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Analytical Sun Synchronous Low-Thrust Orbit Maneuvers 

Stephanie Y. Docherty* and Malcolm Macdonald† 

University of Strathclyde, Glasgow, G1 1XJ, Scotland, E.U. 

Nomenclature 

a = Semi-Major Axis (m) 

c  =  Propulsion System Exhaust Velocity (m/s) 

e =  Eccentricity  

i = Inclination (deg) 

J2 =  Dominant Earth Oblateness Term 

m  = Mass of spacecraft (kg) 

 ̇ =  Mass Flow Rate of Low-Thrust Propulsion System (kg/s) 

R =  Mean Volumetric Radius of Earth (m) 

r  =  Orbit Radius (m)  

T  =  Spacecraft Thrust (N) 

t  =  Time (Seconds) 

Ω =  Ascending Node Angle (deg) 

 ̇ =  Rate of Change of Ascending Node Angle (deg/s) 

β =  Out-of-plane Thrust Angle (deg)  

ε =  Acceleration of Spacecraft (m/s2) 

θ =  True Anomaly (deg) 

μ  =  Earth Gravitational Parameter (m3/s2) 

  = Order, of inferior order to 

Subscripts 

                                                           
* Masters Student, Advanced Space Concepts Laboratory, stephanie.docherty@strath.ac.uk 
† Associate Director, Advanced Space Concepts Laboratory, malcolm.macdonald.102@strath.ac.uk, Associate 

Fellow AIAA.   
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o = initial parameter value at time zero 

f = final or target parameter value 

I. Introduction 

n general, the motion of a spacecraft under the influence of perturbations requires the application of numerical 

methods to interpret. However, adopting the assumption of a continuously acting force on a spacecraft in an initially 

circular orbit, with the continued absence of other perturbations, enables analytical solutions to be gained for some 

general problems.  

In the absence of a spacecraft thrust vector it has long been established that consideration of non-Keplerian 

motion can generate useful orbit trajectories. For example, through careful consideration of the orbit perturbation 

force due to the oblate nature of the primary body, i.e. Earth, a secular variation of the ascending node angle of a 

near-polar orbit can be induced without expulsion of propellant, generating a so-called Sun-synchronous orbit. This 

was apparently first considered by Hanson and Fairweather [1] and recently extended using low-thrust propulsion to 

allow free selection of orbit altitude and inclination while maintaining a fixed ground-track by Macdonald et al. [2]. 

Following the work of Hanson and Fairweather, Brown considered the effect of the dominant Earth oblateness term, 

J2, to enable orbit raising with continuous low-thrust propulsion in continuous sunlight, which was recognized as 

important to any solar power vehicle [3]. Subsequently, Ramler also considered Earth oblateness effects together 

with an out of orbit plane thrust to change the orbit inclination and ascending node angle [4]. The analysis of Brown 

and Ramler was then generalized analytically by McInnes for terminally unconstrained orbit raising [5, 6].  

Herein, the previous work considering terminally unconstrained orbit raising is extended to develop an analytical 

solution of low-thrust orbit transfers between Sun-synchronous orbits. A validation of this analytical approach is 

also presented using numerical analysis and further optimization. It is explicitly noted that, while existing work 

largely considers problems in which only the initial conditions are specified, the methods used in this work allow for 

solution of the two point boundary transfer problem between Sun-Synchronous orbits.  While numerical methods 

alone could be used to solve such problems, the use of an accurate analytical method significantly reduces the time 

required to find a solution, along with the computational load of doing so, by rapidly providing a high-quality initial 

solution.  

I 
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II. Orbit Dynamics 

A low-thrust orbit raising maneuver from an initially, or nearly circular orbit, using tangential thrusting can be 

approximated as a quasi-circular spiral [7] and as such the orbit radius, r, is used to replace the semi-major axis, 

assuming that eccentricity is negligible. Note that with tangential thrusting although the instantaneous variation in 

eccentricity is non-zero, the secular variation of eccentricity is zero. It is noted from Eq. (1) that any component of 

thrust which is out of the orbit plane will not contribute towards the orbit raising maneuver as only in-plane thrusting 

alters the rate of change of orbit semi-major axis. Resultantly, within this analytical analysis, the spacecraft thrust is 

directed along the vehicle tangential direction and pitched at an angle β out of the orbit plane, as shown in Fig. 1, 

such that the orbit energy and plane can be controlled. The radial component of acceleration is thus zero. The 

