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ABSTRACT 

For many years robots have been programmed at manipulator or joint level without 

any real thought to the implementation of sensing until errors occur during program 

execution. For the control of complex, or multiple robot workcells, programming must be 

carried out at a higher level, taking into account the possibility of error occurrence. This 

requires the integration of decision information based on sensory data. 

Aspects of robotic workcell control are explored during this work with the object of 

integrating the results of sensor outputs to facilitate error recovery for the purposes of 

achieving completely autonomous operation. 

Network theory is used for the development of analysis techniques based on stochastic 

data. Object level programming is implemented using Markov chain theory to provide fully 

sensor integrated robot workcell control. 
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1. INTRODUCTION. 

The object of this work is to formulate a selection of techniques by which 3 

computer system can accept a graphical representation of the actions of a robot (or other 

automated) workcell to form the basis of a complete planning, simulation and object level 

programming package. 

The procedure for any planning method basically follows the manner of figure 1.1. 

Often however, this is achieved using three different techniques on three separate systems. 

The methods considered here form the basis of a strategy on which a complete workcell 

can be planned, simulated and executed. 

1 
GRAPHICAL 

REPRESENTATION 

j 
SIMULATION 

SYSTEM 

j 
REAL-TIME 

PROGRAMMING 

Figure 1.1 - Schematic for a complete system 



The research is mainly concerned with the investigation of robot \I,'OrkcelI planning. 

scheduling, control, programming and real-time execution. Particular attention is paid to 

aspects of error recovery. The physical feasibility of assembly tasks and their corresponding 

planning and optimisation has been studied in far greater depth elsewhere [Le\i ..\: 

Loeffler, 1986], [Frommherz & Hornberger, 1988] and will therefore not be pursued here. 

Many reasons exist as to why error recovery in robot programming is gaining 

popularity. Foremost is the increasing need to have workcells operating complete!: 

autonomously for long periods with minimum operator intervention when things do go 

wrong. The finite degree to which engineering improvements can enhance a piece of 

hardware's operating efficiency, cost effectively, before a state of diminishing returns is 

experienced is becoming more relevant as automation is coerced into tackling tasks of ever 

increasing difficulty. One must never forget the old adage "the price for perfect reliability 

is infinite cost". This is of particular relevance to the handling of non-rigid materials 

where uncertainties in the objects physical parameters are considerably larger than those of 

the robot or end-effector. Such materials inhibit the ability of the designer to "engineer 

out" the possibility of error occurrence. Much of the research work carried out over the 

past decade at the University of Hull concerns the manipulation of non rigid objects 

[Taylor et ai, 1990], and it is on the handling techniques developed for these and similar 

tasks that many of the examples provided in this work are based. 

With regard to error recovery in robot workcells, the vast majority of research work 

done to date appears to be in the area of geometrical errors occuring due to some part 

defect, robot inaccuracy [Lee et ai, 1984]. or geometrical uncertainty in the robot 

environment [Donald, 1986]. However, the choice of sensor, its positioning and the 

programming which interacts with the sensors is usually implemented in some arbitrary 

manner. The programming of error recovery mechanisms appears to have been approached 

In two ways: From the sensor point of view [Milovanovic 1987] and the artificial 

intelligence angle [Gini 1987], [Kumpel & Rosa 1987]. 
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Most discrete time simulation systems to date rely on the execution of a sequence of 

activities in the same manner in which the actions being simulated would be run by a real 

time process control program. This differs from the usual mathematical techniques used for 

the analysis of continuous time control systems where the model is treated as a complete 

algebraic entity rather than a set of discrete events [Denham, 1989]. Sequential e\ent 

execution is ideal for real time task and object level programming, however it makes a 

very cumbersome simulation tool relying on much statistical analysis. This work attempts to 

address the use of mathematical techniques for discrete time network simulation, whilst 

retaining the sequential event execution methodology for real time robot programming. 

In addition, an analysis system based on established network notations will be 

demonstrated, leading to a more usable method of object and task level robot 

programming than has hitherto been available. This is to include off-line simulation and 

analysis allowing some degree of system optimization as well as providing a me~lOS of 

assisting in the selection of the most appropriate sensing strategy for the required task. 

Before any simulation or programming can be attempted, some form of notation 

leading to a task representation must exist. This usually takes the form of an algorithm. 

Many such notations are in use for describing algorithms and a selection of the relevant 

ones will be discussed in chapter 2. Their corresponding analysis is covered in chapter 3 

and then some of them are expanded using matrix techniques in chapter 4. 

The programming is at task and object levels only, though a thorough definition of 

all programming levels, including sensor parameters has been formulated and is presented 

in chapter 5. Graphical simulation depicting actual geometrical robot movements such as 

that provided by many simulation packages like SAMMIE [Heginbotham et aI, 1979] is not 

considered part of this work. 
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Interaction with sensor systems IS an essential part of anv robot cell which includes 

error recovery. This aspect and its practical implementation forms the core of chapter 5. 

In chapter 6 these philosophies are combined with the techniques of the preceeding 

chapters to yield the basis for an object level programming strategy based on \1arko\ 

chains. Selected case studies are explored during chapter 7 using these, and other related. 

modelling and programming methods. Finally, during chapter 8, the results of this work 

are compared and contrasted with modelling techniques used in other related fields of 

simulation and programming. 

The necessary physical parameters, including times of physical actions and probabilities 

of outcomes, are expected to be available from information compiled over a period of 

operational time on a computer database. This ties in with the work carried out by Song 

[Song, 1988], Ghris [Ghris, 1989] and Halloran on error recovery [Halloran, 1989]. 

Where texts are refered to, usually the one with the most easily readable explanation 

is listed, even though other descriptions of the same topic may exist in other texts given 

in the references. Only where a text is referred to many times for different purposes, or 

in the case of larger texts containing no index, are page numbers included. 



2. NETWORKS 

How complex or simple a data structure is depends 
critically upon the way in which we describe it. ~ost 
of the complex structures found in the world are enormously 
redundant, and we can use this redundancy to simplify their 
description. But to use it, to achieve the simplification, 
we must find the right representation. 

Herbert A. Simon, The Sciences of the Artificial. 

The term "network" is often used to describe any combination of intersecting paths 

whether they be in the form of subterranean passages or electrical wiring circuits. The 

only common attribute shared by all types of network is that of some kind of order as 

opposed to simple random chaos. However, to make use of any network, what is 

important are the factors governing this order. 

The first thing which must be established with regard to any form of network is the 

notation to be used. This will depend heavily on the task to be represented and the 

corresponding analysis required. Many such notations are already established as standard. :\ 

few of these will be discussed in the rest of this chapter. 

2.1 Flowcharts and Stategraphs 

The flowchart, perhaps the oldest form of network notation, has been utilised by Lee 

[Lee et ai, 1987] for asynchronous robot workcell process representation. The notations of 

flowcharts and their uses are well known and extensively documented elsewhere [Forsythe 

et ai, 1975] and will not be discussed in any depth here. 

Albus [Albus et ai, 1982] uses a similar state graph representation to describe a 

hierarchical robot control system. This uses the structure shown in figure 2.1 

5 



FROM 
PREVIOUS 

STAGE 

Figure 2.1. - State Graph Notation. 

NOT DONE 

DONE 

Like flowcharts, this notation has the advantage of being translatable straight into 

computer code for robot control using languages such as VAL [VAL II, 1984]. Figure 2.2 

shows the state graph for a simple pick and place operation and its corresponding pseudo 

code representation. 

1 PICK 

NOT 
DONE 

NOT 
DONE 

IF PICK - FAIL THEN GOTO 1 
2 TRANSP 

IF TRANSP - FAIL THEN GOTO 1 
3 DROP 

IF DROP - FAIL THEN GOTO 3 

Figure 2.2. - Pick & Place Model with Pseudo Code. 

NOT 
DONE 



In many cases the 'not done' loops are somewhat superfluous and so may be omitted 

from figure 2.2, if desired. Most processes have an outcome of 'successful' or 'fJiled' wlth 

'not done' being otherwise assumed. 

Though easy to read and convert into code, this kind of notation is somewhat clumsy 

and lacks the ease of mathematical translation and manipulation inherent in simpler 

flowgraph' notations. Furthermore, as algorithms become more complex the relationship 

between the flowchart or state graph and the computer code becomes increasingly less 

obvious. 

2.2 Signal Flowgraphs. 

The particular kind of network most relevant to process analysis and control is the 

flowgraph, the simplest manifestation being the directed graph, or digraph [Wilson, 1979]. 

Once a notation has been established, some form of network analysis is required. In 

the case of the digraph, a number of texts provide methods of translating the network 

into either an adjacency matrix [Carre, 1979] or a connectivity matrix [Tutte, 1966], 

depending on the information required. This may seem straightforward enough for simple 

digraphs, but if nodes are to be allowed to have different characteristics then this form of 

notation is inadequate. Whitehouse [Whitehouse, 1969] suggests examples of the use of 

simple flowgraphs for a multitude of tasks. Then using GERT [Pritsker, 1966] shows how 

flowgraph nodes may have different logical properties (more of this in section 2.5). These 

and other notations will be discussed later. However, most use will be made of the 

digraph owing to its simplicity of notation and its ability to be expressed in concise 

mathematical form. 



The digraph notation used throughout the rest of this work v,,;ll be the standard 

notation found in queueing theory and operations research. This is because it reads in the 

same direction as the flow between nodes rather than the reverse as is often encountered 

in the electrical and control theory notation. So, the simple node to node path of figure 

2.3 reads from nodei to nodej in the main direction of flow. 

A· . 
1 J 

8--~·--CD 

Figure 2.3 - Flowgraph Notation 

The simple digraph version of the previous state graph pick and place example is 

shown in figure 2.4. Note that the main difference is in the juxtaposition of the activity 

labels from nodes to paths. 

PICK 

Figure 2,4, - Digraph Version of Figure 2,2 

What the digraph models is not the physical movement of the object through the cell 

but that of the mover. ie .. the robot, itself. This is convenient in that it is impossible to 

program the object rather than the robot. It is perhaps an unfortunate choice of 

terminology that this level of robot programming is known as the 'object level'. 
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Due to the physical constraints of implementation of a robot workcell. the robot end 

effector can only be in one position along the digraph at anyone time. It is impossible 

for any two paths of figure 2.4 entering the same node to be active simult.1neousl\ if the 

action of only one robot is being modelled. This means the digraph node inputs must 

behave in an exclusive OR manner. 

2.2.1 Isomorphisms and Homomorphisms 

At some stage In the modelling of a process we are likely to require some form of 

delimiting device as a means of isolating one part of a process from another. 

Returning to the example given in figure 2.4. Here it will be noticed that if the 

DROP procedure fails, then after the recovery path has been completed, it is not only 

possible to re-execute the DROP procedure but also to return to the beginning of the 

sequence via the recovery path belonging to the TRANSPORT procedure. In the actual 

implementation of this program, this path may be possible due to physical implementation 

of the sensing at the time. In essence, occasionally the object might leave the gripper just 

after the sensor had been interrogated (a typical short comming of discrete sensing). 

In reality this may not always be the case and under a different sensing regime, ie., 

if this sensor were not checked at the beginning of the DROP procedure, then this 

traversal of feedback paths would not be possible. In this case the true flowgraph would 

be that of fig. 2.5 where the path between nodes 3 and 4 acts as a buffer isolating the 

first part of the sequence from the last. The number of paths entering each of the nodes 

is now different with the buffer, ie., the two representations are not isomorphic. 
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Figure 2.5 - Pick & Place example with Buffer path. 

The electrical circuit equivalent is, of course, the familiar non-inverting unity gain 

amplifier. This kind of circuit is also used for the purpose of isolating two parts of a 

circuit, usually to prevent the effects of reflected impedances. 

In other instances parallel forward paths may be required. This is not so easy to 

represent with numerically labelled nodes. For example, the path A 1 2 connects nodes 1 

and 2. Any other path directly connecting the same nodes in this order would also be 

named A 1 2. This problem can be overcome either by adding another subscript for each 

level of additional parallel paths, or by introducing redundant nodes in the same way as 

extra paths were added for buffering purposes. 

iI 

Figure 2,6 - Homomorphic Graphs 
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Figure 2.6 shows the equivalent flowgraph to one with t\1.0 direct parallel for\l.ard 

paths. In this case node 3 is redundant but its addition does not alter the operation of 

the network, the two flowgraphs are homomorphic. 

2.2.2 Continuous Sensing Representation 

To build a model for this type of sensing we must first describe all the robotic 

operations and their continuous sensing graphically. Using the notation proposed by Taylor 

[Taylor 1987] continuous sensing is depicted as in Figure 2.7. 

ACTION 

START 01-----;+>-----0 FINISH 

Figure 2.7. - A Continuous Sensing Representation. 

With this notation the arrow denotes the next node to be approached in the event of 

some sensor transition, at which point the sensors are interrogated before the necessary 

recovery routine is executed. Naturally the signal flow represents the robot control 

parameters rather than the actual physical movement of the robot. 

For example: If we were performing a robot operation which entailed releasing an 

object from the gripper, say by opening the gripper jaws at the appropriate destination 

(the START node for this operation), it would be sensible to continuously sense for the 

presence of the object and terminate the 'drop' action as soon as the task was complete. 

It would be considerably less clever to continue opening the gripper jaws, simply t\I 

complete the program segment (at the FINISH node), long after the object had left the 

gripper. Consequently, the end of the operation can be determined by sensor information. 

Clearly, the structure of continuous sensing is one of: 'On Sensor Transition GOTO ... ' 

1 1 



If we consider continuous sensing as the change in sensor parameters as i alone. then 

we must also incorporate some form of discrete sensing, ie. the monitoring of the absolute 

sensor state Sj. Otherwise, we will be unable to effect error recovery if an operation 

totally fails, because no sensor transition will occur. Fortunately we can use the end of a 

procedure as a sense parameter thereby effecting discrete sensing automaticall v. 

2.3 Event Graphs 

Yet another form of flowgraph is the 'Event Graph' [Schruben, 1983]. This consists 

of a set of preconditions, an event and a corresponding set of postconditions. With this 

we return to an "active node" notation, only this time the label denotes a discrete event 

such as the start or finish of some activity. Figure 2.8 shows the syntax for this form of 

flowgraph as given by Schruben. 

~ (Condition) @ 
~r------------~T~------------- E~~T 

time, t 

Figure 2.8. - Event Graph Notation. 

This says that EVENT 2 will occur t seconds (or other time units) after the 

occurance of EVENT 1 together with the fulfilment of the required condition(s). Unlike 

the digraph case of figure 2.4, an event is not an action in itself, rather it is a change in 

state giving rise to a beginning or end of an event. Consequently, the resulting event 

graph network is roughly twice the size of its digraph counterpart. An event graph is 

effectively a Petri net with exactly one input and one output transition [Valavanis, 1989]. 
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2.4 Petri Nets 

Another well established network notation is that of Petri nets. Petri nets have been 

used extensively in modelling space systems [Srinivas, 1976] for error recovery purposes. 

and where it can be used to detect deadlock easily in parallel situations [Cooke, 1987]. 

Petri nets are bi-partite directed graphs where particular states are depicted as circles and 

activities as bars. The paths are for interconnection only and unlike digraphs carry no 

intrinsic significance. Figure 2.9 shows a simple Petri net having two inputs and one 

output. The tokens, shown as dots, are event markers and are provided to help the user 

follow the operation of the network. 

C!)r------ 0--

Figure 2.9 - Token flow though a Petri Net 

Before any node output can occur, all input conditions must be satisfied and the 

output must be connected to a node which is available for occupation. [Reisig, 1985]. This 

gives the input characteristics an AND structure. Unfortunately Petri nets only model the 

flow of control and cannot be used to model the flow of resources [Valavanis, 1989]. 

For sequential situations Malcolm & Fothergill have investigated the modelling of the 

effect of sensors. One shortcoming is that it is more difficult to read when networks 

become large and complicated than is a simple digraph or GERT representation (see 

section 2.5). One advantage is that is can depict a required sequence explicitly as shown 

in Fig. 2.10. where the order is: "Do A, B & C in any order but B must not be last" 

[Malcolm & Fothergill. 1987]. It would be very difficult to ensure this kind of ordellng 

using simple digraphs. 
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Do anything 

A not 
done 

Do A 

A done 

C not 
done 

C done 

B not 
done 

Check B 

figure 2.10. - Example of PETRI nets in sequencing. 

2.4.1 The Token Machine 

Dummy 

To make things easier to read Merlin [Merlin, 1974] uses an additional state graph 

representation which he calls a token machine. This is shown in figure 2.11 (b) alongside 

its corresponding Petri net of figure 2.11 (a). 

1.t 



Error 

Figure 2.11 (a) - Petri Net Fi gure 2.11 (b) - Token Mach i TW 

Despite the clumsiness of using two graphical representations simultaneously, Merlin 

states some useful points with regard to error recovery in computer systems: 

1. A process P is recoverable from failure F if and only if in the Error Token Machine 

of P for failure F. all the directed paths through illegal states arrive at legal states in 

a finite number of steps. 

2. A process is recoverable from failure F if and only if in the Error Token Machine 

of P for failures F: the number of states are finite, there are no final illegal states, 

and there are no directed loops containing only illegal states. 

Statement 1 basically says that if an error occurs then a route must exist from which 

the process can recover. For example an error like 'bin empty' during a robot picking 

operation would constitute an illegal state from which recovery were impossible if no 

sensing were available to instruct the robot to cease attempting to pick out non-exi\lL'nt 

objects. A typical recovery strategy would be to allow a set number of unsuccesseful 

attempts before requesting another bin. 

15 



Statement 2, on the other hand, concerns loops. In effect saying that there should be 

no infinite loops, or finite loops which contain only illegal states. This is because J loop 

containing only illegal states would mean that any form of recovery would lead to yet 

another illegal state. 

These philosophies are of great importance when forward or backward chaining is 

used [Fielding et ai, 1987] to return to a legal state in the event of an error causing the 

existence of an illegal state. This is true regardless of the graphical representation used. 

2.4.2 Stochastic and Time Petri Nets 

Time Petri nets were introduced by Merlin as a modification to the standard Petri 

net representation intended to accomodate temporal constraints. The timing features are 

basically: a minimum time t 1 which can elapse before the bar must fire after all the 

inputs are present, and a maximum time t 2 for which all inputs may be enabled during 

which the bar does not fire. 

Another time aspect is that of a variable time, rather like the continuous sensing 

flowgraph model. With regard to Petri nets this is a relatively new concept described as 

"Fuzzy-time" Petri nets [Valette et ai, 1989]. However, the basic idea has been around 

for some time as will be seen when the GERT network is investigated. 

Discrete time stochastic Petri nets (SPN) have been investigated to model Markov 

processes where node firing probabilities and delay times are used [Molloy, 1985]. 

Naturally, anything which can be used to represent a Markov process must map onto a 

transition matrix. Incidentally, a flowgraph does this far better than a Petri nl.:t. 
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Further variations on the Petri net theme include the "extended Petri net" which 

allows for several types of token and different classes of node [Ahuja & Valavanis, 19S i ]. 

Event graphs of the type covered in section 2.3 are considered as a special class of Petri 

net with deterministic output and exclusive~R type input conditions. A more thorough 

notation involving a complete class of logic input and output conditions is GERT which 

will be discussed next. 

2.5 PERT and GERT. 

Simple signal flowgraphs of the type used so far have a number of serious 

shortcomings. The nodes inherently act as inclusive OR to all inputs, though as already 

mentioned, in most cases exclusive OR is required and even assumed. Whichever logic 

function is used it is impossible to distinguish easily between types. On the other hand 

Petri nets are restricted to an AND input characteristic. In either case no definition is 

given to the type of output from a node using SFG's. 

Program Evaluation and Review Technique (PERT) was originally formulated to depict 

probabilistic networks. Unfortunately PERT will not handle feedback loops, and as this is 

the essence of any error recovery strategy such methods must be left to the overall 

modelling of the process as a whole. With this in mind we must construct and analyze 

the models of error recovery networks in which all feedback loops are constrained using 

other techniques. These may then form the building blocks of larger networks, without 

feedback loops which may fit into the modelling scenario for which PERT was conceived. 

As mentioned previously Graphical Evaluation and Review Technique (GERT) employs 

a precise notation which overcomes the ambiguities of the SFG and Petri net notations. 

Tables 2.1 and 2.2 give a brief outline of the possible node constructions [Whitehouse, 

1973] : 
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Table 2.1 - GERT Inputs Table 2.2 - GERT Outputs 

NODES INPUTS NODE OUTPUTS 

EXOR k] DETERMINISTIC [) 

INC-OR <J PROBABILISTIC t:> 
AND CJ 

This gives a combination of six possible node types: 

o <> <> C> 

Whitehouse uses the Laplace operator to perform time analysis on networks containing 

EXOR nodes only (see chapter 3). As yet no one has developed satisfactory procedures 

for the analytic solution of GERT systems involving AND and INC-oR nodes. 

2.6 Concurrency 

If, for instance, I say, "That the train arrives 
here at 7 o'clock", I really mean something like this: 
"The pointing of the small hand of my watch to 7 and 
the arrival of the train are simultaneous events". 

A. Einstein. 

This is an important aspect when more than one process is to be modelled or 

executed simultaneously. With its rigorous logic structure GERT posesses a high degree of 

precedence regulation, and as portrayed in section 2.4 Petri nets are ideal for representing 

precedence conditions. Further to this, Peterson [Peterson, 1981] considers the introduction 

of two further attributes to the Petri net model: the inhibitor and the activator nodes. 
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P, 

(a) Inhibitor arc 

Figure 2.12 - Control arcs 

P, 

(b) Activator arc 

If the inhibitor arc of figure 2.12 (a) has a token at P 2 then the transition t cannot 

fire and the token from P, may not pass. Alternatively, for the activator arc of figure 

2.12 (b), a token must be at P 2 for t to fire and for the token at P 1 to pass. With 

these control arcs, the token at P 2 does not actually pass through when transition t fires, 

but is simply required to inhibit or activate the transition accordingly. This ambiguity 

between flow paths and information or control paths can lead to much confusion, 

particularly in larger networks. 

This anomaly can be removed by using a different notation for the control paths as 

is done by Taylor in the extended flowgraph notation by the use of a dotted line for 

control signals [Taylor, 1987]. This feature is not available in conventional SFG theory 

and represents an extension for which as yet the mathematical analysis has not been fully 

resolved. 
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2.7 Logistics and Planning 

When any form of network includes probabilities, as In the case of error recovery 

loops, at some stage parts of the network will behave like queues. \1uch has been VwTitten 

on queueing theory [Lee, 1966] and a brief resume of its nomenclature is given in 

appendix A. 

Some multi-input closed queueing systems have been analysed from a timing (or cost) 

perspective [Grubbstrom & Lundquist, 1987], though they cannot all handle circuits 

(feedback loops). Koenigsberg deals specifically with cyclic queues [Koenigsberg, 1958] and 

shows an example used in the modelling of idle, mean cycle times etc. for machines 

working a coal face. 

Many of the notations previously discussed are applicable to the modelling of queues, 

particularly the event graph. Many simulation packages, aimed mainly at queueing 

problems, exist. All of which contain a set of user selectable probability distributions for 

controlling the occurance of events. These will be discussed in greater depth in chapter 6. 

A selection of useful probability distributions is provided in appendix D. 

The scheduling of robot assembly tasks is often determined greatly by the ordering 

constraints of the individual components. Sometimes several alternative procedures are 

available to effect the same assembly. In such instances it may not necessarily be the most 

temporally economical order which is the most logistically viable. The order and manner 

in which each of the components are presented to the robot workcell may have a strong 

influence. Fox & Kempf [Fox & Kempf, 1985] present two strategies: 'fixed-buffer' where 

all the components are presented either in the order they are required for assembl:, or as 

bins or stacks of one type of component only in each. Alternatively, 'fixed-build' is where 

all the components are presented at random, for example as a common bin of all 

component parts. It is then up to the robot system to either identify and select the 

components in the order they are required for assembly, or to pick them from the bin 

at 

~o 



random and then identify and utilise them in the forming of smaller sub-assemblies ',l,hich 

can be later connected together as the final assembly. ~aturally. this final scenario relies 

on more than one possible order of assembly if it is to be used efficiently. If onl .... one 

possible order exists, then the robot would simply remove all the parts from the bin, 

identifying and depositing them in a known position as it did so, only to re-pick them in 

the required order for assembly - not a very efficient approach. 

Fortunately, the fixed-build strategy is often a non-problem as most component parts 

are manufactured individually and therefore could be presented to the robot in individual 

collections. For example nuts and bolts may be purchased in mixed packs, but they are 

never manufactured by the same machine in a totally random manner. Consequently, 

problems associated with bin picking are usually restricted to separating like parts from 

one another - a much more straightforward, if not always simpler, task. 

As a result of this narrowing-down of the number of possible task order permutations 

to only those which are logistically viable, it is unlikely that any resulting single cell 

network will have more than a few possible forward paths. Only when many such cells 

are connected to form a larger network where parallel processes may exist do "Shortest 

Route" techniques [Boffey, 1982] concern us. Moreover, when parallel processes may be 

active simultaneously, then critical path methods (CPM) may be necessary. Bedworth & 

Bailey demonstrate a number of project planning techniques with case studies using CPM 

with PERT [Bedworth & Bailey, 1987], whilst Elsayed & Boucher [Elsayed & Boucher, 

1985] investigate the use of CPM and PERT together with linear programming techniques 

to the same ends. 

