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ViSIAr – A virtual sensor integration architecture
Nigel Hardy* and Aftab Ahmad Maroof†
(Received in Final Form: June 5, 1999)

SUMMARY
Virtual sensors (software abstractions to support program-
ming of sensor use) have been shown to have
software-engineering benefits. A sensor integration system
is required to support them. We examine the general
requirements of such systems and consider the important
design requirements. An idealised architecture, ViSIAr, is
proposed to serve as a framework for designing and
constructing them. Illustrative examples are provided.
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1. INTRODUCTION
We report an idealised architecture, which forms the basis
for the design and development of Sensor Integration (SI)
systems to implement the virtual sensor concept. Virtual
sensors provide support for sensory robot programming
where complex systems must be built, modified and
maintained frequently. They are software entities, which
abstract sensing functionality and support the programming
of sensor use by hiding hardware dependencies and by
providing consistent and reconfigurable software modules.

Virtual sensors offer the following general advantages:

1. De-coupling of lower level interfacing and higher level
use of sensors leads to easier maintenance and upgrad-
ing. Hardware changes need not imply extensive
software changes.

2. Consistent and relevant application programmer inter-
faces (APIs) for sensor use lead to simpler and less error
prone code.

3. API routines can enforce correct use of sensors through
compile time or run time checking.

4. Safe and efficient concurrent use of sensors can be
achieved without special top level design. The feasibility
of concurrent use of two dynamically created virtual
sensors based on the same transducer can be checked
when they are created.

5. The consistent APIs and the reliability of concurrent use
allow creation of derived sensors using hierarchies of
more primitive ones.

The requirements of systems to support virtual sensors are
analysed and developed further in this paper.

2. BACKGROUND
The idea of abstracting physical sensor details to enable
sensing device independence has attracted interest in the
robotics community. A number of systems have been
suggested, each with its own emphasis on a particular aspect
of the problem.

Inspired by the work on logical graphics input devices,
Henderson proposed sensor data abstraction in the form of
logical sensors.1–4 The emphasis was on the resilience to
internal failure of the sensor system, provided through
knowledge based switching between redundant information
sources for the same logical sensor output. Weller5 proposed
a finer granularity of abstraction for sensor modules with
emphasis on looking for the cause of sensor failure and
trying to recover if possible, before the radical step of
discarding a particular sensor module. Erdmann6 describes a
system for automatically designing software sensors from
the specification of the robot’s task. Duffy et al.7 use virtual
sensors to abstract physical sensing details and to provide a
uniform interface for data fusion and to produce best
estimates for the world model. Hewlett-Packard’s Visual
Engineering Environment (VEE) is a graphical program-
ming language, which offers an environment particularly
suited to test and measurement. Visual programming objects
provide simple and consistent interfaces to devices. A
number of interface technologies, including HP-IB and
standard serial lines are supported. Use of legacy interface
code is also facilitated. Through specialised drivers, a range
of devices (both local and on the Web) are made available
with standard interfaces for incorporation into VEE pro-
grams.

The proposals described here have developed from early
attempts at standardised sensor control8 and modular
development of sensor software.9 The virtual sensor concept
as described here was developed to provide sensing
functions at a level more suitable for robot programming.10

This led to sensor control abstraction as well as sensor value
abstraction.11 The virtual sensing concept emphasises the
analysis of the use of sensory information in robot operation
and subsequent design of virtual sensing functions to
support this with the most convenient interface. In the
InFACT project12 the virtual sensor concept was expanded
and applied in the context of an integrated flexible assembly
machine.13–15 The real-time aspects of virtual sensors have
been investigated16 and are not considered here. The concept
of virtual sensors and proposals for the design and
development of sensor integration systems based on them
have been explored more recently by Aftab Ahmad17 and
elements of this work are described here.

In a number of systems concentrating on higher level
facilities, regular treatment of low level sensing is con-
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sidered. In developing SI systems, it has been the intention
to support such use. Multi-sensor fusion18,19 tackles the
problem of combined readings from a number of sensors to
give more accurate, complete and robust information. A
range of techniques is available and under investigation.
Mobile robotics has seen some of the more sophisticated
sensing regimes,20 though often not involving large numbers
of sensors. Research has led to a range of architectures for
control. Many have a sensing paradigm as a central feature.
Perceptual Schemas20,21 closely match the sensing require-
ments of action with sensing modules which answer these
requirements in an appropriate way. At LASS-CNRS22 an
architecture supports high level perception based on a
logical robot system which reduces the hardware depend-
ency of the overall system. The Polly system23 provided
simple abstractions such as open-left? and demonstrated
both concurrent use of sensing devices and sharing of
processing steps and perceptual measurements. “Adaptive
switching of specialised systems” was also suggested. In the
Xavier system24,25 low level motion reports such as “transla-
tion and rotation derived from wheel encoders” are
distinguished from sensor reports such as “data from the
sonar sensors that indicate whether the robot is in a corridor
junction”. Higher level functions are insulated from details
of sensors. A sensor interpretation component turns the
continual motion of the robot into discrete motion reports
and uses an occupancy grid method to turn the raw sonar
data into sensor reports of high level features such as walls
and doorways. Monitoring for exceptions, differences
between nominal and observed situations, is supported. The
Saphira architecture26 puts sensors to a variety of uses in
terms of the paradigms of the consumer modules. Reactive
behaviours take (possibly pre-processed) data from sensors.
Strong internal representations are also used to de-couple
control from the problems of interpreting noisy data.

