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Abstract 

Production scheduling is a decision-making process that is applied in the manufacturing and 

service industries to achieve efficiency, minimise production costs and maximise the profit. 

Production process planning and scheduling are critical functions for the sustainable 

development of manufacturing processes that not only minimise the time or cost, but also 

improve adaptability, responsiveness and robustness. Therefore, effective production process 

planning and scheduling is imperative in order to achieve sustainable manufacturing. This study 

presents a production scheduling problem and its optimal solution, for a typical real-life micro-

brewery production process, based in Coventry, UK. In the brewery, various orders of product 

types arrive dynamically to form a queue for production in a variety of vessels with limited 

capacity. The operation of brewery production is determined by the processing time, the setting 

up time, the changeover time of each product type and the cleaning time of each vessel. The 

due date for delivery the product to customers is another important factor. For the brewery 

production system, a multi-objective optimisation problem of minimising the overall 

production time in a job shop is considered in this research. A novel optimisation approach for 

the sustainable process and scheduling is presented. 

The objective of the study is to formulate a mathematical model of a scheduling problem and 

to develop a Simulink model to simulate the scenario of the brewery production system. 

Subsequently, the primary focus of this thesis is the design and application of meta-heuristics 

methods, namely, genetic algorithm (GA), simulated annealing (SA) and ant colony 

optimisation (ACO), to optimise the brewery production system. In addition, it proposes a 

hybrid method to solve the production problem, which is comprised of an improved GA with 

the improved SA to minimise the total production time. The advantage of the hybrid method is 

not only to achieve the combination of the global search capability of GA and the local search 

capability of SA, but also an effective avoidance of the premature convergence and strengthen 

the global optimal solution at a higher temperature; at a lower temperature, the hill climbing of 

the SA can speed up the convergence. The proposed hybrid method is effectively applied to the 

brewery production system. The result demonstrates that the proposed method provides better 

performance and effectiveness when it is compared with other heuristic algorithms that include 

traditional GA, SA, ACO, the improved GA and improved SA. 
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Chapter 1: Introduction 

1.1 Research background and motivation 

With rapid economic developments and increasingly fierce competition, many 

companies are pursuing diverse ways to reduce costs and improve their performance 

and efficiency. The successful competition of manufacturing enterprises largely 

depends on the product’s supply cycle, quality and after service level. Advanced 

production management is an important factor towards achieving these objectives. 

Production scheduling is widely considered an essential component of production 

management that its task is determined by the equipment processing sequence and 

processing time, under limited resource constraints, in order to ensure the selected 

production goal is optimal. Recently, the production scheduling problem has been a 

research hotspot in modern science and customised production mode is becoming the 

mainstream of manufacturing. In a sense, whether the enterprise can survive market 

competition is determined by its management ability to meet the customer demand and 

satisfaction, especially in beer production scheduling (Huang 2002), which due to the 
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lean operation method is popularised continuously. Effective production scheduling 

plays a very important role in improving the performance, market response and 

comprehensive competitiveness of the beer company. Consequently, there is significant 

interest in beer manufacturing process control and optimisation, and there is currently 

a great practical justification for the current investigative study. 

The beer industry plays a most important role in economic development and also 

significantly impacts on people’s daily life. The British Beer and Pub Association (2015) 

reported in 2014 that there are over 14000 breweries in the UK, which contributed 22 

billion pounds GDP and generated 13 billion pounds in tax revenue, and also the beer 

industry and pub sector supports almost 900,000 jobs. The forecast of the beer industry 

is still increasing in the consecutive years due to the government announcement to cut 

beer duty by 1 penny per pint in 2013, which will boost the development of the beer 

market in the future. In addition, most breweries are small-medium scale and have 

general issues that need be improved, such as poor automatic control ability and 

technology, lack of management skills and techniques in the production process and 

human resources, high energy consumption, etc. These problems are severely hindering 

the sustainable development of the productive forces in the beer industry. Subsequently, 

most companies are still using the traditional manpower scheduling method in 

production plans that are of low efficiency or are even inefficient in a complicated and 

dynamic environment. Consequently, it is easy to encounter the phenomena of 

overstock or even out of stock of products. Therefore, there are many issues that the 

beer industry faces in regards to improving efficiency for the brewery production 

system. Zheng, at el. (2011) and Zheng (2008) identified that beer production is not 

only a very complex batch production system, but there are also many constraints and 
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limitations that need to be considered within the process dynamics, e.g. delays, 

feedback, uncertainty non-linearity and varying parameters. Beer production processes 

have the same characteristics of semi-continuous operations as other batch production 

processes that are based on the sequence of operation and process conditions. Due to 

the frequent change of products, and the sharing of resources (including time, 

equipment, raw materials and human resource), this makes all the activities of 

production and subsequent economic benefits greatly dependent on the production 

planning and scheduling; thus making the beer production scheduling becomes a very 

complicated problem. At present, research on the mathematical model of beer 

production scheduling is still scarce, beer companies still rely on artificial scheduling 

production, and its effect is not ideal. Moreover, beer production scheduling problems 

are classified in the non-deterministic polynomial time known as NP-hard problems 

due to the batch production environment, dynamic change of customer’s demand and 

production scheduling problems (Huang 2002). It has also been identified that most of 

these problems can be solved by using intelligent control and optimisation methods.  

Mathematical optimisation is a process of search and selection of the best fit values 

which is used to solve various engineering problems. As an important branch of science, 

it has been popularised rapidly and applied widely in various engineering and 

manufacturing fields, such as system control, artificial intelligence, pattern recognition, 

production scheduling, computer engineering, etc. Research on theories and methods 

of production scheduling is an area with many complicated factors involved as well as 

it is crucial for improving productivity and efficiency for a company or even an industry. 

Based on a large amount of literature review, intelligent scheduling methods are the 

most effective way to solve practical complex scheduling problems (Huang 2002). 
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Their usage has been increasing in the beer industry, including the use of genetic 

algorithms (GA), simulated annealing (SA), ant colony optimisation (ACO), tabu 

search (TS), etc. Starkweather, et al. (1992) have applied a GA to solve the multi-

objective JSP in a brewery, these objectives contain the minimum average time of 

inventory, minimum waiting time of customer’s orders, etc. GAs have also been applied 

for optimisation based on the dynamic model of the beer fermentation process (Carrillo, 

Roberts & Becerra 2001). In the latter, the GA is used to obtain a series of curves at 

different temperatures during the fixed fermentation time, in order to discover an 

optimal temperature curve. This ensures where the final amount of alcohol in the 

fermentation process reaches the maximum and at the same time ensuring that the 

product concentration is lowest, which protects the beer quality. Subsequently, Xiao 

and Zhou 2004 implemented ACO to optimise the same dynamic model of beer 

fermentation process and better optimised results are obtained. Zheng, et al. (2011) have 

applied ACO to optimise beer production scheduling in order to solve the limitations of 

the traditional scheduling methods. It formulated a mathematical model for production 

scheduling and results show that the optimised scheme has robustness and practicability. 

In comparison with intelligent control, intelligent optimisation technology is still 

relatively scarce in the beer industry, and also there are many practical issues which 

need to be optimised and resolved. 

This research aims to enhance comprehensive production effectiveness for the beer 

production system in small breweries. The research scenario is based on the actual 

demand of the beer production process and provides ideal solutions of the existing 

problems as described in Section 4.2.3. It considers the approach when the randomly 

placed orders are to be accumulated to form batches for production, and looking for the 



 

 

5 

 

application of intelligent control under realistic terms. The Matlab/Simulink software 

is applied to observe and control the operation process of a micro-brewery production 

system. As a consequence, it is necessary to develop a new model of the production 

system which takes into account some constraints. The problem brought into focus on 

the beer production system is where to minimise the time cost that is formulated by a 

mathematical model. The optimisation problem is solved by using intelligent 

algorithms that include GA, SA and ACO, whilst providing some effective 

improvement strategies based on their shortfalls of application. 

1.2 Research questions 

There are many uncertain and unpredictable factors in the real-life brewery production. 

The beer production process is time-consuming in terms of brewing fermentation. In a 

typical micro brewery, there are numerous different types of product to be made in 

several fermentation vessels. However, the capacities of vessels are limited. 

Appropriate time management is necessary in order to ensure demand satisfaction. 

Dynamic orders will be arriving to form a queue for allocation by decision making. 

Subsequently, orders will be accumulated to meet the required capacities of vessels and 

to be assigned for the several parallel fermenters to be processed over a given time 

period. In the meantime, new jobs cannot be added to the batch to process until the 

current job is finished when the vessel is in operation. Then vessels need to be cleaned 

after each production. The cleaning time is determined on the basis of the different 

capacities of vessels. In addition, the changeover time occurs when the new batch 

changed the different vessels to be produced after the previous batch is finished. Also, 

the due date is required to hand over the orders based on the customer demands and 
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satisfaction. Therefore, the main problem is how to schedule the sequence of orders to 

be optimal in order to minimise the production time, while satisfying all conditions and 

constraints. 

1.3 Research aim and objectives 

The aim of this research is to achieve a significant improvement in efficiency and 

performance in the brewery production system to meet varying market demand. On the 

basis of the development of a modelling approach, algorithms analysis, and 

optimisation techniques which minimise the production time and maximise the profits 

are proposed. The research objectives of this study can be divided into specific parts to 

achieve the aim as follows: 

 To investigate the existing literature available on optimisation methods for the 

scheduling problems of the manufacturing production system in order to give a better 

understanding of the current problems in this domain and to seek out some possible 

methods to solve the problems. 

 To analyse the rationale and development of the GA, SA and ACO in the various 

domains. 

 To formulate the problems using mathematical models and find out the 

constraints and conditions. 

 To simulate the scenario of the brewery production system for improving 

performance and efficiency based on the simulation results, obtained by the Simulink 

model. The following tasks should be achieved. 

o To obtain the result of the sequence of orders 
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o To obtain the result of the accumulated batch based on the decision 

making 

o To obtain the result of the different routes of operations 

o To obtain the result of the total production  

 To develop and implement heuristic algorithms to optimise a real-life brewery 

production system in order to minimise the total production time. The following tasks 

are considered in this part. 

o To apply the GA, SA and ACO to optimise the brewery production 

system 

o To modify and improve the GA and SA 

o To integrate the improved GA with the improved SA as a hybrid 

algorithm 

o To validate the hybrid algorithm as contrasted with other algorithms for 

optimising a micro-brewery production system 

1.4 Contributions of the research 

Four main contributions of this research are summarised as follows: 

 First of all, an optimisation based on a simulation model is formulated 

mathematically in Chapter 4 in order to maximise the profits and minimise the 

costs of the process operation for the job shop scheduling problems (JSP) of a 

brewery production system. A sequencing of orders for requests for production 

from the brewery forms the basis of a varying demand which is applied to the 

business process. A sequence of orders, whilst satisfying constraints on meeting 
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customer demand, is subsequently adjusted to form a basis for developing a 

model-based control-theoretical approach. This generic model is part of a new 

approach that it is used to tackle the problems. 

 The second contribution of the research is a Simulink model as explained in 

Chapter 5 which makes use of MATLAB/Simulink to model the scenario of a 

brewery production system in order to observe the performance and to improve 

capacity planning which allocates resources optimally and identifies the 

bottlenecks that include dynamics, delays, feedback, uncertainty and non-

linearity due to constraints. The queue of a sequence of batch orders will be 

changed based on the objective function as formulated in Chapter 4. It will 

follow a set of conditions and constraints to schedule the sequence of orders to 

be optimal. This simulation model is considered the most flexible to identify the 

different situations in dynamic production processes. Initially, it employed the 

‘first come, first-served rule’ accumulating arriving orders to meet the 

maximum capacity of vessels for the production plan. Moreover, the model of 

decision making can be changeable in order to alter the resource profile in 

different ways and observe the changes in the simulation results. In addition, 

the simulation system can show the numbers of accumulated batches of each 

product type produced in the same or different vessels.  

 The emphasis of the third contribution in Chapter 6 is to achieve an optimal 

design of the controller parameters with a novel intelligent optimisation 

algorithm which is proposed to combine an improved genetic algorithm (GA) 

with an improved simulated annealing (SA) for optimising the job-shop 

scheduling problem (JSP) in a micro-brewery, in order to minimise the total 
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production time. It adopts the acceptance probability of SA to improve the 

convergence of the advanced GA, which improves the computational efficiency 

and accuracy by real-number encoding and also improves the diversity of the 

population of the adaptive adjustment of crossover probability and mutation 

probability. Consequently, the improved GA and SA not only achieve the 

combination of the global search capability of GA and the local search 

capability of SA, but also it can help SA to take full advantage of the global 

information from GA. The convergence of crossover rate and mutation rate is 

optimised to 0.92 and 0.08, respectively, from initial values of 0.8 and 0.2 

respectively. 

 The fourth contribution of the research is to validate the novel proposed a hybrid 

algorithm with the different heuristic algorithms and to analyse the results in 

Chapter 7. We have applied GA, SA, Ant colony optimisation (ACO), improved 

GA and improved SA to optimise a typical brewery production system 

compared with the proposed hybrid algorithm. Comparison results of the 

brewery production system have demonstrated that the proposed algorithm 

gives better performance and effective ability to search optimisation solutions. 

In a typical scenario, it saved approximately 22%, 44%, 24%, 20% and 37%, 

respectively, in comparison with GA, SA, ACO, improved GA and improved 

SA in terms of total production time (This is one of three cases). 

1.5 Organisation of the thesis 

The structure of this thesis is organised into eight chapters. Each of the following 

chapters is introduced briefly as follows: 
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Chapter 2: Literature Review on Scheduling Problems for Manufacturing 

Production Processes 

This chapter introduces the theory, concepts and developments of scheduling problems 

for manufacturing production systems. The scheduling problems are classified and 

summarised related to this research background of brewery manufacturing production 

processes. Also, different optimisation methods are compared and critically reviewed, 

which will potentially be used to solve these problems. 

Chapter 3: Relevant Heuristic Algorithm 

This chapter introduces both the traditional (mathematical) and intelligent (heuristic). 

Three heuristic algorithms are discussed and compared that will be applied in this 

research. It provides the reader with a full and thorough understanding and analysis of 

rationales and research development. More specifically, the GA, SA and ACO are 

discussed as there are essential to the following chapters. 

Chapter 4: Brewery Industry Investigation and Mathematical Model Formulation 

It aims to investigate an overview of the brewery production system. The problems are 

formulated by a mathematical model. The brewery manufacturing production system 

will be analysed based on the model-based control-theoretical approach. The approach 

is based on a dynamical mathematical model of the type commonly used in control 

systems engineering. 

Chapter 5: Simulink Model Building and Simulation for a Brewery Production 

System 



 

 

11 

 

This chapter is dedicated to designing a Simulink model which simulates the scenarios 

presented in a real-life brewery production system to determine resource requirements 

and identify bottlenecks that include dynamics, delays, feedbacks, uncertainty and non-

linearity due to constraints. The results of the model can clearly demonstrate the 

production performance that includes sequences of orders, accumulation, decision 

making and total production time. 

Chapter 6: Hybrid Algorithm 

This chapter proposes a hybrid algorithm which combines the improved GA and the 

improved SA to optimise the brewery production system. The GA is improved by the 

encoding representation and adaptive adjustment of crossover rate and mutation rate. 

The SA is improved by the improvement of the generator and the improvement of the 

acceptance probability of temperature drop function. 

Chapter 7: Applications of Presented Methods and Algorithms 

It makes use of different optimisation algorithms to compare in optimising a typical 

brewery production system to validate the proposed hybrid algorithm as described in 

Chapter 6. The result of the hybrid algorithm gives better performance than other 

algorithms in terms of the total production time. 

Chapter 8: Conclusion and Future Work 

Finally, the main contributions of this research are summarised. The obtained results in 

the preceding chapters are compared and discussed. The directions of future research in 

this area are suggested. 
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Chapter 2: Literature Review on 

Scheduling Problems for 

Manufacturing Production 

Processes 

2.1 Introduction 

Scheduling is one of the most important activities of operation control in manufacturing, 

as well as service firms (Pinedo 2008). It allocates resources and tasks optimally to be 

executed within a certain time period in the production of goods and service, whilst also 

meeting the demand of satisfying the customers. It is playing a most important role in 

the management level of companies to improve their performance and efficiency. 

However, the manufacturing production scheduling process is a most important hotspot 

in the research and is one of the hardest problems in theoretical research. In the 

manufacturing system, there are a variety of products, process and production levels. 
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Production schedules can enable better coordination to increase productivity and 

minimise operating costs. In particular, JSP and FSP are classically the most important 

problems in the manufacturing (Rodammer & White 1988). 

This chapter aims to provide a concise survey of scheduling theories, concepts, and 

developments in the manufacturing that leads to a general understanding of the 

production scheduling. Moreover, it analyses the characteristic and general framework 

of the JSP in relation to the brewery production process by dealing with the 

classification of related optimisation methods, which will potentially be applied to 

optimise the beer production. Finally, optimisation in the beer production system is 

reviewed. 

2.2 Production Scheduling 

Scheduling plays an important role in most manufacturing production systems and 

engineering as well as service industries (Pinedo 2012, Suwa and Sandoh 2012, and 

Cerdá c.2006). It is a decision making process that allocates resources optimally to tasks 

over given time period that maximise the efficiency and to minimise the costs of 

operations of the companies in terms of some specific performance criterion 

(Baker1974, Lopez and Roubellat 2008). Production scheduling is also the operational 

plan for the production process which is the core of the development of the entire 

advanced production manufacturing to achieve management technology, operations 

research, optimisation, automation and computer technology, etc. The theory of 

production scheduling is generally concentrated on the modelling and optimisation of 

the production process. It can be divided into two aspects: Modelling and scheduling 
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algorithms (Garey, Johnson and Sethi 1976). A production schedule can be identified 

that resource conflicts, control the tasks of jobs during production, and ensures the raw 

materials are ordered in time. Wight (1984) identified the two crucial problems in 

production scheduling which are priority and capacity, such as: what should be 

processed first? And who is making the decision? Scheduling is also defined by Wight, 

it is establishing the timing for performing a task and observing in manufacturing 

company. Scheduling problems have been classified to be NP-hard which has no known 

algorithms for finding optimal solutions in polynomial time. Some crucial types of 

scheduling problems have been classified by (Cerdá c.2006) as follows: 

2.2.1 Static and dynamic 

In static scheduling, all production orders and arrival times are scheduled and the job 

machines are continuously available. On the other hand, it is often triggered by 

unexpected events when performing the dynamic scheduling in the practical production. 

Tang (2000) identified four sources of unexpected events: uncertainty in external 

demand; uncertainty in supply conditions; effect of the rolling planning horizon; and a 

system effect which is caused by the above three uncertainty sources. Furthermore, the 

typical events of problems which may occur have included machine breakdown, job 

priority, cancellation, shortage of materials, operator mistakes and tardiness of 

individual workers, etc (Li, Shyu & Adiga 1993). The traits of dynamic scheduling are 

that: firstly, it can generate real-time scheduling online; secondly, it can realise online 

identification of random disturbance; and thirdly, it can quickly carry out automatic 

weight scheduling. Dynamic scheduling can also be classified as follows: 
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 Feedback scheduling (Szelke & Kerr 1994): it is a new concept in recent years, 

there is still no widely accepted definition, which is often associated with dynamic 

scheduling. Feedback scheduling is a dynamic and stochastic environment; it 

emphasises the response capability of the environment change, so it can be considered 

as a type of processing mode or feedback mechanism of dynamic scheduling. 

 Adaptive scheduling (Nof & Hank Grant 1991): it is proposed based on the 

following facts: if the original scheduling has better scheduling performance and 

robustness, when the disturbance occurs, too frequent re-scheduling is not only 

unnecessary, but also easily causes system instability and therefore should reduce the 

rescheduling times to attempt to restore the original scheduling. Adaptive scheduling 

can be considered as a kind of realisation method of dynamic scheduling. 

 Real-time scheduling: for the batch scheduling, the real-time scheduling 

emphasises the feedback that can operate effectively and efficiently when the 

conditions change. It is a typical event-driven method (Li, Shyu & Adiga 1993). 

 On-line scheduling: for the offline scheduling, the online scheduling requires a 

production process that is continuous, to make timely decisions on environmental 

changes. On-line scheduling is a continuous scheduling method (Li, Shyu & Adiga 1993). 

There are a variety of dynamic events in the scheduling, (Suresh & Chaudhuri 1993) 

which have briefly been classified into four parts as follows: 

 Related to the production job: it includes the random arrival of jobs; the 

processing time of jobs is uncertain; the change of delivery time; the dynamic priority 

and the change of orders; 
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 Related to machine: it includes the machine damage; limited capacity of 

machines, machine blocking / deadlock and the conflicts of the production capability; 

 Related to the process: it includes the processing delay; the quality and the 

unstable outputs; 

 Other events: the personal problems of the operator, the delay of raw material, 

defective raw material, and the dynamic processing route, etc. 

2.2.2 Flow shop and job shop 

Flow shop scheduling is defined by (Seda 2008) such that all jobs pass through all the 

machines in the same order. There is more than one machine and each job has the same 

processing operation order which must be processed on each of the machines. A flow 

shop is illustrated in Figure 2.1. It shows that jobs start to process on machine 1, then 

machine 2, machine 3, …, to the final machine n . A flow shop means an operation 

where jobs must be processed on each machine in exactly the same order. 

 

Figure 2.1: A simple flow-shop 

Furthermore, a typical job shop can usually be described as: n  jobs are processed on 

m  machines, the processing time of jobs in the machine is known, the sequence of 
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production is given for each job to be processed in each machine (i.e. technical 

constraints), then the operation is required to satisfy with the technical constraints of all 

jobs to be processed on each machine according to the processing sequencing, the 

optimal processing performance index can be achieved. An example of a job-shop 

environment is shown in Figure 2.2. 

