to workstation assignments under the guidance of a 
sophisticated set of heuristics. Unfortunately, the strict 
integer programming representation of assembly line 
balancing problems often requires an excessive number of 
variables and constraints. Hence, the first refinement 
introduced in that paper is a scheme which implicitly 
represents the integer programming problem without 
introducing all of the intermediate variables and 
constraints. The net effect is a much more compact 
representation with the possibility of solving much larger 
problems.

This compact representation is then coupled with a 
sophisticated set of problem specific heuristics. First, in 
order to prevent blind enumeration of task assignments, the 
algorithm precomputes the earliest and latest workstations 
into which a task can be assigned. At the same time it 
identifies all tasks, which because of their duration and 
the ordering constraints, must necessarily be assigned to a 
workstation alone. This information is then used to identify

43Talbot, F. B. and Patterson, J.H., An integer programming algorithm with network cuts for solving the assembly line balancing problem, Management Science, vol 30 (1984), 85- 
99 .
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distinguished workstations, called network cuts, at which 
special backtracking and fathoming heuristics can be 
applied. Additional heuristics involve comparison of the 
current partial solution with previous solutions. Those that 
show no significant differences are abandoned, as are those 
that show excessive idle time. Then to give the algorithm 
some initial momentum, a first solution is constructed using 
a simple heuristic, such as maximum task time first.

This work is significant in three ways. First, it 
carefully refines the algorithms and data structures of 
traditional integer programming. Second, it applies multiple 
heuristics which separately have been shown to be effective 
in previous systems. Third, it introduces heuristics which 
are selectively applied according to the structure of the 
problem and the state of the solution process. As a whole it 
represents an effective refinement and composition of 
established techniques and the introduction of unique 
context sensitive heuristics.

Another algorithm44 relies upon some refinements of the 
dynamic programming solution first proposed by Held, Karp, 
and Shareshian. Although some dramatic improvements in the 
storage requirements of the algorithm are presented 
(reductions by at least half!) this method still requires 
the explicit enumeration of all possible states in the 
execution of the tasks. Because of this, the method is

44Kao, E. P. C. and Queyranne, M. On dynamic programming methods for assembly line balancing, Operations Research 30 (1982), 375-390.
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limited to much smaller problems than the implicit 
enumeration method discussed above.

Other papers focus on variations on the assembly line 
balancing problem rather than refinements of the algorithms. 
These papers are motivated by the fact that real assembly 
lines are much more complex than the assembly line balancing 
model admits.

For instance, the basic model requires that the set of 
tasks to be performed is fixed, and the problem is simply to 
assign those tasks to workstations. However, the design of 
the assembly line, and the decomposition of the assembly 
into tasks are closely coupled. Hence, a fruitful area of 
research is to expand the scope of the problem and to 
produce algorithms which balance assembly lines which may 
have processing alternatives4 .̂

Other variations on the basic model involve the unique 
problems of robotic assembly lines. A robot cannot be 
programmed to perform an arbitrary combination of tasks.
Each robot has specific limitations on its speed, strength, 
reach, accuracy, etc., and each capability has a clearly 
identifiable cost. All of the tasks assigned to a single 
robot must be within its capabilities but failure to use 
some capability is wasteful. Moreover, commercial robots are 
not yet equipped with general purpose hands; instead robots 
are usually equipped with interchangeable tools which are 45

45Pinto, P. A., Dannenbring, D. G., and Khumawala, B. M., Assembly line balancing with processing alternatives: an application, Management Science 29 (1983), 817-830.
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specifically tailored to the operations that must be 
performed. The assignment of arbitrary combinations of tasks 
to a single workstation may require the robot to make 
frequent tool changes. Unlike humans, the task of changing 
to a new tool may be as difficult and time-consuming for a 
robot as performing its assembly tasks. Additionally, it is 
impossible to accurately predict the time required to 
perform a task without first designing the workstation and 
planning the robots operations46. Hence, balancing robotic 
assembly lines must take into consideration a large number 
of cost factors not normally associated with human assembly 
lines47.

Other research has focused on less extravagant but 
still important, realistic, and frequently occurring 
variations on the assembly line balancing problem. For 
instance, one author presents nine variations of the problem 
and a branch and bound algorithm for their solution together 
in a single paper48. These variations include the assignment 
of tasks to particular types of stations, to specific 
stations, to a specific side of the assembly line, or even 
problems which prohibit the assignment of certain tasks to

46Kondoleon, A. S., Assessing cycle times for robot 
assembly systems, Robotics Today 3 (1981), 38-41.

47Graves, S. C. and Lamar, B. W., An integer programming procedure for assembly system design problems. Operations Research 31 (1983), 522-545.
A  Q Johnson, R. V., A branch and bound algorithm for assembly 

line balancing problems with formulation irregularities, Management Science 29 (1983), 1309-1324.
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the same station or problems which intentionally require an 
imbalance in the work assigned to the stations

3. Sequencing the Activities of a Robot. Focusing on 
situations that involve sequencing the execution of one job 
on one machine reduces the subject domain to the problem of 
sequencing the activities of a robot. An instance of this 
problem is defined by a single job, composed of a set of 
steps, where each step is subject to specific resource 
requirements and specific ordering constraints. Xf the 
resource requirements are guaranteed to be satisfied then a 
solution to a given instance of this problem is simply a 
linear ordering of the steps which is consistent with the 
ordering constraints. If the sequence of operations must be 
adapted to the availability of the resources then the 
problem becomes significantly more complicated. 
Unfortunately, even in the absence of resource constraints, 
the problem of sequencing the activities of a robot is very 
difficult. It will be shown in a later section that given a 
sufficiently general language for posing the ordering 
constraints on the steps of a job, the problem of finding a 
sequence of operations which is consistent with the given 
constraints is NP-hard.

This is a relatively new problem, motivated by the 
availability of general purpose robots, sophisticated 
programming languages, and the significant accomplishments 
in parts recognition, grasp planning, trajectory planning, 
and parts mating. For this reason, the papers devoted to
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this subject are relatively few and are found mostly in the 
robotics and artificial intelligence rather than operations 
research literature.

Three instances of this problem seem representative of 
the active research in the area. The earliest of these was 
an experimental assembly system developed at Edinburgh 
University49'50. That system consisted of a four degree of 
freedom arm and a vision system both mounted over a two 
degree of freedom cartesian table. Assembly tasks submitted 
to the robot consisted of a jumbled heap of parts on the 
table from which the robot was required to acquire the 
individual parts and perform the assembly. A more recent 
system was developed as a joint venture by SRI, Honeywell, 
and Adept Technology under contract from the Air Force51. 
That system consisted of a six degree of freedom robot and a 
vision system mounted over a fixed table. The assembly tasks 
submitted to the robot consisted of a jumbled bin of parts 
from which the robot was required to acquire the individual 
parts and perform the assembly. A system currently under

a q̂Ambler, P., Barrow, H.G., Brown, C.M., Burstall, R.M. , and Popplestone, R.J., A versatile computer-controlled assembly system, in Proceedings Third International Joint Conference on Artificial Intelligence. Stanford University, 1973, pp. 298-303.
50Ambler, P., Barrow, H.G., Brown, C.M., Burstall, R.M. , and Popplestone, R.J., A versatile system for computer- controlled assembly, Artificial Intelligence 6 (1975), 

129-156.
51Interim Report #3, Research for Intelligent TaskAutomation, Air Force Contract #F33615-82-C—5092, July 

15, 1983.
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development at the Robotics Institute of Carnegie Mellon 
University under a contract with Westinghouse consists of 
two robots, a vision system, and a conveyor52. The assembly 
tasks submitted to this robot consist of a series of parts 
delivered in random order by the conveyor from which the 
robot must acquire the parts and perform the assembly. All 
three problems share the same characteristics. The job to be 
performed consists of a well defined set of operations.
Those operations have specific resource requirements, namely 
the parts, and specific ordering constraints. The problem is 
not simply to find one linear ordering of operations which 
satisfies the ordering constraints because there is no way 
to guarantee that the parts can be acquired or will be 
delivered in precisely that order. Instead the problem is to 
develop a method for sequencing the activities of the robot 
which will produce a sequence of operations consistent with 
the ordering constraints and the availability of parts.

The systems cited above developed three unique 
solutions to the problem of satisfying the ordering 
constraints simultaneously with satisfying the resource 
constraints. The approach used at Edinburgh was to pursue 
the task in two phases. In the first phase the robot 
separated the parts from the heap one by one, and according 
to their identity, moved them to fixed locations in the

52deMello, L.S.H. and Sanderson, A., And/Or graphrepresentation of assembly plans, in Proceedings Fifth 
National Conference on Artificial Intelligence. Philadelpha, Penn., 1986, pp. 1113-1119.
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workspace. In the second phase, with all of the parts 
identified and available, the robot performed the assembly 
according to a predetermined sequence of operations. The 
approach used at SRI was to build a better vision system. In 
fact the mandate of the research contract was to apply the 
best available vision hardware and software so that at each 
step of a predetermined assembly sequence the robot could 
locate and acquire the required part. Of course it is 
impossible to visually locate parts that are obscured and 
covered by other parts, so the assembly program included an 
escape mechanism: if the required part could not be located 
the robot would shake the bin or stir the parts with the 
expectation that the required part would be revealed. A 
third approach, advocated by this author and 
others53'54'55'56'57'58'59 and adopted at Carnegie Mellon

53Fo x , B.R. and Ho, C.Y., A relation control mechanism for flexible assembly, in Advanced Software in Robotics. A. 
Danthine and M. Geradin (eds), North-Holland, Amsterdam, 1984.

C  AHFox, B.R. and Kempf, K.G., Opportunistic scheduling for robotic assembly, in Robotics and Industrial Engineering, Selected Readings, E.L. Fisher and O.Z. Maimon (eds), Industrial Engineering and Management Press, Institute of Industrial Engineers, Atlanta, Georgia, 1986.
55Fo x , B.R. and Kempf, K.G., Complexity, uncertainty, and opportunistic scheduling, in Artificial Intelligence Applications. The Engineering- of Knowledge-Based Systems.

C. Weisbin (ed), IEEE computer Society Press, Washington,D. C., 1986.
56Fo x , B.R. and Kempf, K.G., A representation for opportunistic scheduling, in Third International 

Symposium on Robotics Research, O. Faugeras and G. Giralt (eds), MIT Press, Cambridge, Mass., 1986.



30

University57 58 59 60, and at Edinburgh and Aberdeen Universities 
under a joint program of research61, is to dynamically 
determine the sequence of operations according to the 
initial ordering constraints and the order of the 
availability of the parts.

On closer inspection, candidate solutions to this 
problem fall into one of the five categories: eliminate 
uncertainty, quantify uncertainty, restore certainty, 
increase the likelihood of progress, or increase the avenues 
for progress.

Eliminate Uncertainty: The most frequently proposed 
solution to this problem is to eliminate the uncertainty in 
the availability of the parts by re-engineering the task. 
Instead of delivering the parts in a bin or heap, deliver 
the parts affixed to a pallet with specific locations and 
orientations. Or instead of delivering the parts in random

57Fo x , B.R. and Kempf, K.G., Planning, scheduling, and uncertainty in the sequence of future events, in Uncertainty in Artificial Intelligence. Vol. 2, J. Lemmer (ed), North-Holland, Amsterdam, 1987 (to appear).
58Fo x , B.R., The implementation of opportunistic scheduling, in Proceedings Intelligent Autonomous Systems, Amsterdam, 1986, pp. 231-240.
59Fo x , B.R. and Kempf, K.G., Reasoning about opportunistic schedules, in Proceedings IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, 1987 (to appear).
60deMello and Sanderson, And/Or graph representation of 

assembly plans.
61Malcolm, C. and Fothergill, P., Some architectural implications of the use of sensors, in Proceedings Intelligent Autonomous Systems. Amsterdam, 1986, pp. 71- 

78 .
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order on the conveyor, introduce some system which 
guarantees the order of delivery. The robot can then be 
programmed to perform the task according to some 
predetermined sequence of operations according to the fixed 
locations of the parts or the expected order of arrival. Of 
course the cost of this solution is determined by the cost 
of engineering the pallets and transport. The cost may be 
justifiable in large volume applications but it is 
unacceptable in the aerospace industry, for instance, where 
millions of parts are produced in quantities of 100 or less 
per year. The inventory of pallets and fixtures would exceed 
the value of the parts to be produced. Moreover, in many 
circumstances human labor would be required to prepare the 
pallets. The motive for introducing vision and artificial 
intelligence in such applications is to automate the 
production without introducing the added expense of custom 
fixtures, pallets, and transport.

Quantify Uncertainty: Yet another solution might be to 
gather statistics over hundreds of trials and to program the 
robot to perform the assembly over the sequence of parts 
most likely to occur. Unfortunately, this only displaces the 
problem, it does not address the question of how to sequence 
the activities of the robot when the sequence of parts 
deviates from the programmed order. Hence, this is only a 
partial solution and it carries with it the added cost of 
performing the experiments and gathering the statistics.
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Again, such costs are unjustifiable in small volume 
productions.

Restore Certainty: The solution implemented in the 
Edinburgh system cited above, is to restore certainty 
whenever it is lost. The parts were presented to the robot 
as an unordered heap which the robot immediately separated 
into individual parts which were moved to fixed layout 
locations. Although the parts would most certainly be 
acquired from the heap in a random order, the process of 
placing the parts in fixed locations restored the order 
necessary in order to perform the assembly according to a 
predetermined sequence of operations. The cost of this 
solution is determined by the added execution time required 
to lay out the parts. Although the number of motions 
required to perform the the assembly is fixed (one motion to 
acquire and buffer each part, and one motion to install each 
part) on the average, many of the intermediate motions are 
extraneous62. A more efficient solution would be to move a 
part to a buffer location only if it cannot be immediately 
installed in the assembly.

Increase the Likelihood of Progress: The system 
developed by SRI, Honeywell, and Adept Technology can be 
properly viewed as a Markov process. There is an initial 
state of the task, a final state of the task, and a fixed 
number of states in between. Each state is determined by the

62Fox and Kempf, Opportunistic scheduling for robotic assembly.
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set of parts that have already been installed and each state 
transition is produced by the installation of a new part. 
Since the SRI robot was programmed to pursue a fixed 
assembly sequence, the corresponding Markov Process consists 
of a purely linear chain of states with no branching or 
alternative orderings. At each step of the process there is 
a certain probability of locating the next part and making 
progress and a complementary probability that the task will 
remain in the same state and that the robot will need to 
shake the bin or stir the parts. The goal of that research 
was to build a better vision system in order to increase the 
likelihood of finding the required part and thereby increase 
the likelihood of progress in each state of the process. The 
net effect was to reduce the expected duration of the 
assembly task. There is no way to completely remove the 
uncertainty from this system and this solution still carries 
with it a degree of uncertainty.