As many texts already exist covering the use of CPM, PERT, linear programming 

etc., many of which are standard text-book techniques [Taha, 1987], the rest of this work 

will concern only those networks containing feedback loops pertinent to sensing and error 

recovery strategies. 
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2.8 Summary. 

Flowgraph techniques, appear to fall into two main groups: 'active path' and 'ac:ive 

node' networks. Signal flowgraphs, PERT & GERT etc are active path systems. That is to 

say, the information regarding the process(es) in hand are contained in the paths. Active 

node systems on the other hand, such as: Flowcharts and stategraphs use paths simply :IS 

connectors between the nodes which contain all the relevant process information. A 

comparison between flowcharts and their electrical and hydraulic counterparts re\eals a 

close similarity, but not an exact correspondance [Kodres, 1978]. This is because active 

node and active path networks are not always homomorphic, ie. not exactly equivalent (see 

appendix B). Despite this, in most cases they can be used to model the same process, 

because they share an isomorphism, ie., the output of one representation is the same as 

that of the other even though the internal workings may differ. This equivalence has been 

shown to belong to a restricted set when flow languages and Petri net languages are 

compared [Araki et ai, 1981]. 

Petri nets and event graphs differ from flowgraphs in that they depict transitions 

rather than activities, though they behave essentially as active node graphs. The fact that 

Petri nets can be used to represent Markov processes [Denham, 1989] means that they 

could be used in place of flowgraphs if so desired. However, their mathematical analysis is 

considerably more complex, if possible at all. 

Signal flowgraphs have the distinct advantage of being easily manipulated in matrix 

form as will be shown in chapter 4. Unfortunately SFG's suffer from a slight ambiguity in 

their nodal logic properties not present in the GERT notation. Both notations are suitable 

for representing error recovery loops and will be used extensively for this purpose 

throughout the remainder of this work. 

22 



3. NETWORK ANALYSIS 

Some methods of obtaining useful data from flowgraph representations of robol 

workcell networks are presented in this chapter. The use of some of the techniques 

normally found in electrical network analysis are discussed together with the results of 

some simple experiments. 

The use of flowgraphs to represent actions of machinery, scheduling of parts flo\liing 

through a production line etc., has been a useful means of depicting a process or set of 

series/parallel processes for many years now, and as will be seen in chapter 6. mam 

simulation techniques already exist. 

With the emergence of robotics and its continuing expansion within industry, many of 

these methods have been used successfully in representing robot workcells [Cash, 1986]. 

The growing need to cope with problems autonomously within a cell has led to the 

investigation of error recovery within robot workcells [Lee, 1984] and its corresponding 

representation in flowgraph form [Taylor, 1987]. 

When used for representing simple electrical circuits, such as resistance networks, 

Kirchoffs laws may be used because all the inputs to each node are basically inclusive OR. 

Unfortunately, this is no longer true when modelling many sequential processes, such as a 

robot workcell, where the process can only be active at anyone position along the path(s) 

of the flowgraph at anyone time. In this case the inputs to nodes are usually treated ~s 

exclusive OR and the following sections provide the necessary tools for such an analysis. 
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3.1. Flowgraphs, Costs and Probabilities. 

It is remarkable that a science which began with 
consideration of games of chance should have become 
most important object of human knowledge. 

Marquis de Laplace. 

When using signal flowgraphs with all EXOR inputs, the simplest representation of a 

very basic error recovery loop is shown in Fig. 3.1. Here, the cost or toll t 1 2 is the time 

required to complete some action (say a robot pick-up operation). Node 1 is the starting 

point and node 2 the point at which the action should have finished and sensing IS 

carried out to verify whether the action was successeful or not. P 2 3 is the probability of 

success whilst P 2 1 is the probability of failure (ie. the pick-up operation failed or the 

object dropped off the gripper before node 2 was reached) with its corresponding recovery 

cost t 2 1 being the time required to return to node 1 and start again. 

/4 ~Fail 
~.~ 

t 1 2 

Success 

>. 0 
P 23 

Figure 3.1. - Simple Error Recovery Loop. 

Now, given one failure detected at node 2, and assuming there is the same 

probability of failure after recovery at node 2 again. If an operation is of a deterministic 

nature, then it is not possible for that procedure to only partly succeed. Since P 2 1 < 1. 

then eventually (though it may take a long time if P 2 1 > P 23) a success must be 

acheived. 



This may seem at first sight to be an over simplification of an error recovery 

strategy. However, the simple "repeat last operation" feedback path may also contain 

further routines such as "discard faulty part" etc. Furthermore, in a real production 

environment, the vast majority of error recovery routines are merely required to return 

the system to a normal running state as quickly as possible. usually by simply repeating 

the failed operation. Elaborate error recovery routines are rarely cost effective. even if 

practical. 

One of the important requirements in scheduling a workcell is a knowledge of the 

expected cost of an operation given the appropriate probabilities of success and failure. 

The same information is of equal importance in assessing the throughput and hence cost 

effectiveness of the cell. 

It is apparent from Fig. 3.1. that an expected average time to complete the 

operation of such a loop will be: 

00 n 
tav t'2 + (t ,2 + t 21 ) L (1 - P23) 

n-1 

00 n 
tav - t'2 + (t'2 + t 21 ) L P 21 .. 

n-1 

Now using the geometric progression [Spiegel, 1968] . 

a( 1 _ pn) 2 3 4 

a( 1 + P + P + P + P + - ..... 
1 - P 

substituting P 21 for P in {3.1} 

as n ~ 00, P
21

n ~ 0 (because P 21 < 1) 

and hence it can be shown that 

thus tav 

1 - P 
21 

P 
23 

25 

n-1 
+ P ) (3 . 1 ) 

(3.2) 



Equation {3.2} is quite a simple expression but represents only a simple single loop. 

Due to the additive property of time and the multiplicative property of probabilities. the 

approach becomes very cumbersome in cases of multiple loops, such as that of Fig. 3. ~ 

P45 

Figure 3.2. - Multiple Loop Flowgraph. 

However, if it can be assumed that the probabilities of success and failure do not 

change, as in the case of fig. 3.1., that is to say each event is independent of the 

outcome of the previous one, then we can introduce some very powerful techniques. 

3.2. Independence and the Markov Property. 

The first of earthly blessings, independence. 

Edward Gibbon. 

Firstly, the property of independence of past events (known as the Markov property) 

must be defined [Cooper, 1981]. If the probability of success after k failures is P fk P s 

and N is the number of failures occurring before a success during some operation, then: 

P(N - k) 

and P(N > k) 

P k P f s 
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where Ps and Pf are the probabilities of success and failure respectively. 3.S defined 

previously. 

Assuming each attempt has the same probability of success P s' and given that at leJst 

j failures have occured, then the probability of success after j + k attempts can be founei 

using Bayes theorem thus: 

or peN > j + kiN> j) 

peN j + k) n peN ~ j) 

peN ~ j) 

Prj+k·ps 

Prj 

peN - k) 

peN > k) 

So, given that the probabilities being used have this Markov property, then over a 

large number of events these probabilities may be treated as constants. The more usual 

descriptive example is that of tossing a fair coin (each event is independent of the last) 

and over a large number of tosses of the coin there will tend towards an equal number 

of heads and tails giving a probability of each outcome as exactly one half. Even though 

tossing a coin say only ten times may yield a result of six heads and four tails. 

It is this ability to treat probabilities as constants when considering a process over a 

large number of events which allows us to make use of the Laplace and Z-transforms. 
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3.3 The Z Transform 

I am a great believer in running before you can 
walk, because by finding out how difficult it is to run 
one takes greater interest in the problem of learning t~ 
walk. 

Lt. General, Sir Brian Horrocks. 

The Z-transform is defined as: 

Z = esT 

where T is the sampling interval and S the LaPlace operator. 

Now, a robot picking items from a stack, just as objects arriving at a workcell for 

processing, can be thought of as a train of discrete events we can use the Z-transform to 

represent time delays through the process. For example Z-Ci. represents a time delay of Ci. 

time units. Also, just as the gain (or attenuation) in a network can be represented by a 

multiplier, ie (3Z-Ci. where (3 is some gain factor, so can we use probabilities [Huggins, 

1957]. 

It must be remembered that all probabilities are less than or equal to one and so act 

more like attenuations than gains. This is important from a view of dynamical stability. 

Returning to Fig.3.1., this network can be expressed using Z-transforms as In 

Fig.3.3. 

P 21 z- t 21 

u(z) ___ -1.P1~ .... i 1 __ s_>-?c ...... c-t;~s_s_--{0~_---+. w(z) 

Z-t '2 v(z) P23 

Figure 3.3. - Simple Loop Using Z-transforms. 
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Given a discrete sequence of unit events into the network u(z), and a corresponding 

output of events w(z), a transform function w(z)/u(z) can be derived to represent this 

network as follows: 

v(z) 
-t 12 -t 21 

z (u(z) + P21Z v(z» 

-t 12 -t 21 
v(z)(l - P 21 Z ) 

-t 12 
Z u(z) 

w(z) P 23 ·V(Z) 

eliminating v(z) between equations {3.3} and {3.4} gives 

w(z) 
Transfer function, TF(z) 

u(z) 1 - P z- t 1 2 - t 21 21 

(3.3) 

(3.4) 

Differentiating TF(z) with respect to Z will give a rate of flow of events passing 

through the network. Elmaghraby [Elmaghraby, 1977] uses this technique and by setting Z 

= 1 to give the steady state we have the time average for the network. 

So. 

aTF(z) 
-t 12 -t 12 -t 21 -1 -t 12 -1 -t 12 -t 21 

P 23 Z P21(t12+t21)Z + t 12 P 23 Z (l-P 21 Z ) 

az -t 12 -t 21 2 
(1 - P 21 Z ) 

aTF(z) 

az Z-1 

So substituting for P 2 3 and simplifying gives the original 

expression 

aTF(z) 
..... which is equation (3.2) 

az z-l 
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Using the Z-transform we overcome the difficulties of mixing variables v.ith adjitive 

and multiplicative properties. This allows us to calculate transfer functions, time 

expectations etc., using the usual network techniques such as \1ason's theorem [\1ason, 

1956]. In fact Pritsker [Pritsker, 1966] uses the Laplace transform (instead of the 

Z-transform) to obtain the same results by differentiating the network transfer function 

and setting s = O. He then goes on to derive Mason's theorem by these techniques. 

Calculation of the variance can also be achieved from information given by the second 

derivative of the transfer function. 

3.4. A Practical Example. 

Table 3.1. contains data obtained from a large number of tests performed on a 

textile pick operation by a robot using a very basic electrostatic roller gripper [Monkman, 

1987] fitted with only discrete sensing capabilities. The force of lifting is set to ensure 

that only one ply at a time may be lifted. In the event of two or more plies sticking 

together, the pick operation fails and the robot returns to the start of the pick operation. 

Similarly, on dropping the ply the operation is repeated until successful. 

OPERATION 

PICK 
TRANSPORT 

DROP 

TIME REQUIRED 

7.04 
2.50 
3.95 

Table 3.1. Robot Operation Data. 

SUCCESS PROBABILITY 

0.841 
0.968 
0.812 

The times quoted in table 3.1 are in seconds. These were timed for each operation 

within the program control (using computer internal clock) and so may be considered 

accurate. 
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The resulting flowgraph for these 3 operations and their respective feedback paths are 

shown in figure 3.4. The values of Probability and time for each path are expressed as 

Z-transforms. 

0.159Z-0 . 27 0.188Z-0 . 27 

0.812 

DROP 

0.032Z-5 . 438 

Figure 3.4. - Flowgraph of Working Model 

Using Masons theorem we obtain the transfer function: 

TF(Z) 

Z-7.04 0.841Z-2 . 5 0.968Z-3 . 95 0.812 

1-0.159Z-7.31_0.188Z-4.22_0.027Z-14.978+0.0299Z-11.53-0.0051Z-19.198 

and thus: 

aTF(Z) 

az Z-l 

0.661 x 1.9159 + 0.661 x 8.917 

0.6612 
16.39 

If all three operations were perfectly successful and no error recovery was required, 

then the total operation time would simply be the sum of the forward path times (t nor = 

13.49 seconds). 

So the expected time increase due to error occurance and recovery is: 

= (16.39 - 13.49)/13.49 = 21.5% time Increase. 
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100 New destack operations were conducted. Each of these normally takes 13.49 

seconds (plus 1.488 seconds for the robot to return to the start of the PICK operation) 

each time. The total time recorded was 30 minutes and 11 seconds for the 100 complete 

cycles (each cycle including the total number of repeated attempts). This gives an average 

cycle time of 22.38 seconds. So the forward path average time is: 18.11 - 1.488 = 16.622 

seconds. The resulting increase is: 

(tav - tnor)/tnor = (16.622 - 13.49)/13.49 = 23.2% time increase. 

This is only very slightly longer then the calculated time increase. This demonstrates the 

practical usability of this technique, even with relatively small sample sizes. Of course such 

processes have a variance as well as an average completion time, and this will be 

discussed later. 

3.5 Isochronic Curves. 

It is not the business of the botanist to eradicate 
the weeds. Enough for him if he can tell us just how fast 
they grow. 

C. Northcote Parkinson. 

Following from considerations of reliability of Markov processes by Siegrist who 

conducts various sensitivity analyses by finding the partial derivative of the system equation 

with respect to the individual reliability of one parameter [Siegrist, 1988]. we can take 

reliability to be analagous to performance in our model and construct a graphical 

represen ta tion to act as a tool in comparing system performance by various parameter 

adjustments. 
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Isochronic plots were first introduced during the course of this work to pro\ide a 

means of estimating the improvement in overall operational performance of a particular 

task due to various parameter changes such as a replacement of end effector. alteration of 

error recovery strategy etc [Monkman et aI, 1989]. These ideas can be extended to the 

consideration of parallel situations where it may be shown that several workcells operating 

slowly, but simultaneously, can be more cost effective than a single faster operating 

workcell [Hartley, 1986]. 

Given the simple error recovery loop we are now familiar with and having the 

appropriate expected efficiencies and measured action times for each process (or part 

process), we are now in a position to determine just how long our error recovery routines 

may be allowed to take without increasing the average time of the whole process, given 

the probabilities of success and failure. Alternatively, we can determine whether it would 

be more cost effective to make a process time shorter at the expense of a decrease in the 

success/fail ratio, or improve the process efficiency whilst incurring a corresponding time 

penalty. All this is made much easier if we have a set of plots of the desired parameters 

against one another for a constant tav (Isochronic average time). Figure 3.5 shows a plot 

of tav against P 23 for a simple error recovery loop. 

tav 00 t 2 1 ' P 21 

~ 

2t12+t21 

t 1 2 
~----------~------------~--~ 

0.5 1 

ligure 3.5 - Plot of tav against P:n ..... 

t 1 2 
• 0 

P23 



Figure 3.5 shows us how the average process time will increase dramatically as the 

process efficiency drops with the curve tending towards infinite average time as efficiency 

drops to zero. 

Isochronic lav plots for action time t 1 2 and recovery time t 21' against success 

probability P 23 are what is really needed. These are shown in figures 3.6 and 3.7 

respectively. 

Using equation (3.2) again: 

-

transposing gives: 

t 1 2 (3.5) 

Plotting the success probability P 2 3 against the forward path time t 1 2 as in figure 

3.6 we can see that if P 2 3 = 1 then success will be achieved every time. Hence the 

average time tav will simply be t 1 2' as the recovery path will never be accessed making 

t 21 irrelevant in this case. Now, if we let t 21 = 0, then as P 2 3 is reduced, the forward 

path time t 1 2 must also be reduced if the same lav is to be maintained. 

-t'2 

t 1 2 

t 21 -t av/2 

~------~---T-------------T----~~P23 

/ 

/ 

0.5 1 

[flure 3,6 - Plot of t'2 a&ainst P 23 for isochronic tav~ 
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When t 21 is equal to zero, doubling efficiency simply doubles the allowable action 

time t, 2· However, as t21 becomes significant, the improvement becomes more 

pronounced. Also where t 21 is greater than zero there exists a region where t 1 2 becomes 

negative. Clearly this is practically impossible, though it does set a boundary as to how 

low the action efficiency may drop before the average process time must be increased 

regardless of how small t 1 2 is kept. 

Transposing equation {3.5}: 

t av > t12 {3.6} 

co 

I at 21 t ,2 -t av , 
/ I " I 

ap 23 P 21 2 / I, 
I / I 

t ,2-O 
/ 

/ ( 

/ increasing 
/ I I / / 

/ 
/ / / 

/ / 

/ / 
I 

" P 23 
0.5 1 

figure 3,7 - Plot of t21 against P23 for isochronic tav~ 

3 7 we can see that doubling the probability of success, P 2 3 gives Now, from figure ., 

. the allowable recovery time, due to the slope of figure 3.7 a considerable increase In 

following an inverse square relationship. 
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These techniques not only provide statistical expectations of the performance of a 

particular robot workcell configuration but also lend themselves to aiding the choice of 

sensor implementation with a view to improved efficiency of the overall process. 

Furthermore, changes in overall performance due to variations in time and efficiency 

parameters can be estimated using isochronic plots. This provides a useful tool in choosing 

processes and error recovery routines, as well as allowing an estimation of the 

improvements which may be expected for given system parameter· changes. 

3.6. Flowgraphs with Continuous Sensing 

For any finite sequence of integers, I can always 
find a rule that tells me exactly how to construct the 
sequence. But the rule may be very complicated. 

Heinz Pagels. 

In the discrete sensing model, all actions must be completed before sensing and 

consequently, error recovery (if required) can be performed. However, under real robot 

control conditions much, if not all, sensing must be done continuously if maximum 

economy of time is to be achieved. For example, it would be a complete waste of time 

to continue a robot transport operation for an object which had accidentally fallen from 

the gripper. This, of course, is what would happen if only discrete sensing was employed. 

As briefly discussed is section 2.2.2, a more efficient scheme is to monitor the state 

of the gripper/object relationship continuously and take whatever remedial action is 

required the instant an error occurs. It goes without saying that this holds true for 

virtually every possible robot action having a greater than zero probability of error 

occurence. 
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In the discrete model, costs and probabilities of success and failure of an operation. 

or set of operations, can be used to calculate an average cost requirement. This is also 

true of the continuous model. 

3.6.1. Tolls &: Probabilities. 

If it takes as long to state the rule, suitably 
transcribed into numbers, for the construction of the 
numerical sequence as the actual length of the sequence, 
then the sequence is 'random'. 

Andrei Kolmogorov. 

Now, in a simple single feedback loop, the feedback time tf will usually be a 

function of the forward path time to' For example, if the robot had completed n seconds 

of a transport operation to the point at which a failure, resulting in the need for error 

recovery along the feedback path, occurred. Then the time of the feedback loop to return 

the robot to the point at which the procedure could be resumed would be fen) seconds. 

The time tf may be longer than the proportion of to achieved so far depending on the 

point of resumption and the path taken. The relationship is likely to be linear, though 

this may not necessarily be so. Fig. 3.8 shows the situation for successive executions of a 

simple feedback loop. 
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0-....... -0 
(a) (b) (c) 

Figure 3.8. - Feedback with tf as a function of to~ 

(d) 

The flowgraph for a successful first attempt is given in Fig. 3.8 (a) with (b). (c) and 

(d) showing the result of repeated failures. The whole algorithm for a single loop may be 

expressed mathematically thus: 

Collecting all the terms: 

where to is the duration of a complete forward operation without error and t 1 is the 

amount of time taken in an incomplete forward operation before an error occurs. 

This reduces to: 

+ 

- ) + 

(t,+tr) 00 n 

+ Po L 2n(1-P o) 
2 n-1 

tl+tr 00 n 
~ 2nPr ) 

2 n-l 
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Now given that: 

and 

00 

2 Pf 
n-1 

00 

n 

2 2n Pf 
n-1 

1-P o 

n 2(1-P o) 

P 2 o 

Average value for continuous time becomes: 

(t 1+tf)(1-P o) 
------) 

P 2 
o 

{ 3 . 8 } 

Now, if t 1 = to' ie. error correction occurs only at the end of the forward path 

operation, then tav(c) should be equal to the discrete model average time taid). 

So using {3.B}. 

tav(d) ..... the discrete model. 

This of course, is equation {3.2} derived In section 3.1. 
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3.6.2. Functions and DistributioDS. 

As suggested previously. the recovery time tf is a function of the forward path time 

to· Fig. 3.9 (a) shows a possible relationship, in this case assumed to be linear for 

simplicity. Likewise. the proportion, t l' of the forward path used, is a function of the 

error position probability. Pe (ie., it is the amount of the forward time, to achieved 

before an error occurs). It is unlikely that this relationship would be linear. The one 

shown in Fig. 3.9 (b) is raised to some predetermined power, "'. 

t 1 

- (3 
dt 1 

(a) tf - Q + (3t 1 

Figure 3.9. - Functions and Relationships. 

Pe c [0,1] 

So, 

-

'" to + (t o (I+(3)Pe + Q)Pf/P o {3.9} 

Now suppose Q - 0, (3 - 1. 
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then tav(c) 

Now, Pe is the error position probability, ie. if Pe = 0.5 then the average position at 

which an error may occur during the forward path is half way through (at t 012). 

Let us once again compare the continuous model with the discrete model. 

Therefore 

subtracting Po from both sides. 

1/1 
(I-Po) + (I-Po)tf/t o 2(I-Po)Pe 

dividing by (1 - Po) throughout 

Now if tf - to (as in the discrete model), then: 

P 1/1 
e 1 ie. 1/1 - 0 

So as long as 1/1 > 0 and P e < 1, the continuous implementation will operate faster 

than that of the discrete. That is to say, in all cases except where the error correction 

does not take place until the end of the forward operation - which is by definition I the 

discrete model! 
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3.7 Laplace Transforms. 

Similar to the Z transform introduced previously, the Laplace transform can be used 

to find the system transfer function of a network. Pritsker [Pritsker, 1966] uses this 

method exclusively rather than the Z transform, as it is more applicable to continuous 

time systems. 

For example, returning to our original simple network, consisting of a single error 

recovery loop, but substituting the Laplace for the Z operator: 

-St 21 

e 

-St 1 2 

W(S) 
transfer function TF(S) 

U(S) -S (t 1 2+t 21) 

differentiating with respect to S: 

aTF(S) 

as 

aTF(S) 
as 

+ 

S-o 

-St ,2 -S(t ,2+t 2, )-1 
P 23 e (t 12+t 21 )P21 e 

-S(t ,2+t 2, ) 2 
(1 - P21 e ) 

-S(t 12+t 21 ) -St ,2 -1 
(1 - P 21 e )t ,2P 23 e 

-S(t ,2+t 21 ) 2 
(1 - P21 e ) 

P P (t + t 21 ) + P23 t 12 (1 - P21 ) 1221 12 -
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{3.IO} 

tav as before. 

The only real difference between using the Laplace and Z operators, up to this 

point, is that we set S = 0 whereas using the Z transform we would set Z = 1 to find 

the average network time. 

3.7.1 Topology. 

Using the Laplace transform we can call on the usual flowgraph techniques to find 

the network transfer function. ie., Masons theorem: 

[(PATHi)[l + [(-l)m (ORDER m LOOPS NOT TOUCHING PATHi)] 
TF(S) __ i ______ -----m--------------------~---------------

[1 + [(-l)m (LOOPS OF ORDER m)] 
m 

Now if we connect the output of a network directly to its input we get the 

topological equation H(S) [Pritsker, 1966]. 

H(S) 1 - TF(S)W(S) o {3.l1} 

where: W(S) ljTF(S) 

and TF(S) {3.I2} 
W(S) H(S)lw_o 
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EXAMPLE: 

Given the single error recovery loop of figure 3.10 where the output is joined to the 

input via path W(S). 

-St 2 I 

~--------~--------42~-------6---------( 

-St I 2 

e 

W(S) 

Figure 3.10 - Closed Network 

Using {3.11}, the topological equation: 

-S t I 2 

H(S) P
23 

eWeS) 

aH(S) 

aWeS) 

-St I 2 

Now the transfer function can be found from {3.12} 

aH(S) 

aWeS) 

H( S) I 
W(S)-O 

-St 12 

-Set 2,+t I 2) 
1 - P 21 e 

TFeS) 

o 



3.7.2. Variance. 

As shown in previous chapters, and repeated in the last section of this chapter, the 

average time (cost) can be found from the first derivative of the network transfer 

function. The higher derivatives yield equally useful results. The variance being the square 

of the flrst derivative subtracted from the second derivative, as in {3.13}. 

u - U 2 
2 1 

where: 

EXAMPLE 1 

an [ TF(5) ] 
asn TF(O) 5-0 

{3.13} 

(3. I ~ ) 

The following simple example illustrates the use of equations {3.13} and {3.1~} for 

finding the variance (and therefore standard deviation) of a simple network. 

Figure 3.11 shows a very simple network consisting of two parallel forward paths. 

From inspection of figure 3.11, given say 10 items fed sequentially into the input, 

according to the respective probabilities, one would expect 7 items to take 3 time units 

and the other 3 items to take 4 time units. 

-35T 
0.7 e 

u v 

0.3 e 

Figure 3.11 - Two Parallel Paths. 

This gives a time average 

7 x 3 + 3 x 4 
3.3 

10 
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and variance 

2.1 
0.21 

n 10 

The time average is found from the transfer function as usual. 