 

Figure 2.2: One machine in Job shop 

The JSP is one of most difficult discrete or combinatorial optimisation problem which 

belongs to the class of NP-hard problems. Each job can be processed in different 

machines (Grary and Johnson 1979). In addition, if all jobs have the same technical 

constraints (Sadeh & Fox 1996; Van Laarhoven, Aarts & Lenstra 1992), then a JSP can 

be transferred to the simple FSP; if the sequence of jobs of machines is also same, the 

problem can be further converted to the FJP. So FJP is a simplified form for JSP. JSP 

have many different descriptive forms, there is usually a linear programming model and 

disjunctive graph model. The research methods can be divided into two categories: 

exact algorithms and approximate algorithms. The exact algorithms are mainly applied 

to the disjunctive graph model and the enumeration method or other methods based on 

the event scheduling generated mixed integer programming model (Floudas, Aggarwal 
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& Ciric1989; Abdelmaguid 2009). The approximate algorithms mainly apply to the 

priority rule of the scheduling algorithm, the heuristic algorithm and the local 

improvement algorithm based on the local search algorithm, etc. (Panwalkar & Iskander 

1977). 

2.2.3 Make-to-stock and make-to-order production facilities 

In the make-to-stock manufacturing facility, the products are produced for inventory to 

supply ex-stock before orders arrive based on demand forecasts. The advantages and 

disadvantages of make-to-stock have been identified by (Chen and Ma 1999) that 

included a high class of production standardisation, high production efficiency, short 

time of orders and high inventory levels. It can be referred to as open shop. However, 

the companies need to be able to forecast demand accurately to determine how much 

product to be made and stocked. Otherwise, it could lead to excessive inventory and 

stockouts. On the other hand, make-to-order jobs are produced on the basis of the 

specific due date, size and quantities by the customers (Cerdá c.2006). On the contrary, 

make-to-order is summarised as a low degree of standardisation, low production 

efficiency as well as low inventory (Chen and Ma 1999). It also can be referred to as 

closed shop. 

Moreover, the research of production scheduling is a cross-research field that involves 

many subjects such as operations research, mathematics, computer engineering, control 

engineering, industrial engineering and so on. The production scheduling problem is 

very complex, usually expressed as multi-constraints, multi-objectives optimisation 

problem. It has been proved that it belongs to the NP-complete problem. 



 

 

20 

 

2.3 Scheduling in the discrete and continuous system 

The discrete system is a kind of classical complex system; Production scheduling for 

continuous process needs to meet the requirements of devices, equipment and process 

conditions (or capacity limit) in advance and to schedule and plan for a variety of 

feasible products in the time and space which is determined by the product structure, 

resource allocation, and process route of the production process in order to achieve the 

goals. 

 

Figure 2.3: Comparison of discrete systems and continuous systems (Cristina 2005) 

As indicated above (Figure 2.3) a discrete system is one in which the state variable 

changes at a discrete point in time and use computational procedures to solve 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be viewed in the Lanchester Library Coventry University.
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mathematical models. On the contrary, a continuous system is one in which the state 

variables change continuously over time and use deductive mathematical reasoning to 

define and solve the system. 

There is a very large difference between the continuous process and the discrete 

manufacturing process, the production object not only has physical changes, and also 

chemical reactions, such as nonlinear, stochastic, uncertainty, etc. which are difficult to 

express in the traditional mathematical model (Mockus & Reklaitis 1999). In addition, 

the continuity and stability of the continuous process require a higher standard, so the 

continuous process scheduling is more concentrated on the scheduling system strategy, 

expert system and dynamic scheduling. The study of the mathematical model is usually 

transformed from the mechanical manufacturing scheduling model, or to the 

establishment of a model containing equipment. However, these models are either too 

simple or so complicated that it cannot explicitly describe the production process and it 

is too difficult to find out the solutions (Pinto & Grossmann 1994). The resulting 

solution needs to be used as an implementation of the program to be executed after a 

complex decision-making process and correction, and sometimes a feasible solution 

cannot be found because of the complexity of the production environment and 

conditions. Hence, it is not realistic to rely on the classical mathematical model 

completely for the complex process, but it is an effective way to combine experience 

and to improve benefits. 

2.4 Scheduling in the batch process 

Batch production refers to a similarity of product production process that can be 
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classified as either multi-product or multi-purpose (Rippin 1983). 

2.4.1 Multi-product 

In the multi-product production process, all products are in accordance with the same 

sequence of operations through the same production approaches. The whole production 

process consists of several production stages, each stage contains varied equipment, 

each product requires an order passing through all stages of production, and hence it is 

analogous to the flow-shop scheduling problems (FLP). 

Scheduling of multi-product batch production process has two main aspects: 1) the 

completion time of the product determines the number and size of products. 2) product 

completion time is determined not only by the final demand for the product and the 

impact of the delivery date of the product, but also by the processing capacity of the 

equipment, storage conditions and operation switching time, etc. 

2.4.2 Multi-purpose 

In the multi-purpose production process, each product can be produced in one or more 

production lines for a number of operations. A batch cannot be transferred to a machine 

to produce the next operation unless that machine is currently idle. It is analogous to 

the JSP. 

In addition to the two aspects of the multi-product batch production process scheduling 

problem, the sequencing problem of the same products can have the same properties on 

multiple paths for processing. 
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2.5 Scheduling methods 

In order to commence production, decisions need to be made regarding customer 

demands. Estimation and forecasting methods are mainly used in Elasyed and Bouncher 

(1994), which primarily allows companies to predict the future values in accordance 

with past data. In this regard, it is divided into qualitative and quantitative techniques. 

The former are utilised for predictions when none or very little historical data are 

available. This approach is normally used to predict based on historical trends, market 

research, customer surveys, panel consensus, etc. The latter, i.e. quantitative techniques 

are used for data forecasting, which has divided the techniques of time-series analysis 

and structural models. Time-series analysis involves sequences of data collected over 

time, which are classified into short-range forecasting (from hours to a year), medium-

range (from a year to 5 years) and long-range (over 5 years). The structural models are 

widely used for understanding economic behaviour. The approach can also be used in 

the research to forecast the demand and to estimate the impact of future product 

development.  

Scheduling problems have been studied for several decades and many approaches have 

been proposed to solve the scheduling problems. Problems in manufacturing are all 

highly uncertain and dynamic. The problem of uncertainty mainly refers to the 

randomness of characteristics and constraints that the range of them can only be 

determined as most time, but the specific values in a period cannot be determined. The 

dynamics refer to the property that the characteristics and constraints of problems are 

changing with time. The values can be determined only in a period, but they will change 

gradually. In most manufacturing systems, researchers and engineers always simplify 
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the problems of the uncertainties and dynamics to certain values, which will make the 

design and application of algorithms more convenient. However, the simplification will 

normally bring inaccuracy and instability. Therefore, there are several methods to deal 

with the uncertainty and dynamic problems in order to improve the stability and solving 

efficiency in manufacturing as follows (Tao, et al. 2015): 

(1) Replicated simulation: This method is mainly for the modelling of uncertainty. 

It takes repeated measurements to obtain the mean value and variance of uncertain 

parameters. Then it conducts a number of decisions in a small range around the value 

to obtain a set of good solutions. It is quite time-consuming if it implementing all 

algorithms, the inaccurate solutions obtained are often due to only limited tests which 

cannot cover all situations. 

(2) Description with fitting function: This method can be used for the solving of 

either uncertainty or dynamics. From the mathematical point of view, it obtains the 

fitting functions of uncertainty or dynamic by capturing the relationship between the 

actual environment and the variation rules of uncertain or dynamic parameters. 

(3) Cyclical forecasting: It is used primarily for the modelling of dynamics. It 

predicts the variation characteristics of the problems at regular intervals. Predicting 

rules are also conducted according to some tests or fuzzy relation among problem 

features and the environment. 

(4) Feedback control: This method can be applied to deal with both uncertainty and 

dynamics. It does not need to analyse the characteristics of a problem and its 

environment in advance. It refers to the design of an adaptive feedback control strategy 

in an optimisation algorithm to automatically adjust the decision making parameters 
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with variant characteristics during the optimisation process. It can be seen that this 

scheme is generally carried out with multi-period problem simulation. 

Effective research and application of scheduling methods and optimisation techniques 

are most important for achieving advanced manufacturing and improving production 

efficiency. Improving the production scheduling scheme can greatly improve the 

production efficiency and resource utilisation, and then enhance the competitive ability 

of enterprises. There is much published literature which focuses on the new approaches 

in the last decade for formulating the short-term scheduling problem in order to reduce 

the computational complexity of the resulting mathematical model, and most of them 

can be classified on the basis of time representation. However, there is still no exact 

method and theory for scheduling problems. The approaches proposed can be divided 

into the classical scheduling methods and artificial intelligence methods.  

2.5.1 Classical scheduling methods 

The classical scheduling method is mainly applied to the scheduling scheme, and the 

core problem is one or multiple optima of the objective function. There are three main 

types of methods for scheduling problems in classical scheduling theory that include, 

1) analytical optimisation methods, 2) numerical optimisation methods and 3) heuristic 

algorithms. 

Analytical optimisation is a class of methods which can achieve the optimal scheduling 

in polynomial time based on the specific scheduling objectives (Zheng 2008). Although 

the method is very effective, the scope of application is limited for specific problems. 

However, it is very difficult to find an analytical optimisation algorithm for large-scale 
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scheduling problems in addition to a single and simple scheduling, such as a small 

number of scheduling problems. 

Numerical optimisation methods offer an alternative scheduling method, which is 

widely used in some feasible scheduling sets. From the point of view of data planning, 

production scheduling problem can be attributed to the equality constraints or inequality 

constraints. It can be represented as the mixed-integer linear programming (MILP) or 

mixed-integer nonlinear programming (MINLP) optimisation model for the 

optimisation of one or more objective functions. 

The traditional method of solving MILP is a branch and bound method (BB), which is 

one of the few effective methods for solving combinatorial optimisation problems 

(Patterson 1984). In order to improve the solving efficiency, (Shah, Pantelides & 

Sargent 1993) various improved strategies have been applied for BB or simplified 

calculation techniques. (Harjunkoski & Grossmann 2001) proposed the application of 

the decomposition strategy of the mathematical programming method to solve the 

problem of the large-scale scheduling. (Ierapetritou & Floudas 1998) proposed a new 

algorithm based on continuous time to represent the MILP mathematical model, which 

can significantly reduce the total number of variables, so as to effectively reduce the 

computation time. Although the mathematical programming method is relatively 

mature, it can only solve the problem of small scale optimisation effectively. For a large-

scale complex production scheduling problem, with the increasing the number of the 

devices and tasks, the scale of the numerical model is dramatically increasing, then to 

find the optimal solutions often belong to the NP-hard problem, which it is difficult to 

solve; heuristic methods have great superiority in this aspect for optimisation. 
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Heuristic methods are based on heuristic reasoning to ensure the local optimal in the 

scheduling is in accordance with the decision of the equipment, the status of the task. 

Kudva et al. (1994) applied the heuristic method to generate a scheduling scheme for 

multi-product batch and semi-continuous enterprise with limited intermediate storage 

in the case of considering the priority of the order and reducing the switching cost. (Al-

Khayyal, Griffin & Smith 2001) proposed a tree-based heuristic method based on a 

decomposition technique, which is applied to the production scheduling of flat glass. 

The heuristic method can ensure the local optimum is based on the current point of view, 

but it is difficult to guarantee the global optimum.  

2.5.2 Intelligent optimisation methods  

Artificial intelligence methods are a class of approximation methods which are 

designed to handle hardest combinatorial optimisation problems where the classical 

methods are not that very effective. Although the classical scheduling problem theory 

has achieved great development, there is a big difference between the actual scheduling 

problem and the theory. Due to its need to simplify the scheduling problems in the 

research, many classical scheduling theories still cannot solve the practical scheduling 

problem which is difficult to express in the mathematical model. Therefore, how to 

narrow the gap between the theoretical research and a practical solution becomes a 

common concern. Since 1980, many scholars have attempted to solve the scheduling 

problem in the actual application, steering by the theory of scheduling research. Hence, 

the abundant research results provide a better way for the field of artificial intelligence. 

Intelligent scheduling method mainly includes expert system method, artificial neural 

network method, fuzzy optimisation method and biological evolution algorithm, 
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dispatching rules, etc. 

 Expert system 

Expert system methods form a database through the collection of operational 

experience, and then to search the optimal online (McBride & O'Leary 1993). 

Advantages of this method are simple and easy to apply. The disadvantages of this 

method are hard to collect and cover all of the aspects, as well as hard to quantify, so 

the method is generally used as a supplementary method with other mathematical 

programming methods and artificial intelligence techniques.  

 Artificial Neural network (ANN) 

ANN method does not need to be accurate to the process model, which is the use of 

process input and output data in accordance with the connection weights of the network, 

the network can accurately reflect the process characteristics of the time for 

optimisation calculation (Cochocki & Unbehauen 1993). Generally, the major 

advantages of using ANN are as follows: 1) it is suitable to be used in a larger amount 

of data sets; 2) it has the ability to implicitly detect complex nonlinear relationships 

among concerned variables. 3) it can be used to extract patterns and identify trends that 

are too complex to be noticed by either humans or other techniques. However, the main 

drawbacks of ANN are summarised as follows: 1) it is difficult to specify 

mathematically; 2) it cannot extrapolate the results; 3) it cannot handle uncertainties 

and cannot interpret the relationship between input and output.   

Based on above review, there is not enough data for training ANN in this research and 

the research problem can be described using a mathematical model. The ANN is better 
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suited for use with a larger amounts of data. As such the ANN is not suitable to be used 

in this research.  

 Fuzzy optimisation  

Fuzzy optimisation is an area of soft computing that enables a computer system to 

reason with uncertainty (Castillo & Melin 2001). The probability of achievement of 

global optimal solutions is larger when compared with the model free optimisation 

methods for nonlinear optimisation problems. Fuzzy set theory is focused on the use of 

language and concept as a representative of the macro function of the brain to solve the 

ambiguity of the language information in a vague way. The main advantage of fuzzy is 

contrary to ANN that it is good to handle uncertainties and can interpret the relationship 

between input and output by producing rules. On the other hand, the disadvantage of 

fuzzy optimisation that it is tedious; fuzzy rules and membership functions and fuzzy 

outputs can be interpreted in a number of ways making analysis difficult (Zheng 2008). 

However, there are too many situations in the real world that it is difficult to decide in 

an unambiguous manner. So it is not suitable to adapt to changing situations as in this 

research.   

 Dispatching rules  

Dispatching rules have been applied consistently to scheduling problems. They are 

procedures designed to provide good solutions to complex problems in real-time. The 

terms, dispatching rule, scheduling rule, sequencing rule, or heuristic are often used 

synonymously (Panwalker and Islander 1977; Blackstone, Phillips and Hogg 1982; 

Baker 1974). Dispatching rules have been classified mainly according to the 
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performance criteria for which they have been developed. A basic dispatching rule is a 

rule that prioritises all the jobs that are waiting for processing on a machine. The 

prioritisation scheme may take into account jobs’ attributes and machines’ attributes as 

well as the current time; a dispatching rule inspects the waiting jobs and selects the 

highest priority job next to process whenever a machine is idle. Dispatching rules can 

be classified into static and dynamical rules (Wu 1987). A static rule is not time-

dependent but just a function of the job data, the machine data or both (EDD-earliest 

due date first, SPT-shortest processing time first). Dynamical rules are time-dependent 

since they also take into account, in addition to the job and machine data, the current 

time (Example: minimum slack time-first). Dispatching rules can also be categorised 

into two classes: local and global rules; a local rule uses only information related to 

either the queue or the machine and work centre to which the rule is applied. A global 

rule may use information related to other machines, such as either the processing times 

of the jobs or the current queue length on the next machine. In addition, dispatching 

rules has a number of advantages as follows: 1) it is easy to implement; 2) it can find a 

reasonably good solution in a relatively short time; 3) it obtains optimal for special 

cases. The disadvantages of dispatching rule also classified that included limited use in 

practice and it can find unpredictably bad solution. According to advantages of 

dispatching rules, some of important methods can be employed in the model for 

production scheduling that includes priority, EDD, SPT.  

 Evolutionary algorithms 

Evolutionary algorithms is widely applied in many fields and have many developments 

in the basic theory and applied research (Kim, Jung & Lee 1996). GA and evolutionary 

algorithms are optimisation methods based on principles of inspired by nature and can 
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be viewed as searching algorithms since they explore a space using heuristics 

approaches. They can also be used to optimise a general objective function. However, 

there are still many problems which need further study to solve them, such as proof of 

convergence, to avoid the premature convergence problem, to deal with complex 

constraints, environmental parameters selection method, etc. In order to solve these 

problems, the intelligent optimisation methods are widely used in many domains. The 

application of the process of intelligent optimisation algorithms in manufacturing 

engineering has been presented by (Tao, et al. 2015). It mainly consists of five parts as 

shown in Figure 2.4, including problem modelling, variable encoding, operator design, 

simulation and algorithm implementation. Also, it is emphasised that problem 

modelling and variable encoding are the most critical parts of algorithm application. 

Thus, the design of the operator in the algorithm depends largely on the specific 

environment and ways of coding.  

 

Figure 2.4: The application process of intelligent optimisation algorithm 

 Process modelling: the core of the modelling uses variables and formulas to 

concisely and comprehensively express the problems in accordance with the 

environment and requirement that include variables, objectives and constraints. Based 
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on literature review, environmental parameters and the relationship between variables 

should be given in concise mathematical expression. 

 Variable encoding: encoding scheme is the relation between problem and 

intelligent optimisation algorithm. It is the solution space of problem based on operators 

in the algorithm. There are different searching capabilities of the algorithms based on 

the levels of randommness by different encoding schemes. 

 Operator design: operators need to be selected and designed with population-

based iteration in accordance with the above encoding scheme, such as crossover, 

mutation and so on. It decides the evolutionary direction of the population and the 

whole searching method of the algorithm. Different kinds of operator have different 

abilities of exploration and exploitation to be suitable for the different sorts of problems. 

 Simulation: it is the most effective way to verify the performance of algorithms 

with the theoretical analysis. Moreover, parameters need to be modified based on 

several experiments. The algorithm can be adopted and applied if the expected 

performance is reached; otherwise, the encoding scheme or the operators need to be 

reanalysed and adjusted for the specific problem. 

 Algorithm implementation: the algorithm can be developed in practical systems 

for application after the process of the design and simulation. 

Although the mathematical basis of the intelligent optimisation method still needs to be 

improved, the intelligent optimisation method has been widely used to solve complex 

industrial optimisation problems in different domains, such as the beer industry. The 

beer production process is extremely complex, with many constraints and limitations. 

Although the traditional control and theoretical optimisation procedures are relatively 

mature, the application of the brewery production system is a non-trivial task. Not 
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surprisingly, there are many intelligent optimisation methods which have been applied 

in the beer production processes in the literature. 

 

2.6 Optimisation in the beer production system 

With the development of artificial intelligence, many intelligent optimisation 

algorithms have been proposed, such as GA, ACO, SA, TS, neural network (NN), 

particle swarm optimisation (PSO), Immune Algorithms (IA), etc. These algorithms 

have been developed to provide new ideas and methods for solving complex problems 

via simulation or explanation of some natural phenomena or processes. Intelligent 

optimisation has been identified by (Hopfield 1982) which can effectively solve the 

problem of combinatorial optimisation, such as TSP (Travelling Salesman Problem), 

QAP (Quadratic Assignment Problem), JSP (Job-shop Scheduling problem), etc. (Shah, 

Pantelides & Sargent 1993; McBride & O'Leary 1993; Ankenbrandt 1994; Dasgupta & 

Forrest 1999; Tsai & Tsai 2002).  

The optimisation of beer fermentation control has been reported by (Xiao and Zhou 

2004) which applied the ACO to optimise the process. However, the authors only focus 

on a series of different temperature profiles for the mixture during a fixed period of 

fermentation to model and simulate the system. The optimal results are reported to be 

readily obtained. Similarly, a mathematical model of the temperature controlling system 

of a fermentation process has been created by (Wang 2005). The advantages reported 

in this paper are focused on a brewery company to develop the scenario of a beer 

production system; the mathematical model is constructed to allow the fermentation 
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temperature to be detected. (Chen and Hu 1992) analysed the beer production as a kind 

of multi-segment and multi-species batch production process and combined the expert 

knowledge to develop a hybrid optimisation scheduling strategy for production. In 

addition, Zheng, et al. (2011) and (Zheng 2008) have applied the ACO to optimise the 

beer production process. The former is just concentrated on beer production scheduling. 

The latter, not only applies the intelligent algorithm to optimise the scheduling of beer 

production, it also provides studies on the automation technology and the applications 

of the beer production system. Furthermore, an integrated control comprising a fuzzy 

control system and a PID control system has been developed. It successfully detects the 

filtering process and discusses an auto-control system for the process. It also compared 

different intelligent algorithms to optimise the beer production process that included 

ACO, GA, SA etc. The cost and potential uncertainty issues of beer production are 

additionally considered for future work. The intelligent algorithms need further 

research and analysis before they can be implemented.  

Manufacturing processes of the future will be more concerned with profits as businesses 

become tightly squeezed. In this regard, (Shi 2006) identified that the beer 

saccharification processing auto-control system can be analysed in either the hardware 

or software aspects to optimise the techniques. The PID algorithm has been applied 

which is a primary control method in the paper to modify and adjust parameters for the 

achievement of system performance in terms of profit. In addition, Yan, et al. (2009) 

illustrated that a small brewery production process can be modelled using the Flash 8.0 

platform and ActionScritpt 2.0 software to model and simulate the entire process. 