Increase the Avenues for Progress: There is a common 
weakness in the four prior categories of solutions. They 
focus exclusively on the process of acquiring the parts and 
they fail to apply knowledge of the assembly task itself. In 
those situations where there is no way to predict nor 
control the sequence of parts as they may be acquired or 
delivered, there may still be many feasible sequences for 
installing the parts in the assembly. The intelligent 
solution is to exploit this inherent flexibility and to 
opportunistically sequence the set of assembly operations at
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execution time, according to the availability of parts and 
according to the constraints on the assembly operations. 
This approach is also based upon a model of the assembly 
task as a Harkov Process but with an important difference. 
The likelihood of transition from a particular state can be 
increased by increasing the number of possible successor 
states, that is, to enable alternative orderings for the 
installation of the parts.

C. RESTRICTION OF THE PROBLEM DOMAIN.
The implementation of an opportunistic scheduling 

strategy depends upon the consistent application of the 
principle of least commitment. It is not unusual for a 
planner to determine the steps of a task and also a single 
fixed sequence for their execution. However, most tasks can 
be executed according to many different sequences. It is 
very unlikely that one, chosen before execution time, will 
be the best. It is certain, however, that if only one 
sequence is passed to the robot it will have no flexibility 
in the execution of that task. In order to maximize 
flexibility, a plan should consist of a set of steps and a 
minimum set of ordering constraints thereby encompassing 
every feasible sequence of steps. Most extant planning 
systems, however, generate a plan as a linearly ordered set 
of actions or at best produce partially ordered sets of 
actions. Hence, a challenging area of research would be to 
develop a planner which could produce a plan with a 
minimally ordered set of actions.
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This concept of plan leads to a unique problem of
representation. The principle of least commitment dictates
that the plan for a task encompass every feasible sequence
of steps, and that in turn dictates a representation which
completely and compactly encodes those sequences.
Unfortunately, the most common forms for representing plans
fail to satisfy one or both of these requirements. Hence, a
second area of research would be to develop a representation
for plans which would be complete and compact, and which
would facilitate the processes of planning and sequencing.
In fact, the consensus among several of the individuals
actively engaged in this area of research is that the first
issue that needs to be addressed is the matter of
representation00. The significance of representation is
emphasized in a note by Nilsson:

"...artificial intelligence (AI) is primarily concerned with propositional languages for representing knowledge and with techniques for manipulating these representations. In this respect, AI is analogous to applied mathematics; its representations and techniques can be applied in a variety of other subject areas. Typically, AI research is (or should be) more concerned with the general form and properties of representational languages and methods than it is with the content being described by these languages."63 64

63Results of a personal poll conducted by the author among C. Malcolm and M. Drummond of Edinburgh, P. Fothergill of Aberdeen, A. Sanderson of Carnegie-Mellon, P. Cheeseman of NASA/ARC and K. Kempf of FMC Corp.
64Nilsson, N. J., from the abstract of Artificial

Intelligence: Engineering, Science, or Slogan?, Technical Note 248, SRI International, Menlo Park, Calif, July 1981.
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The remainder of this thesis will be concerned with the 
problem of representing the tasks that a robot is to perform 
and with methods for reasoning over those representations.
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III. SURVEY OF THE CANDIDATE REPRESENTATIONS

The representation of plans plays a central role in the 
processes of planning and sequencing. In a general sense, a 
plan is a collection of information which has been produced 
by an analysis of the problem to be solved and has been 
encoded in some machine readable language from which the 
sequence of operations can be derived. The representation is 
the exchange point between the planner and the sequencer. It 
determines what information must be produced by the planner 
and it determines what information is available to the 
sequencer.

As noted previously, in early planning systems it was 
found that a linear representation for plans introduced some 
artificial ordering constraints which frequently caused the 
plan under construction to fail. Consequently, considerable 
effort was required to find a linear ordering which was 
successful. Similarly, a linear ordering of operations 
seriously limits the process of sequencing. If the plan 
delivered to the sequencer is a linear ordering of 
operations then the sequencer has only one option. The steps 
must be executed in exactly that order. If the resources 
required by the next step of the plan are not available then 
execution must be delayed until they are, even if the 
resources are available for some other steps. In later 
planners, use of partial orders facilitated the process of 
planning by accurately representing the necessary ordering 
constraints and by eliminating any which were unnecessary.
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Likewise, partial orders have already been shown to increase 
the flexibility of the sequencer by allowing alternative 
orderings of the operations.65 Frequently when one operation 
is delayed because of the unavailability of resources, there 
are other sibling operations that can be executed instead.

A. THE CANONICAL REPRESENTATION OF PLANS
Regardless of its form, a plan must precisely define 

the operations that are to be performed and it must 
precisely circumscribe the admissible orderings of those 
operations. Given that this work is concerned with plans 
that are to be executed by a single robot, the prescription 
for the admissible orderings carries with it an implicit 
constraint that the operations are to be performed one step 
at a time. Hence, the set of admissible orderings will in 
fact be a set of linear orderings over the given operations. 
This suggests a canonical representation for plans that can 
be used to compare the expressive power of candidate 
representations. For purposes of comparison, define the 
canonical representation of a plan to be a set of operations 
plus a set of linear orderings, or sequences, over that set. 
This definition of plan applies only to finite serial 
processes but it encompasses the domain of simple tasks to 
be performed by individual robots. As a matter of notation, 
a sequence over a set of symbols {Si | i=l,n} is an ordered 
list [Sp,Sq, ... Sr] in which each symbol occurs once and

65Fo x  and Ho, A relational control mechanism for flexible assembly.
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only once. When the given symbols denote operations to be 
performed the ordinal position of a symbol in the list 
determines the temporal ordering of the corresponding 
operation. The leftmost operation should occur first, the 
following operation should occur second, and so on.

By defining a plan as a set of sequences, all of the 
possible plans over a set of K steps can be organized into a 
Boolean lattice. This gives a unique perspective on the 
space of possible plans and on the relationships between 
plans. For example, consider the set of all possible plans 
over a set of three operations labeled A, B, and C. There 
are six possible sequences over those operations: [A,B,C],
[A ,C,B], [B, A, C], [BiC,A], [C,A,B], and ^C,B,Aj. This m  
turn implies that there are 26 distinct plans over the three 
operations, one for each possible subset of the six 
sequences. If each of the six sequences is given a numeric 
label, as shown in Figure 1, and if each of the sixty-four 
possible plans is represented as a set of those numeric 
labels, as shown in Figure 2, then the sixty-four possible 
plans can be organized into the Boolean lattice shown in 
Figure 3. The corresponding lattice of plans over a set of 
four operations would entail 224 nodes! The bottom node in 
that figure denotes the nil plan with no feasible sequences, 
the top node denotes the universal plan which admits any of 
the six sequences, and the intermediate nodes denote subsets 
of the six sequences. Arcs which meet below a node denote 
set intersection, and arcs which join above a node denote
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1. [A, B , C]
2 . [A, C, B]
3 . [B, A, C]
4 . [B, C , A]
5 . [C, A, B]
6 . [C ,B , A]

F i g u r e  1.
Six possible sequences over {A,B,C}.
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,4 , 6 } 
,5 , 6 } 
,5 , 6 }

{2 ,4 ,5 , 6 }

,3 , 4 ,5 } {2 ,3 , 4 ,5 ,
,3 , 4 , 6 }
,3 , 4 , 5 , 6 }

{3,4} {4,5} {5,6}
{3,5} {4,6}
{3,6}

,5} {4,5,6}
, 6 }
, 6 }

{3, 4,5, 6}

6 }

Figure 2.
four possible plans over {A,B,C}.
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1
2
3
4
5
6

The p l a n  c o n s i s t i n g  of 
sequences 3, 4, 5, & 6.

1
2
3
4
5

1
2
3
4 
6

1
2
3
5
6

1 1 2  
2 3 3
4 4 4
5 5 5
6 6 6

i.

y

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 1 1 1 1 1 1 1 1 1  
2 2  2 2 3 3 3 4 4 5  
3 4 5 6 4 5 6 5 6 6

2 2 2 2 2 2 3 3 3 4
3 3 3 4 4 5 4 4 5 5
4 5 6 5 6 6 5 6 6 6

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

1 2  3 4 5 6

y d y

(Sets and their elements are listed
Figure 3.

The Boolean lattice of plans over {A,B,C>.
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et union, but for simplicity, only a few arcs are shown in 
the figure. From this perspective, it appears that complex 
plans can be viewed as the intersection and union of more 
basic plans.

B. four c r i t e r i a for c o m p a r i s o n
This map of the space of possible plans provides the 

first criterion for comparing candidate representations. A 
representation can be considered complete if and only if 
every possible plan over a fixed set of operations can be 
represented within that framework. If a representation fails 
to be complete then it may impede the process of planning 
and it will most certainly artificially constrain the 
options of the planner.

This map of the space of possible plans also suggests a 
second criterion for comparing candidate representations.
The obvious disadvantage of the canonical representation is 
that the size of each plan is directly proportional to the 
number of sequences admissible under that plan. Consider a 
plan of K steps. The simplest plan, which imposes no 
constraints on the order of the operations, requires K! 
sequences in its canonical form, and plans that impose the 
simplest of ordering constraints require K!/2. A goal which 
will be very difficult to achieve, is that a representation 
should be reasonably compact. The size of the plan under 
some representation should generally be proportional to the 
complexity of the plan not the number of sequences which it 
encodes. Although it would be impractical, if not
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when encoded in some representation, it is useful to 
consider the two extremes: the largest plan which has no 
constraints and K! sequences and the smallest plan, which 
admits only one sequence.

The third criterion for the comparison of candidate 
representations is that the representation should be 
i-ractable for the planner to produce. This means that its 
content should be primarily analytic information rather than 
synthetic. For example, the production of the canonical 
representation requires the creation of the individual 
sequences which are admissible. Obviously these cannot be 
produced by some cursory inspection of the task to be 
performed. Instead these can only be synthesized from some 
more primitive information which has been gathered by an 
analysis of the task. The representation should be based 
upon the most primitive collection of information that 
defines the set of operations to be performed and their 
admissible orderings. This is emphasized for two reasons. 
First, it encourages the consideration of more basic 
representations and second, it discourages suggestions of 
more complex representations. Either the planner must be 
able to directly produce the candidate representation or 
some other structure must be identified that the planner can 
produce which can be used to derive the candidate 
representation. The goal is simply to agree upon the
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appropriate exchange point between the planner and 
sequencer.

The fourth criterion for the comparison of candidate 
representations is that it should be tractable for the 
sequencer to use. The representation of a plan can be used 
in a variety of ways. Ultimately it will be used to 
determine the order of execution, but it can also be 
analyzed prior to execution in order to compare alternative 
plans or to predict expected behavior. The problem of 
greatest interest is the problem of constructing the set of 
admissible next operations given some representation of the 
plan and the current state of the task. The first standard 
of comparison is the traditional delineation between 
polynomial-time and exponential-time algorithms. Three cases 
will arise in the following discussions. For a given 
representation and the problem of constructing the set of 
admissible next operations, it may be possible to 
demonstrate a polynomial-time algorithm, or it may be 
possible to demonstrate an exponential-time algorithm but 
the actual complexity of the problem has not been 
determined, or finally it may be possible to demonstrate an 
exponential-time algorithm and it can be demonstrated that 
the problem is NP-hard.

Usually the terms polynomial-time and exponential-time 
qualify the expected execution time with respect to the size 
of the input. This can be misleading because the size of a 
plan under some representations can be exponentially related



46

to the number of the operations but the algorithm for 
determining the set of admissible next operations can be 
polynomially related to the size of the plan. For instance, 
given the canonical representation of a plan, the time 
required to determine the set of admissible next operations 
is a simple polynomial function of the number of sequences. 
This can be accomplished by inspecting each of the S 
sequences in the plan. If the initial steps of a sequence 
match the sequence of steps already completed, then the next 
step in that sequence can admissibly be executed next. If 
each sequence consists of K operations then at most S*K 
comparisons need to be made in order identify the admissible 
next operations. Of course the complication is, that for 
some simple plans, the number of sequences will be on the 
order of K!. Similar situations will be pointed out when 
they occur.

In the distant future it is imaginable that truly 
autonomous systems will be developed which can plan, 
sequence, and execute their activities independent of any 
human contribution or supervision. In the immediate future, 
however, humans will be the most active intelligent element 
in robotic systems. Hence, a representation for plans must 
also satisfy two additional requirements. A candidate 
representation must be tractable for a human to produce and 
must be tractable for a human to understand and analyze.
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c- A SIMPLE ASSEMBLY PROBLEM
The comparison of the candidate representations will be 

facilitated by the introduction of a simplified version of 
an assembly problem defined in a recent paper66. The product 
to be assembled consists of four parts labeled cap, stick, 
receptacle, and handle as shown in Figure 4. The stick is a 
solid cylinder which fits inside of the receptacle, and the 
receptacle is a hollow cylinder which is closed on one end 
by the cap and on the other end by the handle. The assembly 
is to be performed by a single robot forming a single 
product without use of sub-assemblies (the original 
formulation required two robots and allowed the use of 
subassemblies). At one level of resolution the task consists 
of four operations: install-cap, install-stick, install- 
receptacle, install-handle. For brevity, the part names will 
be frequently reduced to simply their first letters C, S, R, 
and H, and the operations will be reduced to i-C, i-S, i-R, 
and i-H. In its canonical form the plan for this task 
consists of the four operations plus the twelve sequences 
shown in Figure 5.

D. THE CANDIDATE REPRESENTATIONS
The representations that have been proposed in the 

literature have focused on different elements of the tasks 
to ce performed. The basic elements, from which tasks are 
defined, are the objects to be manipulated and the

66de Mello and Sanderson, And/Or graph representation of 
assembly plans.
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Figure 4.
A simple product of four parts.
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1. [i-C,i-S,i - R ,i-H]
2 . t i-C, i-R, i-S, i-H]
3 . [i-S,i-C,i-R,i-H]
4 . [i-S,i-R,i-C,i-H]
5 . [i-S,i-R,i-H,i-C]
6 . [i-S,i-H,i-R,i-C]
7 . [i-R,i-C,i-S,i-H]
8 . [i-R,i-S,i-C,i-H]
9 . [i-R,i-S,i-H,i-C]

10 . [i-R,i-H,i-S,i-C]
11 . [i-H,i-S,i-R,i-C]
12 . [i-H,i-R,i-S,i-C]

Figure 5.
Twelve admissible sequences for the simple assembly problem.
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operations to be applied to them. From one perspective, the 
state of all of the objects, when treated as an aggregate, 
defines the state of the task. In that context, the 
admissible orderings of the operations is implicitly defined 
by the set of admissible states and state transitions. From 
another perspective, the operations can only be applied to 
specific operands. Some of the operands may be initially 
available, some may be the result of other operations. The 
dependency of operations on the availability of operands, 
which in turn may need to be produced by other operations, 
implicitly defines the necessary ordering of operations. 
Alternatively, knowledge of the operations, their 
prerequisites, and effects can be used to formulate explicit 
constraints on the order of their execution. Each 
perspective leads to a distinct method of representation. 
Several proposed representations will be considered 
including state space representations, problem decomposition 
representations, and several representations based upon 
explicit temporal constraints. These representations will be 
compared using the criteria defined above, and whenever 
possible, using the simple assembly problem for examples.

