
THE UNIVERSITY OF HULL

ROBOTIC WORKCELL ANALYSIS AND OBJECf LEVEL PROGRA~1~1I;\;G

being a Thesis submitted for the Degree of Doctor of Philosophy

in the University of Hull

by

Gareth John Monkman, BA, BSc, MSc.

June 1990.

ACKNOWLEDGEMENTS

I would like to acknowledge the help and assistance of my supervisor and mentor

Prof. Paul Taylor. Dr. Gaynor Taylor for her help with the more mathematical aspects of

this work and all other members of the robotics research group involved in error recovery

research.

ROBOTIC WORKCELL ANALYSIS AND OBJEcr LEVEL PROGRAMMING.

ABSTRACT

For many years robots have been programmed at manipulator or joint level without

any real thought to the implementation of sensing until errors occur during program

execution. For the control of complex, or multiple robot workcells, programming must be

carried out at a higher level, taking into account the possibility of error occurrence. This

requires the integration of decision information based on sensory data.

Aspects of robotic workcell control are explored during this work with the object of

integrating the results of sensor outputs to facilitate error recovery for the purposes of

achieving completely autonomous operation.

Network theory is used for the development of analysis techniques based on stochastic

data. Object level programming is implemented using Markov chain theory to provide fully

sensor integrated robot workcell control.

11

CONTENTS

1. INTRODUCTION.

2 . NETWORKS.

2.1 Flowcharts and Stategraphs.

2.2 Signal Flowgraphs.

2.2.1 Isomorphisms and Homomorphisms.

2.2.2 Continuous Sensing Representations.

2.3 Event Graphs.

2.4 Petri Nets.

2.4.1 The Token Machine.

2.4.2 Stochastic and Time Petri nets.

2.5 PERT and GERT.

2.6 Concurrency.

2.7 Logistics and Planning.

2.8 Summary.

III

1

5

5

7

9

1 1

12

13

14

16

17

18

20

22

3. NETWORK ANALYSIS

3.1 Flowgraphs, Costs and Probabilities.

3.2 Independance and the Markov Property.

3.3 The Z Transform.

3.4 A Practical Example.

3.5 Isochronic Curves.

3.6 Flowgraphs with Continuous Sensing.

3.6.1 Tolls and Probabilities.

3.6.2 Functions and Distributions.

3.7 The Laplace Transform.

3.7.1 Topology.

3.7.2 Variance.

3.8 AND Input Analysis.

3.8.1 Logic Functions and Distributions.

3.9 Summary.

4. MATRIX ANALYSIS

4.1 Adjacency Matrices.

4.1.1 Boolean Adjacency Matrices.

4.1.2 Transition Matrices.

4.2 The Realization Matrix.

4.3 The Incidence Matrix.

IV

23

24

26

28

30

32

36

37

40

42

43

45

48

50

52

54

54

56

56

58

60

4.4 Matrix Analysis. 61

4.4.1 Flows. 61

4.4.2 Sensor Implementation. 63

4.4.3 Matrix Formulation. 65

4.4.4 Matrix Derivatives. 66

4.5 Markov Processes. 70

4.5.1 The Limiting Matrix. 70

4.5.2 Ergodic Chains. 74

4.5.3 Regular Chains. 75

4.5.4 Variance. 78

4.5.5 The Reverse Markov Chain. 79

4.6 Summary. 80

5. INTERACTIVE SENSORY SYSTEMS 81

5.1 Robot Programming Levels 83

5.2 Sense Parameters. 87

5.3 Interrupts. 89

5.4 Sensor Driven Programming. 92

5.5 Object Driven Programming. 93

5.6 Summary. 95

6. PROCRAMMI NG AND S IMULAT I ON 96

6.1 Conventional Structures. 99

v

6.2 Simulation and Modelling.

6.2.1 Object and Task Level Programming.

6.2.2 Readabi I i ty.

6.2.3 Extensions to General Programming.

6.2.4 Buffering and Partitioning.

6.3 Aspects of Parallel Processing.

6.4 Some Thoughts on Task Level Programming.

6.5 Summary.

7. OVERALL STRUCTURE AND IMPLEMENTATION.

7.1 The New Model.

7.2 Selected Case Studies.

7.2.1 Pick and Place Model.

7.2.2 An Intelligent Robot workcell.

7.3 Summary.

8. EVALUATION

8.1 Markov Simulator.

8.1.1 Modula-2 Procedures.

8.1.2 Program Operation and User Guide.

VI

101

102

108

110

113

120

123

126

128

128

130

130

138

142

143

143

143

147

8.2 A Comparative Study. 159

8.2.1 Queueing Simulators. 159

8.2.2 Network and Flowgraph Methods. 160

8.2.3 Petri Net Simulation Packages. 161

8.2.4 Geometrical Robot Animation Systems. 161

8.3 Further Research. 163

9. CONCLUSIONS. 165

REFERENCES. 168

APPENDIX. 175

A. Queueing Theory Nomenclature. 176

B. Digraph Nomenclature. 178

C. Markov Process Nomenclature. 180

D. Stat ist ical Distributions. 181

E. Program Listings. 183

\'1\

1. INTRODUCTION.

The object of this work is to formulate a selection of techniques by which 3

computer system can accept a graphical representation of the actions of a robot (or other

automated) workcell to form the basis of a complete planning, simulation and object level

programming package.

The procedure for any planning method basically follows the manner of figure 1.1.

Often however, this is achieved using three different techniques on three separate systems.

The methods considered here form the basis of a strategy on which a complete workcell

can be planned, simulated and executed.

1
GRAPHICAL

REPRESENTATION

j
SIMULATION

SYSTEM

j
REAL-TIME

PROGRAMMING

Figure 1.1 - Schematic for a complete system

The research is mainly concerned with the investigation of robot \I,'OrkcelI planning.

scheduling, control, programming and real-time execution. Particular attention is paid to

aspects of error recovery. The physical feasibility of assembly tasks and their corresponding

planning and optimisation has been studied in far greater depth elsewhere [Le\i ..\:

Loeffler, 1986], [Frommherz & Hornberger, 1988] and will therefore not be pursued here.

Many reasons exist as to why error recovery in robot programming is gaining

popularity. Foremost is the increasing need to have workcells operating complete!:

autonomously for long periods with minimum operator intervention when things do go

wrong. The finite degree to which engineering improvements can enhance a piece of

hardware's operating efficiency, cost effectively, before a state of diminishing returns is

experienced is becoming more relevant as automation is coerced into tackling tasks of ever

increasing difficulty. One must never forget the old adage "the price for perfect reliability

is infinite cost". This is of particular relevance to the handling of non-rigid materials

where uncertainties in the objects physical parameters are considerably larger than those of

the robot or end-effector. Such materials inhibit the ability of the designer to "engineer

out" the possibility of error occurrence. Much of the research work carried out over the

past decade at the University of Hull concerns the manipulation of non rigid objects

[Taylor et ai, 1990], and it is on the handling techniques developed for these and similar

tasks that many of the examples provided in this work are based.

With regard to error recovery in robot workcells, the vast majority of research work

done to date appears to be in the area of geometrical errors occuring due to some part

defect, robot inaccuracy [Lee et ai, 1984]. or geometrical uncertainty in the robot

environment [Donald, 1986]. However, the choice of sensor, its positioning and the

programming which interacts with the sensors is usually implemented in some arbitrary

manner. The programming of error recovery mechanisms appears to have been approached

In two ways: From the sensor point of view [Milovanovic 1987] and the artificial

intelligence angle [Gini 1987], [Kumpel & Rosa 1987].

")

Most discrete time simulation systems to date rely on the execution of a sequence of

activities in the same manner in which the actions being simulated would be run by a real

time process control program. This differs from the usual mathematical techniques used for

the analysis of continuous time control systems where the model is treated as a complete

algebraic entity rather than a set of discrete events [Denham, 1989]. Sequential e\ent

execution is ideal for real time task and object level programming, however it makes a

very cumbersome simulation tool relying on much statistical analysis. This work attempts to

address the use of mathematical techniques for discrete time network simulation, whilst

retaining the sequential event execution methodology for real time robot programming.

In addition, an analysis system based on established network notations will be

demonstrated, leading to a more usable method of object and task level robot

programming than has hitherto been available. This is to include off-line simulation and

analysis allowing some degree of system optimization as well as providing a me~lOS of

assisting in the selection of the most appropriate sensing strategy for the required task.

Before any simulation or programming can be attempted, some form of notation

leading to a task representation must exist. This usually takes the form of an algorithm.

Many such notations are in use for describing algorithms and a selection of the relevant

ones will be discussed in chapter 2. Their corresponding analysis is covered in chapter 3

and then some of them are expanded using matrix techniques in chapter 4.

The programming is at task and object levels only, though a thorough definition of

all programming levels, including sensor parameters has been formulated and is presented

in chapter 5. Graphical simulation depicting actual geometrical robot movements such as

that provided by many simulation packages like SAMMIE [Heginbotham et aI, 1979] is not

considered part of this work.

3

Interaction with sensor systems IS an essential part of anv robot cell which includes

error recovery. This aspect and its practical implementation forms the core of chapter 5.

In chapter 6 these philosophies are combined with the techniques of the preceeding

chapters to yield the basis for an object level programming strategy based on \1arko\

chains. Selected case studies are explored during chapter 7 using these, and other related.

modelling and programming methods. Finally, during chapter 8, the results of this work

are compared and contrasted with modelling techniques used in other related fields of

simulation and programming.

The necessary physical parameters, including times of physical actions and probabilities

of outcomes, are expected to be available from information compiled over a period of

operational time on a computer database. This ties in with the work carried out by Song

[Song, 1988], Ghris [Ghris, 1989] and Halloran on error recovery [Halloran, 1989].

Where texts are refered to, usually the one with the most easily readable explanation

is listed, even though other descriptions of the same topic may exist in other texts given

in the references. Only where a text is referred to many times for different purposes, or

in the case of larger texts containing no index, are page numbers included.

2. NETWORKS

How complex or simple a data structure is depends
critically upon the way in which we describe it. ~ost
of the complex structures found in the world are enormously
redundant, and we can use this redundancy to simplify their
description. But to use it, to achieve the simplification,
we must find the right representation.

Herbert A. Simon, The Sciences of the Artificial.

The term "network" is often used to describe any combination of intersecting paths

whether they be in the form of subterranean passages or electrical wiring circuits. The

only common attribute shared by all types of network is that of some kind of order as

opposed to simple random chaos. However, to make use of any network, what is

important are the factors governing this order.

The first thing which must be established with regard to any form of network is the

notation to be used. This will depend heavily on the task to be represented and the

corresponding analysis required. Many such notations are already established as standard. :\

few of these will be discussed in the rest of this chapter.

2.1 Flowcharts and Stategraphs

The flowchart, perhaps the oldest form of network notation, has been utilised by Lee

[Lee et ai, 1987] for asynchronous robot workcell process representation. The notations of

flowcharts and their uses are well known and extensively documented elsewhere [Forsythe

et ai, 1975] and will not be discussed in any depth here.

Albus [Albus et ai, 1982] uses a similar state graph representation to describe a

hierarchical robot control system. This uses the structure shown in figure 2.1

5

FROM
PREVIOUS

STAGE

Figure 2.1. - State Graph Notation.

NOT DONE

DONE

Like flowcharts, this notation has the advantage of being translatable straight into

computer code for robot control using languages such as VAL [VAL II, 1984]. Figure 2.2

shows the state graph for a simple pick and place operation and its corresponding pseudo

code representation.

1 PICK

NOT
DONE

NOT
DONE

IF PICK - FAIL THEN GOTO 1
2 TRANSP

IF TRANSP - FAIL THEN GOTO 1
3 DROP

IF DROP - FAIL THEN GOTO 3

Figure 2.2. - Pick & Place Model with Pseudo Code.

NOT
DONE

In many cases the 'not done' loops are somewhat superfluous and so may be omitted

from figure 2.2, if desired. Most processes have an outcome of 'successful' or 'fJiled' wlth

'not done' being otherwise assumed.

Though easy to read and convert into code, this kind of notation is somewhat clumsy

and lacks the ease of mathematical translation and manipulation inherent in simpler

flowgraph' notations. Furthermore, as algorithms become more complex the relationship

between the flowchart or state graph and the computer code becomes increasingly less

obvious.

2.2 Signal Flowgraphs.

The particular kind of network most relevant to process analysis and control is the

flowgraph, the simplest manifestation being the directed graph, or digraph [Wilson, 1979].

Once a notation has been established, some form of network analysis is required. In

the case of the digraph, a number of texts provide methods of translating the network

into either an adjacency matrix [Carre, 1979] or a connectivity matrix [Tutte, 1966],

depending on the information required. This may seem straightforward enough for simple

digraphs, but if nodes are to be allowed to have different characteristics then this form of

notation is inadequate. Whitehouse [Whitehouse, 1969] suggests examples of the use of

simple flowgraphs for a multitude of tasks. Then using GERT [Pritsker, 1966] shows how

flowgraph nodes may have different logical properties (more of this in section 2.5). These

and other notations will be discussed later. However, most use will be made of the

digraph owing to its simplicity of notation and its ability to be expressed in concise

mathematical form.

The digraph notation used throughout the rest of this work v,,;ll be the standard

notation found in queueing theory and operations research. This is because it reads in the

same direction as the flow between nodes rather than the reverse as is often encountered

in the electrical and control theory notation. So, the simple node to node path of figure

2.3 reads from nodei to nodej in the main direction of flow.

A· .
1 J

8--~·--CD

Figure 2.3 - Flowgraph Notation

The simple digraph version of the previous state graph pick and place example is

shown in figure 2.4. Note that the main difference is in the juxtaposition of the activity

labels from nodes to paths.

PICK

Figure 2,4, - Digraph Version of Figure 2,2

What the digraph models is not the physical movement of the object through the cell

but that of the mover. ie .. the robot, itself. This is convenient in that it is impossible to

program the object rather than the robot. It is perhaps an unfortunate choice of

terminology that this level of robot programming is known as the 'object level'.

8

Due to the physical constraints of implementation of a robot workcell. the robot end

effector can only be in one position along the digraph at anyone time. It is impossible

for any two paths of figure 2.4 entering the same node to be active simult.1neousl\ if the

action of only one robot is being modelled. This means the digraph node inputs must

behave in an exclusive OR manner.

2.2.1 Isomorphisms and Homomorphisms

At some stage In the modelling of a process we are likely to require some form of

delimiting device as a means of isolating one part of a process from another.

Returning to the example given in figure 2.4. Here it will be noticed that if the

DROP procedure fails, then after the recovery path has been completed, it is not only

possible to re-execute the DROP procedure but also to return to the beginning of the

sequence via the recovery path belonging to the TRANSPORT procedure. In the actual

implementation of this program, this path may be possible due to physical implementation

of the sensing at the time. In essence, occasionally the object might leave the gripper just

after the sensor had been interrogated (a typical short comming of discrete sensing).

In reality this may not always be the case and under a different sensing regime, ie.,

if this sensor were not checked at the beginning of the DROP procedure, then this

traversal of feedback paths would not be possible. In this case the true flowgraph would

be that of fig. 2.5 where the path between nodes 3 and 4 acts as a buffer isolating the

first part of the sequence from the last. The number of paths entering each of the nodes

is now different with the buffer, ie., the two representations are not isomorphic.

9

Figure 2.5 - Pick & Place example with Buffer path.

The electrical circuit equivalent is, of course, the familiar non-inverting unity gain

amplifier. This kind of circuit is also used for the purpose of isolating two parts of a

circuit, usually to prevent the effects of reflected impedances.

In other instances parallel forward paths may be required. This is not so easy to

represent with numerically labelled nodes. For example, the path A 1 2 connects nodes 1

and 2. Any other path directly connecting the same nodes in this order would also be

named A 1 2. This problem can be overcome either by adding another subscript for each

level of additional parallel paths, or by introducing redundant nodes in the same way as

extra paths were added for buffering purposes.

iI

Figure 2,6 - Homomorphic Graphs

10

Figure 2.6 shows the equivalent flowgraph to one with t\1.0 direct parallel for\l.ard

paths. In this case node 3 is redundant but its addition does not alter the operation of

the network, the two flowgraphs are homomorphic.

2.2.2 Continuous Sensing Representation

To build a model for this type of sensing we must first describe all the robotic

operations and their continuous sensing graphically. Using the notation proposed by Taylor

[Taylor 1987] continuous sensing is depicted as in Figure 2.7.

ACTION

START 01-----;+>-----0 FINISH

Figure 2.7. - A Continuous Sensing Representation.

With this notation the arrow denotes the next node to be approached in the event of

some sensor transition, at which point the sensors are interrogated before the necessary

recovery routine is executed. Naturally the signal flow represents the robot control

parameters rather than the actual physical movement of the robot.

For example: If we were performing a robot operation which entailed releasing an

object from the gripper, say by opening the gripper jaws at the appropriate destination

(the START node for this operation), it would be sensible to continuously sense for the

presence of the object and terminate the 'drop' action as soon as the task was complete.

It would be considerably less clever to continue opening the gripper jaws, simply t\I

complete the program segment (at the FINISH node), long after the object had left the

gripper. Consequently, the end of the operation can be determined by sensor information.

Clearly, the structure of continuous sensing is one of: 'On Sensor Transition GOTO ... '

1 1

If we consider continuous sensing as the change in sensor parameters as i alone. then

we must also incorporate some form of discrete sensing, ie. the monitoring of the absolute

sensor state Sj. Otherwise, we will be unable to effect error recovery if an operation

totally fails, because no sensor transition will occur. Fortunately we can use the end of a

procedure as a sense parameter thereby effecting discrete sensing automaticall v.

2.3 Event Graphs

Yet another form of flowgraph is the 'Event Graph' [Schruben, 1983]. This consists

of a set of preconditions, an event and a corresponding set of postconditions. With this

we return to an "active node" notation, only this time the label denotes a discrete event

such as the start or finish of some activity. Figure 2.8 shows the syntax for this form of

flowgraph as given by Schruben.

~ (Condition) @
~r------------~T~------------- E~~T

time, t

Figure 2.8. - Event Graph Notation.

This says that EVENT 2 will occur t seconds (or other time units) after the

occurance of EVENT 1 together with the fulfilment of the required condition(s). Unlike

the digraph case of figure 2.4, an event is not an action in itself, rather it is a change in

state giving rise to a beginning or end of an event. Consequently, the resulting event

graph network is roughly twice the size of its digraph counterpart. An event graph is

effectively a Petri net with exactly one input and one output transition [Valavanis, 1989].

1 :!

2.4 Petri Nets

Another well established network notation is that of Petri nets. Petri nets have been

used extensively in modelling space systems [Srinivas, 1976] for error recovery purposes.

and where it can be used to detect deadlock easily in parallel situations [Cooke, 1987].

Petri nets are bi-partite directed graphs where particular states are depicted as circles and

activities as bars. The paths are for interconnection only and unlike digraphs carry no

intrinsic significance. Figure 2.9 shows a simple Petri net having two inputs and one

output. The tokens, shown as dots, are event markers and are provided to help the user

follow the operation of the network.

C!)r------ 0--

Figure 2.9 - Token flow though a Petri Net

Before any node output can occur, all input conditions must be satisfied and the

output must be connected to a node which is available for occupation. [Reisig, 1985]. This

gives the input characteristics an AND structure. Unfortunately Petri nets only model the

flow of control and cannot be used to model the flow of resources [Valavanis, 1989].

For sequential situations Malcolm & Fothergill have investigated the modelling of the

effect of sensors. One shortcoming is that it is more difficult to read when networks

become large and complicated than is a simple digraph or GERT representation (see

section 2.5). One advantage is that is can depict a required sequence explicitly as shown

in Fig. 2.10. where the order is: "Do A, B & C in any order but B must not be last"

[Malcolm & Fothergill. 1987]. It would be very difficult to ensure this kind of ordellng

using simple digraphs.

13

Do anything

A not
done

Do A

A done

C not
done

C done

B not
done

Check B

figure 2.10. - Example of PETRI nets in sequencing.

2.4.1 The Token Machine

Dummy

To make things easier to read Merlin [Merlin, 1974] uses an additional state graph

representation which he calls a token machine. This is shown in figure 2.11 (b) alongside

its corresponding Petri net of figure 2.11 (a).

1.t

Error

Figure 2.11 (a) - Petri Net Fi gure 2.11 (b) - Token Mach i TW

Despite the clumsiness of using two graphical representations simultaneously, Merlin

states some useful points with regard to error recovery in computer systems:

1. A process P is recoverable from failure F if and only if in the Error Token Machine

of P for failure F. all the directed paths through illegal states arrive at legal states in

a finite number of steps.

2. A process is recoverable from failure F if and only if in the Error Token Machine

of P for failures F: the number of states are finite, there are no final illegal states,

and there are no directed loops containing only illegal states.

Statement 1 basically says that if an error occurs then a route must exist from which

the process can recover. For example an error like 'bin empty' during a robot picking

operation would constitute an illegal state from which recovery were impossible if no

sensing were available to instruct the robot to cease attempting to pick out non-exi\lL'nt

objects. A typical recovery strategy would be to allow a set number of unsuccesseful

attempts before requesting another bin.

15

Statement 2, on the other hand, concerns loops. In effect saying that there should be

no infinite loops, or finite loops which contain only illegal states. This is because J loop

containing only illegal states would mean that any form of recovery would lead to yet

another illegal state.

These philosophies are of great importance when forward or backward chaining is

used [Fielding et ai, 1987] to return to a legal state in the event of an error causing the

existence of an illegal state. This is true regardless of the graphical representation used.

2.4.2 Stochastic and Time Petri Nets

Time Petri nets were introduced by Merlin as a modification to the standard Petri

net representation intended to accomodate temporal constraints. The timing features are

basically: a minimum time t 1 which can elapse before the bar must fire after all the

inputs are present, and a maximum time t 2 for which all inputs may be enabled during

which the bar does not fire.

Another time aspect is that of a variable time, rather like the continuous sensing

flowgraph model. With regard to Petri nets this is a relatively new concept described as

"Fuzzy-time" Petri nets [Valette et ai, 1989]. However, the basic idea has been around

for some time as will be seen when the GERT network is investigated.

Discrete time stochastic Petri nets (SPN) have been investigated to model Markov

processes where node firing probabilities and delay times are used [Molloy, 1985].

Naturally, anything which can be used to represent a Markov process must map onto a

transition matrix. Incidentally, a flowgraph does this far better than a Petri nl.:t.

16

Further variations on the Petri net theme include the "extended Petri net" which

allows for several types of token and different classes of node [Ahuja & Valavanis, 19S i].

Event graphs of the type covered in section 2.3 are considered as a special class of Petri

net with deterministic output and exclusive~R type input conditions. A more thorough

notation involving a complete class of logic input and output conditions is GERT which

will be discussed next.

2.5 PERT and GERT.

Simple signal flowgraphs of the type used so far have a number of serious

shortcomings. The nodes inherently act as inclusive OR to all inputs, though as already

mentioned, in most cases exclusive OR is required and even assumed. Whichever logic

function is used it is impossible to distinguish easily between types. On the other hand

Petri nets are restricted to an AND input characteristic. In either case no definition is

given to the type of output from a node using SFG's.

Program Evaluation and Review Technique (PERT) was originally formulated to depict

probabilistic networks. Unfortunately PERT will not handle feedback loops, and as this is

the essence of any error recovery strategy such methods must be left to the overall

modelling of the process as a whole. With this in mind we must construct and analyze

the models of error recovery networks in which all feedback loops are constrained using

other techniques. These may then form the building blocks of larger networks, without

feedback loops which may fit into the modelling scenario for which PERT was conceived.

As mentioned previously Graphical Evaluation and Review Technique (GERT) employs

a precise notation which overcomes the ambiguities of the SFG and Petri net notations.

Tables 2.1 and 2.2 give a brief outline of the possible node constructions [Whitehouse,

1973] :

17

Table 2.1 - GERT Inputs Table 2.2 - GERT Outputs

NODES INPUTS NODE OUTPUTS

EXOR k] DETERMINISTIC [)

INC-OR <J PROBABILISTIC t:>
AND CJ

This gives a combination of six possible node types:

o <> <> C>

Whitehouse uses the Laplace operator to perform time analysis on networks containing

EXOR nodes only (see chapter 3). As yet no one has developed satisfactory procedures

for the analytic solution of GERT systems involving AND and INC-oR nodes.

2.6 Concurrency

If, for instance, I say, "That the train arrives
here at 7 o'clock", I really mean something like this:
"The pointing of the small hand of my watch to 7 and
the arrival of the train are simultaneous events".

A. Einstein.

This is an important aspect when more than one process is to be modelled or

executed simultaneously. With its rigorous logic structure GERT posesses a high degree of

precedence regulation, and as portrayed in section 2.4 Petri nets are ideal for representing

precedence conditions. Further to this, Peterson [Peterson, 1981] considers the introduction

of two further attributes to the Petri net model: the inhibitor and the activator nodes.

18

P,

(a) Inhibitor arc

Figure 2.12 - Control arcs

P,

(b) Activator arc

If the inhibitor arc of figure 2.12 (a) has a token at P 2 then the transition t cannot

fire and the token from P, may not pass. Alternatively, for the activator arc of figure

2.12 (b), a token must be at P 2 for t to fire and for the token at P 1 to pass. With

these control arcs, the token at P 2 does not actually pass through when transition t fires,

but is simply required to inhibit or activate the transition accordingly. This ambiguity

between flow paths and information or control paths can lead to much confusion,

particularly in larger networks.

This anomaly can be removed by using a different notation for the control paths as

is done by Taylor in the extended flowgraph notation by the use of a dotted line for

control signals [Taylor, 1987]. This feature is not available in conventional SFG theory

and represents an extension for which as yet the mathematical analysis has not been fully

resolved.

19

2.7 Logistics and Planning

When any form of network includes probabilities, as In the case of error recovery

loops, at some stage parts of the network will behave like queues. \1uch has been VwTitten

on queueing theory [Lee, 1966] and a brief resume of its nomenclature is given in

appendix A.

Some multi-input closed queueing systems have been analysed from a timing (or cost)

perspective [Grubbstrom & Lundquist, 1987], though they cannot all handle circuits

(feedback loops). Koenigsberg deals specifically with cyclic queues [Koenigsberg, 1958] and

shows an example used in the modelling of idle, mean cycle times etc. for machines

working a coal face.

Many of the notations previously discussed are applicable to the modelling of queues,

particularly the event graph. Many simulation packages, aimed mainly at queueing

problems, exist. All of which contain a set of user selectable probability distributions for

controlling the occurance of events. These will be discussed in greater depth in chapter 6.

A selection of useful probability distributions is provided in appendix D.

The scheduling of robot assembly tasks is often determined greatly by the ordering

constraints of the individual components. Sometimes several alternative procedures are

available to effect the same assembly. In such instances it may not necessarily be the most

temporally economical order which is the most logistically viable. The order and manner

in which each of the components are presented to the robot workcell may have a strong

influence. Fox & Kempf [Fox & Kempf, 1985] present two strategies: 'fixed-buffer' where

all the components are presented either in the order they are required for assembl:, or as

bins or stacks of one type of component only in each. Alternatively, 'fixed-build' is where

all the components are presented at random, for example as a common bin of all

component parts. It is then up to the robot system to either identify and select the

components in the order they are required for assembly, or to pick them from the bin

at

~o

random and then identify and utilise them in the forming of smaller sub-assemblies ',l,hich

can be later connected together as the final assembly. ~aturally. this final scenario relies

on more than one possible order of assembly if it is to be used efficiently. If onl one

possible order exists, then the robot would simply remove all the parts from the bin,

identifying and depositing them in a known position as it did so, only to re-pick them in

the required order for assembly - not a very efficient approach.

