5 research outputs found

    MINIMAL CUT SETS IDENTIFICATION OF NUCLEAR SYSTEMS BY EVOLUTIONARY ALGORITHMS

    No full text
    Fault Trees (FTs) for the Probabilistic Safety Analysis (PSA) of real systems suffer from the combinatorial explosion of failure sets. Then, minimal cut sets (mcs) identification is not a trivial technical issue. In this work, we transform the search of the event sets leading to system failure and the identification of the mcs into an optimization problem. We do so by hierarchically looking for the minimum combination of cut sets that can guarantee the best coverage of all the minterms that make the system fail. A multiple-population, parallel search policy based on a Differential Evolution (DE) algorithm is developed and shown to be efficient for mcs identification, on a case study considering the Airlock System (AS) of CANDU reactor

    An efficient algorithm for exact computation of system and survival signatures using binary decision diagrams

    Get PDF
    System and survival signatures are important and popular tools for studying and analysing the reliability of systems. However, it is difficult to compute these signatures for systems with complex reliability structure functions and large numbers of components. This paper presents a new algorithm that is able to compute exact signatures for systems that are far more complex than is feasible using existing approaches. This is based on the use of reduced order binary decision diagrams (ROBDDs), multidimensional arrays and the dynamic programming paradigm. Results comparing the computational efficiency of deriving signatures for some example systems (including complex benchmark systems from the literature) using the new algorithm and a comparison enumerative algorithm are presented and demonstrate a significant reduction in computation time and improvement in scalability with increasing system complexity

    Determination of prime implicants by differential evolution for the dynamic reliability analysis of non-coherent nuclear systems

    Get PDF
    open4We present an original computational method for the identification of prime implicants (PIs) in non-coherent structure functions of dynamic systems. This is a relevant problem for dynamic reliability analysis, when dynamic effects render inadequate the traditional methods of minimal cut-set identification. PIs identification is here transformed into an optimization problem, where we look for the minimum combination of implicants that guarantees the best coverage of all the minterms. For testing the method, an artificial case study has been implemented, regarding a system composed by five components that fail at random times with random magnitudes. The system undergoes a failure if during an accidental scenario a safety-relevant monitored signal raises above an upper threshold or decreases below a lower threshold. Truth tables of the two system end-states are used to identify all the minterms. Then, the PIs that best cover all minterms are found by Modified Binary Differential Evolution. Results and performances of the proposed method have been compared with those of a traditional analytical approach known as Quine-McCluskey algorithm and other evolutionary algorithms, such as Genetic Algorithm and Binary Differential Evolution. The capability of the method is confirmed with respect to a dynamic Steam Generator of a Nuclear Power Plant.Di Maio, Francesco; Baronchelli, Samuele; Vagnoli, Matteo; Zio, EnricoDI MAIO, Francesco; Baronchelli, Samuele; Vagnoli, Matteo; Zio, Enric
    corecore