-3ST-1 -4ST-1 
TF(S) 0.7 e + 0.3e 

TF(O) 1 

U1 
a [ TF(S) ] -35T-1 -45T-1 as TF(O) S-O = 2.1 e + 1.2 e 3.3 

a2 
[ TF(S) ] 

0S2 TF(O) S=O- 6.3 -35T-2 -45T-2 
e + 4.8 e 1 1 . 1 

Now, using (3.13): 

Variance, (J2 11.1 - 3.3 2 0.21 

Exactly as before. 

If instead of the Laplace, the Z transform were used, the indices would be reduced 

on differentiating thereby giving an incorrect value for U 2' This is because the Z 

transform is a discrete operator whilst the Laplace is continuous. This is important if such 

results as variance are calculated using standard differential calculus. 

EXAMPLE 2 

Consider once again, the basic error recovery loop: 

-ST 

~----~.---0 
-S I 

-ST 
0.7 e 

u 
-2ST 

1 - 0.3 e 
e 0.7 
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Using {3.14} to find the first and second derivatives of the transfer function U. 

au 0.21 -3ST-l 
0.7 -ST-l e + e 

d'S 
(1 0.3 e -2ST ) 2 

au 
Is - 0 -

1.857 as 

0.252 e-5ST- 2 + 0.84 e-3ST- 2 

(1 0.3 e-2ST )3 

Is - 0 ~ 5.898 

According to {3.13} 

2 
Variance, (]" 

+ 

2.448 

-3ST-2 -ST-2 0.63 e + 0.7 e 

This gives a standard deviation of approximately 1.56. 

What this signifies is that, given a unit entering the flowgraph, the fastest time in 

which an output may physically occur is one time unit. However, the probability is that it 

will take an average of 1.86 time units, give or take 0.78. 



3.8 AND Input Analysis 

Everthing that is not forbidden is compulsory. 

Murray Cell-Mann. 

Petri nets have an AND input structure and so cannot be analysed in the same 

manner as signal flowgraphs which have EX-oR inputs. With GERT the choice of input 

logic functions is far greater than with other network representations and GERT networks 

can not only contain a combination of logic functions at the inputs but also deterministic 

and probabilistic output characteristics. This next section highlights some of the problems 

associated with AND type structures. 

An example of what can happen when AND nodes are used is reproduced here 

[Whitehouse, 1973], though using the simpler Z transform, in figure 3.12. 

0.3 Z-10 

Z-6.5 

Z-8 Z-8 

Figure 3.12 - GERT Flowgraph USIng EXOR and AND nodes. 

The transfer function of Figure 3.12 reduces to: 

TF(Z) = (0.3 Z-10 + 0.7 Z-S) n Z-8 



aTF(Z) I 
az Z-1 

- (3 + 3.5) n 8 

- 6.5 n 8 8 time un its. 

But one path on the upper side has a time of 10 units which is greater than the lower 

path of 8 units. Clearly we cannot use AND input nodes in this manner. 

However, if we allow the output of node 3 to be probabilistic rather th:1n 

deterministic as given in Figure 3.12, then: 

TF(Z) (3.15) 

where EXOR is given by the symbol In 

from De Morgans theory [8ajpai et aI, 1980 (p45)]: 

(0 n ~) n (0 u ~) (3.16) 

So using {3.16} on {3.1S} we get: 

TF(Z) Z-8 n «0.3 Z-10 n 0.7 Z-5) n (0.3 Z-10 U 0.7 Z-5» 

where 0.3 Z-10 n 0.7 Z-5 0.3 Z-10 U 0.7 Z-5 0.3 Z-10 

therefore TF(Z) Z-8 n 0.3 Z-10 {3.17} 

At first sight this may appear to give a transfer function with an overall probability 

of the final node being realised of greater than unity! But it must be remembered that 

both sides of the AND equation {3.17} must be realized simultaneously. Consequently there 

is a probability of 0.3 that the longer time (10 units) will be required. other",,;se the 

shortest time (8 units) will be needed. 
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So TF(Z) becomes: 0.7 z-a + 0.3 Z-, 0 

Differentiating and setting Z = 1 gives an average time of 8.6 time units. 

From this exercise we can conclude that: nodes with deterministic outputs can be 

made to drive nodes with probabilistic outputs. However, the reverse is not possible. That 

is to say, more information must be provided in the output data than a single logic level 

if that result is derived from anything other than a single logic level. 

3.8.1 Logic Functions & Distributions. 

The fact that most network events behave like probability distributions rather than 

simple logic functions gives rise to some intresting results. Given that these events are 

time dependant, Bell [Bell, 1971 (p35)] defines the following AND and OR logic 

conventions: 

X(AND) MAX(X1, X2) 

P(X(AND) < T) P(XI < T) P(X2 < T) 

and 

X(OR) MIN(X1, X2) 

P(X(OR) < T) 1 - P(XI > T) P(X2 > T) 

1 - (1 - P(X1 < T» (1 - P(X2 < T» 

P(XI < T) + P(X2 < T) - p(X1 < T) P(X2 < T) 

Now substituting density functions: 

F(AND(T)} 

F(OR(T)} 

FI (T) F2 (T) 

F1(T) + F2(T) - FI(T) F2(T) 
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Which are the functions used if normal additive and multiplicative operations are 

carried out on simple binary logic levels as given in the truth table of table 3.2. 

Table 3.2 - Logic Functions. 

A B I A+B AB A+B-AB 
(AND) (OR) 

0 0 0 0 0 
0 1 1 0 1 
1 0 1 0 1 
1 1 2 1 1 

Now, if we have two events eland e 2' triggered simultaneously: 

e 1 

Their corresponding time averages tav 1 and tav 2' will have distributions F(tav 1) and 

F(tav 2) respectively. These functions are shown graphically in figure 3.13. 

tav 2 > tav t always. 
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P(tav) P(tav) P(tav) 

tav, tav 2 tav, tav, tav 2 

(a) OR (b) AND (c) XOR 

Figure 3.13 - Graphical Representation of Logic Functions. 

Note, that unlike electronic logic gates, GERT nodes, like Petri nets, operate on a 

trigger basis. That is to say, even if the distribution shown in figure 3.13 are completely 

separated in time, once the node has been triggered by event 1 then all it requires is the 

receipt of event 2 to complete the required conditions for realising that node. 

3.9 Summary 

Clearly, continuous sensing will result in improvements in operating times compared 

with systems employing only discrete sensing. In fact, as this chapter shows, the worst 

implementation of continuous sensing can only be as poor as its discrete counterpart - it 

cannot be worse, and with correct attention to its installation should show some 

improvement in the economy of operating time. This naturally assumes that the practical 

configuration does not introduce superflous delays not present In the discrete model, Ie. 

continuous or too frequent interrogating of sensors instead of interrupt mechanisms or 

properly scheduled sensing. 
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If an interrupt mechanism is to be used to provide the sensor output data directly. 

that is to say the sensor output is the same signal which causes the interrupt. then the 

sensor must be perfectly reliable. A safer configuation is to restrict the interrupt signal to 

instigating the execution of an interrogation routine. This way other sensors, as well as the 

one causing the interrupt, can be checked. The need to check a single sensor man\' times 

to achieve a consensus is rather cumbersome and suggests either the need for a more 

reliable sensor or a greater number of sensors. 

Using the formulae presented here, expected time averages for robot workcell 

operations may be accurately calculated. Alternatively, given a collection of operating 

statistics gathered over a period of time, the relevant distribution parameters can be 

calculated. 

An insight into some of the pitfalls of using nodes with mixed logic characteristics 

has been discussed and the relevance of the corresponding probability distribution, as well 

as the absolute probability itself, highlighted. This has provided at least a partial solution 

to the GERT AND analysis problem. 
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4. MATRIX ANALYSIS 

Science is nothing but developed perception, 
interpreted intent, common-sense rounded out and 
minutely articulated. It is therefore as much an 
instinctive product, as much a stepping forth of 
human courage in the dark, as is any inevitable 
dream or impulse action. 

George Santayana, Relativity of Science. 

This chapter deals exclusively with the different forms of matrix representation of 

flowgraphs and their relevant properties with regard to robot workcell modelling and 

analysis. 

Where discrepancies exist between previously presented notations given in the 

references, definitions are provided which are most relevant to this particular work. 

4.1 Adjacency Matrices. 

Sometimes called the vertex matrix, though the matrix elements represent arcs rather 

than vertices, the adjacency matrix is really only applicable to digraphs. In the case of 

simple (non directed) graphs the connectivity matrix is used [Tutte, 1966]. 
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With regard to digraphs there appears to be some ambiguity about the term 'strongl~ 

connected'. Harary & Palmer [Harary and Palmer. 1973 (p126)] define a digraph as 

strongly connected 'if every pair of points is mutually reachable by directed paths'. 

Busacker and Saaty [Busacker & Saaty, 1965 (p28)] give a similar definition. HO\l,ever. 

Wilson [Wilson, 1979 (pI 01)] extends the definition to include certain cases of one wa \ 

paths between nodes as do Berman & Plemmons when discussing the reducibility of a 

digraph [Berman & Plemmons, 1979 (p31 )]. For the purposes of this work a strongly 

connected digraph is defined as: that whose adjacency matrix is square and irreducible, ie. 

it has all non-zero elements with the optional exception of the main diagonal (reflexive or 

irreflexive). In either case, all nodes are mutually reachable from all other nodes by no 

more than one path traversal. 

Again using the convention that the element Aij represents the path from node i to 

node j, we are now in a position to make a few statements with regard to the general 

properties of adjacency matrices. 

a) All finite elements along the main diagonal represent self loops (ie. loops whose 

single path is both incident to and incident from the same node). 

b) An adjacency matrix A in strictly upper triangular form represents an acyclic digraph 

with only forward paths. An = 0 for some n ;) 2. 

c) An adjacency matrix in strictly lower triangular form represents a digraph with only 

feedback paths. An = 0 for some n > 2. 
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4.1.1 Boolean Adjacency Matrices. 

The Boolean adjacency matrix is the same as the adjacency matrix mentioned in 

section 4.1 except that all elements are Boolean (have value 1 or 0). It is sometimes 

known as a permutation matrix [Rice, 1981]. 

Carre gives us the following definition for a Boolean adjacency matrix A representing 

a digraph G = (x, U): 

C if (xi, X· ) C U 
J a· . 

1 , J 
if (xi, X· ) 1- u J 

The Boolean adjacency matrix is used by Hsu [Hsu, 1975] to find the minimum 

equivalent graph (MEG) of an acyclic flowgraph. Unfortunately this technique is not usable 

in the same manner with non-Boolean adjacency matrices and so is of limited use. 

4.1.2 Transition Matrices. 

This is yet another manifestation of the adjacency matrix. Only this time, unlike the 

Boolean adjacency matrix, each element represents the probability of transition from one 

node to the next. Using Carre's notation, we can define a transition matrix P representing 

a digraph G = (x, U) as: 

p' . 
1 , J { 

P if (xi, Xj) C U 

o if (xi, Xj) 1- U 

pC ]0,1] 

An example of a transition matrix is given in Figure 4.1 where a simple digraph 

having two feedback paths is depicted together with its corresponding transition matrix. 
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0.2 0 1 0 0 

0.3 , 0.3 0 0.7 0 

~ 
\ 

\ Pt \ 

• '0 • 0 
0.2 0 0 O.S 

1 0.7 0.8 
0 0 0 0 

Figure 4.1 - The Transition Matrix. 

The transition matrix Pt is always shown as a square matrix even though there are 

no non-zero elements in the fourth row. The reasons for this will become apparent later. 

The parallel paths between two nodes, first mentioned in section 2.2.1, would be 

most difficult to implement in transition matrix form as they stand. For example, figure 

4.2 shows three parallel paths between two nodes and the corresponding 2 by 2 transition 

matrix. 

a 

E:0> 
o 

[ o 

Figure 4.2 - Three Parallel Paths. 

Clearly, this is impossible to implement as a 2 by 2 transition matrix without 

explicitly defining the function f(a, b,c). The solution is to put the flowgraph into a 

different form. Figures 4.3 and 4.4 show the flowgraphs and transition matrices for the 

cascade and canonical forms respectively. 

0 1 a 0 

0 0 b c 

0 0 0 1 

0 0 0 0 

Figure 4,3 - Cascade Form. 
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figure 4.4 - Canonical form 

o 
o 
o 
o 

1 

o 
o 
o 

o 
1 

o 
o 

c 

b 

a 

o 

Similarly, figure 4.5 shows the canonical form for multiple feedback loops between 

two nodes. 

o 
c 

b 

a 

figure 4.5 - Canonical form for feedback loops 

z 
o 
o 
o 

o 
1 

o 
o 

o 
o 
1 

o 

Needless to say, this introduces another two nodes and two further paths which may 

appear superflous. However, it will become clear later why this is necessary when any 

form of mathematical analysis is to be performed on transition matrices. 

4.2 The Realization Matrix. 

Using the GERT notation (chapter 2) Bell [Bell, 1971 (p13)] introduces the concept 

of the realization matrix. This is a form of Boolean matrix which not only contains the 

reachable states but also contains information about their reachability. Referring back to 

the simple error recovery loop example of chapter 2, figure 4.5 shows the realization 

matrix, which is somewhat like a truth table, for this digraph. 
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1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 o 1 0 1 
2 0 0 1 1 0 0 1 1 2 0 0 1 0 2 0 0 1 1 o 0 1 1 

3 0 0 0 0 1 1 1 1 3 0 0 0 1 3 0 0 0 0 1 1 1 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 o 0 0 
1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 o 0 0 
0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 o 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 
0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 
1 0 1 0 0 0 0 0 0 0 0 1 0 1 o 1 1 0 0 1 1 0 
0 1 1 0 0 0 0 0 o 0 0 0 1 1 000 0 1 1 1 1 
1 1 1 0 0 0 0 0 o 0 0 1 1 1 000 1 0 0 1 1 

a) b) c) 

Figure 4.5 - 3 Stages of the Realization Matrix. 

Figure 4.5 (a) is the realization matrix assuming single entry only, ie., only one item 

in the system at anyone time. From this it can be seen that two or more nodes cannot 

be active at the same time therefore all states other than 000, 100, 010 and 001 are 

impossible, giving the reduced matrix of 4.5 (b). This shows clearly that exactly two states 

can be reached from any state. The multiple entry matrix of 4.5 (c) is somewhat more 

complex. From some states up to four other states can be reached. 

Comparing the realization matrices of figure 4.5 (b) and (c), those states which exist 

in (c) but not in (b) represent those which are capable of resulting in simultaneous 

realization. This is important in practical multiple robot workcell implementations where 

simultaneous realization may mean collision! 

In a GERT system, if only EXOR nodes are employed then the network represents a 

flowgraph in which simultaneous realization is impossible - assuming that the nodes are 

practically (as well as theoretically) EXOR. 
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4.3 The Incidence Matrix. 

The incidence matrix provides a convenient method of representing flows in and out 

of the nodes of a digraph. If a path is incident from a node its corresponding incidence 

matrix element has value I, if incident to the node it has value -I, and if no incidence 

it has value O. 

Adopting Carre's notation again, for a digraph G = (X, U) the incidence matrix S is 

defined as: 

{ 
+1 if Uj is incident from Xi 

s· . -1 if U· is incident to Xi 1 J J 
0 i f U· is not incident wi t h X· J 1 

This method of representation of a digraph requires the labelling of both arcs and 

vertices. Consequently the resulting incidence matrix will not be square. Attempts have 

been made to use the incidence matrix to represent Petri nets [Harhalakis et aI, 1989] 

where U denotes the set of states (circles in figure 2.10) and X denotes the set of 

transitions (bars in figure 2.10). However, closer inspection of figure 2.10 reveals a 

'dummy' transition which would result in an element of any incidence matrix Shaving 

both values of +1 and -1 simultaneously. Clearly, this severely limits the usage of such 

representations. 
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4.4. Matrix Analysis 

If God has made the world a perfect mechanism, He 
has at least conceded so much to our imperfect intellect 
that in order to predict little parts of it we need not 
solve innumerable differential equations, b~t can use 
dice with fair success. 

Max Born. 

Having introduced a selection of useful matrix representations of flowgraphs, we now 

conduct an analysis with particular regard to stochastic transition matrices. 

4.4.1 Flows. 

It is not the significant event which ought to be 
wondered at, but rather the frequent recurrence of 
similar instances. 

Gerolamo Cardano (1501-1576). From De Vita Propria 
Liber (the book of my life) 1576. 

In a multiple node flowgraph each node may be represented by a discrete sense 

point. In the case of cyclic graphs, some nodes are going to experience a greater degree 

of activity (flow or transmission) than others. It then follows that, in a multiple entry 

system (as mentioned in 4.5). it is often more efficient to interrogate sensors at a high 

flow node more frequently than those at a low flow node. This is illustrated in figure 4.6. 
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0.3Z 0.2Z 

U -.~~r----t.~~l---+-. ----10~~~-
Z 0.7 Z 0.8 

v 

Figure 4.6 - Flowgraph showing Node Flows. 

For the flowgraph of figure 4.6 the flows at each node can easily be determined: 

The first node, n 1 

Let U = 1; 

then n 1 1/(1 - 0.3Z 2) 

Setting Z - 1 gives: n, I 1 1. 43 
Z-l 1 - 0.3 

Similarly for node n 2 : 

n 2 Zn, Z/( 1 - 0.3Z 2) and n21 =- 1. 43 

Z==l 

Node n3 

hence 0.7Z and n31 _ 1.25 
(1-0.2Z2)(1-0.3Z 2 ) Z-l 1 - 0.2Z2 

Likewise: 

Node 0.7Z2 and 
(1-0.2Z2)(1-0.3Z 2) 

n41 _ 1.25 
Z-1 

and f ina I I y; 

Node - hence ns I -
Z-1 

0.8 x 1.25 1 



So, the flows for nodes 1 to 5 are 1.43, 1 A3, 1.25, 1.25 and 1 respectively for a 

normalized input value of U = 1. By inspection of the digraph of figure 4.6 it can be 

seen that these values are of an order one would expect given the relative tolls and 

probabilities. Clearly, what passes through node n 1 must also at some time pass through 

node n 2 as these both share the same flowgraph loop, consequently the flo\1;'S through 

each of these nodes are equal. This also holds for nodes n 3 and n 4' though of course the 

value of the flows are lower owing to the smaller probability of repeat at this loop. i':ode 

n 5 has a flow of unity which is not surprising as the normalised input value of U is 

unity. The laws of conservation must apply to all stochastic digraphs which do not have 

absorbing nodes, but more of this when we deal with Markov chains later. 

4.4.2 Sensor Implementation. 

What is most interesting is the fact that the flow at each node expressed as a 

fraction of the sum of the flows at all the nodes gives us the relative activity at that 

node. That is to say if we divide the flow at each node by the sum of all the flows we 

can find the percentage activity at each node. For the example of figure 4.5 these values 

are approximately 22.5% for nodes n, and n 2 , 19.7% for nodes n3 and n 4 and 15.6% 

for node n 5' 

If we have a sensor at each of the nodes in the above example, then the sensors at 

nodes n, and n 2 will be in use more often than those at nodes n 3 and n 4 which will In 

turn be used more than that at node n 5' The fact that the flow at node n 1 is equal to 

that at n 2 suggests that only one sensor is required between the two. In fact as no 

decision is made at node n l' only n 2 requires a sensor. Consequently we can reduce the 

number of sensors which would appear to be required from 5 to 3. This may seem 

obvious as it is not usual to sense for errors before an operation. However, as work cells. 

and consequently flowgraphs, become larger this may not be so immediately clear. 
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The usual method of signal I/O employed by most robot controllers is polling. This is 

a timeshare technique which involves the interogation of each of the input lines, connected 

to the sensors, in turn. According to Shan "polling is a source of unnecessary performance 

loss". Polling loops must always be active and polling can miss state changes if they are 

not present at the right place [Shan, 1989]. Consequently, if we are to interrogate such 

sensors from a single computer, or robot cell controller, where each of a number of 1'0 

lines are polled in tum, then it would be most economic to distribute the polling times in 

accordance with the relative activity at each node. Now in most computer I/O systems it 

is not practicable to alter the amount of time spent at each line. However, it is very 

often the case that more I/O lines are available than are actually required. For example 

in the case of a Puma 500 [Unimation, 1985] there can be up to 64 input lines. If we 

are using only three sensors then it would be sensible to distribute the lines according to 

the ratios of nodal activity. 

Given 32 such lines and 3 sensors with the corresponding activity percentages of 

45%, 39.4% and 15.6% for each of the three nodes it would be most efficient to share 

the lines accordingly, ie., 28 lines for the sensor slat node n 2' 26 for sensor s 2 at node 

n 4 and 10 for s 3 at n 5' This gives a greater probability of being able to act as soon as 

a sensor change occurs. The alternative simple method would be to allocate one line to 

each of the three sensors thereby utilising only 4.7% of the available 110 time. This 

means that for 95.3% of the time the computer is looking at nothing! 

Perhaps more important over a long period of usage is the 'wear and tear' to various 

parts of the work cell. Those used more often are more likely to be subject to greater 

strain and hence more frequent failure. The expectation of such 'high stress' points, 

together with possible bottlenecks, is emphasised by the network flows. 



4.4.3 Matrix Formulation. 

In chapter 3 we found the transfer function of a flowgraph by using Masons theorem 

or other flowgraph reduction techniques. This was then differentiated with respect to Z 

and the resulting time average calculated from this expression with Z set to unity. 

Likewise, but with S set to zero if the Laplace transform of chapter 3 were used. 

Here the flowgraph will be put into transition matrix form before performing the 

necessary algebraic manipulations. We will start with our usual single error recovery loop 

of figure 4.7. 

Figure 4.7 - Simple Error Recovery Loop. 

o Z-4 o 

The transition matrix A { 4 . 1 } 

o o o 

f h serl'es of {3.1}, the matrix A can be dealt with in the Returning to the use 0 t e power 

same manner [Howard, 1971]. 

1 Z-4 0.7Z- 6 

1 0.3Z- 3 1 0.7Z- 2 {4.2} B [ I _ A]-' 
1-0.3Z- 7 

0 0 1-0.3Z- 7 

Transfer funct ion B, 3 
l 4.3} 
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This process is relatively straight-forward when done manually. Even large matrices 

can be inverted without too much hard work by using recently devised techniques [Jeter et 

aI, 1987]. Many forms of computer algorithm exist as standard methods for normal 

constant matrix inversion [Monro, 1983]. Unfortunately the matrix of {4.2}, like most of 

the matrices we will be using, is not a matrix of constant values but rather one oi 

functions in Z. It is therefore essential that some other method be found for dealing \l,1th 

matrices containing functions. 

4.4.4 Matrix Derivatives. 

We shall first state the general problem, and then 
solve it for a particular special case. In so doing we 
hope to illustrate the underlying concepts while 
simultaneously avoiding inessential detail. The success 
of the method in the special case then suggests its own 
general izat ion. I t is interest ing to observe that in the 
literature, for reasons of economy and mathematical 
"elegance", such problems are usually presented in the 
most general form that the authors can handle. Such 
presentation often obscures the process by which the 
solution was reached, leaving the reader with only the 
answers and undue respect for the intelligence of the author. 

R.B. Cooper (Introduction to Queueing theory). 

Normally the differentiation of a matrix of the form of {4.2} is quite straight 

forward. Brickell states: 

For a general matrix B = [bij] whose elements are functions of t, the derivative 

dB 

dt 
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can be found by simply differentiating each element with respect to t [Brickell, 1 Q-::]. For 

our purposes we simply substitute Z for t. 

However, as pointed out in 4.4.3, solving this type of problem by digital computer is 

not so easy. To introduce a non-differential calculus method for achieving the same result, 

we must now take a closer look at the situation by returning to the example of our 

simple building block, the single feedback loop. 

(l-p)Z-a 

L:\~---t.~-0 
Z-b PZ-c 

PZ-(b+c) 

TF = 
1 - (1-p)Z-(a+b) 

dTFI 
dZ Z-1-

P(1 - P)(a + b) + P(1 - (1 - P»(b + c) 

(1 - (1 _ P» 2 

P(l - P)(a + b) + P2(b + c) 

p2 

a + b 
- a + c 

P 
(4.5) 

We must now split our Z-function matrix into two seperate transition matrices so as 

to acheive the same result as {4.5} without actually differentiating the matrix using 

standard calculus. 

The stochastic transition matrix: 

o 1 o 

Ap I-P 0 P 

o o o 

67 



and the toll matrix: 

o b o 

a o c 

o o o 

Note that the toll matrix AT is not a transition matrix in the same sense as the 

stochastic matrix Ap. This is because in AT a path having no toll is represented as J. 

zero in the same way as the absence of a path is denoted. The toll matrix is often 

simply a representation of inter-nodal time delay (or other cost). 

Once again using {4.2} 

1 1 p 

-1 1 I-P 1 [ I - Ap] p 
p 

0 0 p 

Now introducing the technique of congruent matrix multiplication [Howard, 1971]. 

which is the result of the multiplication of corresponding matrix elements, for which the 

operator 0 is used. 

0 b 0 lip lip 1 

-1 
0 1/p-1 lip 1 AT 0 [I - Ap] a c 0 

0 0 0 0 0 1 

0 b/p 0 

a/p-a 0 c { 4 . 6 } 

0 0 0 

Now the sum of all the elements of {4.6} gives us the same result as {4.5} 

-1 a + b 
L L (AT 0 [I - A P ] ) - a + c 

j p 

68 



Returning to the example given previously with the probability and toll values of {4.3}. 