The context in which we set SI systems is one of a set of
sensors and actuators co-ordinated by a central computer.
The architecture is not specified and might be a single
computer with many devices interfaced to it; a distributed
system using LAN communications technology; or some
intermediate configuration. The central computer, or more
specifically a particular program running on it, is known as
the supervisor. The nature of this program is again not
tightly specified. It could be equivalent to the many
“traditional” robot programming language systems in the
style of VAL27 or AML.28 Alternatively, knowledge based
approaches including planners in the style suggested by
systems such as Handley29 and RALPH30 could be
employed. The supervisor could be a programming system
in which applications are implemented or it could be a
purpose built program for a particular application. It has
been our intention to support the widest possible variety of
supervisor paradigms.

This work has been carried out in the context of
manipulator robots, and more specifically for application in
Flexible Assembly Systems (FAS). This is an area where an
application exists for this type of technology and it offers a
specific and challenging focus for the work. It is expected,
however, that the methods will find applications more
widely. Fields such as continuous process control, home

automation and the development of aids for the disabled
may also benefit from it. Application is sought in mobile
robotics.31

A detailed model of a virtual sensor is given else-
where.17,31 Here it is sufficient to consider it as an abstract
device supporting a particular sensing functionality. The
functionality is realised through sensor value abstraction
and sensor control abstraction. Virtual sensors can be
dynamically defined and used to provide sensory informa-
tion in an abstract form to assist actuation control. A virtual
sensor possesses a specific overall character or behaviour
with a defined life cycle that determines legal sequences of
commands it can receive.

To ensure good de-coupling while enforcing correct use
of sensors and allowing hierarchical construction of sensors
and systematic handling of failures, it is important to design
a well defined set of commands for the supervisor to use.
ViSIAr does not prescribe the form of these: it could be a
communications protocol, a procedural API or other
language specific mechanism. For simplicity we refer to this
as the supervisor language, without any implied loss of
generality.

The rest of this paper is structured as follows. Section 3
discusses the sensing requirements of an SI system while
Section 4 considers the design requirements placed on it by
its role and use. Section 5 describes the idealised archi-
tectural model for design and implementation that
incorporates these considerations. Section 6 provides two
illustrative examples of the benefits of the use of the
techniques.

3. SENSOR INTEGRATION SYSTEM SENSING
REQUIREMENTS
The functional requirements of a SI system must be derived
from the needs of the supervisor. We consider first the
general role of an SI system in providing appropriate
facilities and then the specific sensor usage it must support.

3.1 The sensor abstraction gap
The actuators, the associated feeding mechanisms and the
parts themselves all introduce change and uncertainty in a
FAS. The sensors, based on a variety of transduction
mechanisms and with a range of accuracies, repeatabilities,
data rates, reliabilities and relevances, are used to measure
aspects of the system. In most cases, the data produced by
the sensor is not readily usable for control. It must be
processed to some degree, ranging from simple scaling or
thresholding through noise reduction to sophisticated statis-
tical techniques and sensor fusion. In addition, the process
of obtaining the data will vary due to differences of
computer interfacing as well as intrinsic differences in the
sensors. The module within the FAS which consumes the
data must typically become involved not just in the decision
to obtain the data and in its use but also in the practical
details of obtaining it. There is therefore a gap of
abstraction between the sensor and the consumer of the
data. There is a gap between the physical sensing and
sensing usage. This gap can lead to poor engineering. If it is
bridged by including extensive and specialised code in each
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consumer module, the complexity of the modules is
increased (with associated problems of cost and reliability)
and it represents poor de-coupling since changes to either
the sensing mechanism or to the design of the module’s
control algorithm will often not be possible in isolation.
Specialised code in each module is often the solution and in
relatively long lived, static or small systems it can be cost
effective. It is however a barrier to flexibility and to the
reliable development of larger systems.

The gap is not static. Improvements in sensor technology
and the development of smart sensors, which include
significant local flexibility and data processing, mean that
“sensors” as seen by the system integrator offer data at
higher levels of abstraction than previously. On the other
hand, more sophisticated FAS, larger systems and the
incorporation of planning and other high-level modules
place increasingly sophisticated demands on the sensor
system. A gap remains therefore.

SI systems are designed and built to bridge the gap.
Rowland and Nicholls9 describe how a sensing system
forms a virtual machine that lies between sensing devices
and the supervisor and provides sensor knowledge in the
form required. Any useful attempt to bridge the gap must
consider and accommodate diverse and changing require-
ments on both sides.

The rationale of a SI system is therefore to deliver
information at the level and in the context of where it is to
be consumed and the details of physical sensing and
processing of data are hidden from the supervisor. This
approach can alleviate problems both of scale (i.e. large
numbers of sensors) and of diversity (i.e. many different
types of data, which must be handled securely). The
information to be sensed and the context in which this is
done changes as an automated assembly progresses. Differ-
ent manipulation activities have different patterns of sensor
usage. These dynamically changing sensory requirements
necessitate dynamic provision of sensing services. User
modules must be able to define and create sensing facilities
as and when required. As noted above, the character and
style of the programming environments for FAS and robots
in general vary widely from rather simple procedural
languages to declarative systems and, in the case of
experimental systems, automatic planners. The interface
offered by an SI system must correspond to the environment
in which it is used.

3.2 Sensor Usage
A variety of classifications of the purposes to which sensors
are put in robotic systems have been proposed.32–35 General
classes of usage have, to greater or lesser extents, been
supported by language constructs in commercial sys-
tems.27,28 Work on modular sensing systems9,10 and
subsequently in the InFACT project led to the specification
of a small set of sensor classes designed to accommodate
the most common usages.11,15 We now briefly consider these,
giving the names used in this literature.

