147,737 research outputs found

    Four approaches to teaching programming

    No full text
    Based on a survey of literature, four different approaches to teaching introductory programming are identified and described. Examples of the practice of each approach are identified representing procedural, visual, and object-oriented programming language paradigms. Each approach is then further analysed, identifying advantages and disadvantages for the student and the teacher. The first approach, code analysis, is analogous to reading before writing, that is, recognising the parts and what they mean. It requires learners to analyse and understand existing code prior to producing their own. An alternative is the building blocks approach, analogous to learning vocabulary, nouns and verbs, before constructing sentences. A third approach is identified as simple units in which learners master solutions to small problems before applying the learned logic to more complex problems. The final approach, full systems, is analogous to learning a foreign language by immersion whereby learners design a solution to a non-trivial problem and the programming concepts and language constructs are introduced only when the solution to the problem requires their application. The conclusion asserts that competency in programming cannot be achieved without mastering each of the approaches, at least to some extent. Use of the approaches in combination could provide novice programmers with the opportunities to acquire a full range of knowledge, understanding, and skills. Several orders for presenting the approaches in the classroom are proposed and analysed reflecting the needs of the learners and teachers. Further research is needed to better understand these and other approaches to teaching programming, not in terms of learner outcomes, but in terms of teachers’ actions and techniques employed to facilitate the construction of new knowledge by the learners. Effective classroom teaching practices could be informed by further investigations into the effect on progression of different toolset choices and combinations of teaching approache

    Design thinking support: information systems versus reasoning

    Get PDF
    Numerous attempts have been made to conceive and implement appropriate information systems to support architectural designers in their creative design thinking processes. These information systems aim at providing support in very diverse ways: enabling designers to make diverse kinds of visual representations of a design, enabling them to make complex calculations and simulations which take into account numerous relevant parameters in the design context, providing them with loads of information and knowledge from all over the world, and so forth. Notwithstanding the continued efforts to develop these information systems, they still fail to provide essential support in the core creative activities of architectural designers. In order to understand why an appropriately effective support from information systems is so hard to realize, we started to look into the nature of design thinking and on how reasoning processes are at play in this design thinking. This investigation suggests that creative designing rests on a cyclic combination of abductive, deductive and inductive reasoning processes. Because traditional information systems typically target only one of these reasoning processes at a time, this could explain the limited applicability and usefulness of these systems. As research in information technology is increasingly targeting the combination of these reasoning modes, improvements may be within reach for design thinking support by information systems

    Discursive design thinking: the role of explicit knowledge in creative architectural design reasoning

    Get PDF
    The main hypothesis investigated in this paper is based upon the suggestion that the discursive reasoning in architecture supported by an explicit knowledge of spatial configurations can enhance both design productivity and the intelligibility of design solutions. The study consists of an examination of an architect’s performance while solving intuitively a well-defined problem followed by an analysis of the spatial structure of their design solutions. One group of architects will attempt to solve the design problem logically, rationalizing their design decisions by implementing their explicit knowledge of spatial configurations. The other group will use an implicit form of such knowledge arising from their architectural education to reason about their design acts. An integrated model of protocol analysis combining linkography and macroscopic coding is used to analyze the design processes. The resulting design outcomes will be evaluated quantitatively in terms of their spatial configurations. The analysis appears to show that an explicit knowledge of the rules of spatial configurations, as possessed by the first group of architects can partially enhance their function-driven judgment producing permeable and well-structured spaces. These findings are particularly significant as they imply that an explicit rather than an implicit knowledge of the fundamental rules that make a layout possible can lead to a considerable improvement in both the design process and product. This suggests that by externalizing th

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor
    • …
    corecore