Lagrange-Gauss variational equations for semi-major axis, inclination, ascending node, and true anomaly, [8] 

become, 
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Fig. 1 Orbit geometry with ascending node N and descending node N’ and thrust induced acceleration 

orientation 

The Lagrange-Gauss variational equations may be averaged with respect to true anomaly to obtain the long-

period motion using the averaging operator, 
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It should be noted that the use of orbit averaging to obtain long-period motion means that any orbit maneuver 

will only be accurately represented over an integer number of revolutions. This anomaly will be increasingly 

prominent for short orbit transfers, where the short-period variations represent a more significant fraction of the total 

orbit maneuver magnitude. 

A. Constant Acceleration 

For a spacecraft with low-thrust propulsion, such as a Solar Electric Propulsion (SEP) system, the reduction in 

spacecraft mass due to exhaust gases may, in-general, be neglected for short duration maneuvers. As such systems 

generally maintain constant thrust, this leads the initial acceleration,   ,  to remain constant. Eq. (8) – (10) may be 

re-written using Eq. (11) [9, 10] and assuming zero mass change with respect to time. 
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Thereafter, the modified Eq. (8) – (10) can be solved by defining an out-of-plane thrust angle profile with respect to 

true anomaly. From Eq. (2) it can be seen that for a fixed angle β (≠ π/2) the rate of change inclination will switch 

sign at true anomaly (π/2) and (3π/2). Therefore, by switching the out-of-plane thrust vector orientation in accordance 

with this variation, a uniformly positive or negative variation in inclination can be gained [11, 12]. Eq. (8) is thus 

solved directly to obtain, 
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where,  ̃ switches between {-    } every half-orbit at true anomaly (π/2) and (3π/2). Eqs. (9) and (10) can thereafter 

be solved sequentially to obtain,  
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Note that Eqs. (12) and (13) match those previously derived in [6], while Eq. (14) corrects a typo in the same. 

B. Constant Thrust 

The derivation of Eqs. (12) – (14) assumed that a constant acceleration was delivered by the low-thrust 

propulsion system. However, this result can be extended to consider constant thrust from the low-thrust propulsion 

system, where reduction in spacecraft mass due to exhaust gases is no longer neglected, hence providing a more 

accurate solution. Using Eq. (11) for only constant thrust to rewrite Eq. (8) and subsequently solving gives,  
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where,  ̃ switches between {-    } every half-orbit. Similarly, Eq. (9) can thereafter be solved to obtain, 
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where,   is as shown in Eq. (16), and  
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Finally, the ascending node angle may be obtained from Eq. (10) using Eqs. (17) and (18), 
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It can thereafter be found that Eq. (20) can be solved to obtain, 
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For both constant thrust and constant acceleration, these sets of closed-form analytical equations can henceforth 

be used not only to predict the spacecraft trajectory but also to control the spacecraft trajectory, enabling the 

continuous, low-thrust two-point boundary value trajectory transfer problem to be solved analytically. 
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III. Analytical Sun-Synchronous Orbit Transfers 

Consider a two-point boundary transfer problem between an initial and target Sun-synchronous orbit. In order to 

obtain a standard Sun-synchronous orbit, the orbit inclination must be equal to [2], 
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where,  ̇   is the mean rotation rate of the Sun within an Earth-centered inertial reference frame per second i.e. 

equal to 360/365.24 = 0.986 degrees per day.  

A. Sun-synchronous to Sun-synchronous Transfer with Constant Acceleration 

For an initially Sun-synchronous orbit, and assuming at all times that the trajectory remains nearly circular, the 

initial inclination io will be equal to the inclination as shown in Eq. (22), where a will be equal to the initial semi-

major axis ao. For the final orbit to be Sun-synchronous, the final inclination, if, must also be defined by Eq. (22) 

where a will be equal to the target semi-major axis af. Therefore, this target semi-major axis can be equated to the 

semi-major axis as in Eq. (12), where tf will represent the transfer duration, 
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Similarly, the target inclination can be equated to the inclination shown in Eq. (13) as,  
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Thus, using Eq. (23) and (24), the transfer can be solved analytically for values of the required out-of-plane thrust 

angle  ̃ and transfer duration tf by finding the appropriate root of the system. Furthermore, as Eq. (22) directly 

incorporates the required mean rate of change of the ascending node angle, the actual ascending node angle can be 

expected to naturally rotate, due to J2, during the orbit transfer such that not only will the Sun-Synchronous 

condition be maintained at all times, but the relative orientation of the orbit normal and Sun-line should also remain 

constant. 