Fortunately, the fixed-build strategy is often a non-problem as most component parts

are manufactured individually and therefore could be presented to the robot in individual

collections. For example nuts and bolts may be purchased in mixed packs, but they are

never manufactured by the same machine in a totally random manner. Consequently,

problems associated with bin picking are usually restricted to separating like parts from

one another - a much more straightforward, if not always simpler, task.

As a result of this narrowing-down of the number of possible task order permutations

to only those which are logistically viable, it is unlikely that any resulting single cell

network will have more than a few possible forward paths. Only when many such cells

are connected to form a larger network where parallel processes may exist do "Shortest

Route" techniques [Boffey, 1982] concern us. Moreover, when parallel processes may be

active simultaneously, then critical path methods (CPM) may be necessary. Bedworth &

Bailey demonstrate a number of project planning techniques with case studies using CPM

with PERT [Bedworth & Bailey, 1987], whilst Elsayed & Boucher [Elsayed & Boucher,

1985] investigate the use of CPM and PERT together with linear programming techniques

to the same ends.

As many texts already exist covering the use of CPM, PERT, linear programming

etc., many of which are standard text-book techniques [Taha, 1987], the rest of this work

will concern only those networks containing feedback loops pertinent to sensing and error

recovery strategies.

21

.....

2.8 Summary.

Flowgraph techniques, appear to fall into two main groups: 'active path' and 'ac:ive

node' networks. Signal flowgraphs, PERT & GERT etc are active path systems. That is to

say, the information regarding the process(es) in hand are contained in the paths. Active

node systems on the other hand, such as: Flowcharts and stategraphs use paths simply :IS

connectors between the nodes which contain all the relevant process information. A

comparison between flowcharts and their electrical and hydraulic counterparts re\eals a

close similarity, but not an exact correspondance [Kodres, 1978]. This is because active

node and active path networks are not always homomorphic, ie. not exactly equivalent (see

appendix B). Despite this, in most cases they can be used to model the same process,

because they share an isomorphism, ie., the output of one representation is the same as

that of the other even though the internal workings may differ. This equivalence has been

shown to belong to a restricted set when flow languages and Petri net languages are

compared [Araki et ai, 1981].

Petri nets and event graphs differ from flowgraphs in that they depict transitions

rather than activities, though they behave essentially as active node graphs. The fact that

Petri nets can be used to represent Markov processes [Denham, 1989] means that they

could be used in place of flowgraphs if so desired. However, their mathematical analysis is

considerably more complex, if possible at all.

Signal flowgraphs have the distinct advantage of being easily manipulated in matrix

form as will be shown in chapter 4. Unfortunately SFG's suffer from a slight ambiguity in

their nodal logic properties not present in the GERT notation. Both notations are suitable

for representing error recovery loops and will be used extensively for this purpose

throughout the remainder of this work.

22

3. NETWORK ANALYSIS

Some methods of obtaining useful data from flowgraph representations of robol

workcell networks are presented in this chapter. The use of some of the techniques

normally found in electrical network analysis are discussed together with the results of

some simple experiments.

The use of flowgraphs to represent actions of machinery, scheduling of parts flo\liing

through a production line etc., has been a useful means of depicting a process or set of

series/parallel processes for many years now, and as will be seen in chapter 6. mam

simulation techniques already exist.

With the emergence of robotics and its continuing expansion within industry, many of

these methods have been used successfully in representing robot workcells [Cash, 1986].

The growing need to cope with problems autonomously within a cell has led to the

investigation of error recovery within robot workcells [Lee, 1984] and its corresponding

representation in flowgraph form [Taylor, 1987].

When used for representing simple electrical circuits, such as resistance networks,

Kirchoffs laws may be used because all the inputs to each node are basically inclusive OR.

Unfortunately, this is no longer true when modelling many sequential processes, such as a

robot workcell, where the process can only be active at anyone position along the path(s)

of the flowgraph at anyone time. In this case the inputs to nodes are usually treated ~s

exclusive OR and the following sections provide the necessary tools for such an analysis.

23

...

the
the

3.1. Flowgraphs, Costs and Probabilities.

It is remarkable that a science which began with
consideration of games of chance should have become
most important object of human knowledge.

Marquis de Laplace.

When using signal flowgraphs with all EXOR inputs, the simplest representation of a

very basic error recovery loop is shown in Fig. 3.1. Here, the cost or toll t 1 2 is the time

required to complete some action (say a robot pick-up operation). Node 1 is the starting

point and node 2 the point at which the action should have finished and sensing IS

carried out to verify whether the action was successeful or not. P 2 3 is the probability of

success whilst P 2 1 is the probability of failure (ie. the pick-up operation failed or the

object dropped off the gripper before node 2 was reached) with its corresponding recovery

cost t 2 1 being the time required to return to node 1 and start again.

/4 ~Fail
~.~

t 1 2

Success

>. 0
P 23

Figure 3.1. - Simple Error Recovery Loop.

Now, given one failure detected at node 2, and assuming there is the same

probability of failure after recovery at node 2 again. If an operation is of a deterministic

nature, then it is not possible for that procedure to only partly succeed. Since P 2 1 < 1.

then eventually (though it may take a long time if P 2 1 > P 23) a success must be

acheived.

This may seem at first sight to be an over simplification of an error recovery

strategy. However, the simple "repeat last operation" feedback path may also contain

further routines such as "discard faulty part" etc. Furthermore, in a real production

environment, the vast majority of error recovery routines are merely required to return

the system to a normal running state as quickly as possible. usually by simply repeating

the failed operation. Elaborate error recovery routines are rarely cost effective. even if

practical.

One of the important requirements in scheduling a workcell is a knowledge of the

expected cost of an operation given the appropriate probabilities of success and failure.

The same information is of equal importance in assessing the throughput and hence cost

effectiveness of the cell.

It is apparent from Fig. 3.1. that an expected average time to complete the

operation of such a loop will be:

00 n
tav t'2 + (t ,2 + t 21) L (1 - P23)

n-1

00 n
tav - t'2 + (t'2 + t 21) L P 21 ..

n-1

Now using the geometric progression [Spiegel, 1968] .

a(1 _ pn) 2 3 4

a(1 + P + P + P + P + -
1 - P

substituting P 21 for P in {3.1}

as n ~ 00, P
21

n ~ 0 (because P 21 < 1)

and hence it can be shown that

thus tav

1 - P
21

P
23

25

n-1
+ P) (3 . 1)

(3.2)

Equation {3.2} is quite a simple expression but represents only a simple single loop.

Due to the additive property of time and the multiplicative property of probabilities. the

approach becomes very cumbersome in cases of multiple loops, such as that of Fig. 3. ~

P45

Figure 3.2. - Multiple Loop Flowgraph.

However, if it can be assumed that the probabilities of success and failure do not

change, as in the case of fig. 3.1., that is to say each event is independent of the

outcome of the previous one, then we can introduce some very powerful techniques.

3.2. Independence and the Markov Property.

The first of earthly blessings, independence.

Edward Gibbon.

Firstly, the property of independence of past events (known as the Markov property)

must be defined [Cooper, 1981]. If the probability of success after k failures is P fk P s

and N is the number of failures occurring before a success during some operation, then:

P(N - k)

and P(N > k)

P k P f s

26

where Ps and Pf are the probabilities of success and failure respectively. 3.S defined

previously.

Assuming each attempt has the same probability of success P s' and given that at leJst

j failures have occured, then the probability of success after j + k attempts can be founei

using Bayes theorem thus:

or peN > j + kiN> j)

peN j + k) n peN ~ j)

peN ~ j)

Prj+k·ps

Prj

peN - k)

peN > k)

So, given that the probabilities being used have this Markov property, then over a

large number of events these probabilities may be treated as constants. The more usual

descriptive example is that of tossing a fair coin (each event is independent of the last)

and over a large number of tosses of the coin there will tend towards an equal number

of heads and tails giving a probability of each outcome as exactly one half. Even though

tossing a coin say only ten times may yield a result of six heads and four tails.

It is this ability to treat probabilities as constants when considering a process over a

large number of events which allows us to make use of the Laplace and Z-transforms.

27

3.3 The Z Transform

I am a great believer in running before you can
walk, because by finding out how difficult it is to run
one takes greater interest in the problem of learning t~
walk.

Lt. General, Sir Brian Horrocks.

The Z-transform is defined as:

Z = esT

where T is the sampling interval and S the LaPlace operator.

Now, a robot picking items from a stack, just as objects arriving at a workcell for

processing, can be thought of as a train of discrete events we can use the Z-transform to

represent time delays through the process. For example Z-Ci. represents a time delay of Ci.

time units. Also, just as the gain (or attenuation) in a network can be represented by a

multiplier, ie (3Z-Ci. where (3 is some gain factor, so can we use probabilities [Huggins,

1957].

It must be remembered that all probabilities are less than or equal to one and so act

more like attenuations than gains. This is important from a view of dynamical stability.

Returning to Fig.3.1., this network can be expressed using Z-transforms as In

Fig.3.3.

P 21 z- t 21

u(z) ___ -1.P1~ i 1 __ s_>-?c c-t;~s_s_--{0~_---+. w(z)

Z-t '2 v(z) P23

Figure 3.3. - Simple Loop Using Z-transforms.

28

Given a discrete sequence of unit events into the network u(z), and a corresponding

output of events w(z), a transform function w(z)/u(z) can be derived to represent this

network as follows:

v(z)
-t 12 -t 21

z (u(z) + P21Z v(z»

-t 12 -t 21
v(z)(l - P 21 Z)

-t 12
Z u(z)

w(z) P 23 ·V(Z)

eliminating v(z) between equations {3.3} and {3.4} gives

w(z)
Transfer function, TF(z)

u(z) 1 - P z- t 1 2 - t 21 21

(3.3)

(3.4)

Differentiating TF(z) with respect to Z will give a rate of flow of events passing

through the network. Elmaghraby [Elmaghraby, 1977] uses this technique and by setting Z

= 1 to give the steady state we have the time average for the network.

So.

aTF(z)
-t 12 -t 12 -t 21 -1 -t 12 -1 -t 12 -t 21

P 23 Z P21(t12+t21)Z + t 12 P 23 Z (l-P 21 Z)

az -t 12 -t 21 2
(1 - P 21 Z)

aTF(z)

az Z-1

So substituting for P 2 3 and simplifying gives the original

expression

aTF(z)
..... which is equation (3.2)

az z-l

29

Using the Z-transform we overcome the difficulties of mixing variables v.ith adjitive

and multiplicative properties. This allows us to calculate transfer functions, time

expectations etc., using the usual network techniques such as \1ason's theorem [\1ason,

1956]. In fact Pritsker [Pritsker, 1966] uses the Laplace transform (instead of the

Z-transform) to obtain the same results by differentiating the network transfer function

and setting s = O. He then goes on to derive Mason's theorem by these techniques.

Calculation of the variance can also be achieved from information given by the second

derivative of the transfer function.

3.4. A Practical Example.

Table 3.1. contains data obtained from a large number of tests performed on a

textile pick operation by a robot using a very basic electrostatic roller gripper [Monkman,

1987] fitted with only discrete sensing capabilities. The force of lifting is set to ensure

that only one ply at a time may be lifted. In the event of two or more plies sticking

together, the pick operation fails and the robot returns to the start of the pick operation.

Similarly, on dropping the ply the operation is repeated until successful.

OPERATION

PICK
TRANSPORT

DROP

TIME REQUIRED

7.04
2.50
3.95

Table 3.1. Robot Operation Data.

SUCCESS PROBABILITY

0.841
0.968
0.812

The times quoted in table 3.1 are in seconds. These were timed for each operation

within the program control (using computer internal clock) and so may be considered

accurate.

30

The resulting flowgraph for these 3 operations and their respective feedback paths are

shown in figure 3.4. The values of Probability and time for each path are expressed as

Z-transforms.

0.159Z-0 . 27 0.188Z-0 . 27

0.812

DROP

0.032Z-5 . 438

Figure 3.4. - Flowgraph of Working Model

Using Masons theorem we obtain the transfer function:

TF(Z)

Z-7.04 0.841Z-2 . 5 0.968Z-3 . 95 0.812

1-0.159Z-7.31_0.188Z-4.22_0.027Z-14.978+0.0299Z-11.53-0.0051Z-19.198

and thus:

aTF(Z)

az Z-l

0.661 x 1.9159 + 0.661 x 8.917

0.6612
16.39

If all three operations were perfectly successful and no error recovery was required,

then the total operation time would simply be the sum of the forward path times (t nor =

13.49 seconds).

So the expected time increase due to error occurance and recovery is:

= (16.39 - 13.49)/13.49 = 21.5% time Increase.

31

100 New destack operations were conducted. Each of these normally takes 13.49

seconds (plus 1.488 seconds for the robot to return to the start of the PICK operation)

each time. The total time recorded was 30 minutes and 11 seconds for the 100 complete

cycles (each cycle including the total number of repeated attempts). This gives an average

cycle time of 22.38 seconds. So the forward path average time is: 18.11 - 1.488 = 16.622

seconds. The resulting increase is:

(tav - tnor)/tnor = (16.622 - 13.49)/13.49 = 23.2% time increase.

This is only very slightly longer then the calculated time increase. This demonstrates the

practical usability of this technique, even with relatively small sample sizes. Of course such

processes have a variance as well as an average completion time, and this will be

discussed later.

3.5 Isochronic Curves.

It is not the business of the botanist to eradicate
the weeds. Enough for him if he can tell us just how fast
they grow.

C. Northcote Parkinson.

Following from considerations of reliability of Markov processes by Siegrist who

conducts various sensitivity analyses by finding the partial derivative of the system equation

with respect to the individual reliability of one parameter [Siegrist, 1988]. we can take

reliability to be analagous to performance in our model and construct a graphical

represen ta tion to act as a tool in comparing system performance by various parameter

adjustments.

32

Isochronic plots were first introduced during the course of this work to pro\ide a

means of estimating the improvement in overall operational performance of a particular

task due to various parameter changes such as a replacement of end effector. alteration of

error recovery strategy etc [Monkman et aI, 1989]. These ideas can be extended to the

consideration of parallel situations where it may be shown that several workcells operating

slowly, but simultaneously, can be more cost effective than a single faster operating

workcell [Hartley, 1986].

Given the simple error recovery loop we are now familiar with and having the

appropriate expected efficiencies and measured action times for each process (or part

process), we are now in a position to determine just how long our error recovery routines

may be allowed to take without increasing the average time of the whole process, given

the probabilities of success and failure. Alternatively, we can determine whether it would

be more cost effective to make a process time shorter at the expense of a decrease in the

success/fail ratio, or improve the process efficiency whilst incurring a corresponding time

penalty. All this is made much easier if we have a set of plots of the desired parameters

against one another for a constant tav (Isochronic average time). Figure 3.5 shows a plot

of tav against P 23 for a simple error recovery loop.

tav 00 t 2 1 ' P 21

~

2t12+t21

t 1 2
~----------~------------~--~

0.5 1

ligure 3.5 - Plot of tav against P:n

t 1 2
• 0

P23

Figure 3.5 shows us how the average process time will increase dramatically as the

process efficiency drops with the curve tending towards infinite average time as efficiency

drops to zero.

Isochronic lav plots for action time t 1 2 and recovery time t 21' against success

probability P 23 are what is really needed. These are shown in figures 3.6 and 3.7

respectively.

Using equation (3.2) again:

-

transposing gives:

t 1 2 (3.5)

Plotting the success probability P 2 3 against the forward path time t 1 2 as in figure

3.6 we can see that if P 2 3 = 1 then success will be achieved every time. Hence the

average time tav will simply be t 1 2' as the recovery path will never be accessed making

t 21 irrelevant in this case. Now, if we let t 21 = 0, then as P 2 3 is reduced, the forward

path time t 1 2 must also be reduced if the same lav is to be maintained.

-t'2

t 1 2

t 21 -t av/2

~------~---T-------------T----~~P23

/

/

0.5 1

[flure 3,6 - Plot of t'2 a&ainst P 23 for isochronic tav~

34

When t 21 is equal to zero, doubling efficiency simply doubles the allowable action

time t, 2· However, as t21 becomes significant, the improvement becomes more

pronounced. Also where t 21 is greater than zero there exists a region where t 1 2 becomes

negative. Clearly this is practically impossible, though it does set a boundary as to how

low the action efficiency may drop before the average process time must be increased

regardless of how small t 1 2 is kept.

Transposing equation {3.5}:

t av > t12 {3.6}

co

I at 21 t ,2 -t av ,
/ I " I

ap 23 P 21 2 / I,
I / I

t ,2-O
/

/ (

/ increasing
/ I I / /

/
/ / /

/ /

/ /
I

" P 23
0.5 1

figure 3,7 - Plot of t21 against P23 for isochronic tav~

3 7 we can see that doubling the probability of success, P 2 3 gives Now, from figure .,

. the allowable recovery time, due to the slope of figure 3.7 a considerable increase In

following an inverse square relationship.

3S

These techniques not only provide statistical expectations of the performance of a

particular robot workcell configuration but also lend themselves to aiding the choice of

sensor implementation with a view to improved efficiency of the overall process.

Furthermore, changes in overall performance due to variations in time and efficiency

parameters can be estimated using isochronic plots. This provides a useful tool in choosing

processes and error recovery routines, as well as allowing an estimation of the

improvements which may be expected for given system parameter· changes.

3.6. Flowgraphs with Continuous Sensing

For any finite sequence of integers, I can always
find a rule that tells me exactly how to construct the
sequence. But the rule may be very complicated.

Heinz Pagels.

In the discrete sensing model, all actions must be completed before sensing and

consequently, error recovery (if required) can be performed. However, under real robot

control conditions much, if not all, sensing must be done continuously if maximum

economy of time is to be achieved. For example, it would be a complete waste of time

to continue a robot transport operation for an object which had accidentally fallen from

the gripper. This, of course, is what would happen if only discrete sensing was employed.

As briefly discussed is section 2.2.2, a more efficient scheme is to monitor the state

of the gripper/object relationship continuously and take whatever remedial action is

required the instant an error occurs. It goes without saying that this holds true for

virtually every possible robot action having a greater than zero probability of error

occurence.

36

...

In the discrete model, costs and probabilities of success and failure of an operation.

or set of operations, can be used to calculate an average cost requirement. This is also

true of the continuous model.

3.6.1. Tolls &: Probabilities.

If it takes as long to state the rule, suitably
transcribed into numbers, for the construction of the
numerical sequence as the actual length of the sequence,
then the sequence is 'random'.

Andrei Kolmogorov.

Now, in a simple single feedback loop, the feedback time tf will usually be a

function of the forward path time to' For example, if the robot had completed n seconds

of a transport operation to the point at which a failure, resulting in the need for error

recovery along the feedback path, occurred. Then the time of the feedback loop to return

the robot to the point at which the procedure could be resumed would be fen) seconds.

The time tf may be longer than the proportion of to achieved so far depending on the

point of resumption and the path taken. The relationship is likely to be linear, though

this may not necessarily be so. Fig. 3.8 shows the situation for successive executions of a

simple feedback loop.

37

0-....... -0
(a) (b) (c)

Figure 3.8. - Feedback with tf as a function of to~

(d)

The flowgraph for a successful first attempt is given in Fig. 3.8 (a) with (b). (c) and

(d) showing the result of repeated failures. The whole algorithm for a single loop may be

expressed mathematically thus:

Collecting all the terms:

where to is the duration of a complete forward operation without error and t 1 is the

amount of time taken in an incomplete forward operation before an error occurs.

This reduces to:

+

-) +

(t,+tr) 00 n

+ Po L 2n(1-P o)
2 n-1

tl+tr 00 n
~ 2nPr)

2 n-l

38

{3.7}

Now given that:

and

00

2 Pf
n-1

00

n

2 2n Pf
n-1

1-P o

n 2(1-P o)

P 2 o

Average value for continuous time becomes:

(t 1+tf)(1-P o)
------)

P 2
o

{ 3 . 8 }

Now, if t 1 = to' ie. error correction occurs only at the end of the forward path

operation, then tav(c) should be equal to the discrete model average time taid).

So using {3.B}.

tav(d) the discrete model.

This of course, is equation {3.2} derived In section 3.1.

39

3.6.2. Functions and DistributioDS.

As suggested previously. the recovery time tf is a function of the forward path time

to· Fig. 3.9 (a) shows a possible relationship, in this case assumed to be linear for

simplicity. Likewise. the proportion, t l' of the forward path used, is a function of the

error position probability. Pe (ie., it is the amount of the forward time, to achieved

before an error occurs). It is unlikely that this relationship would be linear. The one

shown in Fig. 3.9 (b) is raised to some predetermined power, "'.

t 1

- (3
dt 1

(a) tf - Q + (3t 1

Figure 3.9. - Functions and Relationships.

Pe c [0,1]

So,

-

'" to + (t o (I+(3)Pe + Q)Pf/P o {3.9}

Now suppose Q - 0, (3 - 1.

40

then tav(c)

Now, Pe is the error position probability, ie. if Pe = 0.5 then the average position at

which an error may occur during the forward path is half way through (at t 012).

Let us once again compare the continuous model with the discrete model.

Therefore

subtracting Po from both sides.

1/1
(I-Po) + (I-Po)tf/t o 2(I-Po)Pe

dividing by (1 - Po) throughout

Now if tf - to (as in the discrete model), then:

P 1/1
e 1 ie. 1/1 - 0

So as long as 1/1 > 0 and P e < 1, the continuous implementation will operate faster

than that of the discrete. That is to say, in all cases except where the error correction

does not take place until the end of the forward operation - which is by definition I the

discrete model!

41

3.7 Laplace Transforms.

Similar to the Z transform introduced previously, the Laplace transform can be used

to find the system transfer function of a network. Pritsker [Pritsker, 1966] uses this

method exclusively rather than the Z transform, as it is more applicable to continuous

time systems.

For example, returning to our original simple network, consisting of a single error

recovery loop, but substituting the Laplace for the Z operator:

-St 21

e

-St 1 2

W(S)
transfer function TF(S)

U(S) -S (t 1 2+t 21)

differentiating with respect to S:

aTF(S)

as

aTF(S)
as

+

S-o

-St ,2 -S(t ,2+t 2,)-1
P 23 e (t 12+t 21)P21 e

-S(t ,2+t 2,) 2
(1 - P21 e)

-S(t 12+t 21) -St ,2 -1
(1 - P 21 e)t ,2P 23 e

-S(t ,2+t 21) 2
(1 - P21 e)

P P (t + t 21) + P23 t 12 (1 - P21) 1221 12 -

42

{3.IO}

tav as before.

The only real difference between using the Laplace and Z operators, up to this

point, is that we set S = 0 whereas using the Z transform we would set Z = 1 to find

the average network time.

3.7.1 Topology.

Using the Laplace transform we can call on the usual flowgraph techniques to find

the network transfer function. ie., Masons theorem:

[(PATHi)[l + [(-l)m (ORDER m LOOPS NOT TOUCHING PATHi)]
TF(S) __ i ______ -----m--------------------~---------------

[1 + [(-l)m (LOOPS OF ORDER m)]
m

Now if we connect the output of a network directly to its input we get the

topological equation H(S) [Pritsker, 1966].

H(S) 1 - TF(S)W(S) o {3.l1}

where: W(S) ljTF(S)

and TF(S) {3.I2}
W(S) H(S)lw_o

43

EXAMPLE:

Given the single error recovery loop of figure 3.10 where the output is joined to the

input via path W(S).

-St 2 I

~--------~--------42~-------6---------(

-St I 2

e

W(S)

Figure 3.10 - Closed Network

Using {3.11}, the topological equation:

-S t I 2

H(S) P
23

eWeS)

aH(S)

aWeS)

-St I 2

Now the transfer function can be found from {3.12}

aH(S)

aWeS)

H(S) I
W(S)-O

-St 12

-Set 2,+t I 2)
1 - P 21 e

TFeS)

o

3.7.2. Variance.

As shown in previous chapters, and repeated in the last section of this chapter, the

average time (cost) can be found from the first derivative of the network transfer

function. The higher derivatives yield equally useful results. The variance being the square

of the flrst derivative subtracted from the second derivative, as in {3.13}.

u - U 2
2 1

where:

EXAMPLE 1

an [TF(5)]
asn TF(O) 5-0

{3.13}

(3. I ~)

The following simple example illustrates the use of equations {3.13} and {3.1~} for

finding the variance (and therefore standard deviation) of a simple network.

Figure 3.11 shows a very simple network consisting of two parallel forward paths.

From inspection of figure 3.11, given say 10 items fed sequentially into the input,

according to the respective probabilities, one would expect 7 items to take 3 time units

and the other 3 items to take 4 time units.

-35T
0.7 e

u v

0.3 e

Figure 3.11 - Two Parallel Paths.

This gives a time average

7 x 3 + 3 x 4
3.3

10

45

and variance

2.1
0.21

n 10

The time average is found from the transfer function as usual.

-3ST-1 -4ST-1
TF(S) 0.7 e + 0.3e

TF(O) 1

U1
a [TF(S)] -35T-1 -45T-1 as TF(O) S-O = 2.1 e + 1.2 e 3.3

a2
[TF(S)]

0S2 TF(O) S=O- 6.3 -35T-2 -45T-2
e + 4.8 e 1 1 . 1

Now, using (3.13):

Variance, (J2 11.1 - 3.3 2 0.21

Exactly as before.

If instead of the Laplace, the Z transform were used, the indices would be reduced

on differentiating thereby giving an incorrect value for U 2' This is because the Z

transform is a discrete operator whilst the Laplace is continuous. This is important if such

results as variance are calculated using standard differential calculus.

EXAMPLE 2

Consider once again, the basic error recovery loop:

-ST

~----~.---0
-S I

-ST
0.7 e

u
-2ST

1 - 0.3 e
e 0.7

46

Using {3.14} to find the first and second derivatives of the transfer function U.

au 0.21 -3ST-l
0.7 -ST-l e + e

d'S
(1 0.3 e -2ST) 2

au
Is - 0 -

1.857 as

0.252 e-5ST- 2 + 0.84 e-3ST- 2

(1 0.3 e-2ST)3

Is - 0 ~ 5.898

According to {3.13}

2
Variance, (]"

+

2.448

-3ST-2 -ST-2 0.63 e + 0.7 e

This gives a standard deviation of approximately 1.56.

What this signifies is that, given a unit entering the flowgraph, the fastest time in

which an output may physically occur is one time unit. However, the probability is that it

will take an average of 1.86 time units, give or take 0.78.

3.8 AND Input Analysis

Everthing that is not forbidden is compulsory.

Murray Cell-Mann.

Petri nets have an AND input structure and so cannot be analysed in the same

manner as signal flowgraphs which have EX-oR inputs. With GERT the choice of input

logic functions is far greater than with other network representations and GERT networks

can not only contain a combination of logic functions at the inputs but also deterministic

and probabilistic output characteristics. This next section highlights some of the problems

associated with AND type structures.

An example of what can happen when AND nodes are used is reproduced here

[Whitehouse, 1973], though using the simpler Z transform, in figure 3.12.

0.3 Z-10

Z-6.5

Z-8 Z-8

Figure 3.12 - GERT Flowgraph USIng EXOR and AND nodes.

The transfer function of Figure 3.12 reduces to:

TF(Z) = (0.3 Z-10 + 0.7 Z-S) n Z-8

aTF(Z) I
az Z-1

- (3 + 3.5) n 8

- 6.5 n 8 8 time un its.

But one path on the upper side has a time of 10 units which is greater than the lower

path of 8 units. Clearly we cannot use AND input nodes in this manner.