Furthermore, a number of decomposition approaches have been proposed by (Wu & 

Ierapetritou 2003), which are used for a solution for the short-term scheduling problems. 
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Moreover, an integrated architecture of integrated information system (ARIS) and 

unified modelling language (UML) method has been proposed by (Ren 2010) to model 

the life-cycle for the brewery. It used a genetic algorithm and Matlab to optimise the 

three kinds of energy consumption for water, electricity and steam. 

From the review of the literature, it is found that various researchers have applied 

numerous optimisation techniques in the manufacturing production system for 

partitioning optimisation problem with mixed results. Simplified versions of the 

problem can be solved exactly by the early approach. However, it is very difficult to 

find any exact solution for real problems, which are too large and complicated. Heuristic 

method was then devised to find good solutions, or find simply feasible solutions for 

the really difficult problems. Therefore, most research now consists of designing better 

heuristic solutions for specific instances of scheduling problems. In this present work 

three popular optimisation methods of GA, SA and ACO have been applied to the beer 

production scheduling problems. These three methods are widely used to apply in 

optimisation problems and will be discussed in Chapter 3. 

2.7 Conclusion  

In this chapter, the history and concepts of production scheduling have been described. 

It is leading to understanding the existing production scheduling systems and problems, 

to find out the ways to improve them. The chapter covers not only techniques used to 

support decision making in real-life production scheduling, but also the intelligent 

optimisation methods in the production scheduling problems. Based on a 

comprehensive survey on production scheduling problems, JSP is representative of the 
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production scheduling domain which is more and more close to the actual production 

in that the character consists of randomness, dynamic, uncertainty, constraint, multi-

objectives, etc. This research concentrates on business process modelling and 

optimisation for a micro brewery production process. 
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Chapter 3: Relevant Heuristic 

Algorithms 

3.1 Introduction 

There are many different optimisation methods that are used for rescheduling problems 

in the variety of scheduling environments. It is well known that for NP-hard problems, 

e.g. job shop scheduling problems (JSP), is one of most difficult discrete or 

combinatorial optimisation problems in the planning and managing of manufacturing 

processes, which belongs to the class of (non-deterministic polynomial time) known as 

NP-hard problems (Garey, Johnson and Sethi 1976), which does not generate form 

explicit solutions for JSP. Heuristic methods have been identified by (Seda 2008), which 

could provide an optimal solution for complex systems by using genetic algorithms 

(GA), simulated annealing, Tabu search, etc. Algorithms will be used to find values of 

discrete or continuous variables that optimise system performance or improve system 

reliability. Sun, Cheng and Liang (2010) also complemented this approach and have 



 

 

38 

 

identified two main classes of meta-heuristics. One is the construction and 

improvement heuristic (Tabu search, simulated annealing, etc.), and another is the 

population-based heuristic (GA, particle swarm optimisation (PSO), artificial immune 

system and their hybrids, etc.). However, seeking a suitable intelligent algorithm for 

large-scale parallelism becomes a major research goal in relevant disciplines based on 

the view of practical engineering problems, such as complexity, constraints, nonlinear, 

multiple minima, difficulties in modelling, etc. 

Due to its good versatility and independence, intelligent optimisation algorithms has 

largely shortened the time of decision-making in large-scale optimisation problems of 

manufacture. However, lower searching time often conflicts with the searching 

accuracy in most cases. To improve the problem solving capability, research in 

intelligent optimisation algorithm based on different domain characteristics never 

stopped. From the view of manufacturing production scheduling, this chapter classified 

and comprehensively analysed the basic concept, basic principle, rationale, 

convergence, character application features and research development of the 

optimisation methods that included the GA, SA and ACO.  

3.2 Traditional optimisation methods 

3.2.1 Linear programming 

Optimisation methods are used to find the best values of decision variables for certain 

types of models which can be either linear or non-linear. Linear programming (LP) is 

an extremely powerful tool in modelling many applications when used to solve various 

optimisation problems represented as a mathematical model. Many scheduling 
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problems can be formulated in traditional linear or integer programming form. These 

problems may be defined as the problem of maximising and minimising a linear 

function subject to linear equality and linear inequality constraints. Each optimisation 

problem consists of three elements: decision variables, objective function, and 

constraints. Decision variables are the variables in the model that represent production 

levels, transportation levels, etc. which are under the control of the decision makers. 

The objective function can be the result of an attempt to express a business goal in 

mathematical terms that needs to be either minimised (e.g., cost) or maximised (e.g., 

profit, income, customer satisfaction). Constraints are restrictive limitations which need 

to be satisfied by the decision variables.  

LP problems that can be expressed as follows: 

Minimise  
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or it can be presented in a canonical form as follows: 

Minimise  
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subject to: 

0

Ax b

x




  

where x  is the vector of variables, c  and b  are vectors of coefficients of the objective 

function, A  is a matrix of coefficients of the constraints. 

In general, a method is based on the characteristics of a specific constraint formulation, 

such as single model task only; and the objective function, such as strictly integer values 

(Davis 1985). 

3.2.2 Constrained and unconstrained optimisation 

3.2.2.1 Constrained optimisation 

There is an important method to solve the constrained optimisation problems, which is 

to obtain the penalty function method for solving a series of unconstrained optimisation 

problems (Box 1965). An unconstrained optimisation method is used to solve the 

constrained optimisation problem, and the feasibility of the iteration point is also 

required to decrease the value of the objective function. Penalty function method of the 

unconstrained optimisation methods will execute punishment to the infeasible iterative 

point and to increase the penalty amount with the iteration progresses, forcing the 

iteration point can be gradually closer to the feasible region; once the iteration point 

becomes a feasible point, which it is the optimal solution for the original problem. In 

addition, there are also some other methods which can solve the constrained 

optimisation problem that include sequential quadratic programming, the Augmented 

Lagrangian method, the Zoutendijk feasible direction method and the gradient 
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projection method, etc (Rao & Rao 2009). Constrained optimisation involves the 

optimisation of a process subject to constraints that have two basic types: equality 

constraints and inequality constraints. Equality constraints define that some factors 

have to equal constraints; inequality constraints defines that some factors have to be 

less than or greater than the constraints, normally called upper and lower bounds (Simon 

2013).  

3.2.2.2 Unconstrained optimisation 

The unconstrained optimisation method is very important. This is not only because of 

many problems in scientific engineering practice, but also that most optimisation 

problems are transformed into the unconstrained problem for solving (Di Fonzo & 

Marini 2011; Simon 2013). Such as Newton method, conjugate gradient method, 

variable metric method, etc. 

3.3 Heuristic algorithms 

Since the early of the 1980s, some novel optimisation algorithms have been developed 

by simulation to reveal some natural phenomenon or process development and its 

principle and content relates to mathematics, physics, biological evolution, artificial 

intelligence, neural science and statistical mechanics. These provides new ideas and 

methods for solving complex problems, as NP-hard problems, such as neural network, 

chaos, SA, evolutionary programming, GA, ACO, tabu search and hybrid optimisation 

strategies etc. The unique advantages and mechanisms of these algorithms have 

attracted worldwide attention and set off a wave of research in this field, and have been 

successfully applied in many areas (Tao, et al. 2015). In the optimisation field, due to 
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the algorithm for constructing the intuitive and natural mechanism, which is usually 

called intelligent optimisation algorithm or modern heuristic algorithms. 

There are various characteristics of the GA, SA and ACO have compared as shown in 

Table 3.1, these three algorithms are to be applied in this research for optimising a 

brewery production system.  

Table 3.1: Comparison of characteristics of GA, SA and ACO 

 GA SA ACO 

Innovator and 

Emergence 

time 

John Holland 

1975 

A Kirkpatrick 

1985 

Marco Dorigo 1992 

Source of 

inspiration  

Evolution 

principle 

The foraging 

behavior of ant 

colonies 

Physical annealing  

Originally 

purpose  

For solving 

combinatorial 

problems 

For solving 

combinatorial 

problems 

For solving 

combinatorial problems 

Using memory Memory less Memory less Using memory store 

amount of pheromones 

Population or 

single solution 

orientation 

Population-based 

algorithm 

Single solution Population and single 

based 

Parameters Population size Annealing rate Pheromone 
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Crossover rate  

Mutation rate 

Initial 

temperature 

Cooling factor 

Evaporation rate 

 

Convergence Rapid Rapid Slow 

Generating 

initial solution 

Random Random Random and local 

search  

Finding local 

optimum 

Mutation operator Deceasing 

temperature and 

limiting search 

space 

Accumulation on better 

solution 

Escaping from 

local optimum 

Random search of 

search space, 

using crossover 

operator 

Evaporation 

mechanism  

Probabilistic acceptance 

of non-improving 

solutions, based on 

acceptance function and 

temperature parameters  

3.3.1 Genetic algorithms (GA) 

Genetic algorithms were proposed by John Holland (1975). It is inspired by the 

biological evolution of random search algorithm based on natural selection and natural 

genetic mechanisms for solving both constrained and unconstrained optimisation 

problems. The procedure of GA is to repeatedly modify a population of individual 

solutions. At each step, the current population will be selected randomly to be parents 

which produce the children for the next generation. Over successive generations, the 

population evolves toward an optimal solution. Likewise, (Mitchell 1998; Shaw et al 



 

 

44 

 

2000) has defined that GA is a biological simulation in the natural environment of the 

survival of the fittest genetic and evolutionary process to form a kind of adaptive ability 

and global search probability. The possible solution of each problem will be considered 

as an individual (chromosome) of the population that form clusters of each chromosome 

as encoding, to carry on the appraisal according to the predetermined objective function 

for each individual, and also to give a fitness value. The algorithm will be based on the 

fitness value of its search process. Three main types of rules at each step are used to 

create the next generation from the current population by selection, crossover and 

mutation of three genetic operators. 

3.3.1.1 Encoding 

Encoding is the primary problem that needs to be solved by GA. The Holland coding 

method is binary code, but this simple coding method is difficult to directly describe 

the nature of the problem in many GAs applications, especially in industrial engineering. 

Over the past decade, there are some main encoding methods which have been proposed 

for the special issues as follows (Holland 1975; Gerst 1971; Zhou and Sun 1999): 

 Binary encoding  

 Gray code  

 Real number encoding 

 Symbolic coding  

3.3.1.2 Initial population and the evaluation of fitness  

First of all, it needs to determine the number of individuals in the population, namely 

the population size ( popsize ), and then generate an initial population randomly, using 
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the fitness function to evaluate the performance of each individual of the initial species 

as the initial solution which is to calculate the fitness of each initial solution. If the 

fitness is higher, the individual performance is better, and then it is closer to the optimal 

objectives, so the definition of the fitness function plays an important role in the GA. 

In addition, as many GA solutions require a significant amount of computation time to 

solve some practical problems, it generally has a large population size and needs to 

apply more substantial genetic and evolutionary operations for many individuals, 

especially in the calculation and evaluation of the individual fitness of large numbers. 

It may lead to the low efficient of the evolutionary computation process, and may fail 

to meet requirements of the computation speed. It is recognised that there is the 

possibility of parallel processing of the GA. Hence, a number of parallel GAs have been 

proposed in past decades (Tomassini 1995; Konfršt 2004). These algorithms have 

obtained even better optimisation quality than the classical GA.  

3.3.1.3 Selection 

Selection is to select the superior individual for producing the next generation based on 

the size of fitness, so it guarantees the population of the evolution. Selection operation 

is the operation to select the superior and eliminate the inferior, the survival of the fittest 

individuals of the population. The Higher fitness of individuals has higher probabilities 

to select to a large group in the next generation; for the lower fitness individuals, it has 

lower probabilities to select for the next generation. The task of selecting operation is 

to select some individuals from the parent population in accordance with some methods 

as follows: 

 Roulette selection 
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Roulette is one of the most commonly used methods among the various methods. 

(Goldberg 1989) have explained that if all the individual in the population is placed on 

the roulette wheel according to their fitness value, then the higher the fitness of the 

individual, the more probability of selection to produce more offspring, whereas the 

lower fitness individuals have less probability of selection. The specific procedure can 

be stated as follows: 

1) To compute each fitness of chromosome in the population, the fitness can be 

denoted if  , where 1,2,...,Mi  , M is the size of the population 

2) To calculate the sum of all fitness of chromosome, it can be obtained as follows:  

 
1

N

j

j

Sum f


   (3.3) 

where, N is the number of individuals in the population 

3) To calculate the probability of each individual to be selected for the next 

generation, the selection probability can be denoted ip , then it can be obtained: 

 i
i

f
p

Sum
   (3.4) 

4) To calculate the accumulation probability of each chromosome, it can be 

obtained:  
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i

i j

j

q p


   (3.5) 

where, is accumulation probability of chromosome i , ( 1, 2,..., ni  ). For example: 
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Figure 3.1: Example of the accumulation probability  

Figure 3.1 is a basic example which is how to calculate the accumulation probability. In 

this case, 0.21, 0.48, 0.12 and 0.29 are selection probability of each individual; 1q , 2q , 

3q and 4q  are accumulation probability for 0.21, 0.69, 0.81 and 1, separately. 

5) To generate a pseudo random number, denoted r  of the uniform distribution 

between 0 and 1, denoted [0, 1]. 

6)  If 1r q , select the individual 1; otherwise, to select the individual k , then it 

requires to meet 1k kq r q    

7) Repeat 4) and 5) M times 

 Rank selection 

Rank selection sorts the population first according to their fitness value and ranks them. 

The probability of each individual is selected based on its rank (Baker 1985). The 

operation process of rank selection can be described as follows: 

1) All individuals in the population sort descending order according to their fitness 

value. 
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2) To design a probability distribution table according to the specific problem, and 

to assign each probability value to each individual according to the above arrangement; 

3) To apply the selection method of the roulette wheel to generate the next 

generation population based on the selection probability value of the individuals.  

 Tournament selection 

Tournament selection is also a more commonly used method by which to select a 

number of individuals randomly from the population to carry on the tournament, then 

to choose the winner (best fitness of the individual) to be the parent. The operation can 

be summarised as follows (Ji 2004): 

1) To select the N (In general, N value is 2) individuals randomly in the population 

to compare their fitness value, and then to select the highest fitness of the individual to 

the population of the next generation. 

2) Repeat the above M times, then the new population can be obtained. 

 Elitism selection 

Elitism selection selects the best one or more best individual from the current 

population to the new population. The individual with the highest fitness in the present 

population does not participate in the crossover and mutation operation and is used to 

replace the individual with the lowest fitness of the population after crossing and 

mutation. This method can guarantee that the optimal individual is not destroyed by the 

crossover and mutation operation, which is an important guarantee for the convergence 

of GA. On the other hand, it is also easy to lead to the local optimal and individual is 

not easy to be eliminated; so that the global search ability of the algorithm is not strong. 

Therefore, this method is generally used in conjunction with other selection operations, 
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which can have a good effect (Ji 2004). 

3.3.1.4 Recombination 

Recombination is a new method to generate a new individual (chromosome), then to 

recombine after the selection, the most common method of the recombination that 

includes crossover and mutation. 

 Crossover  

Crossover is the operation where two individuals as the parent are chosen by the 

selection methods to generate, and replace the two new individuals. Crossover 

operation is the most important feature of GAs, which is different from other 

evolutionary algorithms. It plays a key role in the convergences of GAs. Chromosome 

crossover operation is executed in accordance with a certain probability, called cP , so 

that it has cP popsize   individual for crossover operation. More specifically, each 

individual will generate a random number r  in between 0 and 1, if cr P , the individual 

will be selected for crossover. Then it will randomly match pairs of the chromosome to 

generate a random number pos  (where 1... 1,pos m m  . m  is the number of genes in 

the chromosome), pos is a crossover point which is for crossover and replace of an 

individual gene. Crossover can be described as following (‘|’ is the crossover point) in 

Figure 3.2: 
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Figure 3.2: Example of crossover operation at the single crossover points 

There are also other methods to make the crossover, such as two crossover points, 

uniform, etc. specific crossover made for a specific problem can improve the 

performance of the GA. In the GA, it is necessary to pair the individuals in the 

population before the crossover operation, and the common matching strategy is 

random matching. Crossover operator is normally designed to include the contents of 

two aspects: how to determine the position of the cross point? How to carry out the 

exchange of genes? Here some kinds of crossover operator have been classified that are 

applicable to binary coding or real number coding as follows (Barros, de Carvalho & 

Freitas 2015): 

1) Single point crossover; also known as the simple crossover, which is to select 

one crossover point randomly in the individual encoding cluster, and then to exchange 

a pair of individual parts of the gene at that point.  
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2) Two-point crossover; the specific procedure of implementation is to select two 

crossover points in the pairing between two individuals of the encoded string, and then 

to exchange the part of the genes at two crossover points. 

3) Uniform crossover; this refers to every gene in two pairs of individuals having 

the same probability to exchange, so as to form two new individuals. 

4) Arithmetic crossover; it refers to the linear combination of two individuals in 

order to generate new individuals. 

 Mutation  

The mutation operation is defined when some of the gene values of the individual 

encoding cluster are randomly rearranged from the crossover operations, so as to mutate, 

and then to obtain a new individual. Mutation is intended to break one or more 

individual and to jump out of a local optimum to discover a better minimum or 

maximum space. It maintains genetic diversity and avoids premature convergence on a 

local minimum or maximum. A mutation operation can also be described by binary 

encoding as follows: 

 

Figure 3.3: Example of a mutation operation 
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In the example in Figure 3.3, we have selected one and two random values 

corresponding to the bit length of the chromosome. In this case, 6 have been selected 

in the original offspring 1; 3 and 14 have been selected in the original offspring 2. Then 

simply take the bits from the chromosome and swap them. Chromosome mutation 

operation is determined by the specified mP . The design of mutation operation includes 

two aspects: how to determine the mutation position? How to process the replacement 

of gene value? Some types of mutation operators have been classified that are 

applicable to binary coding or real number coding as follows (Barros, de Carvalho & 

Freitas 2015): 1) Flip bit; 2) Boundary; 3) Uniform mutation; 4) Non-uniform; 5) 

Gaussian. 

All in all, crossover and mutation have both co-operation and competition (Eiben & 

Smith 2003). Crossover is explorative that to discover promising areas in the search 

space, such as gaining information on the problem. It makes a big jump to an area 

somewhere in between two (parent) areas; mutation is exploitative that to optimise 

within a promising area, such as using information. It creates random small diversions, 

thereby staying near the area of the parent. 

3.3.1.5 Convergence 

For the selection, crossover and mutation operation, in order to produce new species, 

the fitness of the new species is requested to be evaluated. The above steps are repeated 

until the algorithm reaches a pre-determined condition, or the fitness of the population 

will no longer increase. 

3.3.2 Simulated annealing (SA) 

The SA is an extension of the local search algorithm, which is different from the local 
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search based on a certain probability that is given to the value of the neighbourhood 

state, which is subject to the metal annealing process inspired by the Metropolis criteria 

and the composition of the annealing process. The earliest SA was invented by 

(Metropolis, et al. 1953), and (Kirkpatrick, Gelatt & Vecchi 1983; Creny 1985) and was 

successfully applied in the combinatorial optimisation problem in 1983. It proposed a 

probabilistic as the SA for finding the global minimum of a cost function that may 

possess several local minima. The process consists of two steps as follows: 

 Increase the temperature of the heat bath to a maximum value at which the 

solid melts; 

 Decrease carefully the temperature of the heat bath until the particles arrange 

themselves in the ground state of the solid;  

In the liquid phase, all particles arrange themselves randomly, whereas, in the ground 

state of the solid, the particles are arranged in a highly structured lattice, for which the 

corresponding energy is minimal. The ground state of the solid is obtained only if the 

maximum value of the temperature is sufficiently high and the cooling is performed 

sufficiently slowly. Otherwise, the solid will be frozen into a meta-stable state rather 

than into the true ground state (Kirkpatrick, Gelatt & Vecchi 1983).  

 The SA is self-adaptive. The basic procedure of the SA can be summarised as 

follows: 

o Step 1: Initialisation: start with a random initial placement, to initialise a very 

high “temperature”.  

o Step 2: Move: perturb the placement through a defined move. 
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o Step 3: Calculate score: to calculate the change in the score due to the move 

made. 

o Step 4: Choose: to choose whether to accept or reject the move depends on the 

change in score. The probability of acceptance is based on the current “temperature”.  

o Step 5: Update and repeat: update the temperature value by cooling the 

temperature. Go back to Step 2. 

o The process is done until “Freezing Point” is reached. 

SA is a mathematical analogy for the cooling system which can be used to sample 

highly nonlinear, multidimensional functions. There are many flavours around and the 

efficiency strongly depends on the particular function to sample. Therefore, it is 

extremely difficult to make general statements as to what parameters work best. A proof 

of convergence of SA with general acceptance probability functions has been identified 

by (Anily and Federgruen 1987), which is applied to a general discrete optimisation 

problem to prove convergence under the essential and sufficient conditions as follows: 

 Reachability of the set of global optimal.  

 Asymptotic independence of starting solution. 

 Convergence in distribution 

 Convergence to a global optimum 

A comparison of the traditional iterative optimisation algorithm, the SA has the 

following characteristics: 

 Not easy to fall into a local optimum. It is possible to jump out of the local 

optimum when temperature of the system is in the non-zero 
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 The total characteristics of the final state of the system can be seen at higher 

temperatures by statistical thermodynamics. At the low temperature, it restricts 

exploration. 

The main advantages and disadvantages of SA are summarised as follows (Anily and 

Federgruen 1987):  

 Advantages: high efficiency, flexible, the initial value is robust, suitable for 

parallel processing, and useful for solving the complex nonlinear issues.  

 Disadvantages: SA needs higher initial temperature, the slower decreasing rate 

of temperature, lower end temperature and multiple samples, then the 

convergence is slow, processing time takes longer. In addition, it may not obtain 

the entire/global optimum solution/local convergence if the temperature is 

decreasing fast.  