Differentiating according to the form of {4.4} 

dB 13 4.2Z- 7 + 0.21Z- 14 

dB 13 4.2 + 0.21 
9 

dZ 0.49 
Z-1 

Again using the matrix method of {4.5} 

o 4 o o 1 o 

3 o 2 Ap 0.3 0 0.7 

o o o o o o 

o 4 o 1.429 1.429 1 

-1 
AT 0 [I - Ap] 3 o 2 o 0.429 1.429 1 

o o o o 

o 5.71 0 

1.29 0 

o 

-1 
[ [ (AT 0 [I - Ap] ) 
j i 

o 

2 

o 

5.71+1.29+2 

o 1 

9 

Now this provides us with a new tool for achieving the numerical equivalent of 

differentiation of an error recovery loop transition matrix. Such a method is ideally suited 

to implementation on a digital computer, in fact most matrix manipulations including 

congruent matrix multiplication are available within many modern mathematical software 

packages such as MATLAB [Moler et ai, 1986]. 
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Care must be taken when using matrices of greater dimension than 3. To ensure the 

correct topology, buffer paths must often be included. This is investigated more 

thoroughly, with examples, in section 6.2.4. 

4.5 Markov Processes. 

The Markov property was first introduced in chapter 3.2 where it was defined as the 

property of independance of past events. In the light of the other philosophies discussed 

so far we now return to the Markov property in investigating the matrix representation of 

digraphs. It should soon become apparent that the Markov property is one of the most 

powerful tools for dealing with problems concerning chains of stochastic events. ~lany texts 

exist on the principles of Markov processes and a basic knowledge would be useful as a 

prerequisite to the rest of this work. However, it should be possible to follow the main 

ideas without difficulty by reference to the Markov process nomenclature given in appendix 

C, or to one of the texts listed in the references, particularly those by Howard. 

4.5.1 The Umiting Matrix. 

Given a transition matrix P representing a digraph, and a starting vector V 0' the 

next state in a process is given by: 

and this is true for all 

For example; 

let r· s 
p 

0.3 

= y. P 
1 

provided the Markov property holds. 

0.2 

0.2] 
0.8 

0.7 

0.3 
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if we start at node 1, Vo [ 1 0] 

then the next state is V, [ 1 OJ [0.8 0.2] 
0.3 0.7 

[0.8 0.2] 

and V2 V, P - [0.8 0.2J [0.8 0.2] 
0.3 0.7 

[0.7 0.3] 

V3 - V2 P - [0.65 0.35] 

V4 - V3 P - [0.625 0.375] ... and so on. 

alternatively, we could say: 

Vn - V pn 
0 {4. 8} 

After four iterations we have V 4 = [0.625 0.375]. Clearly, the probability vector is 

converging. Howard [Howard (Vol 1), 1971] uses this example to show that the roots 

(Eigenvalues) of the transition matrix P are the probabilities given by Vn when n 

approaches infinity (the columns of POO). 

ie., V- VP 

which reduces to 

hence Voo - [0.6 

or [0.6 
po:> -

0.6 

v -1 

0.4] 

0.4] 
0.4 

0.2] 

0.7 

0.6, v 2 - 0.4 

{4.9} 

which is what {4.2} would eventually converge to with the above P and starting vector 

pOO is known as the limiting matrix of a Markov process, and represents the 

probabilities a process will converge to over a long period of time. In the well known 

example of 'tossing a fair coin'. the limiting values would be 0.5 and 0.5. 
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Returning to our initial example of figure 4.1. Completing the loop v.ith a path from 

nodes n 5 to n 1 to produce a closed system (the reasons for this will become apparent in 

4.5.3) and putting this flowgraph into transition matrix form: 

0 1 0 0 0 

0.3 0 0.7 0 0 

p 0 0 0 1 0 

0 0 0.2 0 0.8 

1 0 0 0 0 

The 1 imi t i ng vector 

[0.2247 0.2247 0.1966 0.1966 0.1574] 

which is exactly our percentage flows found in 4.4.1 by simple (but lengthy) algebra. 

The rate at which convergence occurs is determined by these probabilities. For two 

nodes connected by paths of unity probability, convergence will never be achieved, instead 

the process will continually oscillate. This is the only occasion a stochastic matrix can 

represent a system which is conditionally unstable. In all cases where the probabilities 

ca using a cycle to exist are less than unity, eventual stability is guaranteed. Where such 

probabilities are relatively large, damped oscillation may occur and convergence may be 

slow but it will always take place. Howard gives a thorough analysis of the factors 

governing convergence in a markov process [Howard, 1971]. Another interpretation is the 

definition: the maximal eigenvalue e, of a stochastic matrix A is one, ie., if and only if e 

is an eigenvector of A corresponding to the eigenvalue one [Berman & Plemmons, 1979 

(p49) ]. 

Convergence is only possible if the transition matrix is regular. In fact, the definition 

of a regular stochastic matrix P is that all the entries of some power pm are positive 

[Lipschutz, 1966]. For non-zero convergence to be possible P must be closl.'li so as to 

represent a process which repeats itself infinitely. 
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This act of closing the loop does not effect tha actual opera tion of the process as 

the feedback path is of unity Probability and zero toll. 

Calculating poo is a simple task for small equations where the roots can be found 

easily or where convergence IS· rapl·d thereb 11· . I' 1· . Y a owmg successive mu tip JCatIcn by 

computer. The alternatives usually involve finding the inverse of some matrix. ie .. 

Given that P + p2 + p3 + ... + pro P[I_P]-l 

multiplying through by P-l 

1 + P + p2 + p3 + ... + pro-I [I - p]-l 

P[ 1 [I - p]-l + 1 

- [I - P] [I - P] -1 + 1 0 

Fortunately for a stoachastic matrix P, this is only possible where [1 - P] -1 exists -

in all cases where poo is not zero, [1 - P] is singular! This can be seen from the above 

if one considers poo (and hence all pn, where n < 00) to be finite. In which case I + P 

+ P 2 + P 3 +... will approach infinity. Consequently, poo must be made to approach zero. 

ie., P must be regular. 

If the normalised Eigenvector matrix T of transition matrix P can be found, then: 

and 

00 
n (T-1 P T) 

n-1 

A proof of this is given by Eisenman [Eisenman, 1963] together with an example. 

Also given is the following simple result: 

7.1. 



For a two event Markov chain 

[: I-a 1 p 

1-b 
where: a < 1 . , b < 1. 

thus: I im [: I-ar 

- a [: 
I-a 1 1 

~ I-b b + 1 
1-a 

The situation becomes increasingly complicated for Markov chains representing 3 or 

more events. 

4.5.2 Ergodic Chains. 

The definition of an ergodic state of a Markov chain is defined as a state which is 

both persistent and aperiodic. Wilson [Wilson, 1979] gives the following example: n people 

sat round a table throwing a dice. If the dice is I, 3 or 5 the player must pass the dice 

one place to the left. If 2 or 4 then two places to the right. If a six is thrown, then the 

dice must be thrown by the same player again. This produces the flowgraph of figure 4.8 

(a) with three players (n = 3), and figure 4.8 (b) for four players (n = 4), together with 

their resultant transition matrices. 

6 

1, ,5 

6 2,4 

figure 4.~ (a) - Process for n - 3, 
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o 
6 6 

Figure 4.8 (b) - Process for n - 4. 

p 1 
6" 

1 023 

3 1 o 2 

2 3 1 o 

023 1 

Note that each diagonal of the transition matrix P contains the same Pij values. 

According to Kelly, if the limiting matrix pn converges as n approaches infinity, then the 

process is ergodic [Kelly, 1979]. If poo has no zero entries, then this is only true for 

ergodic processes containing only one cyclic class, ie., regular Markov chains [Kemeny & 

Snell, 1965]. 

4.5.3 Regular Chains. 

A regular matrix is defined as: a non-negative square matrix P where there exists J. 

natural number k such that pk is a positive matrix (Iosifescu, 1980]. 



Romanovsky [Romanovsky, 1970 (p45)] with regard to the elements of the matrix P-" 

states: "when all of them are non-zero, the chain Cn is called POSITIVELY REGULAR, 

and COMPLETELY REGULAR, if, in addition, they are all equal to each other, and, 

consequently, equal to lin". Such a transition matrix P is said to be POSITIVELY 

REGULAR or COMPLETELY REGULAR accordingly. 

The limiting· matrix poo of figure 4.8 (a) converges to zero and is therefore not 

regular. That of figure 4.8 (b), on the other hand, converges to a constant matrix with 

all elements equal to one quarter and is consequently completely regular. 

In chapter 3 an example in section 3.7.1 was given in which the output of the 

network was fed directly back to the input to enable us to find the variance of the 

system. This was necessary to make the transition matrix REGULAR. It will now be made 

apparent why! 

Using the example of fig. 4.6 we have the transition matrix P. 

0 1 0 0 0 

0.3 0 0.7 0 0 

p 0 0 0 1 0 

0 0 0.2 0 0.8 

0 0 0 0 0 

The charcteristic matrix 

1.4286 1.4286 1. 25 1. 25 1 

0.4286 1.4286 1. 25 1. 25 1 

[ I _ p]-l 0 0 1. 25 1. 25 1 

0 0 0.25 1. 25 1 

0 0 0 0 1 

can be found easily. 
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However, the limiting matrix po:> ~ O. This is because the transition matrix P is not 

regular. To make P regular we must close the loop as was done in the example of 3. '7.1 

shown here in fig. 4.9. 

0.3 0.2 

Figure 4.9 - Closed Double Loop Flowgraph. 

Consequently 

0 1 0 0 0 

0.3 0 0.7 0 0 

P 0 0 0 1 0 

0 0 0.2 0 0.8 

1 0 0 0 0 

giving a I i mi t i ng matrix 

0.2247 0.2247 0.1966 0.1966 0.1573 

0.2247 0.2247 0.1966 0.1966 0.1573 

00 
0.2247 0.2247 0.1966 0.1966 0.1573 P 

0.2247 0.2247 0.1966 0.1966 0.1573 

0.2247 0.2247 0.1966 0.1966 0.1573 

h h . t· matrl'x [I - P]- 1 is now singular. Unfortunately, t e c aractens IC 
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To conclude: if we wish to find the limiting matrix of some Markov process, the 

transition matrix must be regular and hence the flowgraph must be of a closed system so 

as to represent an infinitely repeated process. On the other hand, if the system transfer 

function is required, then the flowgraph must not be closed otherwise [I - P] will be 

singular. It is the open system we will use next to find the variance of a Markov process 

without recourse to the use of differential calculus by the methods introduced in section 

3.7.1. 

4.5.4 Variance. 

As implied in section 4.1.2, all transition matrices can be expressed in canonical 

form. By putting a Markov process transition matrix into canonical form Kemeny & Snell 

provide a means of separating the parts of the process which influence the variance from 

those which do not. 

In canonical form, the partitioned transition matrix 

P 
(4.10) 

Where I represents the absorbing states, R the transient states leading to absorbtion, 

p the transient states not leading to absorbtion and 0 is null. 

The characteristic matrix F 
(4.11) 

and the variance matrix V F[2 DIAG(F) - I] - (F 0 F) {4.12} 

Note the similarity to the non-matrix form of variance given by {3.13} and {3.14}. 
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Performing the same analysis on the stochastic transition matrix p. of example ') 

section 3.7.2) gives the following results. 

p 

1 

o 
o 

Us i ng {4. 11 } 

F [ 
1.43 0.43 

0.43 0.43 

o 0 

and from {4.12} the variance 

v 
[ 

00.
612 

0.612 

0.612 

0.612 

o 

1 

1 

1 1 

~ 1 
n n 

Now the sum of all the elements of V is 2 2 V(i.j) 
i-I j-1 

2.448 

(see 

which is exactly the variance calculated in example 2 of section 3.7.2 using differential 

calculus. 

4.5.5 The Reverse Markov Chain. 

According to the Kolmogorov criterion [Kelley. 1979] a Markov chain is reversible if 

and only if its transition probabilities satisfy: 

P(I.2) P(2.3) .... P(n-l.n) P(n.l) P(l.n) P(n.n-I) .... P(3.2) P(2.1) 

for nodes l ... n. n finite. 



A reverse form of the index matrix I, Whl'ch for want of a better name I will call 

the mirror matrix M, is useful in cases where the above applies. 

o ......... 0 1 
o 

M {4.13} 

o 
1 0 ......... 0 

M simply performs a rotation of whatever matrix it operates on. To reverse a matrix R. 

R(reverse) (4.14) 

4.6 Summary 

In this chapter a selection of matrix techniques useful for obtaining statistical data 

from the flowgraphs of workcell networks have been discussed. The list is by no means 

complete and a whole range of matrix operations exist in other texts (with varying 

relevance to flowgraph theory), too numerous to cover here [Gonnet, 1984]. 

A new method of achieving the same result, but without the use of differential 

calculus has been introduced for finding the derivative, and hence the flows and average 

tolls of a network in matrix form. This is most useful when the necessary calculations are 

to be performed by digital computer, an almost certain criterion when the networks, and 

resulting matrices become large. 

These techniques not only give us the necessary tools for carrying out simulation of 

robot workcells but also, as will be shown in the next chapter, the ability to program at 

object level taking account of sensor data in real-time. 
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5. INTERACfIVE SENSORY SYSTEMS 

Robotics is that field concerned with the intelligent 
connection of perception to action. 

Mike Brady. 

All robot systems incorporating any form of error recovery must interact with sensors 

interfacing with the physical environment. However, sense parameters manifest themselves 

in different forms at different levels of programming, just in the same way a program on 

a conventional computer has a different representation to the user at the terminal than do 

the corresponding logic signals experienced by the CPU. 

Nilsson separates errors into two distinct types: failures and surprises [Nilsson, 1973], 

and uses demons to watch for the surprises. This assumes that failures are expected errors 

and surprises are unexpected errors. A demon is a software surveillence device which 

'wakes up' on the occurrence of a particular action or statement, then watches out for 

further information to verify what action to be taken [Le Beux, 1984]. Similarly, Singh 

and Hindi call error occurrences "scheduled" if they occur as part of a planned sequence, 

and "conditional" if they are triggered by events [Singh & Hindi, 1989]. For example the 

usual PICK, TRANSP and DROP routines used in the examples of chapters 2 and 3 are 

"scheduled" whereas, the error recovery paths are "conditional". Further categorization of 

errors is attempted by Srinivas (one of the original researchers in the field of robotic 

error recovery) into four basic types: operational errors (position, servoing etc); 

information errors (manifestation of operational errors); precondition errors (eg. 

non-existence of object); constraint errors (eg. object faulty) [Srinivas, 1976]. Using this 

classification a failure tree can be used to represent all possible explanations of failure. 

"Failure reason analysis" can then be used to limit this set to only those which are 

possible or likely to occur [Srinivas, 1978]. 
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Kamel introduces an interesting philosophy 10 comparing the games theoretic approach 

to the concept of error recovery. Here, the planned task performed by one player to 

achieve a specified goal is hindered by the action of an opponent in the form of 

unpredictable errors [Kamel, 1988]. This predictive/reactive compromise can be modelled 

by a system containing a finite set of possible states and is thus ideal for the simulation 

of error recovery strategies. 
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5.1 Robot Programming Levels 

I hate definitions. 

Benjamin Disraeli. 

Over the past few years a number of attempts have been made to formulate robot 

programming levels [Gini, 1987], [Rodighiero & Canciani, 1987] with varying degrees of 

success. In most cases TASK, OBJECT, ROBOT (or manipulator) and JOINT are agreed 

as the four levels of robot programming. All the above authors agree that task level 

programming is still a research topic and that no commercially available task level 

programmmg system yet exists. 

Attempts at specifying such task orientated models have been recently made [Kumpel 

& Rosa, 1987], whilst Rodighiero & Canciani define such a langauge called IPL (Implicit 

Programming Language). This does not however, appear to be a true task level 

programming language, but lies somewhere between Gini's "object level" and the 

conventional robot level. Lyons [Lyons, 1987] considers most conventional robot 

programming languages to be "just cosmetic alterations on a general purpose programming 

language" and introduces 'RS', a system computationally equivalent to PETRI nets. 

However, in all cases the definition of the forms in which the sensor parameters are to 

appear at these different levels have been omitted. 

What must be done is to determine at what levels programming can be implemented 

practically and then choose that level most suitable for the given requirements and physical 

constraints. The following definitions have been formulated to include both the robot 

programming levels and the corresponding sensor representations at these levels. The 

sensor level descriptions are included within parentheses. 
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T ASK level (CAUSE level) 

Complete task routines, ie., 'Assemble Part' 

(Reasoned error causes, ie., 'Bin empty') 

OBJECT level (DECISION level) 

Program segment routines, ie., Robot program subroutines such as PICK, TRANSP, DROP 

etc. 

(Results of sensor merging and fusion, ie., A n B U (A I n C), which appear as Boolean 

decisions. ) 

MANIPULATOR level (INFORMATION level) 

Robot programming language commands, ie. , VAL II commands such as MOVES POSl, 

APPRO POS2 etc 

(Actual sensor outputs at programming language level, ie., SIGl, SIG2 etc) 

JOINT level (DATA level) 

Lower level programming, ie., Geometrical translations as would be carried out with a 

lower level programming language such as PASCAL or C. Simple high level robot 

programming language commands such as DRIVE 1,20,50. 

(Direct sensor outputs, ie., Binary sensor data, analog output levels etc.) 
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At object level, sensor data is in the form of decisions which may be the result of 

sensor fusion, knowledge based reasoning etc. This allo'WS object level programming to be 

conducted without any consideration of actual sensor implementations. It is not certain how 

much transparency may be needed. From a systems view point, each level should be 

completely independant [Martin, 1965]. However, from an engineering angle, the ability to 

see through to details of lower levels from higher ones, or even to access them is often 

desirable. For example, the ability to program at assembly level from within a BASIC 

program [Coll, 1984] can be a very useful attribute. 

Nevertheless, assuming the former, a process implemented at the object level must be 

completely independant of the robot level commands in the same way that a conventional 

programming language is independant of (as far as the user is concerned) the processor 

assembly code into which the programming commands are compiled. Similarly, sensor data 

at the object level must be in the form of actual decisions as the result of an overall 

sensing requirement, not the outputs of individual sensors. For example, there may be 

several sensors all of whose outputs must be combined to give a decision as to the success 

or failure of some operation. The object level is concerned only with this final decision 

and not the individual measurands themselves. 

Malcolm & Fothergill use the analogy of machine code for joint level, assembly 

language for manipulator level and that of a high level language such as Pascal or C for 

object level programming [Malcolm & Fothergill, 1987]. Task level differs in that it 

contains no direct reference to spatial relations and as a consequence may vary in degree 

from a set of operations such as 'Pick Object', 'Move Object' and 'Place Object' to a 

complete macro such as 'Build Subassembly'. The one common factor is that it contains 

no explicit reference to actual geometric or sensor data. This makes task and object level 

problems ideal for expressing in flowgraph form. 
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At this stage it should be noted that the term "object level" is sometimes used to 

refer to a level of computer programming (object oriented programming) rather than one 

pertaining to the physical robot world of objects. For example, Stefik and Bobrow define 

an object as an entity within a program which combines both procedures and data [Stefik 

& Bobrow, 1986]. Whereas in Gini's "real world", an object is a physical device and an 

object level command consists of a procedure carried out on a physical object using its 

corresponding geometrical deScription. This is in many respects simply a different 

interpretation of the same thing. 
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5.2 Sense Parameters. 

The child does not know for a long time how to 
distinguish a cat from a dog; only when he happens to 
see them both side by side or when their images become 
customary can he distinguish between them. 

A. Bogdanov (1873-1928). 

Apart from the choice of the language for controlling the robot actions there is the 

manner in which the system is driven by the chosen algorithms. It is usual to have a set 

of procedures which are called by a main program in a set sequence to achieve a number 

of tasks in a particular order. Sensing and decision making is done between the calling of 

procedures In the main program. This is quite satisfactory where the number of sensors 

and/or levels of error recovery are small, but for more complex systems it becomes 

clumsy. 

In this chapter continuous sensing will be distinguished from discrete by the fact that 

continuous means that the sensor(s) in question are monitored continuously (though in 

practice this will usually mean they are interrogated at regular intervals) rather than at the 

beginning and/or end of a program step to determine the next program step. This must 

not be confused with the definitions of discrete and continuous as given in some other 

texts [Johnson, 1986] where discrete sensing is that required to determine when an 

actuator has reached a certain point and continuous sensing that where the sensor would 

be used to maintain a specified trajectory or continuous path. The difference in 

definitions, though subtle, is important and should not be overlooked. 

In discrete sensing the required parameter may be sensed continuously, but 

interrogated only at the required program stage. In a continuously sensed system, the 

workcell/robot controller is informed the instance the change in the sense parameter 

occurs, allowing the controller to act immediately. 
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As pointed out in section 2.2.2, under these conditions, the sense parameter is no 

longer the sensor measurand itself but the existence of change in the measurand, either 

with respect to time or some other pre-determined reference. This is kno\l,n as sensor 

transition driven programming. [Monkman, 1989]. 

Given a binary sensor, the sense parameter under continuous sense conditions is the 

change in logic level. If used correctly', this attribute can have considerable advantages. A 

rather inefficient approach would be to sequentially interrogate the sensors continuously in 

an attempt to detect changes in sensor state (as was considered in 4.4.2). A more astute 

idea is to let the sensors interrupt the controller in the event of a change in any of the 

sense parameters. The controller can then interrogate all the relevant sensors once and act 

accordingly. 
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5.3 Interrupts 

These are available on all computers but usually accessible to the user only for very 

drastic actions like 'reset', though lower priority, or maskable, interrupts are sometimes 

available to the user via some form of inpuUoutput mechanism, ie. the 'break' key on J 

keyboard. In the case of robot control computers, higher level interrupts are rarely (if 

ever) accessible to the user. One possible exception is the ASEA controller which 

incorporates up to 6 interrupts [ABB, 1987] though this is a robot system which is PLC 

driven and has no high level language facility. Fortunately most languages have some form 

of software capability which has the same effect (though without the instant response of 

hardware interrupts) available through the I/O system, for example the 'REACTI' 

command in VAL [VAL II, 1984], or MONITOR in AML [IBM, 1981]. In both cases a 

window time of approximately 20 mS is required, which is not particularly fast when 

compared with normal robot joint operating velocities. 

In the early days of process control languages C0RAL66 was developed for real-time 

applications, whilst at the same time providing a structured programming environment with 

all the usual high level features [Woodward, 1970]. However, it was not until the advent 

of the real-time language PEARL that a process control language capable of handling 

interrupts directly became available [Werum & Windauer, 1982]. PEARL also has parallel 

capability. That is to say, tasks may be executed concurrently, either synchronously or 

asynchronously. Task priorities and interrupts regulate the co-ordination between task 

blocks (processes). Moreover, interrupts are simply included as variables in the source code 

and require no other special handling features. 

It is interesting that many of the features regarding real-time operation and 

concurrency which have been part of process control languages are just now starting to be 

included in robot programming languages. Some standard high level languages also possess 

these features, resulting in recent suggestions as to their use within robotic programming. 

89 



Modula-2, unlike its predecessor 'Concurrent Pascal', provides facilities for handling 

priority interrupts. At joint level there is the need for matrix multiplication where the 

independance of the result of each row by column multiplication mean that the operations 

must be done simultaneously [Dyer, 1985]. This is equally applicable to object level 

programming. Also, unlike most implementations of Ada, Modula-2 is intended for real 

time program execution interactively with peripheral devices. This together with its parallel 

ability makes Modula-2 possibly the only viable non specialist high level language suitable 

for robot programming [Zwarico, 1985]. 

A new system called DM2 (distributed modula-2) has recently been developed for use 

with networked, heterogeneous, multiprocessor applications [Mellor, 1987]. This has the 

advantage of not requiring shared memory or shared variables between processors, ie., 

configura tions in which each workcell has its own (possibly different) processor. 

In describing 'non-synchronous' sensing Milovanovic [Milovanovic, 1987] introduces the 

concept of using interrupts directly with the main CPU. Non-synchronous sensing basically 

means that the process in hand can be interrupted whilst it is in progress without an 

explicit I/O request being made first (continuous sensing). 

All interrupts have a set priority as do many of the computer's executable tasks, for 

example the memory refresh routines will have a higher priority than most interrupts. 

Some routines may have a higher priority after execution has commenced (but before it is 

finished) than when they are awaiting execution. Returning to the concepts of queueing 

theory we have what are known as 'locking systems' [Baccelli, 1987]. In a queue system 

most simple customers are served by each server in turn (a serial process). However t there 

is another type of customer: that which requires the service of all servers simultaneously 

(a parallel process). Such a system is known as a locking system. This is similar to a 

maskable interrupt in that it takes priority over any new customers but has a lower 

priority than those customers already being served and therefore must wait until all the 

servers are free. 
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Since the advent of so called "intelligent" sensors such as line scan cameras, mulLiple 

axis force sensors and other sensors which include a high degree of signal processing (and 

possibly such features as self-calibration) within the sensor device, the use of serial lines 

has become common. This levies a severe time penalty between an observed event taking 

place and the controller receiving the observation data. Fortunately, such sensing systems 

are usually required to be interrogated after the receipt of a signal from a more basic 

(and somewhat faster operating) binary sensor. However, not all such devices are 

constrained to using serial lines for communication. Direct connection of sensing devices to 

processor memory (DMA devices) provides a more elegant and faster means of data 

acquisition [Milovanovic, 1987]. 
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S.4 Sensor Driven Programming. 

He who runs the information runs the show. 

Joseph Goebbels. 