The most common form of sensing activity is sensing, on
demand, of the current value of a physical state parameter
of the system as a single “snap-shot”. In other situations
regular, periodic collection of such data is required. The

data may be presented as the absolute value or relative to
some previous state. The confirmation of expectations is one
of the most common uses of sensor data. Expectations or
error conditions can be represented in the form of
predicates, defined in terms of system state parameters and
threshold values and allow dynamic selection among
alternative action sequences. This class is known as state
sensors.

A common requirement is to detect a particular state of
the environment. This will be done by comparing a sensor’s
value with a threshold (or pair of thresholds) using a
relational operator. Zforce > 100 would be a typical exam-
ple. This class of usage is known as condition sensors and
they are used in the construction of event sensors. A
condition sensor returns a boolean when interrogated.

Sensors are often used to monitor activities in the
workspace. There are aspects that require persistent mon-
itoring (e.g. critical conditions, which might occur at any
stage of an assembly, such as excessive force or collision
monitoring) and those that are relevant only at certain
periods (e.g. guarded motion termination). Monitoring may
be viewed in the supervisor as checking for specific
occurrences, confirmation of expectations or as detection of
critical conditions. This class is known as event sensors.

The temporal co-ordination of sensing activities is
commonly desirable. For example, the measurement of the
current co-ordinates of the robot tool may be used to
compute the location of features of a part as it is swept into
a binary touch probe. Monitoring of the probe can be used
to trigger collection of the tool position. Nicholls and
Hardy36 discuss a number of such measurement strategies
co-ordinated by binary touch probes. This class is known as
trigger sensors.

Reflex action implementation may be decomposed into a
condition-monitoring regime coupled to an actuation func-
tion. This is similar to the temporal co-ordination described
above except that the triggered response is an actuation,
rather than sensing. An important difference is that actuators
tend not to be pre-emptable in the way that most sensors are
(or can be made to appear). SI systems for reflex actions are
not considered further here.

Compliant motion occurs when the motion of the
manipulator is constrained by forces generated due to the
task geometry. Many control strategies have been developed
for this situation but, in order to achieve smooth motion at
an acceptable speed, timely sensor data delivery must be
guaranteed. The specification of arbitrary novel force
controlled motion is noted by Lozano-Pérez to be a difficult
proposition for robot programming languages.33 Real-time
sensor classes have not been included in earlier classifica-
tions. Armstrong16 is investigating communications
techniques and real-time performance in virtual sensors and
is able to make timing guarantees that allow coupling
appropriate to both reflex actions and compliant motion to
be achieved.

On-line quality control and inspection procedures are
increasingly integrated into the production process. By
introducing quality assessment methods into assembly lines,
closed loop control can be achieved, linking the appearance
of a fault with the correction of it. With the growing
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complexity of production processes, Statistical Process
Control (SPC) is becoming indispensable.37 Most SPC
techniques make use of logs (samples) of data. Various
methods of on-line sampling and log generation may be
statistically appropriate for different techniques. These
methods can be supported by appropriate sensor abstrac-
tions that deliver completed logs to the supervisor. These
sensors are a development of the state sensor class, with the
addition of a sampling control mechanism.

4. SENSOR INTEGRATION SYSTEM DESIGN
REQUIREMENTS
We propose two main areas of requirements: (i) flexibility
and reconfigurability and (ii) integration. Each is now
considered.

4.1 Flexibility and reconfigurability
FAS are required to be flexible and reconfigurable at various
levels of functionality. Supervisor software must reflect and
manage this and the SI systems must support it. A general
requirement is to handle complexity adequately. In systems
where large numbers of sensors are employed, their
management can be a significant task and engineering an SI
system to handle them requires discipline and a good
structure.

At the level of FAS configuration and maintenance, the SI
system should allow the easy addition of new sensors and
the replacement of existing sensors with others, perhaps
based on different sensing techniques. In so far as these
alterations require hardware changes and it is unlikely to be
possible to make them to a running system, they represent a
distinct class of changes which, though they may not be
made through the SI interface by the supervisor, must be
supported.

On a running system, either at significant points (such as
batch to batch reconfiguration) or during the normal
assembly process, it is fundamental to the overall concept
that the supervisor be able to make significant reconfigura-
tions. These will principally be the definition of new sensing
functionalities based on available sensors. Dynamic recon-
figuration through calibration, changing thresholds and
switching between alternative data sources is also supported
in this way.

4.2 Sensor integration issues
Sensing hardware measures the value or change in the value
of a physical world parameter, which in turn gives rise to the
primary output signal, carrying the sensor specific informa-
tion. The primary output may be further processed to extract
required sensory parameters in a suitable form. The sensed
information flows from the physical sensing end towards
sensing use.

Different approaches to sensor modelling and integration
have concentrated on and explored different parts of the
sensor abstraction gap but it is suggested here that efforts
have concentrated on the physical sensing end of the gap.
The data abstraction suggestions proposed by the logical
sensor approach1 are the most prominent effort to address
the issues of sensor data abstraction and integration from

this side. Such efforts have covered a variable distance in
the sensing abstraction gap and then any remaining
processing to provide the required usage level is left to the
supervisor. On the other hand, the virtual sensing approach14

stressed concentration on the sensing usage end and
explored some area near the usage end of the gap. A more
detailed analysis and thorough coverage of various levels of
the abstraction spectrum is required to achieve the goal of a
generalised sensor integration architecture.