3.3.3 Ant colony optimisation (ACO) 

Initially ant system was developed by Marco Dorigo in his thesis in 1992; ACO has 

been defined as a meta-heuristic optimisation and probabilistic technique, which will 

search for the optimal path in the graph based on the behaviour of ants seeking a path 

between their colony and food source (Dorigo, Maniezzo & Colorni 1996). The 

composed of a large number of ants group as the collective behaviour actually 

constitutes a positive feedback phenomenon of learning information: ants passed 

through a path, then other ants behind have more possibility to choose this path. So the 

individual ant seeks the shortest path to food based on this information. ACO is based 

on this characteristic, by imitating the behaviour of ants, so as to achieve the optimum. 
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Initially, the path is hardly optimal when the program is beginning to search the target, 

and may even contain a myriad of wrong choices and extremely lengthy. However, the 

program can search for food by ants in according to the principle of pheromone, and 

constantly amend the original route, so that the whole route is getting shorter and shorter, 

and ultimately find the best route. The original algorithm of ACO was specially 

designed for the travelling salesman problem ((Dorigo, Maniezzo & Colorni 1996; 

Dorigo & Gambardella 1997). At the beginning, an ant will move from node i  city to 

node j  city with probability as according to the equation (3.6). 
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where  

k

ijP is the probability from the i  to j  at the t  time. ; ij  is the amount of pheromone on 

edge ,i j ;   is a parameter to control the influence of ij ; ij  is the desirability of edge 

,i j  (typically 1/di,j )   is a parameter to control the influence of ij ; l  is all of 

the other cities which have not been visited yet. 

Moreover, In order to avoid the problem of information overload caused by pheromone, 

after the end of each ant cycle, it must update the pheromone that to imitate the 

characteristics of human memory for weakening the old information. At the same time, 

the latest information of the ant access path needs to be updated according to the 

equation (3.7) 

 (1 )ij ij ij         (3.7) 

where 
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ij  is the amount of pheromone on a given edge ,i j  ;    is the rate of pheromone 

evaporation; ij   is the amount of pheromone deposited, typically given by the 

equation (3.8)  

 /k

ij kQ L    (3.8) 

where 

Q  is constant; kL  is the cost of the 
thk  ant’s tour, typically length. 

The essence of the ACO optimisation process can be classified as follows: 

 Selection mechanism: the more pheromone path, the more probability of being 

chosen. 

 Update mechanism: the pheromone of the path will grow with the ants, but also 

with the passage of time, gradually disappear. 

 Coordination mechanism: the ants are actually communicating and cooperating 

with each other through secretion. Through the information exchange between 

individuals and their mutual cooperation and they will ultimately find the optimal 

solution, it having a strong ability to be an improved solution. 

 Error mechanism: obviously if the ants are moving in a more pheromone area, 

it will lead to the problem of the local optimal solution. However, some of them will 

not go to the more pheromone places, so as to jump out of the local optimal solution, to 

find the global optimal solution. 

Advantages of the ACO can be summarised as follows 
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 It is versatile; it can effectively solve a lot of problems, such as travelling 

salesman problem and similar problems  

 It has the characteristics of positive and negative feedback in the same time; 

the characteristics of positive feedback are used to solve the local solution and 

to rapidly search the optimal solution, and the feature of negative feedback is 

the evaporation of the pheromone that can avoid the trap of local optimal; 

 Inherent parallelism and it can be used in dynamic applications (adapts to 

changes such as new distances, etc.) 

Disadvantages are also presented as follows:  

 Theoretical analysis is difficult 

 Sequence of random decisions, not independent 

 Probability distribution changes by iteration 

 Research is experimental rather than theoretical  

 Time to convergence is uncertain. It normally takes longer for searching 

solution as contrasted with other algorithms. 

3.4 Conclusion 

This chapter has introduced the traditional and intelligent optimisation methods and has 

given an overview of GA, SA and ACO algorithms. The basic concept, principles 

rationales have been discussed. In the development of the application of intelligent 

optimisation algorithms, there are existing contradictions between the optimisation 

results and computational time due to the computational speed and time constraints. 

Hence, it is difficult to guarantee the computational results for the global optimum and 



 

 

59 

 

the optimisation effect is not very ideal. In order to solve these problems, the GA and 

SA are improved and combined to optimise the complex brewery production system as 

described in Chapter 6. It is effective to avoid the local optimal solution, to speed up 

the convergence and to obtain the better global searchability, etc. 
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Chapter 4: Brewery Industry 

Investigation and Simulation 

Model Formulation 

4.1 Introduction 

A brewery production is a typical batch production process that mainly consists of 

saccharification, fermentation, filtration storage, and packaging. Each process contains 

many sub-processes, and they also interrelate with each other. Likewise, the beer 

production process is the same as other batch processes in that it is neither discrete nor 

a continuous production process, however, it follows the operational sequences and 

process conditions for batch production. It has the character of semi-continuity. The 

brewery manufacturing production system will be analysed based on the model-based 

control-theoretical approach. The approach is based on a dynamical mathematical 

model of the type commonly used in control systems engineering. 
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From the management level, managers need to analyse the market demand and various 

production conditions, to determine the variety and quantity of beer, as well as orders 

of each batch. From the analysis of the operational management, the operator needs to 

decide on the equipment and various parameters of production in each stage, and the 

scheduling operation can directly affect the overall production capacity of the 

production line, and may also affect the management decisions. Therefore, the whole 

beer production of the global optimisation scheduling is a very difficult optimisation 

problem. In this chapter, we have considered the production equipment as a whole 

system from the input of raw materials to the output of end product, in order to 

formulate the mathematical model of the beer production scheduling. 

4.2 Overview of the brewery production process 

4.2.1 Business process  

A business process is defined by (Ruth 2004) as a set of activities in an enterprise which 

are designed to generate the desired result. Likewise, (Havey 2009) identified that a 

business process can be described as a transformation of an input into an output and is 

an organised group of interrelated activities that work together to create a result for 

customers. Business process modelling refers to the design, analysis and execution of 

the business process, and a simple transformation model of a business process has been 

presented by (Laguna and Marklund 2013) as shown in Figure 4.1: 
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Figure 4.1: The transformation model of a business process 

According to Figure 4.1, it shows the importance of a business process in achieving the 

basic business goals of any company which is basically operated from inputs to carry 

out a series of processes in order to come up with an output for customer’s satisfactions. 

(Laguna and Marklund 2013) is also expanded the model of a business process that 

highlights the process network and the significance of resources as presented in Figure 

4.2. 

 

Figure 4.2: The process network of activities 

The above diagram illustrates a process network of activities that transforms inputs (raw 

materials and resources) to process, and then outputs (end product) will be processed 

and delivered to clients. 
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4.2.2 Brewery process  

The basic beer production process makes use of the constituent ingredients (Wunderlich 

& Back 2009): barley, malt, sugar and yeast (and possibly others) as presented in Figure 

4.3: 

 

Figure 4.3: Overview of basic ingredients for beer production 

The various combinations of these basic ingredients are processed to give various beer 

product types that include: light, heavy, ale, bitter, draught and stout, etc. Beer products 

will be sold to customers via various modes, including public bars, wholesale and retail, 

etc. Breaking down the manufacturing process further, Zheng, et al. (2011) stated that 

the entire beer production can be divided into saccharification, fermentation, filtering, 

storage and packaging. A brewery process has been identified by (Sabmiller 2012) as 

shown in Figure 4.4. 
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Figure 4.4: The brewery process (SABMiller c.2012) 

Generally, all beers contain four main ingredients: barley, water, hops and yeast. 

Accordingly Figure 4.4 shows that there are many steps in the production of the beer as 

follows. 

 Milling- The first step in the brewing process is called milling. The barley malt 

is passed through a mill that crushes it, preparing the crushed grain (known as grist) to 

be cooked.  

 Mashing- In the mashing step, the crushed grist soaks into hot water to convert 

the starches in the malt to fermentable sugars. 

 Lautering- Now the beer enters the lautering phase. Here, the sweet liquid, 

called wort, is separated from the grain solids in the lauter tun. 

 Boiling- During the boiling phase, the wort is boiled and hops are added to 

provide the right amount of bitterness and aroma. 

This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be viewed in the Lanchester Library Coventry University.
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 Whirlpooling- The hopped wort is then spun in a whirlpool. This separates the 

spent hops and unwanted proteins from the brew. 

 Cooling-The wort is then cooled in this process and then moved into a 

fermentation vessel.  

 Fermentation- After cooling, yeast is added to ferment the wort that produces 

the alcohol, carbon dioxide and many of the other flavour compounds. The brewery can 

determine what character of the beer produces its product range. 

 Filtration- This step gives the beer the sparkly appearance. For darker brews, 

filtration creates sharpness in the beer. 

 Packaging- After passing final inspection, the batch of beer is placed into kegs 

or bottles and distributed to the final customers. 

Beer production belongs to the typical batch production process, thus, it has the main 

characteristics of the intermittent production process as follows (Bonvin 1998): 

(1) The beer production operation follows the sequence of formula rules. Production 

formula is the required information during the production which includes 

instrumentation process, methods, etc. The instrument society of America ISA has 

defined that formula model to include five parts: product name, process, formula, 

equipment requirements and security. 

(2) The discontinuity of batch production. The beer production process is an operation 

from input to outputs, from the required raw materials to the end product. The whole 

production process is completed by a series of sequential tasks to be executed. The 

discontinuity of batch production process is not only reflected in the material, but also 

the equipment operation.  
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(3) Non-steady state of beer production status. The continuous production process runs 

at steady state or close to the steady state. Conversely, as a batch production process, 

the status of materials and equipment are changeable. Hence, the batch production 

process identification and system modelling cannot apply the linear approximation 

model which is commonly used in the continuous production process. Therefore, it can 

only be used for the nonlinear model based on the actual measured value, or the 

nonlinear recursive model based on artificial intelligence. The beer production process 

optimisation operation generally is not a constant steady-state value, but the change 

over time of the optimal trajectory, for example, the temperature curve. 

(4) Shared resource processing. Many units and resources are commonly used in the 

process of beer production, which requires the control system to have a very good 

capacity of coordination and distribution. If a shared resource can only be used alone, 

then the control system would need to be implemented which would prevent the ability 

that needs to share the resource by two units at the same time, whilst the scheduling 

system can use the priority queuing method for scheduling. If shared resources are used 

by several devices simultaneously, it may be necessary to consider whether the resource 

capacity’s needs are met the equipment in use. 

4.2.3  Research setting  

Based on Figure 4.4, the brewery process shows that there are four main ingredients as 

inputs via processing to be transformed into beers as outputs. Therefore, the modelling 

of a brewery production process can be envisaged as in Figure 4.5. The raw ingredients 

are shown as inputs, as are packaging, cleaning, workforce and energy. The outputs are 

related to the product. 
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Figure 4.5: Modelling of a Brewery Production Process 

It is clear that all of the inputs (raw materials, workforce, energy, packaging and 

cleaning, etc.) are the costs of expenditure in the system as well as fixed costs (tax, rent, 

etc.). Furthermore, as almost all companies seek the maximum profits, then the revenue 

must be greater than the expenditure costs. Denoting revenue as R, expenditure as E 

and fixed costs as F, it may be stated that for a successful company, R> (E+F). 

In addition, outputs have been transformed from inputs. There are several factors and 

assumptions to be considered. Firstly, the customers may collect the products. Then it 

would save delivery costs and collection appointments need to be made. Secondly, 

products could be sold in a local bar that could be considered a sequence of orders. 

Thirdly, products may be delivered to customers when they are being ordered without 

collection. Lastly, a standard order may be served by supermarkets. All these types will 

be considered whilst developing the business process modelling for brewery operations. 

Due to increasingly global competition and price erosion, the manufacturing industry 

is facing an unpredictable environment. Manufacturing is one of the most important 
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implementation of simulation among the various industries (Benedettini 2008). Church 

End Brewery (CEB), the collaborating company, has provided an interesting challenge 

for modelling and simulation to optimise their business process operation. There are 

over 100 different variations of products and approximately 100 different customers 

(outlets). Some products are constantly being produced and others are produced to order. 

There is a guaranteed turn-around from order acceptance to delivery. There are 

numerous constraining factors and costs which are to be met, thus warranting a model 

based approach to optimisation and production analysis/design/improvement of the 

brewery process. 

4.3 Problem description  

After an extensive literature search regarding the beer production, the mathematical 

model is a priority requirement to be taken into consideration in real-life beer 

production industrial conditions, which are different to be usual scientific scenarios. In 

a commercial brewery, it is considered that the beer production process is the JSP. There 

are a certain number of orders of various beer product types which have been arriving 

continuously within a given time period and form the queue waiting for production 

within the limited capacity in terms of fermentation vessels; Each order accumulates 

towards a batch production, each batch production can only be processed once in each 

vessel, and also each vessel has to be cleaned after each operation. Therefore, the beer 

production is a time-based operation of brewing fermentation and other constraints and 

conditions. The model of a brewery production process has been shown in Figure 4.5, 

the real-life CEB production process is further described in Figure 4.6.  
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Figure 4.6: Model of CEB brewery production process 

Subsequently, the operation of a brewery production is determined by the setting up 

time, fermentation time, cleaning time and changeover time. The setting up time and 

fermentation time is fixed for each product type. The changeover time may occur when 

the next batch production is to be changed to different vessels, and then it requires 

additional time for vessel cleaning. To formulate the problem it is assumed that the time 

required to produce different types of beer may be calculated from the duration of the 

fermentation process. The cleaning times for each vessel will depend on vessel capacity 

and it is increased by a nominal period when changing over from one type of beer to 

another, so that when no changeover takes place the cleaning time is a minimum. In 

addition, the due date required for each product is dependent on customer demand. 

Customer satisfaction is adversely affected if demand cannot meet the handover date. 

Also, some orders may need to take priority in production over other orders when the 

handover is due.  

It is considered that a mathematical model based on these problems with the constraints 

and a control theoretical approach will be derived to provide an initial framework to 
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formulate and solve the problem. Having refined/validated the model framework using 

data from CEB, the method will be tested. 

4.4 Mathematical model formulation  

4.4.1 Notation 

The following notation is used: 

Table 4.1: List of notation 

pT

i

j

ijx

ijc

dueT

setupT

changeT

cleanT

1T

2T

3T
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jv j

iN

1m Number of times of product to be produced as same as previously 

finished batch 

2m Number of times of product to be produced as different as previously 

finished batch 

1n Number of processing times for product to be produced as same as 

previously finished batch 

2n Number of processing times for product to be produced as different 

as previously finished batch 

4.4.2 Objective function  

The production period of products can be formulated as follows: 

 1

1 1

n m

p ij ij

i j

T T c x
 

    (4.1) 

In addition, even when there is no vessel change, the setting up time and cleaning time 

is still required before the next batch operation is no vessel change. It can be formulated 

as follows: 

 
1 1 1

2

1 1 1

m n n

setup clean

j i i

T T T
  

 
  

 
     (4.2) 

Furthermore, the changeover time may occur when the next batch production is to be 

changed to different vessels. Then, it can be denoted as follows: 
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2 2 2 2

3

1 1 1 1

+
m n n n

setup clean change

j i i i

T T T T
   

 
  

 
      (4.3) 

Therefore, the objective function can be derived from the above equation (4.1), (4.2) 

and (4.3) that total production time, denotedT , can be represented: 

 1 1 1 2 2 2 2

1 2 3

1 1 1 1 1 1 1 1 1

= + + +
m n n m n n nn m

p ij ij setup clean setup clean change

i j j i i j i i i

T T T T

T c x T T T T T
        

  

   
    

   
       

  (4.4) 

4.4.3 Constraints  

However, to accurately simulate a commercial brewery production system, certain 

constraints and conditions need to be considered in the model, such as the due date of 

a product handover, a production delay, level of order priority, etc. In the actual brewery, 

each vessel can only produce one batch order for one product type during a production 

process. This fact can be denoted as follows: 

 
1

=1
n

ij

i

c


   (4.5) 

 
1

=1
n

ij

j

c


   (4.6) 

where 

ijc ｛0，1}, {1,2,3,..., n}i  ’ {1,2,3,...,n}j   

The production needs to be completed before or on the due date of delivery due to the 

lateness will have an effect on customer satisfaction: 
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1 1

1 1

n n

p setup clean due

i i

T T T T
 

 
   
 
    (4.7) 

 
2 2 2

1 1 1

+
n n n

p setup clean change due

i i i

T T T T T
  

 
   
 
     (4.8) 

Furthermore, each product type produced in each vessel should satisfy the following 

conditions: 

 0ijx    (4.9) 

 ij j ix v N   (4.10) 

4.5 Conclusion 

This chapter has fully explored the factors, issues and rationales of a business process 

that leads to a general understanding of the operation of the brewery production process. 

The main difference between what already exists in literature and the proposed work is 

used to be made of a control-theoretical approach. This will allow a better 

understanding of the underlying physical/conceptual behaviour of a business process 

due to higher fidelity of the mathematical models employed. Therefore, a new 

mathematical model is formulated in order to maximise the profits and minimise the 

costs of the process operation for the JSP of a brewery production system. A sequencing 

of orders for requests for production from the brewery forms the basis of a varying 

demand which is applied to the business process. A sequence of orders, whilst satisfying 

constraints on meeting customer demand, is subsequently adjusted to form a basis for 

developing a model-based control-theoretical approach. This generic model is part of a 

new approach which is used to tackle this problem.
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Chapter 5: Simulink Model 

Building and Simulation for a 

Brewery Production Process 

5.1 Introduction 

The simulation, modelling and analysis of manufacturing systems are becoming 

increasingly important for the performance improvement of systems in the last decade 

(Sandanayake, et al. 2009). This chapter is dedicated to developing a simulation model 

to observe the performance and efficiency of a complex brewery production system as 

presented in Chapter 4, which makes use of a production time-based representation. 

(Bosilj-Vuksic, Ceric & Hlupic 2007) stated that there are different methods and tools 

that have been used by most companies, which are able to measure the performance of 

business processes in terms of dynamic systems. The approach makes use of the 

MATLAB/Simulink environment to simulate the scenarios presented in a brewery 

manufacturing production system as given to determine resource requirements and to 
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identify bottlenecks that include dynamics, delays, feedback, uncertainty and non-

linearity due to constraints. 

It is assumed that three products are to be produced simultaneously in three vessels in 

parallel. There are some important factors to be considered; Firstly, it models a situation 

where three random sequential orders are received and these form three queues waiting 

for production. Secondly, it describes an accumulation concept in which products are 

allocated to vessels so they are working at maximum efficient capacity thus maximising 

profits; accumulating each daily order to meet the maximum capacity of vessels for 

each production. Thirdly, it represents how to make an optimal decision regarding 

which batches of orders are to be produced in each vessel based on the time constraints 

involved. Finally, the result in terms of total production time for each product type is 

obtained. 

5.2 Business process modelling and simulation for the 

manufacturing production process system 

5.2.1 Business process simulation 

Simulation is widely used as a tool for analysing business processes. The term ‘business 

process simulation’ has been defined in (Banks, et al. 2000). Essentially a simulation is 

the imitation of the operation of a real-world processes or systems over time. It is also 

stated that business process modelling plays a significantly important role for 

organisations and process improvement that determine the value of the outcome of the 

production process. 
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5.2.2 Types of simulation model 

There are types of models which have been classified by (Sidnev, et al. 2005) as follows 

in Figure 5.1. 

 

Figure 5.1: Types classification of model 

 Static simulation, also called Monte Carlo simulation represents a system at 

a particular point in time. Dynamic simulation represents systems as they 

change over time. 

 Deterministic simulation contains no random variables. A known set of 

inputs will result in a unique set of outputs. In contrast, stochastic simulation 

estimates the true characteristics of the model from random inputs to random 

outputs.  
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 Mathematical model uses symbolic notation and equations to represent the 

systems as opposed to the physical model in converse. 

 A discrete system is one in which the state variable changes at a discrete 

point in time and uses computational procedures to solve mathematical 

models. Conversely, a continuous system is one in which the date variables 

change continuously over time and use deductive mathematical reasoning 

to define and solve the system. 

5.2.3 Tools of business process simulation (BPS) 

(ProModel 2011) has been reported that "anyone can perform a simple analysis 

manually". However, with complex analysis, there is an increasing need to apply 

computer-based tools. There are many simulation tools that are available in the market. 

(Merkuryev and Pecherska 2005) reported that many universities have adopted 

simulation software around the world as shown in the following diagram: 
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Figure 5.2: Occupancy rate of simulation software in universities (Merkuryev and Pecherska 

2005) 

It is clear that Arena based on Figure 5.2, 2005 data is the greatest implemented 

simulation tool. According to (Systems Navigator 2012) it is reported that the Arena 

simulation software is a most used simulation platform with more than 350,000 users 

in the world. Similarly, (Advantage 2008) stated that Arena is a leading simulation 

software that has been used successfully by organisations around the world. There are 

three main advantages that have been reported by (Rockwell 2011), which are important 

as follows: 

 Easier and faster to learn than other simulation tools 

 Easier to validate, verify and debug 

 Easier to communicate the intricacies of complex processes to others 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be viewed in the Lanchester Library Coventry University.
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A number of BPS tools have been discussed and evaluated by (Jansen and Netjes 2010) 

based on output analysis for capabilities of modelling and simulation, and other 

possibilities. They have concluded that the FlOWer, FileNet, and Protos are considered 

unsuitable for real-life realistic BPS studies, and ARIS, Arena and CPN, all qualify for 

BPS studies. In particular, Arena has been strongly recommended as an appropriate 

system tool to be used for BPS. However, MATLAB/Simulink is used here due to its 

versatility and increasingly wide acceptance in industry. 