However, if we allow the output of node 3 to be probabilistic rather th:1n

deterministic as given in Figure 3.12, then:

TF(Z) (3.15)

where EXOR is given by the symbol In

from De Morgans theory [8ajpai et aI, 1980 (p45)]:

(0 n ~) n (0 u ~) (3.16)

So using {3.16} on {3.1S} we get:

TF(Z) Z-8 n «0.3 Z-10 n 0.7 Z-5) n (0.3 Z-10 U 0.7 Z-5»

where 0.3 Z-10 n 0.7 Z-5 0.3 Z-10 U 0.7 Z-5 0.3 Z-10

therefore TF(Z) Z-8 n 0.3 Z-10 {3.17}

At first sight this may appear to give a transfer function with an overall probability

of the final node being realised of greater than unity! But it must be remembered that

both sides of the AND equation {3.17} must be realized simultaneously. Consequently there

is a probability of 0.3 that the longer time (10 units) will be required. other",,;se the

shortest time (8 units) will be needed.

49

So TF(Z) becomes: 0.7 z-a + 0.3 Z-, 0

Differentiating and setting Z = 1 gives an average time of 8.6 time units.

From this exercise we can conclude that: nodes with deterministic outputs can be

made to drive nodes with probabilistic outputs. However, the reverse is not possible. That

is to say, more information must be provided in the output data than a single logic level

if that result is derived from anything other than a single logic level.

3.8.1 Logic Functions & Distributions.

The fact that most network events behave like probability distributions rather than

simple logic functions gives rise to some intresting results. Given that these events are

time dependant, Bell [Bell, 1971 (p35)] defines the following AND and OR logic

conventions:

X(AND) MAX(X1, X2)

P(X(AND) < T) P(XI < T) P(X2 < T)

and

X(OR) MIN(X1, X2)

P(X(OR) < T) 1 - P(XI > T) P(X2 > T)

1 - (1 - P(X1 < T» (1 - P(X2 < T»

P(XI < T) + P(X2 < T) - p(X1 < T) P(X2 < T)

Now substituting density functions:

F(AND(T)}

F(OR(T)}

FI (T) F2 (T)

F1(T) + F2(T) - FI(T) F2(T)

50

Which are the functions used if normal additive and multiplicative operations are

carried out on simple binary logic levels as given in the truth table of table 3.2.

Table 3.2 - Logic Functions.

A B I A+B AB A+B-AB
(AND) (OR)

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 2 1 1

Now, if we have two events eland e 2' triggered simultaneously:

e 1

Their corresponding time averages tav 1 and tav 2' will have distributions F(tav 1) and

F(tav 2) respectively. These functions are shown graphically in figure 3.13.

tav 2 > tav t always.

51

P(tav) P(tav) P(tav)

tav, tav 2 tav, tav, tav 2

(a) OR (b) AND (c) XOR

Figure 3.13 - Graphical Representation of Logic Functions.

Note, that unlike electronic logic gates, GERT nodes, like Petri nets, operate on a

trigger basis. That is to say, even if the distribution shown in figure 3.13 are completely

separated in time, once the node has been triggered by event 1 then all it requires is the

receipt of event 2 to complete the required conditions for realising that node.

3.9 Summary

Clearly, continuous sensing will result in improvements in operating times compared

with systems employing only discrete sensing. In fact, as this chapter shows, the worst

implementation of continuous sensing can only be as poor as its discrete counterpart - it

cannot be worse, and with correct attention to its installation should show some

improvement in the economy of operating time. This naturally assumes that the practical

configuration does not introduce superflous delays not present In the discrete model, Ie.

continuous or too frequent interrogating of sensors instead of interrupt mechanisms or

properly scheduled sensing.

52

If an interrupt mechanism is to be used to provide the sensor output data directly.

that is to say the sensor output is the same signal which causes the interrupt. then the

sensor must be perfectly reliable. A safer configuation is to restrict the interrupt signal to

instigating the execution of an interrogation routine. This way other sensors, as well as the

one causing the interrupt, can be checked. The need to check a single sensor man\' times

to achieve a consensus is rather cumbersome and suggests either the need for a more

reliable sensor or a greater number of sensors.

Using the formulae presented here, expected time averages for robot workcell

operations may be accurately calculated. Alternatively, given a collection of operating

statistics gathered over a period of time, the relevant distribution parameters can be

calculated.

An insight into some of the pitfalls of using nodes with mixed logic characteristics

has been discussed and the relevance of the corresponding probability distribution, as well

as the absolute probability itself, highlighted. This has provided at least a partial solution

to the GERT AND analysis problem.

53

4. MATRIX ANALYSIS

Science is nothing but developed perception,
interpreted intent, common-sense rounded out and
minutely articulated. It is therefore as much an
instinctive product, as much a stepping forth of
human courage in the dark, as is any inevitable
dream or impulse action.

George Santayana, Relativity of Science.

This chapter deals exclusively with the different forms of matrix representation of

flowgraphs and their relevant properties with regard to robot workcell modelling and

analysis.

Where discrepancies exist between previously presented notations given in the

references, definitions are provided which are most relevant to this particular work.

4.1 Adjacency Matrices.

Sometimes called the vertex matrix, though the matrix elements represent arcs rather

than vertices, the adjacency matrix is really only applicable to digraphs. In the case of

simple (non directed) graphs the connectivity matrix is used [Tutte, 1966].

54

With regard to digraphs there appears to be some ambiguity about the term 'strongl~

connected'. Harary & Palmer [Harary and Palmer. 1973 (p126)] define a digraph as

strongly connected 'if every pair of points is mutually reachable by directed paths'.

Busacker and Saaty [Busacker & Saaty, 1965 (p28)] give a similar definition. HO\l,ever.

Wilson [Wilson, 1979 (pI 01)] extends the definition to include certain cases of one wa \

paths between nodes as do Berman & Plemmons when discussing the reducibility of a

digraph [Berman & Plemmons, 1979 (p31)]. For the purposes of this work a strongly

connected digraph is defined as: that whose adjacency matrix is square and irreducible, ie.

it has all non-zero elements with the optional exception of the main diagonal (reflexive or

irreflexive). In either case, all nodes are mutually reachable from all other nodes by no

more than one path traversal.

Again using the convention that the element Aij represents the path from node i to

node j, we are now in a position to make a few statements with regard to the general

properties of adjacency matrices.

a) All finite elements along the main diagonal represent self loops (ie. loops whose

single path is both incident to and incident from the same node).

b) An adjacency matrix A in strictly upper triangular form represents an acyclic digraph

with only forward paths. An = 0 for some n ;) 2.

c) An adjacency matrix in strictly lower triangular form represents a digraph with only

feedback paths. An = 0 for some n > 2.

55

4.1.1 Boolean Adjacency Matrices.

The Boolean adjacency matrix is the same as the adjacency matrix mentioned in

section 4.1 except that all elements are Boolean (have value 1 or 0). It is sometimes

known as a permutation matrix [Rice, 1981].

Carre gives us the following definition for a Boolean adjacency matrix A representing

a digraph G = (x, U):

C if (xi, X·) C U
J a· .

1 , J
if (xi, X·) 1- u J

The Boolean adjacency matrix is used by Hsu [Hsu, 1975] to find the minimum

equivalent graph (MEG) of an acyclic flowgraph. Unfortunately this technique is not usable

in the same manner with non-Boolean adjacency matrices and so is of limited use.

4.1.2 Transition Matrices.

This is yet another manifestation of the adjacency matrix. Only this time, unlike the

Boolean adjacency matrix, each element represents the probability of transition from one

node to the next. Using Carre's notation, we can define a transition matrix P representing

a digraph G = (x, U) as:

p' .
1 , J {

P if (xi, Xj) C U

o if (xi, Xj) 1- U

pC]0,1]

An example of a transition matrix is given in Figure 4.1 where a simple digraph

having two feedback paths is depicted together with its corresponding transition matrix.

56

0.2 0 1 0 0

0.3 , 0.3 0 0.7 0

~
\

\ Pt \

• '0 • 0
0.2 0 0 O.S

1 0.7 0.8
0 0 0 0

Figure 4.1 - The Transition Matrix.

The transition matrix Pt is always shown as a square matrix even though there are

no non-zero elements in the fourth row. The reasons for this will become apparent later.

The parallel paths between two nodes, first mentioned in section 2.2.1, would be

most difficult to implement in transition matrix form as they stand. For example, figure

4.2 shows three parallel paths between two nodes and the corresponding 2 by 2 transition

matrix.

a

E:0>
o

[o

Figure 4.2 - Three Parallel Paths.

Clearly, this is impossible to implement as a 2 by 2 transition matrix without

explicitly defining the function f(a, b,c). The solution is to put the flowgraph into a

different form. Figures 4.3 and 4.4 show the flowgraphs and transition matrices for the

cascade and canonical forms respectively.

0 1 a 0

0 0 b c

0 0 0 1

0 0 0 0

Figure 4,3 - Cascade Form.

57

figure 4.4 - Canonical form

o
o
o
o

1

o
o
o

o
1

o
o

c

b

a

o

Similarly, figure 4.5 shows the canonical form for multiple feedback loops between

two nodes.

o
c

b

a

figure 4.5 - Canonical form for feedback loops

z
o
o
o

o
1

o
o

o
o
1

o

Needless to say, this introduces another two nodes and two further paths which may

appear superflous. However, it will become clear later why this is necessary when any

form of mathematical analysis is to be performed on transition matrices.

4.2 The Realization Matrix.

Using the GERT notation (chapter 2) Bell [Bell, 1971 (p13)] introduces the concept

of the realization matrix. This is a form of Boolean matrix which not only contains the

reachable states but also contains information about their reachability. Referring back to

the simple error recovery loop example of chapter 2, figure 4.5 shows the realization

matrix, which is somewhat like a truth table, for this digraph.

5~

1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 o 1 0 1
2 0 0 1 1 0 0 1 1 2 0 0 1 0 2 0 0 1 1 o 0 1 1

3 0 0 0 0 1 1 1 1 3 0 0 0 1 3 0 0 0 0 1 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 o 0 0
1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 o 0 0
0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 o 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1
0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 1 o 1 1 0 0 1 1 0
0 1 1 0 0 0 0 0 o 0 0 0 1 1 000 0 1 1 1 1
1 1 1 0 0 0 0 0 o 0 0 1 1 1 000 1 0 0 1 1

a) b) c)

Figure 4.5 - 3 Stages of the Realization Matrix.

Figure 4.5 (a) is the realization matrix assuming single entry only, ie., only one item

in the system at anyone time. From this it can be seen that two or more nodes cannot

be active at the same time therefore all states other than 000, 100, 010 and 001 are

impossible, giving the reduced matrix of 4.5 (b). This shows clearly that exactly two states

can be reached from any state. The multiple entry matrix of 4.5 (c) is somewhat more

complex. From some states up to four other states can be reached.

Comparing the realization matrices of figure 4.5 (b) and (c), those states which exist

in (c) but not in (b) represent those which are capable of resulting in simultaneous

realization. This is important in practical multiple robot workcell implementations where

simultaneous realization may mean collision!

In a GERT system, if only EXOR nodes are employed then the network represents a

flowgraph in which simultaneous realization is impossible - assuming that the nodes are

practically (as well as theoretically) EXOR.

59

4.3 The Incidence Matrix.

The incidence matrix provides a convenient method of representing flows in and out

of the nodes of a digraph. If a path is incident from a node its corresponding incidence

matrix element has value I, if incident to the node it has value -I, and if no incidence

it has value O.

Adopting Carre's notation again, for a digraph G = (X, U) the incidence matrix S is

defined as:

{
+1 if Uj is incident from Xi

s· . -1 if U· is incident to Xi 1 J J
0 i f U· is not incident wi t h X· J 1

This method of representation of a digraph requires the labelling of both arcs and

vertices. Consequently the resulting incidence matrix will not be square. Attempts have

been made to use the incidence matrix to represent Petri nets [Harhalakis et aI, 1989]

where U denotes the set of states (circles in figure 2.10) and X denotes the set of

transitions (bars in figure 2.10). However, closer inspection of figure 2.10 reveals a

'dummy' transition which would result in an element of any incidence matrix Shaving

both values of +1 and -1 simultaneously. Clearly, this severely limits the usage of such

representations.

60

4.4. Matrix Analysis

If God has made the world a perfect mechanism, He
has at least conceded so much to our imperfect intellect
that in order to predict little parts of it we need not
solve innumerable differential equations, b~t can use
dice with fair success.

Max Born.

Having introduced a selection of useful matrix representations of flowgraphs, we now

conduct an analysis with particular regard to stochastic transition matrices.

4.4.1 Flows.

It is not the significant event which ought to be
wondered at, but rather the frequent recurrence of
similar instances.

Gerolamo Cardano (1501-1576). From De Vita Propria
Liber (the book of my life) 1576.

In a multiple node flowgraph each node may be represented by a discrete sense

point. In the case of cyclic graphs, some nodes are going to experience a greater degree

of activity (flow or transmission) than others. It then follows that, in a multiple entry

system (as mentioned in 4.5). it is often more efficient to interrogate sensors at a high

flow node more frequently than those at a low flow node. This is illustrated in figure 4.6.

61

0.3Z 0.2Z

U -.~~r----t.~~l---+-. ----10~~~-
Z 0.7 Z 0.8

v

Figure 4.6 - Flowgraph showing Node Flows.

For the flowgraph of figure 4.6 the flows at each node can easily be determined:

The first node, n 1

Let U = 1;

then n 1 1/(1 - 0.3Z 2)

Setting Z - 1 gives: n, I 1 1. 43
Z-l 1 - 0.3

Similarly for node n 2 :

n 2 Zn, Z/(1 - 0.3Z 2) and n21 =- 1. 43

Z==l

Node n3

hence 0.7Z and n31 _ 1.25
(1-0.2Z2)(1-0.3Z 2) Z-l 1 - 0.2Z2

Likewise:

Node 0.7Z2 and
(1-0.2Z2)(1-0.3Z 2)

n41 _ 1.25
Z-1

and f ina I I y;

Node - hence ns I -
Z-1

0.8 x 1.25 1

So, the flows for nodes 1 to 5 are 1.43, 1 A3, 1.25, 1.25 and 1 respectively for a

normalized input value of U = 1. By inspection of the digraph of figure 4.6 it can be

seen that these values are of an order one would expect given the relative tolls and

probabilities. Clearly, what passes through node n 1 must also at some time pass through

node n 2 as these both share the same flowgraph loop, consequently the flo\1;'S through

each of these nodes are equal. This also holds for nodes n 3 and n 4' though of course the

value of the flows are lower owing to the smaller probability of repeat at this loop. i':ode

n 5 has a flow of unity which is not surprising as the normalised input value of U is

unity. The laws of conservation must apply to all stochastic digraphs which do not have

absorbing nodes, but more of this when we deal with Markov chains later.

4.4.2 Sensor Implementation.

What is most interesting is the fact that the flow at each node expressed as a

fraction of the sum of the flows at all the nodes gives us the relative activity at that

node. That is to say if we divide the flow at each node by the sum of all the flows we

can find the percentage activity at each node. For the example of figure 4.5 these values

are approximately 22.5% for nodes n, and n 2 , 19.7% for nodes n3 and n 4 and 15.6%

for node n 5'

If we have a sensor at each of the nodes in the above example, then the sensors at

nodes n, and n 2 will be in use more often than those at nodes n 3 and n 4 which will In

turn be used more than that at node n 5' The fact that the flow at node n 1 is equal to

that at n 2 suggests that only one sensor is required between the two. In fact as no

decision is made at node n l' only n 2 requires a sensor. Consequently we can reduce the

number of sensors which would appear to be required from 5 to 3. This may seem

obvious as it is not usual to sense for errors before an operation. However, as work cells.

and consequently flowgraphs, become larger this may not be so immediately clear.

6.1

The usual method of signal I/O employed by most robot controllers is polling. This is

a timeshare technique which involves the interogation of each of the input lines, connected

to the sensors, in turn. According to Shan "polling is a source of unnecessary performance

loss". Polling loops must always be active and polling can miss state changes if they are

not present at the right place [Shan, 1989]. Consequently, if we are to interrogate such

sensors from a single computer, or robot cell controller, where each of a number of 1'0

lines are polled in tum, then it would be most economic to distribute the polling times in

accordance with the relative activity at each node. Now in most computer I/O systems it

is not practicable to alter the amount of time spent at each line. However, it is very

often the case that more I/O lines are available than are actually required. For example

in the case of a Puma 500 [Unimation, 1985] there can be up to 64 input lines. If we

are using only three sensors then it would be sensible to distribute the lines according to

the ratios of nodal activity.

Given 32 such lines and 3 sensors with the corresponding activity percentages of

45%, 39.4% and 15.6% for each of the three nodes it would be most efficient to share

the lines accordingly, ie., 28 lines for the sensor slat node n 2' 26 for sensor s 2 at node

n 4 and 10 for s 3 at n 5' This gives a greater probability of being able to act as soon as

a sensor change occurs. The alternative simple method would be to allocate one line to

each of the three sensors thereby utilising only 4.7% of the available 110 time. This

means that for 95.3% of the time the computer is looking at nothing!

Perhaps more important over a long period of usage is the 'wear and tear' to various

parts of the work cell. Those used more often are more likely to be subject to greater

strain and hence more frequent failure. The expectation of such 'high stress' points,

together with possible bottlenecks, is emphasised by the network flows.

4.4.3 Matrix Formulation.

In chapter 3 we found the transfer function of a flowgraph by using Masons theorem

or other flowgraph reduction techniques. This was then differentiated with respect to Z

and the resulting time average calculated from this expression with Z set to unity.

Likewise, but with S set to zero if the Laplace transform of chapter 3 were used.

Here the flowgraph will be put into transition matrix form before performing the

necessary algebraic manipulations. We will start with our usual single error recovery loop

of figure 4.7.

Figure 4.7 - Simple Error Recovery Loop.

o Z-4 o

The transition matrix A { 4 . 1 }

o o o

f h serl'es of {3.1}, the matrix A can be dealt with in the Returning to the use 0 t e power

same manner [Howard, 1971].

1 Z-4 0.7Z- 6

1 0.3Z- 3 1 0.7Z- 2 {4.2} B [I _ A]-'
1-0.3Z- 7

0 0 1-0.3Z- 7

Transfer funct ion B, 3
l 4.3}

65
...

This process is relatively straight-forward when done manually. Even large matrices

can be inverted without too much hard work by using recently devised techniques [Jeter et

aI, 1987]. Many forms of computer algorithm exist as standard methods for normal

constant matrix inversion [Monro, 1983]. Unfortunately the matrix of {4.2}, like most of

the matrices we will be using, is not a matrix of constant values but rather one oi

functions in Z. It is therefore essential that some other method be found for dealing \l,1th

matrices containing functions.

4.4.4 Matrix Derivatives.

We shall first state the general problem, and then
solve it for a particular special case. In so doing we
hope to illustrate the underlying concepts while
simultaneously avoiding inessential detail. The success
of the method in the special case then suggests its own
general izat ion. I t is interest ing to observe that in the
literature, for reasons of economy and mathematical
"elegance", such problems are usually presented in the
most general form that the authors can handle. Such
presentation often obscures the process by which the
solution was reached, leaving the reader with only the
answers and undue respect for the intelligence of the author.

R.B. Cooper (Introduction to Queueing theory).

Normally the differentiation of a matrix of the form of {4.2} is quite straight

forward. Brickell states:

For a general matrix B = [bij] whose elements are functions of t, the derivative

dB

dt

66

can be found by simply differentiating each element with respect to t [Brickell, 1 Q-::]. For

our purposes we simply substitute Z for t.

However, as pointed out in 4.4.3, solving this type of problem by digital computer is

not so easy. To introduce a non-differential calculus method for achieving the same result,

we must now take a closer look at the situation by returning to the example of our

simple building block, the single feedback loop.

(l-p)Z-a

L:\~---t.~-0
Z-b PZ-c

PZ-(b+c)

TF =
1 - (1-p)Z-(a+b)

dTFI
dZ Z-1-

P(1 - P)(a + b) + P(1 - (1 - P»(b + c)

(1 - (1 _ P» 2

P(l - P)(a + b) + P2(b + c)

p2

a + b
- a + c

P
(4.5)

We must now split our Z-function matrix into two seperate transition matrices so as

to acheive the same result as {4.5} without actually differentiating the matrix using

standard calculus.

The stochastic transition matrix:

o 1 o

Ap I-P 0 P

o o o

67

and the toll matrix:

o b o

a o c

o o o

Note that the toll matrix AT is not a transition matrix in the same sense as the

stochastic matrix Ap. This is because in AT a path having no toll is represented as J.

zero in the same way as the absence of a path is denoted. The toll matrix is often

simply a representation of inter-nodal time delay (or other cost).

Once again using {4.2}

1 1 p

-1 1 I-P 1 [I - Ap] p
p

0 0 p

Now introducing the technique of congruent matrix multiplication [Howard, 1971].

which is the result of the multiplication of corresponding matrix elements, for which the

operator 0 is used.

0 b 0 lip lip 1

-1
0 1/p-1 lip 1 AT 0 [I - Ap] a c 0

0 0 0 0 0 1

0 b/p 0

a/p-a 0 c { 4 . 6 }

0 0 0

Now the sum of all the elements of {4.6} gives us the same result as {4.5}

-1 a + b
L L (AT 0 [I - A P]) - a + c

j p

68

Returning to the example given previously with the probability and toll values of {4.3}.

Differentiating according to the form of {4.4}

dB 13 4.2Z- 7 + 0.21Z- 14

dB 13 4.2 + 0.21
9

dZ 0.49
Z-1

Again using the matrix method of {4.5}

o 4 o o 1 o

3 o 2 Ap 0.3 0 0.7

o o o o o o

o 4 o 1.429 1.429 1

-1
AT 0 [I - Ap] 3 o 2 o 0.429 1.429 1

o o o o

o 5.71 0

1.29 0

o

-1
[[(AT 0 [I - Ap])
j i

o

2

o

5.71+1.29+2

o 1

9

Now this provides us with a new tool for achieving the numerical equivalent of

differentiation of an error recovery loop transition matrix. Such a method is ideally suited

to implementation on a digital computer, in fact most matrix manipulations including

congruent matrix multiplication are available within many modern mathematical software

packages such as MATLAB [Moler et ai, 1986].

69

Care must be taken when using matrices of greater dimension than 3. To ensure the

correct topology, buffer paths must often be included. This is investigated more

thoroughly, with examples, in section 6.2.4.

4.5 Markov Processes.

The Markov property was first introduced in chapter 3.2 where it was defined as the

property of independance of past events. In the light of the other philosophies discussed

so far we now return to the Markov property in investigating the matrix representation of

digraphs. It should soon become apparent that the Markov property is one of the most

powerful tools for dealing with problems concerning chains of stochastic events. ~lany texts

exist on the principles of Markov processes and a basic knowledge would be useful as a

prerequisite to the rest of this work. However, it should be possible to follow the main

ideas without difficulty by reference to the Markov process nomenclature given in appendix

C, or to one of the texts listed in the references, particularly those by Howard.

4.5.1 The Umiting Matrix.

Given a transition matrix P representing a digraph, and a starting vector V 0' the

next state in a process is given by:

and this is true for all

For example;

let r· s
p

0.3

= y. P
1

provided the Markov property holds.

0.2

0.2]
0.8

0.7

0.3

70

{4.7}

0.7

if we start at node 1, Vo [1 0]

then the next state is V, [1 OJ [0.8 0.2]
0.3 0.7

[0.8 0.2]

and V2 V, P - [0.8 0.2J [0.8 0.2]
0.3 0.7

[0.7 0.3]

V3 - V2 P - [0.65 0.35]

V4 - V3 P - [0.625 0.375] ... and so on.

alternatively, we could say:

Vn - V pn
0 {4. 8}

After four iterations we have V 4 = [0.625 0.375]. Clearly, the probability vector is

converging. Howard [Howard (Vol 1), 1971] uses this example to show that the roots

(Eigenvalues) of the transition matrix P are the probabilities given by Vn when n

approaches infinity (the columns of POO).

ie., V- VP

which reduces to

hence Voo - [0.6

or [0.6
po:> -

0.6

v -1

0.4]

0.4]
0.4

0.2]

0.7

0.6, v 2 - 0.4

{4.9}

which is what {4.2} would eventually converge to with the above P and starting vector

pOO is known as the limiting matrix of a Markov process, and represents the

probabilities a process will converge to over a long period of time. In the well known

example of 'tossing a fair coin'. the limiting values would be 0.5 and 0.5.

71

Returning to our initial example of figure 4.1. Completing the loop v.ith a path from

nodes n 5 to n 1 to produce a closed system (the reasons for this will become apparent in

4.5.3) and putting this flowgraph into transition matrix form:

0 1 0 0 0

0.3 0 0.7 0 0

p 0 0 0 1 0

0 0 0.2 0 0.8

1 0 0 0 0

The 1 imi t i ng vector

[0.2247 0.2247 0.1966 0.1966 0.1574]

which is exactly our percentage flows found in 4.4.1 by simple (but lengthy) algebra.

The rate at which convergence occurs is determined by these probabilities. For two

nodes connected by paths of unity probability, convergence will never be achieved, instead

the process will continually oscillate. This is the only occasion a stochastic matrix can

represent a system which is conditionally unstable. In all cases where the probabilities

ca using a cycle to exist are less than unity, eventual stability is guaranteed. Where such

probabilities are relatively large, damped oscillation may occur and convergence may be

slow but it will always take place. Howard gives a thorough analysis of the factors

governing convergence in a markov process [Howard, 1971]. Another interpretation is the

definition: the maximal eigenvalue e, of a stochastic matrix A is one, ie., if and only if e

is an eigenvector of A corresponding to the eigenvalue one [Berman & Plemmons, 1979

(p49)].

Convergence is only possible if the transition matrix is regular. In fact, the definition

of a regular stochastic matrix P is that all the entries of some power pm are positive

[Lipschutz, 1966]. For non-zero convergence to be possible P must be closl.'li so as to

represent a process which repeats itself infinitely.

72

This act of closing the loop does not effect tha actual opera tion of the process as

the feedback path is of unity Probability and zero toll.

Calculating poo is a simple task for small equations where the roots can be found

easily or where convergence IS· rapl·d thereb 11· . I' 1· . Y a owmg successive mu tip JCatIcn by

computer. The alternatives usually involve finding the inverse of some matrix. ie ..

Given that P + p2 + p3 + ... + pro P[I_P]-l

multiplying through by P-l

1 + P + p2 + p3 + ... + pro-I [I - p]-l

P[1 [I - p]-l + 1

- [I - P] [I - P] -1 + 1 0

Fortunately for a stoachastic matrix P, this is only possible where [1 - P] -1 exists -

in all cases where poo is not zero, [1 - P] is singular! This can be seen from the above

if one considers poo (and hence all pn, where n < 00) to be finite. In which case I + P

+ P 2 + P 3 +... will approach infinity. Consequently, poo must be made to approach zero.

ie., P must be regular.

If the normalised Eigenvector matrix T of transition matrix P can be found, then:

and

00
n (T-1 P T)

n-1

A proof of this is given by Eisenman [Eisenman, 1963] together with an example.

Also given is the following simple result:

7.1.

For a two event Markov chain

[: I-a 1 p

1-b
where: a < 1 . , b < 1.

thus: I im [: I-ar

- a [:
I-a 1 1

~ I-b b + 1
1-a

The situation becomes increasingly complicated for Markov chains representing 3 or

more events.

4.5.2 Ergodic Chains.

The definition of an ergodic state of a Markov chain is defined as a state which is

both persistent and aperiodic. Wilson [Wilson, 1979] gives the following example: n people

sat round a table throwing a dice. If the dice is I, 3 or 5 the player must pass the dice

one place to the left. If 2 or 4 then two places to the right. If a six is thrown, then the

dice must be thrown by the same player again. This produces the flowgraph of figure 4.8

(a) with three players (n = 3), and figure 4.8 (b) for four players (n = 4), together with

their resultant transition matrices.