Researchers have suggested integration of sensing at
various levels. Nnaji30 has argued for division of sensor
information into three levels for the RALPH system; (i) the
data from the actual sensing process; (ii) the information
after some data reduction, the level to which systems
traditionally process the data and (iii) the information used
for the actual application of the data. Roth and Mengel37

argued that the term sensor integration is used with different
connotations and can be applied at different levels of
production processes. It is helpful to distinguish between:
(i) integration of physical components, (ii) integration of
logical functionalities, (iii) integration of sensor data on
different hierarchical levels. The InFACT machine SI
system supported integration at the fundamental system
sensor level (see §5) and for the virtual sensor classes.

These approaches suggest that the appropriate way ahead
is to divide the abstraction question into smaller self
contained sensor integration problems dealing with separate
areas of the abstraction spectrum. The virtual sensing
approach requires that both sensor data abstraction and
sensor control abstraction be considered for any division of
the sensor integration problem. To develop an independent
and portable sensor integration architecture the peculiarities
of the specific sensing infrastructure must be handled at
lower levels and hidden from the higher levels of abstract
sensing. Therefore, a natural division of the sensor integra-
tion problem would be according to the increasing levels of
abstraction involving both data and control. Four levels of
abstraction are proposed:

1. physical sensing;
2. logical machine parameters;
3. sensor usage;
4. supervisor programming.

These levels and the sensor integration issues involved are
now considered.

4.2.1 Integration of physical sensing. Physical sensing
components include vendor specific hardware modules,
hardware specific routines and device drivers. Many sensors
incorporate more or less sophisticated hardware and soft-
ware to condition and handle the primary signal. Self
diagnostic functions for detecting and reporting problems
and functions for counter-acting changes in the environment
which influence the primary signal (such as change in
workspace temperature or humidity) can also introduce
significant extra complexity into the problem of controlling
sensors. These diverse sensing devices are usually distrib-
uted across the workspace and a communications network is
required.

The physical sensor level must provide a uniform

ViSIAr638



mechanism for addressing and manipulating the hardware
across the communication infrastructure and must allow the
collection of raw data while maintaining efficiency. It must
hide the details of device control, communication archi-
tecture, and specific software and hardware modules.

Low level sensor value and control abstraction is
achieved here. All sensors are brought into a uniform type
structure and a standard control mechanism is applied to
them. These need not be the ones that will be used at higher
levels of the system.

4.2.2 Integration of logical machine parameter sensing.
The programming of control at the level of the state of the
system measured by various physical sensors would imply
knowledge of low level details about the physical sensors.
This kind of dependence will result in complex code and
control programs tightly coupled to the physical sensing
implementation. Any replacement or enhancement of sen-
sors would require parts of the supervisor to be rewritten.
This dependence can be reduced by deciding, at a uniform
level of abstraction, on the necessary base-line machine
state parameters and their attributes required to measure the
system for the purpose of control. These base-line require-
ments can be implemented through suitable physical
sensors, which can be used to implement the abstract
sensing functionalities. Different machine state measure-
ment functions may use the same set of physical sensors or
the sensing of a particular parameter may involve multiple
and sometimes redundant sensors. Whatever physical sens-
ing arrangements are used, they can be demonstrated to
support the desired base-line abstract state sensing func-
tions.

This level provides all the machine state parameters as
fundamental system sensors (FSS) and must be imple-
mented using the physical level (and computation). The
details of implementation of the fundamental sensor level
facilities and communication architecture are hidden. The
association of fundamental sensors with particular devices
or sets of devices is not accessible to the supervisor.

This level represents the minimal value and minimal
control abstraction as it will be visible across the rest of the
system. All values have one of a set of data types which
provides a common framework over the rest of the
architecture. A major problem with sensor integration
systems is the diversity of sensor data. A well-designed
strong typing system can be employed to help ensure sensor
data integrity. All FSS share a single, simple usage
abstraction, which allows for the return, on demand, of the
current value, along with reporting of a range of possible
errors. In contrast to the abstractions at the physical
integration level, they are applied here to machine state
parameters, not to particular devices.

4.2.3 Integration of sensor usage abstractions. Sensor
integration at usage level is defined to combine the output of
sensors to give “new” information through combined
control regimes. This is the level at which virtual sensors are
provided and they must be designed to be used as building
blocks for more complex sensing functions. Clear and

systematic mechanisms and disciplines to combine FSS and
other virtual sensors to realise higher-level and more
complex sensing functions are required. A central require-
ment is using the virtual sensing approach to analyse the
sensing abstraction spectrum is therefore to develop a
generalised model of a virtual sensor. Organisation and
addressing of numerous abstract sensors poses a difficult
problem particularly in parallel architectures and dynamic
systems and must be handled here.

Through examination of common sensory requirements
of robot (supervisor) programming, abstract sensing func-
tionalities for general use can be proposed. These virtual
sensor classes each have a well-defined interface complying
with the supervisor language design.

This level therefore provides facilities for the construc-
tion and use of virtual sensors specified by the supervisor. It
hides all lower parts of the SI system, only allowing the
supervisor to build on FSS, and hides the details of its own
implementation. Value abstraction is extended by allowing
arbitrary computation and type casting. Full and flexible
control abstraction is offered through the provision of both
standard (see §5.3.2) and extensible (see §5.3.3) classes of
virtual sensor.

4.2.4 Integration of sensing into the supervisor pro-
gramming environment. The supervisor has to issue
commands to the actuation system as well as to the sensor
integration system. The sensor integration system must
implement the abstract sensing behaviour while the design
of sensor commands must adhere to the supervisor language
paradigm. The character and style of the programming
environments for FAS and robots in general vary widely.
Whatever style is employed, the interface should be
consistent with it and regular (or “orthogonal”) across all
facilities. It is particularly beneficial if error reporting is
consistent across all sensing and actuation functions,
allowing systematic error handling.