In addition, (MathWorks 2012) reported that MATLAB/Simulink is the leading 

developer of mathematical computing software for engineers and scientists in industry, 

commerce, government and education. (Christian and Filippo 2004) identified that 

Simulink is an extension of MATLAB by Mathworks Inc. The primary interface 

consists of a graphical block diagramming tool and a set of tailored block libraries. Both 

MATLAB and Simulink are widely used in control and digital signal processing for 

multidomain simulation and model-based design. "Simulink is a software package for 

modelling, simulating, and analysing dynamical systems. It supports linear and 

nonlinear systems, modelled in continuous time, sampled time, or a hybrid of the two". 

Also “Simulink is a block diagram environment for multidomain simulation and model-

based design. It supports simulation, automatic code generation, and continuous test 

and verification of embedded systems” (Mathworks 2011). It provides multiple blocks 

that can be dragged around a workspace and connected through ports with lines and 

establish an input-output relationship as well as dependencies between those two blocks. 

There are two main advantages that have been reported by (EETimes 2001) 

 The graphical tools are comprehensive and very easy to use. 

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Model-based_design
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 Simulink has an extensive control library, which allows any control algorithm, 

such as linear control, fuzzy logic, neural networks, and others to be easily implemented. 

Based on the reviews above, the MATLAB/Simulink package has a wide range of 

toolboxes that can be chosen. It can be used as a mathematic model for calculation and 

optimisation, etc. especially in quantitative research. In this research makes use of 

MATLAB/Simulink to model the scenario of a brewery production system as presented 

in Chapter 4, which is to allocate resource optimally and to identify the bottlenecks that 

include dynamics, delays, feedback, uncertainty and non-linearity due to constraints. 

The development details of all the blocks of a holistic model are discussed which 

includes modelling of random orders, modelling of the production process, modelling 

of decision making and modelling of total production time. 

5.3 Simulink model of the scenario of a brewery 

production system 

It is well known that a brewery production system is an extremely complex batch 

production system as described in Chapter 4. Therefore, this chapter will model a 

typical brewery production system to observe the operation performance and to 

minimise the production time in accordance with decision making by managers. The 

decision making will take into consideration three product types to be produced in three 

vessels in parallel. Three product types can be denoted
1p  ,

2p  and
3p  separately. The 

brewery production can be modelled in Figure 5.3. 
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Figure 5.3: Model of three product types of a brewery production system 

Orders will be receiving randomly to form a queue for production based on decision 

maker by management. The sequences of orders are constant and it can be denoted
no , 

where 1, 2,3,...,n n . Each order will be accumulated to the full capacity of each given 

vessel. It will be formed as a batch if accumulated back orders are equal to the full 

capacity of the vessel. 

Also, the initial production parameters are assumed as in Table 5.1: 

Table 5.1: Production parameters for Simulink model 

 1p  
2p  

3p  

ipT  (hours) 72 96 120 

i

dueT  (hours) 7*24 10*24 15*24 

i

setupT  

(hours) 

1v  1 2 3 

2v  2 3 4 

3v  3 4 5 
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Initial parameters are defined in order to help the model which can be revised easily. It 

is flexible allowing the change of any parameters as the model requires, due to brewery 

production being based on the fermentation time, setting up time, cleaning time and 

changeover time. In this case, it is assumed that fermentation time will take 72, 90, and 

120 hours respectively; the setting up time is determined by different product types 

having different setting up time; the cleaning time of
1v ,

2v , and 
3v  will take 2, 3 and 5 

hours respectively; the changeover time may occur when the next batch production is 

changed to the differing vessels for production, it will be 5 hours delay. In addition, the 

due date of products is 7, 10, and 15 days, respectively, based on customer demand.  

 The scenario of the production process is simulated by the Simulink model as following 

in Figure 5.4. It clearly shows a holistic micro-brewery production system in which four 

main parts are achieved in the model that includes the sequences of orders, 

accumulation, decision making and production time. The decision making method is 

most important to a company. The purpose of this model is to achieve the optimal total 

production time, whilst satisfying with constraints and conditions. Also, the uncertain 

changeover time needs to be analysed when it happens after a previous batch is being 

finished. The following three approached are considered to make decisions in the model: 

a) If one product type is unfinished and two product types are finished in the 

current operation; it then needs to change the vessel to produce that one product type if 

the surplus of accumulated batch is large. 

b) If two product types are unfinished and one product type is finished in the 

current operation; then it needs to analyse the surplus of the batch in order to make the 

decision which product needs to change vessel in advance when the production time is 
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short. In addition, the last product type is to be produced according to approach a) until 

the previous batch finished. 

c) If one product type is finished, and there some orders of this product type left 

that have not been produced because orders cannot meet the required production 

quantity, then the vessel would become idle. So this vessel will be changed to produce 

a different product type until orders are accumulated to meet the required conditions. 
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Figure 5.4: Model of a brewery production system 
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The Simulink model is shown in Figure 5.4. The internal structure of Simulink model 

can be pictured logically as following in Figure 5.5: 

 

Figure 5.5: The structure of Simulink model 

5.3.1 Modelling of sequences of orders 

In a brewery, quantities of orders of each product will be received randomly from 

customers. Then, sequences of orders for three products form queues to be separately 

produced in the three parallel vessels. This process assumes the use the fixed sequences 

of orders of 10 days and the sequences of random orders to model a brewery production 

system as following in Figure 5.6 and Figure 5.7. The 10 days back orders of three 

products are assumed in Table 5.2. Three product types are denoted A, B, and C, 

respectively. Each number of product type represented each order which has been 

received in a day in a 10 days sequence. Such as, 3 barrels of product A are received on 
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the 1st day. 

Table 5.2: 10 days of back order 

D
ay

s 1 2 3 4 5 6 7 8 9 10 

A(barrels) 3 8 4 3 4 8 2 5 7 6 

B(barrels) 14 12 8 5 19 9 11 12 10 8 

C(barrels) 30 27 16 15 4 18 14 11 17 20 

Moreover, the brewery will not accept orders that are only part of a barrel, half, or one-

third etc. In the subsystem of three sequences of orders, a block of rounding function is 

applied in this model as shown in Figure 5.8, which can be obtained all of the numbers 

of orders are to be the nearest integer if the block of the random number generating the 

number of the decimal fraction. 

 

Figure 5.6: Subsystem of three sequences of fixed orders 
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Figure 5.7: Subsystem of three sequences of random orders 

 

Figure 5.8: Sequences of orders 

Subsequently, the result of the sequences of orders can be obtained as shown in Figure 

5.9. It applies a block of the repeat sequencing stair which repeats a stair sequence of 

10 days of back orders and assumes that it has been specified with the vector of output 

values parameter. It is easy to picture each quantity of order forming a queue in this 

stage of the operation. In addition, a block of random numbers is also applied to 

generate normally distributed random orders as shown in Figure 5.10. 
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Figure 5.9: Sequences of fixed orders for product A, B and C 

The result in Figure 5.9 clearly shows that three products have arrived to form three 

queues at this stage. The model uses a block of repeating sequencing mix which makes 

it easy to understand how the production operates for 10 days back orders. It has 

modelled 10 days back orders of each product repeatedly in 1000 hours. 

Figure 5.10 shows how many sequences of random orders of each product have arrived 

in 1000 hours. The quantities of orders of three products are generated randomly based 

on the mean value of the Gaussian and random seed is 10, 15 and 20, respectively. 
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Figure 5.10: Sequences of random orders for product A, B and C 

5.3.2 Modelling of accumulation 

The production process system is formulated based on the method of accumulation of 

product orders, which consists of vessel selection and the production plan. These are 

shown in Figure 5.11, which includes a model of selection and, also, the production 

model as shown in Figure 5.12. 
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Figure 5.11：Subsystem of accumulation block 

 

Figure 5.12：Subsystems of vessel selection and production plan 
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Subsequently, once orders have arrived their production is prioritised according to their 

due date; otherwise the company could lose customers. Therefore, it can be assumed 

that quantities of orders gradually add up during each day and are then produced if the 

sum of orders is equivalent to the maximum capacity of the vessels. In this case, the 

capacity of the three vessels, denoted 1v   , 2v  and 3v   which are 20, 30 and 50 barrels 

respectively. So that, if accumulated batch of product is allocated to production in 1v , 

and then it will subtract 20 of the capacity of the 1v . Similarity, it will be subtracted 30, 

50 for 2v and 3v , separately. Each vessel will be selected to produce a batch of orders 

based on the feedback of decisions then allocates resources according to requirements. 

Decision making model will be discussed in the next Section 5.3.3 in details. The 

selection possibilities for production can be shown in Figure 5.13. The math function 

of interpreted cap_sel is embedded to interpret which vessel will be allocated to process 

the next batch of orders; it has different possibilities of operations, such as, A 1v -B 2v - 

C 3v ; A 1v -B 3v - C 2v  and so on. 

 

Figure 5.13: Vessel selection for production 
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According to the model of vessel selection, the batch of orders will determine which 

vessel is selected for production in the next operation. The production process of each 

product is formulated as shown in Figure 5.14, to demonstrate that the accumulation of 

orders is to be modelled. The model will count how many batches of each product are 

to be made in the same vessel or different vessel. 

 

Figure 5.14: Model of product production 

The function of 
1p ,

2p and
3p  production is to decide whether the next product will be 

produced or not. It makes use of the Boolean algebra which is denoted 0 and 1. In this 

case, the production system is according to the feedback of decision making which 

judges whether has met the required batch of orders; if yes, the signal will be 1 which 

is processing right now. Otherwise, it will be 0 which is not processing currently. 

Likewise, the function of vessel change applies the same method accordingly in order 

to decide which vessel is to be utilised to produce the next batch of orders. 

5.3.3 Modelling of decision making 

Accordingly, it is most important how to decide the allocation of orders to be produced 

in the vessel optimally. Based on the fact that most companies are seeking maximum 

profits, then it will be optimal and efficient if vessels are working near maximum 
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capacity in this case. Figure 5.15 represents the model of decision making where orders 

are to be made and decided, and then reported as feedback to the model of the 

accumulation and next model of production time. 

 

Figure 5.15: Subsystem of decision making 

Hence, the idea of accumulation of orders considers to how many batches will be made 

in the three vessels. There are some constraints on production are concerned as follows: 

the accumulated amount of orders is greater and equal to 16 and also smaller than 20, 

then this batch will be produced in the 1v , it denoted 116 20p  . Analogically, it can 

be denoted 226 30p    for the 2v  , and 146 50p    for the 3v  . In addition, if the 

accumulated amount of orders is larger than the limited capacity of vessels, the surplus 

orders will be delayed to the next batch production. Such as, accumulated batch of 

orders for three days is 25 barrels, the maximum capacity of the 1v  is 20 barrels, then 

it will take out 20 barrels to produce in advance, the remaining 5 barrels will be delayed 

to the next batch production. This idea is being used in the model of decision making 

in Figure 5.16 
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Figure 5.16: Model of decision making 

Therefore, the result of sequences of batch orders can be shown in Figure 5.17 as 

follows: 

 

Figure 5.17: Accumulated orders for product A, B and C  

Subsequently, the results of batch production and vessel change can be obtained as 

follows in Figure 5.18. 
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Figure 5.18: Number of batch production are made in the same and different vessels  

Based on the model of production and decision making, there is no batch production to 

be changed to the different vessel. If it changes the number of values randomly, the 

different result is obtained in Figure 5.19. 

Batch of product A in the same vessel

Batch of product A not in the same vessel

Batch of product B in the same vessel

Batch of product B not in the same vessel

  
  

  
  

  
  

  
N

u
m

b
e
r 

o
f 

b
a
tc

h
 p

ro
d
u
c
ti
o
n
 a

re
 m

a
d
e
 i
n
 t

h
e
 s

a
m

e
/d

if
fe

re
n
t 

v
e
s
s
e
ls

Batch of product C in the same vessel

Batch of product C not in the same vessel



 

 

96 

 

 

Figure 5.19: Number of batch production with random orders are made in the same and different 

vessels 

According to the simulation result in Figure 5.19, it is obviously shown that batch 

production of product A has been changed twice; also the batch production of B has 

been changed 14 times; there is no change for product C which is working in the same 

vessel always. 

5.3.4 Modelling of production time 

Finally, the model of production time is modelled as shown in Figure 5.20. It will be 

calculated how much time will be required to produce batch orders in accordance to the 

feedbacks from both models of accumulation and model of decision making. 
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Figure 5.20: Subsystem of production time 

 

Figure 5.21: Subsystems of selection of production time and calculation of total 

production time 
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The model of selection of production time is illustrated in Figure 5.21 based on the 

feedback of decision making regarding how much time will be spent for each batch 

production including setting up time and cleaning time. In addition, changeover time 

may be incurred when product changes require different vessels for production. 

 

Figure 5.22: Model of selection of production time 

The function of the selection of production time shows that generated time is based on 

each product to be made in each vessel as in Figure 5.22. The model will then decide 

what potential time could happen. 

Afterwards, the total production time can be calculated as follows in Figure 5.23: 
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Figure 5.23: Model of calculation of production time 

Lastly, the total production time of product A, B, and C can be obtained as in Figure 

5.24: 

 

Figure 5.24: Total production time for product A, B and C 

T
o
ta

l 
p
ro

d
u
c
ti
o
n
 t

im
e
 f

o
r 

p
ro

d
u
c
t 

A
, 

B
 a

n
d
 C

Time (hours)



 

 

100 

 

5.4 Conclusion  

This chapter focused on business process modelling and simulation for a complex 

dynamic production system of a micro-brewery. The approach of the 

MATLAB/Simulink environment is implemented to simulate the scenario of a brewery 

production system. The dispatching rules are applied to allocate the resources optimally 

based on the decision making at the manager level. It is entirely feasible to change any 

parameters in the model if it needs to be. It identifies how many batch productions have 

been allocated for production in the same or different vessels on the basis of decision 

making, and the total production time is also obtained as a result. The results of the 

simulation are demonstrated in the production performance, that includes modelling of 

random orders, modelling of the production process, modelling of decision making and 

modelling of production time. 
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Chapter 6: A Hybrid Algorithm 

6.1 Introduction 

It is well-known that a GAs is a general and effective method for solving optimisation 

problems. However, the traditional GAs is not very effective in many cases, such as 

easy to produce premature convergence, poor local search optimisation ability and other 

issues (Zhou and Sun 1999). Therefore, many scholars have proposed various hybrid 

algorithms based on GAs for solving optimisation problems. For example, Ackley 

(2012) recommended genetic hill climbing method; Yu et al (2000) proposed the hybrid 

method of combined GA and SA; Miller et al. (1993) improved a GA for the NP-hard 

problem optimisation problem that added a local improvement in computation, and so 

on. The basic idea of the Hybrid GA is to apply local optimisation tools (such as hill 

climbing method, SA, etc), for each new offspring in a generation to move to the nearest 

local optimal point before it enters the next generation groups. In the hybrid GA, the 

heuristic method is used for local optimisation, and the GA is used to explore the global 

optimum. So the hybrid GA is usually superior to a standard single algorithm. 



 

 

102 

 

From the mathematical model as described in Section 4.4, it can be seen that the beer 

production planning and scheduling problem involves a large number of variables and 

constraints, including a large number of integer variables, including variable delays, 

which belong to the mixed integer nonlinear programming problem (MINLP). 

Currently, the branch and bound algorithm, the generalised benders decomposition 

method, and the outer approximation method have already been proposed (Zheng 2008), 

which are used to solve the problem of mixed integer programming. However, the 

calculation amount will be increased exponentially and the complexity of time and 

space cannot be acceptable when the scale of the problem is large (i.e. too many 

variables). Due to the defects of the traditional deterministic search method, the 

intelligent optimisation algorithm is gradually applied to the planning problem and has 

shown many advantages. The GA is widely applied in areas where it has good 

robustness and better global optimisation ability.  

Therefore, this chapter implements the intelligent optimisation algorithm to optimise a 

brewery production system. A typical beer production process is considered in that 

different product types are to be produced in three vessels with different capacity in 

parallel. The operation of production is determined by the setting up time, fermentation 

time, cleaning time and changeover time. This chapter concentrates on optimisation of 

the JSP which is improved by heuristic algorithms based on its identified drawbacks. 

Firstly, the traditional GA is improved by a coding representation, the adaptive 

adjustment of mutation probability and crossover probability. Secondly, the improved 

SA is proposed by improvement of generator and temperature drop function. Finally, a 

novel optimisation algorithm is proposed in which an improved GA is integrated with 

the improved SA. 
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6.2 Related works  

With the current development of manufacturing, the optimisation of the JSP is 

becoming a more and more important issue. Scheduling plays a crucial role in most 

manufacturing systems and engineering as well as service industries (Pinedo 2012, 

Suwa and Sandoh 2013). It is a decision making process which allocates resources 

optimally to tasks over a given period of time in order to maximise efficiency and to 

minimise the costs of operations of the companies.  

There are various optimisation methods for solving JSP problems. Heuristic methods 

have been identified by (Šeda 2007), which could be used to obtain an optimal solution 

for complex tasks that includes GA, SA, tabu search, etc. Some main research 

achievements in optimisation for JSP have been clarified in the literature. According to 

(MacCarthy and Liu 1993), it has been proposed that a GA is based on its effect on the 

number of iterations and optimal solutions via initial population size, crossover 

probability, and mutation probability. The most important factor of a given proposed 

GA is whether the parameter selection is appropriate. (Tozkapan, Kirca and Chung 2003) 

have also proposed a GA which is based on the model of a schema theorem to select 

parameters. It is the evaluated effect of the algorithm performance by the probability of 

constituting schema and built relations between the GA parameters and performance. 

The main disadvantages of the traditional GA have been analysed by (Prügel-Bennett 

2004) which included poor local searching capability, inefficient searching ability after 

evolution, and premature convergence, etc. In addition, (Kirkpatrick, Gelatt and Vecchi 

1983; Dekkers and Aarts 1991) introduced the SA, which can approach the global 

minimum point of the objective function by a randomly searching method.  
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In recent years, many researchers have been engaged in flow-shop and job-shop 

scheduling optimisation problems to advance or combine the algorithms in order to 

successfully improve the performance in a diversity of domains. It is also well-known 

that heuristic methods are widely used to solve the JSP, such as GAs, SA, tabu search, 

ant colony optimisation, etc. (Huang, Zhao & Ma 2014) have proposed an improved 

GA which redesigned the chromosome encoding schema, crossover operator and 

mutation operator to minimise the makespan for JSP with process sequence flexibility. 

(Wang & Tang 2011) have also proposed an improved GA to minimise the makespan 

for JSP which redesigned the adaptive crossover probability and adaptive mutation 

probability based on a hormone modulation mechanism. The advantages are 

characterised by simplifying operations, high search precision, overcoming premature 

phenomenon and a slow evolution. Moreover, the proposed SA algorithm is 

implemented to solve the JSP by Damodaran & Vélez-Gallego (2012), which is 

considered to minimise makespan of parallel batch processing machines with unequal 

job ready times. (Tamilarasi 2010) has proposed a hybrid algorithm which is a 

combined GA and SA that adopts the real space as the search space and the chromosome 

represents the permutation of all operation of all jobs. The advantages of the algorithm 

are stated that it can narrow the field of search and speed up the rate of convergence 

continually during the optimising process, higher searching efficiency and escape from 

the local minima. (Peng, Lu and Cheng 2015) proposed a hybrid method of tabu search 

and path relinking algorithm for JSP, which incorporated a number of distinguishing 

features, such as a path solution construction procedure based on the distances of the 

solutions and a special mechanism to determine the reference solution. (Thamilselvan 

& Balasubramanie 2012) have also proposed a new algorithm based on three algorithms 
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of GA, Tabu search and SA to solve the JSP. The important features of the proposed 

algorithms include chromosome representation, effective genetic operators and 

restricted neighbourhood strategies. 

6.3 Improved GA 

According to the shortfalls of the standard GA in the solving the problems outlined 

above it is easy to witness premature convergence, falling into local optimum and poor 

efficiency at the late evolutionary stage, etc. This chapter presents an improved GA to 

overcome these problems. A real number method is applied instead of traditional binary 

coding and a dynamic adaptive strategy is introduced to adjust the crossing probability 

and mutating probability. Numerical results illustrate that the algorithm is feasible and 

effective. According to the literature regarding the use of GAs (Song, et al. 1997; 

Stender 1993; Subbu, Sanderson & Bonissone 1998; Zhou and Sun Yun & Gen 2003; 

Liu, Xu, & Abraham 2005; Lei 2012) and combined with the selected input variables 

in this research, the proposed qualitative fuzzy control rules for crossover probability

cP  and mutation probability
mP  can be summarised for the minimisation problems as 

follows: 

 In comparison with the parent, if the average fitness value of the offspring is 

lower, then the current evolutionary operation is carried out in the direction of 

the global or local optimal solution. Then it should increase the probability 
cP

and 
mP ; otherwise, decrease their probability. The choice of probabilities of 

crossover and mutation that are shown in Section 6.3.3. 
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 In comparison with the parents, if the standard deviation of the sub-generation 

population is higher, the offspring individuals are more and more decentralised, 

which is very beneficial for searching the global optimal solution. Then it should 

increase the 
cP  and reduce the

mP . Conversely, it should decrease the 
cP  and 

increase
mP . 

 In comparison with the parents, if the average fitness function value and the 

standard deviation of the sub-generation population are similar; this shows that 

the strength of the 
cP  and

 mP may not be enough; then the 
cP  and

 mP  should then 

be substantially increased to prevent the occurrence of the premature 

convergence phenomenon. 

In the GA operating process, a set of parameters has a great influence on the 

performance of the GA. This set of parameters needs to be reasonably selected and 

controlled during the initial stage or population evolution that includes the length of the 

chromosome, the population size, the probability of crossover and mutation. A lot of 

experiments have been carried out successfully (Bvack 1993; Jong 1980; Goldberg & 

Holland 1988; Grefenstette 1986), and some suggestions are given as follows: 

 Bit string length l  : it depends on the accuracy of the pending problem. The 

longer the string the higher the required accuracy, but more computing time is needed. 