6

1, ,5

6 2,4

figure 4.~ (a) - Process for n - 3,

74

p 1
6

123

3 1 2

231

6

o
6 6

Figure 4.8 (b) - Process for n - 4.

p 1
6"

1 023

3 1 o 2

2 3 1 o

023 1

Note that each diagonal of the transition matrix P contains the same Pij values.

According to Kelly, if the limiting matrix pn converges as n approaches infinity, then the

process is ergodic [Kelly, 1979]. If poo has no zero entries, then this is only true for

ergodic processes containing only one cyclic class, ie., regular Markov chains [Kemeny &

Snell, 1965].

4.5.3 Regular Chains.

A regular matrix is defined as: a non-negative square matrix P where there exists J.

natural number k such that pk is a positive matrix (Iosifescu, 1980].

Romanovsky [Romanovsky, 1970 (p45)] with regard to the elements of the matrix P-"

states: "when all of them are non-zero, the chain Cn is called POSITIVELY REGULAR,

and COMPLETELY REGULAR, if, in addition, they are all equal to each other, and,

consequently, equal to lin". Such a transition matrix P is said to be POSITIVELY

REGULAR or COMPLETELY REGULAR accordingly.

The limiting· matrix poo of figure 4.8 (a) converges to zero and is therefore not

regular. That of figure 4.8 (b), on the other hand, converges to a constant matrix with

all elements equal to one quarter and is consequently completely regular.

In chapter 3 an example in section 3.7.1 was given in which the output of the

network was fed directly back to the input to enable us to find the variance of the

system. This was necessary to make the transition matrix REGULAR. It will now be made

apparent why!

Using the example of fig. 4.6 we have the transition matrix P.

0 1 0 0 0

0.3 0 0.7 0 0

p 0 0 0 1 0

0 0 0.2 0 0.8

0 0 0 0 0

The charcteristic matrix

1.4286 1.4286 1. 25 1. 25 1

0.4286 1.4286 1. 25 1. 25 1

[I _ p]-l 0 0 1. 25 1. 25 1

0 0 0.25 1. 25 1

0 0 0 0 1

can be found easily.

76

However, the limiting matrix po:> ~ O. This is because the transition matrix P is not

regular. To make P regular we must close the loop as was done in the example of 3. '7.1

shown here in fig. 4.9.

0.3 0.2

Figure 4.9 - Closed Double Loop Flowgraph.

Consequently

0 1 0 0 0

0.3 0 0.7 0 0

P 0 0 0 1 0

0 0 0.2 0 0.8

1 0 0 0 0

giving a I i mi t i ng matrix

0.2247 0.2247 0.1966 0.1966 0.1573

0.2247 0.2247 0.1966 0.1966 0.1573

00
0.2247 0.2247 0.1966 0.1966 0.1573 P

0.2247 0.2247 0.1966 0.1966 0.1573

0.2247 0.2247 0.1966 0.1966 0.1573

h h . t· matrl'x [I - P]- 1 is now singular. Unfortunately, t e c aractens IC

77

To conclude: if we wish to find the limiting matrix of some Markov process, the

transition matrix must be regular and hence the flowgraph must be of a closed system so

as to represent an infinitely repeated process. On the other hand, if the system transfer

function is required, then the flowgraph must not be closed otherwise [I - P] will be

singular. It is the open system we will use next to find the variance of a Markov process

without recourse to the use of differential calculus by the methods introduced in section

3.7.1.

4.5.4 Variance.

As implied in section 4.1.2, all transition matrices can be expressed in canonical

form. By putting a Markov process transition matrix into canonical form Kemeny & Snell

provide a means of separating the parts of the process which influence the variance from

those which do not.

In canonical form, the partitioned transition matrix

P
(4.10)

Where I represents the absorbing states, R the transient states leading to absorbtion,

p the transient states not leading to absorbtion and 0 is null.

The characteristic matrix F
(4.11)

and the variance matrix V F[2 DIAG(F) - I] - (F 0 F) {4.12}

Note the similarity to the non-matrix form of variance given by {3.13} and {3.14}.

78

Performing the same analysis on the stochastic transition matrix p. of example ')

section 3.7.2) gives the following results.

p

1

o
o

Us i ng {4. 11 }

F [
1.43 0.43

0.43 0.43

o 0

and from {4.12} the variance

v
[

00.
612

0.612

0.612

0.612

o

1

1

1 1

~ 1
n n

Now the sum of all the elements of V is 2 2 V(i.j)
i-I j-1

2.448

(see

which is exactly the variance calculated in example 2 of section 3.7.2 using differential

calculus.

4.5.5 The Reverse Markov Chain.

According to the Kolmogorov criterion [Kelley. 1979] a Markov chain is reversible if

and only if its transition probabilities satisfy:

P(I.2) P(2.3) P(n-l.n) P(n.l) P(l.n) P(n.n-I) P(3.2) P(2.1)

for nodes l ... n. n finite.

A reverse form of the index matrix I, Whl'ch for want of a better name I will call

the mirror matrix M, is useful in cases where the above applies.

o 0 1
o

M {4.13}

o
1 0 0

M simply performs a rotation of whatever matrix it operates on. To reverse a matrix R.

R(reverse) (4.14)

4.6 Summary

In this chapter a selection of matrix techniques useful for obtaining statistical data

from the flowgraphs of workcell networks have been discussed. The list is by no means

complete and a whole range of matrix operations exist in other texts (with varying

relevance to flowgraph theory), too numerous to cover here [Gonnet, 1984].

A new method of achieving the same result, but without the use of differential

calculus has been introduced for finding the derivative, and hence the flows and average

tolls of a network in matrix form. This is most useful when the necessary calculations are

to be performed by digital computer, an almost certain criterion when the networks, and

resulting matrices become large.

These techniques not only give us the necessary tools for carrying out simulation of

robot workcells but also, as will be shown in the next chapter, the ability to program at

object level taking account of sensor data in real-time.

~o

5. INTERACfIVE SENSORY SYSTEMS

Robotics is that field concerned with the intelligent
connection of perception to action.

Mike Brady.

All robot systems incorporating any form of error recovery must interact with sensors

interfacing with the physical environment. However, sense parameters manifest themselves

in different forms at different levels of programming, just in the same way a program on

a conventional computer has a different representation to the user at the terminal than do

the corresponding logic signals experienced by the CPU.

Nilsson separates errors into two distinct types: failures and surprises [Nilsson, 1973],

and uses demons to watch for the surprises. This assumes that failures are expected errors

and surprises are unexpected errors. A demon is a software surveillence device which

'wakes up' on the occurrence of a particular action or statement, then watches out for

further information to verify what action to be taken [Le Beux, 1984]. Similarly, Singh

and Hindi call error occurrences "scheduled" if they occur as part of a planned sequence,

and "conditional" if they are triggered by events [Singh & Hindi, 1989]. For example the

usual PICK, TRANSP and DROP routines used in the examples of chapters 2 and 3 are

"scheduled" whereas, the error recovery paths are "conditional". Further categorization of

errors is attempted by Srinivas (one of the original researchers in the field of robotic

error recovery) into four basic types: operational errors (position, servoing etc);

information errors (manifestation of operational errors); precondition errors (eg.

non-existence of object); constraint errors (eg. object faulty) [Srinivas, 1976]. Using this

classification a failure tree can be used to represent all possible explanations of failure.

"Failure reason analysis" can then be used to limit this set to only those which are

possible or likely to occur [Srinivas, 1978].

81

Kamel introduces an interesting philosophy 10 comparing the games theoretic approach

to the concept of error recovery. Here, the planned task performed by one player to

achieve a specified goal is hindered by the action of an opponent in the form of

unpredictable errors [Kamel, 1988]. This predictive/reactive compromise can be modelled

by a system containing a finite set of possible states and is thus ideal for the simulation

of error recovery strategies.

82

5.1 Robot Programming Levels

I hate definitions.

Benjamin Disraeli.

Over the past few years a number of attempts have been made to formulate robot

programming levels [Gini, 1987], [Rodighiero & Canciani, 1987] with varying degrees of

success. In most cases TASK, OBJECT, ROBOT (or manipulator) and JOINT are agreed

as the four levels of robot programming. All the above authors agree that task level

programming is still a research topic and that no commercially available task level

programmmg system yet exists.

Attempts at specifying such task orientated models have been recently made [Kumpel

& Rosa, 1987], whilst Rodighiero & Canciani define such a langauge called IPL (Implicit

Programming Language). This does not however, appear to be a true task level

programming language, but lies somewhere between Gini's "object level" and the

conventional robot level. Lyons [Lyons, 1987] considers most conventional robot

programming languages to be "just cosmetic alterations on a general purpose programming

language" and introduces 'RS', a system computationally equivalent to PETRI nets.

However, in all cases the definition of the forms in which the sensor parameters are to

appear at these different levels have been omitted.

What must be done is to determine at what levels programming can be implemented

practically and then choose that level most suitable for the given requirements and physical

constraints. The following definitions have been formulated to include both the robot

programming levels and the corresponding sensor representations at these levels. The

sensor level descriptions are included within parentheses.

83

T ASK level (CAUSE level)

Complete task routines, ie., 'Assemble Part'

(Reasoned error causes, ie., 'Bin empty')

OBJECT level (DECISION level)

Program segment routines, ie., Robot program subroutines such as PICK, TRANSP, DROP

etc.

(Results of sensor merging and fusion, ie., A n B U (A I n C), which appear as Boolean

decisions.)

MANIPULATOR level (INFORMATION level)

Robot programming language commands, ie. , VAL II commands such as MOVES POSl,

APPRO POS2 etc

(Actual sensor outputs at programming language level, ie., SIGl, SIG2 etc)

JOINT level (DATA level)

Lower level programming, ie., Geometrical translations as would be carried out with a

lower level programming language such as PASCAL or C. Simple high level robot

programming language commands such as DRIVE 1,20,50.

(Direct sensor outputs, ie., Binary sensor data, analog output levels etc.)

84

At object level, sensor data is in the form of decisions which may be the result of

sensor fusion, knowledge based reasoning etc. This allo'WS object level programming to be

conducted without any consideration of actual sensor implementations. It is not certain how

much transparency may be needed. From a systems view point, each level should be

completely independant [Martin, 1965]. However, from an engineering angle, the ability to

see through to details of lower levels from higher ones, or even to access them is often

desirable. For example, the ability to program at assembly level from within a BASIC

program [Coll, 1984] can be a very useful attribute.

Nevertheless, assuming the former, a process implemented at the object level must be

completely independant of the robot level commands in the same way that a conventional

programming language is independant of (as far as the user is concerned) the processor

assembly code into which the programming commands are compiled. Similarly, sensor data

at the object level must be in the form of actual decisions as the result of an overall

sensing requirement, not the outputs of individual sensors. For example, there may be

several sensors all of whose outputs must be combined to give a decision as to the success

or failure of some operation. The object level is concerned only with this final decision

and not the individual measurands themselves.

Malcolm & Fothergill use the analogy of machine code for joint level, assembly

language for manipulator level and that of a high level language such as Pascal or C for

object level programming [Malcolm & Fothergill, 1987]. Task level differs in that it

contains no direct reference to spatial relations and as a consequence may vary in degree

from a set of operations such as 'Pick Object', 'Move Object' and 'Place Object' to a

complete macro such as 'Build Subassembly'. The one common factor is that it contains

no explicit reference to actual geometric or sensor data. This makes task and object level

problems ideal for expressing in flowgraph form.

85

At this stage it should be noted that the term "object level" is sometimes used to

refer to a level of computer programming (object oriented programming) rather than one

pertaining to the physical robot world of objects. For example, Stefik and Bobrow define

an object as an entity within a program which combines both procedures and data [Stefik

& Bobrow, 1986]. Whereas in Gini's "real world", an object is a physical device and an

object level command consists of a procedure carried out on a physical object using its

corresponding geometrical deScription. This is in many respects simply a different

interpretation of the same thing.

86

5.2 Sense Parameters.

The child does not know for a long time how to
distinguish a cat from a dog; only when he happens to
see them both side by side or when their images become
customary can he distinguish between them.

A. Bogdanov (1873-1928).

Apart from the choice of the language for controlling the robot actions there is the

manner in which the system is driven by the chosen algorithms. It is usual to have a set

of procedures which are called by a main program in a set sequence to achieve a number

of tasks in a particular order. Sensing and decision making is done between the calling of

procedures In the main program. This is quite satisfactory where the number of sensors

and/or levels of error recovery are small, but for more complex systems it becomes

clumsy.

In this chapter continuous sensing will be distinguished from discrete by the fact that

continuous means that the sensor(s) in question are monitored continuously (though in

practice this will usually mean they are interrogated at regular intervals) rather than at the

beginning and/or end of a program step to determine the next program step. This must

not be confused with the definitions of discrete and continuous as given in some other

texts [Johnson, 1986] where discrete sensing is that required to determine when an

actuator has reached a certain point and continuous sensing that where the sensor would

be used to maintain a specified trajectory or continuous path. The difference in

definitions, though subtle, is important and should not be overlooked.

In discrete sensing the required parameter may be sensed continuously, but

interrogated only at the required program stage. In a continuously sensed system, the

workcell/robot controller is informed the instance the change in the sense parameter

occurs, allowing the controller to act immediately.

87

As pointed out in section 2.2.2, under these conditions, the sense parameter is no

longer the sensor measurand itself but the existence of change in the measurand, either

with respect to time or some other pre-determined reference. This is kno\l,n as sensor

transition driven programming. [Monkman, 1989].

Given a binary sensor, the sense parameter under continuous sense conditions is the

change in logic level. If used correctly', this attribute can have considerable advantages. A

rather inefficient approach would be to sequentially interrogate the sensors continuously in

an attempt to detect changes in sensor state (as was considered in 4.4.2). A more astute

idea is to let the sensors interrupt the controller in the event of a change in any of the

sense parameters. The controller can then interrogate all the relevant sensors once and act

accordingly.

88

5.3 Interrupts

These are available on all computers but usually accessible to the user only for very

drastic actions like 'reset', though lower priority, or maskable, interrupts are sometimes

available to the user via some form of inpuUoutput mechanism, ie. the 'break' key on J

keyboard. In the case of robot control computers, higher level interrupts are rarely (if

ever) accessible to the user. One possible exception is the ASEA controller which

incorporates up to 6 interrupts [ABB, 1987] though this is a robot system which is PLC

driven and has no high level language facility. Fortunately most languages have some form

of software capability which has the same effect (though without the instant response of

hardware interrupts) available through the I/O system, for example the 'REACTI'

command in VAL [VAL II, 1984], or MONITOR in AML [IBM, 1981]. In both cases a

window time of approximately 20 mS is required, which is not particularly fast when

compared with normal robot joint operating velocities.

In the early days of process control languages C0RAL66 was developed for real-time

applications, whilst at the same time providing a structured programming environment with

all the usual high level features [Woodward, 1970]. However, it was not until the advent

of the real-time language PEARL that a process control language capable of handling

interrupts directly became available [Werum & Windauer, 1982]. PEARL also has parallel

capability. That is to say, tasks may be executed concurrently, either synchronously or

asynchronously. Task priorities and interrupts regulate the co-ordination between task

blocks (processes). Moreover, interrupts are simply included as variables in the source code

and require no other special handling features.

It is interesting that many of the features regarding real-time operation and

concurrency which have been part of process control languages are just now starting to be

included in robot programming languages. Some standard high level languages also possess

these features, resulting in recent suggestions as to their use within robotic programming.

89

Modula-2, unlike its predecessor 'Concurrent Pascal', provides facilities for handling

priority interrupts. At joint level there is the need for matrix multiplication where the

independance of the result of each row by column multiplication mean that the operations

must be done simultaneously [Dyer, 1985]. This is equally applicable to object level

programming. Also, unlike most implementations of Ada, Modula-2 is intended for real

time program execution interactively with peripheral devices. This together with its parallel

ability makes Modula-2 possibly the only viable non specialist high level language suitable

for robot programming [Zwarico, 1985].

A new system called DM2 (distributed modula-2) has recently been developed for use

with networked, heterogeneous, multiprocessor applications [Mellor, 1987]. This has the

advantage of not requiring shared memory or shared variables between processors, ie.,

configura tions in which each workcell has its own (possibly different) processor.

In describing 'non-synchronous' sensing Milovanovic [Milovanovic, 1987] introduces the

concept of using interrupts directly with the main CPU. Non-synchronous sensing basically

means that the process in hand can be interrupted whilst it is in progress without an

explicit I/O request being made first (continuous sensing).

All interrupts have a set priority as do many of the computer's executable tasks, for

example the memory refresh routines will have a higher priority than most interrupts.

Some routines may have a higher priority after execution has commenced (but before it is

finished) than when they are awaiting execution. Returning to the concepts of queueing

theory we have what are known as 'locking systems' [Baccelli, 1987]. In a queue system

most simple customers are served by each server in turn (a serial process). However t there

is another type of customer: that which requires the service of all servers simultaneously

(a parallel process). Such a system is known as a locking system. This is similar to a

maskable interrupt in that it takes priority over any new customers but has a lower

priority than those customers already being served and therefore must wait until all the

servers are free.

90

Since the advent of so called "intelligent" sensors such as line scan cameras, mulLiple

axis force sensors and other sensors which include a high degree of signal processing (and

possibly such features as self-calibration) within the sensor device, the use of serial lines

has become common. This levies a severe time penalty between an observed event taking

place and the controller receiving the observation data. Fortunately, such sensing systems

are usually required to be interrogated after the receipt of a signal from a more basic

(and somewhat faster operating) binary sensor. However, not all such devices are

constrained to using serial lines for communication. Direct connection of sensing devices to

processor memory (DMA devices) provides a more elegant and faster means of data

acquisition [Milovanovic, 1987].

91

S.4 Sensor Driven Programming.

He who runs the information runs the show.

Joseph Goebbels.

Simple sensor based control has been around for many years now, especially where

only local sensing, feedback and correction are required. For example, during the insertion

of electrical components into holes during printed circuit board assembly [Karkkainen et ai,

1988].

Considerable problems exist in implementing sensor driven programming using more

complex non-binary sensors such as vision systems [Williams et ai, 1986]. This problem is

eliminated at object level if the definitions of 5.1 are observed. This is because, at object

level, decisions made at nodes of the operational flowgraph are based on Boolean data

only. Whether this comes from sensor outputs which have been fused or merged to

produce simple binary decisions, or from an expert system or AI and knowledge base IS

irrelevant when programming at object level.

On a more global scale, sensor driven programming implies the total control, or even

generation, of programming strategies by sensor output data. This is refered to by

Chapman & Agre as "reactive planning" [Chapman & Agre, 1986]. Taken to its extreme,

reactive planning would appear to obviate the need for a goal plan. Unfortunately, the

inherent inability of reactive planning systems to "think-ahead" renders this approach

unreliable. [Firby, 1987]. Where an interrupt (or similar reaction) facility is available,

sensor transition driven programming can be implemented [Monkman, 1989].

92

5.5 Object Driven Programming.

This is a rather obvious but little used concept in robot programming which concerns

sets of autonomous workcells rather than the operation of individual cells themselves. It

should not be confused with the term "Object level programming" which pertains to a

level of software implementation as described in 5.1. We shall start with a rather simple

hypothesis:

"All geometric information concerning an object is contained wholly within the

physical frame containing that object"

This may seem fairly obvious but its usefulness is often overlooked. For example,

where one autonomous workcell passes an object directly to another autonomous workcell,

provided the timing constraints are correct, the only required communication between cells

is the object itself. Only under error conditions may other communications be required,

like a 'wait I instruction from the second workcell to the first if either an error occurs at

the second or the timing is incorrect allowing the first workcell to run faster than the

second. Otherwise no other information is needed. The second cell does not usually need

to know what the first is doing. The only information the second (or subsequent) cell

requires is to know that an object has arrived and its relevant geometric data, and then

only when its ready to act. If another object arrives before the present operation is

complete then it must wait until it is required. Once again we Ire back to the philosophies

of queueing theory.

With regard to geometric information on the object, ie., orientation, position etc.,

this is usually only required at the position of entry into the cell. There are basically two

methods by which this information may be acquired.

93

1) By multiple sensor analysis. For example a vision system and computer analysis :,)

determine the required geometrical data. This has the disadvantage of time and cost.

not to mention the problems associated with lighting and other environmental effects.

2) By mechanical compliance. If the position and orientation are known to be incorrect

by an unknown amount but within a definite range (ie., by being purposely deposited

some distance from the desired point) then the object may be moved by the next

operation so that it will always end up in the correct position and orientation.

This second technique is especially applicable to solid objects. One good example of

this is in the use of vibratory feeders, where objects are taken from completely random

positions and orientations and then forced to comply with a set of constraints causing

them to be repositioned as desired [Boothroyd et ai, 1978]. Another is the manipulation

of objects without prehension [Mason & Salisbury, 1985], ie., the movement of rigid

objects by means of compliant or non-rigid grippers. Conversely, the principle has also

been applied to non-rigid objects [SERC, 1988] where fabric panels were made to fall

into a rigid robot gripper in the form of a shovel or scoop. As the fabric slips onto the

gripper one axis is aligned against the gripper rear, the second axis being aligned by

running the object against a compliance so as to slide it into the correct position verified

by a single sensor.

5.6 Summary.

Choice of programming structure is highly dependant on a number of factors. The

number of sensors available limits the degree to which an error recovery implementation

can be acheived. The method by which the sensors can be interrogated influences the

manner in which the execution of an algorithm which includes error recovery can be

implemented. For example, it is not possible to implement a sensor transition driven

philosophy with only simple discrete sensing.

Continuous sensing, particularly where interrupts are available, provides a faster

response in detecting any error occurrence. However, how the error is dealt with

thereafter, and within what timescale, depends largely on both the available programming

structure and the physical configuration of the cell.

Before any serious programming can be considered a hierarchical system of levels

must be employed. This not only has all the usual advantages of portability and readability

but also provides a framework from which any number of individual work cells may be

controlled. This chapter has seen the formulation of a new description of robot

programming levels, which also defines the type of sensor data to be used at each level.

Careful use of the object driven techniques outlined will reduce the necessary

communication overhead between levels.

95

6. PROGRAMMING AND SIMULATION.

Coming events cast their shadow before.

Goethe.

This section is not intended to give an in-depth analysis of present day robot

programming languages. Such studies already exist [Bonner & Shin, 1982), [Gruver. 1983),

[Gini & Gini, 1984] and more recently [Blume & Jacob, 1986], also with interest

pertaining to parallel processing languages [Zwarico, 1985]. Moreover, the intention is to

provide a view of the present "state of the art" of robotic systems programming. \lany of

the short comings associated with current programming techniques are illustrated and the

ground prepared for fresh approaches based on network planning, sensing and error

recovery.

Critical path analysis will not be considered in any depth as its relevance to our task,

though strong, is strictly limited. For acyclic networks critical path analysis is examined

quite thoroughly by Martin [Martin, 1965] who gives a number of useful references in this

respect. More recently, optimisation of PETRI nets with the object of finding the time

optimal path, is considered by Freedman & Malowany using PROLOG [Freedman &

Malowany, 1988]. With regard to digraphs, Grimaldi dedicates a complete chapter to the

subject of shortest path algorithms using maximum flow/minimum cut techniques. These

are included along with a number of other optimization topics [Grimaldi, 1989].

96

As a result of the work done on queueing theory, a considerable number of computer

simulation packages already exit such as HOCUS [HOCUS], SIMSCRIPT [Markowitz, 1979]

and SIMIAN (based on IBM's GPSS) [Open University, 1982] to name but a few. Taha

[Taha, 1987] gives an extensive resume of simulation languages and their uses, including

the above and many more. In most cases a set of resources (entities) with characteristics

(attributes), such as time, are introduced into the model and various statistical calculations

made, such as correlation of data. Most packages have a number of statistical probability

distributions such as Poisson, Normal, Binomial etc., according to which entities can enter

and leave the model. A selection of relevant probability distributions are given in appendix

D. GERT has a suite of programs written in FORTRAN for simulation purposes [Pritsker,

1968].

Means by which Petri nets can be converted into executable code for simulation have

been around for some time. One method uses a simple character string language APN to

translate into a procedural language called XUl which was developed specifically for the

purpose of directing the activities of a collection of automata engaged in the firing of

anotated Petri nets [Nelson et aI, 1983]. This is then translated into PUI and PUS for

compilation and execution. Though XUl holds the parallel processing group delimiters,

these are not compatible with PUI and PUS (FORTRAN type language constructions) so

only serial execution is possible. This long-winded set of computing processes has largely

been replaced by more succinct and user-friendly languages such as GSPN [Chiola, 1987],

but it demonstrates the complexity of converting mathematically intractable graphical

descriptions into executable computer programs.

More sophisticated simulation packages are presently becoming available, the most

recent being STEM [Popplewell & Jiao, 1989]. This contains a number of options allowing

the user to specify Petri nets, flowgraphs etc., with the ability to break down the events

into trees, visualise the flow of tokens etc. Like most such systems, STEM is a straight

simulation algorithm rather than a mathematical analysis package.

97

q

Looking to the future, ideas for the full integration of simulation packages \Io1th large

databases are beginning to appear. SIMPRO is a computer simulation and planning system

which is intended to be integrated with a factory database when finally implemente.:1

(sometime in 1990 according to INPRO). The graphic language (GBS) consists of a net

editor and a net simulator to handle advanced Petri net models. GBS consists of several

modules of modula-2 which may be called for each Petri net firing process. This provides

the emulatory simulation for which several stochastic distributions are available.

[Weissenborn, 1989].

A contrast is drawn between two approaches to simulation of robot factory automation

systems by Esposito & Vento [Esposito & Vento, 1987]. On the one hand specialist

simulation languages exist, as already mentioned, which require skilled operators. On the

other hand more sophisticated simulation packages are emerging which tend to de-skill the

operation to some extent, but at the expense of severely limiting the field of operation.

98

6.1 Conventional Structures

Language is the most human thing about us: In a
sense, the invention of language made us human: but
language, perhaps for the same reason, is the greatest
expression of human fidelity, or if you like, original
sin.

C.P. Snow, 1970.

With the advent of computer languages specifically designed for use with robots, such

as VAL, much of the work required for general robot control, ie. the calculation of

trajectories, driving of joints, storing and retrieving of locations etc, has been taken care

of within the primitives available to the user.

However, this does not mean that conventional languages, such as PASCAL, FORTH

etc, are unsuitable. Their use though, is usually restricted to the less expensive breed of

robots where higher level language versions either do not exist or are too expensive to

implement. The main application of conventional languages, with regard to robotics, is In

simulation where something more general purpose than a dedicated simulation language is

desirable. Boucher [Boucher, 1986] uses BASIC for simulation in robotic assembly

feasibility tests. Attempts have recently been made in adapting the general programming

and simulation language SMALLT ALK for robotics [LaLonde et aI, 1987]. This combines

both the facilities of simulation and robot control within one programming domain. As

outlined in chapter 1, this is essential for any complete planning and execution system.

Choice of programming structure is highly dependant on a number of factors. The

number of sensors available limits the degree to which error recovery implementation can

be acheived. The method by which the sensors can be interrogated influences the manner

in which the execution of an algorithm which includes error recovery can be implemented.

For example, it is not possible to implement a sensor transition driven philosophy ',}lith

only discrete sensing.

The flowgraph notation used may remain essentially the same whether discrete or

continuous sensing is to be employed. However, the choice of use of notation (acti\e path

or active node) is dependant on a number of factors (as pointed out in chapter 2)

including the sensing configuration used. Flowgraphs easily map into matrices, and for

those familiar with the computer programming language APL [Katzan, 1970], programming

with matrices will seem an obvious step forward.

The advent of parallel processing has provided methodologies capable of expediting

the manipulation of matrices. Furthermore, this allows the simultaneous calculation of all

matrix elements yielding a whole matrix as a single result instead of as a string of serial

values emerging at different times. This has a considerable bearing on systems which are

to operate quickly and in real time. This will be discussed in greater depth in section 6.3

of this cha pter .