1. State Transition Networks. One of the earliest 
candidate representations for tasks that robots are to 
perform is state transition networks67. In a system proposed

67Chapter II, Section B1: State-space representation, in The Handbook of Artificial Intelligence, vol 1, A. Barr and E .A . Feigenbaum (eds), William Kaufmann, 1981.
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by Whitney68 the robot plus its working environment was 
considered to be a single system which could be described by 
a state vector of discrete parameters. Coupled with this was 
a vocabulary of discrete operators which caused transitions 
between states. From this perspective, planning the 
activities of a robot was simply a matter of search through 
the space of all states reachable from an initial state by 
the application of the available operators. Cost functions 
could be applied to the operators and metric functions could 
be applied to the states in order to control the search 
process and improve the quality of the solutions.

The plans produced in this system were purely linear 
but this same combination of states and operators can be 
used to represent minimally ordered plans. Based upon an 
analysis of the physical process, the simple assembly 
problem can be encoded in a state transition network as 
shown in Figure 6. In this case, each state is determined by 
the set of parts that have been installed. The initial state 
is the empty set and the final state is denoted by the set 
of all four parts. Due to the natural constraints on the 
assembly task not every configuration of parts is admissible 
and the state space for this task is a subset of the 24 
possible sets over four parts. A directed arc between two 
nodes denotes a state transition effected by the 
installation of a single part. Each path from the initial

68Whitney, D.E., State space models of remote manipulation tasks, IEEE Transactions on Automatic Control, vol AC-14, 
#6, Dec. 1969.



52

{C, S, R,H}Ni-H i-C

{C,S,R}/tvi-R i-S i-C

{S,R,H}/tv
i-H i-R i-S

{C,S } {C,R } {S,R} {S,H} {R,H}

Figure 6.
State transition network for the simple assembly problem.
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state to the final state requires the execution of all four 
operations, each exactly once. There are twelve paths 
through the network corresponding to the twelve sequences in 
the canonical representation.

When properly formed, the state transition network 
representing a plan contains no loops or cycles and only one 
terminal state. Given that arcs denote operations, the state 
transition network representing a plan is properly formed 
when every path from the initial state to the final state 
requires the execution of each operation exactly once and 
the set of all possible paths defines the set of admissible 
sequences.

More generally, it can be demonstrated that state 
transition networks provide a complete representation for 
plans. The argument is based upon a fundamental theorem of 
formal language theory. Every finite language is accepted by 
some deterministic finite state automaton. If the set of 
sequences which define a plan are viewed as strings over the 
alphabet of operators, then the state transition network 
which represents that plan can be found by constructing a 
finite state machine which accepts that language.

The construction of a state transition network from the 
canonical representation must be done very carefully. In the 
case of the simple assembly problem, the state of the 
process is exactly determined by the set of parts that have 
been installed, and equivalently, by the set of operations 
that have been performed. However, this is an artificially
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simple case. Consider the plan over the four steps A, B, C, 
and D, which consists of only the two sequences [A,B,C,D] 
and [B/A /D/C]. The order of the last two steps, C and D, 
cannot simply be determined from the fact that A and B have 
been completed. The order of execution is significant. The 
execution of A then B leads to a different state than the 
execution of B then A.

The proper construction is based upon sets of sequences 
and subsequences. Each state of the network is distinguished 
by the set of sequences which lead from that state to the 
final state of the task. The initial state is identified by 
the set of all admissible sequences and the final state by 
the null set. The set of admissible operators in any given 
state is found by inspecting the leading operators of the 
sequences which define that state. Successor states are 
constructed in two steps. First, the sequences which define 
the current state are partitioned according to their first 
operator. Second, each partition is then used to construct a 
successor state which can be reached by the application of 
the leading operator. The sequences which define the 
successor state are constructed from the sequences in the 
partition simply by removing the leading operator. For 
instance, the sets of sequences construction of the state 
transition network for the simple assembly problem is shown 
in Figure 7. Although it will not always be true, in this 
case the network derived from an analysis of the sequences
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t ] ̂Vi-H i-C

[i-H] [i-C]

XtX x txi-R i-S i-C i-H i-R i-S

[i-R, i-H] [i-S, i-H] [i-C, i-H] [i-R, i-C] [i-S, i-C][i-H,i-C]

, i-R, i-H][i-C, i-R, i-H][i-C, i-S, i - H] [ i - S , i-R, i - , i-S,'i—H][i—R, i-C, i — H][i-S, i-C, i —H][i-R, i-S, i - [ i-R, i — H, i — C][i-S, i-H, i-C][i-H, i-R, i — C][i-H, i-S, i-C]

[i-C,i-S,i-R,i-H] [i-C,i-R,i-S,i-H] [i-S,i-C,i-R,i-H] 
[i-S,i-R,i-C,i-H] [i-S,i-R,i-H,i-C] [i-S,i-H,i-R,i-C]

[i-R,i-C,i-S,i-H] [i-R,i-S,i-C,i-H] [i-R,i-S,i-H,i-C] 
[i-R,i-H,i-S,i-C] [i-H,i-S,i-R,i-C] [i-H,i-R,i-S,i-C]

Ficfure 7 .
Construction of the state t r a n sition network 

for the simple assembly problem.

n n
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is identical in structure to the network derived from an 
analysis of the physical process.

This construction is presented in order to emphasize 
that the states of a task may not be sufficiently 
distinguished by the set of operations that have been 
completed. Instead a more refined concept of state is needed 
for many practical applications. For instance, the state of 
a chemical process cannot be determined solely on the basis 
of the set of chemicals that have been added to a reactor. 
The order is significant. Some reactions produce heat, some 
require heat, some produce by-products that can contaminate 
other reactions, and some neutralize contaminants.

The compactness of the representation can be estimated 
by considering two cases: the smallest plan over K steps 
consisting of one sequence and the largest plan over K steps 
consisting of K! sequences. In the first case the state 
transition network consists of a linear chain of K+l states 
with K transitions in between. In the second case the order 
of execution is unconstrained and the set of sequences for 
completing the task from some given state is independent of 
the sequence of operations which led to that state. Hence, 
the state transition network can safely be constructed from 
the 2K possible subsets of the K operations. For an 
unconstrained task of twenty operations this implies a 
network of over a million states 1 While this may not be 
prohibitive in the context of modern memory prices this does
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raise serious questions about the methods for creating and 
analyzing plans using this representation.

From the perspective of the planner, state transition 
networks pose serious difficulties. Except for very small 
problems, the work required to build a state transition 
network exceeds human capabilities. Simple problems will 
have an enormous number of possible states, complex problems 
will require a tremendous analytic effort. In some problems 
the state is determined not only by the operations that have 
been completed but also by their ordering, which further 
compounds the analysis. It is arguable that a computer could 
be programmed to produce the state transition network, but 
this only differs the question of representation. The input 
to such a program must be some representation of the task to 
be performed which accurately and completely delimits every 
possible sequence of operations. Suggestions that a 
computerized planning system could produce this 
representation are equally suspect. Planners, such as 
STRIPS, that produce linear plans by systematically 
searching the reachable states of a state transition network 
have proven to be slow and inefficient. The prospects of 
circumscribing the set of every admissible sequence over a 
set of operations using such methods seem remote.

From the perspective of the sequencer, state transition 
networks are ideal. Every possible state of the task has 
been itemized, and for every state, every admissible 
operator and state transition has been itemized. The cost of
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determining the set of admissible next operations for a 
given state is negligible. Unfortunately, humans will find 
state transition networks as intractable to understand and 
analyze as they are to construct. While the elements of the 
representation are simple: states, operators, and successor 
states, the profusion of states, and state transitions can 
obscure even simple patterns in a plan or make it impossible 
to recognize common elements when comparing plans.

2. And/Or Graphs. A recently proposed representation 
for tasks that robots are to perform is based upon sub- 
assembly decomposition. In a system developed by deMello and 
Sanderson 3 an assembly problem was decomposed into a set of 
stable sub-assemblies and those in turn were decomposed 
until the product had been factored into its constituent 
parts. By exhaustively considering every stable 
decomposition of an assembly all of the feasible methods for 
producing it could be circumscribed.

The decomposition of assemblies into sub-assemblies can 
be very conveniently represented by And/Or graphs69 70. For 
instance, the simple assembly problem as originally posed by 
deMello and Sanderson is represented by the And/Or graph 
shown in Figure 8. The topmost node in that figure, labeled 
{C,S,R,H} denotes the completed assembly. The leaf nodes

69de Mello and Sanderson, AND/OR graph representation of assembly plans.
70Chapter II, Section B2: Problem Reduction representation, in The Handbook of Artificial Intelligence. vol 1, A.

Barr and E.A . Feigenbaum (eds), William Kaufmann, 1981.
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{C, S, R, H}

(C> {s> {R> {H}

(for simplicity, n o d e s  w h i c h  r e p r e s e n t  i n d i v i d u a l  
p a r t s  h ave b e e n  f r e e l y  r e p l i c a t e d . )

Figure 8.
A n d / O r  g r a p h  

s i m p l e
of

a s s e m b l y  p r o b l e m .
the
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denote the constituent parts. Nodes in between represent the 
possible stable sub-assemblies which can be used to form the 
product. Arcs descending from a node which are joined by a 
bar are referred to as hyperarcs and lead to a set of 
components that can be combined to form the sub-assembly in 
that node. As formulated by deMello and Sanderson, each 
hyperarc denotes an operation. The node from which it 
descends represents the result of the operation and the 
nodes to which it connects denote the operands. A singular 
arc can be used to represent operations with only one 
operand, such as inspecting or drilling. When more than one 
arc or hyperarc descends from a node, each denotes an 
alternative method for producing that sub-assembly. For 
instance, the topmost node has four descending hyperarcs 
which denote four alternative methods for constructing the 
completed product, the sub-assembly labeled {C,S,R>, in 
turn, can be produced from three different combinations of 
sub-assemblies but the leftmost node, labeled {C,S}, can 
only be produced by mating the two parts {C> and {S}.

When properly formed, the And/Or graph representing a 
plan contains no loops or cycles and a single root node. A 
solution to an And/Or graph can be found by marking a sub­
graph according to the following rules. First mark the root 
node. If some node has been marked, then select exactly one 
arc or hyperarc descending from that node and mark the 
descendant nodes. The process is complete when no additional 
nodes can be marked. Given that arcs and hyperarcs denote
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operations, the And/Or graph representing a plan is properly 
formed when every solution requires the execution of each 
operation exactly once and the set of all possible solutions 
defines the set of admissible sequences.

Figure 8 is an accurate representation of the simple 
assembly problem, as originally posed by deMello and 
Sanderson, but it contains elements not found in the problem 
defined in this paper. There are three important 
differences. Their version of the problem allowed the use 
of two robots, allowed the use of sub-assemblies, and each 
hyperarc in the And/Or graph represented the operation of 
mating two components using the two arms. If the problem is 
restricted to one robot, no sub-assemblies, and the 
vocabulary of four operations, install-cap, install-stick, 
install-receptacle, and install-handle, the And/Or graph 
contains some significant differences. Most important, with 
only one robot it becomes impossible to directly mate two 
parts. Instead one part must be first be mated with a jig or 
other stabilizing fixture in the workspace and then the 
second part can be mated with it.

With these restrictions the And/Or graph of Figure 8 
can be revised to accurately represent the simple assembly 
problem. First, any hyperarcs which denote the combination 
of sub-assemblies must be removed. Second, a specific 
symbol, J, must be introduced to denote the jig, or fixture 
which stabilizes the assembly. Finally, any hyperarcs which 
denote the combination of two individual parts must be
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replaced with a sub-graph representing the process by which 
those parts can be mated using the jig. The result of these 
revisions is shown in Figure 9. As before, each node in the 
graph denotes a stable sub-assembly and hyperarcs which 
descend from a node lead to the components which can be 
combined to form that sub-assembly. Hyperarcs still denote 
the process of mating, but in this context, all matings must 
be between a single part and the partial product already 
completed.

Unfortunately, Figure 9 contains a profusion of arcs 
which can obscure the basic underlying structure of the 
assembly problem. A second set of revisions can simplify the 
graph and at the same time reveal its most important 
characteristics. Each hyperarc in the graph consists of two 
branches: one leading to an individual part and a second 
leading to a stable sub-assembly. Given this uniform pattern 
of usage, each hyperarc can be collapsed to a single arc 
labeled with the individual part and leading to the sub- 
assembly. The And/Or graph resulting from this revision is 
shown in Figure 10, and in this form, should be easily 
recognized. It is identical in structure to the state 
transition networks presented in the previous section.

This illustrates a very important point. Unless a 
problem can in fact be partitioned into independent sub­
problems, an And/Or graph which represents that problem will 
be nothing more than a state transition network. By virtue 
of their ability to contain embedded state transition
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{ J, C, S , R, H)

(for simplicity, nodes which r e p r e s e n t  i n dividual 
parts have b e e n  freely replicated.)

Figure 9.
Revised And/Or graph of the simple 

assembly problem.
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{ J ,  C ,  S, R, H}/ \
{J,C,S,R> { J ,  S , R , H }

{J,C} {J,S> {J,R} {J,H}

F i g u r e  10.
S i m p l i f i e d  A n d / O r  graph.

of the s i m p l e  a s s e m b l y  p r o b l e m
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networks, And/Or graphs are complete, but they are 
conceptually and computationally useful only when a 
problem can be decomposed into two (or more) independent 
sub-tasks.

As formulated by deMello and Sanderson, nodes in the 
And/Or graph denote objects and the arcs and hyperarcs 
denote operations. Multiple arcs descending from a node 
denote the alternative methods for producing the object in 
that node. This is a very effective framework for 
representing the alternative combinations of sub-assemblies 
that can be used to produce a particular product. However, 
this usage of And/Or graphs does not facilitate the 
representation of alternative orderings of operations.