Simple sensor based control has been around for many years now, especially where 

only local sensing, feedback and correction are required. For example, during the insertion 

of electrical components into holes during printed circuit board assembly [Karkkainen et ai, 

1988]. 

Considerable problems exist in implementing sensor driven programming using more 

complex non-binary sensors such as vision systems [Williams et ai, 1986]. This problem is 

eliminated at object level if the definitions of 5.1 are observed. This is because, at object 

level, decisions made at nodes of the operational flowgraph are based on Boolean data 

only. Whether this comes from sensor outputs which have been fused or merged to 

produce simple binary decisions, or from an expert system or AI and knowledge base IS 

irrelevant when programming at object level. 

On a more global scale, sensor driven programming implies the total control, or even 

generation, of programming strategies by sensor output data. This is refered to by 

Chapman & Agre as "reactive planning" [Chapman & Agre, 1986]. Taken to its extreme, 

reactive planning would appear to obviate the need for a goal plan. Unfortunately, the 

inherent inability of reactive planning systems to "think-ahead" renders this approach 

unreliable. [Firby, 1987]. Where an interrupt (or similar reaction) facility is available, 

sensor transition driven programming can be implemented [Monkman, 1989]. 
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5.5 Object Driven Programming. 

This is a rather obvious but little used concept in robot programming which concerns 

sets of autonomous workcells rather than the operation of individual cells themselves. It 

should not be confused with the term "Object level programming" which pertains to a 

level of software implementation as described in 5.1. We shall start with a rather simple 

hypothesis: 

"All geometric information concerning an object is contained wholly within the 

physical frame containing that object" 

This may seem fairly obvious but its usefulness is often overlooked. For example, 

where one autonomous workcell passes an object directly to another autonomous workcell, 

provided the timing constraints are correct, the only required communication between cells 

is the object itself. Only under error conditions may other communications be required, 

like a 'wait I instruction from the second workcell to the first if either an error occurs at 

the second or the timing is incorrect allowing the first workcell to run faster than the 

second. Otherwise no other information is needed. The second cell does not usually need 

to know what the first is doing. The only information the second (or subsequent) cell 

requires is to know that an object has arrived and its relevant geometric data, and then 

only when its ready to act. If another object arrives before the present operation is 

complete then it must wait until it is required. Once again we Ire back to the philosophies 

of queueing theory. 

With regard to geometric information on the object, ie., orientation, position etc., 

this is usually only required at the position of entry into the cell. There are basically two 

methods by which this information may be acquired. 
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1) By multiple sensor analysis. For example a vision system and computer analysis :,) 

determine the required geometrical data. This has the disadvantage of time and cost. 

not to mention the problems associated with lighting and other environmental effects. 

2) By mechanical compliance. If the position and orientation are known to be incorrect 

by an unknown amount but within a definite range (ie., by being purposely deposited 

some distance from the desired point) then the object may be moved by the next 

operation so that it will always end up in the correct position and orientation. 

This second technique is especially applicable to solid objects. One good example of 

this is in the use of vibratory feeders, where objects are taken from completely random 

positions and orientations and then forced to comply with a set of constraints causing 

them to be repositioned as desired [Boothroyd et ai, 1978]. Another is the manipulation 

of objects without prehension [Mason & Salisbury, 1985], ie., the movement of rigid 

objects by means of compliant or non-rigid grippers. Conversely, the principle has also 

been applied to non-rigid objects [SERC, 1988] where fabric panels were made to fall 

into a rigid robot gripper in the form of a shovel or scoop. As the fabric slips onto the 

gripper one axis is aligned against the gripper rear, the second axis being aligned by 

running the object against a compliance so as to slide it into the correct position verified 

by a single sensor. 



5.6 Summary. 

Choice of programming structure is highly dependant on a number of factors. The 

number of sensors available limits the degree to which an error recovery implementation 

can be acheived. The method by which the sensors can be interrogated influences the 

manner in which the execution of an algorithm which includes error recovery can be 

implemented. For example, it is not possible to implement a sensor transition driven 

philosophy with only simple discrete sensing. 

Continuous sensing, particularly where interrupts are available, provides a faster 

response in detecting any error occurrence. However, how the error is dealt with 

thereafter, and within what timescale, depends largely on both the available programming 

structure and the physical configuration of the cell. 

Before any serious programming can be considered a hierarchical system of levels 

must be employed. This not only has all the usual advantages of portability and readability 

but also provides a framework from which any number of individual work cells may be 

controlled. This chapter has seen the formulation of a new description of robot 

programming levels, which also defines the type of sensor data to be used at each level. 

Careful use of the object driven techniques outlined will reduce the necessary 

communication overhead between levels. 
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6. PROGRAMMING AND SIMULATION. 

Coming events cast their shadow before. 

Goethe. 

This section is not intended to give an in-depth analysis of present day robot 

programming languages. Such studies already exist [Bonner & Shin, 1982), [Gruver. 1983), 

[Gini & Gini, 1984] and more recently [Blume & Jacob, 1986], also with interest 

pertaining to parallel processing languages [Zwarico, 1985]. Moreover, the intention is to 

provide a view of the present "state of the art" of robotic systems programming. \lany of 

the short comings associated with current programming techniques are illustrated and the 

ground prepared for fresh approaches based on network planning, sensing and error 

recovery. 

Critical path analysis will not be considered in any depth as its relevance to our task, 

though strong, is strictly limited. For acyclic networks critical path analysis is examined 

quite thoroughly by Martin [Martin, 1965] who gives a number of useful references in this 

respect. More recently, optimisation of PETRI nets with the object of finding the time 

optimal path, is considered by Freedman & Malowany using PROLOG [Freedman & 

Malowany, 1988]. With regard to digraphs, Grimaldi dedicates a complete chapter to the 

subject of shortest path algorithms using maximum flow/minimum cut techniques. These 

are included along with a number of other optimization topics [Grimaldi, 1989]. 
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As a result of the work done on queueing theory, a considerable number of computer 

simulation packages already exit such as HOCUS [HOCUS], SIMSCRIPT [Markowitz, 1979] 

and SIMIAN (based on IBM's GPSS) [Open University, 1982] to name but a few. Taha 

[Taha, 1987] gives an extensive resume of simulation languages and their uses, including 

the above and many more. In most cases a set of resources (entities) with characteristics 

(attributes), such as time, are introduced into the model and various statistical calculations 

made, such as correlation of data. Most packages have a number of statistical probability 

distributions such as Poisson, Normal, Binomial etc., according to which entities can enter 

and leave the model. A selection of relevant probability distributions are given in appendix 

D. GERT has a suite of programs written in FORTRAN for simulation purposes [Pritsker, 

1968]. 

Means by which Petri nets can be converted into executable code for simulation have 

been around for some time. One method uses a simple character string language APN to 

translate into a procedural language called XUl which was developed specifically for the 

purpose of directing the activities of a collection of automata engaged in the firing of 

anotated Petri nets [Nelson et aI, 1983]. This is then translated into PUI and PUS for 

compilation and execution. Though XUl holds the parallel processing group delimiters, 

these are not compatible with PUI and PUS (FORTRAN type language constructions) so 

only serial execution is possible. This long-winded set of computing processes has largely 

been replaced by more succinct and user-friendly languages such as GSPN [Chiola, 1987], 

but it demonstrates the complexity of converting mathematically intractable graphical 

descriptions into executable computer programs. 

More sophisticated simulation packages are presently becoming available, the most 

recent being STEM [Popplewell & Jiao, 1989]. This contains a number of options allowing 

the user to specify Petri nets, flowgraphs etc., with the ability to break down the events 

into trees, visualise the flow of tokens etc. Like most such systems, STEM is a straight 

simulation algorithm rather than a mathematical analysis package. 
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Looking to the future, ideas for the full integration of simulation packages \Io1th large 

databases are beginning to appear. SIMPRO is a computer simulation and planning system 

which is intended to be integrated with a factory database when finally implemente.:1 

(sometime in 1990 according to INPRO). The graphic language (GBS) consists of a net 

editor and a net simulator to handle advanced Petri net models. GBS consists of several 

modules of modula-2 which may be called for each Petri net firing process. This provides 

the emulatory simulation for which several stochastic distributions are available. 

[Weissenborn, 1989]. 

A contrast is drawn between two approaches to simulation of robot factory automation 

systems by Esposito & Vento [Esposito & Vento, 1987]. On the one hand specialist 

simulation languages exist, as already mentioned, which require skilled operators. On the 

other hand more sophisticated simulation packages are emerging which tend to de-skill the 

operation to some extent, but at the expense of severely limiting the field of operation. 
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6.1 Conventional Structures 

Language is the most human thing about us: In a 
sense, the invention of language made us human: but 
language, perhaps for the same reason, is the greatest 
expression of human fidelity, or if you like, original 
sin. 

C.P. Snow, 1970. 

With the advent of computer languages specifically designed for use with robots, such 

as VAL, much of the work required for general robot control, ie. the calculation of 

trajectories, driving of joints, storing and retrieving of locations etc, has been taken care 

of within the primitives available to the user. 

However, this does not mean that conventional languages, such as PASCAL, FORTH 

etc, are unsuitable. Their use though, is usually restricted to the less expensive breed of 

robots where higher level language versions either do not exist or are too expensive to 

implement. The main application of conventional languages, with regard to robotics, is In 

simulation where something more general purpose than a dedicated simulation language is 

desirable. Boucher [Boucher, 1986] uses BASIC for simulation in robotic assembly 

feasibility tests. Attempts have recently been made in adapting the general programming 

and simulation language SMALLT ALK for robotics [LaLonde et aI, 1987]. This combines 

both the facilities of simulation and robot control within one programming domain. As 

outlined in chapter 1, this is essential for any complete planning and execution system. 

Choice of programming structure is highly dependant on a number of factors. The 

number of sensors available limits the degree to which error recovery implementation can 

be acheived. The method by which the sensors can be interrogated influences the manner 

in which the execution of an algorithm which includes error recovery can be implemented. 

For example, it is not possible to implement a sensor transition driven philosophy ',}lith 

only discrete sensing. 



The flowgraph notation used may remain essentially the same whether discrete or 

continuous sensing is to be employed. However, the choice of use of notation (acti\e path 

or active node) is dependant on a number of factors (as pointed out in chapter 2) 

including the sensing configuration used. Flowgraphs easily map into matrices, and for 

those familiar with the computer programming language APL [Katzan, 1970], programming 

with matrices will seem an obvious step forward. 

The advent of parallel processing has provided methodologies capable of expediting 

the manipulation of matrices. Furthermore, this allows the simultaneous calculation of all 

matrix elements yielding a whole matrix as a single result instead of as a string of serial 

values emerging at different times. This has a considerable bearing on systems which are 

to operate quickly and in real time. This will be discussed in greater depth in section 6.3 

of this cha pter . 
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6.2 Simulation and Modelling. 

If a man take no thought about what is distant, 
he will find sorrow near at hand. 

Confucius. 

So far we have discussed the use of Markov chains in producing statistical data on 

the operation of a given set of rooot operations using known times and probabilities. To 

enable a proper simulation strategy to be implemented we must first define the variables 

to be used: 

1.) An m by m toll matrix T, where Tij is an operation routine toll. 

2.) An m by m stochastic matrix P, where Pij is a sensor based decision 

probability. 

3.) A flow matrix F, such that F = [I - prJ 

4.) A time average matrix A, such that A = T 0 F 

5.) A variance matrix V, such that V = F (2 DIAG(F) - I) - F 0 F 

6.) An m by m routine matrix R, where Rij is a program operation routine. 

7.) An m by m sensor matrix S, where Sij is a sensor based ooolean decision. 

8.) A process vector UQ • such that 
m 

Un+, - INT( ~ (Un (R 0 S») 
j-l 
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9.) A Mirror matrix M, such that a Markov chain matrix R of executable functions. 

be reversed by the operation M R T M 

In all cases denotes the matrix row, whilst j denotes the column. 

may 

For the purposes of the software the operation of 0 between a string an a boolean 

variable yields a boolean. ie., the syntax is: <string> 0 <boolean > ~ < boolean> 

It will next be shown how the Markov chain can be used, not only for simulation 

purposes, but also as an object level programming technique. 

6.2.1 Object and Task Level Programming. 

As mentioned in chapter I, the combining of simulation and robot control functions 

within the same programming environment has some distinct advantages over the use of 

separate software packages. This section deals with a new object and task level 

programming philosophy which is inherently usable for both off-line simulation and on-line 

real time robot control. 

Taking the same variables defined In section 6.2 for the purposes of off-line 

simulation, we now have the routine matrix R as a matrix containing actual robot control 

program routines instead of operation tolls, and the sensor matrix S, as one containing the 

actual Boolean decision values (either directly or as a result of some sensor fusion done at 

manipulator level) rather than their respective outcome probabilities. 
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Using exactly the same matrix manipulation techniques as for simulation. \I.e cJn now 

actually control our robot simply by mUltiplying the appropriate vectors 3.nd matrices. 

Returning to a simple example of the kind first introduced in chapter .., and its 

corresponding flowgraph as shown in figure 6.1. The boolean decisions Jre denoted b\ 

POG and its complement, where POG is a simple anagram for "Part On Gripper". 

REPICK REDROP 

REPICK 

REPEAT 

Figure 6.1 Simple Pick and Drop Example. 

From this flowgraph the usual matrices can be derived for times and probabilities, or 

in this case for routines and sensor values. 

0 PICK 0 0 

R 
REPICK 0 TRANSP 0 

REPICK 0 0 DROP 

REPEAT 0 REDROP 0 

0 1 0 0 

S 
POC 0 POC 0 

POC 0 0 POC 

POC 0 POC 0 

Given a st art i ng vector Ua [ 1 0 0 o ] 

the next vectors: U, Ua (R 0 S) 

U2 U, (R 0 S) ... 

and so on. 

ie. Un+, Un (R 0 S) 
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During program operation, the Routine matrix R will remain the same and only :he 

Boolean Sij values in the sensor matrix will change in accordance with the corresponding 

sensor outputs. It is these sensor values which will determine the run time operation of 

the program. 

The use of this method in both simulation and robot programming is not restricted to 

single robot operation but can be extended to multiple parallel processes as the next 

examples show. 

Using the f10wgraph of figure 6.1 again, but this time assume we have two robots 

operating within the same cell, one just about to start a PICK operation and the other 

commencing a DROP operation. hence the starting vector is: 

U o = [1 0 1 0] 

are Slight modification is required to S to make the sensor results unique. These 

likely to be a result of sensor fusion and are therefore given relative to a position in the 

f10wgraph rather than being robot specific. 

R 

S 

o 
REPICK 

REPICK 

REPEAT 

0 

POC 1 

POC 2 

POC 3 

PICK 

o 
o 
o 

1 

0 

0 

0 

o 
TRANSP 

o 
REDROP 

0 

POC 1 

0 

POC 3 
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o 
o 

DROP 

o 

0 

0 

POC 2 

0 



Suppose the PICK operation performed by the first robot is sucesseful, but the DROP 

operation carried out by the second robot fails. All the POG elements of S \l.ill have 

Boolean value 1, hence, 

U1 
[ 1 0 1 o ] 

[0 1 0 1 ] 

0 

0 

0 

0 

o 
o 
o 
o 

PICK 

0 

0 

0 

PICK 

o 
o 
o 

0 

TRANSP 

0 

REDROP 

o 
o 
o 
o 

0 

0 

DROP 

0 

o 
o 

DROP 

o 

Now if a second failure occurs for robot 2 while the first robot is successeful again, 

then robot 1 is likely to catch up with the second robot. This can be seen if we take all 

the POG values as 1 once again to find U 2' 

[0 1 0 1 ] o 
o 
o 
o 

o 
o 
o 
o 

PICK 

o 
o 
o 

o 
o 
o 
o 

o 
TRANSP 

o 
REDROP 

o 
TRANSP 

o 
REDROP 

o 
o 

DROP 

o 

o 
o 
o 
o 

Now we have two operations in one column of U. This denotes simultaneous 

realization of the same node in the system flowgraph giving a resultant U" of: 

U
2 

= [0 0 1 0] 
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Where more than one robot is operating this can mean collision! Of course, this 

assumes that each of the operation times of figure 6.1 are all equal and are execu:ej 

simultaneously. Where this is not the case, the process is no longer strictly \1arko\lan but 

is known as a semi-Markov process. That is to say, the times for each action are no 

longer all equal and unity but are dependant on the action being executed, even though 

the probabilities of execution may remain constant and independant (forming an embedded 

Markov chain). Now, each robots own set of matrix operations must be performed 

independantly and continuously compared to detect simultaneous realization as the following 

example illustrates. 

Adding the relative times for each operation, in brackets after the routine name, to 

give the flowgraph in figure 6.2. 

REPICK(l) REDROP(l) 

PICK(4) 

POC 

REPEAT(2) 

Figure 6.2 - Simple Pick and Drop Example with operation times. 

For the first robot we start with the PICK operation again; 

U 1 (1) [ 1 o o o ] o 
o 
o 
o 

PICK(4) 

o 
o 
o 
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o 
TRANSP(2) 

o 
REOROP(1) 

o 
o 

DROP(3) 

o 



0 PICJ«4) 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

and for the second we commence with a DROP once more; 

U1 (2) - 0 0 1 o ] 0 PICJ«4) 0 0 
0 0 TRANSP(2) 0 
0 0 0 DROP(3) 
0 0 REDROP(1) 0 

0 0 0 0 

0 0 0 0 

0 0 0 DROP(3) 
0 0 0 0 

So U1 (1) - [0 1 0 0 

and U 1 (2) = [0 0 0 1 ] 

Now supposing as before, the first robot experiences no errors but the second has to 

repeat the DROP operation. Table 6.1 shows the sequence of events for each step in 

time. 

Table 6.1 - Time & Vectors for two Robots. 

START Un (1 ) NEXT END START Un (2) NEXT END 
TIME ROUTINE TIME TIME ROUfINE TIME 

0 1 000 PICK 4 0 001 0 DROP 3 
3 000 1 REDROP 4 

4 o 1 o 0 TRANSP 6 
6 o 0 1 0 DROP 9 6 001 0 DROP 7 

What table 6.1 reveals is that the DROP procedure is being executed by both robots 

simultaneously where the start and finish times overlap. ie., when Un(1) = Un(2), 
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which is when time, tC(4,7] n tC [6,9] 

ie., between 6 and 7 time units from the start. 

This result can be simulated as has been done above. However, recourse to section 

4.5.2 and the definition of an Ergodic Markov chain should convince the reader that if 

physical contact is at all possible, then simultaneous realization is an eventual inevitability 

in a stochastic system containing two or more independantly operating robots. The 

simulation merely provides a means of estimating how, when and where. 

6.2.2 Readability 

And we should keep in mind that a program is 
worthless, unless it exists in some form in which a 
human can understand it and gain confidence in its 
design. 

Niklaus Wirth, Programming in Modula-2. 

The use of a matrix to represent an algorithm will now be compared to the more 

familiar format of a string of computer program statements. Figure 6.3 shows the 

flowgraph for a simple pick and place routine with an inspection operation. 
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DI SCARD 

1 

• O--~-----+--~ PICK dl c---~--~~~)--? ____ ~~ 

DELAY 

1 

Figure 6.3 - Pick & Place with Inspect Process 

The resulting executable matrix, where decision variables are in square parentheses, 

is: 

0 PICK 0 0 0 

(R 0 S) [dl] 0 TRANSP [ d 1 ] 0 0 

0 0 DELAY [d2] INSPECT [d2] 0 

DI SCARD [d3] 0 0 0 DROP [d3] 

[d4] 0 0 [d4] 0 

By comparing the relative position of the elements in the above matrix to those of 

the flowgraph of figure 6.3 it should be obvious what is taking place as the vector U is 

multiplied and modified each time. In fact, by mentally following the elements of the 

main off diagonal and then noting the proximity of the feedback paths, the reader should 

be able to visualise the flowgraph directly from the topology of the matrix. This is not so 

easy to do with the computer listing for which the equivalent algorithm in pseudo-code is 

shown in figure 6.4. 
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1 IF d4 THEN 
CALL PICK 

ELSE 
STOP 

IF NOT d1 THEN COTO 1 
CALL TRANSP 

2 IF NOT d2 THEN CALL DELAY 
IF NOT d2 THEN COTO 2 
CALL INSPECT 
IF NOT d3 THEN 

ENDIF 

CALL DISCARD 
GOTO 1 

3 CALL DROP 
IF NOT d4 THEN GOTO 3 
GOTO 1 

Figure 6.4 - Pseudo code representation 

This is far more difficult to read than the matrix representation. Furthermore, as the 

algorithms become larger the conventional notation becomes increasingly more difficult to 

read. 

6.2.3 Extensions to General Programming 

So far the techniques used have concentrated on robot programming. However, almost 

all algorithms are Markov chain representations as the following example will show. 

Most programmers are familiar with the Bubble sort of the kind given 10 the flow 

chart of figure 6.5 [Forsythe et ai, 1975 (p259)]. The corresponding flowgraph version is 

shown in figure 6.6. 
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j +- 1 

j +- j+l 
j 

T 

TEMP +- Aj+l 
Aj+l +- Aj 

k +- j 
SW +- 0 

F 

SW - 0 

F 

F 

±T F 
~k-l > TEMP )r---I.t-----

T 

~Il'e 6.5 - Bubb 1 e Sort Flowchart 

1 

1 

j+-j+l 

TEMP+-Aj+l 
A'+l+-A' 

J k+-l J 

SW+-O 

figure 6,6 - Flowgraph of Bubble Sort 
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Putting this into matrix form we get the executable matrix of figure 6.7. The 

equivalent program in pseudo code is shown in figure 6.8. 

0 j~l 0 0 0 0 

0 0 [j(n-l] 0 0 0 
1 

0 [AJ(Aj+l] '0 [A'>A'+l] 0 0 
J~j+l T~~Xj+l 

Aj+l~Aj 
k~1 

SW~ 

0 [k<IUSW#O] 0 0 [k>lnSW-O] 0 
j~j+l 1 

0 0 0 [Ak_l,TEMP] 0 [Ak_l>TEMP] 
SW~1 

0 0 0 1 0 

0 0 0 0 0 

Figure 6.7 Matrix of Bubble Sort A Igor ithm 

j :-1 
1 IF j,n-l THEN 

ELSE 
END 

IF Aj > Aj+l THEN 
TEMP ~ Aj+l 
Aj+l~Aj 
k~j 

ELSE 

SW~O 

IF k > 1 AND SW - 0 THEN 
IF Ak-l > TEMP THEN 

Ak ~ Ak-l 

ELSE 

ENDIF 
ELSE 
j ~ j+l 
GOTO 1 

k ~ k-l 

SW ~ 1 

j ~ j+l 
GOTO 1 

[flure 6.8 - Pseudo code Bubble Sort 
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0 

0 

0 

[j>n-l] 
1 

0 

0 

0 

0 
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There should be little doubt about which method is the most readable by no''!', even 

when several loops are included as with the bubble sort. In fact, the loops show up 10 

the matrix as the elements below the diagonal. The only element above the malO 

off-diagonal is the final state on completion of the algorithm. This is not so clear for the 

pseudo code representation, and even though the loops are nested and offset from the left 

of the page it is not so easy to see which conditions determine the order of execution. 

This is because flowcharts do not map readily into computer code, whereas flowgraphs and 

their representitive transition matrices are effectively homomorphic. 

6.2.4 Buffering and Partitioning 

As was shown in section 2.2.1, the use of buffering between sections of a flowgraph 

provides natural delimiters allowing partitioning at these points. So far it has usually been 

unecessary to use buffer paths owing to the small size of the flowgraphs. However, as 

models become larger connectivity becomes more complex. This can result in hereto 

unforseen problems. 

R t . t the flowgraph of fl'gure 4 1 l'n sectl'on 4.1.2, repeated here in figure 6.9, e urnmg 0 . 

and its resulting stochastic transition matrix {6.1}. 

2 

-1 
0.22 

-1 
0.72 

Fugure 6.9 - Double Loop Flowgraph 
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p 

o 

0.3 

0.2 

o 

1 

o 

o 

o 

o 

0.7 

o 

o 

o 

o 

0.8 

o 

( 6. 1 ) 

Now finding the flows from po:> is quite simple. However. if the method of the 

definition of 3.) in section 6.2 is to be used to calculate the inter-node flov.'S and .t.) to 

find the toll average from the toll matrix T. then the result will be incorrect for this 

particular model (and any other with a similar topology), as will be demonstrated: 

T 

F 

V 

A 

o 

1 

1 

o 

1 

o 

o 

o 

1.79E+0 

7.86E-1 

3.57E-1 

O.OOE+O 

1.40E+0 

1.40E+0 

7.91E-1 

O.OOE+O 

O.OOE+O 

7.86E-1 

3.57E-1 

O.OOE+O 

o 

1 

o 

o 

o 

o 

1 

o 

1.79E+0 

1.79E+0 

3.57E-1 

O.OOE+O 

1.40E+0 

1.40E+0 

7.91E-1 

O.OOE+O 

1.79E+0 

O.OOE+O 

O.OOE+O 

O.OOE+O 

(6.2) 

1.25E+0 1.00E+0 

1.25E+0 1.00E+0 
(6.3 ) 

1.25E+0 1.00E+0 

O.OOE+O 1.00E+0 

3.13E-1 O.OOE+O 

3.13E-1 O.OOE+O 
(6.4) 

3.13E-1 -2.22E-16 

O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O 

1. 25E+0 O.OOE+O 
(6.5) 

O.OOE+O 1.00E+0 

O.OOE+O O.OOE+O 

1 1 .t 



mean toll value is: 5.1785714E+O 

But using Masons theorem, or simple decomposition, on figure 6.9 gives a toll average of: 

2.857 + 0.2 
+ 1 4.821 (6.6) 

0.8 

The result of {6.6} is clearly different to that given by the sum of the elements of {6.5}. 