B. Sun-synchronous to Sun-synchronous Transfer with Constant Thrust  
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A similar manipulation of equations can be carried out on those which represent a constant thrust transfer. The 

procedure is as described for constant acceleration, however in this case the target semi-major axis, af, is equated to 

the semi-major axis as shown in Eq. (17), 
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Similarly, the target inclination is equated to the inclination shown in Eq. (18),  
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Again, in this case using Eq. (25) and (26), this transfer can be solved analytically for values of the required out-of-

plane thrust angle  ̃ and transfer duration tf by finding the appropriate root of the system. Once again, as this 

remains a Sun-synchronous to Sun-synchronous transfer, the Sun-synchronous orbit alignment can be expected to be 

maintained at all times.  

IV. Numerical Validation of Analytical Analysis 

 In order to assess the validity of the general perturbations solution, a special perturbations solution is generated 

using the analytically generated control profile, i.e. the transfer time and the out of plane angle,  ̃; the terms general 

and special perturbations are defined in [13]. As described in section II A,  ̃  must switch between {-    } every 

half-orbit at true anomaly (π/2) and (3π/2) in order to maintain a uniformly positive, or negative, variation in 

inclination. The special perturbations analysis therefore assumes that the normal component of acceleration direction 

varies as a step, moving from positive to negative every half orbit, while the tangential component of acceleration 

direction remains constant and the radial component of acceleration direction is always equal to zero. This special 

perturbations technique numerically propagates the spacecraft position by integration of the modified equinoctial 

equations of motion in the Gauss’ form [14, 15]. This is done using an explicit, variable step-size Runge-Kutta (4, 5) 

formula, the Dormand-Prince pair (a single step method) [16]. 

 The result of the special perturbations analysis is thereafter used as an initial guess to allow numerical 

optimization of the spacecraft control profile to quantify the optimality of the general perturbations solution. 
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Numerical optimization is conducted using a Pseudospectral Optimal Control Solver (PSOPT) which once again 

propagates the spacecraft position using modified equinoctial equations of motion in the Gauss’ form [17, 18]. 

PSOPT‡ is an open source optimal control software package written in C++ that uses direct collocation methods, 

including pseudospectral and local discretizations to solve optimal control problems [19]. The numerical 

optimization objective function was, at all times, to maximize the final spacecraft mass, that is to say, to minimize 

the propellant required. 

 

Consider a transfer between two circular Sun-synchronous orbits, with an initial acceleration of 1 mm/s2, an 

initial spacecraft mass of 500 kg, and a specific impulse of 3000 seconds. The initial orbit is assumed to be similar to 

that of ENVISAT i.e. a repeat ground-track after 501 revolutions over 35 days, with an initial altitude of 781 km and 

an initial inclination of 98.52 degrees. The control profile for an orbit transfer to a Sun-synchronous orbit with a 30 

km higher altitude can be analytically determined by finding the roots of the system as discussed in III A and III B 

for constant acceleration and constant thrust respectively. Using special perturbations techniques to propagate each 

analytically determined transfer trajectory, it is found that the transfer time decreases slightly in both cases due to 

the orbit averaging technique applied in the general perturbations method. The given special perturbations solution 

can then be used as an initial guess such that the transfer can be numerically optimized, while maintaining the 

constraint that the radial acceleration equals zero at all times.  

 

Table 1 displays the general and special perturbations solutions, and the numerically optimized solution for both 

constant acceleration and constant thrust. It can be noted that in the case of constant thrust, as acceleration is no 

longer constant, the final mass produced by the general perturbations solution can be calculated using Eq. (11).  