The sensor integration system interface can also support
good engineering in supervisor design and code generation.
To encourage the concepts of modularity, cohesion and low
coupling, the idea of dynamic scope of the sensor functions
is considered important. It means that only the currently
required sensing functions are in scope and this helps to
localise the sensing requirements to various sections of code
and hence simplifies design and implementation of super-
visor code.

An idea closely connected to dynamic scope is the sensor
life-cycle concept. A virtual sensor is created with a
predefined initial state; it may be used zero or more times to
get sensor values through the operations it exports, and
finally it is destroyed.11 During its life, a virtual sensor can
be in different modes as a result of calls to its operations and
of sensor data received from the input sources. The life
cycle for each class of virtual sensor with different modes,
operations and functional constraints can be well defined
and reflected in the interface design. This discipline
supports high quality supervisor code.

The requirements for sensing functionality depend on
how a supervisor programming system uses the sensory
information. The main consideration can now be the role of
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sensing in programming for the application. Virtual sensors
to serve the needs of the system can be designed and
implemented (given that the supply of the relevant raw
sensory data is in place). These might include measurement
of the machine state, processing of sensed data, mechanisms
for cueing and co-ordination, confirmation of expectations,
satisfaction of pre-conditions, guarding actions, etc. Appro-
priate value and control abstraction should now be
available.

4.3 Sensor integration system design – summary
In summary, the important aspects of the design are:

1. support for dynamic reconfiguration;
2. a general model of a virtual sensor;
3. a layered architecture providing integration at the

following levels:
(a) supervisor;
(b) virtual sensor;
(c) fundamental (machine state) sensor;
(d) physical sensor.

5. ViSIAr – THE ARCHITECTURE
Figure 1 depicts a layered Virtual Sensor Itegration
Architecture (ViSIAr) incorporating the considerations
detailed above. It is presented as an idealised architecture
offering a framework for analysis and design of real
systems.

ViSIAr seeks to isolate the problems of sensing at
different levels of integration and tackle them separately.

The layered structure offers the normal advantage of
permitting decomposition of the problem into a hierarchy of
sub-problems that can be specified, analysed and dealt with
independently.

The analysis presented in §4.2 suggests four major
blocks: the physical sensor system; the fundamental sensor
system; the virtual sensor system and the supervision
system. Each system deals with a different part of the overall
sensor integration problem and provides or uses specific
functions with well-defined interfaces.

The supervision module is the user of the facilities
exported by the virtual sensor system. It need not contain
any sensor integration software but consideration of super-
vision language design will enforce discipline and
constraints on the virtual sensing interface design to ensure
supervision level integration.

ViSIAr consists of five possible layers of sensing
abstraction. The two bottom layers correspond to the
physical sensor system and the fundamental sensor system
while the other three layers, layers 2 to 4, are the virtual
sensor system. Not all five layers are directly accessible by
the supervisor. Layers 0 and 1 constitute the fixed part of
ViSIAr which is commissioned at installation time (see
§4.1). The fixed part is not available to the supervisor
directly. The facilities exported by the fixed part can only be
accessed through the virtual sensors defined on them. On
the other hand, the virtual sensor system constitutes the
dynamic part, which enables creation of higher level
sensing abstractions based on the facilities from the fixed
part. The facilities defined at different levels of abstraction
in the dynamic part are all equally available to the

Fig. 1. Virtual Sensor Integration Architecture – ViSIAr.
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supervisor.
The fundamental and the physical sensor levels of value

and control abstractions can be specified fully at design
time. At the virtual sensor level only common and generic
functional abstraction can be specified along with mecha-
nisms to construct new virtual sensors with specified
functions.

The specification of value and control abstraction at the
interfaces of the fundamental and physical sensor levels are
represented by the fundamental sensory parameter schema
(FSPS) and the physical sensory parameter schema (PSPS)
respectively. The virtual sensing interface is specified by the
specifications of the individual virtual sensor classes. The
FSPS, being a dividing line between the dynamic and fixed
parts of the ViSIAr, has particular significance. It specifies
the details of the total set of sensing parameters at a minimal
level of abstraction to serve as a common reference for both
fixed and dynamic parts. The fixed part implements the
details specified in the schema and the dynamic part uses the
schema details as a basis to build on. This schema also
provides the dividing line to dissociate the analysis and
treatment of particular sensor integration problems in the
virtual and physical sensing domains.

We now consider the roles of the five layers.

5.1 Layer 0 – The physical sensor system
The PSPS is the set of definitions of physical sensor
parameters at the lowest level of representation. Each
physical sensor has its associated entry in the PSPS. The
PSPS must satisfy the sensory data requirements of the
FSPS above. The details of PSPS definitions depend on the
choice of the physical sensing hardware and the selection of
particular physical locations where the state parameters may
be sensed.

The physical sensor system implements the PSPS in
terms of the sensory hardware and any specialised drivers. It
provides operations to measure the current value of each
physical sensory parameter. It may also include other
operations, to reset the sensory hardware or to select a
different output format for example. A design for a uniform
interface has to be reached to ensure maximum independ-
ence of the integration system at higher levels. The sensory
hardware devices (possibly widely distributed) are made
available to the sensor data processing systems through a
communication architecture.