Closer inspection of {6.2} reveals the fact that T is not upper triangular. This is not 

a problem with stochastic transition matrices like P because as we know, probabilities are 

multiplicative, whereas tolls are additive. Obviously we cannot treat them in the same wJ.y. 

The answer is to use the buffering techniques introduced in section 2.2.1. The buffered 

homomorphism of figure 6.9 is shown in figure 6.10 along with its corresponding toll 

matrix {6.7} 

o -1 
0.2Z 

-1 
z 

Figure 6.10 - Buffered Homomorphism of Figure 6.9 

0 1 0 0 0 0 

0 0 1 0 1 0 

0 0 0 1 0 1 

T {6.71 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
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Now the matrices are much larger but {6.7}· . is in upper triangular form. '."ote the 

sparseness of {6.7} compared with the stochastl'c t . f '6 8} T rna nx 0 i,' • his is beca use the 

buffer paths have a zero toll, despite a transition probability of unity. 

0 1 0 0 0 0 

0 O' 0.7 0 0.3 0 

0 0 0 0.8 0 0.2 
p {6.8} 

0 0 0 0 0 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

1.79E+0 1.79E+0 1.25E+0 1.00E+0 5.36E-1 2.50E-1 

7.86E-1 1.79E+0 1.25E+0 1.00E+0 5.36E-1 2.50E-l 

3.57E-1 3.57E-1 1.25E+0 1.00E+0 1 .07E-1 2.50E-l 
F "'" {6.9} 

O.OOE+O O.OOE+O O.OOE+O 1.00E+0 O.OOE+O O.OOE+O 

1.79E+0 1.79E+0 1.25E+0 1.00E+0 1.54E+0 2.50E-l 

1.79E+0 1.79E+0 1.25E+0 1.00E+0 5.36E-1 1.25E+0 

1.40E+ 0 1.40E+0 3.13E-1 1.11E-16 8.23E-1 3.13E-1 

1.40E+0 1.40E+0 3.13E-l 1.11E-16 8.23E-1 3.13E-1 

7.91E-1 7.91E-1 3.13E-1 O.OOE+O 2.10E-1 3.13E-l 

V -
(6.10) 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

1.40E+0 1.40E+0 3.13E-1 1.11E-16 8.23E-1 3.13E-l 

1.40E+0 1.40E+0 3.13E-1 O.OOE+O 8.23E-1 3.13E-l 
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O.OOE+O 1.79E+0 O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O 1.25E+0 O.OOE+O 5.36E-1 O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O 1.00E+0 O.OOEO 2.50E-1 
A - I 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 
(6.11) 

O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

mean toll value is: 4.8214286E+0 

This is exactly the toll average given by {6.6}. 

This leads to the simple rule that: no two or more paths carrying non-zero tolls mav 

be allowed to enter the same node. The validity of a flowgraph in this respect may be 

verified by ensuring that the corresponding toll matrix is in upper triangular form. 

Note that the flow matrix of {6.3} is the same as the first 4 by 4 minor of {6.9}, 

and similarly the variance matrices of {6.4} and {6.10} to within the scope of 

mathematical rounding errors. The only difference lies in the additional elements due to 

the buffer paths. 

Partitioning of a matrix was used in chapter 4 for separating the various states of a 

Markov process. Its usefulness when used to segregate the different sections of an overall 

process will now be considered. 

As networks become large, their resulting transition matrices not only also become 

large but they also have a tendancy to become sparse, particularly where a great deal of 

buffering is necessary. This can often result in large amounts of wasted computer memo!:> 

for matrix parameter storage, not to mention the additional computational overhead 

required to conduct mathematical manipulations on matrices containing an inordina tt' 

amount of zeros! Both for purposes of economy and readability it is often necessary to 

partition matrices. Flowgraph representations offer some advantages In making this possible. 
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Using the flowgraph of figure 2.4 from the example in chapter 2, and its buffered 

counterpart in figure 6.10, their corresponding routine matrices are {6.12} and {b.I3} 

respectively. 

0 PICK 0 

FAIL 0 TRANSP 

FAIL 0 0 

0 0 FAIL 

0 0 0 

PICK TRANSP 

0 

0 

DROP 

0 

0 

DROP 

0 

0 

0 

1 

0 

- ..... -0 
1 

figure 6.10 - Buffered version of figure 2.4 

(6.12) 

For simple program execution, buffering is not necessary as there is only one 

parameter (the executable routine) being considered, unlike during the anlysis where both 

time and probability are being dealt with simultaneously. However, if the matrix already 

exists in a buffered state so as to conform with the analysis flowgraph, then we have 

something like {6.13} representing figure 6.10. 

0 PICK 0 0 0 0 0 0 0 

0 0 TRANSP 0 0 0 FAIL 0 0 

0 0 0 1 0 0 0 FAIL 0 

0 0 0 0 DROP 0 0 0 0 

0 0 0 0 0 1 0 0 FAIL 
- - - - - - - - - - - - - - - - - - - - - - - {6.13} 

0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 
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As shown above {6.13} may now be partitioned into four separate parts. accorjing to 

the form of {6.14}, where each partition represents a particular subset of the dignph. 

[-:-:-:-1 

The partitioned subsets are: 

A: Forward paths. 

B: Recovery routines. 

C: Feedback buffer paths. 

0: Null. 

(6.14) 

Now a A can be stored as a single 5 element vector, B as a 5 by 3 matrix and C 

as a 4 by 6 matrix. This reduces the storage of 81 elements, of what was previously a 9 

by 9 matrix, down to 44 elements. 
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6.3 Aspects of Parallel Processing 

One of the main functions of task level programming is the necessity to execute 

several tasks simultaneously. It should not be necessary to consider this at object level. 

where all such program routines should be capable of running autonomously. Where 

several such object level routines may need to be executed simultaneously, the decision as 

to when and where they are to be run is made at the task level. 

This distinction is best illustrated by using the well known example of the dining 

philosophers. For those unfamiliar with this; try to imagine four philosophers gathered 

round a table on which exists one communal bowl of food. Four forks are provided, but 

two are required for eating. Each philosopher will spend a random amount of time 

thinking, then when hungry he must pick up a left and right fork (in that order). eat and 

then return the forks in the same order. 

This problem can be solved algorithmically by insisting that only three philosophers at 

anyone time may be allowed to be hungry. A modula-2 program for this process capable 

of concurrent execution consists of over 200 lines of source code (not including 10 

statements) [Hewitt & Frank, 1989]. 

The basic flowgraph for one philosopher is as shown in figure 6.11, together with the 

executable procedure and sensor parameter matrices of figure 6.12. 
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THINK 

RETURN LEFT FORK 

PI CJ( LEFT FORK 

[NO LEFT FORK 
OR NOT HUNGRY] 

RETURN RIGHT FORK 

[NO RIGHT FORK 
R NOT HUNGRY] 

PICK RIGHT 

Figure 6.11 - Flowgraph for a Dining Philosopher. 

[NOT 
HUNGRY] 

(HUNGRY] 

EAT 

THINK PICK LEFT 0 NO LEFT FORK LEFT FORK 0 
FORK OR NOT HUNGRY AND HUNGRY 

RETURN 0 PICK NO RIGHT FORK 0 RIGHT FURl< 
P - LEFT FORK RIGHT FORK S - OR NOT HUNGRY AND HUNGRY 

RETURN NOT 
0 RIGHT FORK EAT 0 HUNGRY HUNGRY 

Figure 6.12 - Process and Sensor matrices for figure 6.11. 

These matrices are common to all four philosophers and may be executed 

accordingly. If the sensing can be done in such a manner that no two philosophers can 

attempt to pick up a left or right fork simultaneously then the problem can be solved at 

object level. However, if at some stage conflicts must be resolved such that knowledge of 

previous events are required then the programming must be done at task level. For 

example, if two philosophers are hungry and reach for the same fork together how do we 

decide which one is to eat? Is it the hungriest?, the one who has so far eaten least? or 

the one who has done the most thinking? If it is the first scenario, then provided we 

have a reliable method of sensing this the problem is simple. But if the one of the latter, 

then some form of historical data is required. In which case the action IS no longer 

independant of previous events and the process becomes non-Markov. 
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This is one of the strongest differences between object level and task level 

programming. The advantage of task level programming is that execution can occur 

simultaneously without any of the restrictions needed for the previously mentioned 

Modula-2 program. Furthermore, when depicted in matrix form the program is 

considerably easier to read than 200 lines of algorithmic code. 
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6.4 Some Thoughts on Task Level Programming 

Due to its inherently non-Markov construction, task level programming requires a 

notational structure which will allow the simultaneous operation of several events as well as 

the ability to control precedence. To achieve this, a full set of logic conditional nodes 

must be available as with the GERT notation. 

For the purposes of this work it has been assumed that decisional data at task level 

will be available from a separate decision generating engine such as a knowledge based 

reasoning algorithm. However, this still leaves the question of a suitable notation for task 

level networks unresolved. 

As discussed in chapter 2, the GERT notation is already established as a notation 

providing a choice in both logical input and output characteristics. Unfortunately GERT 

lacks the ease of transformation into matrix form, as was carried out in chapter 4 using 

the digraph notation. 

The rest of this section is devoted to the introduction of a simple method of input 

weighting to enable the nodes of a digraph to behave as logic gates and yet maintain the 

isomorphism between flowgraph and transition matrix to enable the matrix driven 

programming, prviously used at object level, to be implemented at task level. 

Given a simple node with two inputs as in figure 6.13, simple weighting factors Wl, 

W 2 and w 3 (shown in parenthesis) can be associated with each of the path functions. 

figure 6.13 - Simple 2 input weighted network. 
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Using the conventional flowgraph notation figure 6.13 represents a network capable of 

executing the processes A then C, or B then C, but not both simultaneously (assuming the 

usual EX -0 R property of node 3). 

Now, if we allow the weighting factors W', W2, W3 to have a value other than unity 

and set the criterion for a node to be activated by its inputs as being the absolute \3\ue 

of the sum of the input weighting values to be greater or equal to 1, ie., 

n 

For an n input node to fire: > 1 {6.15} 

then we have the basis for a full set of logic inputs. A similar technique is used in 

electrical transistor logic circuits and neural networks. Figure 6.14 shows the weighting 

factors to enable a) OR, b) AND and c) EX-oR structures. 

(0.5) 

o 
a) OR b) AND c) EX-OR 

Figure 6.14 Weighted logic structures. 

Ignoring the functions A, Band C for the moment and concentrating on the action 

of the weighting factors alone, the corresponding transition matrices, as shown in figure 

6.15, can be produced from the flowgraphs of figure 6.14. 
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0 0 1 0 0 0 0.5 0 0 0 1 0 

0 0 1 0 0 0 0.5 0 0 0 -1 0 

0 0 0 1 0 0 0 1 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 
a) OR b) AND c} EX-OR 

Figure 6.15 - Weighting transition matrices. 

Using a starting vector [1 1 0 0] to present an input to both nodes 1 and 2 

simultaneously, premultiplying the transition matrix by the starting vector gives the resulting 

'next' vectors [0 0 2 0], [0 0 1 o ] and [0 0 0 0] respectively. 

according to the criterion of {6.15}. As expected, node 3 will be activated for the OR 

and AND cases, but not the EX-oR. 

Similarly, using the starting vecor [0 1 0 0] to trigger node 2 only produces 

the 'next' vectors [0 0 1 0], [0 0 0 0 and [0 0 1 0] respectively. i.e., 

only the OR and EX-oR weightings allow node 3 to fire. 

Naturally such logic modules can be cascaded to produce larger networks allowing 

precedance control to be affected by means of the weighting factors. However, care must 

be taken when trying to simulate electrical logic circuits with this method as each path 

represents a propogation delay of one time unit. This means that extra nodes must be 

incorporated to maintain each node at a particular level of the execution sequence. 

This provides a notation for depicting task level representations at a very basic level. 

It must not be forgotten that to be a truly task level implementation acting on reasoned 

error causes and other such conditional criteria, the weightings would be of a dmamic 

nature subject to change as dictated by whatever decisional control mechanism is 

employed. 
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6.5 Summary 

This chapter has dealt with the use of simulation techniques for both simulation and 

task execution. The advantages of flowgraphs being their ease of transfer into matrix form. 

gives rise to a programming technique based on Markov chain theory. This allov.-s both 

simulation and robot object level programming to be executed from the same algorithm. 

Unlike the Petri net simulation methods, the matrix format also lends itself to relatively 

easy mathematical analysis. 

By extending these techniques to include time attributes, simulation to detect 

bottlenecks, estimation of robot collision etc., can be performed. More generally. other 

costs may be substituted for time to yield data on depreciation due to wear and tear etc. 

It has also been shown that this two dimensional approach to programming has some 

distinct advantages over the conventional notation for computer programming. The 

restrictions in readability when using a sequence of programming statements reading down 

the page are not present when programming 1S carried out in the above matrix method. 

Now the question must be asked: "why only two dimensional programming? why not 

three or more?". The difficulty in actually depicting a greater than two dimensional format 

on a two dimensional paper page or computer screen would seem to defeat the object of 

improved readability of code, not to mention the task of mathematical analysis of such a 

scheme. However, as far as the computer itself is concerned there is no reason whatsoever 

why this should not be investigated. This is however, the subject of further research and 

will not be discussed here. 



Some thought has also been given to the extension of these object level programming 

techniques to the non-Markov task level. A system of weighting the inputs so as to obtain 

logic functional nodes similar to those used in the GERT notation, but at the same time 

using only simple digraph notation, has been introduced. This has the advantage of being 

easily transformed from a digraph depicting the workcell operation into a transition matrix 

useable in analysis and work cell execution. 
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7. OVERALL STRUCfURE AND IMPLEMENT AlON 

This chapter will deal with the integration of the mathematical analysis and object 

level programming techniques, with the intention of providing the necessary tools for a 

complete interactive programming system. It will be assumed that the necessary sensor 

decision and statistical data will be available from some form of AI or knowledge based 

system. 

7.1 The New Model 

Propose to any Englishman any principle or any 
instrument, however admirable, and you will observe 
that the whole effort of the English mind is directed 
to find a difficulty, a defect, or an impossibility in 
it. If you speak to him of a machine for peeling a potato, 
he will pronounce it impossible; if you peel a potato with 
it before his eyes, he will declare it useless because it 
will not slice a pineapple. 

Charles Babbage. 

Figure 7.1 shows the block diagram of the necessary structure to provide both a basic 

analysis package and a real time programming package together with the necessary 

processing and feedback from the robot and an associated knowledge base. During program 

operation, the knowledge base must resolve basic sensor data into object level decisions 

before communicating this data to the real time programming package. Similarly, statistical 

data compiled during program operation is continuously passed on to affect modification of 

the analysis model. This allows the user to identify problems during run-time and to 

modify the flowgraph and object level program accordingly. 
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MATHEMATICAL 
ANALYS I S OF 

WORK CELL 

Statistical 
Data 

KNOWLEDGE BASED 

Human 
Input 

FLOWGRAPH 
PLAN 

Human -.-..- -----
Modifications 

Sensor 
SENSOR ANALYSISr-------------~~--------------~ 

SYSTEM Data 

Figure 7.1 - Overall Interactive System Model 

REAL-TI ~tE 
OBJECT LEVEL 
PROCRAMM I NG 

Executable 
Conunands 

MANIPULATOR 
LEVEL ROBOT 
CONTROL 

The top three boxes of figure 7.1 represent the sections resulting from the previous 

chapters of this thesis. The Manipulator level section is basically the robot and its 

associated controller, the manipulator level programming being conducted in a robot 

control language such as VALlI. The knowledge based system results from part of the 

work done by Ghris [Ghris, 1989], Song [Song, 1988] and Halloran [Halloran, 1989]. 

129 



7.2 Selected Case Studies 

The following two case studies will involve an analysis of the flowgraph using the 

Modula-2 programs developed for this purpose (see appendix E). They will aim to show 

the capabilities of the matrix simulation and programming techniques. Both models 

represent actual robot workcells which have been operated in real-time. 

7.2.1 Pick and Place Model 

The first example of a working model was introduced in chapter 3. Figure 3.4 gives 

the flowgraph for this simple pick and place model from which a toll (time) average of 

16.39 seconds was calculated. This was achieved using the steady state value of the 

derivative of the transfer function found using Masons theorem. These same results, along 

with other useful data, will now be found using the matrix techniques developed in the 

later chapters. 

The flowgraph of figure 3.4 is repeated in figure 7.2 with the addition of buffer 

paths as per the criteria outlined in section 6.2.4. 

o 

o 
Z 

-5.438 
0.032Z 

Figure 7.2 - Pick and Place Flowgraph 
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Using the Modula-2 programs of appendix E the data for the stochastic transition 

matrix {7.1} gives rise to the flow and variance matrices, {7.2} and {7.3} respectivel: •. 

FLOW matrix is: 

1.23E+0 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.95E-1 3.31E-2 2.32E-1 

2.28E-l 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.95E-1 3.31E-2 2.32E-1 

3.93E-2 3.93E-2 1.03E+0 1.23E+0 1 .23E+0 1.00E+0 6.25E-3 3.31E-2 2.32E-1 

O.OOE+O O.OOE+O O.OOE+O 1.23E+0 1.23E+0 1.00E+0 O.OOE+O O.OOE+O 2.32E-1 

O.OOE+O O.OOE+O O.OOE+O 2.32E-1 1.23E+0 1.00E+0 O.OOE+O O.OOE+O 2.32E-1 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1.00E+0 O.OOE+O O.OOE+O O.OOE+O 

1.23E+0 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.20E+0 3.31E-2 2.32E-1 

1.23E+0 1.23E+0 1.03E+0 1.23E+0 1.23E+0 1.00E+0 1.95E-1 1.03E+0 2.32E-1 

O.OOE+O O.OOE+O O.OOE+O 1.23E+0 1.23E+0 1.00E+0 O.OOE+O O.OOE+O 1.23E+0 

{7 . 2} 
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VARIANCE matrix is: 

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1 

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1 

5.57E-2 5.57E-2 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 8.65E-3 3.42E-2 2.85E-1 

O.OOE+O O.OOE+O O.OOE+O 2.85E-1 2.85E-1 O.OOE+O O.OOE+O 0.00£+0 2.85E-1 

O.OOE+O O.OOE+O O.OOE+O 2.85E-1 2.85E-1 O.OOE+O O.OOE+O O.OOE+O 2.85E-1 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1 

2.81E-1 2.81E-1 3.42E-2 2.85E-1 2.85E-1 O.OOE+O 2.33E-1 3.42E-2 2.85E-1 

O.OOE+O O.OOE+O O.OOE+O 2.85£-1 2.85E-1 O.OOE+O O.OOE+O O.OOE+O 2.85£-1 

( 7 . 3 ) 

The toll data {7.4} can be entered producing the toll average matrix {7.5} and its 

corresponding element sum which represents the complete toll average for the flowgraph. 

0 7.04 0 0 0 0 0 0 0 

0 0 2.5 0 0 0 0.27 0 0 

0 0 0 0 0 0 0 5.438 0 

0 0 0 0 3.95 0 0 0 0 

0 0 0 0 0 0 0 0 0.27 {7.4} 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
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Toll average matrix is: 

O.OOE+O 8.65E+0 O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 0.00[+0 0.00[+0 

O.OOE+O O.OOE+O 2.58E+0 O.OOE+O O.OOE+O O.OOE+O 5.27E-2 O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1. 80E-1 0.00[+0 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 4.86E+0 O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 6.25[-2 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 0.00[+0 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

( 7 .5) 

mean toll value is: 1.6389905E+1 

In section 6.2.4 some ideas on the partitioning of matrices were discussed. Some of 

the advantages of using partitioned matrices will now become apparent. 

If {7.1} and {7.4} are each partitioned into three separate 3 by 3 matrices 

corresponding to the three recovery loops of figure 3.4 then these can 

separately as follows: 

be tackled 

Matrices {7.6} and {7.9} represent the respective stochastic transition and toll values 

for the single loop of figure 7.3. This gives a toll average of 10.922. 
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0.159Z 

-7.04 
Z 

-0.27 

}------...----J 3 

-2.5 
0.841Z 

Figure 7.3 - First Loop 

Entering the stochastic transition matrix: 

o 1 

0.159 0 

o 0 

o 

0.841 

o 

FLOW matrix is: 

1.19E+0 1.19E+0 1.00E+0 

1.89E-1 1.19E+0 1.00E+0 

O.OOE+O O.OOE+O 1.00E+0 

VARIANCE matrix is: 

2.25E-1 2.25E-1 O.OOE+O 

2.25E-1 2.25E-1 O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O 

Entering the toll matrix: 

o 

0.27 

o 

7.04 

o 

o 

o 

2.5 

o 

( 7 .6) 

( 7 .7) 

{ 7 . 8 } 

( 7 .9) 



Toll average matrix is: 

O.OOE+O 8.37E+0 O.OOE+O 

5.10E-2 O.OOE+O 2.50E+0 

O.OOE+O O.OOE+O O.OOE+O 

mean toll value is: 1.092E+l 

(7.10) 

Incorporating the results of the last operation and combining the first two loops of 

the flowgraph gives a mean toll of 11.46 

-5.438 
0.032Z 

-10.92 
Z 

0.968 

Figure 7.4 - Combined First and Second Loop 

Entering the new stochastic 

0 1 0 

0.032 0 0.968 

0 0 0 

FLOW matrix is: 

1.03E+0 1.03E+0 1.00E+0 

3.31E-2 1.03E+0 1.00E+0 

O.OOE+O O.OOE+O 1.00E+0 

transition matrix: 
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VARIANCE matrix is: 

3.42E-2 3.42E-2 O.OOE+O 

3.42E-2 3.42E-2 O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O 

Entering the new toll matrix: 

o 10.92 

5.438 0 

o o 

o 

o 

o 

Toll average matrix is: 

O.OOE+O 1.13E+1 O.OOE+O 

1.80E-1 O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O 

mean toll value is: 1. 146E+1 

{7.13} 

{7.14} 

{7.15} 

Similarl y, from {7 .16} and {7 .19}, the mean toll for the final loop IS found to be 

4.91. 

-0.27 
0.188Z 

-3.95 
Z 

Figure 7,5 - Final Loop 

o 

0.188 0 

o 0 

o 

0.812 

o 

(7.16) 
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FLOW matrix is: 

1.23£+0 1.23£+0 1.00£+0 

2.32£-1 1.23£+0 1.00£+0 

0.00£+0 0.00£+0 1.00£+0 

VARIANC£ matrix is: 

2.85E-1 2.85£-1 1.11£-16 

2.85£-1 2.85E-1 O.OOE+O 

O.OOE+O O.OOE+O 0.00£+0 

Entering the new toll matrix: 

o 

0.27 

o 

3.95 

o 

o 

o 

o 

o 

Toll average matrix is: 

O.OOE+O 4.86E+0 O.OOE+O 

6.25E-2 O.OOE+O O.OOE+O 

0.00£+0 0.00£+0 O.OOE+O 

mean toll value is: 4.927E+0 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

Finally. the last two results can be added together to give the total mean toll of 

11.46 + 4.93 = 16.39 
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This is exactly the same value calculated previously with the full 9 by 9 matrices anj 

by the algebraic method in chapter 3. There are several advantages to panitioning the 

matrices in this manner. As mentioned previously, storage space must be pro\ided for 

large matrices, and if these are very sparse as in {7.1} and {7 A} then a great deal of 

room is taken up by zero's. Furthermore, many computer languages, of which ~1odula-2 is 

one, do not allow dynamic arrays. This means that all the matrices to be used must be 

dimensioned at the time the program is written, even though at run time they may 

actually be very much smaller. If it could be guarenteed that all matrices to be used 

would be no larger than 3 by 3 say, then considerable savings in both storage space and 

execution time could be made. Finally, the rounding errors caused by the large number of 

calculations required to invert very large matrices can lead to numerical errors. The larger 

the matrix the more pronounced any ill-conditioning becomes. A detailed analysis of the 

underlying reasons behind ill-conditioning in matrix operations can be found in Rice [Rice, 

1981 ]. 

7.2.2 An Intelligent Robot Workcell 

A workcell consisting of a Puma Robot with a sensory textile gripper [Kemp et ai, 

1986] has recently been used to form the basis of a project to build up error recovery 

strategies using an AIlknowledge base system. The basic task consists of destacking and 

laying up a single panel of knitted fabric after which a fusible motif is applied to the 

fabric panel. A large number of (relatively unpredictable) errors may occur in this type of 

workcell, making it an ideal subject for this research. 



With regard to the techniques developed here, simulation and object level 

programming of the workcell are the two main factors. Such methods must be combined 

with the knowledge base and robot manipulator level programming system as depicted in 

figure 7.1. The previous case study concentrated mainly on the simulation aspects usmg 

statistical data already gathered. No such data has so far been compiled for these 

operations, however this case study is ideal for illustrating the object level programming 

aspect. 

Figure 7.6 shows the flowgraph for the ply separation, pick and place operations. 

The motif handling part is very similar and so will not be dwelt upon here. 

/A} igned 

RETURN 

Figure 7.6 - Fabric Ply Separation Workcell Flowgraph. 