In order to illustrate this point, consider a set of K 
milling operations that are to be performed on a single 
piece of metal and which can be done in any order desired. 
The final product can be produced from any one of K 
alternative partial-products. It can be produced from a 
piece of metal which has gone through all but operation 1, 
or it can be produced from a piece of metal which has gone 
through all but operation 2, etc. In an And/Or graph the 
arcs descending from the root node can indicate the 
alternative objects that can be used to form the final 
product and can implicitly indicate those operations that 
can be performed last, but a complete state transition 
network of 2K nodes must be constructed in order to indicate 
that K operations can be done in any order desired.
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It is only when a problem can be decomposed into 
independent sub-assemblies that this representation becomes
economical. Under a state transition representation, the 
number of states, and accordingly the number of nodes, in a 
problem would be equal to the product of the number of 
states in each independent sub-assembly. Under an And/Or 
graph representation, each independent sub-assembly can be 
represented by a separate sub-graph and the total number of 
nodes in the graph would be the sum of the number of nodes 
in each sub-graph. Hence, for problems which do not involve 
building independent sub-assemblies this representation is 
essentially identical to a state transition network but when 
sub-assemblies are used in the construction of the final 
product an And/Or graph representation is substantially more 
compact.

From the perspective of the planner, an And/Or graph 
representation of the decomposition of an assembly is 
subject to the same analysis. For problems which do not 
involve building independent sub-assemblies this 
representation is essentially identical to a state 
transition network and the same criticisms apply. When sub- 
assemblies are used in the construction of the final product 
an And/Or graph representation is both conceptually and 
computationally more tractable. If for no other reason, this 
is because the number of distinct states to be considered 
has been reduced from a product of states to a sum of 
states. More important, an And/Or graph accurately models
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one strategy that a planner might follow in planning. First 
decompose the problem into a set of independent sub­
problems, and when that is accomplished recursively 
decompose each of those.

From the perspective of the sequencer And/Or graphs 
pose only modest complications. It is a trivial matter to 
determine the set of admissible next operations if the 
representation of a task is, in effect, a state transition 
network. All of the admissible states and state transitions 
have already been enumerated. For sake of efficiency, it may 
be desirable to collapse and label hyperarcs using the same 
methods demonstrated in Figure 10. If the task has been 
partitioned into sub-assemblies, then the sequencer must 
separately consider the state of each active sub-assembly 
and properly shift attention when sub-assemblies are mated. 
This does not appear to present any serious difficulties.

The usefulness of this representation is limited to the 
degree that a problem is decomposed into independent sub­
problems. An And/Or graph representing any problem or sub­
problem that cannot be decomposed is simply a state 
transition network. Hence to a large degree, this 
representation has the same merits and demerits as state 
transition networks, but for some specific problems, it can 
be quite economical.

3. Ordered Sets. Given that a plan consists of a set of 
operations plus a set of admissible sequences over those 
operations it is quite natural to consider methods for
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defining the admissible sequences by some formula or 
prescription.

a. Linearly Ordered Sets. The simplest method for 
prescribing the ordering of a set of operations is to 
explicitly state a feasible execution sequence. This is the 
weakest representation possible. Of sixty-three feasible 
plans in Figure 11, only the six marked with asterisks, can 
be represented within this framework. The other fifty-seven 
can only be approximated by selecting one of their 
constituent linear sequences. Of course, this will eliminate 
any sequencing options that would otherwise be available to 
the sequencer. Although far from complete, it can be argued 
that this representation is compact. The size of a plan is 
proportional only to the number of operations. The price of 
this compactness, though, is a loss of information. It has 
already been argued in the discussion of planning and in the 
general discussion of representation, that this form of 
representation interferes with the process of planning and 
artificially constrains the process of sequencing.

For purposes of comparison, a linear plan for the 
simple assembly problem can be any one (but only one) of the 
sequences shown in Figure 5.

b. Partially Ordered Sets. The representation most 
frequently used to state the ordering constraints over a set 
of operations is the precedence diagram' . As used in the

"^Prenting, T.O. and Battaglin, R.M., The precedencediagram: a tool for analysis in assembly line balancing.
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Production Engineering and Operations Research literature, a 
precedence diagram consists of a set of nodes and a set of 
directed arcs. Each node represents an operation to be 
performed and each arc represents a constraint on the order 
of two operations. By convention, arcs are drawn as arrows 
from predecessor to successor operations. Operations that 
have no predecessors can be performed at any time, and those 
with predecessors can only be done after all of the 
predecessor operations have been completed. When properly 
formed, a precedence diagram contains one node for each 
operation to be performed, one arc for each necessary 
ordering constraint, and no loops or cycles.

Clearly, a precedence diagram is nothing more than a 
directed acyclic graph with a specific interpretation 
applied to the nodes and arcs. An equivalent mathematical 
structure is the strict partial order, consisting of a set 
of objects and a set of ordered pairs which define a 
transitive asymmetric relation over those objects. Of course 
the objects in question are the operations and the 
relationship of interest is precedence.

For example, a precedence diagram which represents a 
restricted form of the plan for the simple assembly problem 
is shown in Figure 12. The operations i-C and i-R can be 
performed at any time, the operation i-S can be done only 
after the operation i-C, and the operation i-H can be done 
only after i-S and i-R.

Journal of Industrial Engineering, vol 15, #4, pp. 208-
211, July-Aug 1964.
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1
2
3
4
5
6

1 1 1  
2 2 2
3 3 3
4 4 5
5 6 6

1 1 2  
2 3 3
4 4 4
5 5 5
6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4
2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 4 4 5 5
3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 5 6 6 6

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

1 2  3★ * ★ 4 5 6* * *

(Sets a n d  t h e i r  e l e m e n t s  are l i s t e d  v e r t i c a l l y . )
F i gu re 11 .

Six l i n e a r  p l a n s  over { A , B , C } .
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F i g u r e  12.
A  r e s t r i c t e d  p l a n  for the simple a s s e m b l y  problem.



72

The execution of a task according to the constraints 
embodied in a precedence diagram is analogous to the process 
of pebbling the nodes of that graph. That process is 
governed by one basic rule. A node can be pebbled only if 
all of its predecessor nodes have been previously pebbled.
By default, an initial node, with no predecessors, can be 
pebbled at any time. The process is complete when all of the 
nodes are covered. Given a properly formed precedence 
diagram, the set of all possible pebbling sequences is 
identical to the set of all possible execution sequences.

Precedence diagrams are clearly compact. The 
representation of a plan over K operations will always 
contain K nodes and never more than K(K-l)/2 arcs. The 
smallest plan, a linear sequence over K steps, requires only 
(K-l) arcs, and the largest plan, which admits K! sequences, 
requires 0 arcs. Hence, it appears that this representation 
best approximates a previously stated ideal. The size of a 
plan under a given representation should be proportional to 
its complexity, not simply the number of sequences which it 
encodes.

Precedence diagrams are conceptually and 
computationally useful to the planner. During the course of 
planning, operations are added to the plan in order to 
produce specific desired effects. In order to guarantee 
those effects, an operation must necessarily follow the 
operations that enable its execution, it must necessarily 
precede the operations that require its effect, and the
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operations that require its effect must precede any 
operations that negate its effect. Hence, each time that an 
operation is added to the plan a number of ordering 
constraints must be added to the plan as well. It is not 
necessary to determine a linear ordering of the operations, 
it is only necessary to tabulate the constraints and to 
check for any inconsistencies among them. However, a 
collection of ordering constraints over a set of operations 
is nothing more than a partially ordered set or precedence 
diagram. Moreover, the satisfiability of a conjunction of 
ordering constraints over K steps can be determined by a 
simple algorithm whose execution time is on the order of K3.

Precedence diagrams are conceptually and 
computationally useful to the sequencer. They contain only 
the most essential information, the operations and the 
necessary ordering constraints, in a form that can be easily 
understood by humans. In contrast to state transition 
networks and And/Or graphs, they are guaranteed to be 
tractably small in both the number of nodes and the number 
of arcs. Unlike state transition networks, the admissible 
states and state transitions have not been explicitly 
enumerated but it is a simple matter to determine the set of 
admissible next operations using the previously stated 
pebbling rule. A number of other simple algorithms will be 
presented in the next section of the paper which make it 
possible to compare and analyze plans and strategies that 
have been represented using this formalism.
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Unfortunately, precedence diagrams are not complete.
This can be easily demonstrated by considering a simple task 
over three steps. In its most abstract form, the problem is 
to perform three operations, A, B, and C, but step B cannot 
be done last. Of six possible sequences over three steps, 
exactly four satisfy this constraint as shown in Figure 13.

The ordering constraints that must necessarily be 
imposed on the three steps can be determined by a simple 
analysis of three cases. The ordering of operations A and B 
cannot be constrained because they occur in one order in 
sequence 1 and in the opposite order in sequence 2; the 
ordering of operations A and C cannot be constrained because 
they occur in one order in sequence 1 and in the opposite 
order in sequence 3; and finally, the ordering of operations 
B and C cannot be constrained because they occur in one 
order in sequence 1 and in the opposite order in sequence 4. 
Unfortunately, this eliminates every possible constraint. 
Hence, the only possible precedence diagram which is 
consistent with these four sequences is the one which 
represents six sequences. This is clearly unsatisfactory. 
Only four sequences are admissible under this plan. The 
other alternative, is to approximate this plan by one of the 
precedence diagrams shown in Figure 14, either one of which 
represents three of the four admissible sequences.

For a more global perspective on the matter, the set of 
all plans over three steps that can be represented by 
precedence diagrams are marked with asterisks in Figure 15.
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1. [A, B, C]
2 . [B , A, C]
3 . [B, C,A]
4 . [C, B,A]

F i g u r e  13.
C a n o n i c a l  r e p r e s e n t a t i o n  of the plan: "B Not Last. »»



(a) (b)
C 2

i i

E A IS C

Figure 14.
Two p r e c e d e n c e  d i a g r a m s  w h i c h  a p p r o x i m a t e  

the plan: "B Not Last."
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1
2
3
4
5
6 *

1 1 1  1 1 2
2 2 2 2 3 3
3 3 3 4 4 4
4 4 5 5 5 5
5 6 6 6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4
2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 4 4 5 5
3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 5 6 6 6* * * * * *

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6* * * * * *

1 2 3 4 5 6* * * * ★ *
(Sets and. t heir ele m e n t s  are l i s t e d  v e r tically.)

F i g u r e  15.
N i n e t e e n  p a r t i a l l y  o r d e r e d  plans o ver {A,B,C}.
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clearly, this representation only sparsely covers the space 
of possible plans. Notably, no plan over K steps that 
contains more than K!/2 sequences but less than K! can be 
represented by a precedence diagram1

Instances of this kind of problem are common. The 
simple assembly problem is a good example. The stick is 
contained within the space formed by the other three parts, 
cap, receptacle, and handle, and obviously cannot be 
installed last. Likewise, if the cap, stick, and handle have 
been mated it is impossible to then install the receptacle, 
in fact, the set of admissible assembly sequences for this 
product is exactly circumscribed by those two constraints.
As in the previous problem, there are several precedence 
diagrams, as shown in Figure 16, that can represent a subset 
of the admissible sequences, but there does not exist a 
single precedence diagram that encompasses all 12.

The weakness of precedence diagrams is very simple to 
identify. A precedence diagram is a conjunction of ordering 
constraints. There is no notational convention for including 
disjunctive constraints within that representation. Any 
problems which are subject to a disjunction of ordering 
constraints cannot be represented within this framework.

Disjunctive constraints occur naturally in a number of 
circumstances. A common situation is that a step is enabled 
by any one of several predecessors. For example, if step z 
is enabled by either of the steps x or Y, then unless 
otherwise limited, X must precede Z or Y must precede Z.
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F i gu re 16.
F o u r  p r e c e d e n c e  d i a g r a m s  w h i c h  a p p r o x i m a t e  
the p l a n  for the s i m p l e  a s s e m b l y  p r oblem.
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Another common situation is when a step is disabled upon the 
completion of every one of several steps. As in the simple 
assembly problem, if step X is disabled when both Y and Z 
are both completed, then X must precede Y or X must precede 
2. A case which leads to a more complicated combination of 
constraints is when two sets of operations sufficiently 
interfere so that their execution cannot be interleaved. For 
example, if steps X and Y interfere with steps Z and W then 
X and Y must be performed before Z and W or Z and W must be 
performed before X and Y. The situations are common and the 
possibilities are endless.

c. And/OR Graphs Reconsidered. Is it possible that 
under a suitable encoding, And/Or graphs can be used as a 
general representation for the constraints over the steps of 
a plan? The most natural encoding would be to interpret 
nodes of the graph as steps of the plan, arcs of the graph 
as ordering constraints drawn as arrows from predecessor to 
successor steps, hyperarcs which descend from a node as 
conjunctions of ordering constraints, and unconnected arcs 
and hyperarcs which descend from a node as a disjunction of 
the constraints which they denote. Clearly, every precedence 
diagram can be represented in this fashion simply by joining 
the arcs which meet beneath a node with a bar to denote a 
conjunction of the predecessors. It is equally possible to 
represent constraints of the form X must precede Z or Y must 
precede Z, as a pair of independent arcs drawn from nodes x
and Y to Z.
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This usage of And/Or graphs poses two difficulties. 
First, under this interpretation of nodes and arcs it is not 
possible to represent state transition networks and problem 
decompositions as discussed earlier. Second, this 
alternative usage still does not cover the variety of 
constraints that may be presented by real problems. For 
instance, without some extended notation, it is impossible 
to represent the disjunction of constraints, X must precede 
Y or x must precede z, or the disjunction of constraints, X 
and Y must precede Z and W or Z and W must precede X and Y. 
Attempts to extend And/Or graphs with sufficient notational 
conventions to encompass these and other more complicated 
problems will result in a system of nodes, arcs, and 
hyperarcs not suitable for graphical presentation.

d. Interval Algebra. Since the problem of sequencing 
the activities of a robot is in fact a problem of reasoning 
about time, it is natural to consider the languages that 
have been proposed for systems of temporal reasoning. The 
foremost among these is the language proposed by Allen72.
The basic elements of this language are intervals of time 
and 13 primitive relationships that can hold between two 
intervals as shown in Figure 17. Each phrase in this 
language defines the relationship between two intervals and 
is formed as a disjunction of any of the thirteen primitive

72Allen, J., Maintaining knowledge about temporal intervals, Communications of the ACM 26 (1983), 832-843.
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operations is formulated as a conjunction of such phrases.
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This extensive vocabulary of interval relationships 
makes this language particularly useful when specifying the 
constraints over a set of concurrent activities. However, 
most of these relationships are superfluous in the context 
of a single robot performing a set of atomic operations.