The role of the layer is integration at the physical sensor
level and it has to achieve the following two pairs of
objectives:

1. to hide the vendor specific interfaces of individual
physical sensors;

2. to provide a uniform interface to all physical sensors;
3. to hide the details of the communications mechanism;
4. to provide a consistent addressing and access mechanism

for all physical sensors.

5.2 Layer 1 – The fundamental sensor system
The FSPS is the set of definitions and descriptions of all the
sensory parameters directly required to specify the physical

state or changes in the state of the automated system at a
minimal level of abstraction. It can also record a set of
useful attributes associated with each sensory parameter,
such as the resolution, units of measurement latency and
rate of response. It may also specify the context of a
parametric measurement, i.e., any extra knowledge of the
physical environment or sensing hardware required to use or
interpret the information. Examples are the location of the
sensor and any relation to other sensors. During develop-
ment, the FSPS can provide an important common
specification for the software engineers working on higher
levels of the SI system and the electronic and mechanical
engineers building the physical machine.

A type system is required to support the use of data from
the FSPS upwards. The nature of this is a design decision.
A strong or weak, rich or limited system can be chosen as
appropriate for the particular SI system implementation and
supervisor. A particular sensory parameter might be mod-
elled as a scalar or a composite data type. The sensory
parameter objects may abstract one or more physical
sensor’s values and, conversely, a physical sensor’s outputs
may appear in the FSPS individually or grouped.

The Fundamental Sensor System implements the
mappings from FSPS entries to PSPS entries. Fundamental
sensors are designed to implement each of these. The set of
mappings contains at least one mapping for each funda-
mental sensory parameter in the FSPS. Fundamental
sensory parameters may have multiple map definitions that
map them onto different or redundant sets of physical
sensors. An automated switching mechanism between
alternative mappings could be used to enhance the resilience
of the system to physical sensor malfunction in a way
suggested by Henderson.1,3

The FSPS provides the definition of sensor values being
abstracted. The control abstraction for sensing at the
minimal level includes at least the Measure operation to
provide the current value of the state parameter.

This layer must achieve the following objectives:

1. to provide a fully uniform interface for current state
sensing for all FSPS items;

2. to provide an addressing mechanism for fundamental
sensors;

3. to hide the implementation details of FSPS to PSPS
mapping functions;

4. to hide any standard low-level sensor data processing
such as combining, scaling, grouping etc.;

5. to provide low-level error or malfunction detection and
recovery mechanisms.1

In principle, a fundamental sensor can incorporate any
low-level transformations of data, that is, any data process-
ing algorithm can be defined and implemented at this level.
This is, however, in the fixed part and sensors defined here
are not visible and cannot be manipulated by the supervisor.
Only processing known to be required in all circumstances
should therefore be performed here.

Fundamental sensors provide a layer of flexibility for
implementation, that is, they can be used to map the
required basic sensory data to many physical sensors while
at the same time the responses from these variably located
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physical sensors can be transformed, validated or com-
bined.

5.3 Layers 2–4 – The virtual sensor system
The virtual sensor system provides integration of sensor
usage. It supports higher level abstractions based on the
facilities offered by the Fundamental Sensor System to
serve the requirements of sensor based programming.
Sensor data usage mechanisms are modelled and provided
as virtual sensors. These high-level sensory modules are
designed to abstract well-defined pieces of functionality.
The interface to them must comply with the supervisory
command language design and programming semantics and
be designed to simplify the supervisory programming.

Virtual sensors acquire data from the fundamental sensors
and implement the prescribed behaviour to provide only the
required information. The data from fundamental sensors is
very diverse and represents the status of different parts of
the system; it usually requires further processing to be
interpreted. The sensory support requirements of the user
modules are diverse in terms of both data and functionality.
The analysis for matching the requirements with the
available facilities gives rise to varying levels of processing
and complexity, and therefore varying levels of abstraction,
e.g., simple measurement of a defined fundamental sensory
parameter; noise reduction, combining or fusing data from
various fundamental sensors; various monitoring and co-
ordination regimes.

There are functionalities that are commonly used for
simpler sensor data processing and interpretation in sensor
based programming, such as testing for crossing of a given
threshold. Such simple constructs may also appear as a part
of complex sensor measurement and interpretation func-
tions, for example in a logical branching strategy. This idea
leads to the identification of primitive functional constructs
and the design of virtual sensors to abstract them and to
their use as the building blocks for more complex
abstractions.

The virtual sensor system in ViSIAr has three layers of
virtual sensor classes (see Figure 1) reflecting differences in
the level of internal complexity. These are:

• the basic state sensor classes in layer 2;
• the primitive sensor classes in layer 3;
• the algorithmic sensor classes in layer 4.

The basic state sensor classes make the required funda-
mental system facilities available to the virtual sensor
system and offer a variety of current state measurement
services. The primitive sensor classes include the set of
commonly required, well-defined and fixed functionalities.
The algorithmic sensor classes consist of facilities to
employ existing constructs and configure them in algo-
rithms to realise complex sensor functions.

Each virtual sensor class implements the prescribed
model of abstract sensor interpretation and exports it
through its interface in the required format. All the virtual
sensors defined in the system follow the standard virtual
sensor model. The supervisor programmer can use instances
of these classes by creating them dynamically.

5.3.1 Layer 2 – Basic State Sensor Classes. Basic state
sensor classes allow the creation of virtual state sensors that
interrogate the FSS. Different basic state sensor classes
offer a choice of common state sensing abstractions with
different semantics, e.g. single state measurement, repeated
state measurement and relative state measurement.