In order to improve the efficiency of the operation, the variable length string or re-

encoding is a feasible method in the current small feasible region, and it can obtain 

good performance; 

 Population size n  : it contains a number of chromosomes that are in the 

population. Large scale populations contain more patterns that provide enough 
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sampling points for the GA, which can improve the quality of GA search and prevent 

premature convergence. But the large population increases the computation quantity of 

the individual adaptability evaluation, which makes the convergence rate decrease. On 

the other hand, if there are too few chromosomes in the population, then crossover 

possibilities of GA is very small and only a small part of search space is explored. It is 

recommended that the value range is 20~100; 

 Crossover probability cP : it controls the frequency of the crossover operator. In 

each new population, it is necessary to crossover the chromosomes of the selected 

individuals. cP is bigger, the new structure in a species is introduced faster, the gene 

loss rate of the obtained fine gene structure is higher; Yet cP is too small, it will lead to 

block search, resulting in premature convergence. It is recommended that the value 

range is 0.4~0.99; 

 Mutation probability mP : mutation operation is an effective means to maintain 

population diversity. In the mating pool, each individual allele will be changed 

according to random probability after the end of the crossover, so every generation will 

be occurred about n  times mutation. If mP  is too small, it may prematurely lose some 

information that cannot be restored. If mP is too large, the search will become a random 

search. Generally speaking, if GA is not using the crossover operator, then mP takes a 

larger value range for 0.4~1; otherwise, mP takes a smaller value range for 0.0001~0.5; 

when the mutation operator is used as the core search operator, the ideal is set adaptive 

mutation probability, in order to achieve the GA from the “overall search” gradually 

transiting to the “local search” (Wang, Ding and Li 2005). 
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In this research, the model is complex, and the multi-parameters are too difficult to 

achieve by traditional GAs. Furthermore, the constraints are complex, and the algorithm 

has difficulty in meeting all the constraints. The optimisation speed is also slow and 

cannot reach the optimal solution. Due to the population size of the traditional GA is 

limited; the higher fitness individuals have more chance to reproduce in the next 

generation after reproduction, selection, crossover, and mutation, which leads to local 

convergence by the GA. In this case, the non-global optimal solution will be of low 

efficiency for searching ability and fitness calculation, etc. Therefore, several main 

aspects of the GA are improved in order to solve these problems as follows: 

6.3.1 Selection operator 

In the GA, the main function of the selection operator is to obtain the best individuals 

from a genetic population. The selected individual from the population will have a 

better chance to reproduce in the next generation. Here we implemented a selection 

method of fitness value proportion, also as known as roulette wheel selection. The 

selection probability of each individual is obtained by the sum of each individual fitness 

and population fitness to generate a new population (Back 1996). The probability of an 

individual being selected can be denoted: 
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where 
miP  is the selection probability of the i   th individual; 

if  is the fitness of the 

individual i in the population; 
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 is the cumulative fitness of the population. 
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Elitism selection is also applied to select the best individuals for the new population. It 

can rapidly increase the performance of a GA and prevents losing the best found 

solution. According to the traditional selection methods (Goldberg & Rudnick 1990), 

the excellent schema may be damaged by the genetic operator, and then it will decrease 

the average fitness value. So we will select the highest fitness of individuals to the next 

population, and to use the current best individuals to replace the lowest fitness of the 

individuals for genetic operation. 

6.3.2 Encoding representation 

Traditional GAs employs binary strings for the gene encoding. There are many 

advantages of binary encoding, such as ease of implementation, the encoding and 

decoding are simple; crossover and mutation operation can be easily achieved, and so 

on. However, there is the lower computation efficiency when processing the calculation 

of encoding and decoding. It will generate the deviation of the encoding and decoding 

for solving the continuous parameter optimisation problem, and then it will lower the 

computational accuracy. The length of strings needs to be extended in order to improve 

the computational accuracy, which will affect the calculation efficiency. Due to the poor 

search ability of the continuous optimisation problem, it could lead to premature 

convergence for the multi-dimension and high precision optimisation problems. So it is 

difficult to meet the requirement of accuracy in numerical optimisation. An important 

issue of the binary representation implementation has been identified by (Beasley and 

Chu 1996); the resulting solutions are no longer guaranteed to be feasible. It has also 

been stated that real number encoding is best employed and gives better performance 

than binary or Gray encoding for the function optimisation problem. The real-number 
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encoding of the GA is the natural description without the process of encoding and 

decoding for the continuous numerical optimisation problem, it can greatly improve the 

accuracy and convergence of the solution. In order to explore a larger search space, here 

we applied real number encoding for gene encoding in the GA, so it is beneficial to 

retrieve the special heuristic information and to improve the computational efficiency 

and accuracy. 

6.3.3 Adaptive adjustment of crossover probability and mutation probability 

In the standard GA, the probability of crossover and
 
mutation are fixed parameter 

values, which may be sub-optimal. Typically it is leads to the phenomenon of premature 

convergence. Conversely, the adaptive adjustment of crossover and
 

mutation 

probability in the algorithm have been studied by Srinvas and Patnaik (1994), and has 

shown advantages over the shortcomings of the standard GA. In the adaptive GA, the 

probability of crossover and
 
mutation are varied depending on the fitness of each 

solution. The higher fitness solutions are retained and the lower fitnesses are totally 

discarded (Song and Xiao 2013). An adaptive GA is able to find a more general adaptive 

crossover and
 
mutation probability to improve the efficiency of the GA. The parameters 

are determined by a maximum fitness value and an average fitness value of each 

chromosome difference value, defined as in equation (6.2): 

 max avef f f     (6.2) 

where the different value, denoted f , is also known as the iteration error; maxf is the 

maximum fitness value; avef  is the average fitness value. When f   is large, it can 

improve the diversity of the population and the global search capability; when f  is 
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small, it is easy to lead to local convergence and it can become trapped in a local 

minimum (Vasconcelos, at al. 2001). In order to avoid local convergence in 

optimisation, 
cP  and

 mP  need to be adaptively adjusted. Individuals with higher fitness 

values will be retained, 
cP  and 

mP  should be decreased when f   is large, while 

individuals with lower fitness values,
cP and 

mP should be increased when f  is small. 

These can be represented, respectively, as: 
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  (6.4) 

where 
cP  is the crossover rate; 

mP  is the mutation rate; 1k  and 2k  are constants and 

1 2, 1.0k k  ; the two parameters should be adjusted according to a given problem; we 

assign 1k and 2k a value of 1, this ensures that all solutions with a fitness value are low 

or equal to avef  compulsorily undergo crossover. Then the probability of crossover 

decreases as the fitness value tends to maxf  and equal to maxf   acoording to the 

improvement of diversity of individuals and the global searchability when f  is large . 

In the iterative procedure, essentially, f  is repeatedly calculated from an objective 

function (4.4) and subsequently fed back to update equations (6.3) and (6.4) to 

adaptively adjust based on the chromosome conditions. In the adaptive case, 
cP and 

mP

will be changeable and will tend to optimal values for a given problem. This can be 

shown in Figure 7.10, initially, we set default values of 
cP  and

 mP to be 0.8 and 0.2, 

respectively, and their values are adjusted adaptively to 0.87 and 0.13, respectively. The 

results clearly show that adaptive adjustment performs better in optimisation as 
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presented in Figure 7.12. In this way, we can obtain optimal 
cP   and

 mP   during each 

iteration. 

6.4 Improved SA 

Based on the literature, the advantages of the SA can be simplified as follows: high 

efficiency, flexible, general purpose, the initial value is highly robust, suitable for 

parallel processing, and can be used to solve complex nonlinear optimisation problems. 

However, the convergence of the SA is slow and execution time is too long due to the 

higher initial temperature, the slower cooling rate, the lowering of the end temperature, 

and the temperature of the sample; so it is difficult to get the global optimal solution if 

the cooling process is too fast. Therefore, SA is improved by the calculation method of 

the jump distance and the acceptance probability of the temperature drop function in 

order to solve these shortcomings, in the following several aspects (Ning and Guo 2008): 

6.4.1 Improvement of generator  

The improvements of generator addresses the improvement of the calculation method 

of the jump distance, in which it is assumed that the maximum and the minimum of the 

individual species is U and L , respectively, then the information of population in upper 

and lower bounds can be obtained from the following formula: 
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  (6.6) 

The formula (6.5) and (6.6) is the information of population in upper and lower bounds, 
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LB  and UB  is the upper and lower bounds of the feasible region respectively,  is 

shrinkage coefficient, k   is constant. Then jump distance can be calculated by the 

following formula: 

  min ', 'D x L U x     (6.7) 

through the improved method, which can solve the problem of local minimum 

effectively when the population is decentralised , and solve the problem of zeros jump 

distance to prevent single population. (Kirkpatrick, Gelatt & Vecchi 1983; Dekkersn & 

Aarts 1991) 

6.4.2 Improvement of acceptance probability of the temperature drop function 

The acceptance probability of the temperature drop function can be expressed by the 

following formula: 
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     (6.8) 

where, 

1kdx D r A r      , D is the jump distance, A  is equal to  min ,x LB UB x  , r  

is a random number,   is shrinkage coefficient,   is the temperature drop function 

coefficient, 0kT  is the initial temperature, where the k   is bigger and bigger, dx   is 

smaller and smaller, then    f x dx f x   can equal to  'f x dx  So the acceptance 

probability can convert to the following formula:  
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In the formula (6.9), we can see that when 1   , the acceptance probability tends to 

zero after evolution, when 1    , the acceptance probability tends to one after 

evolution, when 1   ，the acceptance probability after evolution is associated with 

the derivative of x, when  ' 0f x   the acceptance probability tends to one. The main 

advantage of this function can speed up the convergence (Dekkersn & Aarts 1991) 

6.5 Hybrid method of improved GA and improved SA 

The GA has a strong ability of global search and is easy to implement in optimisation. 

However, it will lead the error or missed optimal results in the crossover procedure due 

to slow simulation speed, local optimisation, premature phenomenon, etc. Therefore, it 

is proposed to integrate an improved GA with the improved SA as a hybrid method and 

to combine advantages of GA (globalisation and parallelism, etc.) and SA (local search 

ability and ergodicity, etc.). The procedure of the hybrid method is presented as 

following: 

Step 1: Randomly generate the n  th initial populations, denoted as 1p  , 2p  , 3p  …, np  

respectively. Parameters need to be clarified, including population size, chromosome 

length, crossover probability, mutation probability, initial temperature, cooling 

temperature and cooling approach. 

Step 2: Apply parameters into the objective function (4.4) to obtain initial fitness values. 

These are denoted
1pT ,

2pT ,
3pT …,

npT respectively, which need to satisfy the constraints 

and conditions in the optimisation process. 

Step 3: Implement the improved GA. This employs a roulette wheel selection method 
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to select some of the optimal individuals from the populations and reproduce to the next 

generation based on the procedure of selection, mutation, crossover, etc. The selected 

individuals form a new population, denoted 1(t)p  ; the unselected individuals, are 

denoted 2 (t)p  and to crossover and mutate the unselected individuals to form a new 

population, are denoted 2' ( )p t  

Step 4: Implement the improved SA after crossover and mutation, Equation (6.9) is 

applied whether it is acceptable for a cooling factor. This generates a new population, 

denoted 2'' ( )p t . 

Step 5: Calculate fitness of all individuals after improved SA. 

Step 6: Combine 1(t)p  and 2'' ( )p t  to form the new population as a new generation of 

species. 

Step 7: Repeat above procedures until iteration ends. 

The improved algorithm is presented in Figure 6.1: 
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Figure 6.1: Hybrid method of improved GA and improved SA 

6.6 Conclusion 

In this chapter, we proposed a novel hybrid algorithm for the fusion of combined an 

improved GA and an improved SA for minimising the total production time in a micro-

brewery, as given in Chapter 4. It adopts the acceptance probability of SA to improve 

the convergence of the improved GA which has improved the computational efficiency 

and accuracy by real-number encoding and also improved the diversity of the 
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population of the adaptive adjustment of crossover probability and mutation probability. 

Consequently, the improved GA and SA not only achieves the combination of global 

search capability of GA and local search capability of SA, it can also help SA to take 

full advantage of the global information from GA. The convergence of crossover rate 

and mutation rate is optimised and also the proposed hybrid algorithm is validated as 

described in Chapter 7. The hybrid approach designed in this work differ from other 

hybrid approaches in that it has been developed specifically for the complex micro 

brewery production process. 
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Chapter 7: Application of Proposed 

Models and Algorithms 

7.1 Introduction 

In order to validate the proposed hybrid algorithm and to obtain the optimal sequences 

of orders of each product, the research is applied to use the traditional GA, SA, and 

ACO to optimise a brewery production system. In addition, the traditional GA will be 

improved by encoding representation, and adaptive adjustment of crossover rate and 

mutation rate. The SA is also improved by the advanced jump distance and acceptance 

probability of the temperature drop function. Then we use the traditional GA, SA, ACO, 

an improved GA and an improved SA to compare with the hybrid algorithm in order to 

optimise a typical brewery production system in terms of the total production time. 

Thus, altogether six algorithms are compared. 
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7.2 Research setting for a micro-brewery 

In this research, a typical micro brewery system assumes that three beer products are to 

be produced simultaneously in three parallel fermentation vessels of differing capacity. 

The problem is how to schedule the orders to be produced in the vessels, such that the 

total production time is optimal.  

Furthermore, three products can be denoted
1p ,

2p and
3p respectively. The production 

period is denoted 
ipT  of 1p  , 2p  and 3p  are 15, 20 and 30 days, respectively, where 

1,2,3i  . The sequence of the quantity of orders are constant; it can be denoted no  , 

where 1, 2,3,...n n  ; Three vessels can be denoted
1v  ,

2v  and 
3v  , respectively. The 

maximum capacity of
1v ,

2v and 
3v are expressed in terms of barrels and denoted 20, 30 

and 50 barrels, respectively. 

Subsequently, the operation of production is determined by the setting up time, 

fermentation time, cleaning time and changeover time as shown Table 7.1. The setting 

up time is denoted setupT  for
1p ,

2p and
3p , are 24, 48 and 72 hours, respectively. The 

cleaning time is denoted cleanT   for
1v  ,

2v  and 
3v   are 2, 3 and 5 hours, respectively. 

Moreover, the changeover time might occur when the next batch production is to be 

changed in different vessels, and then it requires an additional 12 hours for vessel 

cleaning. In addition, the due date is denoted dueT for
1p ,

2p and
3p are 20, 30 and 40 days, 

respectively, based on customer demands. 
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Table 7.1: Production parameters 

 1p  
2p  

3p  

ipT  (hours) 15*24 20*24 30*24 

i

setupT  (hours) 24 48 72 

no (barrels) 100 100 100 

i

dueT  (hours) 20*24 30*24 40*24 

i

changeT  

(hours) 

1v  0 12 12 

2v  12 0 12 

3v  12 12 0 

 

The following are the assumptions made in solving this problem (the assumptions are 

based on the commercial brewery operation process): 

 The 100 random raw orders for each product type which are given in Appendix A.   

 Three different products working in three parallel vessels simultaneously with 

limited capacity. 

 A set of fixed processing time and setting up time for each product as well as cleaning 

time for each vessel and changeover time. They are considered deterministic and 

known in advance. 

 Each vessel must process one batch of production only, once a vessel starts to process 

a batch of orders, no interruption is allowed, and then it needs to be cleaned when 

finished. 

 The arriving orders will be within accumulated batches in the same order to meet the 

required capacity of the vessels. 

 The priority order is allowed based on the due date. 



 

 

121 

 

 The production time cannot exceed the due date  

7.3 Optimisation results 

Based on the complex brewery production scheduling problem, if three products are 

always working in the same vessel in parallel, then there are no vessel changes for 

production. Therefore, the total production time without optimisation can be obtained 

as follows: 

 

Figure 7.1: Result without optimisation 

According to the result in Figure 7.1, it is shown that the result of production is 19512 

hours without the use of optimisation methods.  The same orders were passed to each 

system. The unoptimised case simply processes the order in the sequence they arrive. 

The other methods re-order the batches to make the vessel more effectively approach 
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will lead changeover.   

7.3.1 Genetic algorithm (GA) 

In the application of the GA, the choice of crossover probability
cP   and mutation 

probability
mP  is known to critically affect the behaviour and performance of GAs. The 

cP controls the capability of GAs in exploiting a located hill to reach the local optima. 

The higher
cP , the quicker exploitation proceeds. If the 

mP  is too large that would disrupt 

individuals faster than they could be exploited. The 
mP controls the speed of GAs in 

exploring a new area. Small 
mP  values are commonly adopted in GAs. The values of 

cP

are normally recommended to be in the range 0.5~1.0, while the values of 
mP   are 

recommended to be in the range 0.001~0.5. The workflow of the GA can be described 

as follows in Figure 7.2: 

 

Figure 7.2: Workflow of the GA 
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The main parameters are used as follows: 

 Number of iterations: 1000 

 crossover probability: 0.8 

 mutation probability: 0.2 

 generation gap: 0.9 

 population size: 20 

The result of GA can be obtained as follows: 

 

Figure 7.3: Result of GA 

The above result is clearly an improvement in the unoptimised case. The production 

time of the GA is 12744 which has saved approximately 35% in contrast with the 

unoptimised case. 
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7.3.2 Simulated annealing (SA) 

The algorithm SA is a mathematical analogy to a cooling system which can be used to 

sample highly nonlinear, multi-dimensional functions. There are many variations 

around and the efficiency strongly depends on the particular function to sample. It is 

extremely difficult to make general statements as to what parameters work best. The 

procedure of the SA can be described as follows: 

 

Figure 7.4: Workflow of the SA 

The main parameters are used in this model as follows: 

 Number of iterations: 1000 

 Population size: 20 

 Initial temperature: 0 

 End temperature: 1 
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 Current temperature: 100 

 Cooling factor: 0.99 

The result of the SA is obtained as follows: 

 

Figure 7.5: Result of SA 

According to the result of the SA in Figure 7.5, which shows the convergence speed, it 

is faster and the performance is worse than the GA and ACO in terms of total production 

time. Due to the slow cooling of solid annealing, the solid can reach the equilibrium 

state at each temperature. Therefore, the value of the control parameters must be slowly 

reducing in order to ensure that SA will obtain the global optimal solution, so the 

number of iterations cannot determine the accuracy. 

7.3.3 Ant colony optimisation (ACO) 

Based on the literature, the ACO algorithm is modelled based on ant behaviour. It has 
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been found that the information transfer between ants through a type of material which 

is called the pheromone which enables the transfer of information allowing ants to 

cooperate with each other in order to complete a complex task. Ants in the process of 

movement are able to deposit a pheromone in the path; other ants who are able to 

perceive its existence of such substances and its intensity and is guided in the direction 

of the pheromone. Therefore, the collective behaviour of an ant colony, which is 

composed of a large number of ants, demonstrates a positive feedback phenomenon: 

the more ants pass through a path, the greater the probability that the path will be chosen. 

For the JSP, the biggest difficulty is the computational complexity; then effective 

scheduling rules and methods can reduce the searching space and shorten the searching 

process. The flowchart of the ACO procedure is as shown in Figure 7.6. 
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Figure 7.6: The workflow of the ACO 

The main parameters used are as follows: 

 Number of iterations: 1000 

 Population size: 20 

 Pheromone strength index: 1 

 Information heuristic factor: 3 

 Expected heuristic factor: 0 

 Pheromone lasting coefficient: 0.7 

The result of ACO is obtained as follows: 
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Figure 7.7: Result of ACO 

As the above result, the ACO algorithm converged more slowly and reached stagnation. 

The result shows a better performance than the SA, and optimal production time is 

13008 hours as contrasted to 17447 hours for the SA, it saving approximately 25%. 

7.3.4 Improved GA 

The improved GA, which is described in section 6.3, which is improved by the encoding 

representation. The real number is applied instead of the traditional binary encoding in 

the GA as it is beneficial to retrieve the special heuristic information and to improve the 

computational efficiency and accuracy. And also the adaptive adjustment of crossover 

probability and mutation probability is proposed based on chromosome condition, 

which is effective in order to find the most optimal results and to reduce the number of 

iterations. The result is obtained as follows in Figure 7.8. It demonstrates that the 

improved GA performs better than the traditional GA, saving approximately 5% 
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reduced time. In this particular result, the shortest total production time is 12277 hours 

and 12744 hours respectively, for the improved GA and the traditional GA. 

 

Figure 7.8: Optimised result of the improved GA 

7.3.5 Improved SA 

The improved SA, which is described in Section 6.4, is achieved by the improvement 

of generator and improvement of the acceptance probability of temperature drop 

function. The computational method of the jump distance is improved which can solve 

the problem of local minimum effectively when the population is decentralised and 

solve the problem of zero jump distance when the population is simplified. Also, it 

improves the speed of the convergence. The result is obtained as follows in Figure 7.9. 

The result shows that the improved SA gives better performance than the traditional SA; 

it saves 10% in regard to the total production time. 
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Figure 7.9: Optimised result of the improved SA 

7.3.6 Hybrid algorithm of the combined improved GA and improved SA 

The main parameters used are as follows: 

Table 7.2: Parameters of the proposed hybrid algorithm 

 Parameters Values 

1 Population size 20 

2 Number of iterations 1000 

3 Crossover probability 0.8 

4 Mutation probability 0.2 

5 Initial temperature  1000 

6 Temperature drop coefficient 0.99 

7 Counter 1 

 

The approach of MATLAB/Simulink has been employed to simulate the model. The 

result of the change of the optimised crossover rate and mutation rate is shown in Figure 
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7.10: 

 

Figure 7.10: Optimised convergence of the crossover rate and mutation rate 

According to the result of Figure 7.10, which illustrates the crossover rate and mutation 

rate patterns of convergence; at the initial phase, the distribution of both crossover and 

mutation rate is 0.8 and 0.2, respectively. With the optimising iteration increasing, the 

crossover rate is increasing and converges at approximately 0.87; the mutation rate is 

decreasing and converges at approximately 0.13. Therefore, the optimal crossover 

probability and mutation probability can be applied to optimise the production system 

via the hybrid algorithm. 