More interesting, this language provides a limited 
facility for stating disjunctions of constraints. This 
facility produces an ironic effect. Although it is 
impossible to directly pose the constraint, X must precede Y 
or Z must precede W , it has been shown that, under a 
clever encoding, this language can be used to represent any 
NP complete problem73 74. Because of this inherent complexity 
the problem of determining the satisfiability of a given set 
of interval constraints is NP-Complete. The constraint 
propagation algorithm that Allen proposes runs in polynomial 
time, but it is not guaranteed to derive all of the 
necessary relationships implied by the constraints, nor is 
it guaranteed to detect every possible inconsistency. Other 
complete constraint propagation algorithms have been 
considered but the expected execution time is prohibitive75.

73Allen, J., Maintaining knowledge about temporal intervals.
74Vilain, M. and Kautz, H., Constraint propagationalgorithms for temporal reasoning, in Proceedings Fifth National Conference on Artificial Intelligence. Philadelphia, Penn., 1986, pp. 377-382.
75Allen, J. personal communication, February 1987..
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before Y, 
after X

meets Y, 
met-by X

overlaps Y, ---- x
overlapped-by X

contains Y, 
contained-by X

starts Y, 
started-by X

X ends Y,
Y ended-by X

X equals Y

x
y

X

y

F i g u r e  17.
T h i r t e e n  p o s s i b l e  in t e r v a l  r e l a t i o n s h i p s .
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4. Petri Nets. Other recent papers suggest that Petri 
nets' can be used to represent the tasks that robots are 
to perform. Not coincidentally two proposals have originated 
from Edinburgh. One is offered from the perspective of the 
planner76 77'78'79 and the second from the perspective of the 
sequencer and executor80'81.

Although quite a variety of Petri nets are found in the 
literature, the most common formulation consists of four 
elements: tokens, two kinds of nodes, and arcs which connect 
them. One kind of node, referred to as a place. is 
represented as a circle, the other kind, called a 
transition, is represented as a bar. All of the arcs are 
directed, drawn as arrows from places to transitions or from 
transitions to places but never directly from transition to 
transition or from place to place. Tokens reside in the 
circles which represent places and, according to some simple

76Petersen, J.L., Petri nets, Computing Surveys 9 (1977),223-252.
77Drummond, M.E., Refining and extending the procedural net, in Proceedings Ninth International Joint Conference on Artificial Intelligence. Los Angeles, Calif, 1985,pp.1010-1012.
78Drummond, Plan Nets: a formal representation of action and belief for automatic planning systems.
79Drummond, M.E., Contingent plan structures forspacecraft, in Proceedings NASA/JPL Workshop on Space Telerobotics. Jet Propulsion Laboratory, Pasedena,Calif., 1987 (to appear).
80Malcolm, C., DAI Working Paper 187, Department ofArtificial Intelligence, University of Edinburgh, 1986.
81Malcolm and Fothergill, Some architectural implications of the use of sensors.
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rules and the structure of a net, are moved from place to 
place. The distribution of tokens in a Petri net determines 
its state and a set of future, reachable states.

The behavior of a Petri net is determined by a set of 
simple firing rules, not unlike the marking or pebbling 
rules associated with the other representations. A 
transition is enabled when all of its input places contain 
at least one token. At each step of execution, one of the 
enabled transitions is selected and fired. When fired, a 
transition removes one token from each of its input places 
and deposits one token in each of its output places. The 
number of input and output places need not be equal.

Using these elements it is a simple matter to construct 
a network which is identical to a state transition network 
in both structure and behavior. For example, the state 
transition network of Figure 6 can be translated into the 
Petri net shown in Figure 18. Each node of the state 
transition network is replaced by a place(circle) and each 
arc of the state transition network is replaced by an arc, 
transition(bar), arc combination. The labels attached to the 
nodes in the state transition network are attached to the 
corresponding places and the labels attached to the arcs of 
the state transition network are attached to the 
corresponding transitions. By virtue of this simple encoding 
of state transition networks, Petri nets must necessarily be 
a complete representation for plans. It is equally simple to 
encode And/Or graphs and precedence diagrams. For example,
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{ C , S , R } O O (S,R,H>

E q u i v a l e n t  P e t r i  net of t he s t a t e  
t r a n s i t i o n  n e t w o r k  of F i g u r e  6.
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the precedence diagram of Figure 12 can be reformulated as 
the Petri net shown in Figure 19.

The unique aspect of Petri nets is found in a careful 
interpretation of the places and transitions. In a general 
sense, each place denotes a precondition for the transitions 
which follow. Each transition denotes an action or event and 
multiple input places form a conjunction of necessary 
enabling conditions. The places which follow a transition 
then denote the post-conditions or effects of the action. 
Given this interpretation, a Petri net for a task of K steps 
can be constructed from a set of K transitions which denote 
those steps, K places which denote the effects of those 
operations, K places which denote the necessary 
preconditions, and sufficient network circuitry to establish 
those preconditions. Petri nets constructed in this fashion 
are guaranteed to be compact. The size will be proportional 
to the number of operations in the task and the complexity 
of the enabling conditions. For example, the Petri net shown 
in Figure 20 represents the simple task discussed above, "B 
not last”. The three topmost places denote the conditions 
that the actions have been completed, the transitions below 
those denote the respective operations, and the places below 
the transitions denote the necessary enabling conditions.
The remaining network elements have been so constructed as 
to establish the enabling conditions. For example, the 
action A is enabled for execution if action B has been 
completed or if the action enable-A has been completed.
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Figure 19.
E q u i v a l e n t  P etri net of the p r e c e d e n c e  

d i a g r a m  of F i g u r e  12.
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A-complefced B-completed C-completed

®
A - i n itially-enabled

®
C-initially-enabled

Figure 20.
Petri net r e p r e s e n t a t i o n  of the pl?n 

d e f i n e d  in F i g u r e  13.
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However, the action enable-A can be executed only if both A 
and C are initially enabled. The Petri net for the simple 
assembly problem, which has similar enabling conditions, is 
shown in Figure 21.

The construction of a Petri net presents two 
difficulties. First, the enabling conditions for each action 
must be precisely circumscribed, and second, network 
structures must be fabricated which establish exactly those 
conditions. The former problem is the most critical.
Although this may not involve the laborious process involved 
in building a state transition network, it does involve the 
enumeration and resolution of all of the factors that 
constrain a given operation. As in previously discussed 
representations, the analysis and resolution of the relevant 
constraints may exceed human capabilities and the 
implementation of computerized systems which can perform 
this same analysis requires some representation for the 
limiting constraints and some methods for analyzing them. 
Again, this only displaces the question of representation. 
What are the underlying constraints, how can they be 
represented, and what methods can be used to resolve them? 
Drummond suggests, that instead of completely resolving the 
necessary preconditions and encoding them in the Petri net, 
that a companion data structure be constructed which 
circumscribes the admissible orderings of operations. He 
further proposes that this information be derived from a 
state transition network constructed by simulating the



91

completed S-completed R-completed H-completedo o o o

F igure 21.
Petri net representation of the plan defined in Figure 5.
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execution of the task in question82. At present, Malcolm is 
currently more concerned with exploring the potential 
applications of Petri nets and will later consider methods 
for their production83.

The analysis of a Petri net poses another difficulty. 
The predominant tool for the analysis of the behavior of a 
Petri net is the reachability graph84. Essentially, this is 
a state transition network constructed by simulating the 
execution of the Petri net. As in other representations, the 
least constrained problems will be the most difficult to 
analyze because of the exponential explosion in the space of 
reachable states. The most discouraging aspect of Petri nets 
is that without specific constraints on their structure, 
they are equivalent in computational power to Turing 
Machines. Hence, basic questions about behavior and 
termination are undecidable.

E. DISCUSSION
Three basic categories of representation have been 

proposed in the literature. The first category includes 
those that are based primarily upon the admissible states of 
the task. Of course, the primary representative of this 
category is the state transition network, but the problem 
decomposition representations rely upon this mode of

82Drummond, M.E., personal communication, January 1987.
83Malcolm, C. personal communication, December 1986.
84Petersen, Petri nets.
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representation for those parts of problem which cannot be 
decomposed.

The second category includes those that are based 
primarily upon some scheme of precedence among the 
operations to be performed. The strictest representation in 
this category is the linear order. Precedence diagrams and 
partial orders impose the least constraint within the limits 
of purely conjunctive languages. The language of temporal 
intervals includes a restricted form of disjunction but the 
expressions which can be formed with this facility are 
superfluous in the context of single robots performing sets 
of atomic operations. Under an appropriate interpretation, 
And/Or graphs encompass a larger domain of problems but 
still fail to cover every possible plan.

The third category includes those that establish 
precisely the enabling conditions for each of the operations 
to be performed. The singular representative of this 
category is the Petri net. Since all of these 
representations are concerned with a common domain and 
since, to a large extent, they can be translated, one to 
another, it should not be surprising that each 
representation contains some elements of state, precedence, 
and precondition. The delineation of these categories is 
only intended to identify the most prominent distinguishing 
characteristics of the candidate representations.

With the exception of the interval algebra, all of 
these representations have one characteristic in common.
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They are primarily graphical languages intended for two 
dimensional presentation. They are most effective for small 
or simple problems. When applied to larger or more complex 
problems these representations lose their elegance. Some 
forms of representation, like the precedence diagram, are 
structurally very simple and can only be used to encode 
simple problems. Some forms of representation, like the 
state transition network, are structurally very simple but 
the encoding of simple problems results in an excessively 
large structure. Other forms of representation may be both 
complete and compact, such as the Petri net, but may be 
prohibitively complex to produce and intractable to analyze.

A fundamental problem with graphical languages is that 
some of the relationships between the objects in question 
cannot be reduced to simple adjacency and connectivity. In 
some circumstances the relationships themselves are 
constrained or related. Consider, for example, the problem 
of extending the language of precedence diagrams to 
encompass general disjunction. Whatever graphical element is 
introduced to denote disjunction must apply to any 
imaginable constraints including the five cases shown in 
Figure 22: (a) X must precede Z or Y must precede Z; (b) X
must precede Y or X must precede Z; (c) X must precede Y or 
Y must precede Z; (d) X must precede Y or Z must precede W; 
(e) (X must precede Y and z must precede W) or (Y must 
precede X and W must precede Z). Clearly meta-arcs can be 
introduced to disjunctively connect arcs which denote the
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Figure 2 2 .
Extended precedence diagram notation for five disjunctive constraints.
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primitive ordering constraints in cases (a), (b), (c), and
even (d). In case (e), however, the objects to be connected 
are logical entities that do not have a graphical analog. If 
sufficient graphical elements are introduced to model all of 
the relevant connections and combinations, the resulting 
representation will be so littered with arcs, and meta-arcs 
that it would be unsuitable for visual presentation.

The alternative is to consider purely textual forms of 
representation. One system, which is a logical extension of 
precedence diagrams and And/Or graphs, is presented next.
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IV. THE PROPOSED REPRESENTATION

A. GENESIS
The genesis of the proposed representation took place 

over many months and involved the resolution of many 
different constraints and influences. It was recognized 
early in the course of the research that precedence diagrams 
were particularly easy to understand, produce, and utilize, 
and that form of representation was used in the author's 
first implementations of opportunistic scheduling8^•88. 
Later, it was discovered that some problems simply could not 
be represented using that formalism. This discovery 
motivated the consideration of alternative representations 
and the definition of a canonical representation that could 
be used for purposes of comparison. With a clearer 
understanding of the problem space to be represented and 
with a clearer understanding of the properties of the 
candidate representations it was possible to create a more 
general, but still conceptually tractable representation.

The canonical representation provided the necessary 
insight. If each plan over a fixed set of operations is 
interpreted as a set of admissible sequences then the set of 
all possible plans over a fixed set of operations can be 
organized into a Boolean lattice such as that shown in 85 86

85Fox and Ho, A relational control mechanism for flexible assembly.
86Fox and Kempf, Opportunistic scheduling for robotic 

assembly.
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Figure 3. Given that organization, each plan in the lattice 
can be constructed from the intersection and union of 
other plans. This suggested that each plan could be defined 
by the intersection and union of certain basic plans. Under 
the canonical representation, each plan is defined as the 
union of its constituent linear sequences. However, each 
linear sequence can be formed as the intersection of the 
plans defined by its constituent primitive ordering 
constraints. Hence, the primitive ordering constraints can 
be used to define the requisite basic plans and each plan in 
the lattice can be defined by the intersection and union of 
those elements.

B. SYNTAX
From this perspective, precedence diagrams are 

precisely those plans that can be formed using only 
intersections of the basic plans. The proposed 
representation is simply a textual version of precedence 
diagrams with additional notation for union (disjunction) 
and complement (negation). Syntactically it is composed of
(1) symbols which denote the activities to be sequenced,
(2) primitive constraints of the form (X < Y), where X and 

Y denote activities to be sequenced under the 
constraint that X must precede Y, and

(3) logical combinations of primitive constraints 
constructed using the operators and, or, and not.

The formal syntax of the representation recursively defines 
the structure of a constraint expression c, as a composition
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Q * subexpressions Cl and C2, atomic symbols si and S2, and 
t h e  literals <, (, ), and, or, and not:

c — > (Cl and C2)
C — > (Cl or C 2 )
C — > (not Cl)
C — > (SI < S2)

In addition to this basic syntax, a number of macro 
expressions have been defined in order to abbreviate some 
frequently occurring conjunctive constraints. For instance, 
if several operations X, Y, and Z must all precede W then 
the corresponding constraint expression:

(((X < W) and (Y < W)) and (Z < W)) 
can be condensed to simply the phrase:

( (X Y Z) < W) .
Likewise, multiple successors can be combined within a 
single constraint as in:

(X < (Y Z W) )
and by natural extension, the phrase 

( (X Y) < (Z W) )
denotes the constraint that both X and Y must precede both Z 
and w. (For sake of clarity, infix notation will be used 
throughout this presentation although the Lisp programs 
which have been implemented expect constraint expressions in 
an equivalent prefix notation.)
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c. SEMANTICS
Coupled with this syntax are two axioms which define 

the semantics of the representation. The first defines the 
transitive nature of order:

Transitive Axiom:for all X, Y, and z, (X < Y) and (Y < z) implies that (X < Z).
The second defines the nature of serial processes:

Serial Axiom:(a) it is never true that (X < X) ,(b) it is never true that ((X < Y) and (Y < X)).(c) for all distinct X and Y, ((X < Y) or (Y < X))
The second axiom, in a sense, tailors the representation to 
sets of activities which must be performed one step at a 
time such as the steps of an assembly performed by a single 
robot.