 

 

 

 

 

                                                           
‡ See also www.psopt.org, cited 26 January 2011. 

http://www.psopt.org/
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Table 1 General and special perturbations, and numerically optimized solutions for constant acceleration 

and constant thrust 

 Constant Acceleration  Constant Thrust  

General Perturbations Solution 

Required Out of Plane Thrust Angle, deg 58.9 58.9 

Transfer Time, s 30414 30602 

Final Mass, kg 500 499.48 

Fuel Requirement, kg N/A 0.52 

Special Perturbations Solution 

Transfer Time, s 30285 30286 

Final Mass, kg 499.49 499.49 

Fuel Requirement, kg 0.51 0.51 

Numerically Optimized Solution 

Transfer Time, s 29922 29940 

Final Mass, kg 499.49 499.49 

Fuel Requirement, kg 0.51 0.51 

 

The general perturbations solution is found to have provided a high-quality initial guess, with a transfer time 

inaccuracy of only 1.7 % for constant acceleration and 2.2% for constant thrust, in comparison with the optimized 

solution. It can be seen that, in the presented case of constant thrust, the general perturbation solution is practically 

fuel optimal, with an additional fuel requirement of only 0.01 kg, 0.002% of the initial spacecraft mass. 

Optimization of the spacecraft control profile for the case of constant acceleration is as shown in Fig. 2. 
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Fig. 2 Variation of normal (top) and tangential (bottom) control acceleration for a Sun-synchronous to Sun-

synchronous transfer with constant propulsive acceleration 

 

Considering the special perturbations solution, the times at which the normal control profile switches direction, 

represented by the sharp corners in Fig. 2, are essentially times where the engine is continuing to thrust yet the 

acceleration is having very little, or no effect on the spacecraft trajectory. This can be understood by considering Eq. 

(2), where the cosine term will force zero rate of change of the ascending node when the true anomaly is (π/2) and 

(3π/2), corresponding to the switching profile of the control law. Therefore, the use of a numerical optimizer 

eliminates inefficient use of propellant by smoothing the control profile for the normal acceleration around these 

areas. Consequently, due to the optimizer’s variation in out-of-plane thrust magnitude, the tangential acceleration 
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magnitude is also no longer constant, varying in phase with the normal acceleration with approximately one 

oscillation per half-orbit revolution. For the case of constant thrust, the special perturbations and numerically 

optimized control profiles for both the normal and tangential components of acceleration appear almost identical to 

that shown in Fig. 2. It should be noted that in this case, the magnitude of the total acceleration will increase due to 

the reduction in spacecraft mass; however this increase is only marginal and hence is not clearly evident. 

The optimized numerical transfer altitude and inclination variation can be compared with that of the general and 

special perturbations transfers, as shown in Fig. 3 for the case of constant acceleration.  

 

Fig. 3 Variation of altitude (top) and inclination (bottom) due to the control profile shown in Fig. 2 
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In terms of altitude variation shown in Fig. 3, the special perturbations solution and the numerically optimized 

solution oscillate over one orbit revolution. The troughs of the special perturbations solution and peaks of the 

numerically optimized solution coincide with each other, and the general perturbations solution, after each 

revolution, and thus the increase in orbit altitude is occurring at the same steady rate for all solutions. The variation 

of inclination in Fig. 3 has a behavior similar to that of altitude, only with oscillation occurring twice over one 

revolution. Again, the inclination is increasing at the same steady rate for all solutions. It can therefore be deduced 

that the analytical representation of the transfer is representing the given transfer to a high-level of agreement. For 

constant thrust, the variation of altitude and inclination for all three solutions appear almost identical to those shown 

in Fig. 3 and hence are not represented.   

As discussed previously, it is anticipated that a transfer between two Sun-synchronous orbits will maintain a 

constant alignment to the Sun. Thus, the rate of change of the right ascension of the ascending node, equal to  ̇  , 

should remain relatively steady at 0.986 degrees per day. With a constant rate of change, the desired value of the 

ascending node angle will increase linearly during numerical optimization. Although the variation of the ascending 

node angle for the numerically optimized solution was found to increase almost linearly, small oscillations occur 

around the desired linear variation, with, as expected from Eq. (3), approximately two oscillations per revolution. 