At manipulator level continuous sensing is carried out to provide fine adjustments in 

alignment during the ALIGN routine, finding the stack side within the ACCROSS routine 

and the stack edge during INSERT. The ERROR routine is that which must either call 

the operator or seek further data before continuing. The routine matrix R. for this 

flowgraph is as follows: 
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0 IN IT 0 0 0 0 0 0 0 

0 0 SEPARATE 0 0 0 0 0 ERROR 

0 REPEAT 0 INSERT 0 0 0 0 0 

0 0 0 0 ACCROSS 0 0 0 ERROR 

0 0 0 0 0 ALIGN 0 0 ERROR 

0 0 0 0 ROTATE 0 PICK 0 0 

0 0 0 0 0 0 0 DROP 0 

RETURN 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Using the starting vector U 0 

U
o 

[1 0 0 0 0 0 0 0 0] 

and a sensor decision matrix S 

0 1 0 0 0 0 0 0 0 

0 0 E 0 0 0 0 0 E 

0 Plyfl 0 PIy=l 0 0 0 0 0 

0 0 0 0 E 0 0 0 E 

0 0 0 0 0 E 0 0 E 

0 0 0 0 Al i gned 0 Al i gned 0 0 

0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 

Now U, = U 0 (R 0 S) 
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If no errors are encountered then the main forward path of the flowgraph in figure 

7.6 will be followed, ie., the routines INIT, SEPARATE, I~SERT, ACCROSS, AUG~. 

PICK, DROP and RETURN will be executed in that order. Only if errors occur during 

execution, causing a unity element to appear in the sensor matrix S In a position other 

than the main off-diagonal, will there be any variation to this plan. The paths denoted in 

figure 7.6 as "ERROR" correspond to an E entry in the sensor matrix and represent 

errors of an unknown form. These errors would result in the ceasation of activity until the 

problem is rectified by the operator. The program will in fact stop due to the trapping 

state of node 9. 

In cases where unexpected errors could occur at any time, a path from each node to 

node 9 will cater for this. This would result in a set of entries in column 9 of both the 

routine matrix R and the sensor matrix S. 

A module of Modula-2 procedures for the execution of a matrix programming system 

are included in the second set of listings in appendix E. 
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7.3 Summary 

Due to the dual parameter nature of the toll and probability matrices, the simulation 

matrices are likely to be far larger than the routine and sensor matrices required for 

programming. However, the basic Markov chain philosophy is exactly the same. 

It is not unusual for matrices representing such processes to be extremely large and 

sparse. Duff describes a collection of industrial 'real life' sparse matrices ranging from 76 

to over one million entries. Methods of compact storage together v.ith some algorithms 

(coded in FORTRAN) for reading compacted matrices stored in several different formats 

are also discussed. [Duff et ai, 1989]. However, for systems with insufficient memory to 

cope with matrices of this size, partitioning of the process is possible. 

Having introduced a completely new programmmg methodology, to complement a 

similar form of simulation and analysis using matrices, all which remains is to evaluate the 

technique. This is done throughout the next chapter by comparison to existing simulation 

and programming systems. 
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8. EVALUATION. 

In the eyes of its mother every black beetle is a gazelle. 

Old Arabic proverb. 

8.1 A Markov Simulator. 

The simulation and modelling techniques discussed in the preceeding chapters are now 

put together in the form of computer software procedures within a module of the 

programming language Modula-2. 

8.1.1 Modula-2 Procedures. 

A description of each of the Modula-2 procedures given in appendix E follows. In all 

cases the matrices used are square with dimension n. The dimension is set when the first 

matrix is read in and can only be changed during subsequent read operations. Within the 

simulation module all user-accessible matrix elements, are of type real. The opposite is 

the case for the programmmg module. Here only string and cardinal variables are available 

for matrix elements. This has the advantage of preventing the user from inadvertantly 

entering simulation data when in the programming mode, and vice-versa. 

These procedures are the basic building-block routines required for producing Markov 

chain simulation programs, and as such no error trapping or syntax checking is included in 

either of these procedures or any of the example main programs. 
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matread(A) 

Requests the dimension of the square matrix to be read in, then puts this data into 

the real variable n before reading in each of the real values for each element of the n 

by n matrix A. The elements of A are read in row by row. 

matwrite(A) 

Prints out a square matrix A, of dimension n. Each element of A is a real variable 

which is printed with 3 significant figures in exponential notation. This may be altered, if 

desired, by changing the format of the WrReal statement. 

Sets each element of the main diagonal of matrix A to the real constant 1.0 and 

every other element&a+60Hto 0.0 thereby creating an identity matrix In A of dimension n. 

Creates a 'mirror' matrix A with unity elements along the inverse main diagonal (ie, 

from top right hand side to bottom left), and zero elements eleswhere. This has the effect 

of producing a rotation of a matrix B when the transpose of B is both post and 

pre-multiplied by the mirror matrix A. 



matadd(A,B,C) 

Adds two real, square, n by n matrices A and B leaving the result In matrix C. 

Matrices A and B are left unchanged. 

matsub(A,B,C) 

Subtracts the matrix B from A leaving the result in C. Matrices A and B are left 

unchanged. 

matsum(x,A) 

Finds the sum of all the elements of the matrix A and puts the result In the real 

variable x. 

matconmul(A,B,C) 

Performs congruent multiplication (that is element by corresponding element 

multiplication) between matrices A and B leaving the result in matrix C. Matrices A and 

B are left unchanged. 

matmu1(A,B,C) 

Performs standard matrix multiplication between matrices A and B, leaving the result 

in matrix C. Matrices A and B are left unchanged. 
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scalmul(x ,A,B) 

Multiplies the matrix A by the real scalar variable x leaVl'ng th I . e resu t In matnx B. 

Matrix A and variable x are left unchanged. 

transp(A,B) 

Puts the transpose of matrix A into matrix B, leaving matrix A unchanged. 

matinv(A,B) 

Inverts square n by n matrix A leaving result in matrix B without changing A. 

diag(A,B) 

Diagonalizes (sets all elements other than those along the main diagonal to zero) 

square, n by n matrix A, leaving the result in matrix B without changing A. 

matflow(A,B) 

Finds the characteristic matrix by the formula B = [I-A]-'. The elements of B 

represent the inter-nodal flows of the matrix A. The result is left in matrix B with A 

remaining unchanged. 
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matvar(A,B) 

Finds the statistical variance of the matrix A, leaving the result In 

remains unchanged. 

matlim(A) 

matrix B. A 

Effectively raises the matrix A to the power of infinity by successive multiplication 

until a desired tolerance between two iterations has been achieved. This tolerance value 

may be changed by altering the value in the UNTIL ABS(x) < 'value' statement. The 

resulting limiting matrix is left in matrix B. 

8.1.2 Program Operation and User Guide. 

The procedures listed in appendix E are of the JPI Modula-2 format [JENSEN and 

Partners, 1987] and are written for IBM PC and compatible devices. No additional 

co-processors or memory capability beyond that available with the standard PC (or clone) 

is needed, though improved performance may be achieved by the inclusion of an 

additional maths co-processor. The JPI Modula-2 is written for use with 64K of variable 

storage which limits the amount (or size) of the array dimensions. For very large 

modelling tasks, standard Modula-2 on VAX or SUN machines may be preferable. 

The matrix evaluations illustrated throughout chapters 6 and 7 have been carried out 

using this programming system, and as such should suffice as example progr:lm runs. 

However, a brief interaction example session is provided in the next part of this chapter, 

intended as a basic 'user guide'. 



The package consists of two basic modules'. .\ "'AL d DRIVE 
n....... an . A'\" AL performs the 

stochastic analysis by requesting the size of the square transition matrix followed by the 

probabilities which make up the stochastic transition matrix elements, This results In the 

LIMITING, FLOW and V ARIANCE matrices. After this A'\AL requests the TOLL 

matrix elements before giving the average toll value for the network. 

Similarly, DRIVE requests the names of the program routines to form the ROUT IS E 

matrix. These are the names which would be used by the host manipulator level language 

such as VAL, AML etc. After this the initial sensor values are entered (in real robot 

execution these would be available automatically) into the SENSOR matrix, followed by 

the starting vector (1 and 0 values only). 

Execution is governed wholly by the state of the SENSOR matrix element values. 

These would normally be available directly from the robot controller, after sensor fusion 

or merging, and the implementation is therefore hardware dependant. Consequently, the 

example program whose listings appear in appendix E are written to expect these values 

from the keyboard for test and user familiarity purposes. Modifications needed to comply 

with the appropriate computer system used must be carried out by the user. In accordance 

with the communication protocols dictated by the host robot controller. 

The following examples will take the reader through the actual execution sequence of 

both the ANAL and DRIVE programs. The narrative text will appear in italics to 

distinguish it from the actual input parameters and output code produced and displayed on 

the screen, or other interface device. The data entered via the keyboard during run time 

is preceded by a question mark prompt. 
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U sing a similar example to that shown in section 

loops, we get the flowgraph of figure 8.1. 

0.2 Z-1 

Figure 8.1 - Intersecting loop flowgraph. 

4 .5 .3 , bu twit h two l n t er 5 tC C !l n g 

This gives the resulting stochastic tansition matrix P and toll matrix T accordingly. 

p -

o 1 

o 0 

0.2 0 

o 0.3 

o 0 

000 

100 

o 0.8 0 

o 0 0.7 

000 

T = 

o 

o 

1 

o 

o 

1 

o 

o 

1 

o 

o 

I 

o 

o 

o 

o 

o 

I 

o 

o 

o 

o 

o 

1 

o 

The analysis package may be executed by typing ANAL on the keyboard with the 

disc loaded and the appropriate drive selected. On V AX systems running VMS it is 

necessary to type RUN ANAL for the equivalent execution. The program will start with a 

request for the size of the matrix (the number of nodes in the corresponding 

flowgraph). 

Enter stochastic transition matrix 

Enter matrix size - 75 
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The probabilities may now be entered for each element of the stodUlstic transUlon 

matrix. The data can be entered by following each element ' ... ith a carriage ft':;4' 1 , 

alternatively a space may be used as a delimiter between values. 

Enter matrix elements 

?O 1 0 0 0 

?O 0 1 0 0 

?0.2 0 0 0.8 0 

?O 0.3 000.7 

?O 0 0 0 0 

LIMITING matrix is: 

O.OOE+O 4.94E-31 O.OOE+O O.OOE+O 6.28E-31 

O.OOE+O O.OOE+O 4.94E-31 O.OOE+O O.OOE+O 

9.87E-32 O.OOE+O O.OOE+O 3.95E-31 O.OOE+O 

O.OOE+O 1.48E-31 O.OOE+O O.OOE+O 1.89E-31 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

FLOW matrix is: 

1.36E+0 1.79E+0 1.79E+0 1.43E+0 1.00E+0 

3.57E-1 1.79E+0 1.79E+0 1.43E+0 1.00E+0 

3.57E-1 7.86E-1 1.79E+0 1.43E+0 1.00E+0 

1.07E-1 5.36E-1 5.36E-1 1.43E+0 1.00E+0 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1.00[+0 
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VARIANCE matrix is: 

4.85E-l 1.40E+0 1.40E+0 6.12E-l O.OOE+O 

4.85E-l 1.40E+0 1.40E+0 6.12E-l O.OOE+O 

4.85E-l 1.40E+0 1.40E+0 6.12E-l O.OOE+O 

1.72E-l 1.09E+0 1.09E+0 6.12E-l O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

The three parameter matrices now show the limiting, flow and variance matrices. As 

would be expected for this example, the limiting matrix is approaching zero, with the 

flow matrix showing the greatest degree of congestion between nodes 2 and 3. /\,'ow the 

toll matrix may be entered in the same manner. 

Enter toll matrix 

Enter matrix size "'" 75 

Enter matrix elements 

?O 1 0 0 0 

?O 0 1 0 0 

?1 0 0 1 0 

?O 1 0 o 0 

?O o 0 0 0 

Toll AVERAGE matrix is: 

O.OOE+O 1.79E+0 O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O 1.79E+0 O.OOE+O O.OOE+O 

3.57E-l O.OOE+O O.OOE+O 1.43E+0 O.OOE+O 

O.OOE+O 5.36E-l O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

MEAN toll value is: 5.89286E+0 
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In this case all the individual toll values were unity giving nse to the above u. t'r,; 't' 

value of 5.893 seconds approximately. Now lets repeat the run, but with the transition 

toll between nodes 2 and 3 halved. 

Initially we enter the probabilities exactly as before. 

Enter stochastic transition matrix 

Enter matrix size = ?5 

Enter matrix elements 

?O 1 0 o 0 

?O 0 1 0 0 

?0.2 0 0 0.8 0 

?O 0.3 o 0 0.7 

?O 0 0 0 0 

LIMITING matrix is: 

O.OOE+O 4.94E-31 O.OOE+O O.OOE+O 6.28E-31 

O.OOE+O O.OOE+O 4.94E-31 O.OOE+O O.OOE+O 

9.87E-32 O.OOE+O O.OOE+O 3.95E-31 O.OOE+O 

O.OOE+O 1.48E-31 O.OOE+O O.OOE+O 1.89E-31 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

FLOW matrix is: 

1.36E+0 1.79E+0 1.79E+0 1.43E+0 1.00E+0 

3.57E-1 1.79E+0 1.79E+0 1.43E+0 1.00E+0 

3.57E-1 7.86E-1 1.79E+0 1.43E+0 1.00E+0 

1 .07E-1 5.36E-1 5.36E-1 1.43E+0 1.00E+0 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O 1.00E+0 
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VARIANCE matrix is: 

4.85E-1 1.40E+0 1.40E+0 6.12E-1 O.OOE+O 

4.85E-1 1.40E+0 1.40E+0 6.12E-1 O.OOE+O 

4.85E-1 1.40E+0 1.40E+0 6.12E-1 O.OOE+O 

1. 72E-1 1.09E+0 1.09E+0 6.12E-1 O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

Only this time when entering the toll matrix data, the 8th entry, corresponding (l) 

the path between nodes 2 and 3 is reduced to 0.5. 

Enter toll matrix 

Enter matrix size - 5 

Enter matrix elements 

?O 1 o 0 0 

?O o 0.5 0 0 

?1 0 0 1 0 

?O 1 0 0 0 

?O o 0 0 0 

Toll AVERAGE matrix is: 

O.OOE+O 1.79E+0 O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O 8.93E-1 O.OOE+O O.OOE+O 

3.57E-1 O.OOE+O O.OOE+O 1.43E+0 O.OOE+O 

O.OOE+O 5.36E-1 O.OOE+O O.OOE+O O.OOE+O 

O.OOE+O O.OOE+O O.OOE+O O.OOE+O O.OOE+O 

MEAN toll value is: 5.00000E+0 
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Our new value for mean toll is 5, a reduction in overall process time OJ 0.:593 

seconds for a 0.5 second reduction in one path toll. Of course, as more data is g.;: ne,:: 

from real run time data, the analysis can be repeated over and over to enable the process 

to be improved. The improved model may then be used as the basic data for the DRIVE 

program. 

However, for this example we will use the continuous chain similar to that of 

section 4.5.2. In this case the three players pass a die to the left or to the right one 

place only, or throw again depending on their score. The flowgraph and process matnx 

are repeated in figure 8.2. At object level, only the decision is needed. The actual score 

is only important in that the decision to pass the die to the left or to the right or 

rethrow is derived from it. 

THROW 

THROW RIGHT LEFT 

p LEFT THROW RIGHT 

RIGHT LEFT THROW 
LEFT 

THROW 
RIGHT 

Figure 8.2 - Three dice players. 

The user may start the program by typing DRIVE (again use RUN DRIVL ',\ hen 

) The routines may then be enterl'd executing the program on V AX VMS systems. process 

after declaring the size of the matrix (number of nodes on the flowgraph). 
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Enter Routine matrix 

Enter matrix size 

?3 

Enter matrix string elements 

?THROW 

?RIGHT 

?LEFT 

?LEFT 

?THROW 

?RIGHT 

?RIGHT 

?LEFT 

?THROW 

Then the initial sensor matrix, for which we will have the first player throw the 

die, must ge given together with the starting vector. 

Enter Initial sensor matrix 

Enter 3 by 3 Sensor matrix (1, 0 values only) 

?1 0 0 

?O 0 0 

?O 0 0 

Enter starting vector 

?1 0 0 

THROW 
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So, player one takes his turn which results in a score causing the die to be passed 

to the right. This information is provided by the sensor matrix. 

Enter 3 by 3 Sensor matrix (1, 0 values only) 

?O 1 0 

?O 0 0 

?O 0 0 

RIGHT 

Now the die is in the hands of the second player who we will hal'c throw a score 

causing the die to be passed one place to the left and hence back to the first player. 

Enter 3 by 3 Sensor matrix (1, 0 values only) 

?O 0 0 

?1 0 0 

?O 0 0 

LEFT 

This done, we will have a score demanding player one also to pass to the left which 

brings the die round to player three. 

Enter 3 by 3 Sensor matrix (1, 0 values only) 

?O 0 1 

?O 0 0 

?O 0 0 

LEFT 
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Player three then scores a six and so must throw again. 

Enter 

?O 0 0 

?O 0 0 

?O 0 1 

THROW 

3 by 3 Sensor matrix (1, 0 values only) 

Normally this process would be controlled by the results of the die throwing. For 

example the sensor matrix values could be determined by a random process. To end the 

operation it is simply a matter of setting all the sensor values to zero. This causes the 

driving vector to reach a null state forcing the process to cease. 

Enter 3 by 3 Sensor matrix (1, 0 values only) 

?O 0 0 

?O 0 0 

?O 0 0 

Procedure Completed 

The S matrix values would normally be derived from sensor decisions by connecting 

the input of the program to the appropriate hardware 10 module or manipuLator lercl 

controller. Alternatively, if the parameters are to be delivered to a file then the DRIVE 

program inputs may be connected to that file using the MS-DOS command DRlVE < 

INFILE where 1 NF 1 LE is the file containing the input data. Similarly the resulting 

output parameters may be placed in a file by means of the command DRIVE > 

OUTFILE. Where OUTFILE is the filename of the file to contain the output results. 

These two can be combined using DRIVE < INFILE > OUTFILE to both Input 

parameters from, and output data to the corresponding files {.\ficrosoft. JQ86j. 
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When used with V AX systems, the ModuLa-2 source code for the A'.-\L J,nd DRl\ E 

programs are slightly different from those given in appendix E. This is because the 

present V AX implementation used is Logitech Modula-2 fLogitech. 1988/ · ... hlCh .:·;ffns 

considerably from the JPf Modula-2 {Jensen, 1987}. Their implementation is presently 

resident on the University of Hull, Robotics Research Unit micro-VAX net .... Nk node 

designated SPOCK. 
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8.2 A Comparative Study. 

Having presented a new philosophy in object level programming and simulation. this 

chapter will comprise an attempt to compare and contrast the results of this work with 

currently available simulation and robot programming packages. Some of the techniques 

already implemented in such systems will be explored with a view to their possible use 

with the ideas put forward here. 

8.2.1 Queueing Simulators. 

The history of simulation programs for modelling queues is long but surprisingly little 

varied. As mentioned previously, many such simulation packages exist such as GASP, CSL 

etc .• and are the topic of numerous surveys. Unfortunately, for simulation purposes, these 

are almost exclusively emulatory rather than analytical in nature. 

The integration of such systems into a manufacturing environment for direct control 

of plant as well as background simulation is rapidly becomming an industrial reality. For 

example. DEDS (Discrete Event Dynamic Simulation) allows perturbation ie.. "what if?" 

scenarios to be modelled without interfering with the normal running of the factor ... 

[Bryant. 1989]. On completion of such tests, real parameters may be changed to allow the 

necessary improvements to be made to the manufacturing process on the basis of the 

simulation results. 
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8.2.2 Network and F1o~'graph Methods. 

Most of the older simulation programs have an input method which the human 

operator can use by translating information from a graphical representation into numerical 

data. GPSS uses its own flowchart method and in the case of SLA\.1 a network graph is 

used. Others such as SIMON, GSP and DEMOS use activity diagrams. [Torn. 1981]. 

More modern packages allow the user to actually enter a network graphically. STE\1 

will handle most representations (Petri net, flowgraph etc). This runs on a SUN or VAX 

under a LOOPS object oriented environment. [Popplewell & Jaio, 1989]. 

The entering of data in matrix form can be laborious and time consuming, 

particularly where matrices are sparse, even with mathematical manipulation packages like 

MATLAB which have been designed for handling such data. Fortunately the use of 

spreadsheets such as LOTUS [Ingalsbe, 1987] have provided the computing community with 

a neat alternative. The connection of LOTUS with other software systems has been done 

before. The most recent example being the APL2 prototype system FUSION which 

translates LOTUS formulae into APL2 code [Friis, 1989]. 

According to Singh & Hindi very little work has been conducted in the field of 

temporal analysis of networks [Singht & Hindi, 1989] where perturbation (what if?) analysis 

could be used. The results of this work hopefully helps to fill this particular gap. 
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8.2.3 Petri Net Simulation Packages. 

The recent surge of interest In Petri nets has given rise to a number at' , I' simu :ltk)n 

packages. Considerable work has been done in the USA, particularly at the Rensselaer 

Polytechnic Institute (RPI), on Petri nets over the past few years. GTP~A (General Timed 

Petri Net Package) requires a textual rather than graphical input, and generates Jnd 

analyses the Petri net reachability graph. Unfortunately the memory requirements prevent 

GTPNA from being used on PAWL SUNs [Robinson, 1989]. 

Based on the work of Molloy [Molloy, 1985] GSPN (Generalised Stochastic Petri 

Nets) was developed by Chiola [Chiola, 1987]. This led to the production of GreatSP:\ 

(Graphical editor & analyser for Timed Petri Nets). GreatSPN provides a graphics editor 

and a net validator and analyser which will run on SUN 2 workstations. Unfortunately, it 

is still not possible to model timed transitive Petri nets even with such powerful packages 

as GreatSPN [Chiola, 1987]. 

In addition to GreatSPN, under further development at RPI are other packages 

including SPNP (Stochastic Petri Net Package), a C-based system for generating 

reachability graph information [Robinson, 1989]. 

8.2.4 Geometrical Robot Animation Systems. 

. I 'I bl for geometrical modelling of robot Many animated robot Slmu ators are now aval a e 

workcells. Though these are not directly relevant to this work, some of the graphical 

techniques used are of interest. 
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The combination of a textual simulation language SI\1A' and a CAD pacbge allo'.l.s 

the user to link both simulation statements and animated graphics. The simubtion language 

SIMAN is of a BASIC type format allowing data to be entered directly from a flowchart. 

whilst the CINEMA part is a standard mouse driven graphics CAD package [Horrocks. 

1989]. 

CimStation, developed by SILMA inc., is a simulation system intended for off line 

simulation and generation of geometrical data suitable for downloading to the robot i,>r 

real-time execution. The code is translated into Cincinnati Milacron ROPS (Robot Off -line 

Programming System) format before execution by the robot controller [Craig, 1987]. This 

ability to simulate at manipulator level and then download the code for execution IS 

becoming increasingly popular. However, nothing yet exists with the ability to do this at 

object level, let alone a combined simulation and programming system. 

For the simulation and programming of flowgraphs some form of graphics editor 

would be desirable. This would allow the user to 'draw' a flowgraph on the monitor 

screen rather than have to enter a great deal of data into a matrix as is presently done 

with the Modula-2 programs. STEM has possibly the most appropriate format for this. 

Also, rather than two separate packages, as in the case of SIMAN/CINEMA, a better 

facility would be to be able to enter the control data along with the flowgraph. 
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8.3 Further Research. 

On a general note, more investigation into robot programming, taking into account 

much of the techniques used in process control languages would be useful. Only then can 

robot programming be tackled in a manner which WI' II allow the b' . aSlc matnx programming 

ideas presented in this work to be transformed into a true object and tlsk level 

programming system. Furthermore, as indicated in chapter 6, extension of these techniques 

to dimensions greater than 2 should be explored. 

The additional control lines used in the extended flowgraph notation introduced by 

Taylor [Taylor, 1987] need to be investigated further if communication between robots 

operating in a multi robot cell are to be included. Though multi robot cells have been 

considered during this work, no attempt has been made to model or analyze the effects of 

communication delays, data errors etc between co-operating devices. 

This work contains the basic tools, with a few Modula-2 procedures to facilitate a 

simple implementation, listed in appendix E. Some form of screen graphics facility, similar 

to that available on simulation packages like STEM, is needed to provide a fully 

interactive man-machine interface for such a robot modelling and control system. 

The use of neural network systems could provide a powerful means of augmenting the 

distributed sensor methods presently employed in most robot workcells. These have been 

sucessefully used in the UK for monitoring railway level crossings [Sanders, 1990]. 

Similarly, in the USA, a neural network system called 'INFANT' (Interactive Net\l.ork 

Functioning on Adaptive Neural Topographies) has been developed by Neurogen Inc. 

INFANT is a robot controller which learns by exploring its environment from whatever 

sensors are available [AMT, 1990]. This means that a high degree of error recovery IS 

inherently built into the control algorithms as learning progresses. 
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Replacement of the manual method of updating the program by some form ci 

automated program generation would be most valuable. This is not a straight forward t.1sk 

as it requires considerable care in its implementation. If it is possible to alter the program 

according to results simulated from data immediately obtained from the running workcell. 

then a very fast fine tuning arrangement may result. On the other hand. the system may 

become unstable, in that an apparent improvement which is in reality an error may be 

used to exacerbate that error. 