The second axiom also defines the proper interpretation 
of negation. Negation applied to a constraint expression can 
be distributed over conjunction and disjunction according to 
the rules of Boolean algebra:

(not (Cl and C2)) — > ((not Cl) or (not C2)),
(not (Cl or C2)) — > ((not Cl) and (not C2)), 

double negations can eliminated:
(not (not C)) — > c,

and negation applied to a primitive constraint can be 
removed according to a rule derived from the Serial Axiom: 

(not (SI < S2)) — > (S2 < SI).
Hence, negation can be used freely to state constraints in 
their most natural form but it can be easily eliminated from
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constraint expressions in order to facilitate the analysis 
of those constraints.

D. COMPARISON UNDER THE FOUR CRITERIA
1. The Simple Assembly Problem. Using this notation the 

problems discussed in the previous chapter have a very 
succinct representation. For instance, the problem of three 
steps A, B, and C in which B should not be performed last, 
can be represented by the constraint expression

(not ((AC) < B) )
or by the equivalent constraint expression 

((B < A) or (B < C)).
Similarly, the simple assembly problem can be represented by 
the constraint expression:

(((i-C i-S i-R) < i-H) or ((i-H i-S i-R) < i-C)).
2. Completeness and Compactness. Because this

representation is derived directly from the lattice 
structure of the space of possible plans it is guaranteed to 
be complete. However, it is not guaranteed to be compact. 
This is because of the restricted set of basic plans which 
can be used to construct other plans within the lattice. An 
arbitrary element of the lattice is not guaranteed to be 
composed of sequences which are dominated by simple ordering 
constraints. For instance, consider a plan for a set of 
activities A, B, C, D, and E consisting of the five 
sequences [A,B,C,D,E], [B/C,D,E,A], [C/D/E/A/B],
[D,E,A,B,C], [E , A, B , C , D]. Obviously these sequences cannot 
be defined by a precedence diagram since every step occurs
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both before and after every other step. In fact the most 
compact representation of this plan, when using the proposed 
representation and the primitive ordering constraints as the 
set of basic plans, is simply a disjunction of the five 
admissible sequences. However, ordering constraints derived 
from the most common physical constraints appear to be 
dominated by simple conjunctions and disjunctions of 
primitive ordering constraints.

3. Utility to the Planner. This representation can be 
particularly useful to a planner. The process of 
constructing a state transition network requires the 
enumeration of every feasible state of a task; the process 
of constructing an And/Or graph requires the enumeration of 
every possible decomposition of a task and the enumeration 
of every feasible state within the sub-problems that cannot 
be decomposed; the construction of a Petri net requires the 
enumeration and resolution of every constraint that defines 
the admissible sequences; the construction of a precedence 
diagram requires the enumeration of a necessarily 
satisfiable conjunction of constraints. Using the proposed 
representation, it is only necessary to enumerate the 
limiting constraints. Any further analysis or resolution of 
the constraints can be performed by machine using the 
algorithms discussed below.

Most frequently occurring physical constraints can be 
mapped directly into very simple temporal constraints. For 
instance, consider the gearbox shown in a schematic sideview
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in Figure 23. It is composed of a top plate Tp, bottom plate 
Bp, input gear Ig, large transfer gear Lg, small transfer 
gear Sg, output gear og, and four distinct retaining clips 
Ll, L2, si, and S2 which secure the assembly after both the 
top and bottom plates are in place. The operations of 
installing those parts are represented by the symbols i-Tp, 
i-Bp, i-Ig, i-Lg, i-Sg, i-Og, i-Ll, i-L2, i-Sl, and i-S2. A 
normal assembly sequence would be to choose one of the 
plates, insert the four gears into that plate, mate the 
other plate with the gears, and secure the top and bottom 
plates using the four retaining clips.

The minimal constraints on the assembly are derived 
from the fundamental spatial and functional relationships 
among the parts. For instance, a recurring spatial 
relationship involves parts that are contained between other 
parts. All of the internal gears are contained between the 
top and bottom plates. It would be impossible to install 
those parts after installing the two plates. Similarly, the 
large transfer gear is contained between the input gear and 
the bottom plate and it would be impossible to install that 
gear after both the input gear and the bottom plate were 
installed. Other instances of between-ness and containment 
could be itemized as well. The functional relationships 
among the parts imply some additional ordering constraints. 
The top and bottom plates have the very useful property that 
either of them can serve as a jig for installation of the 
internal gears. Hence, it is quite logical to require that
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LI SI S 2 L2

(schematic side-view) 
Figure 23.

The gearbox assembly problem.



105

one of the plates be installed before any attempt is made to 
install the gears. Similarly the retaining clips secure the 
assembly after both the top and bottom plates have been 
installed and it is quite logical to impose the constraint 
that the clips can only be installed after the plates. The 
complete itemized list of temporal constraints which are 
implied by these spatial and functional relationships are 
shown in Figure 24.

The explicit enumeration of these constraints may, at 
first, appear to be a complicated affair. In reality, any 
system which plans and executes a set of activities must 
identify and resolve every relevant sequencing constraint. 
This appears complicated because humans perform this 
analysis naturally, almost without conscious effort.

4. Utility to the Sequencer.
a. Complexity. By simplifying the task of the planner 

the task of the sequencer becomes substantially more 
difficult. It is simple to demonstrate that the problem of 
determining the satisfiability of an arbitrary temporal 
constraint expression is NP-Complete and the process of 
determining an admissible first step is NP-Hard. A sketch of 
the proof follows. First, it must be demonstrated that a 
proposed solution to a given sequencing problem can be 
verified in polynomial time. Second, it must be demonstrated 
that any method which can determine the satisfiability of a 
temporal constraint expression in polynomial time can be
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Both the top and bottom plates must be installed 
before the four retaining clips can be installed:

(i-Bp < (i-Ll i-L2 i-Sl i-S2)) and 
(i—Tp < (i—LI i-L2 i-Sl i-S2)) and

The i n p u t  gear, l a r g e  t r a n s f e r  gear, s m a l l  t r a n s f e r  
g e a r , a n d  o u t p u t  g e a r  are all b o u n d  b e t w e e n  th e  to p 
a n d  b o t t o m  p l a t e s :

(not ((i-Tp i-Bp) < i-Ig)) and
(not ((i-Tp i-Bp) < i-Lg)) and
(not ((i-Tp i-Bp) < i-Sg)) and
(not ((i-Tp i-Bp) < i-Og)) and

The i n p u t  g e a r  is b o u n d  b e t w e e n  the t o p  p l a t e  and
the l a r g e  t r a n s f e r  gear:

(not ((i-TP i-Lg) < i-Ig)) and
The l a r g e  t r a n s f e r  ge a r  is b o u n d  b e t w e e n  t h e  input
g e a r  a n d  t h e  b o t t o m  plate:

(not ( (i-Ig i-Bp) < i-Lg) ) and
The l a r g e  t r a n s f e r  gear is b o u n d  b e t w e e n  the small
t r a n s f e r  g e a r  a n d  t h e  b o t t o m  plate:

(not ( (i-Sg i-Bp) < i-Lg) ) and
The s m a l l  t r a n s f e r  g e a r  is b o u n d  b e t w e e n  the top
p l a t e  a n d  t h e  la r g e  t r a n s f e r  gear:

(not ((i-Tp i-Lg) < i-Sg)) and
All of th e  ge a r s  are s e l f - j i g g i n g  in e i t h e r  the top 
or b o t t o m  p l a t e  so one of th o s e  two p a r t s  must 
p r e c e d e  t h e  i n s t a l l a t i o n  of t h e  i n t e r n a l  gears:

( (i-Bp < (i-Ig i-Lg i-Sg i-Og) or 
(i-Tp < (i-Ig i-Lg i-Sg i-Og))).

Figure 24.
T e m p o r a l  c o n s t r a i n t s  o n  t h e  g e a r b o x  a s s e m b l y .
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solution to a given constraint expression can be verified in 
polynomial time.

The prototype NP-complete problem is the problem of 
Boolean satisfiability. Given a formula over a set of K 
Boolean variables , v2, ...Vĵ , does there exist an
assignment of true and false values to the K variables which 
causes the formula to be true? It is a trivial matter to 
translate an arbitrary Boolean formula, in polynomial time, 
into a temporal constraint expression which is satisfiable 
if and only if the given Boolean formula is satisfiable. If 
some algorithm could be found which determines the 
satisfiability of a temporal constraint expression in 
polynomial time then it would be possible determine the 
satisfiability of a Boolean formula in polynomial time. The 
translation proceeds in two parts. First, for each variable 
in the Boolean formula, V^, create two symbols QV^ and 
Second, create an exact copy of the given Boolean formula 
but for each occurrence of a variable v^, substitute the 
temporal constraint (QV^ < -jV̂ ) . Ultimately, if a given 
Boolean formula fails to be satisfiable then it requires 
some variable , to be both true and false. This fault 
translates into the temporal constraint

<<ovi < ivi> and <ivi < ovi>> 
which according to the Serial Axiom cannot be satisfied.
Hence, the constructed temporal constraint expression is 
satisfiable if and only if the Boolean formula is
satisfiable.
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Although only a sketch of the proof, both elements have 
been demonstrated: a proposed solution to a temporal 
constraint expression can be verified in polynomial time and 
an established NP-complete problem can be translated into a 
temporal constraint expression in polynomial time. Hence, 
the problem of temporal satisfiability is NP-complete.

An immediate consequence is that the problem of 
constructing an admissible sequence of operations, or even 
the problem of selecting an admissible first step is NP- 
Hard! This is demonstrated by constructing a sequencing 
problem which can be used surreptitiously to establish the 
satisfiability of some Boolean formula. Given an arbitrary 
Boolean formula, construct a temporal constraint expression 
C, using the methods outlined above. Then construct the 
temporal constraint expression:

(((A < B) and C) or ((B < A) and (not C)) ) 
where A and B are unique symbols not used in the 
construction of C. Obviously, A can be sequenced first only 
if C is satisfiable and B can be sequenced first only if 
not-c is satisfiable. Both are candidate first steps only if 
both C and and its inverse are satisfiable. If some 
polynomial time algorithm could be found for selecting an 
admissible first step, then that algorithm can be used to 
determine the satisfiability of a Boolean formula in 
polynomial time. Hence, the problem of sequencirg a set of 
activities according to a temporal constraint expression is
NP-Hard.
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b. Normalization. The inherent complexity of this 
language of temporal constraints should not be surprising. 
Artificial Intelligence is dominated by NP-Hard problems.
The challenge is to discover some methods which make the 
problems more tractable. The key observation in this case is 
that some temporal constraint expressions are very easy to 
analyze. Any problems which can be represented by a 
conjunction of primitive constraints (i.e., a precedence 
diagram) can be analyzed and sequenced by simple polynomial 
time algorithms. Although not every problem can be reduced 
to such a simple representation, every problem can be 
represented as the union of a set of conjunctive plans 
(i.e., a disjunction of conjunctions of primitive 
constraints) which together cover every admissible sequence 
of operations. Most algorithms which can be applied to 
conjunctive constraint expressions can be adapted to the 
more general disjunctive normal form.

This is not to suggest that the planner should bear the 
responsibility for producing a plan in this form. Given an 
arbitrary constraint expression, an equivalent disjunctive 
normal form constraint expression can be produced by purely 
algebraic means. Since this is an NP-complete language there 
are two hidden costs associated with this process. If 
simple, direct methods are used to create the disjunctive 
normal form then the size of the resulting expression can be 
prohibitively large and if more sophisticated methods are 
used to produce the smallest possible disjunctive normal
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form the time required may be prohibitive. However, an 
investment of time can be justified since it enables simple 
polynomial time algorithms to be used in subsequent stages 
of analysis. For many problems, careful use of heuristic 
methods yields a reasonably small disjunctive normal form 
constraint expression in a reasonable amount of time.

Consider again, the gearbox assembly problem shown in 
Figure 23. Negation can safely be removed from the 
constraints shown in Figure 24, resulting in a positive 
constraint expression with nine embedded disjunctions as 
shown in Figure 25. Production of the disjunctive normal 
form of that constraint expression using the distributive 
law of Boolean algebra,

(X and (Y or z)) — > ((X and Y) or (X and Z)) 
results in a set of 512 conjunctive clauses. (In general, 
the size of the disjunctive normal form grows exponentially 
with the number of applications of the distributive law.)
However, all of the admissible sequences for performing this 
assembly are covered by two conjunctive clauses shown as 
precedence diagrams in Figure 26. Of the other 510 clauses, 
some are inconsistent some are inconsistent and can be
covered by the clauses shown in Figure 26 and can be safely 
be removed.

Other systematic methods for explicitly generating the 
disjunctive normal form are possible. For instance, given a 
positive constraint expression (a constraint expression with 
no occurrence of negation) every relevant conjunctive clause
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Both the top and bottom plates must 
before the four retaining clips can be i n s t a l l e d  

be i n s t a l l e d :

(i-Bp < (i-Ll i-L2 i-Sl i-S2)) and
(i-Tp < (i-Ll i-L2 i—SI i-S2)) and

The i n p u t  gear, l a r g e t r a n s f e r gear, s m a l l t r a n s f e
g e a r , a n d  ou t p u t ge a r  are all b o u n d  b e t w e e n the to p
a n d b o t t o m  p l a t e s :

((i-ig < i-Tp) or (i-Ig < i-Bp)) and
((i-Lg < i-Tp) or (i-Lg < i-Bp)) and
( (i-Sg < i-Tp) or (i-Sg < i-Bp)) and
((i-Og < i-Tp) or (i-Og < i-Bp)) and

The input gear is b o u n d b e t w e e n the top p l a t e a n d
the large transfer gear:

( (i-Ig < i-Tp) or (i-Ig < i-Lg) ) and
The la r g e  t r a n s f e r  g e a r  is b o u n d  b e t w e e n  the in p u t  
g e a r  a n d  t h e  b o t t o m  plate:

( (i-Lg < i-Ig) or (i-Lg < i-Bp) ) and
The la r g e  t r a n s f e r  g e a r  is b o u n d  b e t w e e n  the small
t r a n s f e r  g e a r  a n d  th e  b o t t o m  plate:

((i-Lg < i-Sg) or (i-Lg < i-Bp)) and
The small t r a n s f e r  g e a r  is b o u n d  b e t w e e n  the t o p
p l a t e  a n d  the la r g e  t r a n s f e r  gear:

( (i-Sg < i-Tp) or (i-Sg < i-Lg) ) and
A l l  of t h e  g e a r s  are s e l f - j i g g i n g  in e i t h e r  t h e  t o p  
or b o t t o m  p l a t e  so o n e  o f  t h o s e  two p a r t s  must 
p r e c e d e  t h e  i n s t a l l a t i o n  of t h e  i n t e r n a l  gears:

((i-Bp < (i-Ig i-Lg i-Sg i-Og) or 
(i-Tp < (i-Ig i-Lg i-Sg i-Og) ) ) .