On the basis of the iterations increasing progressively, the change of the optimised 

production time is presented in Figure 7.11. 
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Figure 7.11: Optimised result of the proposed hybrid algorithm 

It is shown that the total production time is 11851 hours of the 1000 iterations. Also, 

the sequence of product production in different vessel is obtained as below: 

Table 7.3: Optimised sequences of production 

Product types Sequence of vessels 

1p
 

3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 1, 3, 3, 2, 3…… 

2p
 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1…… 

3p
 

2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2…… 

According to Table 7.3, it demonstrates the change of the sequences of vessels after 

optimisation. Initially, there is no changeover time when 1p , 2p and 3p  are produced in 

1v  ,
2v  and 

3v  separately. Moreover, 1p   will be changed the vessel 3 to vessel 2 for 

production after nine operations continuously, and then to change to vessel 3. Likewise, 
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2p  will be produced in vessel 1 for ten operations continuously, then changed to vessel 

2 once, and then to produce in vessel 2. Furthermore, 3p will be produced in vessel 2 for 

nine operations continuously, then produce in vessel 3 once, and then schedule to 

produce in vessel 2. All sequences of vessel are given in Appendix B 

7.3.7 Results comparison and analysis 

7.3.7.1 Scenario 1 

In order to validate the performance of the proposed novel method, the comparison of 

traditional GA, SA, Ant colony optimisation (ACO), improved GA, improved SA and 

the hybrid algorithm has been carried out. The 100 random raw orders for each product 

type which are given in Appendix A.1. The comparison of the results is presented in 

Figure 7.12. 
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Figure 7.12: Comparison of optimisation results for different algorithms (Scenario 1) 

Figure 7.12 demonstrates that the proposed novel algorithm performs better than the 

traditional GA, SA, ACO, improved GA and improved SA. It not only achieved the 

combination of the global search capability of the GA and the local search capability of 

the SA, but can also help the SA to take full advantage of the global information from 

the GA. At the early stage of the evolution, the SA temperature is higher (initial 

temperature value is 1000), then it can avoid the premature convergence and strength 

then the global convergence is according to the result in Figure 7.12. It obtained the 

smallest value; at a later stage of the evolution, the SA temperature is lower, then the 

hill climbing performance of the SA can speed up the convergence of the hybrid method. 

(The result is convergence in 100 iterations and much faster than others.) 

The computational results are given in Table 7.4. 
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Table 7.4: Computational results of total production time of each algorithm (Scenario 1) 

5 

6 

7 

 

It is most important to notice the significant improvement in the total production time 

in Table 7.4. This particular result is typical and is representative, being regarding as a 

general observation when dealing with the micro-brewery production system. The 

hybrid algorithm obtained optimal total production time which is 9913 hours and it 

saves approximately 20%, 22%, 24%, 37% and 44%, respectively, in comparison with 

the improved GA, GA, ACO, improved SA and SA. It is also a saving 51% 

approximately of no optimisation. Hence, it is a significant advantage to the production 

process. 

7.3.7.2 Scenario 2 

Furthermore, we implemented different sets of data for the 100 raw orders for each 

product as shown in Appendix A.2. In order to validate the proposed hybrid algorithm 

as a reliable and effective approach in comparison with other algorithms, the test is 
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repeated. The results are shown in Figure 7.13 

 

Figure 7.13: Comparison of optimisation results for different algorithms (Scenario 2) 

Figure 7.13 shows the comparison of the optimisation results for the different 

algorithms. In this particular Scenario 2, the result of the proposed hybrid algorithm 

performs slightly better than SA, but the convergence is much faster than ACO. The 

computational results are given in Table 7.5 and the optimal sequences of vessel are 

given in Appendix B. 
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Table 7.5: Computational results of total production time of each algorithm (Scenario 2) 

5 

6 

7 

The total production time of different algorithms that we have obtained; the result of 

the hybrid algorithm is 5459 hours which is optimal and it saves approximately 47%, 

59%, 1%, 64%, and 68%, respectively, in comparison with the improved GA, GA, ACO, 

improved SA and SA. Particularly, it saves approximately 72% in the case of no 

optimisation. 

7.3.7.3 Scenario 3 

Similarly, as for Scenario 2, Scenario 3 corresponds to the different sets of data for 100 

orders for each product. These are shown in Appendix A.3. It is assumed that orders 

have higher demand for each product type. The results are shown in Figure 7.14 and 

the optimal sequences of vessel are given in Appendix B 
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Figure 7.14: Comparison of optimisation results for different algorithms (Scenario 3) 

The computational results are given in Table 7.6: 

Table 7.6: Computational results of total production time of each algorithm (Scenario 3) 
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Figure 7.14, shows the optimisation results, once again the proposed hybrid algorithm 

performs much better than other algorithms and has a significant improvement in this 

particular scenario. The result of the hybrid algorithm is 7597 hours which is optimal 

and it saves approximately 42%, 51%, 11%, 40%, and 46%, respectively, in comparison 

with the improved GA, GA, ACO, improved SA and SA. Particularly, it saves 

approximately 69% in the case of no optimisation. 

7.4 Conclusion  

In this chapter, we have applied the GA, SA, ACO, improved GA and improved SA to 

optimise a typical micro brewery production system. Different algorithms have been 

compared with the hybrid algorithm as proposed in Section 6.5. The comparison results 

have demonstrated that the proposed algorithm gives better performance and effective 

ability to search optimisation solutions in order to minimise the total production time. 

It has not only achieved the combination of the global search capability of the GA and 

the local search capability of the SA, but can also help the SA to take full advantage of 

the global information from the GA. Therefore, the proposed method provides an 

optimal solution in comparison with other algorithms and it can be effectively applied 

to improve both the performance and efficiency of the micro brewery production 

systems. 
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Chapter 8: Conclusions and Future 

Work 

8.1 Summary 

In this chapter, the main contributions of this research and directions for future work 

are summarised based on the outcomes presented in the preceding chapters as given. 

The aims of this research were to develop standard simulation models and a generic 

mathematical model for optimising a micro brewery production system via different 

heuristic algorithms. By achieving these goals, the following have been completed: 

 The scheduling problem and optimisation methods are reviewed critically in 

Chapter 2 

 The rationales, concept, principle, applications of the meta-heuristic methods 

that are implemented for optimising the brewery production system have been 

explored in Chapter 3 
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 The brewery production process has been investigated in Chapter 4 

 Production scheduling problems are formulated by mathematical models in 

Chapter 4 

 The Simulink model is modelled in Chapter 5 to simulate the scenarios of the 

brewery production system 

 The traditional GA and SA are improved in Chapter 6 

 A hybrid algorithm is proposed to integrate the improved GA with the SA to 

optimise the brewery production system in Chapter 6 

 The proposed hybrid algorithm is implemented and verified as contrasted with 

GA, SA, ACO, the improved GA and the improved SA, for optimising a real-

life brewery production process in Chapter 7 

8.2 Contributions of the research 

There are four main contributions that have been made in this research: 

 The generic mathematical model is formulated in Chapter 4, which is used to 

tackle the problems for the brewery production system. Various product types 

are to be produced in different vessels with limited capacity; the operation of 

the brewery is determined by the processing time, setting up time, changeover 

time of each product, and cleaning time of each vessel, as well as the due date 

based on consideration of the customer demand. The model needs to satisfy with 

the full conditions and constraints within the brewery production yet also to 

minimise the production time. 
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 The Simulink model is developed in Chapter 5 which is modelled to observe the 

performance of each stage of the production process for a brewery production 

system. It considered three product types to be produced in three parallel vessels 

with limited capacity. Orders of each product arrive randomly and accumulate 

ready for the batch production; each batch will be equivalent to the maximum 

capacity of each vessel. The operation of the brewery is determined by setting 

up time, production time, changeover time of products, and cleaning time of 

vessels. Management level decision making employs the dispatching rules 

which allocates the resources optimally in order to achieve the targets that 

include priority rules, due date, “first come first served”, shortest processing 

time, changeover, etc. The Simulink model achieves these targets which include 

the sequence of orders, the sequence of the batch, the decision making strategies 

(workload of full capacity), the changeover condition of different product types 

which are produced in different vessels and production time. Furthermore, the 

parameters of the model can be easily changed at different stages. It has a 

feasibility which may be applied in any similar production process. For example, 

it can be extended to cater for more product types and more vessels, should the 

micro brewery expand. To the best knowledge of the author, limited to the 

literature survey, no other such model in Simulink exist for a micro brewery 

production process. 

 The hybrid algorithm is proposed in Chapter 6. It integrates the improved GA 

with the improved SA as the hybrid method in order to optimise the brewery 

production system. Based on the drawbacks of the GA and the SA, the GA is 

improved by the real number encoding, instead of tradition binary encoding, 
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and adaptive adjustment of crossover probability and mutation probability in 

order to improve the searching capability solution. The SA is improved by the 

computational method to solve the problem of local minimum effectively when 

the population is decentralised, and solves the problem of the jump distance to 

prevent single population; also the acceptance probability of the temperature 

drop function is improved to speed up the convergence. Subsequently, the 

hybrid algorithm has combined the advantages of the improved GA and 

improved SA to achieve the optimal solution. 

 The validation of the hybrid algorithm is demonstrated in Chapter 7. It has 

applied meta-heuristic methods to optimise a typical brewery production system 

in terms of the total production time. The GA, SA, ACO, improved GA, and 

improved SA have been implemented to compare with the proposed hybrid 

method. The optimal result of the hybrid method is obtained and shows better 

performance than other heuristic algorithms. It could save approximately 10%, 

47%, 9%, 5%, and 30%, separately, as contrasted with GA, SA, ACO, improved 

GA, and improved SA. 

In conclusion, the mathematical model of micro brewery production scheduling 

problem have been developed and investigated. To begin, the production scheduling 

methods were reviewed as preliminary knowledge engaged in exploring the rationales, 

concepts and problems of production scheduling. The application of optimisation 

methods is discussed for optimising the scheduling problem related to the brewery 

production system. Furthermore, the optimisation based simulation model of the 

brewery production scheduling problem is formulated mathematically in order to 

minimise the production time and maximise the performance. Moreover, the Simulink 
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model is developed and proposed to observe the performance of each stage in the 

brewery production. The dispatching rules are employed to allocate resources optimally 

according to the real dynamical production process that some main factors have 

achieved in the research. This includes the sequence of orders, the sequence of batches, 

the decision making strategies, the occurrences of changeovers, and the production time. 

Subsequently, the meta-heuristic algorithms have been implemented to optimise the 

brewery production system that includes the GA, SA and ACO. Due to the shortfalls of 

these algorithms, it may result in the premature convergence, trapped in local optima, 

etc. In order to solve these problems, the GA is improved by the real-number encoding 

and adaptive adjustment of crossover probability and mutation probability that can 

improve the computational efficiency and obtain the global optimal solutions 

effectively. The SA is improved by the computational method of the jump distance and 

the acceptance probability of the temperature drop function that can solve the local 

minimum problem and speed up the convergence. Finally, the most significant 

contribution in this thesis is the hybrid method which has been proposed to integrate 

the improved GA with the improved SA. The result shows that the hybrid method 

outperforms the GA, SA, ACO, improved GA and improved SA. The efficiency of the 

proposed algorithm has been demonstrated when applied to the simulation model of a 

micro brewery batch production system. 

8.3 Future Research 

As for future research directions, the following issues need further development: 
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(1) The Simulink model is developed to control the entire beer production 

system automatically and observe the performance. Due to the limitations and 

facts of reality, some factors may need to be extended further in the model, such 

as order cancellations, machine breakdown, labour strike, etc. 

(2) Although the proposed model proved its efficiency, it only considers the 

minimum operation time. In the actual brewery, there are many issues that need 

to be investigated further, such as the problem of delays in shipment, raw 

material supplement, inventory problems, supply chain management, etc. 

(3) The future investigation would focus on the very latest algorithms to 

solve these problems. The proposed methodology for production scheduling 

requires more tests before implementation within real production environment 

of the micro brewery. 

(4) A further phase would be to optimise alongside the current manual 

scheduling procedure. The development approach could be used to train new 

brewery staff to guide them to take the effective decisions in the everyday 

scheduling of the production. 
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Appendix A 

The 100 random raw orders have been received daily in 100 days sequence for each 

product type, each number represented as barrels of each order in each day as follows: 

A.1:  

Product type A 

13 22 1 10 5 3 6 11 12 17 13

 21 7 27 1 21 13 17 5 6 25 30

 10 21 27 27 3 2 6 27 3 13 29

 16 21 10 21 26 1 23 30 23 9 24

 4 14 28 9 9 4 1 21 7 8 15

 2 18 5 18 21 4 13 21 13 2 17

 20 16 29 18 28 5 5 25 12 5 28

 11 23 22 27 19 23 11 9 27 13 29

 20 19 4 29 14 18 13 8 28 18 1

 19 

 

Product type B 

 
9 1 11 9 9 7 5 13 6 6 13

 11 3 11 4 16 18 10 17 2 11 2

 9 2 3 12 5 3 5 7 10 5 13

 10 11 8 16 12 4 15 20 11 18 7

 12 9 9 16 11 20 11 2 8 18 9

 1 5 2 20 20 17 13 16 4 6 11

 8 1 20 9 11 7 6 8 17 15 8

 1 16 6 12 1 14 8 10 9 8 12

 20 3 7 1 15 14 5 9 13 14 4

 18 
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Product type C 

 
6 8 3 6 9 9 2 3 1 5 1

 5 7 3 7 6 1 6 3 5 3 7

 5 2 6 8 4 3 4 10 10 7 10

 9 4 1 7 6 4 3 5 5 3 3

 5 9 6 3 3 5 3 3 6 1 5

 4 8 8 7 7 4 7 4 6 4 5

 1 3 10 3 7 7 8 5 6 1 1

 2 2 2 2 6 2 10 7 6 8 3

 10 9 8 5 9 8 7 10 7 4 6

 2 

 

A.2:  

Product type A 

 
              4 6 1 3 2 1 2 3 4 5 4

 6 2 8 1 6 4 5 2 2 7 8

 3 6 8 8 1 1 2 8 1 4 8

 5 6 3 6 7 1 7 8 6 3 7

 1 4 8 3 3 2 1 6 2 3 4

 1 5 2 5 6 1 4 6 4 1 5

 6 5 8 5 8 2 2 7 4 2 8

 3 7 6 8 5 7 3 3 8 4 8

 6 5 1 8 4 5 4 2 8 5 1

 5 

 

Product type B 

 
              14 1 17 14 13 10 7 19 9 9 19

 16 5 16 6 24 26 15 26 3 16 2

 13 3 4 18 7 4 7 11 15 7 20

 15 16 12 24 18 5 22 29 16 27 11

 18 13 14 24 17 29 17 3 11 26 13

 1 8 3 30 30 25 19 23 6 9 16

 11 2 30 14 16 10 8 12 25 23 12

 1 24 9 18 1 20 12 15 13 11 17

 30 4 10 2 23 20 7 13 20 20 6

 27 

 

Product type C 

 
             9 11 5 8 14 14 2 4 1 7 1

 7 10 5 11 9 1 9 4 7 5 11

 7 3 9 12 5 4 6 15 15 11 14

 13 6 2 10 9 6 4 7 8 5 5

 7 13 9 5 5 7 4 4 8 2 8

 6 11 12 11 11 6 11 6 9 5 7

 1 4 15 4 11 10 11 8 9 2 2

 3 3 2 2 9 3 15 11 9 11 4

 14 13 11 8 13 12 10 14 10 6 9

 3 
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A.3: 

Product type A 

              21 37 1 16 8 5 10 18 20 27 21

 35 11 44 2 34 21 28 8 10 41 49

 16 35 44 45 5 2 9 44 5 22 48

 27 35 16 35 42 1 38 50 38 15 40

 6 23 46 15 15 7 1 34 11 14 25

 3 29 8 30 35 6 21 35 21 3 27

 34 26 48 30 46 7 7 41 20 9 47

 18 38 37 45 32 38 18 14 45 22 49

 34 32 6 48 23 29 21 12 46 29 1

 31 

 

Product type B 

              14 1 17 14 13 10 7 19 9 9 19

 16 5 16 6 24 26 15 26 3 16 2

 13 3 4 18 7 4 7 11 15 7 20

 15 16 12 24 18 5 22 29 16 27 11

 18 13 14 24 17 29 17 3 11 26 13

 1 8 3 30 30 25 19 23 6 9 16

 11 2 30 14 16 10 8 12 25 23 12

 1 24 9 18 1 20 12 15 13 11 17

 30 4 10 2 23 20 7 13 20 20 6

 27 

 

Product type C 

              12 15 6 11 18 18 3 5 2 9 1

 10 13 6 14 12 1 12 6 9 6 14

 9 4 11 16 7 5 8 19 20 14 19

 17 8 2 14 12 8 5 9 10 6 6

 10 18 12 6 6 10 5 5 11 2 10

 8 15 15 14 14 8 14 7 12 7 9

 2 5 20 5 14 14 15 10 12 2 2

 4 4 3 3 12 4 20 14 11 15 6

 19 17 15 10 17 15 14 19 13 8 12

 4 
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Appendix B 

The sequences of vessels have been obtained that include the no optimisation, GA, SA, 

ACO, improved GA, improved SA, and hybrid algorithm. Number 1, 2, and 3 

represents vessel 1, vessel 2 and vessel 3, respectively. 

B.1: No optimisation 

Production sequence of vessels without the use of optimisation for product type A: 

              3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 
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Production sequence of vessels without the use of optimisation for product type B: 

 
              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1            1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 

 

Production sequence of vessels without the use of optimisation for product type C: 

 
              2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 2 2 2 2 2 2 2

 2 

 

B.2: GA optimisation 

Optimised production sequence of vessels for product type A: 

Scenario 1: 

              3 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 2 2 2 2 3 1

 3 2 1 3 3 2 2 2 2 3 2

 3 3 2 2 2 2 2 1 1 2 1

 1 1 1 1 1 2 3 3 2 1 1

 2 3 2 1 1 1 3 1 2 1 1

 1 1 2 1 1 2 1 1 3 2 1

 3 2 2 1 1 2 2 2 2 2 1

 2 1 1 3 1 1 1 1 1 2 1

 1 

Scenario 2 

              3 3 3 3 3 3 3 3 2 2 2

 2 3 3 2 3 2 3 2 3 3 2

 3 3 3 3 2 2 2 1 1 1 2

 3 2 2 1 2 1 3 1 2 2 1

 1 3 3 2 2 1 1 2 1 3 2

 1 3 2 3 1 2 1 1 1 1 1

 3 3 2 3 2 2 1 1 3 2 1

 3 2 2 1 1 2 2 2 2 2 1

 2 1 1 3 1 1 1 1 1 2 1

 1 
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Scenario 3 

              3 3 3 3 3 3 3 3 3 2 2

 3 3 3 2 3 3 3 2 2 2 2

 3 3 3 2 2 1 2 3 2 3 3

 2 3 2 2 3 3 1 3 1 2 1

 2 2 2 1 2 3 2 2 2 2 3

 2 2 1 3 1 3 2 3 1 1 1

 2 2 3 2 2 1 2 2 2 1 2

 2 1 3 2 2 2 1 3 1 2 2

 1 1 1 1 1 2 1 1 1 1 1

 1 
 

Optimised production sequence of vessels for product type B: 

Scenario 1: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 2

 1 1 2 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 2 1 2

 2 2 2 2 2 1 1 1 1 2 2

 1 1 1 2 2 2 1 2 1 2 2

 2 2 1 2 2 1 2 2 1 1 2

 1 1 1 2 2 1 1 1 1 1 2

 1 2 2 1 2 2 2 2 2 1 2

 2 

Scenario 2: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 2 2 1

 1 1 1 2 1 2 1 2 1 1 2

 2 1 1 1 1 2 2 1 2 1 1

 2 1 1 1 2 1 2 2 2 2 2

 1 1 1 1 1 1 2 2 1 1 2

 1 1 1 2 2 1 1 1 1 1 2

 1 2 2 1 2 2 2 2 2 1 2

 2 

Scenario 3: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 2 1 1 1 1 1

 1 1 1 1 1 1 2 1 2 1 2

 1 1 1 2 1 1 1 1 1 1 1

 1 1 2 1 2 1 1 1 2 2 2

 1 1 1 1 1 2 1 1 1 2 1

 1 2 1 1 1 1 2 1 2 1 1

 2 2 2 2 2 1 2 2 2 2 2

 2 

 

Optimised production sequence of vessels for product type C: 
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Scenario 1: 

2 2 2 2 2 2 2 2 2 2 2

 2 2 2 3 2 3 3 3 3 2 3

 2 3 3 2 2 3 3 3 3 2 3

 2 2 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 2 2 3 3 3

 3 2 3 3 3 3 2 3 3 3 3

 3 3 3 3 3 3 3 3 2 3 3

 2 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 3 3 3 3 3 3

 3 

Scenario 2: 

              2 2 2 2 2 2 2 2 3 3 3

 3 2 2 3 2 3 2 3 2 2 3

 2 2 2 2 3 3 3 3 3 3 3

 2 3 3 3 3 3 2 3 3 3 3

 3 2 2 3 3 3 3 3 3 2 3

 3 2 3 2 3 3 3 3 3 3 3

 2 2 3 2 3 3 3 3 2 3 3

 2 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 3 3 3 3 3 3

 3 

Scenario 3: 