100

6.2 Simulation and Modelling.

If a man take no thought about what is distant,
he will find sorrow near at hand.

Confucius.

So far we have discussed the use of Markov chains in producing statistical data on

the operation of a given set of rooot operations using known times and probabilities. To

enable a proper simulation strategy to be implemented we must first define the variables

to be used:

1.) An m by m toll matrix T, where Tij is an operation routine toll.

2.) An m by m stochastic matrix P, where Pij is a sensor based decision

probability.

3.) A flow matrix F, such that F = [I - prJ

4.) A time average matrix A, such that A = T 0 F

5.) A variance matrix V, such that V = F (2 DIAG(F) - I) - F 0 F

6.) An m by m routine matrix R, where Rij is a program operation routine.

7.) An m by m sensor matrix S, where Sij is a sensor based ooolean decision.

8.) A process vector UQ • such that
m

Un+, - INT(~ (Un (R 0 S»)
j-l

101

9.) A Mirror matrix M, such that a Markov chain matrix R of executable functions.

be reversed by the operation M R T M

In all cases denotes the matrix row, whilst j denotes the column.

may

For the purposes of the software the operation of 0 between a string an a boolean

variable yields a boolean. ie., the syntax is: <string> 0 <boolean > ~ < boolean>

It will next be shown how the Markov chain can be used, not only for simulation

purposes, but also as an object level programming technique.

6.2.1 Object and Task Level Programming.

As mentioned in chapter I, the combining of simulation and robot control functions

within the same programming environment has some distinct advantages over the use of

separate software packages. This section deals with a new object and task level

programming philosophy which is inherently usable for both off-line simulation and on-line

real time robot control.

Taking the same variables defined In section 6.2 for the purposes of off-line

simulation, we now have the routine matrix R as a matrix containing actual robot control

program routines instead of operation tolls, and the sensor matrix S, as one containing the

actual Boolean decision values (either directly or as a result of some sensor fusion done at

manipulator level) rather than their respective outcome probabilities.

102

Using exactly the same matrix manipulation techniques as for simulation. \I.e cJn now

actually control our robot simply by mUltiplying the appropriate vectors 3.nd matrices.

Returning to a simple example of the kind first introduced in chapter .., and its

corresponding flowgraph as shown in figure 6.1. The boolean decisions Jre denoted b\

POG and its complement, where POG is a simple anagram for "Part On Gripper".

REPICK REDROP

REPICK

REPEAT

Figure 6.1 Simple Pick and Drop Example.

From this flowgraph the usual matrices can be derived for times and probabilities, or

in this case for routines and sensor values.

0 PICK 0 0

R
REPICK 0 TRANSP 0

REPICK 0 0 DROP

REPEAT 0 REDROP 0

0 1 0 0

S
POC 0 POC 0

POC 0 0 POC

POC 0 POC 0

Given a st art i ng vector Ua [1 0 0 o]

the next vectors: U, Ua (R 0 S)

U2 U, (R 0 S) ...

and so on.

ie. Un+, Un (R 0 S)

103

During program operation, the Routine matrix R will remain the same and only :he

Boolean Sij values in the sensor matrix will change in accordance with the corresponding

sensor outputs. It is these sensor values which will determine the run time operation of

the program.

The use of this method in both simulation and robot programming is not restricted to

single robot operation but can be extended to multiple parallel processes as the next

examples show.

Using the f10wgraph of figure 6.1 again, but this time assume we have two robots

operating within the same cell, one just about to start a PICK operation and the other

commencing a DROP operation. hence the starting vector is:

U o = [1 0 1 0]

are Slight modification is required to S to make the sensor results unique. These

likely to be a result of sensor fusion and are therefore given relative to a position in the

f10wgraph rather than being robot specific.

R

S

o
REPICK

REPICK

REPEAT

0

POC 1

POC 2

POC 3

PICK

o
o
o

1

0

0

0

o
TRANSP

o
REDROP

0

POC 1

0

POC 3

104

o
o

DROP

o

0

0

POC 2

0

Suppose the PICK operation performed by the first robot is sucesseful, but the DROP

operation carried out by the second robot fails. All the POG elements of S \l.ill have

Boolean value 1, hence,

U1
[1 0 1 o]

[0 1 0 1]

0

0

0

0

o
o
o
o

PICK

0

0

0

PICK

o
o
o

0

TRANSP

0

REDROP

o
o
o
o

0

0

DROP

0

o
o

DROP

o

Now if a second failure occurs for robot 2 while the first robot is successeful again,

then robot 1 is likely to catch up with the second robot. This can be seen if we take all

the POG values as 1 once again to find U 2'

[0 1 0 1] o
o
o
o

o
o
o
o

PICK

o
o
o

o
o
o
o

o
TRANSP

o
REDROP

o
TRANSP

o
REDROP

o
o

DROP

o

o
o
o
o

Now we have two operations in one column of U. This denotes simultaneous

realization of the same node in the system flowgraph giving a resultant U" of:

U
2

= [0 0 1 0]

105

Where more than one robot is operating this can mean collision! Of course, this

assumes that each of the operation times of figure 6.1 are all equal and are execu:ej

simultaneously. Where this is not the case, the process is no longer strictly \1arko\lan but

is known as a semi-Markov process. That is to say, the times for each action are no

longer all equal and unity but are dependant on the action being executed, even though

the probabilities of execution may remain constant and independant (forming an embedded

Markov chain). Now, each robots own set of matrix operations must be performed

independantly and continuously compared to detect simultaneous realization as the following

example illustrates.

Adding the relative times for each operation, in brackets after the routine name, to

give the flowgraph in figure 6.2.

REPICK(l) REDROP(l)

PICK(4)

POC

REPEAT(2)

Figure 6.2 - Simple Pick and Drop Example with operation times.

For the first robot we start with the PICK operation again;

U 1 (1) [1 o o o] o
o
o
o

PICK(4)

o
o
o

106

o
TRANSP(2)

o
REOROP(1)

o
o

DROP(3)

o

0 PICJ«4) 0 0
0 0 0 0
0 0 0 0
0 0 0 0

and for the second we commence with a DROP once more;

U1 (2) - 0 0 1 o] 0 PICJ«4) 0 0
0 0 TRANSP(2) 0
0 0 0 DROP(3)
0 0 REDROP(1) 0

0 0 0 0

0 0 0 0

0 0 0 DROP(3)
0 0 0 0

So U1 (1) - [0 1 0 0

and U 1 (2) = [0 0 0 1]

Now supposing as before, the first robot experiences no errors but the second has to

repeat the DROP operation. Table 6.1 shows the sequence of events for each step in

time.

Table 6.1 - Time & Vectors for two Robots.

START Un (1) NEXT END START Un (2) NEXT END
TIME ROUTINE TIME TIME ROUfINE TIME

0 1 000 PICK 4 0 001 0 DROP 3
3 000 1 REDROP 4

4 o 1 o 0 TRANSP 6
6 o 0 1 0 DROP 9 6 001 0 DROP 7

What table 6.1 reveals is that the DROP procedure is being executed by both robots

simultaneously where the start and finish times overlap. ie., when Un(1) = Un(2),

107

which is when time, tC(4,7] n tC [6,9]

ie., between 6 and 7 time units from the start.

This result can be simulated as has been done above. However, recourse to section

4.5.2 and the definition of an Ergodic Markov chain should convince the reader that if

physical contact is at all possible, then simultaneous realization is an eventual inevitability

in a stochastic system containing two or more independantly operating robots. The

simulation merely provides a means of estimating how, when and where.

6.2.2 Readability

And we should keep in mind that a program is
worthless, unless it exists in some form in which a
human can understand it and gain confidence in its
design.

Niklaus Wirth, Programming in Modula-2.

The use of a matrix to represent an algorithm will now be compared to the more

familiar format of a string of computer program statements. Figure 6.3 shows the

flowgraph for a simple pick and place routine with an inspection operation.

108

DI SCARD

1

• O--~-----+--~ PICK dl c---~--~~~)--? ____ ~~

DELAY

1

Figure 6.3 - Pick & Place with Inspect Process

The resulting executable matrix, where decision variables are in square parentheses,

is:

0 PICK 0 0 0

(R 0 S) [dl] 0 TRANSP [d 1] 0 0

0 0 DELAY [d2] INSPECT [d2] 0

DI SCARD [d3] 0 0 0 DROP [d3]

[d4] 0 0 [d4] 0

By comparing the relative position of the elements in the above matrix to those of

the flowgraph of figure 6.3 it should be obvious what is taking place as the vector U is

multiplied and modified each time. In fact, by mentally following the elements of the

main off diagonal and then noting the proximity of the feedback paths, the reader should

be able to visualise the flowgraph directly from the topology of the matrix. This is not so

easy to do with the computer listing for which the equivalent algorithm in pseudo-code is

shown in figure 6.4.

109

1 IF d4 THEN
CALL PICK

ELSE
STOP

IF NOT d1 THEN COTO 1
CALL TRANSP

2 IF NOT d2 THEN CALL DELAY
IF NOT d2 THEN COTO 2
CALL INSPECT
IF NOT d3 THEN

ENDIF

CALL DISCARD
GOTO 1

3 CALL DROP
IF NOT d4 THEN GOTO 3
GOTO 1

Figure 6.4 - Pseudo code representation

This is far more difficult to read than the matrix representation. Furthermore, as the

algorithms become larger the conventional notation becomes increasingly more difficult to

read.

6.2.3 Extensions to General Programming

So far the techniques used have concentrated on robot programming. However, almost

all algorithms are Markov chain representations as the following example will show.

Most programmers are familiar with the Bubble sort of the kind given 10 the flow

chart of figure 6.5 [Forsythe et ai, 1975 (p259)]. The corresponding flowgraph version is

shown in figure 6.6.

110

j +- 1

j +- j+l
j

T

TEMP +- Aj+l
Aj+l +- Aj

k +- j
SW +- 0

F

SW - 0

F

F

±T F
~k-l > TEMP)r---I.t-----

T

~Il'e 6.5 - Bubb 1 e Sort Flowchart

1

1

j+-j+l

TEMP+-Aj+l
A'+l+-A'

J k+-l J

SW+-O

figure 6,6 - Flowgraph of Bubble Sort

111

SW f- 1

Putting this into matrix form we get the executable matrix of figure 6.7. The

equivalent program in pseudo code is shown in figure 6.8.

0 j~l 0 0 0 0

0 0 [j(n-l] 0 0 0
1

0 [AJ(Aj+l] '0 [A'>A'+l] 0 0
J~j+l T~~Xj+l

Aj+l~Aj
k~1

SW~

0 [k<IUSW#O] 0 0 [k>lnSW-O] 0
j~j+l 1

0 0 0 [Ak_l,TEMP] 0 [Ak_l>TEMP]
SW~1

0 0 0 1 0

0 0 0 0 0

Figure 6.7 Matrix of Bubble Sort A Igor ithm

j :-1
1 IF j,n-l THEN

ELSE
END

IF Aj > Aj+l THEN
TEMP ~ Aj+l
Aj+l~Aj
k~j

ELSE

SW~O

IF k > 1 AND SW - 0 THEN
IF Ak-l > TEMP THEN

Ak ~ Ak-l

ELSE

ENDIF
ELSE
j ~ j+l
GOTO 1

k ~ k-l

SW ~ 1

j ~ j+l
GOTO 1

[flure 6.8 - Pseudo code Bubble Sort

112

Ak~Ak+l

0

0

0

[j>n-l]
1

0

0

0

0

0

There should be little doubt about which method is the most readable by no''!', even

when several loops are included as with the bubble sort. In fact, the loops show up 10

the matrix as the elements below the diagonal. The only element above the malO

off-diagonal is the final state on completion of the algorithm. This is not so clear for the

pseudo code representation, and even though the loops are nested and offset from the left

of the page it is not so easy to see which conditions determine the order of execution.

This is because flowcharts do not map readily into computer code, whereas flowgraphs and

their representitive transition matrices are effectively homomorphic.

6.2.4 Buffering and Partitioning

As was shown in section 2.2.1, the use of buffering between sections of a flowgraph

provides natural delimiters allowing partitioning at these points. So far it has usually been

unecessary to use buffer paths owing to the small size of the flowgraphs. However, as

models become larger connectivity becomes more complex. This can result in hereto

unforseen problems.

R t . t the flowgraph of fl'gure 4 1 l'n sectl'on 4.1.2, repeated here in figure 6.9, e urnmg 0 .

and its resulting stochastic transition matrix {6.1}.

2

-1
0.22

-1
0.72

Fugure 6.9 - Double Loop Flowgraph

113

-1
0.82

p

o

0.3

0.2

o

1

o

o

o

o

0.7

o

o

o

o

0.8

o

(6. 1)

Now finding the flows from po:> is quite simple. However. if the method of the

definition of 3.) in section 6.2 is to be used to calculate the inter-node flov.'S and .t.) to

find the toll average from the toll matrix T. then the result will be incorrect for this

particular model (and any other with a similar topology), as will be demonstrated:

T

F

V

A

o

1

1

o

1

o

o

o

1.79E+0

7.86E-1

3.57E-1

O.OOE+O

1.40E+0

1.40E+0

7.91E-1

O.OOE+O

O.OOE+O

7.86E-1

3.57E-1

O.OOE+O

o

1

o

o

o

o

1

o

1.79E+0

1.79E+0

3.57E-1

O.OOE+O

1.40E+0

1.40E+0

7.91E-1

O.OOE+O

1.79E+0

O.OOE+O

O.OOE+O

O.OOE+O

(6.2)

1.25E+0 1.00E+0

1.25E+0 1.00E+0
(6.3)

1.25E+0 1.00E+0

O.OOE+O 1.00E+0

3.13E-1 O.OOE+O

3.13E-1 O.OOE+O
(6.4)

3.13E-1 -2.22E-16

O.OOE+O O.OOE+O

O.OOE+O O.OOE+O

1. 25E+0 O.OOE+O
(6.5)

O.OOE+O 1.00E+0

O.OOE+O O.OOE+O

1 1 .t

mean toll value is: 5.1785714E+O

But using Masons theorem, or simple decomposition, on figure 6.9 gives a toll average of:

2.857 + 0.2
+ 1 4.821 (6.6)

0.8

The result of {6.6} is clearly different to that given by the sum of the elements of {6.5}.

Closer inspection of {6.2} reveals the fact that T is not upper triangular. This is not

a problem with stochastic transition matrices like P because as we know, probabilities are

multiplicative, whereas tolls are additive. Obviously we cannot treat them in the same wJ.y.

The answer is to use the buffering techniques introduced in section 2.2.1. The buffered

homomorphism of figure 6.9 is shown in figure 6.10 along with its corresponding toll

matrix {6.7}

o -1
0.2Z

-1
z

Figure 6.10 - Buffered Homomorphism of Figure 6.9

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

T {6.71

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

115

Now the matrices are much larger but {6.7}· . is in upper triangular form. '."ote the

sparseness of {6.7} compared with the stochastl'c t . f '6 8} T rna nx 0 i,' • his is beca use the

buffer paths have a zero toll, despite a transition probability of unity.

0 1 0 0 0 0

0 O' 0.7 0 0.3 0

0 0 0 0.8 0 0.2
p {6.8}

0 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1.79E+0 1.79E+0 1.25E+0 1.00E+0 5.36E-1 2.50E-1

7.86E-1 1.79E+0 1.25E+0 1.00E+0 5.36E-1 2.50E-l

3.57E-1 3.57E-1 1.25E+0 1.00E+0 1 .07E-1 2.50E-l
F "'" {6.9}

O.OOE+O O.OOE+O O.OOE+O 1.00E+0 O.OOE+O O.OOE+O

1.79E+0 1.79E+0 1.25E+0 1.00E+0 1.54E+0 2.50E-l

1.79E+0 1.79E+0 1.25E+0 1.00E+0 5.36E-1 1.25E+0

1.40E+ 0 1.40E+0 3.13E-1 1.11E-16 8.23E-1 3.13E-1

1.40E+0 1.40E+0 3.13E-l 1.11E-16 8.23E-1 3.13E-1

7.91E-1 7.91E-1 3.13E-1 O.OOE+O 2.10E-1 3.13E-l

V -
(6.10)

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

1.40E+0 1.40E+0 3.13E-1 1.11E-16 8.23E-1 3.13E-l

1.40E+0 1.40E+0 3.13E-1 O.OOE+O 8.23E-1 3.13E-l

116

O.OOE+O 1.79E+0 O.OOE+O O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O 1.25E+0 O.OOE+O 5.36E-1 O.OOE+O

O.OOE+O O.OOE+O O.OOE+O 1.00E+0 O.OOEO 2.50E-1
A - I

O.OOE+O O.OOE+O O.OOE+O O.OOE+O
(6.11)

O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

mean toll value is: 4.8214286E+0

This is exactly the toll average given by {6.6}.

This leads to the simple rule that: no two or more paths carrying non-zero tolls mav

be allowed to enter the same node. The validity of a flowgraph in this respect may be

verified by ensuring that the corresponding toll matrix is in upper triangular form.

Note that the flow matrix of {6.3} is the same as the first 4 by 4 minor of {6.9},

and similarly the variance matrices of {6.4} and {6.10} to within the scope of

mathematical rounding errors. The only difference lies in the additional elements due to

the buffer paths.

Partitioning of a matrix was used in chapter 4 for separating the various states of a

Markov process. Its usefulness when used to segregate the different sections of an overall

process will now be considered.

As networks become large, their resulting transition matrices not only also become

large but they also have a tendancy to become sparse, particularly where a great deal of

buffering is necessary. This can often result in large amounts of wasted computer memo!:>

for matrix parameter storage, not to mention the additional computational overhead

required to conduct mathematical manipulations on matrices containing an inordina tt'

amount of zeros! Both for purposes of economy and readability it is often necessary to

partition matrices. Flowgraph representations offer some advantages In making this possible.

117

Using the flowgraph of figure 2.4 from the example in chapter 2, and its buffered

counterpart in figure 6.10, their corresponding routine matrices are {6.12} and {b.I3}

respectively.

0 PICK 0

FAIL 0 TRANSP

FAIL 0 0

0 0 FAIL

0 0 0

PICK TRANSP

0

0

DROP

0

0

DROP

0

0

0

1

0

- -0
1

figure 6.10 - Buffered version of figure 2.4

(6.12)

For simple program execution, buffering is not necessary as there is only one

parameter (the executable routine) being considered, unlike during the anlysis where both

time and probability are being dealt with simultaneously. However, if the matrix already

exists in a buffered state so as to conform with the analysis flowgraph, then we have

something like {6.13} representing figure 6.10.

0 PICK 0 0 0 0 0 0 0

0 0 TRANSP 0 0 0 FAIL 0 0

0 0 0 1 0 0 0 FAIL 0

0 0 0 0 DROP 0 0 0 0

0 0 0 0 0 1 0 0 FAIL
- {6.13}

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

118

As shown above {6.13} may now be partitioned into four separate parts. accorjing to

the form of {6.14}, where each partition represents a particular subset of the dignph.

[-:-:-:-1

The partitioned subsets are:

A: Forward paths.

B: Recovery routines.

C: Feedback buffer paths.

0: Null.

(6.14)

Now a A can be stored as a single 5 element vector, B as a 5 by 3 matrix and C

as a 4 by 6 matrix. This reduces the storage of 81 elements, of what was previously a 9

by 9 matrix, down to 44 elements.

119

6.3 Aspects of Parallel Processing

One of the main functions of task level programming is the necessity to execute

several tasks simultaneously. It should not be necessary to consider this at object level.

where all such program routines should be capable of running autonomously. Where

several such object level routines may need to be executed simultaneously, the decision as

to when and where they are to be run is made at the task level.

This distinction is best illustrated by using the well known example of the dining

philosophers. For those unfamiliar with this; try to imagine four philosophers gathered

round a table on which exists one communal bowl of food. Four forks are provided, but

two are required for eating. Each philosopher will spend a random amount of time

thinking, then when hungry he must pick up a left and right fork (in that order). eat and

then return the forks in the same order.

This problem can be solved algorithmically by insisting that only three philosophers at

anyone time may be allowed to be hungry. A modula-2 program for this process capable

of concurrent execution consists of over 200 lines of source code (not including 10

statements) [Hewitt & Frank, 1989].

The basic flowgraph for one philosopher is as shown in figure 6.11, together with the

executable procedure and sensor parameter matrices of figure 6.12.

120

THINK

RETURN LEFT FORK

PI CJ(LEFT FORK

[NO LEFT FORK
OR NOT HUNGRY]

RETURN RIGHT FORK

[NO RIGHT FORK
R NOT HUNGRY]

PICK RIGHT

Figure 6.11 - Flowgraph for a Dining Philosopher.

[NOT
HUNGRY]

(HUNGRY]

EAT

THINK PICK LEFT 0 NO LEFT FORK LEFT FORK 0
FORK OR NOT HUNGRY AND HUNGRY

RETURN 0 PICK NO RIGHT FORK 0 RIGHT FURl<
P - LEFT FORK RIGHT FORK S - OR NOT HUNGRY AND HUNGRY

RETURN NOT
0 RIGHT FORK EAT 0 HUNGRY HUNGRY

Figure 6.12 - Process and Sensor matrices for figure 6.11.

These matrices are common to all four philosophers and may be executed

accordingly. If the sensing can be done in such a manner that no two philosophers can

attempt to pick up a left or right fork simultaneously then the problem can be solved at

object level. However, if at some stage conflicts must be resolved such that knowledge of

previous events are required then the programming must be done at task level. For

example, if two philosophers are hungry and reach for the same fork together how do we

decide which one is to eat? Is it the hungriest?, the one who has so far eaten least? or

the one who has done the most thinking? If it is the first scenario, then provided we

have a reliable method of sensing this the problem is simple. But if the one of the latter,

then some form of historical data is required. In which case the action IS no longer

independant of previous events and the process becomes non-Markov.

121

This is one of the strongest differences between object level and task level

programming. The advantage of task level programming is that execution can occur

simultaneously without any of the restrictions needed for the previously mentioned

Modula-2 program. Furthermore, when depicted in matrix form the program is

considerably easier to read than 200 lines of algorithmic code.

122

6.4 Some Thoughts on Task Level Programming

Due to its inherently non-Markov construction, task level programming requires a

notational structure which will allow the simultaneous operation of several events as well as

the ability to control precedence. To achieve this, a full set of logic conditional nodes

must be available as with the GERT notation.

For the purposes of this work it has been assumed that decisional data at task level

will be available from a separate decision generating engine such as a knowledge based

reasoning algorithm. However, this still leaves the question of a suitable notation for task

level networks unresolved.

As discussed in chapter 2, the GERT notation is already established as a notation

providing a choice in both logical input and output characteristics. Unfortunately GERT

lacks the ease of transformation into matrix form, as was carried out in chapter 4 using

the digraph notation.

The rest of this section is devoted to the introduction of a simple method of input

weighting to enable the nodes of a digraph to behave as logic gates and yet maintain the

isomorphism between flowgraph and transition matrix to enable the matrix driven

programming, prviously used at object level, to be implemented at task level.

Given a simple node with two inputs as in figure 6.13, simple weighting factors Wl,

W 2 and w 3 (shown in parenthesis) can be associated with each of the path functions.

figure 6.13 - Simple 2 input weighted network.

123

Using the conventional flowgraph notation figure 6.13 represents a network capable of

executing the processes A then C, or B then C, but not both simultaneously (assuming the

usual EX -0 R property of node 3).

Now, if we allow the weighting factors W', W2, W3 to have a value other than unity

and set the criterion for a node to be activated by its inputs as being the absolute \3\ue

of the sum of the input weighting values to be greater or equal to 1, ie.,

n

For an n input node to fire: > 1 {6.15}

then we have the basis for a full set of logic inputs. A similar technique is used in

electrical transistor logic circuits and neural networks. Figure 6.14 shows the weighting

factors to enable a) OR, b) AND and c) EX-oR structures.

(0.5)

o
a) OR b) AND c) EX-OR

Figure 6.14 Weighted logic structures.

Ignoring the functions A, Band C for the moment and concentrating on the action

of the weighting factors alone, the corresponding transition matrices, as shown in figure

6.15, can be produced from the flowgraphs of figure 6.14.

124

0 0 1 0 0 0 0.5 0 0 0 1 0

0 0 1 0 0 0 0.5 0 0 0 -1 0

0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0
a) OR b) AND c} EX-OR

Figure 6.15 - Weighting transition matrices.

Using a starting vector [1 1 0 0] to present an input to both nodes 1 and 2

simultaneously, premultiplying the transition matrix by the starting vector gives the resulting

'next' vectors [0 0 2 0], [0 0 1 o] and [0 0 0 0] respectively.

according to the criterion of {6.15}. As expected, node 3 will be activated for the OR

and AND cases, but not the EX-oR.

Similarly, using the starting vecor [0 1 0 0] to trigger node 2 only produces

the 'next' vectors [0 0 1 0], [0 0 0 0 and [0 0 1 0] respectively. i.e.,

only the OR and EX-oR weightings allow node 3 to fire.

Naturally such logic modules can be cascaded to produce larger networks allowing

precedance control to be affected by means of the weighting factors. However, care must

be taken when trying to simulate electrical logic circuits with this method as each path

represents a propogation delay of one time unit. This means that extra nodes must be

incorporated to maintain each node at a particular level of the execution sequence.

This provides a notation for depicting task level representations at a very basic level.

It must not be forgotten that to be a truly task level implementation acting on reasoned

error causes and other such conditional criteria, the weightings would be of a dmamic

nature subject to change as dictated by whatever decisional control mechanism is

employed.

125

6.5 Summary

This chapter has dealt with the use of simulation techniques for both simulation and

task execution. The advantages of flowgraphs being their ease of transfer into matrix form.

gives rise to a programming technique based on Markov chain theory. This allov.-s both

simulation and robot object level programming to be executed from the same algorithm.

Unlike the Petri net simulation methods, the matrix format also lends itself to relatively

easy mathematical analysis.

By extending these techniques to include time attributes, simulation to detect

bottlenecks, estimation of robot collision etc., can be performed. More generally. other

costs may be substituted for time to yield data on depreciation due to wear and tear etc.

It has also been shown that this two dimensional approach to programming has some

distinct advantages over the conventional notation for computer programming. The

restrictions in readability when using a sequence of programming statements reading down

the page are not present when programming 1S carried out in the above matrix method.

Now the question must be asked: "why only two dimensional programming? why not

three or more?". The difficulty in actually depicting a greater than two dimensional format

on a two dimensional paper page or computer screen would seem to defeat the object of

improved readability of code, not to mention the task of mathematical analysis of such a

scheme. However, as far as the computer itself is concerned there is no reason whatsoever

why this should not be investigated. This is however, the subject of further research and

will not be discussed here.

Some thought has also been given to the extension of these object level programming

techniques to the non-Markov task level. A system of weighting the inputs so as to obtain

logic functional nodes similar to those used in the GERT notation, but at the same time

using only simple digraph notation, has been introduced. This has the advantage of being

easily transformed from a digraph depicting the workcell operation into a transition matrix

useable in analysis and work cell execution.

127

7. OVERALL STRUCfURE AND IMPLEMENT AlON

This chapter will deal with the integration of the mathematical analysis and object

level programming techniques, with the intention of providing the necessary tools for a

complete interactive programming system. It will be assumed that the necessary sensor

decision and statistical data will be available from some form of AI or knowledge based

system.

7.1 The New Model

Propose to any Englishman any principle or any
instrument, however admirable, and you will observe
that the whole effort of the English mind is directed
to find a difficulty, a defect, or an impossibility in
it. If you speak to him of a machine for peeling a potato,
he will pronounce it impossible; if you peel a potato with
it before his eyes, he will declare it useless because it
will not slice a pineapple.