Figure 25.
Positive temporal constraints on the 

gearbox assembly.
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F i g u r e  2 6.
T w o  c o n j u n c t i v e  c l a u s e s  w h i c h  c o v e r  t h e  

a d m i s s i b l e  s e q u e n c e s  f o r  t h e  g e a r b o x  a s s e m b l y .
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can be formed, from subsets of the primitive constraints 
contained in that expression. Of course, the number of 
possible subsets grows exponentially with the number of 
constituent primitive constraints. Alternatively, given a 
constraint expression in conjunctive normal form (a 
conjunction of disjunctive clauses) every relevant 
conjunctive clause can be formed by constructing every 
possible combination of one primitive constraint from each 
disjunctive clause. Again the number of possible 
conjunctions grows exponentially with the number of clauses.

Given that the number of possible conjunctions grows 
exponentially with the size of the given constraint 
expression, the only feasible means of constructing the 
requisite disjunction of conjunctive clauses is to use some 
►strategy of implicit enumeration. An efficient method for 
deriving a small number of covering conjunctive clauses is 
based upon a very careful analysis of the given constraints 
and a systematic expansion of a tree structured search 
space. Each node in the tree consists of two parts: a 
partial solution consisting of a conjunction of primitive 
constraints and a partial problem consisting of a constraint 
expression in conjunctive normal form. (Conjunctive normal 
form is necessary to the analytic and algebraic processes 
involved in the expansion of nodes into successor nodes.) 
Each node implicitly represents all of the possible ways 
that the partial solution can be completed and at the same 
time the partial problem satisfied. In the root node, the
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partial solution is nil and the partial problem consists of 
khe initial constraint expression. In the target leaf nodes, 
the partial solution consists of a conjunction which 
satisfies the original constraint expression and the partial 
problem is nil.

The process of expanding a node into its two successor 
nodes begins by selecting one of the primitive constraints 
within the partial problem. The left successor is 
constructed under the assumption that this constraint will 
be realized in the solution. This implies that the selected 
constraint and any additional constraints implied by 
transitive closure necessarily become part of the partial 
solution. This also implies two reductions of the partial 
problem. First, any clause which contains a constraint which 
‘las been added to the partial solution should be removed 
since it is guaranteed to be satisfied. Second, since a 
constraint and its inverse will never be realized 
simultaneously, any clause which contains the inverse of a 
constraint which has been added to the partial solution 
should be reduced by the removal of that inverse constraint. 
The right successor node is constructed under the assumption 
that the selected constraint will not be realized in the 
solution. This implies that the partial solution should 
remain unchanged in the successor node and the partial 
problem should be reduced by the removal of the selected 
constraint from all of the clauses which contain it.
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The partial solutions produced by this process are 
inconsistent if they require some cyclic ordering 
constraints such as ((X < Y) and (Y < X)) in violation of 
the serial axiom. The partial problems produced by this 
process are guaranteed to be non-satisfiable if some clause 
is reduced to length zero leaving no possibility for the 
clause to be satisfied.

The expansion of the search space proceeds in a 
leftmost, depth first fashion. If the partial solution in 
some node is inconsistent then the partial solution of every 
descendant node will be inconsistent. If the partial problem 
in some node is non-satisfiable then the partial problem of 
every descendant node is non-satisfiable. Hence, the 
expansion of a subtree terminates when a partial solution is 
■produced which is inconsistent or when the partial problem 
has been reduced to a formula which is clearly non- 
satisf iable. Expansion also terminates when the partial 
problem has been completely reduced leaving a (partial) 
solution which satisfies the initial constraint expression. 
Each solution produced in this fashion is guaranteed to 
satisfy the given constraint expression and all of the 
solutions together are guaranteed to cover all of the 
admissible sequences.

The main factor which affects the performance of this 
algorithm is the method used for selecting the primitive 
constraint which is used to expand a given node. First 
choice is always given to constraints that obviously must be
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true and then preference is given to the constraints which 
most reduce the partial problem. This approach will either 
lead quickly to a contradiction and the elimination of a 
large subtree of the search space, or it will lead quickly 
to a solution which covers a large number of the admissible 
sequences.

A constraint obviously must be true if it is the only 
primitive constraint within a clause. One measure of the 
size of a partial problem is the size of disjunctive normal 
form which can be generated from its constituent 
constraints. As noted above, this can be related to the 
number of disjunctions, the number primitive constraints, or 
the number of clauses, depending upon the form of the 
constraint expression. The number of conjunctive clauses 
which can be generated from a conjunctive normal form 
constraint expression will always be less than or equal to 
the product of the number of primitive constraints in each 
of the clauses.

As implemented, the process of constructing the 
disjunctive normal form of a given constraint expression 
begins with the construction of the conjunctive normal form. 
This removes all tautologies, all negation and leaves the 
constraints in a regular structure which facilitates 
subsequent analytic and algebraic processes. Although 
conversion to clausal form can potentially result in a 
prohibitively large constraint expression, most of the 
problems that have been examined are dominated by
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conjunction and show only a modest increase in size. 
Occasionally, a constraint expression will be encountered 
which is a disjunction of two or more subexpressions. Such 
formulae are guaranteed to be excessively large when 
converted to conjunctive normal form. However, conjunctive 
normal form is only an intermediate form and not the 
ultimate goal. Whenever a disjunction of two or more 
subexpressions is given, the logical approach is to 
separately convert each subexpression to disjunctive normal 
form and then to disjunctively combine the results.

One common situation can easily lead to an 
unnecessarily large disjunctive normal form constraint 
expression. Suppose that a set of activities can be divided 
into two independent sets of activities si and S2 such that 
'there are no sequencing constraints between the two sets. 
Further suppose that the constraints over si can be 
converted to a disjunctive normal form expression 

(XI or X2 or X3 or ...)
and the constraints over S2 can be converted to a 
disjunctive normal form expression 

(Yl or Y2 or Y3 or ...).
Since the constraints over SI must be satisfied 
simultaneously with the constraints over S2, the disjunctive 
normal form constraint expression over the combined sets of 
activities will necessarily be the Cartesian product of the 
two constraint expressions
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((XI or X2 or X3 --) and (Yl or Y2 or Y3 ___)) =
((Xl and Yl) or (XI and Y2) or (XI and Y3) ...)•
Given a set of activities and a temporal constraint 

expression which governs their execution, it is quite simple 
to partition the activities into independent sets. First, 
extract all of the the primitive constraints that occur in 
the given constraint expression (regardless of the logical 
structure of the formula). Then, for each primitive 
constraint (X < Y) construct the constraint (X Rel Y) which 
denotes the fact that X is related to Y. The relation Rel 
satisfies the definition of an equivalence relation. It is 
reflexive (X Rel X), symmetric (X Rel Y) implies (Y Rel X), 
and transitive (X Rel Y) and (Y Rel z) implies (X Rel Z). 
Next, form the closure of the equivalence relation Rel. Each 
of the resulting equivalence classes contains only 
activities that are related by some combination of ordering 
constraints. Hence, the given set of activities can be 
partitioned into independent sets of activities along the 
boundaries defined by the equivalence relation. The 
execution of those activities should be treated as the 
interleaved execution of multiple independent tasks defined 
by the equivalence classes.

Some of these processes are illustrated in a small 
example shown in Figure 27. The initial conjunctive normal 
form constraint expression consists of one unary clause and
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F i g u r e  27 .
Derivation of the disjunctive normal form of a simple constraint expression.
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three binary clauses:
((A < B)) and 
((C < B) or (C < A)) and
((A < c) or (A < D)) and
((D < A) or (C < A)).

The initial node is expanded by the constraint (A < B)
since this constraint must necessarily be satisfied. The 
left successor node moves (A < B) into the partial solution 
and removes the clause ((A < B)) from the partial problem.
Of course the right successor node is non-satisfiable since 
it is impossible to construct a solution without this 
constraint. (In actual practice, if a node is expanded by a 
necessary constraint then only the left successor node is 
constructed.)

The leftmost successor of the root node can be expanded 
by any of the remaining constraints but the constraint 
(C < A) is estimated to most reduce the partial problem. If 
that constraint is realized in the solution then the clause 
((C < B) or (C < A)) is guaranteed to be satisfied, the 
clause ((A < C) or (A < D)) can only be satisfied by the
constraint (A < D), and the clause ((D < A) or (C < A)) is
guaranteed to be satisfied. Hence, if that constraint is 
realized in the solution the partial problem which remains 
to be satisfied is the unit clause ((A < D)). If the 
constraint (C < A) is not realized in the solution then the
constraint (C < B) must be satisfied in the clause ((C < B)
or (C < A)), the second clause of the partial problem is
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unaffected by the assumption, and (D < A) must be satisfied 
in the clause ((D < A) or (C < B)). Hence, if that 
constraint is not realized in the solution the partial 
problem which remains to be satisfied is a conjunction of 
the clauses ((C < B)), ((A < C) or (A < D)), and ((D < A) ) .

The remainder of the tree expansion is controlled by a 
series of constraints that must necessarily be satisfied.
The two conjunctive clauses that satisfy the initial 
constraints and cover all of the admissible sequences are 
shown as precedence diagrams in Figure 28.

In small problems it is quite feasible to enumerate 
every possible conjunctive clause and then prune the 
redundant and non-satisfiable clauses. In problems of only 
modest size this is impossible. Using the methods described 
above the derivation of the disjunctive normal form of the 
gearbox assembly problem produced exactly 2 conjunctive 
clauses. This is considerably more efficient than producing 
512 clauses only to eliminate 510. Consider the constraints 
over a second gearbox assembly problem shown in Figure 29. 
Any explicit methods for producing the disjunctive normal 
form will produce 1024 clauses, some of which are 
inconsistent and some of which are redundant. However, all 
of the admissible sequences for performing the task defined 
by these constraints are embodied in only twenty-two 
conjunctive clauses. Using the methods described above, 
forty consistent conjunctive clauses were produced. During 
that process six solutions were eliminated because they were
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F i gure 2 8.
Two conjunctive clauses which satisfy the simple constraint expression.



( (CO < cl) )
( (ba < cl) )
( (co < s t ) o r
( (dr < CO ) o r
( (ba < dr) o r
( ( ra < CO ) o r
( (mi < CO ) o r
( ( sm < CO ) o r
( (ri < CO ) o r
( ( sm < b a ) o r
( (mi < s m ) o r
( ( ra < mi ) o r

(c o < dr) )
and and an d(dr < ba) ) and(ba < ca) ) and(ra < ba) ) and(mi < ba) ) and

(sm < ba) ) and(ri < ba) ) and(sm < mi ) ) and
(mi < ra) ) and( ra < co) )

F i g u r e  29 .
T h e  c o n s t r a i n t  e x p r e s s i o n  f o r  t h e  
s e c o n d  g e a r b o x  a s s e m b l y  p r o b l e m .
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subsumed by later solutions, twelve were rejected because 
they were subsumed by earlier solutions and twenty-two were 
retained in the final solution set.

c. Interpretation. The disjunctive normal form of a 
given constraint expression has several important 
interpretations. Like the original constraint expression, it 
still represents the task to be accomplished; it still 
represents the constraints over the individual operations to 
be performed; and it still represents the set of admissible 
sequences for performing those operations. The added 
interpretation that can be applied to the disjunctive normal 
form is that each conjunctive clause can be interpreted as a 
strategy for performing the given task. This can be 
particularly useful to engineers responsible for designing 
and managing the execution of complex tasks. They can first 
focus on the constraints over the constituent operations. 
Then they can verify and refine the specification of the 
tasks by analyzing the admissible strategies which are 
produced by this normalization.

The clearest way of presenting these strategies to a 
human analyst is in the form of precedence diagrams. As 
described earlier, a precedence diagram consists of a set of 
nodes which denote the operations to be performed and a set 
of arcs which denote the ordering constraints among the 
operations. If all of the necessary and implied constraints 
are mapped into the arcs of a precedence diagram the 
resulting figure would be a confusion of crossing lines. The
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most effective figure displays the transitive cover of a 
strategy which includes only the necessary constraints and 
eliminates any which are implied. The easiest way of 
distinguishing the necessary and implied constraints is to 
execute the transitive closure algorithm and each time a 
pair of constraints match the pattern ((X < Y) and (Y < Z) ) 
mark the implied constraint (X < Z) as unnecessary. A simple 
method for producing the pictorial representation of a 
precedence diagram is to make a crude assignment of nodes to 
points on a grid, to draw the resulting figure on a high 
resolution monitor, and to give the human analyst 
interactive tools to edit and modify the placement of nodes.

d. Analysis. Given two or more strategies for 
performing a set of operations, it is natural to inquire 
whether they hold any execution sequences in common and 
whether there exists a single strategy which represents 
their intersection. Such questions can be answered in a 
simple and direct fashion. The set of sequences held in 
common between two strategies must simultaneously satisfy 
the constraints of both. Hence, the intersection of two or 
more given strategies is defined by their conjunction. If 
that conjunction is satisfiable the intersection is non­
empty and every sequence which is consistent with that 
conjunction is consistent with every one of the given 
strategies.

Given two or more strategies for performing a set of 
operations, it is equally natural to inquire whether there
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exists a single strategy which exactly represents their 
union. Two cases are particularly easy to detect and 
resolve. The first case is when two strategies exactly 
partition the strategy which is their union. For example, if 
two strategies hold a conjunction of constraints C in common 
but are distinguished by a pair of complementary 
constraints, (A < B) in one case and (B < A) in the other, 
then all of the sequences defined by the two strategies are 
exactly covered by the conjunction c. The second case is 
when one strategy completely covers all of the sequences 
defined by another. For example, suppose that two strategies 
hold a conjunction of constraints C in common but one of 
them imposes some additional conjunctive constraints. The 
additional constraints only reduce the set of sequences 
admissible under the conjunction C. Again, all of the 
sequences defined by the two strategies together are exactly 
covered by the conjunction, C. This situation occurs 
frequently, and this sort of simplification is performed 
continuously during the process of normalization.

It is not always easy to identify strategies which can 
be combined under a more general strategy. For example, 
suppose that three operations, A, B, and C, are to be 
sequenced according to the disjunctive normal form 
constraint expression:

(((A < B)) or <<B < c>> or ((C < A))).
The first strategy, ((A < B )) defines the three admissible 
sequences [A,B,C], [A,C,B] , and [C,A,B] , the second



128

strategy, ((B < C)), defines the three admissible sequences 
[A,B,C], [B,A,C], and [B,C,A], and the third strategy,
((C < A)) defines the three admissible sequences [B,C,A], 
[C,A,B], and [C,B ,A ] . Together, the three strategies cover 
every possible sequence over the three operations. The union 
of these strategies is the single strategy which imposes no 
constraint. Unfortunately, it is only an analysis of the 
constituent sequences or a series of algebraic manipulations 
which reveals this fact.