9. CONCLUSIONS. 

This work has endevoured to address a number of problems associated ~ith object 

level programming of robotic workcells. Ideas from many scientific disciplines ha ve been 

called upon, including: electrical engineering, robotics, operations research, mathematics and 

computer science. Aspects of error recovery have been emphasised heavily in an attempt 

to include the nature of "real life" uncertain environments. 

Many network notations have been explored and their relative merrits discussed. To 

enable both mathematical analysis and object level robot programming to be implemented 

using the same basic methodology, the digraph has been chosen to illustrate the use of 

matrix techniques and Markov chain theory for these purposes. This has enabled stochastic 

analysis to be performed analytically rather than in an emulatory manner usual of most 

simulation programmes. Several new techniques have been introduced including: the use of 

isochronic plots, the positioning of sensors according to flow data, matrix differentiation 

without recourse to the usual differential calculus techniques etc. 

When faced with error occurances during run time, the detect, reject and repeat 

policy is usually the most cost effective. Only when an object has gathered a degree of 

added value whilst passing through several processes are more elaborate error recovery 

strategies likely to be worth consideration. Even then it is often more efficient to reject 

the unfinished object for Ire-work' in a separate work station rather than tie up the robot 

in backward chaining and repair work thus retarding the progress of the entire production 

line as a consequence. Whichever strategy is to be implemented, the use of isochronic 

plots provides an aid to deciding the optimum configuration of workcell layout 

incorporating error recovery regimes with flow data highlighting potential bottlenecks. 
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A more thorough set of robot programming levels has been defined, \l,'hich inclL.;Jes 

the use of sensor data as an inseparable part of the II overa structure of robot control 

programming. Many of the attributes found in other (non-robot) . I programming anguages, 

such as interrupts, concurrency etc., have been considered. 

With regard to object level programming, a new technique using a matrix 

representation for all parameters has been introduced, based on Markov chain theory. This 

improves the readability of large programs and allows data to be stored and manipulated 

in a manner whose structure is also readable and clearly defined. This philosophy is not 

restricted to object level robot programming, and its extension to other forms of high 

level language processing is also explored. 

A set of algorithms are provided which form the framework of a true object level 

programming system in which sensor integration and error recovery capability is an 

inherent part, rather than an addition to be appended afterwards. Many of the methods 

used are also applicable to task level programming, for which some extensions to the 

present object level notations have been introduced, and the door is now open to this 

field of research. 

The main difference between object and task level programming is that of concurrent 

workcell control. At object level each workcell, containing one or more robots, IS 

considered to be a separate entity whose activity is governed by the arrival and departure 

of objects into and out of the workcell. Only at task level is any consideration given t,\ 

the overall control and sequencing of several cells simultaneously whose operation is not 

independant of one another. This difference in independance and inter-dependance is what 

differs between Markov and non-Markov systems, and is hence used as the delimiter 

between object and task level representations. 
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An attempt has been made to compare and contrast the ideas put forward 10 this 

work with those already realised within presently available implementations of roootie 

simulation and programming packages. However, most of these concentrate on only a few 

aspects of the field such as physical modelling, robot programming or simulation, rather 

than a combination of simulation and programming as a complete and integrated system. 

A new model has been outlined in which the complete simulation and robot workcell 

control can be integrated to provide an overall management system having the potential 

for very fine tuning and optimisation without interruption of the cells operation during run 

time. 
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APPENDIX A 

Queueing Theory Nomenclature. 

The following is a brief list of the nomenclature commonly used in queueing theory. 

The information was obtained from a number of texts, particulaly Lee [Lee, 1966]. 

Queues are usually denoted by a type of code which contains information on various 

aspects of the queue involved. For example M/M/2:(12/LIFO) etc. 

So, given the syntax AlB/C:(d/e) where: 

A Arrival pattern. 
B Service time distribution. 
C Number of servers. 
d Maximum number of customers in queue (including the one 

being served). 
e Queue discipline. 

Examples: 

For example M/M/l:(20/FIFO) 

means Random Arrival/Random Service/One Server: 
Max queue length of 20/FIFO Queue) 

and :- M/Ek/5:(oo/SIRO) 

means :- Random Arrival/Erlangian Distribution/5 Channels: 
(Infinite Queue Length/Service In Random Order) 

Distributions: 

G 

GI -

Random distribution. 
Constant distribution. 
Erlang distribution (distribution of the sum of k 
independantlyand identically distributed negative 
exponential variables). 
General distribution. 
Independant general distribution. 
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Queue Disciplines: 

FIFO 
SIRO 
LIFO 
PSPO 
NPPS 

First In First Out. 
Service In Random Order. 
Last In First Out. 
Pre-emptive Service Priority Order. 
Non Pre-emptive Priority Service. 
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APPENDIX B 

Digraph Nomenclature. 

The following notation, taken from Wilson [Wilson, 1979], appears In most texts 

discussing digraph theory, particularly when taken from a mathematical view point. 

ABSORBING A node from which it is impossible to get to any other 
s tat e, i e. a sink. 

ADJACENT Two vertices, U & V, are said to be ADJACENT if there 
exists paths UV or VU. 

ARCS Pairs of elements (paths). 

BIPARTITE If each node were coloured (say, red and blue) and 
each path has both a red and a blue end. 

DIGRAPH Directed graph. 

ERGODIC Both PERSISTENT and APERIODIC. 

HOMEOMORPHIC Identical to within vertices of degree two. ie., (a) and 
(b) are HOMEOMORPHIC. (HOMEOMORPHIC == EQUIVALENT) 

(a) (b) 

INCIDENT A vertex U is INCIDENT to an ARC UV, VU, WU etc. 

IRREDUCIBLE A transition matrix is irreducible if its digraph is 
strongly connected. 

IRREFLEXIVE A matrix A having only zeros in tha main diagonal. 
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ISOMORPHIC 

(a) 

PERSISTENT 

PERIODIC 

REFLEXIVE 

Two graphs having the same flow into each element. 
ie., (a) and (b) below are ISOMORPHIC, but (a) and (c) 
are not. 

(b) (c) 

A node whose transition is sooner or later ine~itable 
(ie. Probability of transition - 1). 

A node to which it is only possible to return to 
after some multiple of time, t. 

A digraph having a loop incident with each vertex. 

STRONGLY CONNECTED Contains a direct path from U to V and back. Each 
node is mutually reachable from every other node. 

TRANSITION MATRIX Probability matrix (each row of a TRANSITION MATRIX 
is a probability vector). 

VERTICES Elements (nodes). 
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ABSORBING 

DIFFERENTIAL MATRIX 

DOUBLY STOCHASTIC 

DUODESMIC 

ERGODIC 

MARKOV CHAIN 

MARKOV PROCESS 

MONODESMIC 

MUL T I NOMI AL PROCESS 

POLYDESMIC 

REGULAR MARKOV CHAIN 

STOCHASTIC MATRIX 

TRANSIENT STATE 

APPENDIX C 

Markov Chain Nomenclature. 

A chain, all of whose non-transient states are 
absorbing (trapping), is called an absorbing chain. 

Represents multinomial processes - all rows and 
columns sum to zero. 

Both columns and rows of the transition matrix sum 
to ze ro. The lim i t i ng rna t r i x - n I, i e ., the 
solutions to the transition matrix are all equal to 
lIn. 

A process containing two chains. 

A Markov chain which is both persistent and 
aperiodic. 

A discrete Markov process. 

A process in which each state is independant of the 
last state. 

A process which has only one solution to the limitin 
g 
matrix - usually represents a strongly connected 
digraph. 

The probability of transition to each state is 
independant of the state occupied. 

A process containing two or more chains. 

Has no transient sets and contains a single ergodic 
set with only one cyclic class. 

A matrix whose elements all lie within the range 
[0,1] and whose rows sum to 1. 

A state which has zero probability of being occupied 
after a large number of transitions. 
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APPENDIX D 

Statistical Distributions. 

The following statistical distributions are a sample of the commonest ones used in 

queueing theory, simulation etc. This is not intended as a full study of probability 

distributions, but rather an overview for the sake of easy reference when reading the main 

text. A number of publications have been consulted in the compilation of this appendix 

and these will be refered to where appropriate. 

BINOMIAL. 

PROB(r successes in n trials) - nCr pr qn-r, r - 0, 1, 2, ... n 

where: 

POISSON. 

nC r 

n! 
r!(n-r)! 

Given an average occurance rate A units/second. 

PROB(r events in a given interval) 

NORMAL (GAUSSIAN). 

P(x) has a normal distribution over x C [a,b] 

iff 
1 !(X-#L)/(J == -z2/2 

j 2~ e dz 

where x is normally distributed with mean #L and standard 

deviation (J. 

P(z) found from tables [Dowdy & Wearden. 1983]. 
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HYPER-EXPONENTIAL DISTRIBUTION. 

Describes a distribution where h t e standard deviation is larger than the mean, (or 

example low and high values OCcur more frequently. The data may be bimodal [Gordon, 

1969]. 

This can be modelled as a branch process. 

Ta 
2P 

Ta 
2 (l-P) 

if the distributions Ta are exponential, then: 

-2PAt -2(1-P)At 
Pe + (l-P)e P c ]0,0.05] 

MULTIMODAL DISTRIBUTIONS. 

Given a continuous function f(X), then the mode is defined as the abscissa of a local 

maximum such that: 

df(X) I _ a 
dX X""Xmode 

and d 2 f(X)1 
dX 2 X-Xmode 

< a 

[Mayer, 1975] 

Many tests of sample variance exist for normal population distributions, such as t and 

X 2 distributions [Bajpai et aI., 1979]. 

However, when dealing with more complex distributions, such as bimodal, more 

complex techniques must be employed. For example, the use of quantile and density 

quantile functions which treat the normal distribution simply as one of man\' [Darzen, 

1982 ]. 
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APPENDIX E 

Modula 2 Program Routines. 

ANAL Procedures. 

Each of the procedures of the Modula 2 programs mentioned in the main text are 

described below. These individual descriptions are followed by annotated Modula 2 program 

listings for the complete package. 

All matrices are square and of dimension n unless specified otherwise. 

matread(a) a ~ input 

Reads an n by n matrix of reals from the keyboard into variable a. 

matwrite(a) a ~ output 

Writes an n by n matrix of reals from variable a onto the screen. 

I(a,n) a ~ I(n,n) 

Puts an n by n identity matrix into variable a. 

M(a,n) a ~ M(n,n) 

Puts an m by m mirror matrix into variable a. 

transp(a) 

Finds the transpose of matrix a returning the result to matrix b 
leaving matrix a unchanged. 

matadd(a,b,c) c ~ a + b 

Adds matrix a to matrix b leaving the result in c. 

matsub(a,b,c) c ~ a - b 

Subtracts matrix b from matrix a leaving result in c. 

un 



matconmul(a,b,c) c ~ a C b 

Performs con~ruent multiplications (element by element multiplication) 
between matrIx a and matrix b leaving the result in c. 

matmul(a,b,c) c ~ a * b 

Performs standard matrix multiplication between matrix a and matrix b 
leaving the result in c. 

-1 
matinv(a,b) b ~ a 

Inverts matrix a leaving result in b. 

diag(a,b) b ~ DIAG(a) 

Takes the main diagonal of matrix a and places along the main diagonal of 
matrix b leaving all other elements of matrix b zero. 

-1 

matflow(a,b) b ~ [I - a] 

Finds the characteristic matrix using a and places the result in b. 

matvar(a,b) b ~ a * (2 * DIAG(a) - I) - a 0 a 

Finds the variance of matrix a and places the result in b. 

scalmul(x,a,b) 

Performs scalar multiplication between scalar x and matrix a leaving the 
result in b 

Q) 

ma t lim ( a , b) b ~ a 

Finds the limiting matrix of matrix a leaving the result in h. 
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Modula-2 ANAL Simulator Listing. 

MODULE ana 1 ; 
(*** This is a matrix manipulation package for the stochastic simulation 

of weighted flowgraph networks. All matrices are assumed square and 
of dimension n, as determined during the initial matrix entry ***) 

FROM 10 IMPORT RdCard, RdReal, WrLn, WrReal, WrStr; 

VAR x: REAL; 
VAR n: CARDINAL; 
TYPE matri'x ... ARRAY[1 .. 32] OF ARRAY[1 .. 32] OF REAL; 
VAR A,B,C,D: matrix; 

PROCEDURE matread(VAR a: matrix); 
(*** Reads in a square matrix a of dimension n ***) 
VAR i,j: CARDINAL; 
BEGIN 

WrStr('Enter matrix size - '); 
n:=RdCard(); 
WrStr('Enter matrix elements'); 
WrLn; 
FOR i: = 1 TO n DO 

END; 
END mat read; 

FOR j:-1 TO n DO 
a[ i, j] :-RdReal (); 

END; 

PROCEDURE matwrite(VAR a: matrix); 
matrix a of dimension n ***) (*** Writes out a square 

VAR i,j: CARDINAL; 
BEGIN 

FOR i: -1 TO n DO 
FOR j:-1 TO n DO 

WrReal(a[i ,j] ,3,3); 
END; 
WrLn; 

END; 
END matwrite; 

PROCEDURE I (VAR a: matrix; 
VAR n: CARDINAL); 

d i rna t r i x lin t 0 rna t r i x a *** ) (*** Puts the i ent ty 
VAR i,j: CARDINAL; 
BEGIN 

END I; 

FOR i: -1 TO n 00 

END; 

FOR j:-1 TO n 00 
a [ i , j ] : -0 . 0 ; 
a[i,i]:-1.0; 

END; 
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PROCEDURE M(VAR a: matrix; 
VAR n: CARDINAL); 

(*** Puts the mirror (rotation) matrix M into matrix a ***) 
VAR i,j: CARDINAL; 
BEGIN 

END M; 

FOR i :-1 TO n DO 

END; 

FOR j:-1 TO n DO 
a [ i I j] : -0 . 0 ; 
a [ i I n+ 1 - i ] : -1 . 0 ; 

END; 

PROCEDURE transp(V AR a,b: matrix; 
VAR n: CARDINAL); 

(*** Transposes the matrix a returning the result to b ***) 
VAR i,j: CARDINAL; 
BEGIN 

FOR i:=l TO n DO 
FOR j:=l TO n DO 

b[j Ii] :=a[i,j]; 
END; 

END; 
END transp; 

PROCEDURE matadd(VAR a,b,c: matrix); 
(*** Adds the matrices a and b leaving the result in c ***) 
VAR i,j: CARDINAL; 
BEGIN 

FOR i: =- 1 TO n DO 

END; 
END mat add; 

FOR j:=1 TO n DO 
c [ i I j] : =a [ i I j ] +b [ i I j] ; 

END; 

PROCEDURE matsub(VAR a,b,c: matrix); 
(*** Subtracts the matrix b from a leaving the result in c ***) 
VAR {,j: CARDINAL; 
BEGIN 

FOR i: -1 TO n DO 

END; 
END rna t sub; 

FOR j:-l TO n DO 
c [ i I j ] : -a [ i I j ] - b [ i I j ] ; 

END; 



PROCEDURE matsum(VAR x: REAL; 
a: matrix); 

(*** Puts the sum of all the elements of matrix a into variable x ***) 
VAR i,j: CARDINAL; 
BEGIN 

x:-O.O; 
FOR i: -1 TO n DO 

END; 
END mat sum; 

FOR j:-1 TO n DO 
x:-x+a[l,j]; 

END; 

PROCEDURE matconmul(VAR a,b,c: matrix); 
(*** Performs congruent multiplication between matrix a and matrix b 

leaving the results in matrix c ***) 
VAR i,j: CARDINAL; 
BEGIN 

FOR i: = 1 TO n DO 
FOR j:-1 TO n DO 

c [ i , j ] : -a [ i , j ] *b [ i , j ] ; 
END; 

END; 
END matconmul; 

PROCEDURE matmul(VAR a,b,c: matrix); 
(*** Performs matrix multiplication between a and b with result in c ***) 

VAR i,j,k: CARDINAL; 
BEGIN 

FOR i: -1 TO n DO 
FOR j:-1 TO n DO 

c [ i , j ] : ==0 . 0 ; 
FOR k:-1 TO n DO 

c [ i , j ] : -c [ i I j ] +a [ i , k] *b [ k , j ] ; 

END; 
END; 

END; 
END matmul; 

PROCEDURE scalmul(VAR x: REAL; 
VAR a,b: matrix); 

I . I· t· a by scaler x putting result into b ***) (*** mu tIP tes rna rlx 
VAR i,j: CARDINAL; 
BEGIN 

FOR i: -I TO n DO 
FOR j:-I TO n DO 

b [ i , j ] : -x*a [ i , j] ; 
END; 

END; 
END scalmul; 
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PROCEDURE matinv(VAR a,b: matrix); 
(*** Inverts matrix a putting inverted t· I rna rlX resu t into matrix b ***) 
VAR i,j,k: CARDINAL; 

BEGIN 
z: REAL; 

FOR i: -1 TO n DO 
FOR j:=1 TO n DO 

b [ i , j J : -0 . 0 ; 
END; 
b[i,iJ:-1.0; 

END; 
FOR k:-1 TO n DO 

FOR i: -1 TO n DO 
IF i#k THEN 

z:=a[i,kJja[k,k]; 
FOR j:=1 TO n DO 

a [ i , j ] : -a [ i , j ] -a [k , j ] *z ; 
b [ i , j ] : -b [ i , j ] - b [ k, j ] *z ; 

END; 

END; 
END matinv; 

END; (***ENDIF***) 
END; 
z:=a [k, k] ; 
FOR j:-1 TO n DO 

a [ k , j ] : -a [ k , j ] /z ; 
b[k,j] :==b[k,j]/z; 

END; 

PROCEDURE diag(VAR a,b: matrix); 
(*** Puts main diagonal elements of matrix a into matrix b diagonal ***) 
VAR c: matrix; 
BEGIN 

I(c,n); 
matconmul(a,c,b); 

END diag; 

PROCEDURE matflow(VAR a,b: matrix); 
(*** Finds the characteristic (flow) matrix b-inv[l-a] ***) 
VAR c: matrix; 
BEGIN 

I (b,n); 
matsub(b,a,c); 
matinv(c,b); 

END matflow; 
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PROCEDURE matvar(VAR a,b: matrix); 
(*** Finds variance of matrix a returning result to matrix b ***) 
VAR c,d: matrix; 

X,z: REAL; 
BEGIN 

diag(a,b); 
x:-2.0; 
scalmul(x,b,c); 
I(b,n); 
matsub(c,b,d); 
matmul(a,d,c); 
matconmul(a,a,d); 
matsub(c,d,b); 

END matvar; 

PROCEDURE matlim(VAR a,b: matrix); 
(*** Finds the limiting matrix of a returning result to matrix b ***) 
VAR c,d: matrix; 

x: REAL; 
BEGIN 

x:-l.O; 
b:-a; 
REPEAT 

matmul(b,b,c); 
matmul(c,c,b); 
matsub(b,c,d); 
matsum(x,d); 

UNTIL ABS(x)<O.OOOOl; 
END mat 1 im; 
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(*** Example Main program for execution of matrix procedures ***) 
BEGIN 

WrStr('Enter stochastic transition matrix'); 
WrLn; 
matread(A); 
matlim(A,B); 
WrStr('LIMITING matrix is:'); 
WrLn; 
matwrite(B); 
WrLn; 
matflow(A,B); 
WrStr('FLOW matrix is: '); 
WrLn; 
matwrite(B); 
WrLn; 
matvar(B,C); 
WrStr('VARIANCE matrix is:'); 
WrLn; 
matwrite(C); 
WrLn; 
WrStr('Enter toll matrix'); 
WrLn; 
matread(A); 
matconmul(A,B,C); 
WrStr('Toll AVERAGE matrix is:'); 
WrLn; 
matwrite(C); 
WrLn; 
matsum(x,C); 
WrStr('MEAN toll value is: '); 
WrReal(x,6,6); 

END anal. 
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DRlVE Procedures. 

WrString('a') a ...., output 

Writes the string between quotes" to th ( 
e screen or other selected Outrut device). 

RdStr(a) a ~ input 

Reads a st'ring from the keyboard (or other selsected input device). 

matstread(a) a ~ input 

Reads a matrix of string values from the keyboard (or other selected 
input device). 

matread(a) a ~ input 

Reads a matrix of cardinal elements from the keyboard (or other selected 
input device). 

vecread(a) a ~ input 

Reads a vector of cardinal values from the keyboard (or other selected 
input device). 

vecmatmul(a,b,c) a ~ b * c 

Multiplies vector b by matrix c leaving the result in v~ctor a. Vector b 
and matrix c are left unchanged. 

execute(a) a ...., output 

Executes a Markov process. The string a is output to the screen or other 
selected output device (usually the robot controller). The string a ~ill 
normally be a program routine recognisable by the host controller. 



Modula-2 DRIVE Programming Listings. 

MODULE drive; 
(*** Robot control module. A transition matrix of VAL II procedures is 

entered together with an initial sensor state matrix and starting 
vector. A Markov process is executed producing VAL II commands to 
drive the robot. A new driving vector is produced and the sensor 
state matrix updated after each action. ***) 

FROM 10 IMPORT RdCard, RdChar, WrStr, WrChar, WrCard, WrLn; 

VAR n : CARDINAL; 

TYPE vector - ARRAY[l .. 32] OF CARDINAL; 
matrix - ARRAY[l .. 32] OF ARRAY[l .. 32] OF CARDINAL; 
string - ARRAY[l .. 10] OF CHAR; 
stringmatrix ARRAY[l .. 32] OF ARRAY[1 .. 32] OF string; 

VAR x,y string; 
R stringmatrix; 
S 
vectorO,vector1 

matrix; 
vector; 

PROCEDURE WrString(VAR x:string); . . 
(*** Writes a string variable (NOTE: WrStr does not work wIth strIng 

variables! - only characters between quotes, ie. WrStr('abc') ***) 
VAR k: CARDINAL; 
BEGIN 

k:=O; 
REPEAT 

INC(k); 
WrChar(x[k]); 

UNTIL X[k]<_" "; 
END WrString; 

PROCEDURE RdStr(VAR x: string); 
(*** Reads a string of 10 characters ***) 
VAR k,l: CARDINAL; 
BEGIN 

REPEAT 
x [ 1 ] : -RdCha r () ; 

UNTIL x[l]>" "; 
k:-l; 
REPEAT 

INC(k); 
x [k] : -RdChar () ; 

UNT I L x [ k ] <-" "; 
END RdStr; 
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PROCEDURE matstread(VAR R:stringmatrix); 
(*** Reads in a matrix of string variables ***) 
VAR i,j: CARDINAL; 
BEGIN 

WrStr('Enter matrix size '); 
n: -RdCard () ; 
WrStr('Enter matrix string elements '); 
WrLn; 
FOR i: -1 TO n DO 

END; 

FOR j:-1 TO n DO 
RdS t r (R [ i , j ] ) ; 

END; 

END matstread; 

PROCEDURE matread(VAR S: matrix); 
(*** Reads a matrix of cardinal elements ***) 
VAR f,j,p: CARDINAL; 
BEGIN 

WrStr('Enter'); 
WrCard(n, 3); 
WrStr(' by'); 
WrCard(n,3); 
WrStr(' Sensor matrix (1, 0 values only)'); 
WrLn; 
FOR i: -1 TO n 00 

END; 
END mat read; 

FOR j:-1 TO n DO 
S [f ,j] :-RdCardO; 

END; 

PROCEDURE vecread(VAR vectorO: vector); 
(*** Reads in a process driving vector ***) 
VAR i,p: CARDINAL; 
BEGIN 

FOR i: -1 TO n DO 
vectorO[i]:-RdCard(); 
ve c tor 1 [ i ] : -0 ; 

END; 
END vecread; 

PROCEDURE vecmatmu](VAR vector1,vectorO: vector; 
S : matrix); 

(*** multiplies a vector by a matrix ***) 
VAR i,j: CARDINAL; 
BEGIN 

FOR j: -1 TO n 00 
FOR i: - I TO n 00 

vector1[j]:-vector1[j] + vector-Oli} * S[i,j]; 

END; 
END; 

END vecma t mu I ; 
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PROCEDURE execute(VAR y: string); 
(*** executes a markov process ***) 
VAR k,p,q: CARDINAL; 
BEGIN 

p:-O; 
q:-O; 
FOR k:-l TO n DO 

IF vectorO[k] >- 1 THEN 
p:-k; 

END; (*** ENDIF ***) 
END; 

vecmatmul(vectorl, vectorO, S); 
FOR k:-l TO n DO 

IF vectorl[k] >- 1 THEN 
q:-k; 

END; (*** ENDIF ***) 
END; 

IF (p-O) OR (q-O) THEN 
WrStr('Procedure Completed'); 
WrLn; 
HALT; 

END; (*** ENDIF ***) 
y :-R[ p, q] ; 
(*** Output VAL II procedure ***) 
WrString(y); 
WrLn; 
matread(S); (*** next sensor state ***) 
vectorO:-vectorl; 

(*** Re-initialise vectorl ***) 
FOR k:=l TO n DO 

vectorl[k] :-0; 
END; 

END execute; 

(*** main program ***) 
BEGIN 

WrStr('Enter Routine matrix'); 
WrLn; 
matstread(R); 
WrStr('Enter Initial sensor matrix'); 
WrLn; 
matread(S); 
WrStr('Enter starting vector'); 
WrLn; 
vecread(vectorO); 
REPEAT 

execute(y); 
UNTIL vectorl-vectorO; 

END drive. 
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