Charles Babbage.

Figure 7.1 shows the block diagram of the necessary structure to provide both a basic

analysis package and a real time programming package together with the necessary

processing and feedback from the robot and an associated knowledge base. During program

operation, the knowledge base must resolve basic sensor data into object level decisions

before communicating this data to the real time programming package. Similarly, statistical

data compiled during program operation is continuously passed on to affect modification of

the analysis model. This allows the user to identify problems during run-time and to

modify the flowgraph and object level program accordingly.

128

MATHEMATICAL
ANALYS I S OF

WORK CELL

Statistical
Data

KNOWLEDGE BASED

Human
Input

FLOWGRAPH
PLAN

Human -.-..- -----
Modifications

Sensor
SENSOR ANALYSISr-------------~~--------------~

SYSTEM Data

Figure 7.1 - Overall Interactive System Model

REAL-TI ~tE
OBJECT LEVEL
PROCRAMM I NG

Executable
Conunands

MANIPULATOR
LEVEL ROBOT
CONTROL

The top three boxes of figure 7.1 represent the sections resulting from the previous

chapters of this thesis. The Manipulator level section is basically the robot and its

associated controller, the manipulator level programming being conducted in a robot

control language such as VALlI. The knowledge based system results from part of the

work done by Ghris [Ghris, 1989], Song [Song, 1988] and Halloran [Halloran, 1989].

129

7.2 Selected Case Studies

The following two case studies will involve an analysis of the flowgraph using the

Modula-2 programs developed for this purpose (see appendix E). They will aim to show

the capabilities of the matrix simulation and programming techniques. Both models

represent actual robot workcells which have been operated in real-time.

7.2.1 Pick and Place Model

The first example of a working model was introduced in chapter 3. Figure 3.4 gives

the flowgraph for this simple pick and place model from which a toll (time) average of

16.39 seconds was calculated. This was achieved using the steady state value of the

derivative of the transfer function found using Masons theorem. These same results, along

with other useful data, will now be found using the matrix techniques developed in the

later chapters.

The flowgraph of figure 3.4 is repeated in figure 7.2 with the addition of buffer

paths as per the criteria outlined in section 6.2.4.

o

o
Z

-5.438
0.032Z

Figure 7.2 - Pick and Place Flowgraph

130

Z

-0.27
0.188Z

Using the Modula-2 programs of appendix E the data for the stochastic transition

matrix {7.1} gives rise to the flow and variance matrices, {7.2} and {7.3} respectivel: •.

FLOW matrix is:

1.23E+0 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.95E-1 3.31E-2 2.32E-1

2.28E-l 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.95E-1 3.31E-2 2.32E-1

3.93E-2 3.93E-2 1.03E+0 1.23E+0 1 .23E+0 1.00E+0 6.25E-3 3.31E-2 2.32E-1

O.OOE+O O.OOE+O O.OOE+O 1.23E+0 1.23E+0 1.00E+0 O.OOE+O O.OOE+O 2.32E-1

O.OOE+O O.OOE+O O.OOE+O 2.32E-1 1.23E+0 1.00E+0 O.OOE+O O.OOE+O 2.32E-1

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1.00E+0 O.OOE+O O.OOE+O O.OOE+O

1.23E+0 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.20E+0 3.31E-2 2.32E-1

1.23E+0 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.95E-1 1.03E+0 2.32E-1

O.OOE+O O.OOE+O O.OOE+O 1.23E+0 1.23E+0 1.00E+0 O.OOE+O O.OOE+O 1.23E+0

{7 . 2}

131

VARIANCE matrix is:

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1

5.57E-2 5.57E-2 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 8.65E-3 3.42E-2 2.85E-1

O.OOE+O O.OOE+O O.OOE+O 2.85E-1 2.85E-1 O.OOE+O O.OOE+O 0.00£+0 2.85E-1

O.OOE+O O.OOE+O O.OOE+O 2.85E-1 2.85E-1 O.OOE+O O.OOE+O O.OOE+O 2.85E-1

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1

O.OOE+O O.OOE+O O.OOE+O 2.85£-1 2.85E-1 O.OOE+O O.OOE+O O.OOE+O 2.85£-1

(7 . 3)

The toll data {7.4} can be entered producing the toll average matrix {7.5} and its

corresponding element sum which represents the complete toll average for the flowgraph.

0 7.04 0 0 0 0 0 0 0

0 0 2.5 0 0 0 0.27 0 0

0 0 0 0 0 0 0 5.438 0

0 0 0 0 3.95 0 0 0 0

0 0 0 0 0 0 0 0 0.27 {7.4}

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1.12

Toll average matrix is:

O.OOE+O 8.65E+0 O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 0.00[+0 0.00[+0

O.OOE+O O.OOE+O 2.58E+0 O.OOE+O O.OOE+O O.OOE+O 5.27E-2 O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1. 80E-1 0.00[+0

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 4.86E+0 O.OOE+O O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 6.25[-2

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 0.00[+0

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

(7 .5)

mean toll value is: 1.6389905E+1

In section 6.2.4 some ideas on the partitioning of matrices were discussed. Some of

the advantages of using partitioned matrices will now become apparent.

If {7.1} and {7.4} are each partitioned into three separate 3 by 3 matrices

corresponding to the three recovery loops of figure 3.4 then these can

separately as follows:

be tackled

Matrices {7.6} and {7.9} represent the respective stochastic transition and toll values

for the single loop of figure 7.3. This gives a toll average of 10.922.

1.:n

0.159Z

-7.04
Z

-0.27

}------...----J 3

-2.5
0.841Z

Figure 7.3 - First Loop

Entering the stochastic transition matrix:

o 1

0.159 0

o 0

o

0.841

o

FLOW matrix is:

1.19E+0 1.19E+0 1.00E+0

1.89E-1 1.19E+0 1.00E+0

O.OOE+O O.OOE+O 1.00E+0

VARIANCE matrix is:

2.25E-1 2.25E-1 O.OOE+O

2.25E-1 2.25E-1 O.OOE+O

O.OOE+O O.OOE+O O.OOE+O

Entering the toll matrix:

o

0.27

o

7.04

o

o

o

2.5

o

(7 .6)

(7 .7)

{ 7 . 8 }

(7 .9)

Toll average matrix is:

O.OOE+O 8.37E+0 O.OOE+O

5.10E-2 O.OOE+O 2.50E+0

O.OOE+O O.OOE+O O.OOE+O

mean toll value is: 1.092E+l

(7.10)

Incorporating the results of the last operation and combining the first two loops of

the flowgraph gives a mean toll of 11.46

-5.438
0.032Z

-10.92
Z

0.968

Figure 7.4 - Combined First and Second Loop

Entering the new stochastic

0 1 0

0.032 0 0.968

0 0 0

FLOW matrix is:

1.03E+0 1.03E+0 1.00E+0

3.31E-2 1.03E+0 1.00E+0

O.OOE+O O.OOE+O 1.00E+0

transition matrix:

135

(7.11)

{7.12}

VARIANCE matrix is:

3.42E-2 3.42E-2 O.OOE+O

3.42E-2 3.42E-2 O.OOE+O

O.OOE+O O.OOE+O O.OOE+O

Entering the new toll matrix:

o 10.92

5.438 0

o o

o

o

o

Toll average matrix is:

O.OOE+O 1.13E+1 O.OOE+O

1.80E-1 O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O

mean toll value is: 1. 146E+1

{7.13}

{7.14}

{7.15}

Similarl y, from {7 .16} and {7 .19}, the mean toll for the final loop IS found to be

4.91.

-0.27
0.188Z

-3.95
Z

Figure 7,5 - Final Loop

o

0.188 0

o 0

o

0.812

o

(7.16)

136

FLOW matrix is:

1.23£+0 1.23£+0 1.00£+0

2.32£-1 1.23£+0 1.00£+0

0.00£+0 0.00£+0 1.00£+0

VARIANC£ matrix is:

2.85E-1 2.85£-1 1.11£-16

2.85£-1 2.85E-1 O.OOE+O

O.OOE+O O.OOE+O 0.00£+0

Entering the new toll matrix:

o

0.27

o

3.95

o

o

o

o

o

Toll average matrix is:

O.OOE+O 4.86E+0 O.OOE+O

6.25E-2 O.OOE+O O.OOE+O

0.00£+0 0.00£+0 O.OOE+O

mean toll value is: 4.927E+0

(7.17)

(7.18)

(7.19)

(7.20)

Finally. the last two results can be added together to give the total mean toll of

11.46 + 4.93 = 16.39

137

This is exactly the same value calculated previously with the full 9 by 9 matrices anj

by the algebraic method in chapter 3. There are several advantages to panitioning the

matrices in this manner. As mentioned previously, storage space must be pro\ided for

large matrices, and if these are very sparse as in {7.1} and {7 A} then a great deal of

room is taken up by zero's. Furthermore, many computer languages, of which ~1odula-2 is

one, do not allow dynamic arrays. This means that all the matrices to be used must be

dimensioned at the time the program is written, even though at run time they may

actually be very much smaller. If it could be guarenteed that all matrices to be used

would be no larger than 3 by 3 say, then considerable savings in both storage space and

execution time could be made. Finally, the rounding errors caused by the large number of

calculations required to invert very large matrices can lead to numerical errors. The larger

the matrix the more pronounced any ill-conditioning becomes. A detailed analysis of the

underlying reasons behind ill-conditioning in matrix operations can be found in Rice [Rice,

1981].

7.2.2 An Intelligent Robot Workcell

A workcell consisting of a Puma Robot with a sensory textile gripper [Kemp et ai,

1986] has recently been used to form the basis of a project to build up error recovery

strategies using an AIlknowledge base system. The basic task consists of destacking and

laying up a single panel of knitted fabric after which a fusible motif is applied to the

fabric panel. A large number of (relatively unpredictable) errors may occur in this type of

workcell, making it an ideal subject for this research.

With regard to the techniques developed here, simulation and object level

programming of the workcell are the two main factors. Such methods must be combined

with the knowledge base and robot manipulator level programming system as depicted in

figure 7.1. The previous case study concentrated mainly on the simulation aspects usmg

statistical data already gathered. No such data has so far been compiled for these

operations, however this case study is ideal for illustrating the object level programming

aspect.

Figure 7.6 shows the flowgraph for the ply separation, pick and place operations.

The motif handling part is very similar and so will not be dwelt upon here.

/A} igned

RETURN

Figure 7.6 - Fabric Ply Separation Workcell Flowgraph.

At manipulator level continuous sensing is carried out to provide fine adjustments in

alignment during the ALIGN routine, finding the stack side within the ACCROSS routine

and the stack edge during INSERT. The ERROR routine is that which must either call

the operator or seek further data before continuing. The routine matrix R. for this

flowgraph is as follows:

1:'9

0 IN IT 0 0 0 0 0 0 0

0 0 SEPARATE 0 0 0 0 0 ERROR

0 REPEAT 0 INSERT 0 0 0 0 0

0 0 0 0 ACCROSS 0 0 0 ERROR

0 0 0 0 0 ALIGN 0 0 ERROR

0 0 0 0 ROTATE 0 PICK 0 0

0 0 0 0 0 0 0 DROP 0

RETURN 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Using the starting vector U 0

U
o

[1 0 0 0 0 0 0 0 0]

and a sensor decision matrix S

0 1 0 0 0 0 0 0 0

0 0 E 0 0 0 0 0 E

0 Plyfl 0 PIy=l 0 0 0 0 0

0 0 0 0 E 0 0 0 E

0 0 0 0 0 E 0 0 E

0 0 0 0 Al i gned 0 Al i gned 0 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

Now U, = U 0 (R 0 S)

140

If no errors are encountered then the main forward path of the flowgraph in figure

7.6 will be followed, ie., the routines INIT, SEPARATE, I~SERT, ACCROSS, AUG~.

PICK, DROP and RETURN will be executed in that order. Only if errors occur during

execution, causing a unity element to appear in the sensor matrix S In a position other

than the main off-diagonal, will there be any variation to this plan. The paths denoted in

figure 7.6 as "ERROR" correspond to an E entry in the sensor matrix and represent

errors of an unknown form. These errors would result in the ceasation of activity until the

problem is rectified by the operator. The program will in fact stop due to the trapping

state of node 9.

In cases where unexpected errors could occur at any time, a path from each node to

node 9 will cater for this. This would result in a set of entries in column 9 of both the

routine matrix R and the sensor matrix S.

A module of Modula-2 procedures for the execution of a matrix programming system

are included in the second set of listings in appendix E.

1 ~ 1

7.3 Summary

Due to the dual parameter nature of the toll and probability matrices, the simulation

matrices are likely to be far larger than the routine and sensor matrices required for

programming. However, the basic Markov chain philosophy is exactly the same.

It is not unusual for matrices representing such processes to be extremely large and

sparse. Duff describes a collection of industrial 'real life' sparse matrices ranging from 76

to over one million entries. Methods of compact storage together v.ith some algorithms

(coded in FORTRAN) for reading compacted matrices stored in several different formats

are also discussed. [Duff et ai, 1989]. However, for systems with insufficient memory to

cope with matrices of this size, partitioning of the process is possible.

Having introduced a completely new programmmg methodology, to complement a

similar form of simulation and analysis using matrices, all which remains is to evaluate the

technique. This is done throughout the next chapter by comparison to existing simulation

and programming systems.

I·n

8. EVALUATION.

In the eyes of its mother every black beetle is a gazelle.

Old Arabic proverb.

8.1 A Markov Simulator.

The simulation and modelling techniques discussed in the preceeding chapters are now

put together in the form of computer software procedures within a module of the

programming language Modula-2.

8.1.1 Modula-2 Procedures.

A description of each of the Modula-2 procedures given in appendix E follows. In all

cases the matrices used are square with dimension n. The dimension is set when the first

matrix is read in and can only be changed during subsequent read operations. Within the

simulation module all user-accessible matrix elements, are of type real. The opposite is

the case for the programmmg module. Here only string and cardinal variables are available

for matrix elements. This has the advantage of preventing the user from inadvertantly

entering simulation data when in the programming mode, and vice-versa.

These procedures are the basic building-block routines required for producing Markov

chain simulation programs, and as such no error trapping or syntax checking is included in

either of these procedures or any of the example main programs.

143

matread(A)

Requests the dimension of the square matrix to be read in, then puts this data into

the real variable n before reading in each of the real values for each element of the n

by n matrix A. The elements of A are read in row by row.

matwrite(A)

Prints out a square matrix A, of dimension n. Each element of A is a real variable

which is printed with 3 significant figures in exponential notation. This may be altered, if

desired, by changing the format of the WrReal statement.

Sets each element of the main diagonal of matrix A to the real constant 1.0 and

every other element&a+60Hto 0.0 thereby creating an identity matrix In A of dimension n.

Creates a 'mirror' matrix A with unity elements along the inverse main diagonal (ie,

from top right hand side to bottom left), and zero elements eleswhere. This has the effect

of producing a rotation of a matrix B when the transpose of B is both post and

pre-multiplied by the mirror matrix A.

matadd(A,B,C)

Adds two real, square, n by n matrices A and B leaving the result In matrix C.

Matrices A and B are left unchanged.

matsub(A,B,C)

Subtracts the matrix B from A leaving the result in C. Matrices A and B are left

unchanged.

matsum(x,A)

Finds the sum of all the elements of the matrix A and puts the result In the real

variable x.

matconmul(A,B,C)

Performs congruent multiplication (that is element by corresponding element

multiplication) between matrices A and B leaving the result in matrix C. Matrices A and

B are left unchanged.

matmu1(A,B,C)

Performs standard matrix multiplication between matrices A and B, leaving the result

in matrix C. Matrices A and B are left unchanged.

1~5

scalmul(x ,A,B)

Multiplies the matrix A by the real scalar variable x leaVl'ng th I . e resu t In matnx B.

Matrix A and variable x are left unchanged.

transp(A,B)

Puts the transpose of matrix A into matrix B, leaving matrix A unchanged.

matinv(A,B)

Inverts square n by n matrix A leaving result in matrix B without changing A.

diag(A,B)

Diagonalizes (sets all elements other than those along the main diagonal to zero)

square, n by n matrix A, leaving the result in matrix B without changing A.

matflow(A,B)

Finds the characteristic matrix by the formula B = [I-A]-'. The elements of B

represent the inter-nodal flows of the matrix A. The result is left in matrix B with A

remaining unchanged.

146

matvar(A,B)

Finds the statistical variance of the matrix A, leaving the result In

remains unchanged.

matlim(A)

matrix B. A

Effectively raises the matrix A to the power of infinity by successive multiplication

until a desired tolerance between two iterations has been achieved. This tolerance value

may be changed by altering the value in the UNTIL ABS(x) < 'value' statement. The

resulting limiting matrix is left in matrix B.

8.1.2 Program Operation and User Guide.

The procedures listed in appendix E are of the JPI Modula-2 format [JENSEN and

Partners, 1987] and are written for IBM PC and compatible devices. No additional

co-processors or memory capability beyond that available with the standard PC (or clone)

is needed, though improved performance may be achieved by the inclusion of an

additional maths co-processor. The JPI Modula-2 is written for use with 64K of variable

storage which limits the amount (or size) of the array dimensions. For very large

modelling tasks, standard Modula-2 on VAX or SUN machines may be preferable.

The matrix evaluations illustrated throughout chapters 6 and 7 have been carried out

using this programming system, and as such should suffice as example progr:lm runs.

However, a brief interaction example session is provided in the next part of this chapter,

intended as a basic 'user guide'.

The package consists of two basic modules'. .\ "'AL d DRIVE
n....... an . A'\" AL performs the

stochastic analysis by requesting the size of the square transition matrix followed by the

probabilities which make up the stochastic transition matrix elements, This results In the

LIMITING, FLOW and V ARIANCE matrices. After this A'\AL requests the TOLL

matrix elements before giving the average toll value for the network.

Similarly, DRIVE requests the names of the program routines to form the ROUT IS E

matrix. These are the names which would be used by the host manipulator level language

such as VAL, AML etc. After this the initial sensor values are entered (in real robot

execution these would be available automatically) into the SENSOR matrix, followed by

the starting vector (1 and 0 values only).

Execution is governed wholly by the state of the SENSOR matrix element values.

These would normally be available directly from the robot controller, after sensor fusion

or merging, and the implementation is therefore hardware dependant. Consequently, the

example program whose listings appear in appendix E are written to expect these values

from the keyboard for test and user familiarity purposes. Modifications needed to comply

with the appropriate computer system used must be carried out by the user. In accordance

with the communication protocols dictated by the host robot controller.

The following examples will take the reader through the actual execution sequence of

both the ANAL and DRIVE programs. The narrative text will appear in italics to

distinguish it from the actual input parameters and output code produced and displayed on

the screen, or other interface device. The data entered via the keyboard during run time

is preceded by a question mark prompt.

1~8

U sing a similar example to that shown in section

loops, we get the flowgraph of figure 8.1.

0.2 Z-1

Figure 8.1 - Intersecting loop flowgraph.

4 .5 .3 , bu twit h two l n t er 5 tC C !l n g

This gives the resulting stochastic tansition matrix P and toll matrix T accordingly.

p -

o 1

o 0

0.2 0

o 0.3

o 0

000

100

o 0.8 0

o 0 0.7

000

T =

o

o

1

o

o

1

o

o

1

o

o

I

o

o

o

o

o

I

o

o

o

o

o

1

o

The analysis package may be executed by typing ANAL on the keyboard with the

disc loaded and the appropriate drive selected. On V AX systems running VMS it is

necessary to type RUN ANAL for the equivalent execution. The program will start with a

request for the size of the matrix (the number of nodes in the corresponding

flowgraph).

Enter stochastic transition matrix

Enter matrix size - 75

149

The probabilities may now be entered for each element of the stodUlstic transUlon

matrix. The data can be entered by following each element ' ... ith a carriage ft':;4' 1 ,

alternatively a space may be used as a delimiter between values.

Enter matrix elements

?O 1 0 0 0

?O 0 1 0 0

?0.2 0 0 0.8 0

?O 0.3 000.7

?O 0 0 0 0

LIMITING matrix is:

O.OOE+O 4.94E-31 O.OOE+O O.OOE+O 6.28E-31

O.OOE+O O.OOE+O 4.94E-31 O.OOE+O O.OOE+O

9.87E-32 O.OOE+O O.OOE+O 3.95E-31 O.OOE+O

O.OOE+O 1.48E-31 O.OOE+O O.OOE+O 1.89E-31

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

FLOW matrix is:

1.36E+0 1.79E+0 1.79E+0 1.43E+0 1.00E+0

3.57E-1 1.79E+0 1.79E+0 1.43E+0 1.00E+0

3.57E-1 7.86E-1 1.79E+0 1.43E+0 1.00E+0

1.07E-1 5.36E-1 5.36E-1 1.43E+0 1.00E+0

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1.00[+0

150

VARIANCE matrix is:

4.85E-l 1.40E+0 1.40E+0 6.12E-l O.OOE+O

4.85E-l 1.40E+0 1.40E+0 6.12E-l O.OOE+O

4.85E-l 1.40E+0 1.40E+0 6.12E-l O.OOE+O

1.72E-l 1.09E+0 1.09E+0 6.12E-l O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

The three parameter matrices now show the limiting, flow and variance matrices. As

would be expected for this example, the limiting matrix is approaching zero, with the

flow matrix showing the greatest degree of congestion between nodes 2 and 3. /\,'ow the

toll matrix may be entered in the same manner.

Enter toll matrix

Enter matrix size "'" 75

Enter matrix elements

?O 1 0 0 0

?O 0 1 0 0

?1 0 0 1 0

?O 1 0 o 0

?O o 0 0 0

Toll AVERAGE matrix is:

O.OOE+O 1.79E+0 O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O 1.79E+0 O.OOE+O O.OOE+O

3.57E-l O.OOE+O O.OOE+O 1.43E+0 O.OOE+O

O.OOE+O 5.36E-l O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

MEAN toll value is: 5.89286E+0

151

In this case all the individual toll values were unity giving nse to the above u. t'r,; 't'

value of 5.893 seconds approximately. Now lets repeat the run, but with the transition

toll between nodes 2 and 3 halved.

Initially we enter the probabilities exactly as before.

Enter stochastic transition matrix

Enter matrix size = ?5

Enter matrix elements

?O 1 0 o 0

?O 0 1 0 0

?0.2 0 0 0.8 0

?O 0.3 o 0 0.7

?O 0 0 0 0

LIMITING matrix is:

O.OOE+O 4.94E-31 O.OOE+O O.OOE+O 6.28E-31

O.OOE+O O.OOE+O 4.94E-31 O.OOE+O O.OOE+O

9.87E-32 O.OOE+O O.OOE+O 3.95E-31 O.OOE+O

O.OOE+O 1.48E-31 O.OOE+O O.OOE+O 1.89E-31

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

FLOW matrix is:

1.36E+0 1.79E+0 1.79E+0 1.43E+0 1.00E+0

3.57E-1 1.79E+0 1.79E+0 1.43E+0 1.00E+0

3.57E-1 7.86E-1 1.79E+0 1.43E+0 1.00E+0

1 .07E-1 5.36E-1 5.36E-1 1.43E+0 1.00E+0

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1.00E+0

152

VARIANCE matrix is:

4.85E-1 1.40E+0 1.40E+0 6.12E-1 O.OOE+O

4.85E-1 1.40E+0 1.40E+0 6.12E-1 O.OOE+O

4.85E-1 1.40E+0 1.40E+0 6.12E-1 O.OOE+O

1. 72E-1 1.09E+0 1.09E+0 6.12E-1 O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

Only this time when entering the toll matrix data, the 8th entry, corresponding (l)

the path between nodes 2 and 3 is reduced to 0.5.

Enter toll matrix

Enter matrix size - 5

Enter matrix elements

?O 1 o 0 0

?O o 0.5 0 0

?1 0 0 1 0

?O 1 0 0 0

?O o 0 0 0

Toll AVERAGE matrix is:

O.OOE+O 1.79E+0 O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O 8.93E-1 O.OOE+O O.OOE+O

3.57E-1 O.OOE+O O.OOE+O 1.43E+0 O.OOE+O

O.OOE+O 5.36E-1 O.OOE+O O.OOE+O O.OOE+O

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O

MEAN toll value is: 5.00000E+0

153

Our new value for mean toll is 5, a reduction in overall process time OJ 0.:593

seconds for a 0.5 second reduction in one path toll. Of course, as more data is g.;: ne,::

from real run time data, the analysis can be repeated over and over to enable the process

to be improved. The improved model may then be used as the basic data for the DRIVE

program.

However, for this example we will use the continuous chain similar to that of

section 4.5.2. In this case the three players pass a die to the left or to the right one

place only, or throw again depending on their score. The flowgraph and process matnx

are repeated in figure 8.2. At object level, only the decision is needed. The actual score

is only important in that the decision to pass the die to the left or to the right or

rethrow is derived from it.

THROW

THROW RIGHT LEFT

p LEFT THROW RIGHT

RIGHT LEFT THROW
LEFT

THROW
RIGHT

Figure 8.2 - Three dice players.

The user may start the program by typing DRIVE (again use RUN DRIVL ',\ hen

) The routines may then be enterl'd executing the program on V AX VMS systems. process

after declaring the size of the matrix (number of nodes on the flowgraph).

154

Enter Routine matrix

Enter matrix size

?3

Enter matrix string elements

?THROW

?RIGHT

?LEFT

?LEFT

?THROW

?RIGHT

?RIGHT

?LEFT

?THROW

Then the initial sensor matrix, for which we will have the first player throw the

die, must ge given together with the starting vector.

Enter Initial sensor matrix

Enter 3 by 3 Sensor matrix (1, 0 values only)

?1 0 0

?O 0 0

?O 0 0

Enter starting vector

?1 0 0

THROW

155

So, player one takes his turn which results in a score causing the die to be passed

to the right. This information is provided by the sensor matrix.

Enter 3 by 3 Sensor matrix (1, 0 values only)

?O 1 0

?O 0 0

?O 0 0

RIGHT

Now the die is in the hands of the second player who we will hal'c throw a score

causing the die to be passed one place to the left and hence back to the first player.

Enter 3 by 3 Sensor matrix (1, 0 values only)

?O 0 0

?1 0 0

?O 0 0

LEFT

This done, we will have a score demanding player one also to pass to the left which

brings the die round to player three.

Enter 3 by 3 Sensor matrix (1, 0 values only)

?O 0 1

?O 0 0

?O 0 0

LEFT

156

Player three then scores a six and so must throw again.

Enter

?O 0 0

?O 0 0

?O 0 1

THROW

3 by 3 Sensor matrix (1, 0 values only)

Normally this process would be controlled by the results of the die throwing. For

example the sensor matrix values could be determined by a random process. To end the

operation it is simply a matter of setting all the sensor values to zero. This causes the

driving vector to reach a null state forcing the process to cease.

Enter 3 by 3 Sensor matrix (1, 0 values only)

?O 0 0

?O 0 0

?O 0 0

Procedure Completed

The S matrix values would normally be derived from sensor decisions by connecting

the input of the program to the appropriate hardware 10 module or manipuLator lercl

controller. Alternatively, if the parameters are to be delivered to a file then the DRIVE

program inputs may be connected to that file using the MS-DOS command DRlVE <

INFILE where 1 NF 1 LE is the file containing the input data. Similarly the resulting

output parameters may be placed in a file by means of the command DRIVE >

OUTFILE. Where OUTFILE is the filename of the file to contain the output results.

These two can be combined using DRIVE < INFILE > OUTFILE to both Input

parameters from, and output data to the corresponding files {.\ficrosoft. JQ86j.

157

When used with V AX systems, the ModuLa-2 source code for the A'.-\L J,nd DRl\ E

programs are slightly different from those given in appendix E. This is because the

present V AX implementation used is Logitech Modula-2 fLogitech. 1988/ · ... hlCh .:·;ffns

considerably from the JPf Modula-2 {Jensen, 1987}. Their implementation is presently

resident on the University of Hull, Robotics Research Unit micro-VAX net Nk node

designated SPOCK.