A state sensor provides facilities, primarily, to measure
the current value of associated sensory parameters and these
are the most basic virtual sensors available to the supervisor
or other virtual sensor client modules. The state sensors are
the access connections to the fixed part of the sensor system
for all upper layer modules.

Multiple basic sensor instances may be created simulta-
neously to measure the same state parameters, although all
of them would be served by the same FSS. The FSS must
implement adequate scheduling arrangements to serve
concurrent interrogation requests from multiple state sen-
sors.

A state sensor also validates the in-coming sensory data
and raises exceptions that may be handled by an EDR
system. Therefore, the data produced can be expected to
conform to the criteria, type and format described in the
FSPS.

5.3.2 Layer 3 – Primitive Sensor Classes. A primitive
virtual sensor is a sensor module whose algorithm is pre-
defined and fixed, and it abstracts general purpose sensing
functionalities which are useful in their own right and may
also be used as building blocks for higher and more
complex sensing abstractions.

Condition sensors to detect specific world states; event
sensors to abstract asynchronous notification of changes of
state and trigger sensors to collect data when notified are
important examples of classes at this level. Log sensors
whose data collection is controlled in a variety of ways,
which might include clock-based mechanisms, are also
provided here. The derived state sensor class supports
simple data processing. A derived state sensor is built using
a state sensor and a function that performs the processing.

5.3.3 Layer 4 – Algorithmic Sensor Classes. An algo-
rithmic sensor, as a virtual sensor, provides a control
abstraction and a data abstraction. For its creation, it
requires a list of virtual sensors and an algorithm to
orchestrate their use.

In a programming environment where code can be
manipulated, such a layer provides a means by which virtual
sensors with functionalities not available among the prim-
itive classes of layer 3 can be dynamically created. Sensors
created in this way will conform to standard data and
control abstractions (and therefore be usable as components
in a sensor hierarchy) but their functionality can be
determined at run time. The distinction between levels 3 and
4 is therefore that some algorithms have been previously
recognised and provided at level 3 while level 4 offers
extensibility within the framework. Derived state sensors, at
level 3, are a simple model that has been recognised and can
be provided.

Algorithmic sensors are examined in greater detail
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elsewhere17 as are the possible mechanisms for building
complex sensing algorithms.

5.4 Control abstractions and sensor classes
Each sensor class, regardless of level, conforms to one of
the standard control abstractions (see §3.2 and §4.2.3). An
event sensor, for example, could be an instantiation of a
standard level 3 class, probably based on the value of a state
sensor crossing a threshold. Alternatively, it could be a level
4 sensor where a specialised algorithm involving a number
of state sensors and some set of comparisons between their
values is provided. In either case, the external view of the
sensor is as an event sensor and a consumer module need
not handle them differently.

It may be noted that all level 2 classes provide the state
sensor control abstraction and no other.

6. ILLUSTRATIVE EXAMPLES
The experimental set-up consisted of a Puma 560 robot arm
and a force/torque sensing wrist. The sensor integration
system and supervisor were implemented on a Sun work-
station under UNIX using Ada 83. The sensor integration
system was a full working demonstration, supporting all
levels of the ViSIAr architecture. Within the virtual sensor
layers, a representative sample of classes was implemented.
This included state sensors, derived state sensors, condition
sensors, event sensors, trigger sensors, and simple algo-
rithmic sensors. The supervisor was, in each case, only a
single simple procedure that made use of SI facilities and of
facilities giving access to robot control. The robot interface
was implemented through the DDCMP protocol serial line
giving access to the VAL level of control.27 This allowed
individual VAL commands, at both monitor and program
level, to be issued. The Ada program could therefore initiate
single steps or complete VAL Programs.

The sensing wrist was an FS6-120A made by the Barry
Wright Corporation.38 The output of the strain gauges built
into the structure is processed by an on-board processor to
deliver resolved force and torques in a re-configurable
Cartesian co-ordinate system. Two-way serial communica-
tion at up to 9600 baud allows the sensor to be configured
and to deliver a continuous stream of output data. A low
level interface package on the Sun provided a range of
procedures to configure the sensor and buffering of the
output allowing collection, on demand, of the latest values.

The output from the sensor can be delivered as a
12-element record. The forces along the X, Y and Z axes
and the torques about them are delivered as real values.
Each of these 6 values has a re-configurable limit value. The
remaining 6 output values are booleans indicating whether
each has exceeded its limit. Our physical sensor is therefore
“smart”, reconfigurable, relatively complex and connected
via serial communications using a proprietary protocol.
Though reconfiguration allows control of which values it
outputs, in any configuration it outputs several values
continuously.

For the demonstration examples, the FSPS was defined as
shown in Table I. The 6 individual real values and the 6 limit
test values are provided separately. In the example code

below, this will be used to advantage. To emphasise the
possibility of returning composite values and the possibility
of returning the same physical measurement in more than
one FSPS entry, the two vectors of values are included. In a
typical implementation, the 6-element force/torque record
could be returned in a globally recognised data structure,
which might be used with other sensing functions and with
actuation.

The PSPS specifies the data as returned by the FS6-120A
interface code. The FSPS to PSPS mappings are all direct
and no standard transformations are implemented at this
level.

Details of the SI implementation can be found else-
where.17 Packages implement each virtual sensor class and
the fixed part of the SI architecture. Sensors of several
classes, where concurrent activity is required, are imple-
mented as individual Ada tasks encapsulated behind simple
procedure calls.

Two example supervisor procedures are now given. The
first is presented as simplified Ada code and the second as
pseudo-code.