Under most strategies the combined ordering constraints 
limit the admissible sequences of operations but do not 
remove every sequencing option. In many cases, the number of 
admissible sequences provides a useful estimate of the 
inherent flexibility that can be exploited in sequencing 
those operations. For instance, consider a task of six 
operations. Ignoring differences produced by different 
labelings of the tasks, there are exactly 318 distinct 
strategies for executing the six operations. One strategy 
imposes no constraints and admits 720 sequences of 
operations and one strategy imposes a linear set of 
constraints and admits exactly one sequence of operations. 
The number of sequences admitted by the other strategies are 
bound strictly between 1 and 720. A variant of the SRI 
vision directed assembly problem, discussed above, was 
constructed and 100 assemblies were simulated for each of 
the 318 strategies. The average execution time as a function 
of the number of admissible sequences is shown in Figure 30.
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The linear strategy required, on the average, 22.1 steps and 
the flat strategy required exactly 6.

In the absence of other considerations, the flexibility 
inherent in a strategy is directly related to the number of 
admissible sequences.

The naive approach to computing the number of 
admissible sequences would be to explicitly enumerate all of 
the feasible sequences by simulated pebbling or other more 
sophisticated algorithms87 88. Unfortunately, the least 
constrained problems will prove the most intractable. 
Consider a serial task of 15 steps with no sequencing 
constraints. There exists 151 = 1,307,674,368,000 admissible 
sequences. General methods are available which can determine 
the number of feasible sequences without explicit 
enumeration. These methods were first reported in a 
mathematics textbook by Wells00 on computational methods for 
combinatorial problems . Generally this computation can be 
accomplished by recursive application of the function S 
defined by the following three rules:

87Kalvin, A.D. and Varol, Y.L., On the generation of all topological sortings, Journal of Algorithms 4 (1983), 
150-162.

88Wells, M.G., Elements of Combinatorial Computing. Pergamon Press, Elmsford, New York, 1971.
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Figure 30.
Comparison of 318 strategies over six operations
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(1) If a set of operations P, under a set of constraints C, 
can be partitioned into two subsets, P-̂  and P2, such 
that all of the operations in Pjl must precede all of 
the operations in P2, then

S(P/C) = SCP^C) * S(P2,C).
(2) If a set of operations P, under a set of constraints c, 

can be partitioned into two subsets, P1 and P2, such 
that all of the operations in P-j_ are independent of all 
of the operations in P2, then

S(P,C) = S(P17C) * S(P2,C) *
( (  ! P X i +  |P2 I ) ! > /  < l p i l ! *  I p 2 I  ! > '

where the later part of the equation determines the 
number of ways that one sequence from the first 
partition can be interleaved with one sequence from the 
second partition.

(3) If a set of operations P, under a set of constraints C, 
cannot be divided into two subsets according to rules 
(1) or (2) then

S(P,C) = S(P,C1) + S(P,C2),
where

Cx = (C and (X < Y)>
C2 = (C and (Y < X) )

and the operations X and Y are elements of P but are 
unconstrained in c. In effect this third rule 
partitions the set of operations not into subsets but 
into substrategies, and C2, which have no sequences
in common
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Repeated application of these three rules is guaranteed 
to work regardless of the operations X and Y chosen when 
using rule 3, but the number of partitions generated is 
significantly affected by the choice. Wells offered no clear 
rule for the selection of those operations but an analysis 
of the situations when rule 3 must be invoked reveals the 
proper choice. If four points, X, Y , 2, and W, are subject 
to the zig-zag of constraints shown in Figure 31, rules 1 
and 2 are guaranteed to fail and it will be necessary to 
invoke rule 3. The only way to successfully partition this 
set of four points into dependent and independent sets is to 
first produce two strategies for the execution of those 
operations. The first requires that X precede Y, (X < Y), 
and the second requires that Y precede X, (Y < X).

Even with this refinement the number of necessary 
partitions grows exponentially with the number of zig-zag 
patterns contained in the given strategy. It would be 
interesting to explore additional refinements which might 
control this explosion. Although the performance of this 
algorithm is known to be exponential, the author has not yet 
established the essential complexity of implicitly 
enumerating all of the admissible sequences.

Using this method the number of admissible sequences 
for the strategy shown in Figure 32 can be determined 
without explicit enumeration. The strategy can be
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Z Y

F i g u r e  31.
T h e  z i g - z a g  r e l a t i o n s h i p  w h i c h  r e q u i r e s  t h e  

a p p l i c a t i o n  o f  t h e  d e c o m p o s i t i o n  r u l e  3.
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LI || L2 || SI || S 2

Tp

Bp

F i g u  r e  3 2.
The decomposition of one of the strategies for the gearbox assembly problem.
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partitioned into four dependent sets of operations,
{i-Ll, i-L2, i-S 1, i-S2) ,
{i-Tp},
{i-ig, i-Lg, i-Sg, i-og}/
{ i - B p } ,

and the total number of admissible sequences is the product 
of the number of admissible sequences for each of these 
subsets.

The set {i-Ll, i-L2, i-Sl, i-S2) admits twenty-four 
sequences, the set {i-Tp} admits one sequence, the set 
{i-Ig, i-Lg, i-Sg, i-Og} admits eight sequences, and the set 
(i-Bp) admits one sequence for a total of 192 sequences.

The eight admissible sequences over the set 
{i-ig, i-Lg, i-Sg, i-Og} results from a partition into the 
two independent sets {i-Ig, i-Lg, i-Sg} and {i-Og}. There 
are two admissible sequences over {i-Ig, i-Lg, i-Sg}, one 
admissible sequence over (i-Og), and four admissible ways 
that the operation i-Og can interleaved with the operations 
i-Ig, i-Lg, and, i-Sg. The other partitions are generated in 
a similar fashion.

Given two or more strategies for performing a set of 
operations it is a simple matter to determine the number of 
admissible sequences under each strategy, but a bit more 
complicated to determine the total number of admissible 
sequences. This is because the given strategies are not 
guaranteed to be disjoint. They may in fact hold some 
sequences in common. At present, the best solution is to
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compute the number of sequences under each strategy and to 
systematically subtract the number of sequences found in 
their intersections. Given the tools discussed above, this 
is straightforward. First, impose an index scheme on the 
given strategies. Then consider each of the strategies one 
at a time and form the sum of the following results. For 
strategy i, determine the number of admissible sequences 
under that strategy, but subtract the number of sequences 
found in the intersection between that strategy and each 
strategy with index greater than i. Admittedly this is a 
direct solution, but using the methods described above, the 
intersections and their decompositions can all be 
constructed automatically. Moreover, given J admissible 
strategies, at most j(J-l)/2 intersections need be 
constructed. For problems which have been investigated by 
the author, most of the intersections are nil.

The computations described above have an important 
side-effect. Application of the three decomposition rules 
results in the partition of a set of operations into 
dependent sets, independent sets , and disjoint sub­
strategies. Just like the decomposition of a plan into 
strategies can be useful to human analysts and planners, 
this decomposition of strategies into their component sets 
can be used by human analysts to better understand the 
structure of the tasks that they must plan and coordinate.

e. Sequencing. The normalization and analysis described 
above serve only one purpose: the production of a set of
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constraints which precisely circumscribe the admissible 
sequences over a set of operations and the transformation of 
those constraints into a form suitable for real-time 
sequencing. The methods for sequencing a set of operations, 
given a disjunctive normal form constraint expression can be 
derived directly from methods for sequencing a set of 
operations given a simple precedence diagram.

The execution of a task according to the constraints 
embodied in a precedence diagram is analogous to the process 
of pebbling the nodes of that graph. That process is 
governed by one basic rule. A node can be pebbled only if 
all of its predecessor nodes have been previously pebbled.
An initial node, with no predecessors, can be pebbled at any 
time. By analogy, the set of steps that can admissibly be 
executed next correspond exactly to the set of nodes that 
can admissibly be pebbled next. The process is complete when 
all of the nodes are covered. Given a properly formed 
precedence diagram, the set of all possible pebbling 
sequences is identical to the set of all possible execution 
sequences.

With three modifications, this same execution analogy 
can be extended to a set of precedence diagrams defined by a 
disjunctive normal form constraint expression. First, an 
operation is admissible if the corresponding node can be 
pebbled in at least, one of the given precedence diagrams. 
Hence, the set of admissible operations is simply the union 
of the admissible operations derived from each of the given
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strategies. This is a natural interpretation of disjunction. 
Second, when an operation is selected, the corresponding 
node must be pebbled simultaneously in every precedence 
diagram which admits this as the next operation. Of course, 
the selected operation need not be admissible under every 
strategy but subsequent sequencing decisions must be based 
only on those strategies which are consistent with the 
selected operation. Hence the third modification, when an 
operation is selected, eliminate from further consideration 
every precedence diagram which does not admit this as the 
next operation.

This physical analogy suggests a straightforward 
algorithm for the construction of the set of admissible next 
operations. For each precedence diagram under consideration, 
initially let the set of admissible next operations be nil. 
Then consider each of the operations to be sequenced. If an 
operation has not been performed but every predecessor of 
that operation has been completed then add that operation to 
the set of admissible next operations. Hence, for each 
precedence diagram this set can be constructed by 2*K set 
operations to identify the admissible steps plus at most K 
set operations to build the resulting set. The final result 
is simply the union of the admissible operations derived 
from each of the given precedence diagrams. When an 
operation is selected, all of the precedence diagrams which 
are inconsistent with this choice must be excluded from 
further consideration.
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By focusing on the constraints rather than the 
operations it is possible to determine the set of admissible 
next operations without the added process of explicitly 
eliminating the inconsistent strategies. For each constraint 
(X < Y) within a particular strategy there are three 
possibilities. If neither X nor Y have been executed then it 
must be guaranteed that X precedes Y. This can be 
accomplished by removing the operation Y from the set of 
admissible next operations. If X has been executed before Y 
then the constraint has been satisfied and no special action 
needs to be taken. If Y has been executed before X then the 
constraint has been violated and it must be guaranteed that 
this strategy does not contribute any operations to the 
final result. Based upon these observations given a 
constraint expression C, in disjunctive normal form, and an 
execution history H the admissible next operations can be 
determined by the recursive function N defined by the 
following equations:

or C2 ,H] = N C C ^ H ]  + N[C2 ,H],
N[CX and C2 ,H] = N f C ^ H ]  * N[C2 ,H], 
if (X < Y) is satisfied in H 
then N[(X < Y) ,H] = REMAINING[H] , 
if (X < Y) is violated in H 
then N[(X < Y),H] = nil, 
if neither X nor Y have been executed 
then N [(X < Y),H] = REMAINING[H] - {Y} 

where the operators *, +, and - denote the set operations
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intersection, union, and difference, and the function 
REMAINING returns those operations remaining to be executed.

E. SUMMARY
The proposed representation can be viewed from several 

perspectives. First, it is a symbolic language defined by a 
simple syntax and a small set of axioms. All of the methods 
for normalizing and analyzing temporal constraint 
expressions posed in this language must be consistent with 
this algebraic structure. Second, it is a temporal language 
which can be used to state the ordering constraints over a 
set of operations which must be executed serially. Third, it 
is a planning language. It has been derived from a specific 
model of the space of possible plans. A given constraint 
expression denotes a single element of that space by 
prescribing the set of admissible sequences over a given set 
of operations. Normalization and analysis of a given 
constraint expression can reveal the fundamental logical and 
chronological structures of a task, i.e., the constituent 
strategies of a plan and the decomposition of those 
strategies. Fourth, it is a sequencing language. Simple 
algorithms can be used to determine the properties of the 
constituent strategies of a plan and the relationships among 
them. Other algorithms can be used to determine the set of 
admissible next operations given a properly normalized 
constraint expression and an execution history. Finally, it 
is an NP-Complete language. The penalty for its generality 
is its inherent complexity. It has been shown that by
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investing the time required to normalize a given constraint 
expression and by investing the space required to store the 
resulting disjunctive normal form expression, subsequent 
analysis is much more tractable. Although defined by a 
simple syntax and semantics, it is a useful and interesting 
language which presents many challenging problems and areas 
of research.
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V. CONCLUSIONS

The problem of sequencing the activities of a robot is 
a relatively new problem which has attracted investigators 
from both artificial intelligence and robotics. Research in 
this area is motivated by rapid advances in effectors, 
sensors, and computers and by the ambitious applications of 
autonomous robots proposed by NASA and the various defense 
agencies. Much of the research is concerned specifically 
with the issue of representation. What structures can be 
used to represent the tasks that a robot is to perform? What 
methods can be used to translate the specification of a task 
into that representation? What methods can be used to derive 
an admissible course of action from that representation?

Several representations have been proposed in the 
literature including state transition networks, And/Or 
graphs, precedence diagrams, and Petri nets. These have been 
discussed in great detail and compared with respect to four 
criteria: completeness, compactness, utility to the planner, 
and utility to the sequencer.

The representation proposed in this thesis is a 
language of temporal constraints derived directly from a 
model of the space of serial plans. It was specifically 
designed to encompass problems that include some form of 
disjunctive ordering constraints. This guarantees that the 
proposed language can completely and, to a certain extent, 
compactly represent all possible serial robotic tasks. The 
generality of this language carries a penalty. The proposed
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language of temporal constraints is NP-Complete. Specific 
methods have been demonstrated for normalizing constraints 
posed in this language in order to make subsequent 
sequencing and analysis more tractable. Using this language, 
the planner can specify necessary and alternative orderings 
to control undesirable interactions between steps of a plan. 
For purposes of analysis, the planner can factor a plan into 
strategies, and decompose those strategies into essential 
components. Using properly normalized constraint expressions 
the sequencer can derive admissible sequences and admissible 
next operations. Using these facilities, a robot can be 
given the specification of a task and it can adapt its 
sequence of operations according to run-time events and the 
constraints on the operations to be performed.

Continuing research in this area can pursue several 
questions. At a purely abstract level, what are the 
algebraic properties of this language of temporal 
constraints? At a theoretical level, is it possible to 
derive the temporal constraints over a set of operations 
from some specification of a task and its operations? Can 
this facility for stating and analyzing temporal constraints 
be applied in some established problem domains such as graph 
coloring or job-shop scheduling? At a more practical level, 
is it possible to apply some metrics to the set of 
admissible next operations in order to determine which of 
those operations might be best, or is it possible to apply 
some metrics to the constituent strategies of a plan in
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order to determine which of those might be best? Answers to 
such questions require the definition of some model of the 
executional environment and some mapping from real-world 
applications into that model. Perhaps the most challenging 
avenue of research would be to consider extensions to the 
model of the space of possible plans and to the language of 
temporal constraints in order to represent concurrency.
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