158

8.2 A Comparative Study.

Having presented a new philosophy in object level programming and simulation. this

chapter will comprise an attempt to compare and contrast the results of this work with

currently available simulation and robot programming packages. Some of the techniques

already implemented in such systems will be explored with a view to their possible use

with the ideas put forward here.

8.2.1 Queueing Simulators.

The history of simulation programs for modelling queues is long but surprisingly little

varied. As mentioned previously, many such simulation packages exist such as GASP, CSL

etc .• and are the topic of numerous surveys. Unfortunately, for simulation purposes, these

are almost exclusively emulatory rather than analytical in nature.

The integration of such systems into a manufacturing environment for direct control

of plant as well as background simulation is rapidly becomming an industrial reality. For

example. DEDS (Discrete Event Dynamic Simulation) allows perturbation ie.. "what if?"

scenarios to be modelled without interfering with the normal running of the factor ...

[Bryant. 1989]. On completion of such tests, real parameters may be changed to allow the

necessary improvements to be made to the manufacturing process on the basis of the

simulation results.

159

8.2.2 Network and F1o~'graph Methods.

Most of the older simulation programs have an input method which the human

operator can use by translating information from a graphical representation into numerical

data. GPSS uses its own flowchart method and in the case of SLA\.1 a network graph is

used. Others such as SIMON, GSP and DEMOS use activity diagrams. [Torn. 1981].

More modern packages allow the user to actually enter a network graphically. STE\1

will handle most representations (Petri net, flowgraph etc). This runs on a SUN or VAX

under a LOOPS object oriented environment. [Popplewell & Jaio, 1989].

The entering of data in matrix form can be laborious and time consuming,

particularly where matrices are sparse, even with mathematical manipulation packages like

MATLAB which have been designed for handling such data. Fortunately the use of

spreadsheets such as LOTUS [Ingalsbe, 1987] have provided the computing community with

a neat alternative. The connection of LOTUS with other software systems has been done

before. The most recent example being the APL2 prototype system FUSION which

translates LOTUS formulae into APL2 code [Friis, 1989].

According to Singh & Hindi very little work has been conducted in the field of

temporal analysis of networks [Singht & Hindi, 1989] where perturbation (what if?) analysis

could be used. The results of this work hopefully helps to fill this particular gap.

160

8.2.3 Petri Net Simulation Packages.

The recent surge of interest In Petri nets has given rise to a number at' , I' simu :ltk)n

packages. Considerable work has been done in the USA, particularly at the Rensselaer

Polytechnic Institute (RPI), on Petri nets over the past few years. GTP~A (General Timed

Petri Net Package) requires a textual rather than graphical input, and generates Jnd

analyses the Petri net reachability graph. Unfortunately the memory requirements prevent

GTPNA from being used on PAWL SUNs [Robinson, 1989].

Based on the work of Molloy [Molloy, 1985] GSPN (Generalised Stochastic Petri

Nets) was developed by Chiola [Chiola, 1987]. This led to the production of GreatSP:\

(Graphical editor & analyser for Timed Petri Nets). GreatSPN provides a graphics editor

and a net validator and analyser which will run on SUN 2 workstations. Unfortunately, it

is still not possible to model timed transitive Petri nets even with such powerful packages

as GreatSPN [Chiola, 1987].

In addition to GreatSPN, under further development at RPI are other packages

including SPNP (Stochastic Petri Net Package), a C-based system for generating

reachability graph information [Robinson, 1989].

8.2.4 Geometrical Robot Animation Systems.

. I 'I bl for geometrical modelling of robot Many animated robot Slmu ators are now aval a e

workcells. Though these are not directly relevant to this work, some of the graphical

techniques used are of interest.

161

The combination of a textual simulation language SI\1A' and a CAD pacbge allo'.l.s

the user to link both simulation statements and animated graphics. The simubtion language

SIMAN is of a BASIC type format allowing data to be entered directly from a flowchart.

whilst the CINEMA part is a standard mouse driven graphics CAD package [Horrocks.

1989].

CimStation, developed by SILMA inc., is a simulation system intended for off line

simulation and generation of geometrical data suitable for downloading to the robot i,>r

real-time execution. The code is translated into Cincinnati Milacron ROPS (Robot Off -line

Programming System) format before execution by the robot controller [Craig, 1987]. This

ability to simulate at manipulator level and then download the code for execution IS

becoming increasingly popular. However, nothing yet exists with the ability to do this at

object level, let alone a combined simulation and programming system.

For the simulation and programming of flowgraphs some form of graphics editor

would be desirable. This would allow the user to 'draw' a flowgraph on the monitor

screen rather than have to enter a great deal of data into a matrix as is presently done

with the Modula-2 programs. STEM has possibly the most appropriate format for this.

Also, rather than two separate packages, as in the case of SIMAN/CINEMA, a better

facility would be to be able to enter the control data along with the flowgraph.

tAL

8.3 Further Research.

On a general note, more investigation into robot programming, taking into account

much of the techniques used in process control languages would be useful. Only then can

robot programming be tackled in a manner which WI' II allow the b' . aSlc matnx programming

ideas presented in this work to be transformed into a true object and tlsk level

programming system. Furthermore, as indicated in chapter 6, extension of these techniques

to dimensions greater than 2 should be explored.

The additional control lines used in the extended flowgraph notation introduced by

Taylor [Taylor, 1987] need to be investigated further if communication between robots

operating in a multi robot cell are to be included. Though multi robot cells have been

considered during this work, no attempt has been made to model or analyze the effects of

communication delays, data errors etc between co-operating devices.

This work contains the basic tools, with a few Modula-2 procedures to facilitate a

simple implementation, listed in appendix E. Some form of screen graphics facility, similar

to that available on simulation packages like STEM, is needed to provide a fully

interactive man-machine interface for such a robot modelling and control system.

The use of neural network systems could provide a powerful means of augmenting the

distributed sensor methods presently employed in most robot workcells. These have been

sucessefully used in the UK for monitoring railway level crossings [Sanders, 1990].

Similarly, in the USA, a neural network system called 'INFANT' (Interactive Net\l.ork

Functioning on Adaptive Neural Topographies) has been developed by Neurogen Inc.

INFANT is a robot controller which learns by exploring its environment from whatever

sensors are available [AMT, 1990]. This means that a high degree of error recovery IS

inherently built into the control algorithms as learning progresses.

163

Replacement of the manual method of updating the program by some form ci

automated program generation would be most valuable. This is not a straight forward t.1sk

as it requires considerable care in its implementation. If it is possible to alter the program

according to results simulated from data immediately obtained from the running workcell.

then a very fast fine tuning arrangement may result. On the other hand. the system may

become unstable, in that an apparent improvement which is in reality an error may be

used to exacerbate that error.

9. CONCLUSIONS.

This work has endevoured to address a number of problems associated ~ith object

level programming of robotic workcells. Ideas from many scientific disciplines ha ve been

called upon, including: electrical engineering, robotics, operations research, mathematics and

computer science. Aspects of error recovery have been emphasised heavily in an attempt

to include the nature of "real life" uncertain environments.

Many network notations have been explored and their relative merrits discussed. To

enable both mathematical analysis and object level robot programming to be implemented

using the same basic methodology, the digraph has been chosen to illustrate the use of

matrix techniques and Markov chain theory for these purposes. This has enabled stochastic

analysis to be performed analytically rather than in an emulatory manner usual of most

simulation programmes. Several new techniques have been introduced including: the use of

isochronic plots, the positioning of sensors according to flow data, matrix differentiation

without recourse to the usual differential calculus techniques etc.

When faced with error occurances during run time, the detect, reject and repeat

policy is usually the most cost effective. Only when an object has gathered a degree of

added value whilst passing through several processes are more elaborate error recovery

strategies likely to be worth consideration. Even then it is often more efficient to reject

the unfinished object for Ire-work' in a separate work station rather than tie up the robot

in backward chaining and repair work thus retarding the progress of the entire production

line as a consequence. Whichever strategy is to be implemented, the use of isochronic

plots provides an aid to deciding the optimum configuration of workcell layout

incorporating error recovery regimes with flow data highlighting potential bottlenecks.

165

A more thorough set of robot programming levels has been defined, \l,'hich inclL.;Jes

the use of sensor data as an inseparable part of the II overa structure of robot control

programming. Many of the attributes found in other (non-robot) . I programming anguages,

such as interrupts, concurrency etc., have been considered.

With regard to object level programming, a new technique using a matrix

representation for all parameters has been introduced, based on Markov chain theory. This

improves the readability of large programs and allows data to be stored and manipulated

in a manner whose structure is also readable and clearly defined. This philosophy is not

restricted to object level robot programming, and its extension to other forms of high

level language processing is also explored.

A set of algorithms are provided which form the framework of a true object level

programming system in which sensor integration and error recovery capability is an

inherent part, rather than an addition to be appended afterwards. Many of the methods

used are also applicable to task level programming, for which some extensions to the

present object level notations have been introduced, and the door is now open to this

field of research.

The main difference between object and task level programming is that of concurrent

workcell control. At object level each workcell, containing one or more robots, IS

considered to be a separate entity whose activity is governed by the arrival and departure

of objects into and out of the workcell. Only at task level is any consideration given t,\

the overall control and sequencing of several cells simultaneously whose operation is not

independant of one another. This difference in independance and inter-dependance is what

differs between Markov and non-Markov systems, and is hence used as the delimiter

between object and task level representations.

166

An attempt has been made to compare and contrast the ideas put forward 10 this

work with those already realised within presently available implementations of roootie

simulation and programming packages. However, most of these concentrate on only a few

aspects of the field such as physical modelling, robot programming or simulation, rather

than a combination of simulation and programming as a complete and integrated system.

A new model has been outlined in which the complete simulation and robot workcell

control can be integrated to provide an overall management system having the potential

for very fine tuning and optimisation without interruption of the cells operation during run

time.

167

REFERENCES.

ABB - Programming manual, Robot Control System S3 - Chapter 4.12: Interrupts _
ASEA, May 1987.

AHUJA. J.S. & K.P. Valavanis. - Extended Petri Nets for Comprehensive Modelling of
Flexible Manufacturing Systems. - Technical Report No. 11., Robotics Laboratory,
Northeastern University, Boston MAt November 1987.

ALBUS. J.S., A.J. Barbera & M.L. Fitzgerald - Programming a Hierarchical Robot
Control System NBS Prog: 6th International Conference on Industrial Robot
Tech~ogy. June 1982.

AMT - Advanced Manufacturing Technology - Technical Insights inc., Vol 11, No.1, 15
January 1990.

ARAKI. T., T. Kagimasa & N. Tokura - Relations of Flow Languages to Petri net
Languages - Theoretical Computer Science - PP51-75, 1981.

BACCELLI. F., C.A. Courcoubetis & M.I. Reiman - Construction of the Stationary
Regime of Queues with Locking - Stochastic Processes and their applications, Vol 26.
No.2, November 1987.

BAJPAI. A.C., L.R. Mustoe & D. Walker. - Advanced Engineering Mathematics. -
Wiley, 1979.

BAJPAI. A.C., L.R. Mustoe & D. Walker. - Engineering Mathematics. - Wiley, 1980.

BEDWORTH. D.O. & J .E. Bailey - Integrated Production Control Systems - John
Wiley, 1987.

BELL. W. A. - An Investigation of the Extension of Analytic GERT to Generalized
Logical Structures - MSc Thesis, Lehigh University, 1971.

BERMAN. A. & R.J. Plemmons - Nonnegative Matrices in the Mathematical Sciences -
Academic Press, 1979.

BLUME. C. & W. Jakob Programming Languages for Industrial Robots
Springer-Verlag, 1986.

BOFFEY. T.B. - Graph Theory in Operations Research. - MacMillan. 1982.

BONNER. S. & K.G. Shin. - A Comparative Study of Robot Languages - Computer, pp
82-96, Decmber 1982.

BOOTHROYD. D.G., C. Poli & L.E. Murch - Handbook of Feeding and Orienting
Techniques. - University of Massechusetts, 1978.

BOUCHER. T .0. - Using Simulation to test the Feasibility of Robotic Assembly -
Computer and Industrial Engineering, Vol 10, No.1, pp 29-44, 1986.

BRICKELL. F. - Matrices & Vector Spaces - George, Allen & Unwin. 1972.

BRYANT. G.F. - The use of Discrete Events Simulations in Factory wide Control -
Modelling, Simulation and Control of Discrete Event Systems - lEE Computing and
Control Colloquium - Plymouth Polytechnic, December 1989.

BUSACKER. R. G. & T. L. Saaty. - Finite Graphs and Networks, An Introduction with
Applications. - Mc.Graw-Hill. 1965.

168

CARRE. B. - Graphs and Networks - Clarendon 1979.

CASH. C.R. & W.E. Wi.lliams - A simulation modelll'ng a h fl' pproac or ana ysmg robotic
assembly cells. - Proc. WLnter Simulation Conf. 1986.

CHAPMAN. D & ~.E. Agre - Abstract Reasoning as Emergent from Concrete '-\(:l\;t\ _
Workshop on Planmng & Reasoning about Action, Portland, Oregon 1986.

CHIOLA. G - GreatSPN Users Manual - Version 1.3, Politecnico di Torino September
1987 '

COLL. J. - BBC Microcomputer System Users Guide - BBC, October 1984.

COOKE. D.E. - PETRI Nets; A tool for Representing Concurrent Activities in Space
Station Applications - Advances in Intelligent Robotic Systems (SPIE). Vol 851, 1987.

COOPER. R.B. - Introduction to Queueing Theory. - Edward Arnold 1981.

CRAIG. J.J. - Arc Welding Simulation Simplifies Programming - Robotics World -
March 1987.

DARZEN. E. - Data Modelling using Quantile Density Functions. - Some Recent
Advances in Statistics. - J. Tiago De Oliveira (Ed.) - Academic Press, 1982.

DENHAM. M.J. - A Petri net approach to Discrete Event Control - ModclUng.
Simulation and Control. of Discrete Event Systems - lEE Computing and Control
Colloquium - Plymouth Polytechnic, December 1989.

DONALD. B.R. - Robot motion planning with uncertainty in the geometric models of the
robot and environment: A formal framework for error detection and recovery - Proc.
International Conf. on Robotics and Automation - IEEE, 1986.

DOWDY. S. & S. WEARDEN. - Statistics for Research. - John Wiley, 1983.

DUFF. I.S., R.G. Grimes & J.G. Lewis - Sparse Matrix Test Problems - AC\/
Transactions on Mathematical Software - Vol 15, No.1, March 1989.

DYER. K.D.F. - The use of High Level Languages in Robot Programming - University
of Hull, MSc. Thesis, 1985

EISENMAN. R.L. - Matrix Vector Analysis. - Mc. Graw - Hill, 1963.

ELMAGHRABY. S.E. - Activity Networks; Project Planning and Control by NeHn)rk
Models. - Wiley 1977.

ELSAYED. E.A. & T.O. Boucher - Analysis & Control of Production Systems. -
Prentice-Hall, 1985.

ESPOSITO. A. & M. Vento - A Structured Language for Multi-Layered Simulation
Models in Factory Automation Systems - IEEE Workshop on Languages for Automation,

pp 113-116, 1987.

FIELDING. P.J., F. DiCesare, G. Goldbogen & A. Desroches - Intelligent Automated
Error Recovery in Manufacturing Workstations - Proc. International Symp. on Intelligent

Control - IEEE, 1987.

FIRBY. R.J. - An Investigation into Reactive Planning in Complex Domains - PrlX·. 6
th

National conf. on AI - pp 202-206, 1987.

FORSYTHE. A.I., T.A. Keenan, E.!. Organik & W. Stenberg. - Computer SClcnce. p5-l2
- John Wiley, 1975

169

FOX. ~.R. & K.G. Kempf - Opportunistic Scheduling for Robotic Assembly. _ Pr :.
International Conf· on Robotics & Automation. IEEE, 1985.

FREEDMAN. P. & A .. Malowany - The Analysis and Optimization of Repetition \I,;thin
Robot Workcell Sequencmg Problems - IEEE Transactions on Roboti d Au . _
pp 1276-1281, 1988. cs an tomatlOn

FRIIS. E.S. - A fusion of LOTUS 123 and APL2 - APL89 Conf. Pro<:. p68-74. - APL
QUOTE QUAD, Vol 19, No.4, ACMlSIGAPL, August 1989.

FROMMHERZ: B & J. ~ornberger - Automatic Generation of Precedence Graphs. _
Proc. Internauonal Symposlum on Industrial Robots, pp453-466. - IFS Ltd, April 1988.

GHRIS. D - Errors and Sensing in Autonomous Assembly Workcells - \15c. Thesis,
University of Hull, December 1989.

GINI. G. & M. Gini - Robot Languages in the Eighties - Robotic Assembly - pp
189-200, Ed. K. Rathmill - IFS, 1984.

GIN!. M. - The Future of Robot Programming. - Robotica, vol 5, pp 235-246., 1987.

GONNET. G.H. - Handbook of Algorithms and Data Structures - Addison-Wesley,
1984.

GORDON. G. - System Simulation. - Prentice-Hall, 1969.

GRIMALDI. R.P. - Chapter 13: Optimization & Matching. - Discrete and Combinatorial
Mathematics; An Applied Introduction - Addison-Wesley, 1989.

GRUBBSTROM. R.W. & J. Lundquist - Completion Times in Networks - Kybernetes. Vol
16, No.3, pp 155-159. 1987.

GRUVER. W.A. - Evaluation of Commercially Available Robot Programming Languages -
Proceedings XIII ISIR, pp 1258-1268, 1983.

HALLORAN. I. - Dynamic Error Recovery: Transfer Report - Dept. of Electonic
Engineering, University of Hull, October 1989.

HARARY. F. & E. M. Palmer. - Graphical Enumeration. - Academic Press, 1973.

HARHALAKIS. G., C.P. Lin & L. Mark - A knowledge based prototype of a factory
level CIM system - Computer Integrated Manufacturing Systems - Vol 2, ~o. 1,

Butterworths, 1989.

HARTLEY. J. - Cost versus Faults: The optimum balance in debugging - Assembh
Automation, Vol 6, No.1, pp40-42, February 1986.

HEGINBOTHAM. W.B., M. Dooner & K. Case - Robot Application Simulation - Tht'

Industrial Robot - June 1979.

HEWITT. J .A. & R.J. Frank - Software Engineering In Modula-2: An object-oriented

approach. - MacMillan, 1989.

HOCUS Manual - PE. Information Systems, Egham, UK.

HORROCKS. R. - 1990's Manufacturing Systems - Modelling, SimulatLOn and Clmtroi of
Discrete Event Systems - lEE Computing and Control Colloquium - Plymouth Polytechnic.

December 1989.

HOWARD. R.A. - Dynamic Probabilistic Systems - Volume 1; .\farkov .\1 odel s - John
Wiley, 1971.

170

HUGGINS. W.H. - Signal Flow Graphs and Random Signals. - Proc. IRE,
74-86, 1957.

\'01 ,) pp

HSU. H. T. - An Algorithm for Finding a ~1inimal Equivalent Graph of a Digraph. _
Journal of the Association for Computing Jfachinery, Vol n. no. I, pp 11-16, JanuJT\.'
1975.

IBM - IBM Robot S ystemll, AM L Reference Manual - IBM Corpora tion, 1981

INGALSBE. L. - LOTUS 123 with Version 2.0 for the IBM PC. - Merrill, 1987,

IOSIFESCU. M. - Finite Markov Processes and their applications - Wiley. 1980

JETER. M.W., W.C. PYE. & C.E. Robinson - An Alternative Way of Computing \1:ltrix
Inverses. - Mathematics & Computing Education (USA), vol 21 (3), pp182-6, 1987.

JOHNSON. D.G. - Integrated Sensors & Actuators for Robotic Assembly. - University of
Hull, PhD. Thesis, 1986.

JENSEN & Partners - JPI Modula-2 Owners Handbook - J & P International, 1987.

KAMEL. M.S. - Planning and Sensing Tradeoffs in Robotics - NATO Advanced Research
Workshop - Springer Verlag, October 1988.

KARKKAINEN. P., T. Heikkila & U. Niemela. - Supplementing a Standard Assembly
Robot by Multisensor Capabilities. - Components, Instruments & Techniques for low cost
Automation. - IFAC Symposium. pp 95-99, 1988.

KATZAN. H. - APL Programming and Computer Techniques - Van Nostrand Reinhold,
1970.

KELLY. F.P - Reversibility and Stochastic Networks - Wiley 1979.

KEMENY. J.G. & J.L Snell - Finite Markov Chains. - Van Nostrand, 1965.

KEMP. D.R., P.M. Taylor & G .E. Taylor - A sensory gripper for handling textiles -
Robot Grippers - pp 155-164, Ed. D.T. Pham & W.B. Heginbotham - IFS 1986.

KODRES. U.R. - Discrete Systems and Flowcharts - Trans. on Software Engineering -
IEEE vol SE-4, No.6, pp521-525, November 1978.

KOENIGSBERG. E. - Cyclic Queues - Operations Research Quarterly. Vol 9, No. I,

1958.

KUMPEL. D.M. & R.G. Rosa - Automatic Task Generator with Incomplete Information
for a Robot Endowed with Sensors. - Proc. IECON 87: Int. Conf· Industrial Electronics,

IEEE 1987.

LALONDE. W.R., D.A. Thomas & K. Johnson - Smalltalk as a Programming Language
for Robotics? - Proc. IEEE Conf. Robotics & Automation, pp1456-1462, March 1987.

LE BEUX. P. - Lexique Micro-in!ormatique - Sybex, Paris 19804.

LEE. A.M. - Applied Queueing Theory - Studies in Management - \f3c\tillan 1966.

LEE. C.N., M.Y. Chiu, P. Liu & S.J. Clark - Model-based Hierarchical Diagnosis l1f

Robotic Assembly Cell. - Intelligent Robots and Computer Vision, SPIE Vol 848.

pp182-189, 1987.

LEE. M.H., N.W. Hardy & D.P. Barnes. - Research into Automatic Error Recovery
Proc. Con!. on V K Robotics Research. - Inst. ~ tech. Engineers, London. Dec. }l~S·l

171

LEVI. P & T. Loeffler - The use of Assemblv Graphs for Robot P . L f S . - rogrammmg. -
anguaK.es or ensor-based Control In Robotics Proceedings of lhe SAra

Internattonal Advanced Workshop on Languages for Sensor-based Control Vol
pp233-259, September 1986. ' 7.

LIPSCHUTZ. S. - Finite Mathematics - Schaum'S Outline Series, \fc. Graw-Hill. 1966.

SL~GITIECdH 1-988M 2 VMS LOGITECH MODULA-2 Users .\fanual - Logitech S . ..\..
WItzer an , .

LYONS. D.M. - A Novel Approach to High Level Robot Programming. - IEEE
Workshop on Languages for Automation, pp48-51, 1987.

MALCOLM. C.A. & A.P. Fothergill - Some Architectural Implications of the use of
Sensors. - NATO ASI series. Vol F29 - Springer Verlag 1987.

MARKOWITZ. H.M. - SIMSCRIPT: Past, present and some thoughts about the future in
current issues in computer simulation. - N. Adam & A. Dogramaci (Eds.). - Academic
Press, New York 1979.

MARTIN. 1.1. - Distribution of the Time through a Directed. Acyclic Network. -
Operations Research, Vol 13, No.1, pp46-66, January 1965.

MASON. S.l. - Feedback Theory - Further Properties of Signal Flowgraphs - Proc.
Transactions on Circuit Theory. - IRE, July 1956.

MASON. T.M. & 1.K. Salisbury, Jr. - Robot Hands and the Mechanics of Manipulation
- MIT Press, 1985.

MAYER. S.L. - Data Analysis for Scientists and Engineers. - Wiley. 1975.

MELLOR. P.V. - An Adaptation of Modula-2 for Distributed Computing Systems. -
Ph.D Thesis, University of Hull, 1987.

MERLIN. P.M. - A Study of the Recoverability of Computer Systems - Ph.D Thesis.
University of California, Irvine 1974.

MICROSOFT - MS-DOS v3.2 Disc Operating System Manual - Microsoft Corporation,

1986.

MILOV ANOVIC. R. Towards Sensor-based General Purpose Robot Programming
Language. - Robotica, vol 5 1987, pp 309-316.

MOLER.C., 1. Little, S. Bangert & S. Kleiman - PC-MATLAB for MS-DOS Personal
Computers - MathWorks Inc., Massechusetts, 1986.

MOLLOY. M.K. - Discrete time Stochastic Petri nets - Trans. on Software Engineering

- IEEE vol se-11, No.4, April 1985.

MONKMAN. G.J. - Electrostatic Techniques for Fabric Handling - \tSc. Thesis,

University of Hull. 1987.

MONKMAN. G.J. - Sensor Transition and Object Driven Programming. - Internal
Report No. 84/89, University of Hull. December 1989.

MONKMAN. G.J., G.E. Taylor & P.M. Taylor - Flow.graph Techniques in Wo~(eIl
Assesment and Design - International Symposium on Intelligent Control - IEEE. AI an~.
NY, September 1989.

MONRO. D.M. - Fortran 77 - Edward Arnold, 1983.

NELSON. R.A., ~.M .. Haibt & P.B. Sheridan - Casting Petri nets into programs - Trans.
on Software Engtneertng. - IEEE vol SE-9, \"0. 5, pp590-602 September 1983.

NILSSON. N.J. - A Hierarchical Robot Planning and Execution System - SRI Artificial
Intelligence Centre, Technical note 76, April 1973.

OPEN UNIVERSITY - Simulation II - .l.f35J Mathematics - \1351 units 1 ~ &.
University 1982. 15, Open

PETERSON. J.L. - Petri net Theory and the Modelling of Systems - Prentice Hall.
1981.

POPP.L~WELL. K. & H. Jaio - Simulation, Object-oriented Programming. and System
Descnptlon Methodology: A Progress Report - Modelling, Simulation and Control of
Discrete Event Systems - lEE Computing and Control Colloquium - Plymouth Polytechnic.
December 1989.

PRITSKER. A.A.B. - GERT: Graphical Evaluation and Review Technique - \"ASA
memo: RM-4973 Rand Corp. 1966.

PRITSKER. A.A.B. - User's Manual for GERT Simulation Program - NASA'ERC 0:(~R
03-001-034, Arizona State University, July 1968.

REISIG. W. - Petri Nets: An Introduction - Springer Verlag, 1985.

RICE. J .R. - Matrix Computations and Mathematical Software. - Mc.Graw-Hill, 1981.

ROBINSON. J. - Petri Net Software - Rensselaer Polytechnic Inst. 22 February 1989.

RODIGHIERO. F. & A. Canciani - An Experience in Task Level Robot Programming -
Workshop on Languages for Automation, pp 86-89, IEEE, 1987.

ROMANOVSKY. V.l. - Discrete Markov Chains. - Wolters-Nordhoff, 1970.

SANDERS. J. - Training no barrier - Parallelogram - Issue 22, p6, January 1990.

SCHRUBEN. L. W. - Simulation Modelling with Event Graphs. - Communications of the
ACM, vol 26, No. 11, November 1983.

SERC Final Report. - Automation of Shirt Collar Inspection and Assembly. - Universitv
of Hull. 1988.

SHAN. Y.P. - An Event-driven Model-view-controller Framework for Smalltalk -
OOPSLA'89 Proc. pp 347-352 - ACM, 1989.

SIEGRIST. K. - Reliability of Systems with Markov Transfer of Control - Trans. on
Software Engineering - IEEE vol 14, No.7, ppl049-1053, July 1988.