              2 2 2 2 2 2 2 2 2 3 3

 2 2 2 3 2 2 2 3 3 3 3

 2 2 2 3 3 3 3 2 3 2 2

 3 2 3 3 2 2 3 2 3 3 3

 3 3 3 3 3 2 3 3 3 3 2

 3 3 3 2 3 2 3 2 3 3 3

 3 3 2 3 3 3 3 3 3 3 3

 3 3 2 3 3 3 3 2 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

B.3: SA optimisation 

Optimised production sequence of vessels for product type A: 
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Scenario 1: 

3 3 3 3 3 3 3 3 2 3 3

 3 2 3 2 3 2 3 3 1 3 2

 3 3 3 2 3 3 2 2 2 3 1

 2 2 3 2 2 2 2 3 1 3 2

 2 3 1 2 2 3 3 3 2 1 2

 2 3 2 3 1 1 2 1 2 1 3

 1 1 1 1 1 1 2 1 3 2 1

 3 1 2 1 2 1 2 1 1 1 1

 1 1 2 1 1 1 1 1 1 1 1

 1 

Scenario 2: 

              3 3 3 3 3 3 2 3 3 3 2

 3 3 3 3 3 2 2 2 2 1 3

 3 3 3 3 3 1 2 2 3 3 1

 2 3 3 3 2 3 2 1 3 2 2

 3 2 2 1 2 2 2 2 3 2 1

 1 2 2 2 2 1 1 1 1 1 1

 2 1 2 2 2 1 2 1 1 2 1

 2 1 1 1 3 1 1 1 1 1 1

 1 2 2 1 1 1 1 1 1 1 1

 1 

Scenario 3: 

              3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 2 3 3 3 3 3 3

 2 1 3 3 3 3 3 2 3 2 2

 2 3 3 2 3 1 3 3 2 3 3

 1 2 2 2 2 2 2 1 2 3 2

 2 1 2 1 1 3 1 3 2 2 1

 2 1 1 2 2 1 2 1 2 1 2

 1 2 1 1 2 1 2 2 1 1 2

 2 2 1 1 1 1 2 1 1 1 1

 1 

 

Optimised production sequence of vessels for product type B: 

Scenario 1: 

1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 2 1 1

 1 1 1 1 1 1 1 1 1 1 2

 1 1 1 1 1 1 1 1 2 1 1

 1 1 2 1 1 1 1 1 1 2 1

 1 1 1 1 2 2 1 2 1 2 1

 2 2 2 2 2 2 1 2 1 1 2

 1 2 1 2 1 2 1 2 2 2 2

 2 2 1 2 2 2 2 2 2 2 2

 2 

 



 

 

154 

 

Scenario 2: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 2 1

 1 1 1 1 1 2 1 1 1 1 2

 1 1 1 1 1 1 1 2 1 1 1

 1 1 1 2 1 1 1 1 1 1 2

 2 1 1 1 1 2 2 2 2 2 2

 1 2 1 1 1 2 1 2 2 1 2

 1 2 2 2 1 2 2 2 2 2 2

 2 1 1 2 2 2 2 2 2 2 2

 2 

Scenario 3: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 2 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 2 1 1 1 1 1

 2 1 1 1 1 1 1 2 1 1 1

 1 2 1 2 2 1 2 1 1 1 2

 1 2 2 1 1 2 1 2 1 2 1

 2 1 2 2 1 2 1 1 2 2 1

 1 1 2 2 2 2 1 2 2 2 2

 2 

 

Optimised production sequence of vessels for product type C: 

Scenario 1: 

2 2 2 2 2 2 2 2 3 2 2

 2 3 2 3 2 3 2 2 3 2 3

 2 2 2 3 2 2 3 3 3 2 3

 3 3 2 3 3 3 3 2 3 2 3

 3 2 3 3 3 2 2 2 3 3 3

 3 2 3 2 3 3 3 3 3 3 2

 3 3 3 3 3 3 3 3 2 3 3

 2 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

Scenario 2: 

              2 2 2 2 2 2 3 2 2 2 3

 2 2 2 2 2 3 3 3 3 3 2

 2 2 2 2 2 3 3 3 2 2 3

 3 2 2 2 3 2 3 3 2 3 3

 2 3 3 3 3 3 3 3 2 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 2 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 
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Scenario 3: 

              2 2 2 2 2 2 2 2 2 2 2

 2 2 2 2 3 2 2 2 2 2 2

 3 3 2 2 2 2 2 3 2 3 3

 3 2 2 3 2 3 2 2 3 2 2

 3 3 3 3 3 3 3 3 3 2 3

 3 3 3 3 3 2 3 2 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

B.4: ACO optimisation 

Optimised production sequence of vessels for product type A: 

Scenario 1: 

3 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 2 3 2 3 3 2 2

 3 2 3 2 1 3 3 2 3 3 3

 1 3 3 2 2 3 1 3 2 2 3

 2 2 1 3 3 2 1 2 3 1 2

 2 1 3 1 1 1 2 1 1 2 2

 2 1 3 2 2 1 1 1 2 3 1

 1 3 2 1 2 3 2 1 2 1 1

 1 1 1 2 2 1 1 3 1 1 2

 1 

Scenario 2: 

              3 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 2 2 2 2 3 1

 3 2 1 3 3 2 2 2 2 3 2

 3 3 2 2 2 2 2 1 1 2 1

 1 1 1 1 1 2 3 3 2 1 1

 2 3 2 1 1 1 3 1 2 1 1

 1 1 2 1 1 2 1 1 3 2 1

 3 2 2 1 1 2 2 2 2 2 1

 2 1 1 3 1 1 1 1 1 2 1

 1 
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Scenario 3: 

              3 3 3 3 2 3 3 3 3 1 3

 3 3 3 3 2 3 2 2 2 2 2

 3 1 2 3 3 2 3 3 3 3 3

 2 3 2 2 2 3 3 3 2 2 2

 2 1 2 1 2 2 2 3 2 2 2

 2 3 3 1 1 1 2 1 3 2 2

 2 3 1 2 1 1 2 2 1 2 1

 3 1 1 2 1 1 1 3 2 3 1

 2 1 1 1 2 1 1 1 1 2 2

 1 

 

Optimised production sequence of vessels for product type B: 

 
1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 2 1 1 1 1 1 1

 2 1 1 1 1 1 2 1 1 1 1

 1 1 2 1 1 1 2 1 1 2 1

 1 2 1 2 2 2 1 2 2 1 1

 1 2 1 1 1 2 2 2 1 1 2

 2 1 1 2 1 1 1 2 1 2 2

 2 2 2 1 1 2 2 1 2 2 1

 2 

Scenario 2: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 2

 1 1 2 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 2 1 2

 2 2 2 2 2 1 1 1 1 2 2

 1 1 1 2 2 2 1 2 1 2 2

 2 2 1 2 2 1 2 2 1 1 2

 1 1 1 2 2 1 1 1 1 1 2

 1 2 2 1 2 2 2 2 2 1 2

 2 

Scenario 3: 

              1 1 1 1 1 1 1 1 1 2 1

 1 1 1 1 1 1 1 1 1 1 1

 1 2 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 2 1 2 1 1 1 1 1 1 1

 1 1 1 2 2 2 1 2 1 1 1

 1 1 2 1 2 2 1 1 2 1 2

 1 2 2 1 2 2 2 1 1 1 2

 1 2 2 2 1 2 2 2 2 1 1

 2 
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Optimised production sequence of vessels for product type C: 

Scenario 1: 

2 2 2 2 2 2 2 2 2 2 2

 2 2 2 3 3 2 3 2 2 3 3

 2 3 2 3 3 2 2 3 2 2 2

 3 2 2 3 3 2 3 2 3 3 2

 3 3 3 2 2 3 3 3 2 3 3

 3 3 2 3 3 3 3 3 3 3 3

 3 3 2 3 3 3 3 3 3 2 3

 3 2 3 3 3 2 3 3 3 3 3

 3 3 3 3 3 3 3 2 3 3 3

 3 

Scenario 2: 

              2 2 2 2 2 2 2 2 2 2 2

 2 2 2 3 2 3 3 3 3 2 3

 2 3 3 2 2 3 3 3 3 2 3

 2 2 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 2 2 3 3 3

 3 2 3 3 3 3 2 3 3 3 3

 3 3 3 3 3 3 3 3 2 3 3

 2 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 3 3 3 3 3 3

 3 

Scenario 3: 

              2 2 2 2 3 2 2 2 2 3 2

 2 2 2 2 3 2 3 3 3 3 3

 2 3 3 2 2 3 2 2 2 2 2

 3 2 3 3 3 2 2 2 3 3 3

 3 3 3 3 3 3 3 2 3 3 3

 3 2 2 3 3 3 3 3 2 3 3

 3 2 3 3 3 3 3 3 3 3 3

 2 3 3 3 3 3 3 2 3 2 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

B.5: Improved GA optimisation 

Optimised production sequence of vessels for product type A:  
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Scenario 1: 

3 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 2 2 2 2 3 1

 3 2 1 3 3 2 2 2 2 3 2

 3 3 2 2 2 2 2 1 1 2 1

 1 1 1 1 1 2 3 3 2 1 1

 2 3 2 1 1 1 3 1 2 1 1

 1 1 2 1 1 2 1 1 3 2 1

 3 2 2 1 1 2 2 2 2 2 1

 2 1 1 3 1 1 1 1 1 2 1

 1 

Scenario 2: 

              3 3 3 2 2 3 2 3 1 3 3

 3 3 3 3 2 3 3 3 2 2 3

 3 1 1 2 1 2 2 3 3 2 2

 2 1 2 2 2 1 3 3 1 3 2

 1 2 1 3 2 1 1 2 1 3 2

 3 1 1 1 1 1 3 1 2 1 3

 1 3 1 1 1 1 1 2 2 3 1

 3 1 3 1 2 1 1 2 1 1 2

 1 1 2 1 1 2 1 1 2 1 2

 1 

Scenario 3: 

              3 3 3 3 3 3 3 2 3 2 3

 3 3 3 2 3 2 2 3 2 2 2

 3 1 2 3 3 2 2 3 1 2 3

 2 2 2 3 2 3 3 3 1 2 3

 3 1 2 3 2 1 2 2 2 3 2

 2 3 1 1 1 2 2 1 2 3 3

 2 2 1 2 1 1 1 2 1 1 1

 2 3 1 2 1 2 1 1 1 3 1

 2 1 1 3 1 1 1 1 1 2 1

 1 

 

Optimised production sequence of vessels for product type B: 

Scenario 1: 

1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 2

 1 1 2 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 2 1 2

 2 2 2 2 2 1 1 1 1 2 2

 1 1 1 2 2 2 1 2 1 2 2

 2 2 1 2 2 1 2 2 1 1 2

 1 1 1 2 2 1 1 1 1 1 2

 1 2 2 1 2 2 2 2 2 1 2

 2 
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Scenario 2: 

              1 1 1 1 1 1 1 1 2 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 2 2 1 2 1 1 1 1 1 1

 1 2 1 1 1 2 1 1 2 1 1

 2 1 2 1 1 2 2 1 2 1 1

 1 2 2 2 2 2 1 2 1 2 1

 2 1 2 2 2 2 2 1 1 1 2

 1 2 1 2 1 2 2 1 2 2 1

 2 2 1 2 2 1 2 2 1 2 1

 2 

Scenario 3: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 2 1 1 1 1 1 1 2 1 1

 1 1 1 1 1 1 1 1 2 1 1

 1 2 1 1 1 2 1 1 1 1 1

 1 1 2 2 2 1 1 2 1 1 1

 1 1 2 1 2 2 2 1 2 2 2

 1 1 2 1 2 1 2 2 2 1 2

 1 2 2 1 2 2 2 2 2 1 2

 2 

 

Optimised production sequence of vessels for product type C: 

 
2 2 2 2 2 2 2 2 2 2 2

 2 2 2 3 2 3 3 3 3 2 3

 2 3 3 2 2 3 3 3 3 2 3

 2 2 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 2 2 3 3 3

 3 2 3 3 3 3 2 3 3 3 3

 3 3 3 3 3 3 3 3 2 3 3

 2 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 3 3 3 3 3 3

 3 

Scenario 2: 

              2 2 2 3 3 2 3 2 3 2 2

 2 2 2 2 3 2 2 2 3 3 2

 2 3 3 3 3 3 3 2 2 3 3

 3 3 3 3 3 3 2 2 3 2 3

 3 3 3 2 3 3 3 3 3 2 3

 2 3 3 3 3 3 2 3 3 3 2

 3 2 3 3 3 3 3 3 3 2 3

 2 3 2 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 
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Scenario 3: 

              2 2 2 2 2 2 2 3 2 3 2

 2 2 2 3 2 3 3 2 3 3 3

 2 3 3 2 2 3 3 2 3 3 2

 3 3 3 2 3 2 2 2 3 3 2

 2 3 3 2 3 3 3 3 3 2 3

 3 2 3 3 3 3 3 3 3 2 2

 3 3 3 3 3 3 3 3 3 3 3

 3 2 3 3 3 3 3 3 3 2 3

 3 3 3 2 3 3 3 3 3 3 3

 3 

B.6: Improved SA optimisation 

Optimised production sequence of vessels for product type A: 

Scenario 1: 

3 3 3 3 3 3 3 3 2 2 3

 2 3 3 3 2 3 2 3 3 3 2

 3 2 3 3 3 3 2 2 3 3 3

 1 3 3 3 2 1 2 1 2 3 2

 2 2 3 2 1 2 2 2 2 2 2

 2 2 3 2 2 3 1 2 2 2 1

 2 1 1 3 2 2 2 1 3 1 2

 1 1 1 2 1 2 1 1 2 1 1

 1 1 1 1 1 1 1 1 2 1 1

 1 

Scenario 2: 

              3 2 3 3 3 3 2 2 3 3 3

 3 2 3 3 3 3 3 2 3 3 3

 2 3 3 3 3 2 3 3 2 3 1

 2 3 2 3 2 2 2 2 3 3 3

 2 2 2 2 2 2 3 3 2 1 2

 2 3 2 1 1 1 3 2 1 2 3

 1 2 2 2 1 1 1 2 1 1 2

 1 2 1 2 2 1 1 2 1 1 1

 1 1 2 2 1 2 1 1 1 1 1

 1 
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Scenario 3: 

              3 3 3 3 3 3 3 3 3 3 2

 2 2 3 3 3 3 3 3 3 3 2

 2 3 2 3 2 3 2 2 2 1 3

 2 2 2 3 2 2 3 3 1 3 2

 2 2 2 2 2 1 3 1 2 3 2

 1 1 2 3 2 1 2 1 2 1 1

 1 1 2 1 2 3 2 2 1 1 1

 1 2 1 1 2 1 1 1 1 2 1

 1 1 1 1 1 1 1 1 1 1 1

 1 

 

Optimised production sequence of vessels for product type B: 

Scenario 1: 

1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 2 1 1 1 1 2 1 2 1 1 1

 1 1 1 1 2 1 1 1 1 1 1

 1 1 1 1 1 1 2 1 1 1 2

 1 2 2 1 1 1 1 2 1 2 1

 2 2 2 1 2 1 2 2 1 2 2

 2 2 2 2 2 2 2 2 1 2 2

 2 

Scenario 2: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 2

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 2 1

 1 1 1 2 2 2 1 1 2 1 1

 2 1 1 1 2 2 2 1 2 2 1

 2 1 2 1 1 2 2 1 2 2 2

 2 2 1 1 2 1 2 2 2 2 2

 2 

Scenario 3: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 2 1

 1 1 1 1 1 1 1 1 2 1 1

 1 1 1 1 1 2 1 2 1 1 1

 2 2 1 1 1 2 1 2 1 2 2

 2 2 1 2 1 1 1 1 2 2 2

 2 1 2 2 1 2 2 2 2 1 2

 2 2 2 2 2 2 2 2 2 2 2

 2 

 

Optimised production sequence of vessels for product type C: 
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Scenario 1: 

              2 2 2 2 2 2 2 2 3 3 2

 3 2 2 2 3 2 3 2 2 2 3

 2 3 2 2 2 2 3 3 2 2 2

 3 2 2 2 3 3 3 3 3 2 3

 3 3 2 3 3 3 3 3 3 3 3

 3 3 2 3 3 2 3 3 3 3 3

 3 3 3 2 3 3 3 3 2 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

Scenario 2: 

              2 3 2 2 2 2 3 3 2 2 2

 2 3 2 2 2 2 2 3 2 2 2

 3 2 2 2 2 3 2 2 3 2 3

 3 2 3 2 3 3 3 3 2 2 2

 3 3 3 3 3 3 2 2 3 3 3

 3 2 3 3 3 3 2 3 3 3 2

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

Scenario 3: 

              2 2 2 2 2 2 2 2 2 2 3

 3 3 2 2 2 2 2 2 2 2 3

 3 2 3 2 3 2 3 3 3 3 2

 3 3 3 2 3 3 2 2 3 2 3

 3 3 3 3 3 3 2 3 3 2 3

 3 3 3 2 3 3 3 3 3 3 3

 3 3 3 3 3 2 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 

B.7: Hybrid algorithm 

Optimised production sequence of vessels for product type A: 
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Scenario 1: 

              3 3 3 3 3 3 3 3 2 3 1

 3 3 2 3 3 3 3 2 2 2 3

 2 3 2 2 1 2 3 3 2 3 2

 3 3 2 2 2 2 2 1 1 2 1

 1 1 1 1 1 2 3 3 2 1 1

 2 3 2 1 1 1 3 1 2 1 1

 1 1 2 1 1 2 1 1 3 2 1

 3 2 2 1 1 2 2 2 2 2 1

 2 1 1 3 1 1 1 1 1 2 1

 1 

Scenario 2: 

              3 3 3 3 3 2 3 3 3 3 3

 2 2 3 3 3 3 2 1 3 3 3

 3 3 3 1 3 2 3 3 1 3 2

 2 3 2 3 3 3 3 1 1 2 2

 3 2 1 1 3 3 1 1 3 2 2

 2 3 2 3 2 2 2 1 1 2 1

 1 1 2 2 1 3 1 2 1 2 3

 3 1 3 1 2 1 1 2 1 1 2

 1 1 2 1 1 2 1 1 2 1 2

 1 

Scenario 3: 

              3 3 3 3 3 3 3 3 3 2 2

 3 3 3 2 3 3 3 1 3 2 3

 2 3 3 2 2 3 3 2 3 2 3

 2 3 1 1 2 2 2 1 2 3 2

 2 1 2 1 2 2 2 3 2 2 2

 2 3 3 1 1 1 2 1 3 2 2

 2 3 1 2 1 1 2 2 1 2 1

 3 1 1 2 1 1 1 3 2 3 1

 2 1 1 1 2 1 1 1 1 2 2

 1 

 

Optimised production sequence of vessels for product type B: 

Scenario 1: 

1 1 1 1 1 1 1 1 1 1 2

 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 2 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 2 1 2

 2 2 2 2 2 1 1 1 1 2 2

 1 1 1 2 2 2 1 2 1 2 2

 2 2 1 2 2 1 2 2 1 1 2

 1 1 1 2 2 1 1 1 1 1 2

 1 2 2 1 2 2 2 2 2 1 2

 2 
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Scenario 2: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 1 1 1

 1 1 1 2 1 1 1 1 2 1 1

 1 1 1 1 1 1 1 2 2 1 1

 1 1 2 2 1 1 2 2 1 1 1

 1 1 1 1 1 1 1 2 2 1 2

 2 2 1 1 2 1 2 1 2 1 1

 1 2 1 2 1 2 2 1 2 2 1

 2 2 1 2 2 1 2 2 1 2 1

 2 

Scenario 3: 

              1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 2 1 1 1

 1 1 1 1 1 1 1 1 1 1 1

 1 1 2 2 1 1 1 2 1 1 1

 1 2 1 2 1 1 1 1 1 1 1

 1 1 1 2 2 2 1 2 1 1 1

 1 1 2 1 2 2 1 1 2 1 2

 1 2 2 1 2 2 2 1 1 1 2

 1 2 2 2 1 2 2 2 2 1 1

 2 

 

Optimised production sequence of vessels for product type C: 

Scenario 1: 

2 2 2 2 2 2 2 2 3 2 3

 2 2 3 2 2 2 2 3 3 3 2

 3 2 3 3 3 3 2 2 3 2 3

 2 2 3 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 2 2 3 3 3

 3 2 3 3 3 3 2 3 3 3 3

 3 3 3 3 3 3 3 3 2 3 3

 2 3 3 3 3 3 3 3 3 3 3

 3 3 3 2 3 3 3 3 3 3 3

 3 

Scenario 2: 

              2 2 2 2 2 3 2 2 2 2 2

 3 3 2 2 2 2 3 3 2 2 2

 2 2 2 3 2 3 2 2 3 2 3

 3 2 3 2 2 2 2 3 3 3 3

 2 3 3 3 2 2 3 3 2 3 3

 3 2 3 2 3 3 3 3 3 3 3

 3 3 3 3 3 2 3 3 3 3 2

 2 3 2 3 3 3 3 3 3 3 3

 3 3 3 3 3 3 3 3 3 3 3

 3 
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Scenario 3: 

              2 2 2 2 2 2 2 2 2 3 3

 2 2 2 3 2 2 2 3 2 3 2

 3 2 2 3 3 2 2 3 2 3 2

 3 2 3 3 3 3 3 3 3 2 3

 3 3 3 3 3 3 3 2 3 3 3

 3 2 2 3 3 3 3 3 2 3 3

 3 2 3 3 3 3 3 3 3 3 3

 2 3 3 3 3 3 3 2 3 2 3

 3 3 3 3 3 3 3 3 3 3 3
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