3,484 research outputs found

    A hybrid CFGTSA based approach for scheduling problem: a case study of an automobile industry

    Get PDF
    In the global competitive world swift, reliable and cost effective production subject to uncertain situations, through an appropriate management of the available resources, has turned out to be the necessity for surviving in the market. This inspired the development of the more efficient and robust methods to counteract the existing complexities prevailing in the market. The present paper proposes a hybrid CFGTSA algorithm inheriting the salient features of GA, TS, SA, and chaotic theory to solve the complex scheduling problems commonly faced by most of the manufacturing industries. The proposed CFGTSA algorithm has been tested on a scheduling problem of an automobile industry, and its efficacy has been shown by comparing the results with GA, SA, TS, GTS, and hybrid TSA algorithms

    Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

    Get PDF
    In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems

    Using micro genetic algorithm for solving scheduling problems

    Get PDF
    Job Shop Scheduling Problem (JSSP) and Timetable scheduling are known to be computationally NP–hard problems. There have been many attempts by many researchers to develop reliable scheduling software, however, many of these software have only been tested or applied on an experimental basis or on a small population with minimal constraints. However in actual model JSSP, the constraints involved are more complicated compared to classical JSSP and feasible schedule must be suggested within a short period of time. In this thesis, an enhanced micro GA, namely micro GA with local search is proposed to solve an actual model JSSP. The scheduler is able to generate an output of a set of feasible production plan not only at a faster rate but which can generate a plan which can reduce the makespan as compare to those using manual. Also, in this thesis, the micro GA is applied to the timetabling problem of Faculty of Electrical Engineering Universiti Teknologi Malaysia which has more than 3,000 students. Apart from having more students, the faculty also offers various different type s of specialized courses. Various constraints such as elective subjects, classrooms capacity, multiple sections students, lecturer, etc have to be taken into consideration when designing the solution for this problem. In this thesis , an enhanced micro GA is proposed for timetable scheduling in the Faculty to overcome the problems. The enhanced micro GA algorithm is referred to as distributed micro GA which has local search to speed up the scheduling process. Comparisons are made with simple GA methods such that a more optimal solution can be achieved. The proposed algorithm is successfully implemented at the Faculty meeting a variety of constraints not achievable using manual methods

    Coordination of Supply Webs Based on Dispositive Protocols

    Get PDF
    A lot of curricula in information systems, also at master level, exists today. However, the strong need in new approaches and new curricula still exists, especially, in European area. The paper discusses the modern curriculum in information systems at master level that is currently under development in the Socrates/Erasmus project MOCURIS. The curriculum is oriented to the students of engineering schools of technical universities. The proposed approach takes into account integration trends in European area as well as the transformation of industrial economics into knowledge-based digital economics The paper presents main characteristics of the proposed curriculum, discuses curriculum development techniques used in the project MOCURIS, describes the architecture of the proposed curriculum and the body of knowledge provided by it

    Energy-Efficient Flexible Flow Shop Scheduling With Due Date and Total Flow Time

    Get PDF
    One of the most significant optimization issues facing a manufacturing company is the flexible flow shop scheduling problem (FFSS). However, FFSS with uncertainty and energy-related elements has received little investigation. Additionally, in order to reduce overall waiting times and earliness/tardiness issues, the topic of flexible flow shop scheduling with shared due dates is researched. Using transmission line loadings and bus voltage magnitude variations, an unique severity function is formulated in this research. Optimize total energy consumption, total agreement index, and make span all at once. Many different meta-heuristics have been presented in the past to find near-optimal answers in an acceptable amount of computation time. To explore the potential for energy saving in shop floor management, a multi-level optimization technique for flexible flow shop scheduling and integrates power models for individual machines with cutting parameters optimisation into energy-efficient scheduling issues is proposed. However, it can be difficult and time-consuming to fine-tune algorithm-specific parameters for solving FFSP

    Hybrid Particle Swarm Algorithm for Job Shop Scheduling Problems

    Get PDF
    corecore