SINGH M G & K S H · d' - An OverVl'ew of Research on discrete event dynamical . ., .. In 1

systems. Modelling, Simulation and Control of Discrete Event Systems - lEE
Computing and Control Colloquium - Plymouth Polytechnic, December 1989.

SONG. X.K. - A Prototype Expert System Application for Run-time Error-reco1l'fY In a
Robotic Assembly Workcell - Internal Report No. 52/88 - University of Hull. August

1988.

SPIEGEL. M.R. - Mathematical Handbook of Formulas and Tables - p 10~ (19.4) -

MC.Graw Hill 1968.

SRINIVAS. S. - Error Rfcm'ery in Robot Systems - Ph.D Thesis - California In!5. of
Technology, Information Science. December, 1976.

173

SRINIV AS. S. - Error Recovery in Robots through Failure Reason Analysis
International Computer Conf., Anaheim CA _ AFIP, June 19'78. - Proc. of

STEFIK. ~. & D.G. Bobrow - Object-Griented Programming: Themes and Variations _
AI Magazme, Vol 6, No.4, pp40-62, Winter 1986.

TAHA. H.A. - Operations Research, An Introduction. - 4th Ed., \tac\tillan. IllS?

TAYLOR. P.M. - Multisensory Assembly and Error Recovery. - NATO \\'orkslwp,
Castlevecchio, Italy. Oct. 1987.

TAYLOR. P.M., A.J. Wilkinson, G.E. Taylor, M.B. Gunner & G.S. Palmer - Automated
Fabric Handling Problems and Techniques - IEEE Systems Engineering Conf. - Pittsburgh
Pa. , August 1990.

TORN. A.A. - Simulation Graphs: A General Tool for \1odelling Simulation Designs -
Simulation - pp187-194, December 1981.

TUTTE. W. T. - Connectivity in Graphs. - University of Toronto Press. 1966.

UNIMATION - PUMA 500 mk II User's Guide to VAL II. 398Tl, Version lAB. -
Unimation, May 1985.

VAL II - Version 1.0 , User instruction Manual - Adept Technology inc. September 1984.

VALAVANIS. K.P. - On the Hierarchical Modelling Analysis and Simulation of Flexible
Manufacturing Systems with Extended Petri nets - Internal Report. Northeastern
University, 1989.

V ALETTE R., J. Cardoso & D. Dubois - Monitoring Manufacturing Systems by means of
Petri nets with imprecise markings - Proc. International Symposium on Intelligent Contru[
- IEEE, September 1989.

WEISSENBORN. H.O. - Technology Tomorrow - Proc. 5th IntI. conf. in Simulation In
Manufacturing - Ed. Dr. Ing. H. Baumgarten - pp 185-196, 13/14 June 1989.

WERUM. W. & H. Windaur - Introduction to PEARL, Process and Experiment
Automation Realtime Language - Friedr. Vieweg & Sohn, 1982.

WILLIAMS. D.J., P. Rogers & D.M. Upton - Programming and Recovery in Cells for
Factory Automation - The International Journal of Advanced Manufacturing Technology
- IFS Pubs., 1986

WILSON. R.J. - Introduction to Graph Theory - Longman (2nd Ed) 1979.

WHITEHOUSE. G. - Model Systems on Paper with Flowgraph Analysis. - Industrial
Engineering, pp30-35, June 1969.

WHITEHOUSE. G.E. - System Analysis and Design using Network Techniques. -

Prentice-Hall, 1973.

WOODWARD. P.M., P.R. Wetherall & B. Gorman - Official Definition of CORAL ()()
- Ministry of Defence, HM Stationary Office, 1970.

ZW ARICO. A. - Rooot Programming Languages: Issues of Concurrency and Real-Time. -
Proc. International Conf. on Systems, Man & Cybernetics - IEEE. November I ql'S.

174

APPENDIX

175

APPENDIX A

Queueing Theory Nomenclature.

The following is a brief list of the nomenclature commonly used in queueing theory.

The information was obtained from a number of texts, particulaly Lee [Lee, 1966].

Queues are usually denoted by a type of code which contains information on various

aspects of the queue involved. For example M/M/2:(12/LIFO) etc.

So, given the syntax AlB/C:(d/e) where:

A Arrival pattern.
B Service time distribution.
C Number of servers.
d Maximum number of customers in queue (including the one

being served).
e Queue discipline.

Examples:

For example M/M/l:(20/FIFO)

means Random Arrival/Random Service/One Server:
Max queue length of 20/FIFO Queue)

and :- M/Ek/5:(oo/SIRO)

means :- Random Arrival/Erlangian Distribution/5 Channels:
(Infinite Queue Length/Service In Random Order)

Distributions:

G

GI -

Random distribution.
Constant distribution.
Erlang distribution (distribution of the sum of k
independantlyand identically distributed negative
exponential variables).
General distribution.
Independant general distribution.

176

Queue Disciplines:

FIFO
SIRO
LIFO
PSPO
NPPS

First In First Out.
Service In Random Order.
Last In First Out.
Pre-emptive Service Priority Order.
Non Pre-emptive Priority Service.

177

APPENDIX B

Digraph Nomenclature.

The following notation, taken from Wilson [Wilson, 1979], appears In most texts

discussing digraph theory, particularly when taken from a mathematical view point.

ABSORBING A node from which it is impossible to get to any other
s tat e, i e. a sink.

ADJACENT Two vertices, U & V, are said to be ADJACENT if there
exists paths UV or VU.

ARCS Pairs of elements (paths).

BIPARTITE If each node were coloured (say, red and blue) and
each path has both a red and a blue end.

DIGRAPH Directed graph.

ERGODIC Both PERSISTENT and APERIODIC.

HOMEOMORPHIC Identical to within vertices of degree two. ie., (a) and
(b) are HOMEOMORPHIC. (HOMEOMORPHIC == EQUIVALENT)

(a) (b)

INCIDENT A vertex U is INCIDENT to an ARC UV, VU, WU etc.

IRREDUCIBLE A transition matrix is irreducible if its digraph is
strongly connected.

IRREFLEXIVE A matrix A having only zeros in tha main diagonal.

178

ISOMORPHIC

(a)

PERSISTENT

PERIODIC

REFLEXIVE

Two graphs having the same flow into each element.
ie., (a) and (b) below are ISOMORPHIC, but (a) and (c)
are not.

(b) (c)

A node whose transition is sooner or later ine~itable
(ie. Probability of transition - 1).

A node to which it is only possible to return to
after some multiple of time, t.

A digraph having a loop incident with each vertex.

STRONGLY CONNECTED Contains a direct path from U to V and back. Each
node is mutually reachable from every other node.

TRANSITION MATRIX Probability matrix (each row of a TRANSITION MATRIX
is a probability vector).

VERTICES Elements (nodes).

179

ABSORBING

DIFFERENTIAL MATRIX

DOUBLY STOCHASTIC

DUODESMIC

ERGODIC

MARKOV CHAIN

MARKOV PROCESS

MONODESMIC

MUL T I NOMI AL PROCESS

POLYDESMIC

REGULAR MARKOV CHAIN

STOCHASTIC MATRIX

TRANSIENT STATE

APPENDIX C

Markov Chain Nomenclature.

A chain, all of whose non-transient states are
absorbing (trapping), is called an absorbing chain.

Represents multinomial processes - all rows and
columns sum to zero.

Both columns and rows of the transition matrix sum
to ze ro. The lim i t i ng rna t r i x - n I, i e ., the
solutions to the transition matrix are all equal to
lIn.

A process containing two chains.

A Markov chain which is both persistent and
aperiodic.

A discrete Markov process.

A process in which each state is independant of the
last state.

A process which has only one solution to the limitin
g
matrix - usually represents a strongly connected
digraph.

The probability of transition to each state is
independant of the state occupied.

A process containing two or more chains.

Has no transient sets and contains a single ergodic
set with only one cyclic class.

A matrix whose elements all lie within the range
[0,1] and whose rows sum to 1.

A state which has zero probability of being occupied
after a large number of transitions.

180

APPENDIX D

Statistical Distributions.

The following statistical distributions are a sample of the commonest ones used in

queueing theory, simulation etc. This is not intended as a full study of probability

distributions, but rather an overview for the sake of easy reference when reading the main

text. A number of publications have been consulted in the compilation of this appendix

and these will be refered to where appropriate.

BINOMIAL.

PROB(r successes in n trials) - nCr pr qn-r, r - 0, 1, 2, ... n

where:

POISSON.

nC r

n!
r!(n-r)!

Given an average occurance rate A units/second.

PROB(r events in a given interval)

NORMAL (GAUSSIAN).

P(x) has a normal distribution over x C [a,b]

iff
1 !(X-#L)/(J == -z2/2

j 2~ e dz

where x is normally distributed with mean #L and standard

deviation (J.

P(z) found from tables [Dowdy & Wearden. 1983].

181

HYPER-EXPONENTIAL DISTRIBUTION.

Describes a distribution where h t e standard deviation is larger than the mean, (or

example low and high values OCcur more frequently. The data may be bimodal [Gordon,

1969].

This can be modelled as a branch process.

Ta
2P

Ta
2 (l-P)

if the distributions Ta are exponential, then:

-2PAt -2(1-P)At
Pe + (l-P)e P c]0,0.05]

MULTIMODAL DISTRIBUTIONS.

Given a continuous function f(X), then the mode is defined as the abscissa of a local

maximum such that:

df(X) I _ a
dX X""Xmode

and d 2 f(X)1
dX 2 X-Xmode

< a

[Mayer, 1975]

Many tests of sample variance exist for normal population distributions, such as t and

X 2 distributions [Bajpai et aI., 1979].

However, when dealing with more complex distributions, such as bimodal, more

complex techniques must be employed. For example, the use of quantile and density

quantile functions which treat the normal distribution simply as one of man\' [Darzen,

1982].

182

APPENDIX E

Modula 2 Program Routines.

ANAL Procedures.

Each of the procedures of the Modula 2 programs mentioned in the main text are

described below. These individual descriptions are followed by annotated Modula 2 program

listings for the complete package.

All matrices are square and of dimension n unless specified otherwise.

matread(a) a ~ input

Reads an n by n matrix of reals from the keyboard into variable a.

matwrite(a) a ~ output

Writes an n by n matrix of reals from variable a onto the screen.

I(a,n) a ~ I(n,n)

Puts an n by n identity matrix into variable a.

M(a,n) a ~ M(n,n)

Puts an m by m mirror matrix into variable a.

transp(a)

Finds the transpose of matrix a returning the result to matrix b
leaving matrix a unchanged.

matadd(a,b,c) c ~ a + b

Adds matrix a to matrix b leaving the result in c.

matsub(a,b,c) c ~ a - b

Subtracts matrix b from matrix a leaving result in c.

un

matconmul(a,b,c) c ~ a C b

Performs con~ruent multiplications (element by element multiplication)
between matrIx a and matrix b leaving the result in c.

matmul(a,b,c) c ~ a * b

Performs standard matrix multiplication between matrix a and matrix b
leaving the result in c.

-1
matinv(a,b) b ~ a

Inverts matrix a leaving result in b.

diag(a,b) b ~ DIAG(a)

Takes the main diagonal of matrix a and places along the main diagonal of
matrix b leaving all other elements of matrix b zero.

-1

matflow(a,b) b ~ [I - a]

Finds the characteristic matrix using a and places the result in b.

matvar(a,b) b ~ a * (2 * DIAG(a) - I) - a 0 a

Finds the variance of matrix a and places the result in b.

scalmul(x,a,b)

Performs scalar multiplication between scalar x and matrix a leaving the
result in b

Q)

ma t lim (a , b) b ~ a

Finds the limiting matrix of matrix a leaving the result in h.

lS.t

Modula-2 ANAL Simulator Listing.

MODULE ana 1 ;
(*** This is a matrix manipulation package for the stochastic simulation

of weighted flowgraph networks. All matrices are assumed square and
of dimension n, as determined during the initial matrix entry ***)

FROM 10 IMPORT RdCard, RdReal, WrLn, WrReal, WrStr;

VAR x: REAL;
VAR n: CARDINAL;
TYPE matri'x ... ARRAY[1 .. 32] OF ARRAY[1 .. 32] OF REAL;
VAR A,B,C,D: matrix;

PROCEDURE matread(VAR a: matrix);
(*** Reads in a square matrix a of dimension n ***)
VAR i,j: CARDINAL;
BEGIN

WrStr('Enter matrix size - ');
n:=RdCard();
WrStr('Enter matrix elements');
WrLn;
FOR i: = 1 TO n DO

END;
END mat read;

FOR j:-1 TO n DO
a[i, j] :-RdReal ();

END;

PROCEDURE matwrite(VAR a: matrix);
matrix a of dimension n ***) (*** Writes out a square

VAR i,j: CARDINAL;
BEGIN

FOR i: -1 TO n DO
FOR j:-1 TO n DO

WrReal(a[i ,j] ,3,3);
END;
WrLn;

END;
END matwrite;

PROCEDURE I (VAR a: matrix;
VAR n: CARDINAL);

d i rna t r i x lin t 0 rna t r i x a ***) (*** Puts the i ent ty
VAR i,j: CARDINAL;
BEGIN

END I;

FOR i: -1 TO n 00

END;

FOR j:-1 TO n 00
a [i , j] : -0 . 0 ;
a[i,i]:-1.0;

END;

185

PROCEDURE M(VAR a: matrix;
VAR n: CARDINAL);

(*** Puts the mirror (rotation) matrix M into matrix a ***)
VAR i,j: CARDINAL;
BEGIN

END M;

FOR i :-1 TO n DO

END;

FOR j:-1 TO n DO
a [i I j] : -0 . 0 ;
a [i I n+ 1 - i] : -1 . 0 ;

END;

PROCEDURE transp(V AR a,b: matrix;
VAR n: CARDINAL);

(*** Transposes the matrix a returning the result to b ***)
VAR i,j: CARDINAL;
BEGIN

FOR i:=l TO n DO
FOR j:=l TO n DO

b[j Ii] :=a[i,j];
END;

END;
END transp;

PROCEDURE matadd(VAR a,b,c: matrix);
(*** Adds the matrices a and b leaving the result in c ***)
VAR i,j: CARDINAL;
BEGIN

FOR i: =- 1 TO n DO

END;
END mat add;

FOR j:=1 TO n DO
c [i I j] : =a [i I j] +b [i I j] ;

END;

PROCEDURE matsub(VAR a,b,c: matrix);
(*** Subtracts the matrix b from a leaving the result in c ***)
VAR {,j: CARDINAL;
BEGIN

FOR i: -1 TO n DO

END;
END rna t sub;

FOR j:-l TO n DO
c [i I j] : -a [i I j] - b [i I j] ;

END;

PROCEDURE matsum(VAR x: REAL;
a: matrix);

(*** Puts the sum of all the elements of matrix a into variable x ***)
VAR i,j: CARDINAL;
BEGIN

x:-O.O;
FOR i: -1 TO n DO

END;
END mat sum;

FOR j:-1 TO n DO
x:-x+a[l,j];

END;

PROCEDURE matconmul(VAR a,b,c: matrix);
(*** Performs congruent multiplication between matrix a and matrix b

leaving the results in matrix c ***)
VAR i,j: CARDINAL;
BEGIN

FOR i: = 1 TO n DO
FOR j:-1 TO n DO

c [i , j] : -a [i , j] *b [i , j] ;
END;

END;
END matconmul;

PROCEDURE matmul(VAR a,b,c: matrix);
(*** Performs matrix multiplication between a and b with result in c ***)

VAR i,j,k: CARDINAL;
BEGIN

FOR i: -1 TO n DO
FOR j:-1 TO n DO

c [i , j] : ==0 . 0 ;
FOR k:-1 TO n DO

c [i , j] : -c [i I j] +a [i , k] *b [k , j] ;

END;
END;

END;
END matmul;

PROCEDURE scalmul(VAR x: REAL;
VAR a,b: matrix);

I . I· t· a by scaler x putting result into b ***) (*** mu tIP tes rna rlx
VAR i,j: CARDINAL;
BEGIN

FOR i: -I TO n DO
FOR j:-I TO n DO

b [i , j] : -x*a [i , j] ;
END;

END;
END scalmul;

IS7

PROCEDURE matinv(VAR a,b: matrix);
(*** Inverts matrix a putting inverted t· I rna rlX resu t into matrix b ***)
VAR i,j,k: CARDINAL;

BEGIN
z: REAL;

FOR i: -1 TO n DO
FOR j:=1 TO n DO

b [i , j J : -0 . 0 ;
END;
b[i,iJ:-1.0;

END;
FOR k:-1 TO n DO

FOR i: -1 TO n DO
IF i#k THEN

z:=a[i,kJja[k,k];
FOR j:=1 TO n DO

a [i , j] : -a [i , j] -a [k , j] *z ;
b [i , j] : -b [i , j] - b [k, j] *z ;

END;

END;
END matinv;

END; (***ENDIF***)
END;
z:=a [k, k] ;
FOR j:-1 TO n DO

a [k , j] : -a [k , j] /z ;
b[k,j] :==b[k,j]/z;

END;

PROCEDURE diag(VAR a,b: matrix);
(*** Puts main diagonal elements of matrix a into matrix b diagonal ***)
VAR c: matrix;
BEGIN

I(c,n);
matconmul(a,c,b);

END diag;

PROCEDURE matflow(VAR a,b: matrix);
(*** Finds the characteristic (flow) matrix b-inv[l-a] ***)
VAR c: matrix;
BEGIN

I (b,n);
matsub(b,a,c);
matinv(c,b);

END matflow;

188

PROCEDURE matvar(VAR a,b: matrix);
(*** Finds variance of matrix a returning result to matrix b ***)
VAR c,d: matrix;

X,z: REAL;
BEGIN

diag(a,b);
x:-2.0;
scalmul(x,b,c);
I(b,n);
matsub(c,b,d);
matmul(a,d,c);
matconmul(a,a,d);
matsub(c,d,b);

END matvar;

PROCEDURE matlim(VAR a,b: matrix);
(*** Finds the limiting matrix of a returning result to matrix b ***)
VAR c,d: matrix;

x: REAL;
BEGIN

x:-l.O;
b:-a;
REPEAT

matmul(b,b,c);
matmul(c,c,b);
matsub(b,c,d);
matsum(x,d);

UNTIL ABS(x)<O.OOOOl;
END mat 1 im;

189

(*** Example Main program for execution of matrix procedures ***)
BEGIN

WrStr('Enter stochastic transition matrix');
WrLn;
matread(A);
matlim(A,B);
WrStr('LIMITING matrix is:');
WrLn;
matwrite(B);
WrLn;
matflow(A,B);
WrStr('FLOW matrix is: ');
WrLn;
matwrite(B);
WrLn;
matvar(B,C);
WrStr('VARIANCE matrix is:');
WrLn;
matwrite(C);
WrLn;
WrStr('Enter toll matrix');
WrLn;
matread(A);
matconmul(A,B,C);
WrStr('Toll AVERAGE matrix is:');
WrLn;
matwrite(C);
WrLn;
matsum(x,C);
WrStr('MEAN toll value is: ');
WrReal(x,6,6);

END anal.

190

DRlVE Procedures.

WrString('a') a, output

Writes the string between quotes" to th (
e screen or other selected Outrut device).

RdStr(a) a ~ input

Reads a st'ring from the keyboard (or other selsected input device).

matstread(a) a ~ input

Reads a matrix of string values from the keyboard (or other selected
input device).

matread(a) a ~ input

Reads a matrix of cardinal elements from the keyboard (or other selected
input device).

vecread(a) a ~ input

Reads a vector of cardinal values from the keyboard (or other selected
input device).

vecmatmul(a,b,c) a ~ b * c

Multiplies vector b by matrix c leaving the result in v~ctor a. Vector b
and matrix c are left unchanged.

execute(a) a, output

Executes a Markov process. The string a is output to the screen or other
selected output device (usually the robot controller). The string a ~ill
normally be a program routine recognisable by the host controller.

Modula-2 DRIVE Programming Listings.

MODULE drive;
(*** Robot control module. A transition matrix of VAL II procedures is

entered together with an initial sensor state matrix and starting
vector. A Markov process is executed producing VAL II commands to
drive the robot. A new driving vector is produced and the sensor
state matrix updated after each action. ***)

FROM 10 IMPORT RdCard, RdChar, WrStr, WrChar, WrCard, WrLn;

VAR n : CARDINAL;

TYPE vector - ARRAY[l .. 32] OF CARDINAL;
matrix - ARRAY[l .. 32] OF ARRAY[l .. 32] OF CARDINAL;
string - ARRAY[l .. 10] OF CHAR;
stringmatrix ARRAY[l .. 32] OF ARRAY[1 .. 32] OF string;

VAR x,y string;
R stringmatrix;
S
vectorO,vector1

matrix;
vector;

PROCEDURE WrString(VAR x:string); . .
(*** Writes a string variable (NOTE: WrStr does not work wIth strIng

variables! - only characters between quotes, ie. WrStr('abc') ***)
VAR k: CARDINAL;
BEGIN

k:=O;
REPEAT

INC(k);
WrChar(x[k]);

UNTIL X[k]<_" ";
END WrString;

PROCEDURE RdStr(VAR x: string);
(*** Reads a string of 10 characters ***)
VAR k,l: CARDINAL;
BEGIN

REPEAT
x [1] : -RdCha r () ;

UNTIL x[l]>" ";
k:-l;
REPEAT

INC(k);
x [k] : -RdChar () ;

UNT I L x [k] <-" ";
END RdStr;

192

PROCEDURE matstread(VAR R:stringmatrix);
(*** Reads in a matrix of string variables ***)
VAR i,j: CARDINAL;
BEGIN

WrStr('Enter matrix size ');
n: -RdCard () ;
WrStr('Enter matrix string elements ');
WrLn;
FOR i: -1 TO n DO

END;

FOR j:-1 TO n DO
RdS t r (R [i , j]) ;

END;

END matstread;

PROCEDURE matread(VAR S: matrix);
(*** Reads a matrix of cardinal elements ***)
VAR f,j,p: CARDINAL;
BEGIN

WrStr('Enter');
WrCard(n, 3);
WrStr(' by');
WrCard(n,3);
WrStr(' Sensor matrix (1, 0 values only)');
WrLn;
FOR i: -1 TO n 00

END;
END mat read;

FOR j:-1 TO n DO
S [f ,j] :-RdCardO;

END;

PROCEDURE vecread(VAR vectorO: vector);
(*** Reads in a process driving vector ***)
VAR i,p: CARDINAL;
BEGIN

FOR i: -1 TO n DO
vectorO[i]:-RdCard();
ve c tor 1 [i] : -0 ;

END;
END vecread;

PROCEDURE vecmatmu](VAR vector1,vectorO: vector;
S : matrix);

(*** multiplies a vector by a matrix ***)
VAR i,j: CARDINAL;
BEGIN

FOR j: -1 TO n 00
FOR i: - I TO n 00

vector1[j]:-vector1[j] + vector-Oli} * S[i,j];

END;
END;

END vecma t mu I ;

19~

PROCEDURE execute(VAR y: string);
(*** executes a markov process ***)
VAR k,p,q: CARDINAL;
BEGIN

p:-O;
q:-O;
FOR k:-l TO n DO

IF vectorO[k] >- 1 THEN
p:-k;

END; (*** ENDIF ***)
END;

vecmatmul(vectorl, vectorO, S);
FOR k:-l TO n DO

IF vectorl[k] >- 1 THEN
q:-k;

END; (*** ENDIF ***)
END;

IF (p-O) OR (q-O) THEN
WrStr('Procedure Completed');
WrLn;
HALT;

END; (*** ENDIF ***)
y :-R[p, q] ;
(*** Output VAL II procedure ***)
WrString(y);
WrLn;
matread(S); (*** next sensor state ***)
vectorO:-vectorl;

(*** Re-initialise vectorl ***)
FOR k:=l TO n DO

vectorl[k] :-0;
END;

END execute;

(*** main program ***)
BEGIN

WrStr('Enter Routine matrix');
WrLn;
matstread(R);
WrStr('Enter Initial sensor matrix');
WrLn;
matread(S);
WrStr('Enter starting vector');
WrLn;
vecread(vectorO);
REPEAT

execute(y);
UNTIL vectorl-vectorO;

END drive.

CONTAINS DISKETTE

UNABLE TO COpy

CONTACT UNIVERSITY

IF YOU WISH TO SEE

THIS MATERIAL

	525081_0001
	525081_0002
	525081_0003
	525081_0004
	525081_0005
	525081_0006
	525081_0007
	525081_0008
	525081_0009
	525081_0010
	525081_0011
	525081_0012
	525081_0013
	525081_0014
	525081_0015
	525081_0016
	525081_0017
	525081_0018
	525081_0019
	525081_0020
	525081_0021
	525081_0022
	525081_0023
	525081_0024
	525081_0025
	525081_0026
	525081_0027
	525081_0028
	525081_0029
	525081_0030
	525081_0031
	525081_0032
	525081_0033
	525081_0034
	525081_0035
	525081_0036
	525081_0037
	525081_0038
	525081_0039
	525081_0040
	525081_0041
	525081_0042
	525081_0043
	525081_0044
	525081_0045
	525081_0046
	525081_0047
	525081_0048
	525081_0049
	525081_0050
	525081_0051
	525081_0052
	525081_0053
	525081_0054
	525081_0055
	525081_0056
	525081_0057
	525081_0058
	525081_0059
	525081_0060
	525081_0061
	525081_0062
	525081_0063
	525081_0064
	525081_0065
	525081_0066
	525081_0067
	525081_0068
	525081_0069
	525081_0070
	525081_0071
	525081_0072
	525081_0073
	525081_0074
	525081_0075
	525081_0076
	525081_0077
	525081_0078
	525081_0079
	525081_0080
	525081_0081
	525081_0082
	525081_0083
	525081_0084
	525081_0085
	525081_0086
	525081_0087
	525081_0088
	525081_0089
	525081_0090
	525081_0091
	525081_0092
	525081_0093
	525081_0094
	525081_0095
	525081_0096
	525081_0097
	525081_0098
	525081_0099
	525081_0100
	525081_0101
	525081_0102
	525081_0103
	525081_0104
	525081_0105
	525081_0106
	525081_0107
	525081_0108
	525081_0109
	525081_0110
	525081_0111
	525081_0112
	525081_0113
	525081_0114
	525081_0115
	525081_0116
	525081_0117
	525081_0118
	525081_0119
	525081_0120
	525081_0121
	525081_0122
	525081_0123
	525081_0124
	525081_0125
	525081_0126
	525081_0127
	525081_0128
	525081_0129
	525081_0130
	525081_0131
	525081_0132
	525081_0133
	525081_0134
	525081_0135
	525081_0136
	525081_0137
	525081_0138
	525081_0139
	525081_0140
	525081_0141
	525081_0142
	525081_0143
	525081_0144
	525081_0145
	525081_0146
	525081_0147
	525081_0148
	525081_0149
	525081_0150
	525081_0151
	525081_0152
	525081_0153
	525081_0154
	525081_0155
	525081_0156
	525081_0157
	525081_0158
	525081_0159
	525081_0160
	525081_0161
	525081_0162
	525081_0163
	525081_0164
	525081_0165
	525081_0166
	525081_0167
	525081_0168
	525081_0169
	525081_0170
	525081_0171
	525081_0172
	525081_0173
	525081_0174
	525081_0175
	525081_0176
	525081_0177
	525081_0178
	525081_0179
	525081_0180
	525081_0181
	525081_0182
	525081_0183
	525081_0184
	525081_0185
	525081_0186
	525081_0187
	525081_0188
	525081_0189
	525081_0190
	525081_0191
	525081_0192
	525081_0193
	525081_0194
	525081_0195
	525081_0196
	525081_0197
	525081_0198
	525081_0199
	525081_0200
	525081_0201
	525081_0202
	525081_0203
	525081_0204

