83 research outputs found

    Generation of optimal trajectories for Earth hybrid pole sitters

    Get PDF
    A pole-sitter orbit is a closed path that is constantly above one of the Earth's poles, by means of continuous low thrust. This work proposes to hybridize solar sail propulsion and solar electric propulsion (SEP) on the same spacecraft, to enable such a pole-sitter orbit. Locally-optimal control laws are found with a semi-analytical inverse method, starting from a trajectory that satisfies the pole-sitter condition in the Sun-Earth circular restricted three-body problem. These solutions are subsequently used as first guess to find optimal orbits, using a direct method based on pseudospectral transcription. The orbital dynamics of both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows savings on propellant mass fraction. Finally, it is shown that for sufficiently long missions, a hybrid pole-sitter, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Practical application of pseudospectral optimization to robot path planning

    Get PDF
    To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simpliïŹed kino-dynamic models to avoid the signiïŹcant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predeïŹned analytical functions to enable real world application

    Design of optimal Earth pole-sitter transfers using low thrust propulsion

    Get PDF
    Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which a solar-electric-propulsion thruster transfers the spacecraft to the pole-sitter orbit. The objective is to minimise the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits the manifolds winding off the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral through an orbital averaging technique, which provides further mass savings, but at the cost of an increased time of flight

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON

    Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    Get PDF
    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand

    Design of optimal transfers between North and South Pole-sitter orbits

    Get PDF
    Recent studies have shown the feasibility of an Earth pole-sitter mission, where a spacecraft follows the Earth’s polar axis to have a continuous, hemispherical view of one of the Earth’s Poles. However, due to the tilt of the polar axis, the North and South Poles are alternately situated in darkness for long periods dur-ing the year. This significantly constrains observations and decreases mission scientific return. This paper therefore investigates transfers between north and south pole-sitter orbits before the start of the Arctic and Antarctic winters to maximize scientific return by observing the polar regions only when lit. Clearly, such a transfer can also be employed for the sole purpose of visiting both the North and South Poles with one single spacecraft during one single mission. To enable such a novel transfer, two types of propulsion are proposed, including so-lar electric propulsion (SEP) and a hybridization of SEP with solar sailing. A di-rect optimization method based on pseudospectral transcription is used to find both transfers that minimize the SEP propellant consumption and transfers that trade-off SEP propellant consumption and observation time of the Poles. Also, a feedback control is developed to account for non-ideal properties of the solar sail. It is shown that, for all cases considered, hybrid low-thrust propulsion out-performs the pure SEP case, while enabling a transfer that would not be feasible with current solar sail technology

    Analytical sun synchronous low-thrust manoeuvres

    Get PDF
    Article describes analytical sun synchronous low-thrust manoeuvres

    Design of optimal transfers between North and South Pole-sitter orbits

    Get PDF
    Recent studies have shown the feasibility of an Earth pole-sitter mission, where a spacecraft follows the Earth’s polar axis to have a continuous, hemispherical view of one of the Earth’s Poles. However, due to the tilt of the polar axis, the North and South Poles are alternately situated in darkness for long periods dur-ing the year. This significantly constrains observations and decreases mission scientific return. This paper therefore investigates transfers between north and south pole-sitter orbits before the start of the Arctic and Antarctic winters to maximize scientific return by observing the polar regions only when lit. Clearly, such a transfer can also be employed for the sole purpose of visiting both the North and South Poles with one single spacecraft during one single mission. To enable such a novel transfer, two types of propulsion are proposed, including so-lar electric propulsion (SEP) and a hybridization of SEP with solar sailing. A di-rect optimization method based on pseudospectral transcription is used to find both transfers that minimize the SEP propellant consumption and transfers that trade-off SEP propellant consumption and observation time of the Poles. Also, a feedback control is developed to account for non-ideal properties of the solar sail. It is shown that, for all cases considered, hybrid low-thrust propulsion out-performs the pure SEP case, while enabling a transfer that would not be feasible with current solar sail technology
    • 

    corecore