This can be observed by considering the difference between the ascending node angle for the optimized solution and 

the desired ascending node angle, shown in Fig. 4 for the case of constant acceleration, and appears almost identical 

for the case of constant thrust. 
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Fig. 4 Difference between ascending node angle for optimized transfer and desired ascending node angle ( ) 

and associated linear trendline (- -) for a Sun-synchronous to Sun-synchronous transfer with constant 

propulsive acceleration 

  

On average, the difference between the optimized ascending node angle and the desired ascending node angle 

increases by 1.2 millidegrees per orbit revolution. Thus over the full transfer, the optimized ascending node angle 

has an average error of 6 millidegrees with respect to the desired ascending node angle. This can be compared with 

the general perturbations solution which, over the duration of the transfer, was found to have an error of only 0.014 

millidegrees. It can be noted that, in general, the differences between the constant acceleration and constant thrust 

solutions are small and thus the assumption of constant acceleration is valid for such short transfers. This was also 

found for transfers of varying initial mass, specific impulse, and altitude change. 

As anticipated, due to the orbit averaging technique applied, the general perturbations solution does not represent 

the oscillation of the orbital elements such as altitude and inclination. This can be understood by examination of Fig. 

2, for example a transfer of 4.5 orbit revolutions would result in a considerable difference in altitude between the 

general perturbations and both the special perturbations and numerically optimized solutions.  
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perturbations solution. The transfer time is found through numerical optimization to be very similar to that of the 

constrained solution, in this case, being reduced from 29940 seconds to 29934 seconds. The final mass of the 

spacecraft also remains the same at 499.49 kg. The normal acceleration solution is found to be extremely similar to 

that of the no radial acceleration solution, while for the tangential component of acceleration the pattern of two 

oscillations per orbit revolution in-phase with the normal component of acceleration remains. The radial component 

of acceleration also varies in phase with the normal acceleration, with approximately one oscillation per orbit 

revolution. Although allowed to vary, the maximum magnitude of the radial acceleration is only approximately 0.08 

mm/s2. This small magnitude results in a very similar variation of normal and tangential acceleration to the 

constrained transfer. The variation of all components of acceleration, radial, normal, and tangential, is shown in Fig. 

5.  
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Fig. 5 Variation of Radial (top), Normal (middle), and Tangential (bottom) Acceleration for a Sun-

synchronous to Sun-synchronous transfer with constant thrust 
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Removing this constraint on the radial acceleration was found to have very little effect on the variation on the 

ascending node angle. And as for the constrained transfer, that is, without radial thrusting, the variation of altitude 

and inclination were shown to be very similar to that in Fig. 3.  

V. Discussion 

It is noted that, in this work, the example transfer presented is a very short time transfer with an altitude change 

of only 30 km. While the general perturbations technique used could obtain a solution for a transfer of considerably 

larger magnitude, limitations of the numerical solver used to attain the optimal solution presented restrictions in the 

maximum altitude change with which optimality could be examined. 

Use of the general perturbations technique derived here on-board a spacecraft would significantly reduce 

complexity of spacecraft control in comparison with the use of the optimal solution, hence reducing the possibility 

of error. The solution provides a straightforward analytical control law for transfers between Sun-synchronous 

orbits, potentially suitable for use on an autonomous craft, unlike the fully optimised solution. As well as reduced 

complexity of spacecraft operations, spacecraft design could also be simplified by use of the analytical control 

profile derived from the general perturbations solution which would require only an on/off thrusting capacity. Use of 

the control profile generated by the numerical optimizer would however necessitate a very highly controlled thrust 

vector in the form of either a steerable thrust vector, or continuously throttled thrust magnitudes on several thrusters. 

Use of the general perturbations analysis can hence provide significant advantages in terms of practicality with 

almost no penalty in optimality. Although a comprehensive robustness check has not be performed in this work, it 

was found that the inclusion of additional perturbation terms J3 and J4 had negligible effect on the practicality of the 

solution method.  

VI. Conclusions 

A general perturbations representation of a two-point boundary value transfer between two sun-synchronous 

orbits has been achieved for both constant acceleration and constant thrust. Validation of this general perturbations 

solution was achieved through the use of special perturbations and numerical optimization. Maintaining an objective 

function to minimize propellant use, the general perturbations solution for constant thrust was found to be very 

nearly optimal in terms of mass consumption. The transfer time of the general perturbations solution was found to be 

accurate to within less than two percentage points with respect to the numerically optimized solution.  
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