6.1 Example 1 – A derived state sensor
This demonstration involved the use of steel cubes with
sides 1 inch (about 25mm) long. These were fixed together
to form three blocks of 1, 2 and 3 cubic inches which, for
each demonstration, were placed randomly at four known
locations (see Figure 2). When the robot visited each

Table I: The FSPS for the demonstration system

Name Data Comment

Wrist-FX scalar, real force along the X axis
Wrist_FY scalar, real force along the Y axis
Wrist_FZ scalar, real force along the Z axis
Wrist_MX scalar, real moment about the X axis
Wrist_MY scalar, real moment about the Y axis
Wrist_MZ scalar, real moment about the Z axis
Wrist_State vector, reals the 6 values above
FX_Limit scalar, boolean FX has crossed its limit
FY_Limit scalar, boolean FY has crossed its limit
FZ_Limit scalar, boolean FZ has crossed its limit
MX_Limit scalar, boolean MX has crossed its limit
MY_Limit scalar, boolean MY has crossed its limit
MZ_Limit scalar, boolean MZ has crossed its limit
Wrist_Limits vector, boolean the 6 values above

Fig. 2. Example 1 – Physical configuration.
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Fig. 3. Example 1 – Ada code.
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location in turn, grasped and withdrew, it was therefore
holding a mass of 0, 1, 2 or 3 cubes. In simple application
terms, a sensor was required which would indicate the
number cubes held. In our set up, this had to be
implemented using the Z-axis component from the force
sensor (for simplicity, the blocks were picked up with the
force sensor frame oriented directly downwards).

The code is shown in Figure 3. For clarity, a number of
aspects of the implementation have been omitted or
simplified; all packages are assumed to have been imported
and their identifiers made accessible; it is assumed that IO
packages for all types have been instantiated and that both
the sensor integration and robot interface systems have been
previously initialised and started. Error reporting in this
system is implemented using error codes returned by
procedure cells. These values are ignored here. Robot code
and some initialisations are replaced by comments. Package
names, with the “.” notation are only used where they
remove ambiguity or increase clarity. The Ada = > notation
for associating formal and actual parameters has been used
as a form of commenting to improve clarity.

A derived state sensor, incorporating a function mapping
from force to number of cubes (or an error) is constructed
on a basic state sensor returning Z force. The sensed data is
simply printed for demonstration.

To emphasise the application orientated nature of virtual
sensors a special type, directly reflecting the application
needs is declared on line 3. -1 is used to indicate an
unknown number of cubes. A handle variable for the basic
state sensor is declared on lines 5. A handle for the derived
sensor and a variable to hold its returned value are then
declared. PLACES, an army of robot locations, is assumed
to contain the 4 sites where blocks may be placed.

The mapping function, defined on lines 15 to 31, was
designed and coded empirically. A model based or learning
function could be provided in a more sophisticated imple-
mentation. Derived state sensors were provided as a generic
package in this Ada implementation. To instantiate this, a
return type and a mapping function must be provided, as
done on lines 33 to 35. Sensors of this class can then be
created.

The body of the procedure is then conceptually simple.
The state and derived state sensors are created (lines 39–44),
used at each of the 4 locations (lines 46–57) and then
destroyed. The de-coupling and application orientation
achieved are the important points to note. Wrist_FZ is
known to be an available fundamental sensor. This is
declared in the FSPS and can therefore be used on line 39
without concern for the physical sensor that supports it or
for any concurrent use of it or a related sensor. Within the
loop, the code can be written in terms of the number of
cubes. Other implementations of the “number of cubes
held” sensor are clearly possible. These should not alter the
use of BLOCK_SENS.

6.2 Example 2 – A trigger sensor
The implementation of trigger sensors has a significant
interface model component. The way in which the super-
visor will be notified of the event and receive the recorded
value will depend on the implementation environment.

Trigger sensors have been designed for use in Occam in the
InFACT system36 and in Ada.17 This example is presented as
pseudo-code to provide a more general illustration. In
InFACT, special purpose hardware was employed to provide
guaranteed response times. Software solutions to the real-
time question have been proposed.16

In this example, an object is carried along a defined
trajectory that the designer expects to result in a collision
with a flexible object. This collision is detected by the force
sensor, most clearly as a Z torque. In this example, detection
of the collision is used to trigger collection of the arm
position. In the InFACT project, such a technique was
intended to reduce uncertainties of grasp positions by a
suction gripper. Pseudo-code for the module is shown in
Figure 4. The sensor hierarchy is shown in Figure 5. The
pseudo-code demonstrates the clarity permitted in the
supervisor code by use of appropriate abstractions.

Outline Ada code for parts sorting using an event sensor
in a similar configuration is given elsewhere.31

7. CONCLUSIONS
Earlier work has indicated that virtual sensors provide a
supportive abstraction for robot programming. We describe
an idealised framework, ViSIAr, for the design of SI
systems to implement virtual sensors. A general model of a
virtual sensor forms a basis for this.

Four levels of integration are proposed: physical sensor,
fundamental sensor, virtual sensor and supervisor. These are
justified as distinguishable requirements of an SI system and
form the basis of ViSIAr. Physical sensor integration
provides a uniform interface and access mechanisms for all
available sensors. Fundamental sensor integration supports
abstract provision of all sensory values required for control.
Virtual sensor integration provides a range of sensor
abstractions designed to support robot programming. It
offers dynamic creation of instances of these. The virtual
sensor abstractions must be made available to the robot
supervisor in a way consistent with and supportive of the
programming paradigm and activities found at that level.
This is supervisor level integration.

Fig. 4. Example 2 – Pseudo-code.
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